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In an attempt of solving the three-body problem in coordinate
space, we face with three difficulties ; (1) to impose the elastic
and the break-up boundary conditions at the same time, (2) to find
the Fredholm solution of the system and (3) to find a practical way
of solving the problem. In this paper, we will report how to
overcome (1) and (2). Also the analytic structure of the solution
at low energies is discussed. By analytic continuation of the low
energy formula to the complex momentum plane, the presence of
virtual state in 28 and a resonance in 4? are pre&icted. The Efimov

effect is interpreted from the analytical view point.

§1. Correct asymptotic behavior
In solving the three body problem in coordinate space, we must

impose the correct asymptotic behavior as the boundary condition.
We designate by & the pair of particles 1 and 2, ry their relative
distance, fa the distance of the particle 3 relative to the center
of mass of the pair ®. The asymptotic behavior of the three-body

system reads
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where w(ra) denotes the wave function of deuteron, k the wave
numbgr v (Zﬂ/ﬁdo(E+(Ed{) (IEq
f(@a) the scattering amplitude of neutron-deuteron channel, R the

hyper-radius, r/f the hyper-angle and F(r/p)} the break-up amplitude.
The boundary condition (1) must be imposed not only for E20 but also

3+ The binding energy of deuteron),

for ELO , because the Schrodinger equation says nothing about the

breaking of continuity of analyticity of the solution.

§2. How one can impose the correct boundary conditions

We demonstrate for the potential scattering how one can impose

the correct boundary conditionl). Let us introduce the functions

fu) and {w) by



hg2

1 1 ikr
[u)y = T sin kr , [w) = i © . (2)
k
The Lippmann-Schwinger equation reads
o) = Juy + GoVIe) , (3)
where G, is the Green's function
1
Gy = = - |wpdlul + g. (4)

E - Hy + i€
In Eq.{(4), g is the real Green's function which vanishes at large

distances from the origin

g ; real, g —> 0 . (5)
Y'=poo

Let T stand for the scattering amplitude defined by

T = {ulVie) . (6)
Eg.(3) reads then

(o> =lud - lwd T + gV]¢gy =W fuy - [wp T (7)
where

w=(1- g™t . (8)
Since

W ey ]
T >0 ) (9)

the asymptotic form of |¢) is
[6% ~ Juy - lw) T . (10)

To obtain the scattering amplitude in a solved form, we put
Eq.(7) in Eq.(6)

T = {ulVI¢) = (ulVwlu) - La|Vw|wy T .
Therfore,
r oo Su [VW[ud . __Imj(k,0) ) (11)
1+ {ulvwlw) Ji{k,0)

J(k,0) is known as the Jost function. J(k,0) implies the properties?)
(1) J(k,0) = det [1 - GV ]. Therefore, Eq.(7) is the Fredholm
solution of Eq.(3).
(2) J(k,0) has the correct analytic property that it is the
entire function on the upper half of the complex k-plane.

(3) The S-matrix defined by
S =1 - 2iT {12)

satisfies the unitarity.
(4) The iteration of Bqg.(8) ;



kg3

=l+gV+ngV+"'0~“‘ (13)

converges without regards to the magnitude of the potential,
if it is local.
(5) Since w |u)y or W|w) satisfies the Volterra equation, e.g.
oo
wluy =luy - —%—'S sin k(r-r" )V(r' )Wiul{r') > dar' , (14)
r

it is very easily solved numerically.

§3. Faddeev equation and Alt-Grassberger-Sandhas equation
Faddeevz} has shown that the amplitude of the process (three

free particles) to (three free particles) satisfies the equation

= T + T
T T& + Y ,

B

T = ¢+ taGO(T

o o + TY) i (The Faddeev eguation)

p
Here t, is the two-body scattering matrix in the three-~body space.
Also Faddeev has shown that the amplitude of the process (n-d) to
(n,d) + (break up) is the residue of the Faddeev equation. The

equation for (n,d) to (n,d) is

P
U = G, 1 + 1tG,U s (15)
where
T=70 1 1 , to=ft,
1 0 1 4] tB
0 0 0 t
1 1 v
The amplitude for (n,d) to (break up) is then
T = tG,U (16)

O
Eqs.(15) and (16) are called A-G-S equationg).

§4, Fredholm solution of three-body problem with correct boundary

conditions
We adopt the same method as in §2 to the three-body problem.

(I) Preliminary Let |¢) and V stand for matrices
Lo = |9 , vo=(v, 0 o (17)
¢) \Z 0
by B
¢ [¢] O VY
v

Then the three-body Schrodinger equation reads



Lok

(E - Hy - V)le> = VIlo) . (18)

Let ju) (lw) ) be the product of the deuteron wave function and the
plane wave (outgoing wave) of the incoming (outgoing) particle. Let
G be

G=(E-Hy~-V+ ik y~L . (19)
We define % by
t = ~ViwdulV + T | (20)

We can show that T satisfies

t =V vet (21)

Got = =lwd{ulV + Gt (22)

thyd
Let |£f)> (|h) ) be the regular solution of (E-Ho)ff> = 0 (ﬁﬁ%going
wave, that is irregular) in the hyper-spherical coordinate. Then we

can write GO as

Gy = -1nd<sl + 6° \ (23)

Here GO plays the role of g in §2. GO is real, and vanishes at large
distances from the origin in the hyper-spherical coordinate. We

define a real matrix R by

R=vV + Vva°R . (24)
Then we can show that

f=R(1 - |nd{FIT ) . (25)

(IOI) Fredholm solution We use Egs.(22),(23) and (25) in the

Lippmann-Schwinger type equation of (18) to obtain

o) = luy + GotTley =R [ lud - twd (- (1+a%) 10y )] (26)

where
T{E) ={ulvije > , the elastic amplitude (27)
2B L Ce1ETI0) = CeltTley (28)
and
Qz 1o = , — 1. (29)
1 - G°R1 gR—> 5o

By virtue of (26) and (29), we see that [¢> satisfies the correct

asymptotic behavior

x(b> - lu) - lw?T(E) - lh> T(B). (30)

(B) (B (B)

The sum of Ta s B and TY makesg up the break-up amplitude

o B Y
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If we use Eq.{(26) in Egs.(27) and {28), we obtain

t08) o ¢uluTIu)y - CuldTiwy 18 —<ulamd» TR (32)
and
TB) Cgei(r ¢ T HuTIuy - <l + T-HoT|wy ote)
- el s THa Y TE (33)
i

where J satisfies the A-G-S type equation

J = G(—)l -————%—:— = a4 Trc%1 . (34)
1-G 1R
We can show term by term that the denominator of T(E) and T(B)

vields the Fredholm determinant.

§5. Exchange Singularity

If we neglect the break-up channel, the n-d elastic amplitude
is obtained from the solution of Eg.(32) as

Tn,d = Ta,a + TB‘a + Ty,a (35)
For the partial wave ¢ it reads
¢y _ - - _ i b .
Tn,d = (Im Jg)/ Jy = e L gin by ) (36)

From which we obtain

cot &, = - Rejk /Imjh . (37)
Here
—e =1 + <uaf31wa>z + 2 <uaw%w3>e. (38)
We parametrize 3} as
3@ = 1 + Eh(gé) + Ap + aézza+ l(bd + Cézz) (39)
where
o = 0.2315 x10 1 3emt , o= (m/A2)[Ed] (m : nucleon mass)

z = k/o. .
For S-wave ﬁo(gb) reads
Ay (el) = -(gy/z) [tan™t(32/2) - tan™'(z/2)
+ 0.5 ila(1 + 922/4)/(1 + 22/4))) . (40)
For p-wave Hl(gi) is
) (g])=-(g}/2) [ { (1/2%) (1452%/4) (tan™t (32/2) -tan™ 1 (2/2))-1/2}
+1 { (1/22%) (1+522/8) In ((1492%/1) /(14227000 -1} 1. (a1)

These terms are due to the exchange singlarity in (uG}leﬁ> .
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After renormalization of parameters

g, = g!' /(1 +Ap ), a, = a'/(1 + 24, ) etc. (42)
¢ ) ¢ '] ) ¢

we obtain the low energy formula

= 2
1 + Re Hy (g,) + a,z
k22+l _a2¢+1 e e 2

cot oa= T (43)

o 2
Z2Q+l Im HQ(gQ) + bﬁ +CLZ

On the real axis, we determine parameters form phase shifts as

g a b c
25 0.5374 -0.1015 0.6070 0.0L51
" 4.onuy 3.5275 -16.806 0.1229

The function jé has the branch points of the logarithmic type at

- § ai and -20i and nowhere else. Solving the equation Jp = O,

we have found the poles at k = -0.1256i(1013cm_l) for 28 and at

k = 0.0326 - 0.0909 (10" 3em™!) for P. Since the cut is due to the
logarithmiec singularity of:i , we have infinite number of poles,

each one lying on each Riemann sheet. These poles accumulate at the

origin when O tends to 0. This is the analytic explanation of the
5)

Efimov effect”
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