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Chapter 1

Introduction

At the turn of the twentieth century, classical mechanics was at its peak. Everything

but two known phenomena were to be explained via Newtonian physics. In order

to account for the photoelectric e�ect and blackbody radiation, we needed to resort

to a completely new framework, which signi�cantly altered our understanding of the

world. Interestingly enough, the theory of gravity follows a similar historic route.

Classical general relativity gives a remarkably precise description of our telescopically

observable universe, and up to 70's solving the Einstein's equations and computing

linearized perturbations was a technical di�culty that was rather slowly but steadily

being resolved. The twist in our understanding was induced by Bekenstein and Hawk-

ing, who taught us black holes had entropy and were radiating particles. The central

observation, leading us on this rocky road towards quantum gravity, is that black

hole event horizons exhibit thermal properties of a quantum �eld in curved space-

time. Even 40 years after the Bekenstein-Hawking breakthrough, we are still having

hard time understanding this strongly coupled quantum theory.
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CHAPTER 1. INTRODUCTION

However, for free quantum theories our intuition serves us well and the black

hole can be shown to behave very much like a blackbody at Hawking temperature

TH . Even at weak coupling, we would still expect that this picture remains quali-

tatively true, within the realm of perturbation theory. As we further increase the

coupling, we arrive to unchartered territories, in which de�ning even the relevant

degrees of freedom becomes a challenge. Unfortunately, at strong coupling the qual-

itative understanding is completely lacking, emphasizing the need of novel methods

that can access strongly coupled regimes of �eld theories. A promising way out is

delivered via Anti-de Sitter/conformal �eld theory duality, or AdS/CFT, in which we

map the dynamics of conformal �eld theory to classical gravity in negatively curved

spacetimes. The beauty of this correspondence lies in the fact that where one theory

fails the other one succeeds, enabling us to explore one side of the duality to learn

more about the other. For example, we can use classical gravity to provide insight into

strongly coupled �eld theories. On the other hand, there are many longstanding open

problems one hopes to better address with the help of �eld theory methods, such

as emergence of space and time, resolving spacetime singularities and information

release from black holes.

The universal relation between the entropy and black hole horizon area, S =

A/4G, is one of those puzzles. The geometric computation does not give any insight

in the nature of the microstates this entropy is counting. In order to make progress, we

need a concrete quantum theory, such as supplied by AdS/CFT. Maybe the simplest

example is provided with the black hole in three dimensional negatively curved space,

the BTZ black hole. In that case the geometric calculation is precisely matched with

the Cardy formula, counting the states of thermal gauge bosons in a 2-dimensional

CFT. The remarkable fact is that the agreement is independent of the details of

2



CHAPTER 1. INTRODUCTION

the correspondence, making it a robust technique for general spacetimes. Thus, the

AdS/CFT correspondence has been shown to be a fruitful one, and it has made impact

on a broad range of areas in physics.

3



Chapter 2

Preliminaries

Ten years after we have learnt about classical black hole solutions in a 4-dimensional

asymptotically �at spacetime, we found that the black hole behaves as a thermal

object, a blackbody radiating thermal spectrum, and as a result has entropy asso-

ciated with the area of its horizon. From the point of view of thermodynamics this

is a striking phenomenon, as the entropy scales as area instead of volume. Thus,

we learn that black holes behave in a rather peculiar way for classical objects. This

thermodynamic behavior should have statistical interpretation in a quantum theory.

Furthermore, this quantum theory should be of an unusual kind, holographic in its

nature, representing all that happens in bulk spacetime by some degrees of freedom

on a screen of area A. If this were true, we would expect to observe hidden structure

in our equations which govern physics in black hole backgrounds. In that sense, we

can think of black holes as windows to a quantum theory of gravity.

4



CHAPTER 2. PRELIMINARIES

Figure 2.0.1: Spiral galaxy NGC 1365, Credit: European Southern Observatory,
http://www.eso.org/
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CHAPTER 2. PRELIMINARIES

2.1 The Kerr black hole

As astrophysical objects, black holes are very simple; they are completely determined

by their mass M and angular momentum J . Every galaxy, such as one in Fig.

2.0.1, is supposed to have one at its center. If a black hole passes through a cloud

of interstellar gas, it will draw it inward in a process known as accretion. Just as

planets orbiting around stars, matter will circle around a black hole until it loses its

angular momentum. If we consider a particle going around the black hole, we can

determine the black hole's mass by solving a simple Newtonian problem. In order for

the particle to travel in a circular orbit, the gravitational pull of the black hole should

be balanced with the centrifugal force. By measuring the velocity of the particle and

radius of the orbit, we can estimate the black hole's mass. Furthermore, this is not

the only measurement of the black hole's mass that can be done, and by comparing

results across di�erent measurements we can get a reliable estimate.

Angular momentum is a little more di�cult to measure. As the object spins

around the black hole, there is the innermost stable circular orbit, beyond which

accretion disk terminates and gas falls freely into the black hole. The size of this

orbit strongly depends on the black hole's angular momentum, and for a non-rotating,

Schwarzschild black hole it is at r = 6M , whereas for the maximally rotating, extreme

Kerr, it is at r = M . By measuring the inner radius of the accretion disk, such as one

illustrated in Fig. 2.1.1, we can work out the value of the rotation parameter. For

the spiral galaxy in the Fig. 2.0.1, recent experimental evidence [1] strongly suggests

there is a black hole at its center, spinning at more than 84% of its mass.

6



CHAPTER 2. PRELIMINARIES

Figure 2.1.1: Illustration of a black hole accretion disk, Credit: Prague Relativistic
Astrophysics, http://astro.cas.cz/
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CHAPTER 2. PRELIMINARIES

However, all these measurements in their most simplest form come with some

assumptions about how the spacetime looks near the black hole horizon. The astro-

physicists have so far found a handful of black hole candidates that have their mass

ranging from several solar masses to a few milion solar masses [2]. But in order to

prove these objects truly are black holes, one would need to experimentally verify the

existence of an event horizon, which is a surface along which the causal structure of

the spacetime changes. Measuring this and testing the metric of the spacetime near

the black hole are two major challenges in black hole astrophysics.

Nevertheless, metric is something we already know � it is an exact solution of

Einstein equations in general relativity. It is just a function that gives us distance

between two points in spacetime, and in Boyer-Lindquist coordinates xµ = {t, r, θ, φ}

it takes the following form:

ds2 = gµνdx
µdxν

= (1− 2Mr/Σ)dt2 +
(
4Mar sin2 θ/Σ

)
dtdφ− (Σ/∆) dr2

−Σdθ2 − sin2 θ
(
r2 + a2 + 2Ma2r sin2 θ/Σ

)
dφ2

where t is the timelike coordinate and three coordinates parametrizing the 3-dimensional

space are radial coordinate r and two angles, θ and φ. We also used units in which

c = G = 1 and where M is the black hole mass, J = aM is the angular momentum,

and two functions appearing in the metric are given with Σ = r2 + a2 cos2 θ and

∆ = r2 − 2Mr + a2. The outer and inner horizons sit at r± = M ±
√
M2 − a2.

8
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Hawking temperature is

TH =

√
M2 − a2

4πMr+

and Bekenstein-Hawking entropy

S =
Ahorizon

4
= 2πMr+ .

2.2 The Teukolsky equation

Armed with a metric, we can compute response to small perturbations sent from

in�nity into the curved spacetime of the black hole. Let us consider the wave equation

for massless �elds ψs in this background, which in its most simplest notational form is

�ψs = 0. Soon enough we will show some of less simple ways of writing this equation.

Most of the physics that we know and understand in the background of a Kerr black

hole will be supplied by the solutions of this equation.

Teukolsky found that it was possible to separate the wave equation for general

spin massless �elds [3]. He wrote down a master equation for di�erent spin-weight

�elds. The spin-weight should be thought of as a label to distinguish di�erent types of

solutions for di�erent �elds. For example, the spin weight zero would correspond to a

massless scalar �eld ψ0, and the Teukolsky equation would reduce to a Klein-Gordon

equation in a curved background,

1√
− det gµν

∂µ

(√
− det gµνg

µν∂νψ0

)
= 0 .

9



CHAPTER 2. PRELIMINARIES

In the Newman-Penrose formalism, we supply each spacetime point with a basis

spanned by four null vectors, l, n, m and m̄, given by

lµ =
{
r2+a2

∆
, 1, 0, a

∆

}
, nµ =

{
r2+a2

2Σ
,− ∆

2Σ
, 0, a

2Σ

}
,

mµ =
{

ia sin θ
r+ia cos θ

, 0, 1
r+ia cos θ

, i
(r+ia cos θ) sin θ

}
/
√

2 .

This allows us to encode the six independent components of the Maxwell tensor Fµν

into three scalars via contractions of the stress tensor with two null directions at each

point, recasting the well known Maxwell equations dF = 0 and d ? F = 0 into four

equations for Newman-Penrose complex scalars. For spin weight ±1 the Teukolsky

master equation is for two components of the Maxwell tensor, corresponding to ingoing

and outgoing waves with respect to in�nity. As an example, for s = −1, which

corresponds to outgoing waves at in�nity, we have ψ−1 ∝ Fµνm̄
µnν .

Furthermore, in the notation of Teukolsky, the 10 independent components of

the Weyl tensor are encoded into 5 scalars, obtained by contracting the Weyl tensor

along those 4 null directions. For the sourceless equation, which is the only one we

will consider, these correspond to perturbations of the Riemann tensor. For exam-

ple, in the transverse traceless gauge there are only two nonvanishing components of

the linearized metric perturbations δgµν = hµν , conveniently written in terms of two

polarizations, so called plus and cross, which completely encode the properties of grav-

itational waves in empty space. Then the black hole response to metric perturbations

outgoing at in�nity is simply given with the spin-weight s = −2 �eld:

ψ−2 ∝
1

2

∂2

∂t2
(hθθ − hφφ + ihθφ) =

∂2

∂t2
(−h+ + h×) .

10



CHAPTER 2. PRELIMINARIES

A master equation, spanning di�erent physical processes in black hole back-

grounds is a perfect candidate to exhibit a hidden structure due to some underlying

more fundamental microscopic description. This is the main reason we study the

Teukolsky equation, given with

[
(r2 + a2)

2

∆
− a2 sin2 θ

]
∂2ψs
∂t2

+
4Mar

∆

∂2ψs
∂t∂φ

+

[
a2

∆
− 1

sin2 θ

]
∂2ψs
∂φ2

−∆−s
∂

∂r

(
∆s+1∂ψs

∂r

)
− 1

sin θ

∂

∂θ

(
sin θ

∂ψs
∂θ

)
− 2s

[
a (r −M)

∆
+ i

cos θ

sin2 θ

]
∂ψs
∂φ

−2s

[
M (r2 − a2)

∆
− r − ia cos θ

]
∂ψs
∂t

+
(
s2 cot2 θ − s

)
ψs = 0

With the following ansatz for the solutions,

ψs = e−iωteimφS(θ)R(r) (2.2.1)

the master equation separates into the angular part

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
a2ω2 cos2 θ − 2aωs cos θ − (m+ s cos θ)2

sin2 θ
+ E − s2

)
S = 0

(2.2.2)

and the radial equation

∆−s
d

dr

(
∆s+1dR

dr

)
+
([(

r2 + a2
)2
ω2 − 4aMrωm− 2iM(r2 − a2)ωs

+a2m2 + 2ia(r −M)ms
]

∆−1 + 2irωs− E + s(s+ 1)− a2ω2

)
R = 0

(2.2.3)

11
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where the separation constant E is constrained by the requirement that S be regular

at θ = 0, π. For the special case aω = 0 this may be computed exactly E = `(`+ 1).

For general ω this may be computed numerically, or as a series expansion. For both

of these equations the exact solutions in a closed form are unknown.

2.3 Holographic methods

More than 25 years ago Brown and Henneaux have shown that the asymptotic sym-

metry group of a quotient of a 3-dimensional Anti-de Sitter (AdS) space consists

of two copies of a 2-dimensional conformal group, whose generators close under a

Virasoro algebra, with central charge c = 3`AdS/2G3 [4]. This enables us to count

the microscopic degrees of freedom in the conformal �eld theory (CFT) via Cardy

formula [5]. These microscopic degrees of freedom at �nite temperature give rise to

thermodynamic phenomena in the bulk. Surprisingly enough, even before we knew

about black holes in AdS3, we could count their entropy! A subsequent discovery of

BTZ black hole [6] has put this hint of a duality on a �rmer footing: the conformal

�eld theory at the AdS boundary exactly reproduces the classical entropy of the black

hole. The details of the duality have since been further explored within the frame-

work of AdS/CFT correspondence, by mapping scattering amplitudes in the bulk to

correlation functions in the CFT, with hope that this better understood lower di-

mensional cousin of a Kerr black hole can give us insight into the more complicated

4-dimensional gravity.

The AdS/CFT is an equivalence between classical gravity scattering amplitudes

and CFT correlation functions. The correspondence is achieved via a bulk-to-boundary

map, by which we identify bulk �elds in AdS with operators de�ned in the lower di-

12
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mensional theory on the asymptotic boundary of AdS. As the statement is that a

lower dimensional quantum theory fully captures the physics of higher dimensional

gravity, the correspondence is holographic in nature. Maybe the simplest and most

instructive way [7] to write down this correspondence is

〈
exp

ˆ
∂M

φ0O
〉
CFT

= Z(φ0) ,

where φ0 is the boundary value of the bulk �eld φ, to which we couple a conformal

operator O. The right hand side is the gravity partition function on manifold M ,

computed by evaluating the classical action for φ.

Bardeen and Horowitz have realized early on that extremal Kerr black hole ad-

mits a near horizon scaling, under which the geometry takes a form of U(1) �ber over

AdS3 [8]. In these near horizon coordinates Guica et al. propose a duality between a

two-dimensional chiral CFT and an extremal near horizon region of a Kerr black hole

(NHEK), which is referred to as the Kerr/CFT correspondence [9]. The NHEK ge-

ometry shares some of the isometries with quotients of AdS3, so the correspondence is

made by �nding commutators of vector �elds that generate an asymptotic symmetry

group of NHEK, whose algebra closes under Virasoro, with central charge c = 12J .

The result they obtained was not surprising in view of the Brown and Henneaux

computation, except for the curious detail that the central extension comes from

the enhancement of U(1), not the asymptotic symmetry group of AdS3. Later on,

alternative realizations were found enhancing the other symmetry group [10, 11].

The entropy on the CFT side can be computed by using S = π2

3
cT , and it is shown

to precisely match the Bekenstein-Hawking entropy of the Kerr black hole. The

conjecture is these results can be extended away from extremal case. As the extremal

13
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Kerr black hole has zero Hawking temperature, it can be thought of as a ground state

in the CFT dual, with non-extremal black holes completing the spectrum.

In many ways this framework resembles to Brown and Henneaux's, whose obser-

vation paved a way to a duality between a conformal �eld theory on the boundary

and a gravity theory with a negative cosmological constant in the bulk. However, the

Kerr/CFT is still far from being promoted to a well de�ned CFT dual for asymptoti-

cally �at non-extremal geometries. This tantalizing analogy points out to a far richer

structure deeply hidden within our equations of motion. So we will take our moti-

vation from there, while searching for the possible manifestations of the well hidden

conformal symmetry. A suggestive piece of evidence was recently supplied by Castro

et al., where the authors identify a hidden SL(2,R)× SL(2,R) symmetry in the low

frequency near region scalar �eld equation in Kerr background [12].

The conformal structure of scattering amplitudes may be considered as a �rst

and necessary step towards de�ning a conformal �eld theory. Whether or not this �eld

theory can be mathematically well-de�ned and provide relevant information for bulk

scattering amplitudes is a separate question, which we seek to answer with this thesis.

Subsequently, we were able to show in [13] that the well-de�ned bulk to boundary

map softly breaks the conformal symmetry, still allowing us to organize bulk �elds in

terms of higher dimension operators within the CFT. However, the �xed point where

the hidden conformal symmetry becomes exact is �at spacetime. This indicates that

if there is an exact CFT underlying the dynamics of Kerr, there is not a smooth

geometric limit connecting the low frequency limit of general Kerr with the dynamics

of extremal Kerr. Furthermore, upon closer inspection of the low frequency regime we

show in [14] that the low energy physics does not provide access to information that

would fully �x the theory, but makes it prominent there should exist a theory that
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admits a smooth limit to the static Schwarzschild black hole. We �nd in [15] that the

hidden structure in our equations can even persist at �nite frequencies, but in that

case we are confronted with a daunting task of de�ning a holographic dual at a �nite

radius. All these clues point us to note that in order to have a well de�ned holographic

map, we have to give up on geometric interpretation � perhaps even leading us to a

deeper understanding of quantum theories of gravity.

But in some sense, a geometric interpretation is also missing in Kerr/CFT. How

is physics in NHEK background related to Kerr, what kind of states is the CFT

counting and what are the CFT n-point functions dual to in full Kerr background1

are still some of unanswered questions. Can we extend this reasoning beyond extremal

black holes, to a non-chiral CFT? A search for a quantum theory that accounts for

scarce hints of quantum nature of gravity has been active on many fronts.

If the hidden CFT viewpoint can be put on solid footing, these techniques would

lead to a radically new way to treat the quantum physics of the entire class of Kerr

black holes, including the Schwarzschild limit. In addition to accounting for the quan-

tum entropy of the black hole, it would provide an e�cient mechanism for computing

of scattering amplitudes. Moreover, if the central charge can be computed from the

gravity side, this proposal would yield dramatic new insight into the physics of the

black hole microstates that account for the Bekenstein-Hawking entropy.

1There is a sense in which a CFT 2-point function matches a massless scalar �eld scattering
amplitude in a near-NHEK region, near the superradiant bound [16].
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2.4 Fundamental results

Being able to simply relate the entropy formula for a generic Kerr black hole to one

of a two-dimensional CFT at �nite temperature as a holographic dual [12] is a most

striking result, especially because we have no knowledge of the mechanism by which

these two quantities bear resemblance. This has motivated attempts to determine

the properties of such a conformal �eld theory. In the near-extremal limit there has

been some success in this direction [9, 16, 17, 18, 19]. Clearly, this is a very important

problem, as a complete description of the holographic theory could lead to an exact

quantum description of black holes beyond the semiclassical limit commonly studied,

or the exact descriptions found in special limits in string theory.

Statistical derivations of Bekenstein-Hawking entropy from weakly coupled fun-

damental string theory have elucidated the origin of black hole microstates, for a

large class of 5- and 4-dimensional extremal2 black holes, in terms of a low energy

2-dimensional conformal �eld theory [20, 21, 22, 23]. The extremality is a necessity,

rather than a convenience, as it admits a weakly coupled description.

For example, here we outline the result that can be obtained in N = 2 super-

gravity as an e�ective low energy 4-dimensional theory of the Type IIA string theory

compacti�ed on Calabi-Yau. A nice pedagogic review was given by Frederic Denef

in his 2010 TASI lectures [24]. In the weakly coupled regime, D-branes wrapped on

compact cycles are described by pointlike particles in R3, interacting with each other

via exchange of light stretched open string modes. When the coupling gets tuned to

larger values, the interactions are described by massless closed strings, i.e. scalars,

photons and gravitons. For large charges, the D-branes are manifested through black

2and slightly non-extremal
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hole solutions. The (BPS) solution to the equations of motion has static and spheri-

cally symmetric metric of the form

ds2 = −e2U(r)dt2 + e−2U(r)d~x2

The equations of motion reduce to �rst order �ow equations for central charge

[25], which acquires nonzero minimum value Z? for e−2U(r) = |Z?|2 /r2, describing

AdS2 × S2 metric with S2 horizon of area A = 4π |Z?|2. Writing down the partition

function for the D4/D0 system, we can derive the number of states in the e�ective

2-dimensional conformal �eld theory, exactly reproducing the Bekenstein-Hawking

formula, S = A/4.

This framework has been shown to extend beyond the regime in which the count-

ing of microscopic degrees of freedom can be done, signaling that there may be a

universal e�ective description that does not depend on the details of the microscopic

theory [26]. The striking similarity between the geometry presented here and the

near horizon scaling of extremal Kerr has motivated a wealth of research trying to

bridge the gap between the low energy e�ective string description and 4-dimensional

black holes as astrophysical objects. This will provide us with su�cient motivation

to study the hidden Kerr/CFT.

2.5 Outline of the thesis

In Chapter 3 we brie�y review some of the aspects of 2-dimensional conformal �eld

theories, which we will frequently encounter in the remainder of the thesis. Care has

been taken to introduce not just notation, but also intuition, as this will serve as a

starting point in building the hidden Kerr/CFT interpretation.
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Chapters 4, 5 and 6 are sourced from the contents of the three papers [13, 14, 15].

The results of all three chapters rely on careful rewriting of the Teukolsky equation,

so each of these will start from the same point and evolve into a di�erent realization

of the symmetry. In Chapter 4 we introduce the hidden conformal symmetry in the

solution space of the massless low energy scalar equation in Kerr background and

build the dictionary between bulk �elds and CFT operators. This framework makes

it possible to realize bulk observables in terms of CFT correlation functions, giving

rise to a low energy e�ective theory.

The natural question to ask is if this framework can survive the Schwarzschild

limit and can it reconstruct the quasinormal mode spectrum of the Kerr black hole, i.e.

the typical response of the black hole to perturbations from in�nity. In Chapter 5 we

tackle those problems from the low energy standpoint. We �nd the Schwarzschild limit

does exist and the theory is capable of reconstructing highly damped quasinormal

mode frequencies. In order to achieve this, we deformed the initial wave equation at

inner horizon, generating a one-parameter family of solutions.

In Chapter 6 we consider �nite frequencies and general spin. We determine that

the solutions decompose into non-unitary representations of the SL(2,R)× SL(2,R)

symmetry group. Curiously enough, the non-unitarity is of exactly the same kind

as in the case of the BTZ black hole. This leads us to postulate a correspondence

between gravity in Kerr background and conformal �eld theory at �nite temperatures.

We conclude with Chapter 7, in which we present some open questions and

propose directions for future research.
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Chapter 3

A short review of 2-dimensional CFTs

Most of the content of this thesis will rely on some properties of 2-dimensional con-

formal �eld theories. Here we provide a brief review of the conformal group in two

dimensions. The literature on this topic is vast, in addition to the standard refer-

ence [27], many lecture notes have become available. Here we draw material from

[27, 28, 29, 30]. This is not supposed to be a thorough review, but will serve to

introduce notation and provide su�cient background for the remainder of the thesis.

3.1 Conformal group on the sphere

Let us consider a real d-dimensional space Rd supplied with coordinates xµ and �at

metric gµν(x). The Lorentz-invariant line element is ds2 = gµνdx
µdxν . Under the

coordinate transformation x → x′, the metric transforms as gµν → ∂xα

∂x′µ
∂xβ

∂x′ν
gαβ. We

de�ne the conformal group as the group of coordinate transformations that leave

metric invariant up to a local scale factor:
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Ω(x) =
∂xα

∂x′µ
∂xβ

∂x′ν
.

In the 2-dimensional case we can introduce coordinates z = x1 + ix2 and z̄ = x1− ix2.

Then the conformal group is generated by analytic coordinate transformations

z → f(z), z̄ → f̄(z̄)

which then translate to

ds2 →
(
∂f

∂z

)(
∂f̄

∂z̄

)
ds2 .

The generators of in�nitesimal conformal transformations z → f(z) = z + ε(z) are

obtained by expanding ε(z) in a Laurent series for small deformations away from z:

ε(z) =
∑
n

αnz
n+1 ,

and similarly for z̄. Acting on scalar functions, we observe the generators

Ln = −zn+1 ∂

∂z

recover the n-th coe�cient αn. The Ln's and L̄n's close under the in�nite Lie algebra,

[Lm, Ln] = (m− n)Lm+n,
[
Lm, L̄n

]
= 0,

[
L̄m, L̄n

]
= (m− n)L̄m+n .

(3.1.1)
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The action of the conformal group in two dimensions naturally factorizes in two

independent local algebras, so we continue z and z̄ beyond the domain in which

they are conjugate to each other. The generators L, L̄ are not well de�ned for all

points on the Riemann sphere S2, speci�cally for z = ∞. A subset of these is well

de�ned globally, consisting of {L−, L0, L+} ×
{
L̄−, L̄0, L̄+

}
generators. They form

SL(2,C)/Z2 algebra, which is isomorphic to the algebra of the proper orthochronous

component of SO(3, 1), one we usually refer to as Lorentz group. The restriction of

SL(2,C) to real algebra is to either SU(2), or SL(2,R).

The global conformal algebra, which is a closed subalgebra of (3.1.1), is the one

we use to characterize physical states. Since the operator L0 + L̄0 is identi�ed with

the Hamiltonian, we prefer to work in the basis of the eigenstates φ(z, z̄) of L0 and L̄0,

with eigenvalues h and h̄. These eigenvalues will be referred to as conformal weights,

and the eigenvalue of the Hamiltonian, h+ h̄, as the conformal dimension of the state.

Such a state will transform under a conformal transformation z → f(z) as

φ(z, z̄)→
(
∂f

∂z

)−h(
∂f̄

∂z̄

)−h̄
φ(z, z̄) (3.1.2)

and will be called a primary �eld. All �elds will be characterized by their conformal

weights
(
h, h̄
)
and their relation to primaries.

The transformation property (3.1.2) imposes strong restrictions on correlation

functions of primary �elds. Conformal invariance requires that the observables be

expressed in invariants of the theory, �xing the 2-point function to

〈φ(z1, z̄1)φ(z2, z̄2)〉 =
C12

(z1 − z2)2h(z̄1 − z̄2)2h̄
, (3.1.3)

where C12 is a constant depending on the normalization of the �elds. We construct
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the �elds descending from primaries via repeated action of weight-lowering operators,

L−n. Schematically, φ(−n) = L−nφ, where φ
(−n) is a descendant �eld of primary φ,

carrying conformal weights
(
h+ n, h̄

)
. The stress tensor T (z) is one such �eld of

weight (2, 0), obtained by the action of L−2 on the identity operator. Its correlation

function takes a simple form,

〈T (z)T (0)〉 =
c/2

z4
.

The constant c is known as the central charge.

Including the stress tensor in the theory enhances the Witt algebra (3.1.1) to a

quantum Virasoro, given by

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 (3.1.4)

similarly for barred generators and zero otherwise. From the form of the central ex-

tension in (3.1.4) it is visible the global conformal group generated by {L−, L0, L+}×{
L̄−, L̄0, L̄+

}
remains unaltered.

3.2 Conformal group on the cylinder and central charge

Mapping the theory on the complex plane onto a cylinder of radius R is achieved via

the exponential map, z = exp(w/R), where z are the coordinates on the complex plane

and w are the coordinates on the cylinder, symmetric under w → w+ 2πR. Invoking

(3.1.2), we �nd that the �elds transform according to φ(w, w̄) = R−∆zhz̄h̄φ(z, z̄).

The stress tensor in addition picks up a contribution from a Schwartzian derivative,

a consequence of the non-vanishing central charge, giving

22



CHAPTER 3. A SHORT REVIEW OF 2-DIMENSIONAL CFTS

T (w) = R−2
[
z2T (z)− c/24

]
.

This is perhaps the simplest example where the soft breaking of the conformal sym-

metry occurs due to imposing periodic boundary conditions. Zero point energy on

the cylinder is shifted with respect to the plane by

Lcyl
0 − L0 = − c

24R2
.

To give the central charge a physical interpretation, we can calculate the free energy

of the system described by the theory on the cylinder. We easily integrate δF ∝
´
d2x
√
gδgµνT

µν to get

F = − c

12R
. (3.2.1)

From the transformation property of primaries we can infer how the correlation

functions behave, for example the 2-point function

〈φ(w1, w̄1)φ(w2, w̄2)〉 =

∣∣∣∣dw1

dz1

∣∣∣∣−2h ∣∣∣∣dw̄1

dz̄1

∣∣∣∣−2h̄

〈φ(z1, z̄1)φ(z2, z̄2)〉

∝ R−2∆
[
4 sinh

w

2R
sinh

w̄

2R

]−∆

, (3.2.2)

is fully �xed by the conformal invariance, where we de�ned w = w1−w2. For w � R

the correlation function exponentially decays

〈φ(w1, w̄1)φ(w2, w̄2)〉 ∝ R−2∆ exp

(
−(w + w̄)∆

2R

)
,
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from which we read o� the characteristic correlation length ξ = R/∆. For the �nite

system with periodic boundary conditions this would signal the existence of a mass

gap; for the in�nite system at �nite temperature T = (2πR)−1, it would measure

coherence length over which thermal �uctuations are suppressed. In this case we can

rewrite the free energy (3.2.1) per unit length, f = F/2πR, as

f = − c

24πR2
= −πc

6
T 2 ,

from which we get the entropy per unit length,

S = −∂F
∂T

=
π

3
cT .

This formula is to supply us with the intuition that the central charge counts the

number of degrees of freedom in the theory.

3.3 Torus partition function

Mapping the plane onto a cylinder, we arrive at a torus by imposing two discrete

identi�cations of w. Mapping onto a torus preserves all local operators, but only

L0 and L̄0 survive as generators of the global conformal group. Alternatively said,

the SL(2,C) gets broken down to U(1) × U(1) generated by {L0} ×
{
L̄0

}
. On the

complex plane, L0±L̄0 generate dilatations and rotations; here that role is inherited by

Lcyl
0 ± L̄

cyl
0 . The identi�cations in w can be parametrized with two complex numbers,

giving the most general way of de�ning the torus

w ∼ w + 2πn1α1 + 2πn2α2, n1,2 ∈ Z
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We de�ne the complex structure on the torus as τ = α2/α1 = τ1+iτ2, parametriz-

ing the family of distinct tori with w ∼ w+2πn1 +2πn2τ . The isometry group acting

on this parameter is the torus modular group SL(2,Z)/Z2. For example, we can take

τ → τ + 1, which we will call the T-transformation, or τ → −1/τ , which will be

referred to as S-transformation.

Now we conventionally de�ne Re(w) as space direction and Im(w) as time, and

observe the imaginary time translation by 2πτ2 is accompanied by translation in space

by 2πτ1. Then the torus partition function can be written as:

Z =

ˆ
e−S = tr

(
e2iπτ1P e−2πτ2H

)
= tr

[
qL0−c/24q̄L̄0−c̄/24

]
, (3.3.1)

where we used H = Lcyl
0 + L̄cyl

0 and P = Lcyl
0 − L̄

cyl
0 , q = e2iπτ and the trace is taken

over all the states in the Hilbert space. Note the modular parameter plays the role

of inverse temperature in the canonical partition function.

3.4 Cardy formula

Natural question to ask is how does the modular invariance constrain the theory given

by the partition function (3.3.1)? Under T-transformation, we thus require h− h̄ ∈ Z.

Under S-transformation we are free to take q → q′ = e−2πi/τ . In order to simplify

things, let us consider a limit in which L0 = L̄0, with q → 1, q ∈ R. We can rewrite

the partition function in terms of the density ρ(∆)d∆ of �elds that have conformal

dimension in the range [∆,∆ + d∆], where we set q = 1− ε, with ε� 1
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Z ∝
ˆ
ρ(∆)q∆d∆ =

ˆ
ρ(∆)e∆ log qd∆

≈
ˆ
ρ(∆)e−∆εd∆

We may now transform this to get the formula for the density of states

ρ(∆) ∝
ˆ
Ze∆εdε . (3.4.1)

On the other hand, as q′ → 0, the partition function is Z ∼ q′−c/12 ≈ e(2π)2c/12ε.

We can now evaluate the integral (3.4.1) at a saddle point as we let ∆� 1

ρ(∆) ∝
ˆ
eε∆+(2π)2c/12εdε

∼ e4π
√

c
6
h

Taking the logarithm of the density of states we get an estimate for the entropy,

S ∼ 4π
√

c
6
h. The result is known as Cardy formula.

3.5 Thermal 2-point functions

In this section we will brie�y touch on the �nite temperature 2-point function (3.2.2),

in order to rewrite it into a form we will come across in this thesis. We assign di�erent

periodicities to w and w̄, di�erentiating the left movers from the right movers along

the compact direction. The correlation function (3.2.2) can then be written as
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G2(x, t) = 〈φ(w, w̄)φ(0)〉 ∝ (πTL)2hL (πTR)2hR

sinh 2hL(πTLx+) sinh 2hR(πTRx−)
, (3.5.1)

where we have set w = ix−, w̄ = ix+ and x± = t± x. By taking the imaginary part

of the Fourier transform of the correlator G2(x, t), we arrive at

σ = Im

ˆ
dtdxeiωt+ikxG2(x, t)

∝ (2πTL)2hL−1(2πTR)2hR−1

Γ(2hL)Γ(2hR)
sinh

(
p+

2TL
+

p−
2TR

)
×∣∣∣∣Γ(hL + i

p+

2πTL

)
Γ

(
hR + i

p−
2πTR

)∣∣∣∣2 . (3.5.2)

where p± = (ω ∓ k)/2. This result was independently obtained in [31] and [32].
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Hidden conformal symmetry

Here we study the hidden conformal symmetry of the Kerr black hole in the low fre-

quency limit by developing a non-geometric holographic map relating the bulk modes

to an expansion within the conformal �eld theory in terms of higher dimension op-

erators. We �nd that the dual CFT must contain in�nite towers of quasi-primary

operators with positive conformal weights. However, the full Kerr geometry softly

breaks the conformal symmetry, and induces a nontrivial running of the scaling di-

mensions of these operators.

In the following we brie�y review the low frequency approach to solving the

spin weight s massless wave equations in Kerr background, and present an exact

solution in a low frequency expansion [33]. Then we build on the observation of [12],

by identifying conformal weights of operators in the CFT dual to bulk modes. We

conclude with a discussion of the newly identi�ed symmetry; even though it displays

some peculiarities in the bulk, it seems to be well de�ned from the point of view of a

dual �eld theory.
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4.1 Low frequency expansion

Exact low frequency solutions to the equations (2.2.2) and (2.2.3) can be obtained by

following [33, 34, 35]. Let us begin by going back to the angular equation (2.2.2):

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
a2ω2 cos2 θ − 2aωs cos θ − (m+ s cos θ)2

sin2 θ
+ E − s2

)
S = 0

(4.1.1)

As shown in [34], the solution in a small ω expansion is written in terms of an in�nite

series of Jacobi polynomials P
(α,β)
j (y)

S = eaωx
(

1− y
2

)|m+s|/2(
1 + y

2

)|m−s|/2
SU`m(y)

where y = cos θ and

SU`m =
∞∑
j=0

cjP
(|m+s|,|m−s|)
j (y) . (4.1.2)

The expansion for U will be well-de�ned if each cj is determined and �nite. Inserting

(4.1.2) into (4.1.1) leads to a 3-term recurrence relation for the coe�cients cj:

B0c0 + A0c1 = 0

Ajcj+1 +Bjcj + Cjcj−1 = 0, j = 1, 2, . . .

where
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Aj = 2aω
(j + |m+ s|+ 1) (j + |m− s|+ 1) (2j + |m+ s|+ |m− s|+ 2− 2s)

(2j + |m+ s|+ |m− s|+ 2) (2j + |m+ s|+ |m− s|+ 3)

Bj = E + (aω)2 − 1

2
(2j + |m+ s|+ |m− s|) (2j + |m+ s|+ |m− s|+ 2)

+2aω
s (|m+ s| − |m− s|) (|m+ s|+ |m− s|)

(2j + |m+ s|+ |m− s|) (2j + |m+ s|+ |m− s|+ 2)

Cj = −2aω
j (j + |m+ s|+ |m− s|) (2j + |m+ s|+ |m− s|+ 2s)

(2j + |m+ s|+ |m− s| − 1) (2j + |m+ s|+ |m− s|)

From the coe�cients Aj, Bj, and Cj we can observe that for large j the coe�cient cj

either blows up as

cj ∝ (aω)−j Γ

(
j +
|m+ s|+ |m− s|+ 1

2
+ s

)
,

or uniformly converges

cj ∝
(−aω)j

Γ
(
j + |m+s|+|m−s|+3

2
− s
) .

Convergence will require that eigenvalue E satis�es a transcendental equation,

most conveniently expressed as a continued fraction using the recurrence relations

satis�ed by coe�cients cj. We will study such continued fractions in more detail

when we get to the radial equation, but the same approach may be applied here. The

solution to this transcendental equation in a low frequency regime admits a power
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series expansion in aω, with the result

E = `(`+ 1)− 2s2maω

`(`+ 1)
+O(aω)2 . (4.1.3)

Now we turn to the radial equation (2.2.3):

∆−s
d

dr

(
∆s+1dR

dr

)
+
([(

r2 + a2
)2
ω2 − 4aMrωm− 2iM(r2 − a2)ωs

+a2m2 + 2ia(r −M)ms
]

∆−1 + 2irωs− E + s(s+ 1)− a2ω2

)
R = 0

(4.1.4)

which may be tackled in a similar way as studied in [33, 36]. Analogously to the so-

lutions of angular equation, R(r) is expressed as a series of hypergeometric functions.

De�ning a rescaled radial coordinate x = ω(r+ − r)/εκ, and the constants ε = 2Mω,

κ =
√

1− (a/M)2 and τ = (ε−ma/M)/κ, the radial function is factored as

Rs(x) = eiεκx(−x)−s−
i
2

(ε+τ)(1− x)
i
2

(ε−τ)P (x) . (4.1.5)

The function P (ρ) then satis�es the di�erential equation

x(1− x)P ′′(x) + [1 + s− iε− iτ − (2− 2iτ)x]P ′(x) + (ν + iτ) (ν + 1− iτ)P (x)

= 2iεκ [−x (1− x)P ′(x) + (1− s+ iε− iτ)xP (x)]

+
[
−E + εq − 1

4
ε2q2 + ν (ν + 1) + ε2 − iεκ (1− 2s)

]
P (x)
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where a term ν (ν + 1)P (x) was added to both sides of the equation. Then P (x)

admits the series expansion

P (x) =
∞∑

n=−∞

an 2F1(n+ ν + 1− iτ,−n− ν − iτ ; 1− s− iε− iτ ;x) (4.1.6)

where the coe�cients an satisfy a three-term linear recursion relation

αnan+1 + βnan + γnan−1 = 0 (4.1.7)

with

αn =
iεκ(n+ ν + 1 + s+ iε)(n+ ν + 1 + s− iε)(n+ ν + 1 + iτ)

(n+ ν + 1)(2n+ 2ν + 3)

βn = −E + 2ε2 − q2ε2/4 + (n+ ν)(n+ ν + 1) +
ε(ε−mq)(s2 + ε2)

(n+ ν)(n+ ν + 1)

γn = −iεκ(n+ ν − s+ iε)(n+ ν − s− iε)(n+ ν − iτ)

(n+ ν)(2n+ 2ν − 1)
,

This is a direct consequence of the following identities satis�ed by the hypergeometric

functions:

xFn+ν = −(n+ ν + 1− s− iε) (n+ ν + 1− iτ)

2 (n+ ν + 1) (2n+ 2ν + 1)
Fn+ν+1

+
1

2

[
1 +

iτ (s+ iε)

(n+ ν) (n+ ν + 1)

]
Fn+ν

−(n+ ν + s+ iε) (n+ ν + 1− iτ) (n+ ν + iτ)

2 (n+ ν) (2n+ 2ν + 1)
Fn+ν−1

and
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x(1− x)F ′n+ν =
(n+ ν + 1− s− iε) (n+ ν + 1− iτ) (n+ ν + iτ)

2 (n+ ν + 1) (2n+ 2ν + 1)
Fn+ν+1

+
1

2
(s+ iε)

[
1 +

iτ (1− iτ)

(n+ ν) (n+ ν + 1)

]
Fn+ν

−(n+ ν + s+ iε) (n+ ν + 1− iτ) (n+ ν + iτ)

2 (n+ ν) (2n+ 2ν + 1)
Fn+ν−1

where we used Fn+ν as shorthand for 2F1(n+ν+1− iτ,−n−ν− iτ ; 1−s− iε− iτ ;x).

There exist standard methods for solving such recursion relations, as discussed in

[37]. The general solution can be expressed as a linear combination of two independent

solutions since, for example, one can choose arbitrary initial values for a0 and a1. One

solution has coe�cients that diverge as |n| → ∞ and is called the dominant solution.

The other solution, of most interest for the present work, is the minimal solution,

where the an converge1 at large |n|. This solution must be obtained by tuning a1

with respect to a0.

Furthermore, if the an converge, a continued fraction equation may be set up to

determine the value of the eigenvalue ν. This may be arranged by solving for ν in

two di�erent ways: by setting a0 = 1 and evolving the minimal solution to n =∞ or

by evolving the minimal solution to n = −∞. To see this we de�ne the ratios

Rn =
an
an−1

, Ln =
an
an+1

so that Rn converges as n→∞ and Ln converges as n→ −∞. Then, the three-term

1or at least diverge less rapidly
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recurrence relation (4.1.7) may be rewritten in terms of raising and lowering ratios

Rn = − γn
βn + αnRn+1

, Ln = − αn
βn + γnLn−1

which may then be developed as convergent continued fractions. From the low fre-

quency expansion of Rn we obtain an ∝ εn for n ≥ 1 and a0 = 1. For negative

values of n we may use Ln to deduce the behavior of coe�cients. We �nd an ∝ ε|n|

for n ≥ −` and with at least O(ε`) or subleading corrections beyond that. These

continued fractions yield the equation

R1L0 = 1

which generates a transcendental equation for ν. This equation may be solved as a

low frequency expansion in ε, yielding a solution to the Teukolsky equation infalling

on the future outer horizon. The leading terms in the expansion for ν are

ν = `− ε2

2`+ 1

[
2 +

s2

`(`+ 1)
+

(`2 − s2)
2

(2`− 1)2`(2`+ 1)

−
(
(`+ 1)2 − s2

)2

(2`+ 1)(2`+ 2)(2`+ 3)

]
+O(ε3) . (4.1.8)

4.2 Bulk �eld/CFT operator map

In a low frequency expansion, the exact solution (4.1.5) may be expanded as a regular

series in ε. The leading term is

R0
s(x) = eiεκx(−x)−s−

i
2

(ε+τ)(1−x)
i
2

(ε−τ)
2F1(ν+1−iτ,−ν−iτ ; 1−s−iε−iτ ;x) . (4.2.1)
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Castro, Maloney and Strominger (CMS) [12] considered the scalar, s = 0, case of

the wave equation and noticed that in a low frequency expansion ωM � 1 the

leading order term in the radial equation in the near-region, where ωr �1, reduces

to a hypergeometric equation. They then showed that the full solution in this limit

transformed as a representation of SL(2,R)×SL(2,R), broken to U(1)×U(1) when

the periodic identi�cation of φ ∼ φ + 2π is taken into account. This led them to

propose a hidden Kerr/CFT duality, with a scalar mode with angular momentum

` being identi�ed with a CFT operator of conformal weight (hL, hR) = (`, `). If

one further speculates that the hidden SL(2,R) × SL(2,R) extends to a left-right

Virasoro algebra with central charges (cL, cR) = 12J , then the Cardy formula for the

CFT entropy agrees exactly with the Kerr horizon entropy S = A/4.

In the following we will expand on [12] by showing that the entire set of higher

order frequency corrections can be organized into a CFT-like expansion. The precise

statement is that the scaling dimensions run with frequency, which implies the CFT

is deformed away from its exact conformal �xed point. Unfortunately we will see that

the exact �xed point is dual to the M = 0 solution, that is �at spacetime.

We may perform a transformation x→ x
x−1

in the argument of the hypergeomet-

ric function to give

R0
s(x) = eiεκx(−x)−s−

i
2

(ε+τ)(1− x)
i
2

(ε+τ)−ν−1 ×

2F1

(
ν + 1− iτ, 1− s− iε+ ν; 1− s− iε− iτ ;

x

x− 1

)
,

which agrees with eqn. (6.1) in [12], upon replacing ν with its low frequency limit `,

setting s = 0, and dropping the �rst factor, as appropriate for the near-region. The
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argument of [12] proceeds by noting that (4.2.1) solves the equation

H2ψ0 = H̄2ψ0 = `(`+ 1)ψ0 ,

where H2 and H̄2 are the Casimir operators of the SL(2,R)× SL(2,R) algebra gen-

erated by

H1 = ie−2πTRφ

(
∆1/2∂r +

1

2πTR

r −M
∆1/2

∂φ +
2TL
TR

Mr − a2

∆1/2
∂t

)
H0 =

i

2πTR
∂φ + 2iM

TL
TR
∂t (4.2.2)

H−1 = ie2πTRφ

(
−∆1/2∂r +

1

2πTR

r −M
∆1/2

∂φ +
2TL
TR

Mr − a2

∆1/2
∂t

)

and

H̄1 = ie−2πTLφ+ t
2M

(
∆1/2∂r −

a

∆1/2
∂φ − 2M

r

∆1/2
∂t

)
H̄0 = −2iM∂t (4.2.3)

H̄−1 = ie2πTLφ− t
2M

(
−∆1/2∂r −

a

∆1/2
∂φ − 2M

r

∆1/2
∂t

)

which obey

[H0, H±1] = ∓iH±1 , [H−1, H1] = −2iH0 (4.2.4)

and likewise for the others. Here we de�ne left and right temperatures

TL =
M2

2πJ
, TR =

√
M4 − J2

2πJ
.
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For convenience, we identify Ln = −iHn and L̄n = −iH̄n so that the Ln's satisfy

the standard form of the Witt algebra

[Ln, Lm] = (n−m)Ln+m .

We begin by investigating bulk modes that satisfy a lowest weight condition, which

should be dual to primary operators in the CFT. Imposing the equations L1ψ(r, t, φ) =

L̄1ψ(r, t, φ) = 0 yields the solution

ψ(r, t, φ) ∝
(
rr+ − a2

)−iam/r+ eimφ−iωt
and the condition

ω = am/ (2Mr+) . (4.2.5)

The conformal weights are

(hL, hR) = (
iam

r+

,
iam

r+

) .

So this will solve the scalar �eld equation of motion in Kerr if we further identify the

Casimir with `(`+ 1)

(
L2

0 −
1

2
(L1L−1 + L−1L1)

)
ψ(r, t, φ) = `(`+ 1)ψ(r, t, φ) , (4.2.6)

which implies hL(hL − 1) = `(`+ 1) and hL = `+ 1 for the positive solution.

The inner product of these primaries is rather di�erent from the usual Klein-

Gordon norm in the Kerr background. The inner product of the CFT must yield

conjugation that switches L1 ↔ L−1 and leaves L0 invariant. This is accomplished by
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Hermitian conjugation, followed by φ→ −φ and t→ −t. This suggests the symmetry

may be interpreted directly as acting in an analytic continuation of the Kerr geometry

where φ→ iφ and t→ it.

We �nd that the large r fallo� r−(hL+hR)/2 of a mode allows us to read o� the

conformal weight of the dual CFT operator ∆ = hL+hR. It is worth mentioning that

in the usual AdS/CFT correspondence, the radial fall-o� in Poincare coordinates is

instead of the form r̃−(hL+hR). Thus if one inferred some e�ective AdS metric from

the Kerr Laplacian in the near region, the relation between coordinates is of the form

r ∼ r̃2 at large r.

4.3 Conformal weights for general spin

From (4.2.1) we can generalize the above to the higher spin s �elds, and include

the higher powers of Mω on the right hand side of (4.2.6) by using the expansion

(4.1.3). In the near region, the large r fallo� of (4.2.1) takes the form r−s−ν−1.

To extract the behavior of the primary �eld we must also take into account the

normalization of the component vectors used to set up the Teukolsky equation. In

order to do that, we have to go back to the Teukolsky assignment of spin-s �elds and

identify solutions of the Teukolsky equation with physical quantities. The details are

presented in [3]; here we will only refer to the outgoing components of the vector and

tensor perturbations, Fµνm̄
µnν = ψ−1Σ and Rαβγδn

αm̄βnγm̄δ = ψ−2Σ2. Thus, we

extract the large r behavior of the outgoing component of the vector potential Aµ

for spin -1, and the behavior of the outgoing component of the graviton gµν for spin

-2, in asymptotically Minkowski coordinates. This leads us to identify the conformal
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weight of a higher spin mode with

∆ = −2|s|+ 2ν + 2 . (4.3.1)

Therefore, at leading order in Mω, all the massless bulk �elds have ∆ = 2 for the

lowest nontrivial modes of angular momentum.

When the higher order Mω terms in the Teukolsky equation are included, the

SL(2,R) symmetry associated with the Ln's is softly broken. We expect the bulk

scalar �elds to be dual to CFT operators involving a sum of higher dimension opera-

tors. The conformal dimensions of these operators may be read o� by examining the

large r fallo� of the expansion for the exact radial mode function (4.1.6), yielding a

prediction for the dimensions of other CFT operators that must be present

∆ = −2|s|+ 2n+ 2ν + 2 n > −ν − 1

= 2|s| − 2n− 2ν n < −ν

which are again all positive.

In this way, each term in (4.1.6) can be interpreted as a higher dimension cor-

rection in the mapping between the bulk mode and CFT operators. Because (4.1.6)

reproduces the exact mode function for any �nite r, one may deduce the exact two

point function for scattering of massless modes o� Kerr, including all higher Mω

corrections, generalizing the lead-order matching noted in [12].
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4.4 A few comments on the CFT dual

There are now a number of puzzles we need to address. The L̄n generators act on

functions that may be written using the basis R(r)eimφ−iωt, but as we see from the

exponential prefactors in (4.2.3), the L̄1 and L̄−1 generators shift the m and ω eigen-

values by imaginary amounts. The shift in ω means the low frequency approximation

leading to (4.2.1) can no longer be trusted, so that the whole SL(2,R) associated

with these generators is strongly broken down to the U(1) subgroup generated by L̄0.

This leads us to the unfamiliar situation, where the eigenvalue m must be ana-

lytically continued to imaginary values to construct a mode dual to a primary CFT

operator. However this is not entirely unexpected, since the space of infalling modes

is a superset containing the quasi-normal modes of Kerr, studied, for example in [38].

Likewise, the case of quasi-normal modes of the 3-dimensional black hole have been

studied in [39]. These modes have complex eigenvalues for ω so it is perhaps not

too surprising we also wind up with complex eigenvalues for m prior to imposing

periodicity of φ. This phenomenon is encountered in a similar context in [40].

However, as indicative from (4.2.5), the primary modes with respect to Ln do

take us out of the low frequency limit, as the frequency condition for a primary �eld

(4.2.5) becomes

ω =
`+ 1

2iM
. (4.4.1)

We may still use the SL(2,R) × SL(2,R) representations of the leading order wave

equation to organize the expansion of the higher order corrections. A priori we have

no reason to expect convergence when we relate the associated CFT operators with

bulk operators, but nevertheless, the mode function expansion (4.1.6) happens to

converge for all �nite r.
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Of course, as noted in [12], SL(2,R) × SL(2,R) is explicitly broken once φ is

periodically identi�ed, which projects out all noninteger m modes. So in this way, we

see how this can be a low frequency symmetry of the Kerr modes prior to periodic

identi�cation, without it being realized manifestly in the spectrum. For example,

such SL(2,R) towers are not observed in the numerically determined quasi-normal

mode spectrum [38].

The parameter ν serves a purpose of renormalized angular momentum, which can

be interpreted as arising from the soft SL(2,R) symmetry breaking terms in the low

frequency wave equation. Having found a set of scaling dimensions associated with

the exact solution of the Teukolsky equation, we are confronted with the problem that

ν = ` + O(M2ω2) as shown in (4.1.8). This means the scaling dimensions run with

frequency � another sign that conformal symmetry is broken away from the Mω = 0

�xed point. At �rst sight this seems rather disappointing: if we wish to study the

conformal �xed point, we are forced to set M = 0. To retain a smooth geometry,

this limit must be taken with a < M which takes us to �at spacetime.2 To keep the

generators (4.2.2) and (4.2.3) well-de�ned, one must also rescale the time coordinate,

keeping t̃ = t/M �nite and the dimensionless temperatures TL and TR �xed. Thus

the metric becomes R3 times a null direction t̃

ds2 = 0dt̃2 − dr2 − r2dθ2 − r2 sin2 θ dφ2 . (4.4.2)

Certainly we see no sign of a nontrivial central charge c = 12J associated with

an exact CFT dual to �at spacetime. One might have expected extremal Kerr to

2One may also consider the M → 0 limit with either �xed a or with �xed J . In each case, the
limit of the SL(2,R)×SL(2,R) generators are not Killing vectors of the limiting metric, but rather
conformal symmetries of the massless �eld equations.
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emerge at the �xed point, but this simply does not occur in a small Mω limit. The

generators (4.2.2) and (4.2.3) are not isometries of the metric (4.4.2). Moreover,

in the extremal limit, they do not match the asymptotic symmetry generators of

the NHEK geometry found in [9, 10, 11]3. Rather they correspond to conformal

transformations of (4.4.2) that leave the massless wave equations invariant. Thus the

hidden Kerr/CFT correspondence does not seem easily generalized to massive modes.

Of course our scaling dimension computations are only valid at �strong� coupling

where the gravitational solution is smooth. There could still be a nontrivial CFT with

c = 12J with conformal dimensions that match those obtained here when its strong

coupling limit is taken. Studies of the near super-radiant modes of extremal Kerr

provide strong evidence for such a conformal �eld theory [9, 16]. While the two limits

do not seem to be smoothly connected within the realm of smooth gravity solutions4,

they may well be connected within the exact microscopic CFT. Similar phenomena

are observed in the duality between D1,D5-brane backgrounds and CFT.

3For further work in this direction see [41, 42].
4For example, the super-radiant modes do not satisfy the low frequency limit needed to obtain

the symmetry studied here.
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Generalizations and Schwarzschild

limit

In the previous chapter we showed how to organize the low frequency expansion of

spin weight s bulk �elds by using the hidden SL(2,R), providing a map between

bulk modes and higher dimension operators in the CFT. The CFT interpretation has

been shown to be far from complete, raising more questions than providing answers.

Nevertheless, it is a promising novel approach to a longstanding problem.

The idea we wish to further pursue is that the underlying hidden conformal

�eld theory description may be studied via low frequency scattering, rather than by

simply looking for geometric isometries. This opens up the possibility that even the

Schwarzschild black hole may have a CFT dual. By studying deformations of the low

frequency scalar wave equation in Kerr background, we test the robustness of the low

frequency symmetry and provide insight into its possible manifestations.

In this chapter, the hidden CFT generators (4.2.2), (4.2.3) are generalized to a

one-parameter family. For special values of the parameter, a contraction to a single
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SL(2,R) factor generates symmetries of the scalar �eld equation in Schwarzschild

black hole background. We �nd agreement with Schwarzschild symmetry generators

found in [43]. Moreover, if we assume that the SL(2,R) factors are enhanced to

full Virasoro symmetries underlying the CFT, state counting in the CFT is able to

reproduce the exact Kerr entropy. Finally we speculate on the connection between

this hidden CFT and a more fundamental CFT describing the black hole. In the

large damping limit, hints of CFT structure also emerge [44], and we are able to

reproduce the spectrum of the Kerr quasinormal modes from a particular choice of

our free parameter.

5.1 Deforming the wave equation

We start from the equation for a massless scalar �eld ψ(t, r, θ, φ) propagating in Kerr

background. As before, with the following ansatz

ψ ∼ eimφ−iωtS(θ)R(r),

the spin zero Teukolsky equation is separated into an angular and radial part. In the

low frequency limitMω � 1, the angular equation reduces to a Laplacian on S2, with

eigenfunctions being spherical harmonics and eigenvalues K` ≈ `(` + 1), ` = 0, 1, . . .

We will not focus any further on the angular equation and its properties beyond

zeroth order solution; this was dealt with in more depth in the previous chapter. For

the radial equation, we may rewrite (2.2.3) in a somewhat more suggestive form [12]
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[
∂r (∆∂r) + (2Mr+ω−am)2

(r−r+)(r+−r−)
− (2Mr−ω−am)2

(r−r−)(r+−r−)

+(r2 + 2M(r + 2M))ω2 −Kl

]
R(r) = 0 . (5.1.1)

We wish to consider a low frequency, near region limit

rω � 1 , Mω � 1, (5.1.2)

following [12]. This allows one to drop the (r2 + 2M(r + 2M))ω2 term in (5.1.1), at

which point the equation reduces to hypergeometric form.

If one is interested in Kerr black holes far from extremality, another interesting

possibility arises. Namely, one can demand that r − r− be su�ciently large that the

order ω and higher terms coming from the pole near r → r− in (5.1.1) be subleading.

That is, we may introduce the deformation parameter κ and deform (5.1.1) to

[
∂r (∆∂r) +

(2Mr+ω − am)2

(r − r+) (r+ − r−)
− (2Mκr+ω − am)2

(r − r−) (r+ − r−)

]
R(r) = l(l + 1)R(r), (5.1.3)

This leaves the low frequency limit unchanged, as long as the two constraints

κM2amω

(r − r−)(r+ − r−)
� 1,

κ2M4ω2

(r − r−)(r+ − r−)
� 1, (5.1.4)

are satis�ed. A version of this deformation for the Schwarzschild black hole was

considered in [43]. It should be noted that these conditions are implied by the near-
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region condition (5.1.2) as long as r− r− does not vanish. Thus, these conditions are

a rather weak modi�cation of the near-region limit.

Furthermore, one might consider deforming the positions of the singularities and

coe�cients in (5.1.3) in an arbitrary way, such that the wave equation reduces to

(5.1.1) as ω → 0. However, if the coe�cient involving the singularity at r =∞ or at

r = r+ is deformed, the low energy solutions to the wave equation are changed in a

drastic way, since the coe�cients control the divergence of the solutions at the singular

points. Shifting the positions of these singularities produces a deformation that could

only be explained by an action involving more than two time derivatives, which we

choose not to consider in the present work. However, the inner horizon r = r−

is a special case, because we expect the full nonlinear solution for a perturbation

of Kerr to become singular there. Including back-reaction is expected to yield an

asymptotically null spacelike singularity capping the would-be inner horizon [45].

Since the low energy linearized wave equation is not relevant at this singular surface

near r = r− it is natural to explore deformations of the wave equation near this point.

The κ deformation in (5.1.3) is the unique such deformation of the linearized equation

of motion, yielding an equation of motion second order in time derivatives.

5.2 Constructing the SL(2,R)

We start with a set of vector �elds

L± = e±αt±βφ (g±(r)∂r + h±(r)∂φ + k±(r)∂t) , (5.2.1)

L0 = γ∂t + δ∂φ ,
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that are to satisfy an SL(2,R) algebra,

[L+, L−] = 2L0,

[L±, L0] = ±L± .

The requirement that L0 is an eigenvector of a state ψ ∼ eimφ−iωtR(r)S(θ) sets γ and δ

to constants. We also demand the quadratic Casimir reproduces the scalar �eld wave

equation in the Kerr background in the near region low frequency approximation

(5.1.2) subject to the additional constraints (5.1.4):

L2
0 −

1

2
(L+L− + L−L+) = ∂r(∆∂r) + f(r) ,

where f(r) is a function that involves no single derivatives in t or φ, except for ∂t∂φ.

Given these constraints, we claim the following is the most general functional

form of such generators:

L± = e±αt±βφ
(
∓
√

∆∂r +
C2 − δr√

∆
∂φ +

C1 − γr√
∆

∂t

)
, (5.2.2)

L0 = γ∂t + δ∂φ ,

with constraints on parameters arising from imposing the sl(2,R) algebra:
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αC1 + βC2 +M = 0, (5.2.3)

1 + αγ + βδ = 0.

These determine α and β. The last three equations we impose are the ones identifying

appropriate terms in the quadratic Casimir with ∂2
φ, ∂t∂φ and ∂2

t terms in the wave

equation (5.1.3). The ∂2
φ term gives us the branches:

δ = ±a/
√
M2 − a2 δ = 0

C2 = Mδ C2 = ±a .

The di�ering signs simply generate automorphisms of the algebra, so may be dropped

in the following. Examining the two remaining terms gives:

γδa2 − C1C2 − r(2Mγδ − C2γ − C1δ) = − 2Mr+a

r+ − r−
[r(1− κ)− (r− − κr+)] ,

and

γ2a2 − C2
1 − 2rγ(Mγ − C1) = −

4M2r2
+

r+ − r−
[
r(1− κ2)− (r− − κ2r+)

]
.

The two possible branches are shown in Table 5.2.1 describing a one-parameter family

of SL(2,R)× SL(2,R) generators labeled by κ. The solution for the generators is
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γ = 2Mr+
r+−r− (κ+ 1) γ = 2Mr+

r+−r− (κ− 1)

δ = 2a
r+−r− δ = 0

C1 = 2Mr+
r+−r− (κr+ + r−) C1 = 2Mr+

r+−r− (κr+ − r−)

C2 = Mδ C2 = a

Table 5.2.1: Two branches of solutions for the SL(2,R)× SL(2,R) generators.

L± =
e∓2πTRφ

[
∓
√

∆∂r − 1
2πTH

r−M√
∆

(Ω∂φ + ∂t)

+ 1
2πΩ(TL+TR)

r−r+√
∆
∂t

]
,

(5.2.4)

L0 =
1

2πTH
(Ω∂φ + ∂t)−

1

2πΩ(TL + TR)
∂t,

and

L̄± =
e±2πΩ(TL+TR)t∓2πTLφ

[
∓
√

∆∂r + 2Mr+√
∆

(Ω∂φ + ∂t)

+ 1
2πΩ(TL+TR)

r−r+√
∆
∂t

]
,

(5.2.5)

L̄0 = − 1

2πΩ(TL + TR)
∂t,

where TH =
√
M2−a2

4πMr+
is Hawking temperature and Ω = a

2Mr+
angular velocity at the

outer horizon, and we have introduced �CFT� temperatures as

TR =

√
M2 − a2

2πa
(5.2.6)

and

TL = TR
1 + κ

1− κ
. (5.2.7)
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5.3 Connection with previous results

We note the generators (5.2.5) shift the frequency of a mode by the imaginary amount

2πΩ(TL+TR). This means we only stay within the low frequency limit (5.1.2) provided

we are close to the extremal Kerr limit, so that TR � 1 (assuming κ is �xed).

Outside this limit the descendants of some primary operator are no longer mapped to

eigenfunctions of the low frequency scalar �eld equation. The other set of generators

(5.2.4) do not su�er from this additional constraint.

Higher order corrections to the Teukolsky equation in the low frequency limit

give rise to soft breaking of the conformal symmetry, and running of the anomalous

dimensions, as described in the previous chapter. In addition, global identi�cations

on the solution space by φ→ φ+ 2π explicitly breaks the symmetry algebra down to

U(1)× U(1) generated by (L0, L̄0).

If we set κ = r−/r+ our results match (4.2.2), (4.2.3). For this choice of κ the

pole term in (5.1.3) is exact, so the subsidiary constraints (5.1.4) may be dropped.

Furthermore, let us comment on two special cases where the general solutions

(5.2.4) and (5.2.5) do not hold. For κ = 1 and general rotation parameter a, the right

branch in Table 5.2.1 fails to yield a consistent solution to the constraint equations,

so only the left branch generates an SL(2,R). Since we only �nd one SL(2,R) for

general a we are unable to carry through the conjecture that the theory should be

dual to a 2-dimensional CFT, so we do not pursue this case further.

The Schwarzschild case, a = 0, should likewise be treated as a special case. Here

we �nd the constraint equations are inconsistent unless κ = ±1. For both values of

κ, the same single copy of SL(2,R) is found. This may be read o�, for example, from

the right branch of Table 5.2.1 by setting κ = −1 and a = 0. We �nd a single set of
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SL(2,R)Sch generators

L± = −e±t/4M
(
±
√

∆∂r −
4M(r −M)√

∆
∂t

)
, L0 = −4M∂t. (5.3.1)

Our results match those of Bertini, Cacciatori and Klemm [43], up to the algebra

automorphism L± → −L± and L0 → L0.

5.4 Quasinormal modes

It is well known that classical black holes are characterized by a discrete set of complex

frequencies, named quasinormal modes. The quasinormal modes correspond to a

certain set of boundary conditions, with waves purely outgoing at in�nity and ingoing

at the horizon. Two observations immediately jump to mind: a quantum theory of

gravity should reproduce this spectrum; and if the states in this quantum theory are

fully characterized by quasinormal modes, studying semiclassical physics outside the

black hole horizon should teach us about this quantum theory.

The connection between quasinormal modes for three-dimensional black holes

and CFT states has been made precise in [39] by looking at linearized perturbations1

and showing an explicit agreement between quasinormal frequencies and the poles of

the retarded correlation function in the CFT.

Likewise for the Kerr black hole, there is a discrete spectrum of quasinormal

modes [43]. At large damping the imaginary part of the frequency increases ap-

proximately linearly with mode number, while the real part approaches a constant.

1The previous de�nition of quasinormal modes via ingoing �ux at in�nity does not make it if
we put the system in a box. The way quasinormal modes were de�ned in asymptotically AdS
backgrounds was to impose either Dirichlet boundary conditions at asymptotic in�nity, or a vanishing
�ux F ∼

√
−g (R∗∂µR− c.c.). Both choices lead to same spectrum.
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According to Keshet and Neitzke [44], at large damping is where one expects the

CFT description to emerge, as the transmission and re�ection amplitudes take a fa-

miliar CFT-like form. Moreover, a step towards this understanding has been made

in [44], where the authors have obtained the quasinormal mode spectrum via a WKB

approximation to the wave equation.

An interesting observation was made in [43] � the descendant states (L−)n ψ(t, r, φ)

reproduce the large damping quasinormal spectrum of the Schwarzschild black hole.

We speculate this might be the case with generators (5.2.5) as well, giving a connec-

tion between the low frequency hidden CFT, and some more fundamental underlying

CFT that correctly describes the quasinormal modes.

Keshet and Hod [46] compute the quasinormal mode spectrum at large damping

and obtain

ω = −mω̂ − 2πiT0(n+ 1/2), (5.4.1)

to leading order in n, where T0 = TH f(a/M) and f(a/M) is a smooth, slowly varying

function of angular momentum with f(0) = 1, that may be expressed in general using

elliptic integrals.

We can choose the value of κ(a) by solving

T0 = ΩTR
2

1− κ
.

Then by de�ning the lowest weight state via

52



CHAPTER 5. GENERALIZATIONS AND SCHWARZSCHILD LIMIT

L̄0Φ(0) = h̄Φ(0),

L̄+Φ(0) = 0,

it is easy to check the descendants Φ(n) =
(
L̄−
)n

Φ(0) reproduce the large n behavior

of the spectrum (5.4.1).

5.5 Entropy

Following [12], we propose that the SL(2,R)× SL(2,R) symmetry is promoted to a

full left and right-moving Virasoro symmetry in the full quantum theory. The Cardy

formula gives

S =
π2

3
(cLTL + cRTR) . (5.5.1)

The TL and TR appearing in (5.2.6) and (5.2.7) may be matched with the left and

right-moving CFT temperatures. The CFT inherits periodic identi�cations in the

imaginary left and right moving directions, from the periodic identi�cation of φ, and

the action of the Virasoro generators.

The Bekenstein-Hawking entropy is

SBH = 2πMr+, (5.5.2)

which agrees exactly with (5.5.1) provided we identify the central charge as

cL = cR =
6a(1− κ)Mr+√

M2 − a2
. (5.5.3)
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We emphasize the identi�cation of the central charge (5.5.3) is not an indepen-

dent computation. Such a computation may well be possible, but would require a

reworking of the Brown-Henneaux calculation [4] within the hidden CFT/low fre-

quency framework.

The central charge depends in a nontrivial way on the deformation parameter κ.

This indicates the dual description is actually a family of conformal �eld theories with

a conformal deformation parameter. While we do not yet have enough data to specify

the CFTs at hand in detail, there are many examples of such families of conformal

�eld theories. A simple example is the level number of a conformal �eld theory based

on an a�ne Lie algebra. A much more general set of examples, including continuous

deformations of CFTs that change the central charge, appears in [47].

The formula (5.5.3) reduces to the result of [12] when κ = r−/r+ where cL =

cR = 12J . There one can argue that in the extremal limit, the central charge follows

from standard geometric argument [9]. However, a closer look shows that the low

frequency symmetry generators of hidden conformal symmetry do not smoothly match

the isometry generators of [18]. Thus, the �xed point of the low frequency conformal

symmetry does not coincide with extremal Kerr [13]. Moreover, a strong argument

for the non-renormalization of the central charges away from the extremal point is

lacking for the case considered in [12]. The addition of the extra parameter κ in

(5.5.3) does not help this situation.

In the Schwarzschild limit we only retain a single SL(2,R) symmetry, which

might be associated with conformal quantum mechanics. If we assume this alone is

promoted to a full Virasoro symmetry, we �nd periodicity with respect to φ no longer

�xes the CFT temperature. Rather we must return to the generators (5.3.1), where
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we can read o� the temperature

TCFT = TH =
1

8πM
.

The central charge for conformal quantum mechanics dual to Schwarzschild is then

predicted to be

cSch = 96M3 , (5.5.4)

an apparently new result.
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Chapter 6

Conformal symmetry at �nite

frequencies

In the previous chapter we found that the hidden conformal symmetry in a low

frequency limit has a rich structure, generic for a wide class of black holes. These

results are in a way both encouraging and disappointing, as they enable study of

the hidden symmetry at low frequencies for a whole class of geometries that exhibit

a horizon (even for positively curved de Sitter, as in [48]), but don't give precise

information on the underlying physics. In what follows, we extend the treatment of

the hidden symmetry to �nite frequencies, to �nd the 1-parameter family of SL(2,R)×

SL(2,R) algebras singles out a particular value of the parameter, which may be

indicative of the precise nature of the map between bulk �elds and CFT primaries.

In this chapter we study in more detail the symmetry structure of the equations of

motion for massless �elds of general spin in a generic Kerr background without taking

any limits. We �nd a hidden SL(2,R)×SL(2,R) symmetry structure which matches

that of the global conformal group of a two-dimensional conformal �eld theory.
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In order to construct the parameters that characterize the representations that

appear, we solve an eigenvalue problem that may be expressed as a continued fraction

equation, exhibiting solutions in a low frequency expansion and by numerical compu-

tation for �nite frequency modes. We develop the numerical solution of the eigenvalue

problem for quasinormal modes to determine the associated representations.

The Kerr mode functions lead to non-unitary representations of SL(2,R) ×

SL(2,R) for the mode functions which re�ect the non-invariance of the coordinate

patch under this group. However the representations that appear match exactly what

one expects of the BTZ black hole, for which the correspondence between gravity and

a CFT at �nite left/right temperatures is well-understood [39]. These results provide

useful clues and constraints on the structure of the holographic dual to a generic Kerr

black hole.

6.1 The SL(2,R)×SL(2,R) and massless �elds in Kerr

We start by revisiting the Teukolsky equation for spin weight s �elds. The solution

takes the following form for angular quantum numbers ` and m

ψ = e−iωteimφSm` (θ)Rω`m(r) ,

with Sm` being a spin weighted spheroidal harmonic, dependent on the spin weight s.

This satis�es the angular equation

(
d

dy
(1− y2)

d

dy
+

1

4
q2ε2y2 − sqεy − m2 + s2 + 2msy

1− y2
+ E

)
Sm` (y) = 0 , (6.1.1)
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with angular eigenvalue E, where y = cos θ, and ε = 2Mω, q = a/M as before. For

�nite frequencies the eigenvalue is not known, but that does not prevent us from

organizing the solution in terms of an expansion in Jacobi polynomials, just as we

did in (4.1.2). The only thing we need to enforce is that the choice of E leads to a

convergent series, which is done by solving a continued fraction equation.

As an aside, Jacobi polynomials P
(|m+s|,|m−s|)
j (y) are often occurring when the

underlying equation has SU(2) symmetry. They are connected with the irreducible

representations of SU(2), the Wigner representations

djm,s (θ) ∝
(

sin
θ

2

)|m+s|(
cos

θ

2

)|m−s|
P

(|m+s|,|m−s|)
j−m (cos θ) .

In what follows, we will build our �Wigner� representations for the hidden con-

formal symmetry. The radial equation takes the form

(
∆−s

d

dr
∆s+1 d

dr
+ [V0(r) + Vω`m(r)]

)
Rω`m(r) = 0 , (6.1.2)

where the potentials V0 and Vω`m are de�ned as

V0(r) =
r+ − r−
r − r+

ω+(ω+ − is)−
r+ − r−
r − r−

ω−(ω− + is)

Vω`m(r) = s(s+ 1)− E + ε(ε− is) + r2ω2 + rω(ε+ 2is) ,

and we have introduced

ω± =
2Mr±ω − am
r+ − r−

.

Around a low frequency limit the radial equation solutions may be expanded in

terms of hypergeometric functions, (4.1.6):
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Rω`m(x) = eiεκx(−x)−s−
i
2

(ε+τ)(1− x)
i
2

(ε−τ) (6.1.3)
∞∑

n=−∞

aνn 2F1 (n+ ν + 1− iτ,−n− ν − iτ ; 1− s− iε− iτ ;x) ,

where the solution is chosen to satisfy ingoing boundary conditions at the horizon.

Here we �nd it convenient to use x = ω(r+ − r)/εκ, κ =
√

1− q2, τ = (ε −mq)/κ.

The parameter ν will ultimately determine the SL(2,R) × SL(2,R) representations

that appear in the mode function. In a low frequency expansion, ν = `+O(ε2). For

su�ciently small ε usually a single term in the expansion survives at leading order.

Remarkably, it was found the series converges for all r <∞ beyond the small ε limit.

If we de�ne

Bω`m(x) = (−x)s/2(1− x)s/2e−iκεxRν
ω`m(x) , (6.1.4)

we transform the radial equation into

(
d

dx
Λ
d

dx
+

[
ω̂2

+

x
+

ω̂2
−

1− x
− ν(ν + 1)

])
Bω`m =

= −
[
2iκεΛ

d

dx
− iκε(s− 1)

dΛ

dx
− ε2κdΛ

dx
− E + ν(ν + 1) +

ε2

4

(
7 + κ2

)]
Bω`m (6.1.5)

where

Λ = −x(1− x), ω̂± =
s

2
± iω± .

Now the �rst line of (6.1.5) is (up to a trivial modi�cation) what is known as the

q-form of the hypergeometric equation. This form is useful for exhibiting the SL(2,R)

structure of the solution. There are two ways to rewrite this �rst line as a quadratic

Casimir of SL(2,R), so all together we �nd a SL(2,R) × SL(2,R) structure. The
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generators are

J± = e±2πTRφ

[
−
√

Λ∂x ±
M

TR

TLΛ′ − TR√
Λ

∂t ±
1

4πTR

Λ′√
Λ
∂φ ±

s

2
√

Λ

]
,

J3 = 2M
TL
TR
∂t +

1

2πTR
∂φ , (6.1.6)

and

J̄± = e±(2πTLφ−t/2M)

[
−
√

Λ∂x ±
M

TR

TL − TRΛ′√
Λ

∂t ±
1

4πTR

1√
Λ
∂φ ±

sΛ′

2
√

Λ

]
,

J̄3 = −2M∂t + s , (6.1.7)

where we have introduced the parameters

TR =
r+ − r−

4πa
, TL =

r+ + r−
4πa

. (6.1.8)

These generators satisfy the SL(2,R) algebra in the form

[
J+, J−

]
= 2J3 ,[

J±, J3
]

= ∓J± ,

and likewise for barred generators. The barred and unbarred generators commute.

This generalizes the proposed algebra of [12] to general spin weight s, up to algebra

isomorphism. The Casimir operators
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C = J+J− + J3J3 − J3, C̄ = J̄+J̄− + J̄3J̄3 − J̄3,

each reproduce the term in (6.1.5)

C = C̄ =
d

dx
Λ
d

dx
+
ω̂2

+

x
+

ω̂2
−

1− x
.

It is worth pointing out that di�erential generators (6.1.6) and (6.1.7) appear in

the literature on the relation between representations of SL(2,R) and hypergeometric

functions [49]. A related SU(2) algebra may also be de�ned for the angular equation,

and was used in [34] to give a compact derivation of the Press-Teukolsky identities

[50]. All together, the expansion for a mode function in the Kerr geometry exhibits

a hidden SL(2,R)× SL(2,R)× SU(2)× SU(2) symmetry, which curiously matches

the near-horizon isometry of the string theory black holes for which the microscopic

entropy counting is well-understood.

From (6.1.3) we observe Rω`m(x) is invariant under the exchange ν → −ν − 1,

n → −n. In order to build representations of SL(2,R) under the action of (6.1.6)

and (6.1.7), we decompose Bω`m(x) into two independent modes:

Bω`m(x) =
∞∑

n=−∞

[
ãνnB

n+ν
ω`m(x) + ã−ν−1

n Bn−ν−1
ω`m (x)

]
,

where

Bn+ν
ω`m(x) = (−x)n+ν− s

2
− i

2
(ε−τ)(1− x)

s
2

+ i
2

(ε−τ) (6.1.9)

2F1 (−n− ν − iτ,−n− ν + s+ iε;−2n− 2ν; 1/x)
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and

ãνn = aνn
Γ (1− s− iε− iτ) Γ (2n+ 2ν + 1)

Γ (n+ ν + 1− iτ) Γ (n+ ν + 1− s− iε)
.

The invariance of Bω`m(x) under {ν → −ν − 1, n→ −n} is enforced via the assign-

ment aν0 = a−ν−1
0 .

One can de�ne the irreducible SL(2,R) representations we will be interested in

as realized on a set of basis functions fum0
via

J3fum0
= m0f

u
m0
,

J±fum0
= (−u±m0)fum0±1 .

With the help of the hypergeometric identity

d

dz
[zaF (a, b, c; z)] = aza−1F (a+ 1, b, c; z) ,

where z = 1/x, we conclude that e−iωt+imφBn+ν
ω`m(x) = fn+ν

−iτ under the action of (6.1.6).

For barred generators (6.1.7), we swap the �rst two arguments in the hypergeometric

function and use the same identity to show e−iωt+imφBn+ν
ω`m(x) = fn+ν

s+iε .

In the notation D (u,m0) of [49], with respect to the product algebra SL(2,R)L×

SL(2,R)R the representation associated with the n-th term of the expansion (6.1.4)

is a direct product

D (n+ ν, s+ i2Mω)L × D

(
n+ ν,−i2M

2ω − am√
M2 − a2

)
R

, (6.1.10)

which is a non-unitary representation of the algebra, with Casimir (|n|+ν)(|n|+ν+1).

62



CHAPTER 6. CONFORMAL SYMMETRY AT FINITE FREQUENCIES

Later we will see that ν will be real provided ω is real, but will be complex for

quasinormal modes. With respect to the generators de�ned above, the weights of

representations are ikL−2Mω, ikR− 2M2ω−am√
M2−a2 , where kL,R is an integer. The condition

that the representations collapse to a highest weight or lowest weight representation

is that ν+ i2Mω or ν+ i2M2ω−am√
M2−a2 is an integer. This is generally not satis�ed for real

non-vanishing frequencies or momenta.

The original motivation for the expansion (6.1.3) was as a low frequency expan-

sion. As we have seen, this is equivalent to organizing the expansion according to the

SL(2,R) × SL(2,R) symmetry, which moreover leads to a convergent expansion for

general frequencies.

This expansion straightforwardly produces low frequency scattering amplitudes.

In particular, the results of Page/Starobinsky [51, 52] can easily be recovered by

retaining only the n = 0 term in (6.1.3), as shown in [36].

We will �nd the parameter ν becomes a function of frequency, determined by

picking out a convergent solution to (6.1.3). We solve for this parameter in various

di�erent limits. But �rst we will investigate in more detail the connection to conformal

�eld theory.

6.2 CFT/gravity mapping

In the above we have shown how a general mode function decomposes into irreducible

representations of the SL(2,R) × SL(2,R) algebra. To make the meaning of these

representations more clear it is helpful to compare to the analogous computation for

the three-dimensional black hole in asymptotically anti-de Sitter spacetime [6], where

the same symmetry structure appears, and the holographic dictionary is well-known.
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6.2.1 BTZ example

Quasinormal modes have been studied in this context in [39] so we �nd it helpful to

follow their notation. The BTZ metric can be written in the form

ds2 =
dz2

4z(1− z)2
+

1

1− z
(−r−dt+ r+dφ)2 − z

1− z
(r+dt− r−dφ)2 , (6.2.1)

where in�nity is z = 1 and the outer horizon sits at z = 0. Here r+ and r− are the

radii of the outer and inner horizons. These are related to left and right temperatures

in the CFT via (6.1.8) by replacing a→ 1/2:

TR =
r+ − r−

2π
, TL =

r+ + r−
2π

. (6.2.2)

For a scalar �eld of mass m̃, or a vector �eld of mass m̃ (with spin parameter

s = ±1), an analog of the Teukolsky solution is

Φ = e−ik+x
+−ik−x−B(z)

where

x+ = r+t− r−φ, x− = r+φ− r−t

and

k+ + k− =
ω − k
2πTR

k+ − k− =
ω + k

2πTL
.
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The radial equation takes the hypergeometric form

z(1− z)
d2B

dz2
+ (1− z)

dB

dz
+

[
k2

+

4z
−
k2
−

4
− m̃2 + 2sm̃

4(1− z)

]
B = 0 (6.2.3)

with

B(z) = zα(1− z)β 2F1(a, b; c; z) (6.2.4)

where

α = −ik+

2
, β =

1

2

(
1−
√

1 + m̃2 + 2m̃s
)
,

a =
k+ − k−

2i
+ β, b =

k+ + k−
2i

+ β, c = 1 + 2α .

The radial equation (6.2.3) is of the same form as the �rst line in (6.1.5) with

the replacement B(z)→ (1− z)1/2B̃(z). However, one subtlety we should address is

that a given hypergeometric equation has 24 di�erent equivalent ways of writing the

solution in terms of hypergeometric functions. These di�erent solutions are related

by Kummer transformations. From the viewpoint of the black hole, these presumably

correspond to mode functions in di�erent coordinate patches. To compare with the

form of the solution (6.1.9), where x runs over the range (−∞, 0) we perform a

z → y = 1− 1/z Kummer transformation which maps the solution (6.2.4) to

B(x) = (−y)c−a−b+β(1− y)b−α−β 2F1(c− a, 1− a; c+ 1− a− b; y) .
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From here we may read o� the parameters of the SL(2,R)× SL(2,R) represen-

tation. In the notation D(ν,m0) of [49] we �nd

D

(
β − 1, i

k+ − k−
2

)
L

× D

(
β − 1,−ik+ + k−

2

)
R

(6.2.5)

for which the quadratic Casimir is

C = C̄ =
m̃2 + 2m̃s

4
.

These are non-unitary representations of SL(2,R), although the Casimir agrees

with what we expect for a discrete highest weight irreducible representation with

conformal weight h = β. The non-unitarity may be attributed to the fact that the

external coordinate patch of the BTZ black hole (6.2.1) is not invariant under global

AdS isometries. When one takes a pure AdS limit, the coordinates (6.2.1) only cover

one of an in�nite number of patches needed to cover AdS (or more precisely the

covering space of AdS). Thus, while modes on the covering space of AdS transform

as a unitary highest weight representation of SL(2,R) × SL(2,R), they are related

to a nontrivial composition of non-unitary representations on di�erent patches1. At

the level of the mode functions, the mapping between the global mode functions and

the BTZ patch mode functions will (and consequently the group representations will)

follow analogous results in [54] for Rindler versus Minkowski spacetime. We conclude

that the non-unitary representations (6.2.5) for a single BTZ patch can be viewed

as descending from a unitary highest weight representation of SL(2,R) × SL(2,R)

corresponding to a primary operator in the CFT with conformal dimension β.

1This is treated explicitly for AdS4 in [53], and the result for AdS3 follows by decomposing the
highest weight representations of SO(3, 2) into SO(2, 2).
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6.2.2 Conjecture for Kerr/CFT

We conclude that the representations of SL(2,R)× SL(2,R) for BTZ modes (6.2.5)

match exactly those of Kerr (6.1.10). This leads us to conjecture that an exact mode

of Kerr may be reconstructed from some more fundamental primary conformal �eld

of weight ν and its descendants.

Let us note that the expansion for a Kerr mode (6.1.3) may be expressed as a sum

from n = 0 to∞ simply by using the symmetry of the hypergeometric function under

its �rst two arguments. This swaps ν → −ν−1 and n→ −n. As is well-known in the

AdS/CFT correspondence, both terms may be viewed as originating from correlators

of a conformal primary of weight ν in the presence of a source term [7].

A new issue that arises in Kerr/CFT is that of the proper normalization of the

modes with physical boundary conditions at spatial in�nity. Certainly one may use

the expansion (6.1.3) to compute scattering correlators on some surface of large �xed

r, but to properly impose incoming/outgoing boundary conditions at spatial in�nity,

another expansion must be used that is convergent at r = ∞. Such an expansion is

crucial for obtaining quasinormal mode boundary conditions, or computing genuine

scattering amplitudes from past in�nity to future in�nity. To achieve this at the

level of mode functions, one must instead expand in terms of a di�erent set of basis

functions. In [33, 35, 36] this is chosen to be a set of Coulomb functions, though other

choices are possible [38].
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6.2.3 Absorption probability

The expansion in Coulomb functions proceeds along the same lines as the expansion

in hypergeometric functions that we have described in detail in Chapter 4. The

Coulomb functions are

RC(x) = (−εκx)−1−s (1− 1/x)
i
2

(ε−τ)
∞∑

n=−∞

bnfn+ν(x),

where

fn+ν(x) = eiεκx (−2εκx)n+ν (−εκx)
Γ (n+ ν + 1− s+ iε)

Γ (2n+ 2ν + 2)

1F1 (n+ ν + 1− s+ iε, 2n+ 2ν + 2;−2iεκx)

and where 1F1(a, b;x) is a regular con�uent hypergeometric function. The coe�cients

bn satisfy a similar three-term recurrence relation, and upon inspecting the conver-

gence of the in�nite continued fractions we �nd they converge as fast as an, but the

mode expansion converges for all r > r+. By matching the solutions obtained via an

expansion in Coulomb functions2 convergent at r =∞ to the expansion (6.1.3) valid

at all �nite r, and with the help of Teukolsky-Starobinsky identities and a few other

simplifying relations, Mano and Eiichi [36] write down the exact Kerr absorption rate

for all �nite frequencies:

σabs = (2εκ)2ν+1 e
πε

π
sinhπ (ε+ τ)

Dν

|Nν |2
, (6.2.6)

2Via matching in the region where both solutions are valid 1 < x < ∞, the hypergeometrics
inherit a norm from in�nity.
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where

Nν = 1 +
i

π
(2εκ)2ν+1 (−1)2s eiπν sin π (ν − iτ)

(
sin π (ν − s− iε)

sin 2πν

)2

Dν

Dν =

∣∣∣∣Γ (ν + 1− iτ) Γ (ν + 1− s+ iε) Γ (ν + 1 + s+ iε)

Γ (2ν + 1) Γ (2ν + 2)

∣∣∣∣2 dν
dν =

∣∣∣∣∣∑
n≤0

(−1)n

(−n)! (2ν + 2)n

(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

aνn

∣∣∣∣∣
2

×

∣∣∣∣∣∑
n≥0

(2ν + 1)n
n!

(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

aνn

∣∣∣∣∣
−2

.

In the small frequency approximation, ε� 1, the absorption rate properly reproduces

the Page formula [51, 52]. By keeping O(ε) terms in (6.2.6), we can set E = `(` +

1) + O(ε2) in (6.1.5). Choosing the integer shift in ν so that ν = ` + O(ε) makes

the n = 0 term the leading term in the series expansion. To leading order in ε, the

formula (6.2.6) reduces to:

σεabs = (2εκ)2`+1 e
πε

π

ωR
2TR

∏̀
k=1

[
k2 +

(
ωR

2πTR

)2
]
× (1 +O(ε))

where we introduced the frequencies

ωL =
2M2ω

a
, ωR =

2M2ω

a
−m.

In the ε→ 0 limit the dependence on the left-moving frequency ωL ∝ ε is rather trivial,

however there is a highly non-trivial dependence on the right-moving frequency which

remains �nite ωR = −m. This is a familiar behavior of the e�ective string absorption

cross section for massless bosons in N = 4 supergravity [32]. With the representations
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surviving this limit we associate conformal weight hR = `+1, compatible with results

of [13] and conformal weight identi�cation of [32].

6.2.3.1 Connection with extremal Kerr/CFT

Encouraged with our �ndings, here we speculate on a possible connection with results

obtained in the extremal limit a→M . More precisely, we search for regime in which

we �nd representations corresponding to near horizon extreme Kerr (NHEK) modes

near the superradiant bound. In [16] it was found that the absorption probability of

the modes saturating the superradiant bound in the near-extremal Kerr background

corresponds to a thermal CFT 2-point function:

σ ∝ T 2β
H eπm sinhπ

(
m+

ω −m/2M
2πTH

) ∣∣∣∣Γ(1

2
+ β + im

)∣∣∣∣4 ∣∣∣∣Γ(1

2
+ β + i

ω −m/2M
2πTH

)∣∣∣∣2
(6.2.7)

where β2 = 1
4
−2m2 +Ālm, and Ālm is the angular eigenvalue evaluated for aω = m/2.

We do not observe this truncation of (6.2.6) for quasinormal mode excitations

(QNM). In terms of the transmission and re�ection coe�cients, the QNMs correspond

to frequencies at which both T and R develop poles, in such way that |T | ≈ |R|. There

is also another set of modes compatible with the purely outgoing boundary condition

at in�nity, called total re�ection modes (TRM). These correspond to frequencies at

which transmission coe�cient vanishes, making them standing waves at r = ∞. We

observe that total re�ection modes with exact frequencies given by [44]

ωTRM = mΩ− 2πiTH(n− s), n ∈ N

correctly reproduce the near-superradiant frequencies in the extremal limit.
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Here Ω = a
r2++a2

is the angular velocity at the outer horizon and TH = r+−r−
4π(r2++a2)

is

the Hawking temperature.

Taking the extremal limit on the parameters of our SL(2,R) representations,

lim
a→M

i
2M2ωTRM −ma√

M2 − a2
= n− s ,

we arrive at an interesting analogy: just as the BTZ scattering amplitudes for quasi-

normal mode frequencies reproduce the pole structure of a CFT 2-point function [39],

so do the hidden Kerr/CFT representations in the case of extremal total re�ection

modes. As κ → 0, the denominator in (6.2.6) is exactly equal to 1, and the Kerr

absorption cross section reproduces (6.2.7), provided we identify ν + 1 with β + 1/2.

The absorption cross section accounts for poles of a chiral 2-dimensional CFT 2-

point function; we suspect the present understanding of NHEK asymptotic boundary

conditions, providing an enhancement to one Virasoro only, can then be recast in

terms of the monodromy analysis in the highly damped regime.

The fact that the total re�ection modes have no bulk degrees of freedom corrob-

orates with the �ndings of [55], which makes the extremal Kerr/CFT a topological

theory. As we know how to count the microscopic degrees of freedom for AdS3 quo-

tients at any value of the angular momentum [4], it is reasonable to assume same

can be achieved in Kerr/CFT. We expect that the two hidden SL(2,R)'s enhance

to a full virL × virR, with central charges given by cL = cR = 12J . As originally

hinted in [12], the Cardy formula with this value of central charges, together with

temperatures (6.1.8), exactly reproduces the classical Bekenstein-Hawking entropy of

the Kerr black hole.
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6.3 Eigenvalue equation

In order to solve the eigenvalue equation, we review the convergence criterion intro-

duced in Chapter 4. The expansion of the mode functions (6.1.3) converges only for

special values of the parameter ν. To �nd this parameter a continued fraction is set

up. Similar methods are used to construct the angular eigenvalue, and the frequency

of quasinormal modes. To proceed, one expresses the radial equation (6.1.5) as a

three-term recurrence relation (4.1.7):

αnan+1 + βnan + γnan−1 = 0 (6.3.1)

where

αn =
iεκ(n+ ν + 1 + s+ iε)(n+ ν + 1 + s− iε)(n+ ν + 1 + iτ)

(n+ ν + 1)(2n+ 2ν + 3)

βn = −λ− s(s+ 1) + (n+ ν)(n+ ν + 1) + ε2 + ε(ε−mq)

+
ε(ε−mq)(s2 + ε2)

(n+ ν)(n+ ν + 1)

γn = −iεκ(n+ ν − s+ iε)(n+ ν − s− iε)(n+ ν − iτ)

(n+ ν)(2n+ 2ν − 1)

and

λ = E − s(s+ 1)− εq +
1

4
ε2q2 .

The eigenvalue equation is expressed using the continued fractions

Rn =
an
an−1

= − γn
βn + αnRn+1

, Ln =
an
an+1

= − αn
βn + γnLn−1

. (6.3.2)
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For general values of ν the solution to the recurrence relation (6.3.1) will diverge as

|n| → ∞. To avoid this and �nd the so-called minimal solution, one must demand

that ν solve an additional eigenvalue equation

RnLn−1 = 1 . (6.3.3)

There is an equivalence of solutions under ν → ν + k where k is an integer

(apparently not noticed in [33, 36]). One convention, useful for real frequencies, is to

choose the integer shift in ν such that E − ν(ν + 1) term on the right-hand side of

(6.1.5) is minimized, in order that the n = 0 term tends to be the leading order term in

the expansion. Another convention, that will be useful when discussing quasinormal

modes, will be to simply shift the real part of ν into the range [0, 1/2) using the

combined symmetries of the expansion under ν → −ν − 1 and ν → ν + k.

6.3.1 Convergence at �nite frequencies

Still, there is a priori no reason to expect the continued fractions to converge for �nite

frequencies, even more so as the coe�cients are in general complex. However, for n

much larger than any other constant in the problem, the coe�cients αn, βn and γn

are all dominated by their n-dependence in the following way

αn ∼ n
iεκ

2
,

βn ∼ n2,

γn ∼ −niεκ
2
.
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Assuming that (6.3.3) is satis�ed, we may evaluate Rn and Ln at large n:

lim
n→∞

nRn = − lim
n→−∞

nLn =
iεκ

2
.

This leads to convergence of the in�nite continued fractions for all �nite frequencies.

Similarly we show convergence of the series (6.1.3) for all �nite values of the

radial coordinate, by evaluating [33]:

lim
n→∞

n
an+1Fn+ν+1

anFn+ν

= lim
n→−∞

−nan−1Fn+ν−1

anFn+ν

=
iεκ

2

[
1− 2x+ 2

√
x(x− 1)

]
,

where Fn+ν = 2F1(n+ν+1− iτ,−n−ν− iτ ; 1−s− iε− iτ ;x). From this we observe

that the n-th mode in the expansion (6.1.3) at �nite frequencies will be given as a

sum of at least order n descendants before the sum converges.

6.3.2 Low frequency expansion

In a low frequency expansion, the solution of (6.3.3) is

ν = `− ε2 `(`+ 1)(−11 + 15`(1 + `)) + 6 (−1 + `+ `2) s2 + 3s4

2`(1 + 2`)(1 + `)(−1 + 2`)(3 + 2`)

+ε3
mq

`(1 + `)(−1 + 2`)(1 + 2`)(3 + 2`)

[
5`(1 + `)− 3 +

s2 (3`(`+ 1) (`2 + `− 3) + 11)

(−1 + `)`(1 + `)(2 + `)

+
s4 (−16 + 3`(1 + `) + 5s2)

(−1 + `)`(1 + `)(2 + `)

]
+ · · ·

which is obtained by substituting the low frequency expansion for E of [34] into

(6.3.3). Note for real frequencies ν is also real. As we will see in the following, ν
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becomes complex for quasinormal modes, as does the angular eigenvalue. The �rst

two terms match the expression in [33] and the next term is new. As we have seen

in section 6.1, with ν and ω given, the irreducible representations that appear in the

mode function are fully determined.

6.3.3 Numerical solutions

The solution of closely related continued fraction eigenvalue equations has been con-

sidered for spheroidal harmonics in [34, 56]. Quasinormal modes have been studied

using similar techniques in [35, 38]. In this case one imposes quasinormal mode

boundary conditions on solutions of the radial equation. Imposing the purely outgo-

ing boundary condition at in�nity requires a di�erent expansion of the radial solution

near in�nity. This is then matched to the boundary condition that the mode be

purely infalling on the future horizon, leading to a radial eigenvalue problem that

determines the quasinormal mode frequencies.

One method that is helpful in improving the convergence of such algorithms

has been developed in [57]. When one numerically computes a continued fraction,

such as (6.3.2), some cuto� on n is needed. By choosing an initial value for Rncuto�

judiciously, it is possible to improve the convergence of the continued fraction, as

well as its domain of convergence. In our numerical code, we apply this method at

high order in both the determination of the quasinormal mode frequencies, as well as

the determination of the ν eigenvalues. The numerical determination of quasinormal

modes has been studied more recently in [58, 59, 60, 61, 62] and our results for the

frequencies match well with those found there.
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6.3.3.1 Numerical recipe

Here we present a brief numerical recipe. The solution to the angular or radial eigen-

value equation can be expressed as an expansion in polynomials3, with coe�cients

satisfying a recurrence equation [38] of the form:

αθ,r0 aθ,r1 + βθ,r0 aθ,r0 = 0,

αθ,rn aθ,rn−1 + βθ,rn aθ,rn + γθ,rn aθ,rn−1 = 0,

where superscript θ, r is to denote one or the other equation. The angular separation

constant E and quasinormal mode frequency ω can be determined as roots of the

corresponding continued fraction equations:

βθ,r0 =
αθ,r0 γθ,r1

βθ,r1 −
αθ,r1 γθ,r2

βθ,r2 −
. . .

αθ,rn γθ,rn+1

βθ,rn+1−
. . . (6.3.4)

Numerical evaluation of this problem requires truncation to a �nite number of

terms. To improve convergence, we implement the Nollert algorithm [57] to evaluate

the remainder of the continued fraction,

Rθ,r
N '

γθ,rN+1

βθ,rN+1−
αθ,rN+1γ

θ,r
N+2

βθ,rN+2−
. . . (6.3.5)

for some large N . For N � 1 the remainder Rθ,r
N will be well approximated with a

large N expansion,

3In the case of the radial equation, the expansion is of the form R =

eiωr (r − r+)−1−s+iω+iσ (r − r−)−s−iσ
∑
n≥0 a

r
n

(
r−r+
r−r−

)n
where σ = ωr+−am

r+−r− , whereas the solution

to the angular equation may be given as S`m = eaωy (1 + y)
1
2 |m−s| (1− y)

1
2 |m+s|∑

j≥0 a
θ
j (1 + y)

j
,

where y = cos θ.
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Rθ,r
N (ω,Alm) ' Cθ,r

0 + Cθ,r
1 N−1/2 + Cθ,r

2 N−1 + . . .+ Cθ,r
2k N

−k + . . . .

By rewriting (6.3.5) in an implicit form, Rθ,r
N − γθ,rN+1/(β

θ,r
N+1 − αθ,rN+1R

θ,r
N+1) and ex-

panding for large N , we read o� the coe�cients Cθ,r
k (ω,E). For the radial continued

fraction we impose Re(C1) > 0 following [57]; for the angular continued fraction all

half-integer powers vanish.

At low overtones, we assume an initial value for ω0, E0 around which we look for

solutions, and evaluate the remainder RN(ω0, E0) for a set number of terms where

we apply cuto�, N = ncuto�. We utilize an iterative procedure, separately computing

radial and angular continued fractions (6.3.4), and feeding solutions back into the

next iteration. We increase ncuto� with each iteration, until results converge.

At high overtones a much more reliable method is to replace (6.3.4) with its

inversion [38],

βr0 −
αrn−1γ

r
n

βrn−1−
αrn−2γ

r
n−1

βrn−2−
. . .

αr0γ
r
1

βr0
=
αrnγ

r
n+1

βrn+1−
αrn+1γ

r
n+2

βrn+2−
. . .

for any positive integer n. We �nd convergence for the number of terms in the inverted

continued fraction of the order of the overtone number.

6.3.3.2 Low order quasi-normal modes

In the case of low order quasinormal modes the spheroidal eigenvalue equation and

the frequency equation must be solved simultaneously. Towards that end we adopt

the technique of Leaver [38], with the Nollert improvement of continued fractions [57],

for both the radial and spheroidal eigenvalue equation. This is implemented using a

high precision iterative method in Mathematica, as described above.
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a/M ω Alm ν
0.0 0.747343− 0.177925i 4.000000 + 0.000000i 0.271625− 0.233965i
0.1 0.748064− 0.177796i 3.999309 + 0.000348i 0.272325− 0.234104i
0.2 0.750248− 0.177401i 3.997216 + 0.001395i 0.274456− 0.234519i
0.3 0.753970− 0.176707i 3.993667 + 0.003142i 0.278128− 0.235204i
0.4 0.759363− 0.175653i 3.988560 + 0.005596i 0.283541− 0.236149i
0.5 0.766637− 0.174138i 3.981738 + 0.008757i 0.291024− 0.237327i
0.6 0.776108− 0.171989i 3.972969 + 0.012620i 0.301108− 0.238673i
0.7 0.788259− 0.168905i 3.961901 + 0.017153i 0.314673− 0.240044i
0.8 0.803835− 0.164313i 3.947997 + 0.022256i 0.333269− 0.241085i
0.9 0.824009− 0.156965i 3.930384 + 0.027633i 0.359906− 0.240780i

Table 6.3.1: Numerical results for s = −2, ` = 2 and m = 0 quasinormal modes

Once the quasinormal mode frequency is known to high precision, we determine

ν by using similar numerical methods to solve the equation (6.3.3) for n = 1. In

this case both rising and lowering in�nite continued fractions Rn and Ln need to be

truncated to some ncuto�, where we use the Nollert approximation as described to

estimate the remainder of the continued fraction.

Some representative results are shown in Tables 6.3.1 and 6.3.2, for s = −2,

` = 2 and m = 0, 1 quasinormal modes. The quasinormal mode frequencies precisely

agree with results presented in [38]. Furthermore, some sample computations of ν

appear in [63], and we have checked our numerics correctly reproduces those results.

We conventionally normalize 2M = 1. For clarity of presentation we utilize the

invariance under ν → −ν− 1 and ν → ν+ k, k ∈ Z to map our ν numeric values into

the range 0 < Re(ν) < 1/2.

6.3.3.3 Highly damped quasi-normal modes

In the highly damped regime the simultaneous solution of the spheroidal eigen-

value equation and the frequency equation becomes numerically unstable. To make
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a/M ω Alm ν
0.0 0.747343− 0.177925i 4.000000 + 0.000000i 0.271625− 0.233965i
0.1 0.760865− 0.177597i 3.948480 + 0.012231i 0.281465− 0.236237i
0.2 0.776496− 0.176977i 3.893150 + 0.025197i 0.293393− 0.238774i
0.3 0.794661− 0.176000i 3.833210 + 0.038881i 0.307963− 0.241559i
0.4 0.815958− 0.174514i 3.767570 + 0.053241i 0.326020− 0.244553i
0.5 0.841265− 0.172346i 3.694740 + 0.068178i 0.348933− 0.247684i
0.6 0.871937− 0.169128i 3.612470 + 0.083470i 0.379077− 0.250847i
0.7 0.910243− 0.164170i 3.517150 + 0.098594i 0.420976− 0.254022i
0.8 0.960461− 0.155910i 3.402280 + 0.112173i 0.484170− 0.258022i
0.9 1.032583− 0.139609i 3.253450 + 0.119510i 0.590665− 0.266455i

Table 6.3.2: Numerical results for s = −2, ` = 2 and m = 1 quasinormal modes

progress, we follow the method of [59] and use a conjectured asymptotic expansion

for the high order eigenvalues of spheroidal equation

E = (2L+ 1)iqε/2 +O(ε0)

where L = min (`− |m| , `− |s|). We obtain the quasinormal mode frequencies by

numerically searching for a solution of an inverted continued fraction equation, as

proposed by Leaver [38]. At high damping, the numeric solutions can be shown

to follow the analytic result ω ' ω0 + 4πiT0 (N + 1/2), where ω0, T0 can also be

computed within the WKB approximation [44], and the overtone number N takes

integer values.

We numerically solve for ν by �nding solutions of the equation quadratic in the

continued fractions, (6.3.3), where we �nd better convergence if we shift index n by

the imaginary part of the quasinormal mode frequency. As a rule of thumb, we use

the number of terms in the continued fraction of the order of the overtone number

and implement the Nollert improvement for the remainder of the fraction. With each

overtone we increase computational precision until the result converges. The numerics

79



CHAPTER 6. CONFORMAL SYMMETRY AT FINITE FREQUENCIES

appear most stable when a starting value ν ∼ O(N/2) is used. As the solutions to

(6.3.3) are determined up to integer shift, ν + k, and re�ection ν → −ν − 1, we can

always �nd a solution such that Re(ν) < 1/2. We use this symmetry when we plot

our data.

In Figures 6.3.1 and 6.3.2 we show quasinormal mode frequencies at high damping

for di�erent values of s, and m with ` = 2. For m �xed, we observe the real part

of the frequency converges to the same value at high overtones, irrespective of spin

weight. The results are compatible with numerical computations of Berti et al. [59].

In Figures 6.3.3 and 6.3.4 we display our numerical solutions for s = −2, ` = 2,

and m = 2 modes. We plot quasinormal mode data as a function of a/M and for

�xed overtone number (Figure 6.3.3). We �nd the frequencies approach the expected

asymptotic behavior with increasing overtones. Our data for the 400th overtone is

comparable to the extrapolated asymptotic curve computed in [59], with the plot

in Figure 6.3.3 suggesting the overtones above 240 already give a qualitatively good

estimate of the asymptotic regime. The improvement in convergence for ν equation

happens roughly around this value of frequency. The plot of ν values displays two

strands of solutions corresponding to even and odd valued overtones, which persist

at all values of quasinormal frequency (6.3.4). This arises from the approximate half-

integer spacing between frequencies at high damping, analytically computed in [44],

and also numerically con�rmed in [59]. In Figures 6.3.5 and 6.3.6 we compare ν values

corresponding to a single strand, for �xed ` = 2 and independently varied s = 0, −2

and m = 1, 2, where we map out the solutions of (6.3.3) up to 1000th overtone.
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Figure 6.3.1: Quasinormal frequencies for s = 0, ` = 2 modes and a/M = 0.2 with m
varied.

81



CHAPTER 6. CONFORMAL SYMMETRY AT FINITE FREQUENCIES

Figure 6.3.2: Quasinormal frequencies for ` = 2, m = 2 modes and a/M = 0.2 with
s varied.
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Figure 6.3.3: Real part of s = −2, ` = 2, m = 2 quasinormal mode frequencies for
100th, 240th and 400th overtone as a function of a/M .
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Figure 6.3.4: Real and imaginary ν values at high overtones for s = −2, ` = 2, m = 2
mode and a/M = 0.2.
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Figure 6.3.5: Comparison of real and imaginary ν values at high overtones for m = 1
and m = 2 and �xed s = 2, ` = 2 at a/M = 0.2.
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Figure 6.3.6: Comparison of real and imaginary ν values at high overtones for s = 0
and s = −2 with �xed ` = 2, m = 2.
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Chapter 7

Outlook and loose ends

The hidden Kerr/CFT proposal has drawn a good amount of attention since its

formulation, and in the past years has been applied to a number of gravitational

backgrounds. The allure of the proposal lies in the notion that conformal symmetries

need not be manifest symmetries of the geometry in order to consider a conformal

�eld theory description of low frequency scattering processes in Kerr background. This

should be contrasted with the usual geometric approach where AdS/CFT methods

may be applied for near-extremal black holes with throat geometries containing AdS

subspaces, or for more general black holes in asymptotically AdS spacetimes.

Low frequency physics in black hole backgrounds has already proved its fruit-

fulness in [26] by observing that the scalar low energy decay spectrum shows char-

acteristic behavior seen in CFT correlation functions. Similar results have also been

obtained in [64]. The guiding principle was that by studying this low frequency limit,

we learn about the underlying conformal �eld theory conjectured to provide a holo-

graphic description of the full quantum Kerr black hole. For example, by building

the holographic dictionary between low energy physics in Kerr background and the
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conjectured CFT dual, we can hope to access relevant information in the CFT that

would simplify our understanding of scattering in Kerr background, but also provide

hints of properly addressing these novel ways of arriving at holographic dualities.

However, we �nd low frequency treatment not to be necessary, nor su�cient.

As opposed to AdS, where the symmetries of the wave equations are generated by

spacetime isometries, in Kerr we do not have the luxury of utilizing dualities that rest

on geometric grounds. Nevertheless, we �nd an interesting SL(2,R) × SL(2,R) ×

SU(2)× SU(2) structure at �nite frequencies, which shares the symmetries with the

generators of isometries of 5-dimensional extremal black holes in string theory. This

may as well be a good starting point in the endeavor of understanding a holographic

dual to asymptotically �at spacetimes.

For a general massless excitation in a Kerr black hole background it is possible to

compute a universal function ν(ω, l,m, s) which determines a sequence of irreducible

representations of the group SL(2,R)× SL(2,R) which gives an exact expression for

the mode function. These representations for general black hole rotation parameter a

do not correspond to highest/lowest weight representations as originally conjectured

in the Kerr/CFT literature, but are nevertheless expected to arise from the typical

primary representations of the conformal group, i.e. lowest weight representations of

SL(2,R)× SL(2,R), upon restriction to a non-global coordinate patch.

From the CFT point of view, one may view the evolution from r =∞ to �nite r

as a renormalization group �ow from a purported holographic dual to the Kerr/CFT

structure that takes over at �nite values of the radius. However, we know little

about the holographic dual of asymptotically �at spacetime from which the theory

is �owing into the infrared. Without such a description we cannot formulate the

proper boundary conditions in the holographic dual that would allow us to resolve
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detailed scattering amplitudes from past null in�nity to future null in�nity in the

Kerr background. Some related works that study the problem of holographic duals

to asymptotically �at spacetime include [65, 66, 67].
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