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In an attempt of solving the three-body problem in coordinate 

space, we face with three difficulties ; (i) to impose the elastic 

and the break-up boundary conditions at the same time, (2) to find 

the Fredholm solution of the system and (3) to find a practical way 

of solving the problem. In this paper, we will report how to 

overcome (i) and (2). Also the analytic structure of the solution 

at low energies is discussed. By analytic continuation of the low 

energy formula to the complex momentum plane, the presence of 

virtual state in 2S and a resonance in 4p are predicted. The Efimov 

effect is interpreted from the analytical view point. 

§i. Correct asymptotic behavior 

In solving the three body problem in coordinate space, we must 

impose the correct asymptotic behavior as the boundary condition. 

We designate by ~ the pair of particles 1 and 2, r~ their relative 

distance, ~ the distance of the particle 3 relative to the center 

of mass of the pair 5. The asymptotic behavior of the three-body 

system reads 
~@ ik~ el/~R 

~ E~ ~(r~) [eik~ + e f£ .... f(@~)] + R5/2 V(r/f) , (i) 

where ~(r~) denotes the wave function of deuteron, k the wave 

number J (2~/~z)(E+IEdl) ([Edl ; The binding energy of deuteron)~ 

f(@~) the scattering amplitude of neutron-deuteron channel, R the 

hyper-radius~ r/f the hyper-angle and F(r/~) the break-up amplitude. 

The boundary condition (i) must be imposed not only for E}O but also 

for E<0 , because the Sch~odinger equation says nothing about the 

breaking of continuity of analyticity of the solution. 

§2. How one can impose the correct ' boundary conditions 

We demonstrate for the potential scattering how one can impose 

the correct boundary condi±ion I) Let us ~ntroduce the functions 

lu) and lw> by 
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1 1 ikr lu~ = ~- sin kr , I~>= ~-- e (2) 

The Lippmann-Schwinger equation reads 

I ~ >  = l u >  + G o V I ¢ >  , ( 3 )  

where G O is the Green's function 

GO = z = - l w > < u l  + g .  ( a )  
E - H O + i 

In Eq.(4), g is the real Green's function which vanishes at large 

distances from the origin 

g ; real~ g ) O (5) 
r~ 

Let T stand for the scattering amplitude defined by 

T = <ulVl~> ( 6 )  

Eq.(3) reads then 

I¢> =lu> - lw> T + gVl*> = O0 ~u> - lw> T) , (7) 

where 

O~ = ( i  - g V )  - I  ( 8 )  

Since 

O0 > i ( 9 )  

t h e  a s y m p t o t i c  f o r m  o f  I ¢ >  i s  

I¢>-lu>- lw>T (10) 

To obtain the scatiering amplitude in a solved form, we put 

Eq.(7) in Eq.(6) 

T = ( u l V l ¢ >  = < u l V ~ l u >  - < u l V ~ l w 7  T 

Therfore, 

T = <u IV ~ lu> = I m J ( k , O )  ( I I )  

1 + <uIVWlw> J(k,O) 

J(k,O) is known as the Jost function. J(k,O) implies the properties~ ) 

(i) J(k,0) = det ~i - GoV I" Therefore, Eq.(7) is the Fredholm 

solution of Eq.(3). 

(2) J(k,0) has the correct analytic property that it is the 

entire function on the upper half of the complex k-plane. 

(3) The S-matrix defined by 

S = 1 - 2iT (12) 

satisfies the unitarity. 

(~) The iteration of Eq.(8) ; 



/493 

( 5 )  

= 1 + gV + gVgV + ........ (13) 

converges without regards to the magnitude of the potential, 

if it is local. 

Since O0 lu~ or ~lw~ satisfies the Volterra equation, e.g. 

I I" 03 lu> =lu> - k sin k(r-r')V(r')OOlu(r')> dr' , (14) 

r 

it is very easily solved numerically. 

§3- F addeev equation and Alt-Grassber~erTSandhas equation 

Faddeev 3) has shown that the amplitude of the process (three 

free particles) to (three free particle~ satisfies the equation 

T = T~ + T~ + Ty 

T = t~ + t~Go(T ~ + T¥) (The Faddeev equation) 

Here t is the two-body scattering matrix in the three-body space. 

Also Faddeev has shown that the amplitude of the process (n-d) to 

(n,d) + (break up) is the residue of the Faddeev equation. The 

equation for (n,d) to (n,d) is 

u = G~ 1 Y + ¥tGoU 

where (o!) 
0 t~ 
0 0 '¥ 

The amplitude for (n,d) to (break up) is then 

T = tGoU 

Eqs.(15) and (16) are called A-G-S equation 4). 

(15) 

(16) 

§4. Fredholm solution of three-bgdy problem with correct boundary 

conditions 

We adopt the same method as in §2 to the three-body problem. 

(I) Preliminary Let I~> and V stand for matrices 

>i) v(00 Vo0 oO) 
~v v - 

Then the three-body Schrodinger equation reads 

(17) 
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(E - H o v) l,> = vT!~> . (18) 

Let lu> (lw~) be the product of the deuteron wave function and the 

plane wave (outgoing wave) of the incoming (outgoing) particle. Let 

G be 

G = (E - H 0 - V + i~ )-i (19) 

We define ~ by 

t = -vlw><uJV + ~ ( a o )  

We can show that t satisfies 

= v + VGo{ , ( 2 l )  

Got = - l w > < u i v  + GO~ . ( 2 2 )  
1¼)|] 

Let If> (lh>) be the regular solution of (E-Ho)If > = 0 (~going 

wave, that is irregular) in the hyper-spherical coordinate. Then we 

can write G O as 

G O = - l h > < f ]  + G O , (23)  

Here G O plays the role of g in §2. G O is real, and vanishes at large 

distances from the origin in the hyper-spherical coordinate. We 

define a real matrix R by 

R = v + VG°R (24) 

Then we can show that 

{ = R(I - lh><fl{ ) (25) 

(~) Fredholm solution We use Eqs.(22),(23) and (25) in the 

Lippmann-Schwinger type equation of (18) to obtain 

re> = l u )  + G 0 t [ I ¢  } =h'~ [ l u >  - tw> T ( e ) - ( I + G O R ) I h >  T ( B ) ]  (26)  

where 

T (e) = <ulVYI~ > , the elastic amplitude ~ (27) 

T (B) = <fI{TI~> = <fltTl~> , (28) 

and 

~= 1 , ~ ~ i . (29) 
l - GORT R---~ 

By virtue of (26) and (29), we see that I~ satisfies the correct 

asymptotic behavior 

t + ~  ~ l u >  = L w > w  ( e )  - lh~T ( B )  ( 3 0 )  

The sum of T (B)~ , T~ B) and T (B)Y makes up the break-up amplitude 

y(B)= T(B) ÷ T~B) + T(B) (31) 
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If we use Eq.(26) in Eqs.(27) and (28), we obtain 

T (e)  = <ulJglu> - <ulJglw } T ie)  - <uIJIh> g(S)  

a n d  

~ ( B )  : < f I ( 1  + ~ - l ) j T I u  > - ( f i ( 1  + ~ - l ) j ~ l w >  T i e )  

- < f I ( l  + Y - I ) j I h > ~ ( B )  
t 

where J satisfies the A-G-S type equation 

- 1 - + ~RGOj 
J = Go1 I_GOTR = aoZ 

We can  show t e r m  by  t e r m  t h a t  t h e  d e n o m i n a t o r  o f  T (e )  

y i e l d s  t h e  F r e d h o l m  d e t e r m i n a n t .  

(32) 

( 3 3 )  

i34) 

and ~(B) 

§5. Exchange Singularity 

If we neglect the break-up channel, the n-d elastic amplitude 

is obtained from the solution of Eq.(32) as 

Tn, d = T + T$,~ + Ty,~ 

For the partial wave £ it reads 

W (~) = (Ira 7~)/ 7~ = e i 5~ sin 5~ , 
n,d 

From which we obtain 

cot 6~ = - Re~ /ImS~ 

Here 

We parametrize Jl as 

--JQ = 1 + g ~ ( g ~ )  + A¢ + a ~ z  2~+ i (b~,  + Iz2 ) c~ 
where 

= O.2315 K 10-13em -I , ~ = J (m/~Z)IEdl 

z = k/~ 

For S-wave ~O(g~)_ reads 

gO(g~) : -(gb/z)[tan=li3z/2) - tan-l(z/2) 

+ 0.5 i~.(l ~- 9za/~)/(z + z2/~))] 

( 3 5 )  

(36) 

(37) 

(38) 

(39) 

(m : nucleon mass) 

(40) 

For p-wave Hl(g i) is 

gl(g~):-(gl/z)[ { il/z2)(~z214)itan-l(3zl2)-tan-l(z/2))-Z/z} 

+i {(l12z2)(l+Sz214)~((l+9z214)l(l+z21~))-l} ]. i41) 

These terms are due to the exchange singlarity in <u~IJIw~> . 
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After renormalization of parameters 

g~  = g l / ( 1  + ~ ) ,  ag = a i / ( 1  + ~ ) e t c .  

we o b t a i n  t h e  l o w  e n e r g y  f o r m u l a  

2 
1 + Re H~ (g~) + a(z 

k2~+lcot 6~= _~2£+i 

1 
2~ +1 

z 

(42) 

(43) 
2 

Im H~(gQ) + b~ +C~z 

On the real axis, we determine parameters form phase shifts as 

2 s 

4p 

g a b c 

O.5374 -0.1015 O.6O70 0.0451 

4.0447 3.5275 -16.806 o.1229 

The function ~£ has the branch points of the logarithmic type at 

2 ~i and -2~i and nowhere else. Solving the equation J% = O, 
3 

we have found the poles at k = -O.1256i(i013cm -I) for ZS and at 

k = 0.0326 - 0.0909 i(1013em -I ) for 4p. Since the cut is due to the 

logarithmic singularity of ~ , we have infinite number of poles, 

each one lying on each Riemann sheet. These poles accumulate at the 

origin when ~ tends to O. This is the analytic explanation of the 

Efimov effect~ ) 
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