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Abstract: We present some general results for the multi-critical multi-field models in d>2 recently
obtained using conformal field theory (CFT) and Schwinger–Dyson methods at the perturbative level
without assuming any symmetry. Results in the leading non trivial order are derived consistently
for several conformal data in full agreement with functional perturbative renormalization group
(RG) methods. Mechanisms like emergent (possibly approximate) symmetries can be naturally
investigated in this framework.
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1. Introduction

Quantum and statistical field theories are important mathematical models which can be used
to describe physical systems and their universal behavior approaching criticality. The theoretical
paradigm was strongly developed in the last decades starting from modern renormalization group (RG)
concepts [1–3], under which a critical theory is seen as a scale invariant fixed point of the RG flow [4].
Another line of interesting developments followed the observation and (partial) understanding that
Poincaré and scale invariance for unitary theories can be lifted to the larger conformal symmetry. This
seems to work not only in four dimensions, since there is strong evidence for it to be true also in
three dimensions (where conformal bootstrap methods [5,6] give numerical predictions for the critical
exponents with unmatched precision). This enlargement of symmetry seems to be true, at least up
to the present investigations, also for non unitary theories and in other dimensionalities, including
fractional ones. Indeed the assumption of conformal symmetry leads to correct results at least within
the approximations adopted. Many investigations in a conformal field theory (CFT) framework have
been carried on with perturbative methods, e.g., in the ε-expansion, originally developed in RG
analysis [7], taking advantage of the knowledge of the equation of motion at criticality [8–15], using the
Mellin space approach [16], large N [17] or large spin [18] expansions, conformal block expansion [19],
etc. Expecially RG methods have also revealed as a fertile source for applications to other quantitative
sciences. Moreover these methods are useful not only for investigating the effective behavior of
different physical systems at large distances, but are important in the quest of defining which quantum
theories can be considered consistent and fundamental, a question still open in particle physics.

In what follows, we shall illustrate how to conveniently use few basic properties of CFTs in d > 2,
namely its constraints on the two and three point correlators, following [13,14,20]. Adopting a basis Oa
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of normalized scalar primary operators1 with scaling dimensions ∆a, the two-point correlators have
the form

〈Oa(x)Ob(y)〉 =
δab

|x− y|2∆a
, (1)

and the three-point correlator for scalar primary operators is also strongly constrained by conformal
symmetry and reads

〈Oa(x)Ob(y)Oc(z)〉 =
Cabc

|x− y|∆a+∆b−∆c |y− z|∆b+∆c−∆a |z− x|∆c+∆a−∆b
, (2)

in which Cabc are the structure constants of the CFT. The quantities {∆a, Cabc} are also known as
conformal data and the CFT is completely determined by their knowledge.

Given the set of fields (and eventually symmetries) characterizing the Quantum Field Theory QFT
(or the CFT), perturbation theory is a powerful tool to get an idea of the critical points in the theory
space. In particular the perturbative ε-expansion analysis below the upper critical dimension, at which
the theory is trivial, is very effective. In this case another useful step, helping in simplifying the
extraction of the first non trivial corrections to conformal data, is the adoption of a Lagrangian
description (S =

∫
ddxL) at criticality which allows to use the equation of motion through the

Schwinger–Dyson equations (SDE) for correlators. Since at separate points no contact terms are
present, one has 〈

δS
δφ

(x)O1(y)O2(z) . . .
〉

= 0. (3)

It is interesting to consider this CFT-SDE approach in the study of multi-critical theories of N
fields characterized by a critical generic potential

V =
1

m!
Vi1···im φi1 · · · φim , (4)

with (m+N−1
m ) independent monomial interactions (and couplings). The critical dimension is

dc = 2m/(m− 2), a fractional number for m = 5 or m > 6. For theories with the simple standard
kinetic term the critical action reads

S =
∫

ddx
[

1
2 ∂φi · ∂φi + V(φ)

]
, (5)

and then all the fields have the same canonical dimension δ = d/2− 1 = 2/(m− 2)− ε/2 but may start
to differ in the anomalous dimension γa = ∆a − δ. Introducing n = m/2, one has δ = 1/(n− 1)− ε/2.

The other ingredient needed for the perturbative analysis is the knowledge of the free theory
correlators, which are defined at the upper critical dimension dc for ε = 0. The two-point function is
simply given by

〈φi(x)φj(y)〉
free
=

c δij

|x− y|2δc
, (6)

where δc =
1
2 dc − 1 = 1/(n−1) is the dimension of the field φi in the free theory (ε = 0) and

c =
1

4π

Γ(δc)

πδc
. (7)

1 An operator is said primary when, taken in the origin, commutes with, or “is annihilated by”, the special conformal generator.
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The two-point function can be put in the canonical form with a normalized coefficient using the
rescaled field φ̃i defined through φi =

√
cφ̃i. Then the two-point function of the composite operators

can be computed, e.g.,

〈[φi1 · · · φik ](x) [φj1 · · · φjk ](y)〉
free
= δi1

(j1
· · · δik

jk)
k! ck

|x− y|2kδc
, (8)

in which on the r.h.s the j indices are symmetrized (including the inverse factor of k!). We shall also
need the expression for the generic three-point function

〈[φi1 · · · φin1
](x1) [φj1 · · · φjn2

](x2) [φk1 · · · φkn3
](x3)〉

free
=

Cfree
i1···in1 ,j1···jn2 ,k1···kn3

|x1−x2|δc(n1+n2−n3)|x2−x3|δc(n2+n3−n1)|x3−x1|δc(n3+n1−n2)
, (9)

where the coefficients on the r.h.s are nonvanishing only when the number of propagators

lij =
1
2
(ni + nj − nk), i 6= j 6= k, (10)

in each edge of the diagram in Figure 1 turns out to be nonnegative.
They are obtained from the condition ni = lij + lki for i 6= j 6= k. In this case the coefficients are

Cfree
i1···in1 ,j1···jn2 ,k1···kn3

= Cfree
n1,n2,n3

(δi1 j1 · · · δil12
jl12

δil12+1k1 · · · δin1 kl13
δkl13+1 jl12+1

· · · δkn3 jn2
), (11)

where the parenthesis enclosing the Kronecker deltas indicates that the is the js and the ks are
separately symmetrized (including an inverse factor of l12!l13!l23!) and the first factor is just the
single-field counterpart

Cfree
n1,n2,n3

=
n1! n2! n3!(

n1+n2−n3
2

)
!
(

n2+n3−n1
2

)
!
(

n3+n1−n2
2

)
!
c

n1+n2+n3
2 . (12)

We shall show that the systematic use of all the relations recalled above can give access to a large
set of conformal data in the first non trivial order in the perturbative ε-expansion [13,14,20]. The results
are the same as those obtained with perturbative RG methods, which if treated at functional level give
rise to a very compact and effective computational framework. Actually for certain models (unitary
multi-critical) one can easily reconstruct the functional perturbative RG (FPRG) equations [21–25]
starting from the obtained CFT relations.

l13 l12

l23

n1

n3 n2

Figure 1. Wick contraction counting of a three point correlator. The vertices are labelled by i = 1, 2, 3,
the order of the i-th vertex is ni, and there are lij lines connecting two distinct vertices i and j.

Before discussing which relations are implied by assuming the CFTs and the lagrangian
description in the general multi-field case, let us illustrate how to deal with the simpler theories with a
single scalar field [13]. We shall restrict here to theories with standard kinetic term, but investigations
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have been carried out also for multi-critical higher derivative theories revealing an unexpected rich
structure [20].

2. Review of the Single Scalar Field Case

In this section the field anomalous is denoted by γ (∆ = δ + γ) while for the composite operators
[φi] the scaling dimension is denoted by ∆i = i δ + γi (anomalous dimension γi). We consider
here the critical potential V = g∗

(2n)! φ
2n with n integer for a family of multi-critical unitary theories,

mostly following [13].
– Field anomalous dimension γ: it can be obtained by applying to the field two-point function

〈φxφy〉 = c̃
|x−y|2∆ (c̃ reduces to c in the free theory) the SDE twice,

2x2y
c̃

|x− y|2∆ = 〈V′(φx)V′(φy)〉. (13)

This gives at leading order (LO) the value for γ:

16δc(δc + 1)γ
|x− y|2δc+4 c LO

=
1

(2n− 1)!
c2n−1

|x− y|2δc+4

(
V(2n)
∗

)2
⇒ γ =

(n− 1)2

8(2n)!
c2(n−1)

(
V(2n)
∗

)2
. (14)

– Anomalous dimension γ2: for n > 2 it can be derived applying twice the SDE to the
three-point correlator 〈φx φy φ2

z〉 (for n = 2 SDE are applied once). Starting from 2x2y〈φx φy φ2
z〉 =

〈V′(φx)V′(φy)φ2
z〉 one gets

Cfree
1,1,2

8(n− 2)(γ2 − 2γ)

(n− 1)2
1

|x− y|4|x− z|2δc |y− z|2δc

LO
=

(
V(2n)
∗

)2

(2n− 1)!2
Cfree

2n−1,2n−1,2

|x− y|4|x− z|2δc |y− z|2δc
, (15)

which defines γ2.
– Anomalous dimension γk: for k ≥ n it can be obtained applying once the SDE to the three-point

correlator 〈φx φk
y φk+1

z 〉. The relation 2x〈φx φk
y φk+1

z 〉 = 〈V′(φx) φk
y φk+1

z 〉 gives at LO

2
n−1

(γk+1−γk−γ1)
C1,k,k+1

|x− y|2|y− z|
2k

n−1−2|z− x|
2n

n−1

LO
=

V(2n)
∗

(2n−1)!

Cfree
2n−1,k,k+1

|x− y|2|y− z|
2k

n−1−2|z− x|
2n

n−1
, (16)

which results in the recurrence relation (with boundary condition γn−1
LO
= 0)

γk+1 − γk = cn,kV(2n)
∗ + O

[(
V(2n)
∗

)2
]
⇒ γk =

(n− 1)cn−1

2n!2
k!

(k−n)!
V(2n)
∗ , (17)

where cn,k =
1

2(n−2)! n!
k!

(k−n+1)! c
n−1. One must note that for k = 2n−1 the SDE imply that ∆2n−1 = 2 + ∆,

i.e., γ2n−1 = γ + (n− 1)ε and that even if V′(φ) is a descendant operator, at leading order three point
correlators including this one satisfy the same CFT constraints as for a primary operator.

– Structure constant C1,2p,2q−1: it can be obtained for unitary theories with even interactions

applying once the SDE to the three-point correlator 〈φx φ
2p
y φ

2q−1
z 〉. The relation 2x〈φx φ

2p
y φ

2q−1
z 〉 =

〈V′(φx) φ
2p
y φ

2q−1
z 〉 gives at LO, removing the space time dependence,

C1,2p,2q−1(p−q)(p−q+1)(dc−2)2 LO
=

V(2n)
∗ Cfree

2n−1,2p,2q−1

(2n−1)!
⇒ C1,2p,2q−1 =

V(2n)
∗ (n−1)2Cfree

2n−1,2p,2q−1

4(p−q)(p−q+1)(2n−1)!
,

which is valid in the range q + p ≥ n, q− p ≥ 1− n and q− p 6= 0, 1.
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Similar results for C1,2p,2q and C1,2p−,2q−1 for non unitary odd models can be obtained following
the same procedure.

– Structure constant C1,1,2k: it can be obtained applying twice the SDE to the three-point correlator
〈φx φy φ2k

z 〉. The relation 2x2y〈φx φy φ2k
z 〉 = 〈V′(φx)V′(φy) φ2k

z 〉 becomes, at LO, removing the space
time dependence,

16k(k−1)(k−n)(k−n+1)
(n−1)4 C1,1,2k

LO
=

(
V(2n)
∗

)2

(2n−1)!2
Cfree

2n−1,2n−1,2k ,

from which one can derive the expression for C1,1,2k, valid for 2 ≤ k ≤ 2n− 1 and k 6= n− 1, n.
– Criticality condition: It can be obtained in different equivalent ways. Let us derive it analyzing

the correlator 〈φx φy φ2n−2
z 〉, for which the structure constant C1,1,2n−2 can be obtained from C1,2p,2q−1

setting q = 1 and p = n− 1

C1,1,2n−2
LO
=

(n− 1)c2n−1

4(n− 2)
V(2n)
∗ . (18)

Starting from the relation 2x2y〈φx φy φ2n−2
z 〉 = 〈V′(φx)V′(φy) φ2n−2

z 〉 one obtains

8(n−2)
(n−1)2 ((n−1)ε−γ2n−2)

C1,1,2n−2

|x− y|2δc+2|y− z|2|z− x|2
LO
=

(
V(2n)
∗

)2

(2n− 1)!2
Cfree

2n−1,2n−1,2n−2

|x− y|2δc+2|y− z|2|z− x|2
, (19)

which gives
2

n− 1
((n− 1)ε− γ2n−2)V(2n)

∗
LO
=

(2n− 2)!cn−1

n!(n− 1)!2
(

V(2n)
∗

)2
(20)

and substituting the LO expression for the anomalous dimension γ2n−2,

0 = (1− n)ε V(2n)
∗ +

(n− 1)(2n)!
4n!3

cn−1
(

V(2n)
∗

)2
, (21)

which fixes the dependence in ε of the critical coupling g∗ = V(2n)
∗ .

2.1. Relation to the FPRG Approach

We consider here the unitary multi-critical single field scalar theories to LO with marginal
interaction ϕ2n. Results obtained in the CFT-SDE approach for the criticality condition and for the
anomalous dimensions of the composite operators, which can be written as monomial φk for k ≥ n to
LO, can be conveniently combined together in a single functional relation which is the same obtained
in a perturbative RG approach raised at functional level, the FPRG flow equation. The construction
goes as follows. First of all it is convenient to redefine the quantities rescaling V → 4V/

(
(n− 1)cn−1).

The criticality condition, after rescaling the coupling g∗ = V(2n)
∗ = v(2n)

∗ , reads

0 = (1− n)ε v(2n)
∗ +

(2n)!
n!3

(
v(2n)
∗
)2

. (22)

Diving by (2n)! and multiplying by ϕ2n, where the rescaled field ϕ = µ−δφ, one gets a more
suggestive form

0 = (1− n)ε
v(2n)
∗

(2n)!
ϕ2n +

1
n!

(
v(2n)
∗
n!

ϕn

)2

, (23)
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so that, on defining the critical multicritical potential as v∗(ϕ) = v(2n)
∗

(2n)! ϕ2n, such that v∗(ϕ) =

µ−dV∗(µδ ϕ), one can write the criticality condition as

0 = −d v∗ +
(

d
2
− 1
)

ϕ v′∗ +
1
n!

(
v(n)∗

)2
, (24)

since d = 2n
n−1 − ε. This is the LO fixed point equation obtained in a perturbative framework in the

MS scheme where the coupling (critical potential) has been conveniently rescaled. Indeed the term
proportional to the anomalous dimension of the field γ ∼ O(ε2), which would be given by γ ϕ v′∗,
is negligible at this order, since v(2n)

∗ ∼ O(ε).
We can now move on and consider the additional information given by the anomalous

dimension of the composite operators [φi] obtained in Equation (17) to which we apply the rescaling
mentioned above,

γi =
2

n!2
i!

(i− n)!
v(2n)
∗ , i ≥ n (25)

Therefore the operator [φi] has a scaling dimension ∆i =
(

d
2 − 1

)
i + γi. To parametrize

a deformation around the multi-critical theory along these directions one can introduce the
corresponding couplings gi, which have dimensions θi = d − ∆i. This means that the linearized
flow around the fixed point induced by a scale change, must be

µ
d

dµ
gi = −θigi =

(
−d +

(
d
2
− 1
)

i + γi

)
gi. (26)

Introducing the quantity δvi =
gi
i! ϕi and substituting the value of the LO anomalous dimension

γi from Equation (25), one can write

µ
d

dµ
δvi = −dδvi +

(
d
2
− 1
)

ϕδv′i +
2

n!2
i!

(i− n)!
v(2n)
∗ δvi (27)

and noting that the last term can be rewritten as

2
n!2

i!
(i− n)!

v(2n)
∗

gi
i!

ϕi =
2
n!

v(2n)
∗
n!

ϕn gi
(i− n)!

ϕi−n =
2
n!

v(n)∗ δv(n)i ' 1
n!

[(
v(n)∗ + δv(n)i

)2
− (v(n)∗ )2

]
, (28)

where i−n ≥ 0, one can pack the information of the critical condition and of the flow for any power-like
deformation at LO in a single equation. Indeed defining the potential v = v∗ + ∑i δvi and taking into
account Equation (24) one can write

µ
d

dµ
v = −d v +

(
d
2
− 1
)

ϕ v′ +
1
n!

(
v(n)

)2
. (29)

This is the so called functional perturbative RG flow equation for the potential [21,22], restricted at
LO so that it takes into account only the O(ε) corrections. It is interesting to note that such parallelism
among CFT and perturbation theory is still valid at NLO where the field anomalous dimension start
to play an important role. In this case additional information is also given by some special structure
constants (OPE coefficients) derived at LO in the CFT+SDE framework which can be also obtained
analyzing the expansion of the beta functional for v in the second order in the deformations [22].
We also note that for non unitary theories, with standard kinetic terms but odd potential interactions
or higher derivative theories which can have also derivative interactions, results in the ε-expansion
obtained assuming conformal symmetry have been found to be in full agreement with renormalization
group analysis [20,24].
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2.2. Example: The Universality Class of the Critical Ising Model in d < 4

Here we specialize some of the results of this section to a critical field theory with ϕ4 interaction
in d < 4 dimensions. Since the model is known to capture the physics of the universality class of the
lattice Ising model at criticality, we will make explicit connections with the language of statistical field
theory. We take the potential to be v = λ

4! ϕ4, therefore using d = 4− ε and n = 2 in (29), which means
that a rescaling v→ 4

c v is understood, we find that the flow of the coupling λ becomes the well-known
beta function

βλ = −ελ + 3λ2 . (30)

Using (14) and (21) (or (14) with a rescaling v→ 4
c v together with (30)) we find the anomalous

dimension of the field γ which is related to the critical exponent η = 2γ. Explicitly

η =
ε2

54
, (31)

which is quadratic in ε as expected, and therefore gives a subleading contribution to the problem.
The scaling exponent γ2 which corrects the scaling dimension ∆2 of the composite quadratic operator
[φ2] is obtained using (25) for i = 2. By definition γ2 = λ = ε/3 is related to the critical exponent
θ2 = 2− ε

3 governing the scaling of the correlation length ν = θ−1
2 , which can be determined using (26)

and some standard hyperscaling arguments. We find to the leading order

ν =
1
2
+

ε

12
, (32)

which completes the determination of the independent (infrared relevant) critical exponents governing
the critical point of the Ising universality class. All subsequent thermodynamical exponents can be
deduced using the hyperscaling hypothesis.

3. Multiple Scalar Field Case

The analysis for theories with multiple scalar fields goes along the lines of the one briefly recalled
in the previous Section, but with some important differences which requires some extesions [14].
One can summarize them

• The scaling scalar fields arise from a mixing which is manifest in general in the splitting induced
by different anomalous dimensions γi, eigenvalues of the anomalous dimension matrix.

• There are many more composite operators (even without derivatives) at LO, defined in general
as a superposition of all monomials of the scaling fields Sk = Si1···ik φi1 · · · φik with scaling
dimension ∆S

k = k δ + γS
k . The analysis leads to recurrence relations which can be solved to

give secular equations for the LO anomalous dimensions γS
k (eigenvalues) and the tensors Si1···ik

(eigenvectors).
• Structure constants (involving some composite operators Sk) are obtained just as in the single

field case.
• For unitary models with even interactions and models with cubic interactions2 (dc = 6) one

can obtain as in the single field case the criticality conditions and see that the relation with the
FPRG approach.

In the following the main results are illustrated. We refer to [14] for the details of the derivations.

2 In the multi-field case critical models with cubic interactions can be either unitary or non unitary in perturbation theory.
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3.1. Field Anomalous Dimensions

For the primary fields φi the two-point function is constrained by CFT as

〈φi(x)φj(y)〉 =
c̃δij

|x− y|2∆i
, (33)

where c̃ is a constant whose value in the free theory is c. Applying the SDE one finds that the anomalous
dimensions are given by the eigenvalues of the matrix

γab =
(n− 1)2

8(2n)!
c2(n−1)Vai1i2···i2n−1 Vbi1i2···i2n−1 , (34)

which is valid for both integer (unitary theories) and semi-odd (perturbatively unitary or non unitary
theories) values of n. The matrix depends on the particular solution for the critical theory in theory
space one considers. Depending on the level of symmetry of the critical theory (the critical potential)
anomalous dimensions can be all different or have various levels of degeneracy.

3.2. Anomalous Dimensions for Composite Operators

– Quadratic operators: they can be studied by exploiting the properties of the three-point
correlator.〈

φi(x)φj(y)[Spqφpφq](z)
〉
. For n = 2 consistency by applying the SDE once gives the secular

equation

γS
2 Sij =

c
4

Vijab Sab. (35)

In the other cases one has to apply the SDE twice and obtains

γS
2 Sij =

(n−1)2c2(n−1)

8(n−2)(2n−2)!
Vi p i2···i2n−1 Vj q i2···i2n−1 Spq +

(n−1)2c2(n−1)

8(2n)!
(
Vi i1···i2n−1 Vp i1···i2n−1 Spj + i↔ j

)
.

Moreover of n = 3/2 there is a family of descendant scaling operator given by Vi(φ) =
d

dφi
V with

anomalous dimension γi
2 = γi + ε/2.

– Higher order operators: the LO anomalous dimensions for the scaling operators Sk with k ≥ n
can be extracted from the study of the three-point correlators 〈φi(x) Sk(y)Sk+1(z)〉 by applying once
the SDE and impose the consistency. The relation 2x〈φi(x) Sk(y)Sk+1(z)〉 = 〈Vi(φ(x)) Sk(y)Sk+1(z)〉
gives at LO

(γS
k+1−γS

k−γi)

n−1
2Cfree

1,k,k+1 Sii1 ···ik Si1 ···ik
|x−y|2|y−z|2kδc−2|z−x|2δc+2

LO
=

Cfree
2n−1,k,k+1
(2n−1)!

Vii1 ···ir j1 ···js Sj1 ···js l1 ···lt Sl1 ···lt i1 ···ir
|x−y|2|y−z|2kδc−2|z−x|2δc+2 , (36)

leading to the recurrrence relation

(γS
k+1 − γS

k − γi)Sii1···ik Si1···ik = cn,kVii1···ir j1···js Sj1···js l1···lt Sl1···lti1···ir , (37)

where cn,k has been defined in the previous section. To solve this recurrence relation one has to find
before γS

n and then proceed by induction. In doing so some algebraic manipulations are necessary in
order to be able to single out, from the secular equation for γS

k and Si1···ik , a contraction with the tensor
Si1···ik itself, so that the equation becomes linear in the tensor S. Details can be found in [14]. Observing
that γS

k , for k < n are subleading (depend quadratically in the critical potential) one can find

γS
nSi1···in = cn,n−1Vi1···in j1···jn Sj1···jn (38)
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and for the full infinite tower of this family of composite operators (l ≥ 0)

γS
n+lSi1···in+l =

(n− 1)cn−1

2n!2
(n + l)!

l!
Vj1···jn(i1···in Sin+1···in+l)j1···jn , (39)

where the round backets stand for the symmetrization of the enclosed indices. One can verify that
the LO recurrence relation is valid also for k = 2n − 2, 2n − 1, cases for which in the three-point
correlator a descendant operator is present, fact which makes impossible to use the form of Equation (2).
This problem can be bypassed using again the SDE and this suggests also a way to find for the unitary
theories the criticality condition, which gives the solutions for critical potential (couplings) as functions
of ε.

3.3. Structure Constants

The computation of structure constants for the multi-field case is a straightforward extension of
the single-field case described in Section 3.

– Structure constants CφiS2pS̃2q−1
: for unitary theories with even interactions they can be obtained

applying once the SDE to the three-point correlator
〈
φi(x)S2p(y)S̃2q−1(z)

〉
. Indeed the relation

2x
〈
φi(x)S2p(y)S̃2q−1(z)

〉
=
〈
Vi(φ(x))S2p(y)S̃2q−1(z)

〉
gives at LO

CφiS2pS̃2q−1
=

Vil1···lrk1···kt Sj1···js l1···lr S̃k1···kt j1···js
(2n− 1)!

(n− 1)2

4(p− q)(p− q + 1)
Cfree

2n−1,2p,2q−1 , (40)

which is valid in the range q + p ≥ n, q− p ≥ 1− n and q− p 6= 0, 1, with 2n−1 = r+t, 2p = r+s
and 2q−1 = s+t. The S and S̃ tensors are among the solutions of the secular equations of the
previous Section.

– Structure constants CφiS2pS̃2q
and CφiS2p−1S̃2q−1

: they can be obtained for theories with odd
interactions in a similar way. Setting l = n− 1/2:

CφiS2pS̃2q
=

Vil1···lrk1···kt Sj1···js l1···lr S̃k1···kt j1···js
(2`)!

(2`− 1)2

4(4(p− q)2 − 1)
Cfree

2`,2p,2q, (41)

which is valid only in the range q + p ≥ ` and |q− p| ≤ ` and for 2` = r + t, 2p = r + s, 2q = s + t.
Making the shift p→ p− 1

2 and q→ q− 1
2 one finds also

CφiS2p−1S̃2q−1
=

Vil1···lrk1···kt Sj1···js l1···lr S̃k1···kt j1···js
(2`)!

(2`− 1)2

4(4(p− q)2 − 1)
Cfree

2`,2p−1,2q−1, (42)

where now q, p fall in the range q+ p ≥ `+ 1 and |q− p| ≤ `, and the integers r, s, t satisfy the relations
2` = r + t, 2p− 1 = r + s, 2q− 1 = s + t.

– Structure constants Cφi ,φj ,S2p : they can be obtained applying twice the SDE to the three-point

correlator 〈φi(x) φj(y) φ2k
z 〉. Evaluating 2x2y〈φi(x) φj(y) S2k(z)〉 = 〈Vi(φ(x))Vj(φ(y)) S2k(z)〉

one obtains

CφiφjS2k =
(n− 1)4c2n+k−1

16k(k− 1)(k− n)(k− n + 1)
(2k)!

k!2(2n− k− 1)!2
Vii1···i2n−k−1a1···ak Vji1···i2n−k−1b1···bk

Sa1···ak b1···bk
,

valid for 2 ≤ k ≤ 2n− 1 and k 6= n− 1, n.
– Structure constants Cφi ,φj ,φk : for theories with odd interactions, i.e., with m = 2n odd (we

define n = l+1/2), they can be obtained applying three times the SDE to the three-point correlator
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〈φi(x) φj(y) φk(z)〉. The relation 2x2y2z〈φi(x) φj(y) φk(z)〉 = 〈Vi(φ(x))Vj(φ(y))Vk(φ(z))〉 becomes
at LO

28`(`− 1)
(2`− 1)6

Cφiφjφk

|x− y|δc+2|x− z|δc+2|y− z|δc+2
LO
=

Vi a1···a` b1···b`Vj b1···b` c1···c`Vk c1···c` a1···a`
(2`)!3|x−y|2`δc |x−z|2`δc |y−z|2`δc

Cfree
2`, 2`, 2`.

Noting that 2`δc = δc + 2 one obtains

Cφiφjφk =
(2`− 1)6c3`

28`(`− 1)`!3
Vi a1···a` b1···b`Vj b1···b` c1···c`Vk c1···c` a1···a` . (43)

3.4. Criticality Conditions

– dc = 6 or n = 3/2: this case corresponds to theories with cubic interactions. The relation
2x2y2z〈φi(x) φj(y) φk(z)〉 = 〈Vi(φ(x))Vj(φ(y))Vk(φ(z))〉 gives at LO

32(ε−2(γi+γj+γk))

|x−y|4|y−z|4|x−z|4 Cφiφjφk
LO
=

c3 ViabVjbcVkca

|x− y|4|y− z|4|x− z|4 , (44)

where Cφiφjφk = − c2

4 Vijk can be obtained from Equation (42) for l = p = q = 1. Then one finds
the equation

8(2(γi + γj + γk)− ε)Vijk = c ViabVjbcVkca. (45)

This condition can be obtained from the Functional perturbative RG equation at LO for
the potential

βv = −dv +
d− 2

2
φivi + φiγijvj −

2
3

vijvjlvli . (46)

adopting the diagonal basis where γij → γiδij.
– dc = 4 or n = 2: this case corresponds to unitary theories with quartic interactions. The relation

can be found applying twice the SDE to the three point correlator 〈φi(x) φj(y) S2(z)〉 and making
use of the secular equation for the quadratic primary composite operators (at LO) γS

2 Sij =
c
4 Vijab Sab,

which can be obtained setting n = 2 and l = 0 in Equation (39). From the SDE equations one obtains

8c2γS
2 (ε− γS

2 )Sij = c4VpqikVpqjlSkl (47)

and using twice the secular relation involving γS
2 this relation becomes

−ε Vijkl +
c
4

(
VpqikVl jpq + VpqilVkjpq + VijpqVpqkl

)
= 0 , (48)

having factored out the dependence in the symmetric tensors, which span the whole space of symmetric
objects with two indices.

– Integer n: this case corresponds to unitary multi-critical theories with even interactions.
The criticality condition can be obtained applying twice the SDE to the three point correlator
〈φi(x) φj(y) S2n−2(z)〉 and making use of the secular equation given in Equation (39). Evaluating
the relation 2x2y〈φi(x) φj(y) S2n−2(z)〉 = 〈Vi(φ(x))Vj(φ(y)) S2n−2(z)〉 one finds

2
n−1

(
(n−1)ε−γS

2n−2

)
Vijl1···l2n−2 Sl1···l2n−2

LO
=

(2n− 2)!cn−1

n!(n− 1)!2
Vii1···in−1 j1···jn Vjj1···jn l1···ln−1 Sl1···ln−1i1···in−1 .
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Then one uses the eigenvalue equation in Equation (39) for l = n−2 and after few algebraic
manipulation where we also factorize the dependence in the symmetric tensor Si1···i2n−2 one
finally obtains

0 = (1− n)ε Vi1···i2n +
(n− 1)(2n)!

4n!3
cn−1Vj1···jn(i1···in Vin+1···i2n)j1···jn . (49)

Similarly to the single field case one can show that the criticality condition as well as the secular
equations for the composite operators given above can be obtained from the functional perturbative
RG equation at LO for the potential [25,26]

βv = −dv +
d− 2

2
φivi +

1
n!

vji ···jn vji ···jn . (50)

3.5. Example: The Universality Class of the Critical O(2) Heisenberg Model in d < 4

Here we briefly discuss a simple application of the results of this section to the critical O(2)
Heisenberg model. Like in the example of Section 2.2 we specialize to n = 2 and therefore to a quartic
interaction. We also choose a total of N = 2 fields φ = (φ1, φ2). The maximal symmetry that the model
can have is O(2), which is the symmetry content of the Heisenberg model at criticality. The potential is
constrained to be of the invariant form v = λ

4!
(

ϕ2
1 + ϕ2

2
)2 because it depends on the O(2) invariant

order parameter ρ = ϕ2
1 + ϕ2

2. Using (50) the beta function is

βλ = −ελ +
10
3

λ2 . (51)

Using (34), where se should take into account the rescaling v → 4
c v also used for (51), and

expressing the derivatives of the potential we can determine the anomalous dimension matrix γab,
which in general must be diagonalized. However in this case γab is a two-by-two diagonal matrix, so
we can evince the anomalous dimension η directly from ηδab = 2γab. We find

η =
ε2

50
, (52)

which is obviously shared by all fields. The spectrum of composite operators containing two copies of
the fields is more complicate since it contains operators that violate the model’s symmetry. One operator
is however invariant and, in fact, coincides with the order parameter. Using the same logic of Section 2.2
from the scaling of this operator we can determine the scaling exponent of the correlation length

ν =
1
2
+

ε

10
. (53)

Interestingly our very general approach gives immediate access to all the deformations of the
model which are not O(2) invariant and which might, consequently, be forgotten in approaches that
make more use of symmetry constraints. As to prove this point we briefly mention that the above
analysis can be generalized to N > 2 arbitrary components, and that the corresponding field theory
can have both a Heisenberg-type critical point which is maximally O(N)-invariant and a “cubic”
anisotropic point which is not. In this case it is crucial to understand the role of the symmetry breaking
deformations of the potential, in order to answer the question on which of the two is the IR critical
point of the theory [27].

4. Discussion

As it has been recalled above, several universal data of the critical theories can be obtained
in a perturbative approach at the first non trivial order by assuming the theory to be conformal
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and making use of the SDE which follow from an available Lagrangian description at criticality
(as in the Landau–Ginzburg approach) and in particular this is true also for multi-field theories.
In almost all investigations present in the literature, either using CFT or RG methods, perturbative
or non perturbative, global symmetries in multi-field theories are assumed from the start, since this
greatly constrains the number of possible interactions and therefore of possible critical theories. Such
critical theories, not considering effects of symmetry breaking, always have a higher or at least equal
symmetry compared to the assumed one. For example, if one considers all possible scalar theories with
symmetries O(N)×O(M) a fixed point with symmetry O(N + M) exists. Similarly for theories with
scalar and fermions critical theories with an (enhanced) supersymmetric sector can appear [28,29]. For
unitary models of this kind critical theories with enhanced symmetry are typically infrared attractive,
meaning that these larger symmetries can be interpreted as an emergent phenomena at large distances.

In some past RG investigations of theories with quartic interactions the so called trace property
condition for the critical potential, which leads to full degeneracy of the field anomalous dimensions,
was assumed therefore reducing the possible number of critical theories [30–32]. A general study
without assumptions has yet to come. An attempt to systematize this search for all possible theories
with two fields has been done in [26]. Also studies of theories with cubic interactions can be interesting.
Multi field theories with N fields and O(N − 1) symmetry have been studied at large N in [33]
showing the appearance of a unitary critical theory at perturbative level. For N = 2 this is the case
also for the three-state Potts model. We have analyzed them up to N = 3 and found six non trivial
novel critical theories, with three real different field anomalous dimensions, or two degenerate or all
degenerate. In particular two critical theories, characterized by some specific symmetries, appear to
have all positive anomalous dimensions and therefore unitary at perturbative level. Similarly we have
analyzed theories with quintic interaction and N = 2. In our approach we can also show that there are
no other theories with quartic interactions besides the ones already known in the literature. All these
results will appear soon in a forthcoming work [34]. We find also non unitary critical theories with not
only complex couplings but complex anomalous dimensions. These are related to the idea of complex
conformal field theories and can be relevant to describe properties of RG flows [35,36].

Even if certainly a difficult task, it is important to start systematic analysis of theories with
several fields not assuming any symmetry and study the full spectrum of possible critical theories
characterizing the theory space. In particular we have shown that the knowledge of the scaling
dimension of composite operators can give access within a certain approximation, such as in
perturbation theory in ε-expansion, to RG flows properties inside the theory space. We note that a
flow trajectory which for any reason pass close to some critical point in theory space, characterized
by a certain symmetry, is related to the fact that such a theory spends a large amount of RG-time
inside a quasi conformal windows and is characterized by the corresponding approximate global
symmetry. One can envisage some interesting cases, which could be of interest in the quest of
searching UV completion for the Standard Model (SM) of particle physics. Independently of the UV
completed model, which could be related also to an asymptotic safety scenario even not considering
gravity as recently suggested [37], having a QFT description at some high but under Planck scale in
some theory space, the RG flow could pass at some scale M much larger than the Electroweak one
(MEW < M < MPl) close to fixed points which could be characterized by certain level of SUSY or even
some GUT symmetry. From lower energy scales, having at our disposal experimental scattering data
with increasing energies, one could have the impression that the fundamental theory is characterized
by such symmetries, even if they were just approximate in a certain energy window. Moreover a
renormalizable scenario which fits the asymptotic safety paradigm is related to a fixed point with a
finite number of relevant operators (directions) in the theory space, so that it provides dynamically a
high degree of predictivity since most of the parameters (couplings) of the theory are not independent
along the flow. This shows the importance could have a systematic understanding of the theory space
of the SM QFT, which we believe to be just an effective theory, or of some of its extensions, in building
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a comprehensive picture. All possible tools to characterize all the non trivial critical theories in four
(and also other) dimensions would be welcome.
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