B-mode CMB spectrum estimation using a pure pseudo cross-spectrum approach
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I describe the pure pseudo-spectrum formalism for the estimation of the Cosmic Microwave
Background polarized power spectra, as proposed by [Smith 2006] and extended to incorporate
cross-spectra of the multiple maps of the same sky area by [Grain et al. 2009]. I summarize
the performance of the method as compared to other existing algorithms and their implemen-
tations. In particular, I show that the statistical uncertainty of the estimated B-mode spectra
is typically found to be within a factor ~ 2 of the variance derived from the most optimistic
Fisher matrix predictions accounting only for the sampling and noise uncertainty of the B-
modes alone. I conclude that the presented formalism thanks to its speed and efficiency can
provide an interesting alternative to the CMB polarized power spectra estimators based on
the optimal methods.

1 Introduction

The reliable characterization and scientific exploitation of the polarized Cosmic Microwave Back-
ground (CMB) Anisotropy signal is one of the main challenges facing the CMB research at the
present. We discuss the CMB power spectrum estimation via the pure pseudo spectrum tech-
nique as published in [Grain et al. 2009]'. Pseudo-C; algorithms provide a computationally quick
and flexible framework for estimating the power spectra. However, it has been long recognized 2
that a straightforward application of the pseudo spectrum technique to cut-sky polarized CMB
maps leads to the so-called ” E-to-B” leakage, or power aliasing. A consequence of which the
cosmologically important information contained in the CMB B-modes is overwhelmed by the
statistical uncertainty of the (much larger) E-modes. [Grain et al. 2009]' propose an approach
that relies on a suitably chosen sky apodization to remove from the map harmonic modes which
are neither solely E nor B as introduced by [Smith 2006f.

2 Angular Power Spectrum Estimation

Maps of I, Q and U components of the CMB signal are decomposed into spherical harmonics
a%m, aeEm and afm. From these coefficients, one can construct the 6 angular power spectrum :
C’ZT, CfE , C’ZBB , CETE , CETB and CfB . Systematic effects need to be taken into account in this
process. In particular, beam smoothing effects or partial coverage of the sky must be accounted
for. Even for full sky missions, foreground residuals usually still dominate the noise in the
Galactic plane. To avoid any contamination of the angular power spectra, a mask is applied
to suppress pixels in which parasitic signal are strong, leading to less than full-sky effective

coverage. Angular power spectra estimators can be separated in two main categories:



e Maximum Likelihood methods®"® which estimate angular power spectra using the angular

correlation function M by maximizing the probability of C; considering the maps T:
1
P(Ce|T) o< exp | 5 (T"M™'T + Tr(ln M)) | .

The algorithm scales as O(mesNgix) for CPU time and O(Ngm) for memory. This implies
that maximum likelihood methods are not well adapted to surveys such as Planck which

should deliver high resolution maps with more than 107 pixels.

e Pseudo-Cy methods®%10:!11 compute the angular power spectra directly from the observed
maps before correcting for instrumental effects such as beam smoothing effects (By), partial
sky coverage (Mg which is computed analytically using the spherical transform of the
weight mask) or filtering of data (F7). The biased spectrum (called pseudo-spectrum) Cy
rendered by the direct spherical harmonics transform of a partial sky map is different from
the full sky angular spectrum C; but their ensemble average are linked by :

(Co) = My FpB}(C) + (Ng).
E/

(Ng} is the noise contribution to the estimated pseudo-spectra and vanishes, whenever
the noise in the two data sets is not correlated, as for example, in a case of two data sets
produced by two different experiments or two uncorrelated detectors of a single experiment.
This emphasizes one of the biggest advantages of the cross-spectrum based estimators,
which do not need such a correction. Pseudo-Cy estimators make use of the fast spherical
harmonics transform that scales in O(N;lf). Moreover they are often nearly optimal in
practice (at least for temperature). Nevertheless, they need a precise description of the
instrument (beam, filtering, noise) that requires a large number of Monte-Carlos.

3 E-B mixing

Due to the limited sky coverage, and non-uniform, pixel-dependent weights, the above pseudo-Cy
estimator is biased and its average over CMB realizations, <C’j( >, involves a mixing between

different ¢ modes (or bins) and polarization states (X = E, B). The latter can be described by
a so-called mizing kernel Myy. The unbiased estimator C’EX is thus obtained by inverting the

following linear system,
Vi Mi ) (S8 =(%NE) (1)
o Q .

In the ensemble average sense the above expression is unbiased as a result of a subtle cancellation
of the £ mode power present in the pseudo-B and F spectra. Such a cancellation does not
however apply to the variance of the estimator and as a result the variance of the spectra of
one type will include a contribution from the other preventing any detection of the primordial
B-mode (figure 1).

4 Pure pseudo-Cy estimators for cross-spectrum

Using the two differential operators DSE(B) which generalize to arbitrary spin the operators used
in [Bunn et al. 2003, we can write the harmonic representation of the field P = (Q,U) in the
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Figure 1: B-mode reconstruction with error bars from a Fisher analysis (red) and a pseudo-C; estimator (blue)
based on a B-mode with r=0.05. The shown B-mode spectrum (black) is decomposed into primordial (plotted for
three different values of r=0.01, 0.05, 0.1) and lensing parts.

E/B subspace. We introduce the sky coverage setting W = 1 for pixel in the sky area and
W = 0 elsewhere. In particular, for the B mode

aZBm = w- (Qa U) X DB}/ém

47
- / DP(Q,U) % Yo + 7{ (QU)Nim+ ¢ 0(Q.U)Yim (2)
Q Cao Cq

The two contour integrals represent the so-called ”ambiguous” modes that are responsible for
the E-to-B leakage. Pseudo-C) estimators of the polarization power spectra which do not mix
FE and B modes can be constructed in projecting the polarization fields on the “pure” E and B
subspaces 2. Pure B multipoles on a partial sky are defined as follows 3:

o8, = / (Q.U) x DE(W¥p)

= [ WDHQU) X Vit QU)X OWYin) + §DQU) X WY (3
Q Cq Ca

We choose W a spin-0 window function in order to satisfy the Dirichlet and Neumann conditions
on the boundary of the observed sky region. Such conditions on the window function are
optimized for the estimated multipoles to be free of a E/B leakage due to partial sky either

analytically or numerically >*! (figure 2). This translates into vanishing mixing matrices

ff _
My, =

Our numerical implementation proceeds in two steps !:
1. from the spin-0 window function Wy, we define two spin-weighted windows

Wi = dW and Wy = O°W

2. we calculate the pure multipoles ag’z of the s-spin fields P, = Wi (Q + iU). The pure
(s)

m

AR, = al2) + X all) + A pale) (4)

Im Im

estimated multipoles coefficients then reads as linear combinations of the a

The code is fully parallel (both in CPU time and memory) and very fast (less than 30min
for 1000 simulations on 1024 procs) using the pureS2HAT library*?. We can recover the B-mode
angular power spectrum without bias and with a significant improvement in the level of error
bars compared to ”standard” pseudo-C; methods (figure 3).
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Figure 2: Leakage from E to B in the case of standard estimator (dashed line) and pure estimator (solid line)
using three different apodization length : 3, 5 and 8 deg. Remaining leakage at high multipoles is induced by
pixel effects.
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Figure 3: B-mode angular power spectrum estimation (solid lines) and their MC-estimated variance as compared
with the input (black solid) and Fisher variance (black dashed) from various estimators : Xpol standard estimator
(blue), SpicePol standard estimator (green), Xpure pure estimator (red). figure by H. Nishino (KEK)
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