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1. INTRODUCTION 
In recent years, a great deal of interest has arisen 

in both the theoretical and the experimental study 
of neutralized electron beams. At the previous 
Symposium held in 1956, G.I. Budker1) proposed 
a radiation cooled stationary state of neutralized 
relativistic electron beams and discussed how these 
beams could be used as strong focusing guiding 
fields of high energy accelerators. It has been found 
that all electron beams so far achieved by ordinary 
accelerators have too low an intensity to realize 
this steady state. In order to correct this deficiency, 
several proposals2-6) for promising schemes have 
been made and some laboratories have started 
constructing their own machines5,7). 
On the other hand, in the field of controlled 

thermonuclear fusion, there seems to be another 
branch of applications of relativistic electron beams. 
The feasibility of trapping ions in negative potentials 
of neutralized relativistic electron beams has been 
investigated by G.I. Budker8) and G. Miyamoto 
and others9). N. C. Christophilos10) has proposed 
the idea of the Astron which uses a relativistic 
electron layer to confine a thermonuclear plasma. 
Plasma betatrons of different types have now 

been constructed at several laboratories, and electron 
beams of the order of amperes have been obtained. 
Most of these machines use perpendicular magnetic 

fields to deflect beams into circular rings. However, 
it seems that a steady axial magnetic field is suitable 
as a guiding field for plasma betatrons. First, no 
requirement such as the betatron condition exists; 
hence a current limit such as the one suggested 

by Ch. Maisonnier and D. Finkelstein11) is not 
set at all. Moreover, the field can act on all particles 
independent of their energy, so that it will be useful 
to trap a pre-ionized plasma, and confine delayed 
electrons that begin to run away or are detached 
from atoms some time after the accelerating field 
is applied. 
Electrons travel in a spiral motion along the 

magnetic line of force and gradually drift aside, 
upwards or downwards, as a result of curving lines 
of force. The drifts may be cancelled out after many 
revolutions around the machine by applying a figure-eight 
twist to the magnetic line of force, as was 
originally proposed by L. Spitzer Jr.12). The configuration 
is sketched in Fig. 1. 

Fig. 1 The configuration of figure-eight twist. 

2. CONFINEMENT OF CHARGED PARTICLES 
When the magnetic field is almost uniform and, 

does not change appreciably in a distance of about 

(*) Now at CERN, Genève. 
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one gyroradius, the motion of electrons can be 
adequately described by that of their guiding centres. 
At first we take the single particle case, assuming 
that the magnetic self-field is unimportant. 
The drift velocity of a charged particle with mass 

m, charge e and parallel and transverse velocities, 
v|| and v┴ respecively, in a vacuum magnetic field 
is given by, 

= (m/eBR)(v||2 +v┴2/2) (1) 

where R is the radius of curvature of the magnetic 
line of force and is the binormal unit vector of the 
line. Therefore, the drift displacement of the 
guiding centre while it is proceeded by ds along the 
line of force, is expressed by, 

= (m/eBR)(v||2+v┴2/2)(ds/v||) (2) 

The second factor can be rewritten as follows, 

v||2+ 
=(v2-½v┴2)/√v2-v┴2 

v||2+ 2 =(v2-½v┴2)/√v2-v┴2 v|| 
=(v2-½v┴2)/√v2-v┴2 

= v(1 + 3 v┴
4 

+ ...), 
= v(1 + 8 v4 + ...), 

and the fourth order term may be neglected for 
axially accelerated particles, leading to the formula 

dxd = (mv/eBR) b ds. (3) 

Fig. 1 shows the side view of the torus. Sectors 
KL and Μ Ν are halves of a circular torus and sectors 
LM and NK are connecting sections. The position 
of the guiding centre is described by (r,θ) co-ordinates, 
as can be seen in the figure. While passing through 
the sector KL where field intensity B(R) = B0R0/R, 
the particle displaces in binormal direction by the 
distance. 

∫dxd = 
mv ∙πR = mvπ ∙R ≡ aR0, (4) ∫dxd = eB0R0 ∙πR = eB0R0 

∙R ≡ aR0, (4) 

where R is the major radial vector and is equal to 
R0 + r cos θ, and the suffix zero is referred to the 
quantities at the central axis. 
Assuming that ratios r/R and ρ/r, where ρ is the 

gyroradius and is equal to mv/eB0R0, are small 
quantities of the first order, we can obtain the 
transformation formulas correct up to the second 
order (Fig. 2), 

Fig. 2 The figure-eight geometry. 

rL = rK + aR0sinθK+½ a
2R02cos2θK -arK sinθK cosθK, rL = rK + aR0sinθK+½ rK -arK sinθK cosθK, rL = rK + aR0sinθK+½ rK 

(5) 
θL = θ K+α+ 

aR0 cosθK—( aR0 )2 cosθκ sinθκ — a cos2θκ (6) θL = θ K+α+ rK 
cosθK—( rK )

2 cosθκ sinθκ — a cos2θκ (6) 

rM = rL, (7) 
θM = θL+α, (8) 

where α is defined in Fig. 1. Similar formulas can 
also be derived for M to Ν and Ν to K. After repeating 
a transformation corresponding to one full 
revolution around the machine, the radial co-ordinate 
rN after Ν turns is expressed by, 

rN = r0—πρ 
sin α cos{θ0+(2Ν—1)α} + rN = r0—πρ cos α + 

+ π
2ρ2 Α(θ0,Ν,α)+ 

πρr0 B(θ0,N,α), (9) + r0 Α(θ0,Ν,α)+ R0 
B(θ0,N,α), (9) 

where Α(θ0, Ν, α) and Β(θ0, Ν, α) are periodic factors 
of N of the order of unity, except when α is near the 
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integral multiples of π/2. It can be seen from Eq. (9) 
that, as far as the second order approximation is 
concerned, the orbit of the particle is in neutral 
equilibrium. 
Now we take into consideration the effect of magnetic 

self field, but the field is assumed again to be 
smaller than the external magnetic field by a factor 
α 1. The drift velocity , when a volume current 
is present, is given by, 

= 
m (v2-v┴2/2) + mv||2 

×(rot×) 
(10) = 2e (v

2-v┴2/2) B4 + e B4 (10) 

An infinitesimal displacement of the guiding 
centre drifting aside with the velocity from the 
line of force is 

= +dsm/v|| (11) 

where is the infinitesimal vector along the line 
of force satisfying, 

h1dxm1 = h2dxm2 = h3dxm3 , (12) B1 
= B2 = B3 

, (12) 

in a reference frame with its diagonal metric (h12,h22,h32). 
From Eqs. (11) and (12), follows the equation of 
the guiding centre, 

h1dxg1 = h2dxg2 = h3dxg3 . (13) B1+Bvd1/v|| = B2 + Bvd2/v|| = B3+Bvd3/v|| . (13) 

Taking a co-ordinate system with h1 = 1, h2 = r and 
h3 = 1+kr cos θ, that is a polar co-ordinate system 
based on a circular ring of radius 1/K, the magnetic 
field can be expanded in Fourier series, 

Br = (1+(kr cos θ)-1 Βoe(αka ∞ an*(r) sin nθ, Br = (1+(kr cos θ)-1 Βoe(αka Σ an*(r) sin nθ, Br = (1+(kr cos θ)-1 Βoe(αka 
n=1 

an*(r) sin nθ, 

Βθ = (1+kr cos θ)-1 Boeα{c0(r)+kα ∞ cn*(r) cos nθ}, Βθ = (1+kr cos θ)-1 Boeα{c0(r)+kα Σ cn*(r) cos nθ}, Βθ = (1+kr cos θ)-1 Boeα{c0(r)+kα 
n=1 

cn*(r) cos nθ}, 

Br = (1+kr cosθ)-1 Boe{1+αb0(r)+ 

+αka ∞ bn*(r) cos nθ}, (14) +αka Σ bn*(r) cos nθ}, (14) +αka 
n=1 

bn*(r) cos nθ}, (14) 

where α*(r) and c*(r) are related to each other by 
d (ra*(r)) = ncn*(r) (15) dr (ra

*(r)) = ncn*(r) (15) 

c0(r), b0(r), a*(r), b*(r) and c*(r) are functions of r of 
the order of unity and a represents the beam radius. 
It may be noted here that the coefficients of the 
higher order in the series are smaller than those 
of the lowest order by a factor ka. 
In reality the magnetic field can be calculated 

from the motions of charged particles and the latter 
can be derived from the former, hence it may be 
possible to solve them in a self-consistent way. 
However, in this paper, we only pursue the orbits 
of charged particles in a magnetic field given by 
Eq. (14) and investigate whether they are able to be 
confined or not. 
In the case of circular torus, radial co-ordinate r 

can be worked out regarding ka and δ = ρ/a as 
small parameters of the first order, 

r(θ)=r0+x1(θ)+x2(θ), 

x1(θ) = 
kα 

∙r0 
∞ un(r0){—cos nθ+cos nθ0}, x1(θ) = 

kα 
∙r0 Σ un(r0){—cos nθ+cos nθ0}, x1(θ) = c0(r0) ∙r0 Σ 

un(r0){—cos nθ+cos nθ0}, x1(θ) = c0(r0) ∙r0 n=1 
un(r0){—cos nθ+cos nθ0}, 

x2(θ) = ∞ qn(r0){-cos nθ+cos nθ0}, (16) x2(θ) = Σ qn(r0){-cos nθ+cos nθ0}, (16) x2(θ) = 
n=1 

qn(r0){-cos nθ+cos nθ0}, (16) 

with qn(r0) given by, 

qn(r0) = pn(r0)+(ka)2 
a2 ∙ dun(r0) ∙{ ∞ 

uk(r0) 
1 cos kθ0} qn(r0) = pn(r0)+(ka)2 

a2 ∙ dun(r0) ∙{ 
Σ uk(r0) 

1 cos kθ0} qn(r0) = pn(r0)+(ka)2 n 
∙ 

dr0 
∙{ 

Σ uk(r0) k cos kθ0} qn(r0) = pn(r0)+(ka)2 n 
∙ 

dr0 
∙{ 

k=1 
uk(r0) k cos kθ0} 

-ka∙αa 
[ 
n 
uk(r0)Wn-k(r0)+½ 

∞ 
{un=k(r0)Wk(r0)-uk(r0)Wn+k(r0)}] -ka∙αa 

[ Σ uk(r0)Wn-k(r0)+½ Σ {un=k(r0)Wk(r0)-uk(r0)Wn+k(r0)}] 
- n [ Σ uk(r0)Wn-k(r0)+½ Σ {un=k(r0)Wk(r0)-uk(r0)Wn+k(r0)}] 
- n [ k=0 

uk(r0)Wn-k(r0)+½ 
k=0 

{un=k(r0)Wk(r0)-uk(r0)Wn+k(r0)}] 

- (ka)2a2 
[(1-δn1) 

n-2 duk+1(r0) un-k+1(r0)+½ 
∞ 

{ 
dun+k+1(r0) uk+1(r0)-duk+1(r0) un+k+1(r0)}], 

- (ka)2a2 
[(1-δn1) Σ 

duk+1(r0) un-k+1(r0)+½ Σ { 
dun+k+1(r0) uk+1(r0)-duk+1(r0) un+k+1(r0)}], 

-
n [(1-δn1) Σ dr0 un-k+1(r0)+½ Σ { dr0 

uk+1(r0)-
dr0 un+k+1(r0)}], 

-
n [(1-δn1) k=0 dr0 

un-k+1(r0)+½ k=0 { dr0 
uk+1(r0)-

dr0 un+k+1(r0)}], 
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and 
un(r0) = (r0/c0(r0)a){an*(r0)-(δ/α)A1δn1}, 
Wn(r0) = c0(r0)-1{-c0(r0)b0(r0)δn0+(δ/α)ab'0(r0)(A1-A2)δn0 

+(kr0/α)c0(r0)δn1-(kaδ/α2)A1δn1+(1-δn0)(ka/α)cn*(r0)}, 
pn(r0) = {kar0/c0(r0)}{-(α/n)b0(r0)an*(r0)+(δa/r0)(A1-A2)bn*(r0) 
+(½)(kr0/n)(an+1*(r0)+(1-δn1)an-1*(r0)) 
+(-Q1+1)δA1b0(r0)δn1+(¼)(δ/α)kr0Q2A1δn2}. (17) 

where A1, A2, Q1 and Q2 have a connection with 
the transverse—to—parallel ratio of the particle 
velocity and are constants of the order of unity, 
and δn1 etc. are Kronecker deltas. It results from 
this equation that there exists no monotonous increase 
or decrease in radial position in the present approximation, 
while the particle goes around the machine. 
Higher order terms may be divergent, convergent 
or oscillating. But even if they are divergent, no 
marked change in radial co-ordinate appears as long 
as the product of the number of revolutions Ν and 
(ka)i δj αk, with i+j+k = 3, is smaller than unity. 
For example, taking these parameters equal to 0.1, 
Ν can amount to one thousand turns. 
When a figure-eight twist is applied, it may be 

found also that r is the oscillating function of θ, 
as long as the change in θ during one full revolution 
is not near an integral multiple of 2π. 
The beam current may be restricted by the so-called 

resonance phenomena. If the locus of a guiding 
centre forms a closed loop, small disturbances, for 
example irregularities of the magnetic field, may 
push the particle aside and it will finally be lost. 
In one revolution θ increases by an amount of 
τo—τs(r) where τo is the rotational angle when 
self field is zero and τs(r) is the rotational angle 
due to the self field and nearly equal to Bθ(r) 2πR/B0er. 
From this, the condition that line of force closes 
after Ν revolutions, that is the resonance condition, 
results. The off-resonance condition is, 
{τo—τs(r)}N ≠ 2πn, for arbitrary r, Ν and n, (18) 
Equation (18) may be replaced by the following, 

min |τ0- 2πn |> 2πR0 max | 
Bθ(r) |, (19) min |τ0- Ν |> B0e 

max | r |, (19) 
n.Ν 

|τ0- Ν |> B0e r | r |, (19) 

and this gives an upper limit to the beam current. 
However, the relation looks very severe because, 

by taking a pair of suitable values of n and N, the 
left hand side can be made small arbitrarily. Practically, 
cases with the lower order of N seem to be 
important. Taking Ν = 1 and assuming a surface 
distribution of current of beam radius a, we obtain, 

min. |τ0—2πn|> 
2πR0 ∙ Βθ(a) , (20) min. |τ0—2πn|> B0e 

∙ 
a , (20) 

n 
|τ0—2πn|> B0e 

∙ 
a , (20) 

which is equivalent to the Kruskal limit13) in the 
stellarators. 
Whether this limit restricts absolutely the maximum 

current is not quite clear. For smaller disturbances 
and higher accelerating field, the current may increase 
beyond the limit, because τs(r) is dependent on the 
Bθ(r), hence the circulating current. 

3. EXPERIMENTAL MODEL 
The parameters of the model machine which is 

under construction are as follows (Fig. 3). The 
circumference and inner diameter of the vacuum 
vessel are about 300 cm and 8 cm respectively. The 
characteristic angle α is chosen near 60°. A confining 
magnetic field up to 20 000 G is produced in the 
torus by condenser discharge, and electrons are 

Fig. 3 The schematic diagram of the model machine. 
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accelerated in this field to an energy of a few MeV. 
Taking 3 cm as an effective radius of the beam, 
the limiting current of the beam due to the resonance 
is about 6 000 A. The current corresponding to 
α = 0.1 is found to be 30 000 A. 
The magnitude of the accelerating electric field 

is related to the condition of electron runaway, 
and also to whether the Kruskal limit can be cleared 
or not. A one turn coil is wound onto the torus 
composed of several cables connected in parallel. 
The coil is expected to produce electric fields of 
100 to 200 V/cm along the axis. Acceleration is 
achieved in several microseconds, and a crow-bar 

switch or critical damping resistance will lead to a 
stationary state of electron beams. 
Inert gas introduced into the vacuum vessel at 

a pressure of 10-4 to 10-5 mm Hg may be preionized 
by electrons injected from electron guns14). 
Measurement of X-rays, visible rays and magnetic 

field will give the information on the behaviour of 
the electron beam circulating in the machine. Microwave 
techniques will also be used. 
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