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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [1–7] provides a simple example of strongly coupled,

yet perturbatvely solvable, models [4, 6–11]. A reparameterization symmetry emerges in

the infrared of this model [5–7] and its breaking leads to soft modes that are described

by a Schwarzian derivative action [5, 7, 9, 12–14]. The Schwarzian derivative action also

describes dilaton gravity systems on near AdS2 spacetimes [6, 7, 15–22]. In addition,

the SYK model is chaotic [4–6, 23], which is also a characteristic feature of gravitational

theories [24–27]. All these properties suggest a holographic duality between the SYK

model and dilaton gravity theories [4–7, 18, 28, 29]. Properties of the Hilbert space of the

SYK model are studied in [6, 8, 9, 30–38]. The operator spectrum of the model consists

of a tower of operators with finite anomalous dimensions [5–8]. The finite anomalous

dimensions suggest [6] that the SYK model could be thought of as a deformation of the

vector models that have a tower of higher spin operators with small anomalous dimensions.

Such deformation from a Gross-Neveu vector model to an SYK-like model is discussed

explicitly in [39]. It is shown in [39] that there is a transition from the vector model to

the SYK-like model, which is similar to other phase transitions observed in the SYK-like

models [40–46]. Different bulk duals of the tower of operators are proposed in [10, 47–50],

other discussions about the relations between the two sides can be found in [51–58]. Most
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of the analytic results of the SYK model are derived in a new type of large-N limit that is

shared in particular by models without random couplings [59–97].

To understand the relations between the SYK model and other better known mod-

els, different generalizations of the SYK model are constructed. One generalization is to

include supersymmetry [98–102]. Aspects of supersymmetric SYK models have also been

studied in [98, 103–112]. Another generalization is to higher dimensions [101, 113–126],

whose simplest example is in 2 dimension. Continuum theories in 2-dimensional Euclidean

spacetime are usually studied in terms of the left- and right-moving sectors due to the

factorization of the isometry. The examples of 2d SYK-like models studied previously are

all symmetric between the left- and the right-moving sectors.

One could also consider models whose left- and right-moving sectors are not symmetric.

In this paper we study some 2d SYK-like models of this kind. The models have an N =

(0, 2) supersymmetry in the UV. In the infrared, these theories are dominated by the set

of melonic diagrams in the large-N limit and can be solved as all other SYK-like models.

The N = (0, 2) supersymmetry plays an important role of this model. The N = 2

supersymmetry in the right-moving sector makes the IR solution reliable. On the other

hand the absent of supersymmetry in the left-moving sector gives some room for interesting

properties that are not observed in previous models. In particular, due to the smaller

number of supersymmetry it is possible to study a one parameter family of such models.

As a result, one could move on the moduli space of such models and understand their

peculiar features, as well as their possible connections with other well studied models. In

this paper we study two examples of such interesting consequences.

Firstly, the Lyapunov exponent of the supersymmetric model considered in [101], see

also [127], is λL = 0.5824, which does not saturate the chaotic bound [26]. It is then

an interesting question to ask if there are other 2d SYK-like models that have larger or

maximal Lyapunov exponent. In this paper, we show that in our N = (0, 2) setting, as we

dial the free parameter, there is a continuous family of theories that have slightly larger

Lyapunov exponent comparing to the supersymmetric models considered in [101]. This is

discussed in detail in section 3.2.

Another interesting consequence is the existence of certain higher-spin limits. By

continuously tune the parameter to some limiting values, we observe the emergence of

higher-spin conserved currents explicitly. Besides, we observe the correlation of the emerg-

ing of the higher-spin symmetry and the fading of the chaotic behavior. This provides a

manifestation of a connection between higher-spin like models and SYK-like models. The

details of such higher-spin limits are analyzed in section 4.

2 An N = (0, 2) supersymmetry SYK model

2.1 Review of 2d N = (0, 2) supersymmetry

In this section we review some properties of 2-dimensional theories with N = (0, 2) su-

persymmetry. We work in Euclidean signature, where the two coordinates are x0, x1.
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We define

z ≡ x0 + ix1 , z̄ ≡ x0 − ix1 , (2.1)

and the derivatives become

∂z =
1

2
(∂0 − i∂1) , ∂z̄ =

1

2
(∂0 + i∂1) . (2.2)

TheN = (0, 2) supersymmetry is generated by 2 supercharges. In the superspace formalism

they read

Q+ =
∂

∂θ+
− 2θ̄+∂z , Q̄+ = − ∂

∂θ̄+
+ 2θ+∂z . (2.3)

The super-derivatives are

D+ =
∂

∂θ+
+ 2θ̄+∂z , D̄+ = − ∂

∂θ̄+
− 2θ+∂z . (2.4)

It is easy to check that the supercharges anticommute with the super-derivatives.

We consider models of two kinds of superfields. The chiral/anti-chiral superfields

Φ = φ+
√

2θ+ψ + 2θ+θ̄+∂zφ , Φ̄ = φ̄−
√

2θ̄+ψ̄ − 2θ+θ̄+∂zφ̄ , (2.5)

satisfy

D̄+Φ = 0 , D+Φ̄ = 0 . (2.6)

We also consider Fermi multiplets

Λ = λ−
√

2θ+G+ 2θ+θ̄+∂zλ−
√

2θ̄+E (2.7)

Λ̄ = λ̄−
√

2θ̄+Ḡ− 2θ+θ̄+∂zλ̄−
√

2θ+Ē , (2.8)

where

E(Φ) = E(φa) +
√

2θ+ ∂E

∂φa
ψa + 2θ+θ̄+∂z̄E(φa) (2.9)

Ē(Φ) = Ē(φ̄a) +
√

2θ̄+ ∂Ē

∂φ̄a
ψ̄a − 2θ+θ̄+∂z̄Ē(φ̄a) , (2.10)

are (anti-)chiral superfields where the subscript a labels different chiral superfields. The

Fermi supermultiplets satisfy

D̄+Λ =
√

2E , D̄+E = 0 , (2.11)

D+Λ̄ =
√

2Ē , D+Ē = 0 . (2.12)

The supersymmetry transformation of the fields in the chiral supermultiplet is

Q+φ =
√

2ψ , Q+ψ = 0 , Q̄+φ = 0 , Q̄+ψ = −2
√

2∂zφ (2.13)

Q̄+φ̄ =
√

2ψ̄ , Q̄+ψ̄ = 0 , Q+φ̄ = 0 , Q+ψ̄ = −2
√

2∂zφ̄ . (2.14)
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The supersymmetry transformation of the fields in the Fermi supermultiplet is

Q+λ = −
√

2G , Q+G = 0 , Q̄+λ =
√

2E , Q̄+G = 2
√

2∂zλ+
∂E

∂φa
ψa , (2.15)

Q̄+λ̄ =
√

2Ḡ , Q̄+Ḡ = 0 , Q+λ̄ = −
√

2Ē , Q+Ḡ = −2
√

2∂zλ̄+
∂Ē

∂φ̄a
ψ̄a . (2.16)

In the rest of the paper we consider special models with E = 0.

Given these transformations, propagators of the different components of a chiral su-

permultiplet are related by

Gψ(z1, z2) = −2∂z1G
φ(z1, z2) = 2∂z2G

φ(z1, z2) (2.17)

The similar relation for the Fermi multiplet is

〈Ḡ(z1)G(z2)〉 = 〈Q̄λ̄(z1)G(z2)〉/
√

2 = 〈λ̄(z1)Q̄G(z2)〉/
√

2 (2.18)

= 〈λ̄(z1)

(
2
√

2∂zλ− +
∂E

∂φa
ψa

)
(z2)〉/

√
2 . (2.19)

For the case with E = 0, we simply get

GG(z1, z2) = −2∂1G
λ(z1, z2) = 2∂2G

λ(z1, z2) . (2.20)

The D-terms of a chiral and a Fermi superfields are respectively

S0
Φ = −

∫
d2zdθ+dθ̄+Φ̄∂z̄Φ , (2.21)

S0
Λ =

1

2

∫
d2zdθ+dθ̄+Λ̄Λ . (2.22)

In addition, we turn on holomorphic superpotentials that contribute F-term potentials.

For the N = (0, 2) models, the holomorphic superpotential takes a general form∫
dx2dθ+G(x, θ+, θ̄+) , (2.23)

where G(x, θ, θ̄) is some fermionic superfield that satisfies D̄+G = 0. It is easy to

check that the above results agree with the Euclidean continuation of the results [128]

in Lorentzian signature.

2.2 The N = (0, 2) SYK model

We consider a special model of N chiral multiplets and M Fermi multiplets with the F-term

potential

G(x, θ, θ̄) =
Jia1...aq
q!

Λi−Φa1 . . .Φaq , (2.24)

where i, j, k, . . . label the Fermi multiplets and a, b, . . . label the chiral multiplets. The

Jia1...aq coupling has dimension ( 1
2 ,

1
2) and is from a Gaussian distribution

〈Jia1...aqJia1...aq〉 =
(q − 1)!

N q
J2 . (2.25)
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In component form, the above action reads

Sint =

∫
d2x

(√
2Jia1...aq
(q − 1)!

λiψa1φa2 . . . φaq +

√
2Jia1...aq
q!

Giφa1 . . . φaq + h.c.

)
. (2.26)

When M = N the supersymmetry is enhanced to N = (2, 2) and the theory reduces to the

models discussed in [101, 112] whose action is recast in (A.3).

The self-energies of the fields are

Σψ(z1, z2) = 2J2M

N
Gλ(z1, z2)(Gφ(z1, z2))q−1 , (2.27)

Σφ(z1, z2) = (q − 1)2
M

N
J2(Gφ(z1, z2))q−2Gλ(z1, z2)Gψ(z1, z2)

+ 2J2M

N
(Gφ(z1, z2))q−1GG(z1, z2) , (2.28)

ΣG(z1, z2) =
2J2

q
(Gφ(z1, z2))q , (2.29)

Σλ(z1, z2) = 2J2(Gφ(z1, z2))q−1Gψ(z1, z2) . (2.30)

We solve the equation in the N,M � 1 limit with µ = M
N a free parameter. It is easy to

get the set of N = (0, 2) supersymmetric solutions of the form

GIc(z1, z2) =
nI

(z1 − z2)2hI (z̄1 − z̄2)2h̃I
, (2.31)

where nλn
q
φ = − (q−1)q

2π2J2(µq2−1)
and

hφ =
µq − 1

2µq2 − 2
, hψ =

µq2 + µq − 2

2µq2 − 2
, hλ =

q − 1

2µq2 − 2
, hG =

µq2 + q − 2

2µq2 − 2
(2.32)

h̃φ =
µq − 1

2µq2 − 2
, h̃ψ =

µq − 1

2µq2 − 2
, h̃λ =

µq2 + q − 2

2µq2 − 2
, h̃G =

µq2 + q − 2

2µq2 − 2
. (2.33)

One can solve the Schwinger-Dyson equation numerically to confirm that the model indeed

flows to this IR solution. The numerical solution is shown in figure 1.1

We should comment on one subtlety in this computation. Since we look for supersym-

metric solutions, we only need to solve the Schwinger-Dyson equation of one component

of each multiplet; the equation of the other component is then automaticaly satisfied due

1Our numerical analysis is done in terms of the superfields that is analogous to [101]. The only difference

is that in our case we have a chiral supersymmetry and the model contains a different set of Fermi multiplets.

Since the new ingredient — namely the Fermi multiplet — is fermionic, it does not bring new difficulties,

such as bosonic zero modes and associated divergences, comparing to the computation in [101]. As a result,

our results are obtained straightforwardly: we start from the free field two-point functions of the chiral and

Fermi multiplets, and use the two coupled Schwinger-Dyson equations to recursively update the expressions

of the two-point functions. This recursive process follows straightforwardly from the method presented in

e.g. [6, 101], and we do not repeat here. The results converge to the solution shown in figure 1, where we

plots the different components of the superfields explicitly.
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Figure 1. Numerical solutions to the Schwinger-Dyson equations. The blue dash-dot lines are

the free propagators in the UV, the red dotted lines are the IR solutions. The yellow curves are

result from solving the Schwinger-Dyson equations numerically. One observes that the numerical

solutions interpolate between the UV and IR behaviors. The calculation is done for q = 3, µ = 1.5.

to supersymmetry. When we solve the equations of the chiral multiplet, we notice that in

the UV regime the Fourier transform involves an integral of the form∫
rdrdθ r

2 µq−1

µq2−1
−3
eiθeirp cos θ . (2.34)

If we directly count the power of r, it seems that there is a divergence in this Fourier

transformation. However, when we check the behavior near r = 0, we can expand the

eircosθ factor to get ∫
drdθr

2 µq−1

µq2−1
−2

(1 + irp cos θ + . . .)eiθ . (2.35)

We observe that the first term vanishes due to the eiθ in the θ integral.2 So the leading

term at r ∼ 0 is ∫
drdθ ipr

2 µq−1

µq2−1
−1

cos θeiθ . (2.36)

Therefore as long as we focus on the models with µ > 1
q , this integral converges and the

model does flow to the IR solution we found above.

3 Four-point functions

In this section, we consider 4-point functions of this model. Because there are two different

types of multiplets in the model, there will be a few different 4-point correlation functions.

As in the 1-dimensional cases [39, 99, 102], the correlation function can be computed

either in terms of superfields or component fields. In the rest of the paper we work in the

component formalism.

2We thank Douglas Stanford for pointing this out.
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3.1 Operator spectrum

We are interested in the 4-point function 〈φ̄iφiφ̄jφj〉, which mixes with 〈φ̄iφiψ̄jψj〉,
〈φ̄iφiλ̄jλj〉, 〈ψ̄iψiλ̄jλj〉 and 〈φ̄iφiḠjGj〉. There are in total 9 kernels that contribute to

these 4-point functions.

The kernels take the following expressions

Kφφ(z1, z2, z3, z4) = 2(q − 1)J2M

N
Gφ(z13)Gφ(z24)GG(z34)(Gφ(z34))q−2 (3.1)

+ 2(q − 1)(q − 2)J2M

N
Gφ(z13)Gφ(z24)Gψ(z34)Gλ(z34)(Gφ(z34))q−3

Kφψ(z1, z2, z3, z4) = 2(q − 1)J2M

N
Gφ(z13)Gφ(z24)Gλ(z34)(Gφ(z34))q−2 (3.2)

Kφλ(z1, z2, z3, z4) = 2(q − 1)J2Gφ(z13)Gφ(z24)Gψ(z34)(Gφ(z34))q−2 (3.3)

KφG(z1, z2, z3, z4) = 2J2Gφ(z13)Gφ(z24)(Gφ(z34))q−1 (3.4)

Kψφ(z1, z2, z3, z4) = −2(q − 1)J2M

N
Gψ(z13)Gψ(z24)Gλ(z34)(Gφ(z34))q−2 (3.5)

Kψλ(z1, z2, z3, z4) = −2J2Gψ(z13)Gψ(z24)(Gφ(z34))q−1 (3.6)

Kλφ(z1, z2, z3, z4) = −2(q − 1)J2M

N
Gλ(z13)Gλ(z34)Gψ(z34)(Gφ(z34))q−2 (3.7)

Kλψ(z1, z2, z3, z4) = −2J2M

N
Gλ(z13)Gλ(z24)(Gφ(z34))q−1 (3.8)

KGφ(z1, z2, z3, z4) = −2J2M

N
GG(z13)GG(z24)(Gφ(z34))q−1 , (3.9)

where we use the short hand notation zij = zi − zj . The following ansatz

ΦI(z1, z2) = (z12)h−2hI (z̄12)h̃−2h̃I , I = φ, ψ, λ,G , (3.10)

turns out to be the eigenfunctions of the above kernels

K(IJ) ∗ ΦJ = kIJΦI , (3.11)

where the ∗ denotes a convolution in position space. Making use of the following integral

formula [101]∫
d2y(y − t0)a+n(ȳ − t̄0)a(t1 − y)b+m(t̄1 − ȳ)b

= (t0 − t1)a+n+b+m+1(t̄0 − t̄1)a+b+1π
Γ(a+ 1)Γ(b+ 1)Γ(−a− b−m− n− 1)

Γ(a+ b+ 2)Γ(−a− n)Γ(−b−m)
, (3.12)

one finds the non-vanishing eigenvalues to be

kφφ =
µ(q − 1)2q

(
µq2 − 2µq + 1

)
Γ (1− 2hφ)2 Γ (2hφ − h) Γ

(
h̃− 1 + 2hφ

)
(µq2 − 1)2 Γ (2hφ)2 Γ (2− 2hφ − h) Γ

(
h̃+ 1− 2hφ

) (3.13)

kφψ = −
µ(q − 1)2qΓ (1− 2hφ)2 Γ (2hφ − h) Γ

(
h̃− 1 + 2hφ

)
2 (µq2 − 1) Γ (2hφ)2 Γ (2− 2hφ − h) Γ

(
h̃+ 1− 2hφ

) (3.14)
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kφλ = −
4π2J2(q − 1)nq+1

φ (µq − 1)Γ (1− 2hφ)2 Γ (2hφ − h) Γ
(
h̃− 1 + 2hφ

)
(µq2 − 1) Γ (2hφ)2 Γ (2− 2hφ − h) Γ

(
h̃+ 1− 2hφ

) (3.15)

kφG =
2π2J2nq+1

φ Γ (1− 2hφ)2 Γ (2hφ − h) Γ
(
h̃− 1 + 2hφ

)
Γ (2hφ)2 Γ (2− 2hφ − h) Γ

(
h̃+ 1− 2hφ

) (3.16)

kψφ = −
2µ(q − 1)2q(µq − 1)2Γ (1− 2hφ)2 Γ (1 + 2hφ − h) Γ

(
h̃− 1 + 2hφ

)
(µq2 − 1)3 Γ (1 + 2hφ)2 Γ (1− 2hφ − h) Γ

(
h̃+ 1− 2hφ

) (3.17)

kψλ =
8π2J2nq+1

φ (µq − 1)2Γ (1− 2hφ)2 Γ (1 + 2hφ − h) Γ
(
h̃− 1 + 2hφ

)
(µq2 − 1)2 Γ (1 + 2hφ)2 Γ (1− 2hφ − h) Γ

(
h̃+ 1− 2hφ

) (3.18)

kλφ = −
µ(q − 1)3q2n−q−1

φ (µq − 1)Γ (−2hλ)2 Γ (2hλ − h) Γ
(

2hλ + h̃
)

4π2J2 (µq2 − 1)3 Γ (2hλ)2 Γ (2− h− 2hλ) Γ
(
h̃− 2hλ

) (3.19)

kλψ =
µ(q − 1)2q2n−q−1

φ Γ (−2hλ)2 Γ (2hλ − h) Γ
(

2hλ + h̃
)

8π2J2 (µq2 − 1)2 Γ (2hλ)2 Γ (2− h− 2hλ) Γ
(
h̃− 2hλ

) (3.20)

kGφ =
µ(q − 1)4q2n−q−1

φ Γ (−2hλ)2 Γ (1− h+ 2hλ) Γ
(

2hλ + h̃
)

2π2J2 (µq2 − 1)4 Γ (1 + 2hλ)2 Γ (1− h− 2hλ) Γ
(
h̃− 2hλ

) . (3.21)

It is convenient to organize the eigenvalues into an 8 × 8 matrix

(
0 1

1 0

)
⊗


kφφ kφψ kφλ kφG

kψφ 0 kψλ 0

kλφ kλψ 0 0

kGφ 0 0 0

 (3.22)

and the final eigenvalues come from diagonalizing this matrix. Here the presence of the

extra σ1 =

(
0 1

1 0

)
matrix is due to the form of the interaction in (2.26). To illustrate it,

we consider, for example, the action of the kernel Kφψ on the eigenfunction Φψ. As shown

in figure 2, after the action of the kernel, the upper leg becomes a conjugate field, namely

the direction of the arrow is flipped. Therefore the actual eigenfunctions come in conjugate

pairs. This means the actual action of the kernel should be like in figure 3. Further notice

that due to the form of the IR propagators, the two entries in the kernel matrix share the

same expression. This leads to the extra tensor product with the σ1 matrix in (3.22).

Diagonalizing this matrix, there are 4 eigenvalues being the 4 roots of the following

equation

Ec(x, h, h̃, µ, q) = x4 − kφφx3 −
(
kφGkGφ + kφψkψφ + kφλkλφ + kψλkλψ

)
x2

+
(
kφφkψλkλψ − kφψkψλkλφ − kφλkψφkλψ

)
x+ kφGkψλkλψkGφ

= 0 , (3.23)
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Figure 2. Action of a single kernel.

Figure 3. The eigenfunctions come in pairs. The two kernels in the 2 × 2 matrix give identical

contributions to the eigenvalue matrix (3.22), which leads to the extra σ1 factor.

which we will call the symmetric eigenvalues. There are another 4 eigenvalues being the

solution of the equation

E′c(x, h, h̃, µ, q) = x4 + kφφx3 −
(
kφGkGφ + kφψkψφ + kφλkλφ + kψλkλψ

)
x2

−
(
kφφkψλkλψ − kφψkψλkλφ − kφλkψφkλψ

)
x+ kφGkψλkλψkGφ

= 0 , (3.24)

which we will call the antisymmetric eigenvalues. Their presence is a result of the complex

fundamental fields in our model (2.26), similar to the 1-dimensional cases [99, 102, 127]. We

have not succeeded in getting simple expressions of the eigenvalues. But the equation (3.23)

and (3.24) pass a few consistency checks.

First, as we discussed above we expect the result to reduce to that of the N = (2, 2)

model in the µ → 1 limit. Indeed, we can solve (3.23) and (3.24) at µ = 1 to find the

following 8 eigenvalues

± kFB
(
h− 1

2
, h̃− 1

)
, ± kFB

(
h+

1

2
, h̃− 1

)
,

± kFB
(
h− 1

2
, h̃

)
, ± kFB

(
h+

1

2
, h̃

)
, (3.25)

which are consistent with the N = (2, 2) result. At generic µ, the eigenfunctions can be

considered as deformations of the eigenvalues (3.25).

Another consistency check is the presence of the stress-energy tensor at any generic µ.

To see this, recall that in this model the 4-point functions are sums of ladder diagrams.

Therefore there is always a factor

1

1− ki
, (3.26)

where i = 1, . . . , 8 are the 8 eigenvalues obtained from solving (3.23) and (3.24). Then an

operators with dimension (h∗, h̃∗) running in each channel can be represented by a pole
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q=2

q=3

q=5

1 2 3 4 5

1μ

0.1

0.2

0.3

0.4

0.5

h
˜
(μ)

(a) The symmetric channel.

q=2

q=3

q=5

1 2 3 4

1μ

1.05

1.10

1.15

1.20

hs(μ)

(b) The antisymetric channel.

Figure 4. The lowest dimensions of the scalar operators in the four point function. The plots

illustrate how does the dimension change as a function of µ. The kinks on each curve in figure 4a

is the crossover point of the operator and its “shadow” operator due to the symmetry h ↔ 1 − h
and h̃↔ 1− h̃.

in the factor (3.26) at (h, h̃) = (h∗, h̃∗). For the special case of the stress-energy tensor,

we simply expand the coefficients of (3.23) and (3.24) to the first order of h− 2 and then

find the eigenvalues to the first order of h− 2. It turns out that there is always a solution

behaves like

k1 = 1 +

(
µq2 − 1

)2
q (µ2q2 − 1)

(h− 2) +O
(
(h− 2)2

)
, (3.27)

which corresponds to the deformation of kFB(h− 1
2 , h̃). Therefore (h, h̃) = (2, 0) is always

a solution that sets some eigenvalue to 1. This can also be confirmed by explicitly verifying

that E(1, 2, 0, µ, q) = 0.

To get the complete spectrum of the operators in the IR limit of the model, we need to

find their corresponding (h, h̃) that makes some eigenvalues to 1. Therefore the dimension

of the operators should solve

Ec(1, hs, h̃s, µ, q) = 0 , E′c(1, ha, h̃a, µ, q) = Ec(−1, ha, h̃a, µ, q) = 0 , (3.28)

where we use the subscript a, s to present operators in the symmetry and antisymmetric

channels.

For instance, we get the lowest dimensions of scalar operators running in the 4-point

functions of the fundamental fields by solving

Ec(1, hs, hs, µ, q) = 0 , Ec(−1, ha, ha, µ, q) = 0 , (3.29)

for generic µ and q. The equations are easily solved numerically. The solutions to the

equation Ec(±1, hs, hs, µ, q) = 0 is shown in figure 4. As we can see the dimension of

the scalar operators in the symmetric channel approach zero as the µ approaches 1
q . In

addition, the dimension of the operators in the antisymmetric channel is larger than those

in the symmetric channel. This is as expected since the operators in the antisymmetric

channel involves one more derivative.
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We also computed other 4-point functions where fermionic operators runs in the ladder.

The details are elaborated in appendix . We only outline here that one can check explicitly

that at the µ = 1 point, we do observe both (h, h̃) = (3
2 , 0) and (h, h̃) = (0, 3

2) operators

that correspond to the supercharges in the holomorphic and antiholomorphic sectors. This

again confirms that at µ = 1 our model has an enhanced N = (2, 2) supersymmetry.

We further check that as long as µ 6= 1 the left-moving supercharges are lifted and stop

generating supersymetry in the left-moving sector. This is as we expected since the model

only has N = (0, 2) supersymmetry at generic µ.

3.2 Chaotic behavior

One can further go to the chaos region and study the out-of-time-ordered correlators. For

this we simply consider retarded kernels. We start from the Euclidean propagators on a

periodic τ direction and a noncompact spatial direction x

GIth(τ1, x1, τ2, x2) =
nI(

2 sinh(x12+iτ12
2 )

)2hI (2 sinh(x12−iτ122 )
)2h̃I . (3.30)

The retarded propagators can be computed from analytic continuation of (3.30)

GbR(t1, x1, t2, x2) = −
2i sin

(
π(hb + h̃b)

)
θ(t12 − |x12|)nb(

2 sinh
(
t12−x12

2

))2hb (2 sinh
(
t12+x12

2

))2h̃b , b = φ,G (3.31)

GfR(t1, x1, t2, x2) =
2 cos

(
π(hf + h̃f )

)
θ(t12 − |x12|)nf(

2 sinh
(
t12−x12

2

))2hf (2 sinh
(
t12+x12

2

))2h̃f , f = ψ, λ . (3.32)

We also need the set of ladder rung propagators between the rails. They can be obtained

from a simple analytic continuation

GIlr(t1, x1; t2, x2) = Gth(it1, x1; it2 + π, x2)

=
nI(

2 cosh(x12−t122 )
)2hI (2 cosh(x12+t12

2 )
)2h̃I (3.33)

The set of retarded kernels can be obtained from (3.13)–(3.21) by replacing the propagators

on the rails by the corresponding retarded ones (3.31) or (3.32) and replacing the ladder

rung propagators by the ones in (3.33).

Following [101], we introduce the new variable

u = ex−t , v = e−x−t , (3.34)

for the retarded propagators on the upper rail and

u = −ex−t , v = −e−x−t , (3.35)

for the retarded propagators on the lower rail. We consider the following ansatz

ΨI
R(3, 4) = (−u3u4)

h3+h4
2 (−v3v4)

h̃3+h̃4
2 uh−h3−h434 vh̃−h̃3−h̃434 , (3.36)
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where hi, h̃i labels the dimensions of the operators at ti, xi. In terms of the t and x

coordinate, (3.36) becomes

ΨI
R(1, 2) =

e−
1
2

(h+h̃)(t1+t2)− 1
2

(h−h̃)(x1+x2)

(2 cosh x12−t12
2 )h1+h2−h(2 cosh x12+t12

2 )h̃1+h̃2−h̃
. (3.37)

Our goal is to find eigenfunctions that grows exponentially with time but remain normal-

izable in the spatial direction. This requires h− h̃ to be imaginary and we can follow [101]

to reparametrize h and h̃ as

h = −λL
2

+ i
p

2
h̃ = −λL

2
− ip

2
. (3.38)

Finding the largest chaotic behavior then means to find the largest λL that renders at least

one eigenvalues to 1.

As in the case discussed in [101], the convolution integral in the eigenequation

K
(ij)
R ∗Ψj

R = kijRΨi
R , (3.39)

factorizes into two 1-dimensional integrals in the u, v variables with the eigenfunction (3.36),

each of which can be carried out straightforwardly. The resulting eigenvalues are

kφφR =
2µ(q − 1)2q

(
µq2 − 2µq + 1

)
Γ (1− 2hφ)4 sin2 (2πhφ)

π4 (µq2 − 1)2 (3.40)

× sin
(π

2
(h+ 2hφ)

)
Γ (h− 1 + 2hφ) Γ (2hφ − h) (3.41)

× sin
(π

2
(h̃+ 2hφ)

)
Γ
(
h̃− 1 + 2hφ

)
Γ
(

2hφ − h̃
)

(3.42)

×
(

cos

(
1

2
π
(
h+ h̃+ 4hφ

))
+ cos

(
1

2
π(h− h̃)

))
(3.43)

kφψR =
µq2 − 1

2µq2 − 4µq + 2
kφφR (3.44)

kφλR =
4π2J2nq+1

φ (µq − 1)
(
µq2 − 1

)
µ(q − 1)q (µq2 − 2µq + 1)

kφφR (3.45)

kφGR =
2π2J2nq+1

φ

(
µq2 − 1

)2
µ(q − 1)2q (µq2 − 2µq + 1)

kφφR (3.46)

kψφR = 2 (h− 2hφ)

(
h
(
µq2 − 1

)
− µ(q − 1)q

)
tan

(
π
2 (h+ 2hφ)

)
(µq2 − 2µq + 1) tan

(
π
2 (h+ 2hφ)

) kφφR (3.47)

kψλR =
8π2J2nq+1

φ (µq2 − 1)2 (h− 2hφ) (h− 1 + 2hφ) tan
(

1
2π (h+ 2hφ)

)
µq(q − 1)2 (µq2 − 2µq + 1) tan

(
π
2 (h+ 2hφ)

) kφφR (3.48)

kλφR = −µ(q − 1)5q2(µq − 1) sin2 (π(1 + 2hλ))

π6nq+1
φ J2 (µq2 − 1)5

Γ (−2hλ)4 (3.49)

× sin
(π

2
(h+ 2hλ)

)
cos
(π

2
(h+ 2hλ)

)
Γ (2hλ − h) Γ (h+ 2hλ − 1) (3.50)

× sin
(π

2
(h̃+ 2hλ)

)
cos
(π

2
(h̃+ 2hλ)

)
Γ
(
h̃+ 2hλ

)
Γ
(

1 + 2hλ − h̃
)

(3.51)
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kλψR =
µq2 − 1

2(q − 1)(µq − 1)
kλφR (3.52)

kgφR = −
2 (h− 2hλ) (h− 1 + 2hλ) tan

(
π
2 (h+ 2hλ)

)
tan

(
πh
2 − 1 + 2hλ

)
(q − 1)(µq − 1) (µq2 − 1)−1 kλφR . (3.53)

In principle, we diagonalize the matrix of retarded kernels, which is the retarded version

of (3.22), to get the equation of the eigenvalues

ER(x, h, h̃, µ, q) = x4 − kφφR x3 −
(
kφGR kGφR + kφψR kψφR + kφλR kλφR + kψλR kλψR

)
x2

+
(
kφφR kψλR kλψR − k

φψ
R kψλR kλφR − k

φλ
R kψφR kλψR

)
x+ kφGR kψλR kλψR kGφR

= 0 . (3.54)

Then we solve for the h and h̃ that set the eigenvalue to 1. In our case we do not get a

simple expression of the eigenfunctions. But we can still find the maximal values of λL by

a direct analysis of the eigenfunction equation: since we are interested in eigenvalue 1, we

can simply set x = 1 of the equation (3.54) that determines λL as an implicit function of

µ and p. We can then find the largest value of λL by tuning µ and p.

To proceed we start with a sanity check by focusing on the µ = 1 case and check if the

result agrees with the N = (2, 2) result. There are two ways to do such a check. The first

approach is noticing that at µ = 1 we can solve the retarded eigenequation (3.54) directly

to find that there are 4 eigenvalues

kµ=1
1 = −

Γ
(

q
q+1

)2
Γ
(

1
q+1 − h

)
Γ
(

1
q+1 − h̃

)
Γ
(

1
q+1 − 1

)
Γ
(

1 + 1
q+1

)
Γ
(

q
q+1 − h

)
Γ
(

q
q+1 − h̃

) (3.55)

kµ=1
2 = −hq + h− 1

hq + h− q
kµ=1

1 (3.56)

kµ=1
3 = − h̃q + h̃− 1

h̃q + h̃− q
kµ=1

1 (3.57)

kµ=1
4 =

(hq + h− 1)(h̃q + h̃− 1)

(hq + h− q)(h̃q + h̃− q)
kµ=1

1 , (3.58)

and indeed kµ=1
1 is identical to the kBBR function in [101]. Notice that the other kµ=1

i are

due to the super-descendents of the eigenfunction corresponding to kµ=1
1 . Hence they are

not expected to be related to the kBFR , kFBR , kFFR functions in [101] that are due to different

primaries of the third operators in the eigenfunctions.

The second approach is to follow the method we discribed above, namely plug x = 1

into the equation (3.54), then setting µ = 1 and looking for maximal λL by tuning p. We

indeed find a miximal λL = 0.5824 at p = 0. This agrees with the result in [101] and

confirms the validity of our procedure.

We now move to general µ. Because the integral (3.39) again factorize into two 1-

dimensional ones, by a similar monotonic argument as in [101] we expect the largest λL
is reached at p = 0. This is indeed true as one can check explicitly. We present the p
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(a) p dependence.

μ= 2
3

μ=1
μ=3

0 5 10 15 20
q

0.35

0.40

0.45

0.50

0.55

0.60

λL

(b) q dependence.

Figure 5. Functional dependence of the Lyapunov exponent λL.

dependence for some special values of µ in figure 5a. It is also straightforward to check the

q dependence of λL, a few examples of which are presented in figure 5b. We find the largest

λL appears close to the smallest q that leads to nontrivial interactions, namely q = 2.

Then we look for maximal λL as a function of µ. The general dependence is shown in

figure 6. One finds a maximum of λL as we change µ. Interestingly, this maximal value does

not appear at the special point µ = 1; rather it appears at µ ' 0.9802 where the maximal

value is λL(p = 0, µ = 0.9802) = 0.5825. This maximal value is only slightly larger than

the value for the N = (1, 1) and N = (2, 2) model where λL(p = 0, µ = 1) ' 0.5824. Notice

that in determining this Lyapunov exponent we do all the computation analytically, except

for the very last step where we find the solution to a given equation numerically. Since

the error of this last step is very well controlled, our result is genuinely different from the

exponent in the N = (1, 1) or N = (2, 2) model.

It is not clear what is the physical reason of why the maximal value of λL in the

class of models we consider here is only slightly higher than that found in the special case

µ = 1, and why the correspnding µ is only slightly smaller than 1. The slightly larger

Lyapunov exponent probably indicates that there should be a wider class of similar models

that are continuously related. Our model, and the N = (1, 1), N = (2, 2) models are only

examples that sit on a generic point on the moduli space. It is conceivable that there are

special theories on (some corners) the moduli space that have larger, or even maximal,

Lyapunov exponent.

4 Two higher-spin limits

It is widely believed that the SYK-like models have close relations with higher-spin theories;

higher-spin theories should be thought as a subsector of some tensionless limit of string

theory, while the SYK model should be holographically dual to some string theory with

finite tension [6]. Therefore it is tempting to find a direct relation between SYK-like models

and models with higher-spin symmetry. In 1-dimension, one example of such relation is

discussed in [39]. In this section we give another explicit example of such connection in

2 dimension. The basic idea is to tune the free parameter to some critical/singular value
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(a) Small µ region.
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(b) Large µ region.

Figure 6. µ dependence of the Lyapunov exponent λL. The yellow, red and blue curves are

evaluated at p = 0 and q = 2, 3, 10 respectively.

where the model develops some properties that is characteristic for models with higher-spin

symmetry. In particular, we find two singular limits at the two ends of the range of µ,

where the model (2.26) develops emergent higher-spin symmetries. In the following we

discuss the two limits separately.

4.1 The µq → 1+ (“classical chiral”) limit

The Fourier transform (2.36) at the special value µ = 1
q has a logarithmic divergence. This

means a proper renormalization analysis of the model at µ = 1
q is needed. We will not do

it here and will postpone this in future work. Nevertheless, we consider the limit

µ→
(

1

q

)+

. (4.1)

Taking the limit in this manner, all our previous computation are valid since there is no

divergence in the limiting process. The IR dimensions of the various fields in this limit are

lim
µ→(1/q)+

hφ = 0 , lim
µ→(1/q)+

hψ =
1

2
, lim

µ→(1/q)+
hλ =

1

2
, lim

µ→(1/q)+
hG = 1 (4.2)

lim
µ→(1/q)+

h̃φ = 0 , lim
µ→(1/q)+

h̃ψ = 0 , lim
µ→(1/q)+

h̃λ = 1 , lim
µ→(1/q)+

h̃G = 1 , (4.3)

where the dimension of the φ and ψ fields take the values in a free chiral multiplet. This

is a first hind that we should expect a larger higher spin type symmetry to emerge in this

limit. This is consistent with the result from the chaos analysis in the previous section; as

shown in figure 6 the Lyapunov exponents all vanish as µ →
(

1
q

)+
for any q > 1. In the

following we confirm the existence of a higher-spin symmetry from a few different aspects.

A tower of conserved higher-spin operators. Given the above motivation, we look

for a tower of higher-spin operators in the limit (4.1). Recall that in 2 dimensions, con-

served higher-spin operators are represented by (anti-)holomorphic primary operators with

vanishing (right) left conformal dimensions. Therefore we extend the computation in the
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holomorphic operators anti-holomorphic operators

symmetric channel (h, h̃) = (s, 0), s ≥ 1 (h, h̃) = (0, s), s ≥ 1

antisymmetric channel (h, h̃) = (s, 0), s ≥ 1 (h, h̃) = (0, s), s ≥ 1

Table 1. The conserved operators in the limit (4.1).

previous subsection to find such (anti-)holomorphic primary operators in the limit (4.1).

For this we go back to (3.28) and look for solutions of

lim
µ→(1/q)+

Ec(1, h̃+ s, h̃, µ, q) = 0 , lim
µ→(1/q)+

Ec(−1, h̃+ s, h̃, µ, q) = 0 , s > 0 , h̃→ 0 ,

(4.4)

that correspond to the holomorphic higher-spin operators in the symmetric and antisym-

metric channel. Because our model has a manifest N = (0, 2) supersymmetry, the operator

spectrum of the holomorphic and anti-holomorphic operators could be different. There-

fore we need to find the spectrum of the anti-holomorphic operators seperately, which

corresponds to solving

lim
µ→(1/q)+

Ec(1, h, h+ s, µ, q) = 0 , lim
µ→(1/q)+

Ec(−1, h, h+ s, µ, q) = 0 , s > 0 , h→ 0 .

(4.5)

Furthermore, the operators running in the channel tha is detected by our ladder dia-

grams (3.1)–(3.9) are all bosonic, so we only look for solutions with integer s, at any q.

The equations are again easily solved numerically, and we get a function h̃(µ) or h(µ) of

any given s and q. We summarize the operators that become (anti)-holomorphic in the

limit (4.1) in table 1. Some example solutions of (4.4) and (4.5) near the limit (4.1) are

illustrated in figure 7. From this result we indeed observe that in the µ →
(

1
q

)+
limit

the dimensions of some operators in 4-point functions approaches the dimensions of the

(anti-)holomorphic higher-spin operators shown in the above table. This result indicates

that a tower of conserved higher spin currents emerges in the limit (4.1).

The above holomorphic operators close among themselves under Operator Product

Expansion (OPE) and hence generate a higher-spin type W-algebra. A similar result

holds for the anti-holomorphic operators. Moreover, for each spin we find an operator

in the symmetric channel and one in the antisymmetric channel, which is identical3 to

the structure of the generators of the bosonic subalgebra of the N = 2 supersymmetric

SW1+∞ algebra that governs the symmetry of many supersymmetric higher-spin theories

in 2 dimension [129, 131–135]. This spectrum is as we expected since the model has a

right-moving N = 2 supersymmetry.

It is slightly more surprising that we also find conserved anti-holomorphic operators in

the limit (4.1). On the other hand, the left-moving sector does not have supersymmetry; it

3The is one subtlety: we have one more spin-1 field in our model comparing to the generators of the

N = 2 SW1+∞ algebra. This spin-1 extended N = 2 SW1+∞ algebra is very similar with the one withour

the extra spin-1 field and is recently discussed in the context of Affine Yangian [129, 130].
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(b) Anomalous dimensions of the anti-

holomorphic higher-spin operators. Here we plot

the right dimension h of the operators and the

left dimension is h̃ = h+ s.

Figure 7. The dimensions of operators with integer spins as a function of µ. The smaller figure

in the frame zooms in to the bottom left corner of each large figure and shows that the anomalous

dimensions of these operators approach zero in the limit µ→
(

1
q

)+
. The solid curves denotes oper-

ators in the symmetric channel, the discrete data points denote the operators in the antisymmetric

channel. The plots are computed for q = 3. The N = (0, 2) supersymmetry is manifest in the plots.

only has bosonic higher-spin symmetry emerging, which is consistent with the N = (0, 2)

supersymmetry of our model.

Anomalous dimensions. As we go away from the limit (4.1), namely as µ becomes

larger, this emergent higher-spin symmetry is broken, which is characterized by the anoma-

lous dimensions acquired to those (anti-)holomorphic operators. This is another way to

interpret figure 7, in particular the small figures inside figure 7. Before analyzing the re-

sults, we first remind the reader that in the following we call the operators that become the

(anti-)holomorphic in the higher-spin limit µ→
(

1
q

)+
“almost (anti-)holomorphic higher-

spin operators”, even after we move away from the higher-spin limit (4.1) at generic µ. We

keep in mind that they are only strictly related to conserved currents in the limit (4.1).

Coming back to the results, in figure 7a we plot the anomalous dimension of the holo-

morphic higher-spin operators in the symmetric channel (solid lines) and the antisymmetric

channel (discrete points). We observe that for the holomorphic higher-spin operators, the

anomalous dimension of a spin-s operator in the antisymmetric channel is identical to the

anomalous dimension of a spin-(s+1) operator in the symmetric channel. This is consistent

with the N = 2 supersymmetry in the right-moving section: the two operators are respec-

tively the top and the bottom component of a single multiplet that consists of operators

with spin (s, s+ 1
2 , s+ 1).4 This confirms that the right-moving N = 2 supersymmetry is

always perserved at generic value of µ.

4Notice that we have implicitly used the shadow representation of the 4-point functions. So each so-

lution to the equation (3.28) correspond to an SL(2) primary field. On the other hand, since we are not

using the superspace formalism and directly work with the component fields in each supermultiplet, the

eigenfunctions/operators we found could be supersymmetric descendant fields.
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Figure 8. The anomalous dimension of the higher spin operators as a function of the spin of

the operators. The yellow stars, red dots and the blue crosses are for q = 2, 3, 5 respectively and

µq−1 = ε = 0.01. The horizontal axis is log(s) where s is the spin of the operator. The vertical axis

is the anomalous dimension. It is observed that when s is relatively large, the anomalous dimension

is propotional to the log of the spin. This is the same behavior as the result from a perturbative

higher-spin CFT computation [136], as well as the dispersion relation of a classical rotating string

in AdS spacetime in the large-spin limit [137].

On the other hand, from figure 7b we observe that there is no such relation among

the almost anti-holomorphic operators in the symmetric and antisymmetric channels away

from the limit (4.1). This is again compatible with the fact that there is no supersymmetry

in the left-moving sector.

It is also illustrative to study the dispersion relation, namely to understand how do

the anomalous dimensions, which is the same as h̃ for the anti-holomorphic higher-spin

operators or h for the holomorphic higher-spin operators, depend on the spin once we

move away from the higher spin limit. One can find this by solving

Ec(±1, h̃+ s, h̃,
1 + ε

q
, q) = 0 , ε� 1 , s > 0 , (4.6)

to determine the implicit function h̃ε(s). And similarly the implicit function hε(s) for the

anti-holomorphic operators. This is again easily achieved numerically. The result for the

anomalous dimension of the almost holomorphic higher-spin operators in the symmetric

channel is plotted in figure 8. The results for the operators in the antisymmetric channel

and the anti-holomorphic operators have similar structure. In figure 8 we observe that for

each given q, the anomalous dimension γε(s) = h̃ε(s) behaves like

h̃ε(s) ∼ log(s) , (4.7)

for relative large spin s near the higher-spin limit (4.1). This result, which comes from

diagonalizing the kernels of the SYK model and taking a higher-spin limit (4.1), agrees

well with the result from a direct higher-spin CFT perturbation computation [136], as well
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as the dispersion relation of a classical rotating string in AdS spacetime in the large-spin

regime [137]. This agreement means we have a consistent picture describing the properties

of a model with an approximate higher-spin symmetry: we get the same results by either

going away from a theory with exact higher-spin symmetry or going towards a higher-spin

limit from a model that does not have a higher-spin symmetry. Since our computation

is from a different approach, it serves as an independent evidence to support the general

picture that the SYK-like models can be related to some finite tension string theory, while

the higher-spin theories can be regarded as some (truncation of) tensionless string theory.

In our model tuning the µ parameter away from the limit (4.1) drives the model from a

higher-spin-like regime to SYK-like regime, which mimics the process of turning on the

string tension.

The Lyapunov exponent. The higher-spin limit µ →
(

1
q

)+
is also detected from the

chaotic behavior. Indeed the Lyapunov exponent vanishes in the limit µ →
(

1
q

)+
as can

be seen from figure 6a and figure 12. This vanishing Lyapunov exponent agrees with

previous expectations that theories with an infinite dimensional higher-spin symmetry is

not chaotic [6, 25, 138].

The q-dependence. A further comment is about the relative magnitude of the anoma-

lous dimensions for different q. We notice that the anomalous dimensions become smaller

as q becomes larger. This is what we expected for many previously studied SYK-like mod-

els; the larger the value of q the less relevant the interaction. Consequently, we expect the

anomalous dimensions to be smaller for a larger q.

This is a singular limit. A last comment is that this µ → (1
q )+ limit is singular: one

cannot naively take all the formula and plug in µ = 1
q since the Fourier transform (2.36)

diverges. Instead one has to consider setting µ = 1
q+δ with 1� δ > 0 and extract the result

by taking the limit ε→ 0, which is how all the above results are computed. It is not very

surprising that the higher-spin limit is singular: we have learned from many other cases

that the higher-spin limit of different models are often singular [139–141], see [142–145] for

recent development. A different way to phase the singular nature of this limit is that the

system undergoes a phase transition when going into/away from this limit. This is a first

order phase transition because the free energy of the system, which can be expressed in

terms of the IR propagators similar to [5–7], is discontinuous in this limit. We call this a

“classical chiral” limit since the chiral mulitplet has classical dimension. But this is not

quite a free field limit since the coupling remains large in this limit and the dimension of

the Fermi multiplet does not take its classical/free value.

4.2 The µ → +∞ (“classical Fermi”) limit

We can consider a different limit

µ→ +∞ , (4.8)
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holomorphic operators anti-holomorphic operators

symmetric channel (h, h̃) = (s, 0), s ≥ 2, q = 2 (h, h̃) = (0, s) , s ≥ 1

antisymmetric channel (h, h̃) = (s, 0), s ≥ 1, q = 2 (h, h̃) = (0, s) , s ≥ 1

Table 2. The conserved operators in the limit (4.8).

where the IR dimension of the various fields are

lim
µ→+∞

hφ =
1

2q
, lim

µ→+∞
hψ =

1 + q

2q
, lim

µ→+∞
hλ = 0 , lim

µ→+∞
hG =

1

2
(4.9)

lim
µ→+∞

h̃φ =
1

2q
, lim

µ→+∞
h̃ψ =

1

2q
, lim

µ→+∞
h̃λ =

1

2
, lim

µ→+∞
h̃G =

1

2
. (4.10)

In this limit another tower of higher-spin operators emerges. To illustrate this we carry out

a set of computation that is in parallel with what we have done in the previous subsection.

A tower of higher-spin operators. As in the previous limit (4.1), we look for holomor-

phic operators with dimension (h, h̃) = (s, 0) and anti-holomorphic operators with dimen-

sion (h, h̃) = (0, s) in both the symmetric and antisymmetric channels of the limit (4.8).

This amounts to solve

lim
µ→+∞

Ec(±1, h̃+ s, h̃, µ, q) = 0 , lim
µ→+∞

Ec(±1, h, h+ s, µ, q) = 0 , s ∈ Z+ . (4.11)

Numerically we get a function h̃(µ) or h(µ) for any given s and q. The emergent conserved

higher-spin operators are summarized in table 2. Therefore, we find a set of holomorphic

higher-spin operators in the right-moving sector only at q = 2. This spectrum matches

with the spectrum of generators of the bosonic subalgebra of the N = 2 SW1+∞ algebra.

This is again consistent with the N = 2 supersymmetry in the right-moving sector. In

addition, we find a tower of higher-spin operators in the left-moving sector for any q > 1.

Therefore we expect an N = (0, 2) supersymmetric higher-spin symmetric in the limit (4.8)

at q = 2. Therefore at q = 2 we find both the holomorphic and anti-holomorphic conserved

higher spin operators at each integer spin s. But for other q > 2, we only find anti-

holomorphic higher-spin operators that generate an anti-chiral bosonic W1+∞ algebra in

the left-moving sector. Notice that this tower of chiral higher-spin operators is slightly unfa-

miliar since a general conserved higher-spin currents should have both the holomorphic and

anti-holomorphic components. Therefore we believe the tower of higher-spin operators at

q = 2 are related to the usual higher-spin currents that generate the higher-spin symmetry.

Some examaples of the dimensions of the holomorphic higher-spin operators are shown

in figure 9a, where we plot the left dimension h̃ of the spin-s operators both in the symmetric

(solid lines) and the antisymmetric (discrete points) channels as a function of 1
µ for the

whole range of 1
µ . From this result we indeed see that in the µ → +∞ limit the left

dimension h̃s(µ) all approach zero, which indicates that there is a tower of holomorphic

operators with dimension (h, h̃) = (s, 0). We also plot the anomalous dimension of the

anti-holomorphic operators in figure 10. We do not see any coincidence of the dimensions
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(a) The q = 2 case. The anomalous dimension

of the higher-spin operators vanish in the limit

µ→∞. They become conserved higher-spin cur-

rents in this limit. The spin-2 operator, namely

the stress-energy tensor, is always conserved for

the whole range of µ where our SYK solution

is reliable.
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(b) The q 6= 2 cases. The curves are the anoma-

lous dimension of the spin s = 3 operator as a

function of µ. The operator has nonvanishing

anomalous dimension and are not conserved as

µ → +∞. The behavior of the operators in the

antisymmetric channel are similar.

Figure 9. The anomalous dimension of the almost holomorphic higher-spin operators as a function

of 1
µ for the entire range of µ.
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(a) The q = 2 case.
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(b) General q.

Figure 10. Anomalous dimension of the anti-holomrphic higher-spin operators. The solid curves

are for operators in the symmetric channel and the dashed lines are for operators in the antisym-

metric channel. The plot is for q = 3. No overlapping of the solid and dashed curves are obvserved,

which reflects the absence of supersymmetry in the left-moving sector.

between the symmetric and antisymmetric channels. This indicates that in the infrared

the model only has N = (0, 2) supersymmetry, namely there is no supersymmetry in the

left-moving section, away from the higher-spin limits (4.1) and (4.8).

The q-dependence. We notice that the tower of holomorphic higher-spin operators only

emerges at q = 2. We have solved the equation

lim
µ→+∞

Ec(1, h̃+ s, h̃, µ, q) = 0 , (4.12)
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Figure 11. The anomalous dimension of the higher-spin operators as a function of their spin. The

plot is around the higher-spin limit (4.8). We observe that for large enough spin the anomalous

dimension is proportional to the log of the spin.

for a few different q’s and we find that the operators with higher spin have nonvanishing

anomalous dimension for all q > 2. This is shown in figure 9b. We do not have a good

physical explanation of why q = 2 is special in this sense.5 For completeness we list the

dimensions of the chiral and Fermi multiplet in the limit (4.8) at q = 2

lim
µ→+∞,q=2

hφ =
1

4
, lim

µ→+∞,q=2
hψ =

3

4
, lim

µ→+∞,q=2
hλ = 0 , lim

µ→+∞,q=2
hG =

1

2
(4.13)

lim
µ→+∞,q=2

h̃φ =
1

4
, lim

µ→+∞,q=2
h̃ψ =

1

4
, lim

µ→+∞,q=2
h̃λ =

1

2
, lim

µ→+∞,q=2
h̃G =

1

2
. (4.14)

We notice that in the limit (4.8) the chiral multplet gets its largest possible dimension

at q = 2.

Anomalous dimensions. The anomalous dimensions again have a logarithmic depen-

dence on the spin, as can be seen from figure 11. This is similar to the behavior in the

other limit (4.1) and agrees with the result from pure higher-spin theory computation [136].

We only plot the holomorphic operators in the symmetric channel; the holomorphic op-

erators in the anti-symmetric channel are in the same supermultplets and have identical

anomalous dimensions.

The Lyapunov exponent. We can compute the Lyapunov exponent of our model for

the whole range of µ. We find vanishing Lyapunov exponent at µ→∞ only for q = 2, which

can be observed in figure 12. This is compatible with the fact that a normal higher-spin

symmetry emerges in this limit only at q = 2, as we have discussed above.

This is a singular limit. The limit (4.8) is singular for a similar reason as the limit (4.1):

the result depends on how the limit is taken. In the above analysis, we solve for the

anomalous dimension at a given µ around µ → +∞ and track how does this anomalous

5We remind the reads that our model (2.26) is not free at q = 2. Instead the interaction becomes a

random mass term at q = 1.
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Figure 12. The Lyapunov exponent as a function of µ for the whole range of µ. We observe that

near the µ → +∞ limit only the model with q = 2 has a vanishing Lyapunov exponent. This is

consistent with the fact that only at q = 2 the set of higher-spin operators have vanishing anomalous

dimension and generate a higher-spin symmetry.

dimension behave as µ approaches +∞. If we instead take an unphysical approach by

simply plugging 1
µ = 0 and h = 0 (or h̃ = 0) into the equation (3.28), we are not guaranteed

to get the same result. In addition, in this computation we have first assumed the µ to be

finite, solve the set of Schwinger-Dyson equations, and then take the µ → ∞ limit of the

solution. We do not expect to recover the same result if we first take a naive µ → +∞
limit of the Schwinger-Dyson equation and then solve it. As in the previous limit (4.1), we

believe this subtlety reflects the common feature that a tensionless limit of string theory is

usually singular and the model undergoes a first order phase transition in this limit.

4.3 Relations with higher-spin theories

Our model is defined in 2-dimensions where conformal field theories with higher-spin sym-

metries and their holographic dual have been extensively studied, see e.g. [146] for a review.

In a supersymmetric context, the higher-spin conserved currents generate a supersymmet-

ric SW∞-algebras. It is well known that the SW∞ algebra allows a continuous deformation

that preserves the higher-spin symmetry; there is a family of higher-spin SW∞[λ] algebra.

In our model there are two parameters. As we have shown in previous sections, the µ

parameter controls the breaking of the higher-spin symmetry. While in the higher-spin

limit (4.1), there is no requrement of the q paramter: the higher-spin symmetry emerges

at any given q > 2. It is thus natural to conjecture that the different higher-spin algebras

emerging in the models with different q should be identified with the SW∞[λ(q)] algebras

via an explict map λ = λ(q). At the moment we have not yet identified this map. We

plan to study this point in detail in future works. In figure 13 we draw a cartoon sum-

marizing the properties of the model (2.26) on the moduli space spanned by the q and

µ paramerters. On the graph we mark out the two limits where higher-spin symmetries

emerge. Outside the shaded region the Fourier transform in (2.36) diverges. As suggested

in [101] one probably has to turn on a negative mass counterterm to reach another fixed
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Figure 13. An illustration of the moduli space of our model. In the shaded region the model has

SYK-like behavior. In the two limits, which are on the boundary of the shaded region, one observe

emergent higher-spin symmetries. At q = 1, the interaction is quadratic, which can be regarded as a

free “mass” term and the model is essentially free. Outside the shaded region the Fourier transform

in (2.36) diverges. As suggested in [101] one probably has to turn on a negative mass counterterm

to reach another fixed point. This is an indication that in this region the model might be gapped.

point. This is an indication that in this region the model might be gapped. It is interested

to clarify this point further, and we will defer this into future works.

The existence of the µ parameter and the appearance of a higher-spin limit as we

vary µ has some resemblance to the ABJ triality [147] in one dimension higher. In our

model there are indeed two global symmetry U(N)×U(M) corresponding to the rotations

of the N chiral multiplets and the M Fermi multiplets respectively. Notice that this

symmetry is only manifest once we average over the random coupling. Furthermore since

we consider only singlets under these two global symmetry groups, we do not expect the

results discussed in this paper to alter significantly once we gauge the U(N) × U(M)

group [96]. As a result, tuning our parameter µ to reach limits with higher-spin symmetries

has a qualitative similarity with, in the context of the ABJ triality, dialing the ratio M
N to

reach a conjectured dual of N = 6 matrix extended Vasiliev higher-spin theory [147]. But

there are also qualitative differences between our model and the case of the ABJ triality.

Firstly, the ABJ theory consists of (anti-)bifundamental fields, while our model (2.26) is

built from (anti-)fundamental fields of the two global symmetry groups. Therefore we
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expect a different mechanism of the emergence of the higher-spin fields. Secondly, as the

ratio M
N increases there are two phase transitions separating three different phases with

different thermodynamic properties [147]. But in our model, at least for q = 2, as we

increase µ the model moves from a higher-spin behavior to a chaotic SYK-like behavior

and then back to a higher-spin behavior (although a different one comparing to where the

model started).

There could be other parameters that we can turn on while maintaining the properties

of the models we have discussed in this paper. Notice that this possibility goes along with

our previous analysis based on the chaotic behavior of this model, where the fact that

the Lyapunov exponent does not saturate the chaos bound [26] could be a hint that there

should be other directions on the moduli space of 2d SYK-like models along which the

model ets more and more chaotic.
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A 2d SYK model with N = (2, 2) supersymmetry

In 2 dimension, the N = (2, 2) superfields are constructed with the help of two complex

fermionic coordinates θ+ and θ− with

θ̄± = (θ±)∗ . (A.1)

A bosonic chiral superfield is defined as

Φ(xi, θ±, θ̄±) = φ(y±) +
√

2θ+ψ(y±) +
√

2θ−λ(y±) + 2θ+θ−F (y±) , (A.2)

where y± = x± − iθ±θ̄±. A simple 2d SYK-like model with N = (2, 2) supersymmetry

is [101, 112]

S =

∫
dx2d2θ+d2θ−ΦΦ̄ +

∫
dx2dθ+dθ−

(
Ji0...iq

(q + 1)!
Φi0 . . .Φiq + h.c.

)
(A.3)
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In component form the interaction is

S
(0,0)
int =

∫
dx2

(
Ji0...iq
q!

F i0φi1 . . . φiq +
Ji0...iq
q!

ψi0λi1φi3 . . . φiq + h.c.

)
. (A.4)

It is straightforward to solve the Schwinger-Dyson equation of the two point functions in

the IR limit ∫
d2z2G

I
c(z1, z2)ΣI

c(z2, z3) = −δ2(z1 − z3) , I = φ , ψ , λ ,G , (A.5)

where GIc(z1, z2) are the propagators in the infrared and ΣI
c(z1, z2) are the corresponding

self-energies of the various fields

Σψ(z1, z2) = 2J2Gλ(z1, z2)(Gφ(z1, z2))q−1 (A.6)

Σφ(z1, z2) = (q − 1)2J2(Gφ(z1, z2))q−2Gλ(z1, z2)Gψ(z1, z2)

+ 2J2(Gφ(z1, z2))q−1GG(z1, z2) , (A.7)

ΣG(z1, z2) =
2J2

q
(Gφc (z1, z2))q , (A.8)

Σλ(z1, z2) = 2J2(Gφc (z1, z2))q−1Gψc (z1, z2) . (A.9)

A supersymmetric solution of these equations reads

Gφc (z1, z2) =
( q

8π2J2

) 1
q+1

(z1 − z2)
− 1
q+1 (z̄1 − z̄2)

− 1
q+1 , (A.10)

and the other propagators are related by supersymmetry

Gψ(z1, z2) = −2∂z1G
φ(z1, z2) , Gλ(z1, z2) = −2∂z̄1G

φ(z1, z2) (A.11)

GG(z1, z2) = −2∂z1G
λ(z1, z2) = −2∂z̄1G

ψ(z1, z2) . (A.12)

The existence of such solutions is nontrivial. Indeed one can write down a similar set of

Schwinger-Dyson equations for various models without supersymmetry [101], but it is not

clear if the theory actually flows to the assumed SYK-like IR fixed points. The presence

of supersymmetry improves the UV behavior and the potential divergences are avoided.

In practice, the supersymmetry allows a natural regularization and renormalization of the

possible divergences in a naive direct solution.

For later purpose it is useful to recast the N = (2, 2) model (A.3) as a model with a

smaller number of supersymmetry. In terms of the N = (0, 2) superfields

chiral: Φ′i(x, θ+) = Φi(y, θ±, θ̄±)
∣∣
θ−, θ̄−→0

= φ(x) +
√

2θ+ψ(x) + 2θ+θ̄+∂zφ(x) (A.13)

Fermi: Λ(x, θ+)i = D−Φi(y, θ±)
∣∣
θ−→0

= λ(x)−
√

2θ+F (x) + 2θ+θ̄+ ∂zψ−(x) , (A.14)

where D− = ∂
∂θ− + 2θ̄−∂z and the action can be written as

S(0,2) =

∫
dx2dθ+dθ̄+

(
1

2
Λ̄Λ− Φ̄∂z̄Φ

)
+

∫
dθ+Ji0...iq

q!
Λi0Φi1 . . .Φiq + h.c. . (A.15)
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B Perturbing the N = (2, 2) model to the N = (0, 2) models

In this section, we treat the N = (0, 2) model as a perturbation of the N = (2, 2) model. We

then solve the N = (0, 2) model perturbatively around the N = (2, 2) fixed point. We will

show that the result from this perturbative analysis does agree with the µ→ 1 expansion

of the result in section 2.2. Since the computation in this section is independent from

directly solving the Schwinger-Dyson equations in section 2.2, the results in this section

provide another consistency check of the results in the main text.

The perturbed theory has the same action as in section 2.2, the only difference is that

now we take the ratio µ = M/N to be µ = 1 + ε , where ε � 1 is treated as a small

parameter, and we expand the propagators of the deformed model as

GI(x) = GIc(x)(1 + εgI(x) + . . .) , I = φ, ψ, λ,G . (B.1)

In frequency domain, the perturbation can be denoted as

GI(p) = GIc(p) + ε
(
G̃Ic × gI

)
+ . . . , (B.2)

where ˜ indicates a Fourier transform. The self energies of the deformed model are, to the

leading order in ε

Σψ(z1,z2) = 2J2(1+ε)Gλ(z1,z2)(1+εgλ(z1,z2))(Gφ(z1,z2))q−1(1+εgφ(z1,z2))q−1 (B.3)

= Σψ(z1,z2)c

(
1+ε(1+gλ+(q−1)gφ))

)
, (B.4)

Σφ(z1,z2) = (q−1)2(1+ε)J2(Gφ(z1,z2))q−2Gλ(z1,z2)Gψ(z1,z2)

+2J2(1+ε)(Gφ(z1,z2))q−1GG(z1,z2) , (B.5)

=
q−1

q
Σφ
c

(
1+ε(1+gλ+gψ+(q−2)gφ)

)
+

1

q
Σφ
c

(
1+ε(1+gG+(q−1)gφ)

)
(B.6)

ΣG(z1,z2) =
2J2

q
(Gφc (z1,z2))q

(
1+εqgφ)

)
= ΣG

c (z1,z2)
(

1+εqgφ)
)
, (B.7)

Σλ(z1,z2) = 2J2(Gφc (z1,z2))q−1Gψc (z1,z2)
(

1+ε(gψ+(q−1)gφ))
)

(B.8)

= Σλ(z1,z2)
(

1+ε(gψ+(q−1)gφ))
)
. (B.9)

Because we are perturbing around the SYK fix point in the IR, we solve the Schwinger-

Dyson equations of the perturbed model

GI(p)ΣI(p) = −1 , (B.10)

with the known results of the unperturbed ones

GIc(p)Σ
I
c(p) = −1 . (B.11)

This leads to

GIc(p)δΣ
I(p) + δGI(p)ΣI

c(p) = 0 , (B.12)
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where δGI(p) = GI(p) − GIc(p) and δΣI(p) = ΣI(p) − ΣI
c(p). In components, the equa-

tions are

−1 = Gψc (p)

(
Σ̃ψ
c × gλ + (q − 1)Σ̃ψ

c × gφ
)

+ Σψ
c (p)

˜
Gψc × gψ (B.13)

−1 = Gφc (p)

(
q − 1

q
Σ̃φ
c × gλ +

q − 1

q
Σ̃φ
c × gψ +

1

q
˜

Σφ
c × gG (B.14)

+
q2 − 2q + 1

q
Σ̃φ
c × gφ

)
+ Σφ

c (p)G̃φc × gφ (B.15)

0 = Gλc (p)
(

Σ̃λ
c × gψ + (q − 1)Σ̃λ

c × gφ
)

+ Σλ
c (p)G̃λc × gλ (B.16)

0 = GGc (p)
(
q ˜ΣG

c × gφ
)

+ ΣG
c (p) ˜GGc × gG . (B.17)

Now we look for a solution of the above equations with N = (0, 2) supersymmetry,

which means

˜GGc × gG = ip̄G̃λc × gλ ,
˜

Gψc × gψ = ip̄G̃φc × gφ . (B.18)

These relations simplify (B.16) to(
Σ̃λ
c × gψ + (q − 1)Σ̃λ

c × gφ
)

= ip̄
(
q ˜ΣG

c × gφ
)
. (B.19)

Now we can Fourier transform back to get

Σλ
c × gψ + (q − 1)Σλ

c × gφ = −2q∂z

(
ΣG
c × gφ

)
= −2q∂zΣ

G
c × gφ − 2qΣG

c ∂zg
φ . (B.20)

Further using

Σλ
c = −2∂zΣ

G
c , Σφ

c = −2∂z̄Σ
ψ
c , (B.21)

we get

Σλ
c × gψ − Σλ

c × gφ = −2qΣG
c ∂zg

φ . (B.22)

Multiplying by (Σλ
c )−1Gψc and using the known results for the N = (2, 2) conformal prop-

agators and the self energies, we get

Gψc × gψ −Gψc × gφ = −2bφ(zz̄)
− 1
q+1∂zg

φ . (B.23)

Then using

Gψc × gψ = −2∂z(G
φ
c × gφ) , (B.24)

the above equation becomes

−2∂z(G
φ
c × gφ)−Gψc × gφ = −2bφ(zz̄)

− 1
q+1∂zg

φ . (B.25)

Plugging in the known results for the N = (2, 2) conformal propagators, we get a trivial

identity.
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Similarly, the equations (B.15) turns out to be a trivial identity as well. This means

that the N = (0, 2) SUSY is compatible with the 4 equations and it further reduces those

to two equations. To solve the rest 2 equations we consider the following ansatz

gφ = nφ + δφ log(zz̄) , gλ = nλ + δλ log(zz̄) . (B.26)

In the later computation, the following Fourier transform∫ ∞
−∞

d2z
log(zz̄)

zaz̄a
eip·z =

∫ ∞
0

dr
2 log(r)

r2a−1

∫ 2π

0
dθ eipr cos(θ)

= 4π

∫ ∞
0

dr
log(r)

r2a−1
J0(pr)

=
π41−ap2a−2Γ(1− a)(ψ(0)(1− a) + ψ(0)(a)− 2 log(p/2))

Γ(a)
. (B.27)

Strictly speaking, the integral on the l.h.s. is only convergent when 1
4 < a < 1. However,

we do not worry to much about the 1
4 end since it is an IR divergence and can be regulated

by not going very deep in the IR. We only makes sure that a < 1 is satisfied in the

following computation.

Using (B.27) we immediately compute

G̃φc × gφ = aφGφc (p) + dφ
π4

q
q+1 Γ( q

q+1)(ψ(0)( q
q+1) + ψ(0)( 1

q+1)− 2 log(p/2))

k
2
q+1 p

2q
q+1 Γ( 1

q+1)
(B.28)

G̃φc × gλ = aλGφc (p) + dλ
π4

q
q+1 Γ( q

q+1)(ψ(0)( q
q+1) + ψ(0)( 1

q+1)− 2 log(p/2))

k
2
q+1 p

2q
q+1 Γ( 1

q+1)
. (B.29)

Similarly, we have

˜ΣG
c × gφ = aφΣG

c (p) + dφ
k

2
q+1 Γ( 1

q+1)(ψ(0)( 1
q+1) + ψ(0)( q

q+1)− 2 log(p/2))

π4
q
q+1 p

2
q+1 Γ( q

q+1)
(B.30)

˜ΣG
c × gλ = aλΣG

c (p) + dλ
k

2
q+1 Γ( 1

q+1)(ψ(0)( 1
q+1) + ψ(0)( q

q+1)− 2 log(p/2))

π4
q
q+1 p

2
q+1 Γ( q

q+1)
(B.31)

In addition, we get

Σ̃ψ
c ×gφ =

1+q

q
dφΣψ

c (p)+ip

∫ ∞
−∞

d2z(ΣG
c g

φeip·z) = dφΣψ
c (p)

1+q

q
+ipΣ̃G

c ×gφ (B.32)

Σ̃ψ
c ×gλ =

1+q

q
dφΣψ

c (p)+ip

∫ ∞
−∞

d2z(ΣG
c g

φeip·z) = dλΣψ
c (p)

1+q

q
+ipΣ̃G

c ×gλ (B.33)

G̃λc×gλ = (1+q)dλGλc (p)+ip

∫ ∞
−∞

d2z(Gφc e
ip·zgλ) = (1+q)dλGλc (p)+ipG̃φc×gλ (B.34)

where we have used

Gλc = −2∂z̄G
φ
c , Σψ

c = −2∂z̄Σ
G
c . (B.35)
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With these Fourier transformed quantities it is straightforward to solve (B.13), (B.17) and

the solution is

δφ = − q

(q − 1)(q + 1)2
, nλ = − q2

q2 − 1
− qnφ , δλ =

q2

(q − 1)(q + 1)2
. (B.36)

Notice that the form of the correction is compatible with the infinitesimal form of the

correction to the conformal 2-point function

Gε(z1, z2) =
b(1 + εn)

(z1 − z2)2h−εδ(z̄1 − z̄2)2h̃−εδ̄
(B.37)

=
b

(z1 − z2)2h(z̄1 − z̄2)2h̃
(1 + ε(n+ δ log(|z1 − z2|2)) +O(ε2)) , (B.38)

where we have taken δ̄I = δI to retain locality. Therefore, we can rewrite the above

perturbative result into an equivalent form

Gφε (z1, z2) =
bφ(1 + εnφ)

(z1 − z2)2hφ−εδφ(z̄1 − z̄2)2h̃φ−εδφ
, Gψε (z1, z2) = −2∂z1G

φ
ε (z1, z2) (B.39)

Gλε (z1, z2) =
bλ(1 + εnλ)

(z1 − z2)2hλ−εδλ(z̄1 − z̄2)2h̃λ−εδλ
, GGε (z1, z2) = −2∂z1G

λ
ε (z1, z2) . (B.40)

This is compatible with the solution (2.32), (2.33) when expanded around µ = 1.

C Fermionic operators in the model

In this appendix we compute some other 4-point functions in which fermionic operators

propagate. From this computation we get the fermionic spectrum of the model (2.26) and

observe the emergence of fermionic higher-spin operators in the two limits (4.1) and (4.8).

C.1 The φ̄ψ and φψ̄ sector

We first consider the 〈φiψ̄iψjφ̄j〉 and 〈φiψ̄iGj λ̄j〉 correlators. There are 6 contributing

kernels

K φ̄ψφψ̄(z1, z2, z3, z4) = −2(q − 1)J2M

N
Gφ(z13)Gψ(z24)(Gφ(z34))q−2Gλ(z34) (C.1)

Kψφ̄ψ̄φ(z1, z2, z3, z4) = 2(q − 1)J2M

N
Gψ(z13)Gφ(z24)(Gφ(z34))q−2Gλ(z34) (C.2)

K φ̄ψλḠ(z1, z2, z3, z4) = 2J2M

N
Gφ(z13)Gψ(z24)(Gφ(z34))q−1 (C.3)

Kψφ̄Ḡλ(z1, z2, z3, z4) = 2J2M

N
Gψ(z13)Gφ(z24)(Gφ(z34))q−1 (C.4)

K λ̄Gφψ̄(z1, z2, z3, z4) = 2J2Gλ(z13)GG(z24)(Gφ(z34))q−1 (C.5)

KGλ̄ψ̄φ(z1, z2, z3, z4) = 2J2GG(z13)Gλ(z24)(Gφ(z34))q−1 . (C.6)

The functions that diagonalize the above kernels are of the form

Φij(z1, z2) = (z12)h−hi−hj (z̄12)h̄−h̄i−h̄j , (C.7)
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which satisfy

Kijkl ∗ Φīj̄ = kijklΦij . (C.8)

One can explicitly evaluate the integral and get

kφ̄ψφψ̄ =
µ(q − 1)2q(µq − 1)Γ (1− 2hφ)2 Γ

(
1
2 − h+ 2hφ

)
Γ
(
h̃− 1 + 2hφ

)
(µq2 − 1)2 Γ (2hφ) Γ (1 + 2hφ) Γ

(
3
2 − h− 2hφ

)
Γ
(
h̃+ 1− 2hφ

) (C.9)

kφ̄ψλḠ = −
4π2J2µnq+1

φ (µq − 1)Γ (1− 2hφ)2 Γ
(

1
2 − h+ 2hφ

)
Γ
(
h̃− 1 + 2hφ

)
(µq2 − 1) Γ (2hφ) Γ (1 + 2hφ) Γ

(
3
2 − h− 2hφ

)
Γ
(
h̃+ 1− 2hφ

) (C.10)

kλ̄Gφψ̄ =
(q − 1)3q2n−q−1

φ Γ (−2hλ)2 Γ
(

1
2 − h+ 2hλ

)
Γ
(

2hλ + h̃
)

4π2J2 (µq2 − 1)3 Γ (2hλ) Γ (1 + 2hλ) Γ
(

3
2 − h− 2hλ

)
Γ
(
h̃− 2hλ

) (C.11)

kψφ̄ψ̄φ =
µ(q − 1)2q(µq − 1)Γ (1− 2hφ)2 Γ

(
1
2 − h+ 2hφ

)
Γ
(
h̃− 1 + 2hφ

)
(µq2 − 1)2 Γ (2hφ) Γ (1 + 2hφ) Γ

(
3
2 − h− 2hφ

)
Γ
(
h̃+ 1− 2hφ

) (C.12)

kψφ̄Ḡλ =
4π2J2µnq+1

φ (µq − 1)Γ (1− 2hφ)2 Γ
(

1
2 − h+ 2hφ

)
Γ
(
h̃− 1 + 2hφ

)
(µq2 − 1) Γ (2hφ) Γ (1 + 2hφ) Γ

(
3
2 − h− 2hφ

)
Γ
(
h̃+ 1− 2hφ

) (C.13)

kGλ̄ψ̄φ = −
(q − 1)3q2n−q−1

φ Γ (−2hλ)2 Γ
(

1
2 − h+ 2hλ

)
Γ
(

2hλ + h̃
)

4π2J2 (µq2 − 1)3 Γ (2hλ) Γ (1 + 2hλ) Γ
(

3
2 − h− 2hλ

)
Γ
(
h̃− 2hλ

) (C.14)

The final eigenvalues are obtained from diagonalizing the following matrix
0 0 kφ̄ψφψ̄ kφ̄ψλḠ

0 0 kλ̄Gφψ̄ 0

kψφ̄ψ̄φ kψφ̄Ḡλ 0 0

kGλ̄ψ̄φ 0 0 0

 (C.15)

The expressions of the eigenvalues are not very eluminating. Here we only give the dimen-

sions of the higher-spin operators that is of most interest to us. This is obtained in a similar

manner as what we did to find the behaviors of the bosonic higher-spin operators. Namely

we find the lowest dimensions, as a function of µ, that set some eigenvalue to 1 at a given

spin, then we check the behavior of the dimensions as µ approaches the two limits (4.1)

and (4.8). Instead of give the explicit expression of the dimensions of the operators, we

simply present the results in figure 14. From the plot, we indeed observe that there is a

tower of half-interger spin operators become conserved fermionic higher-spin operators in

the limit (4.1) at any q. One the other hand, we only observe the emergence of the tower

of conserved operators in the limit (4.8) at q = 2. These behavior are identical to those

observed in the bosonic operators, as we expected due to supersymmetry. In adddition,

the right-moving supercharges is present at any value of µ, in accord with the fact that the
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(a) The φ̄ψ channel at q = 2. We plot the

anomalous dimensions of the higher-spin oper-

ators with half-integer spin.
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(b) The φ̄ψ channel at general q. The curves

represent the dimensions of the spin-3 operators

in models with different q.

Figure 14. The lowest dimensions of the fermionic operators in the 〈φiψ̄iψj φ̄j〉 and 〈φiψ̄iGj λ̄j〉
four point function. The plots illustrate how does the dimension change as a function of µ.

model has N = (0, 2) supersymmetry at any µ. We call the tower of higher-spin operator

running in these 4-point function in the φ̄ψ sector since they are expect to have the form

Os+
1
2

φ̄ψ
∼ φ̄i∂sψi + . . .+ λ̄∂s+1G+ . . . , (C.16)

where “. . .” represents other terms with different distributions of the derivatives on the two

fields; the correct combination is determined by requiring the operator to be a primary field.

There is a set of conjugate kernels that gives identical eigenvalues. Hence there is a

second tower of fermionic higher-spin operators appearing in the two limits (4.1) and (4.8)

with identical behaviors as the parameters change. They are referred as in the φψ̄ sector.

They complete the right-moving N = 2 multiplets at each spin.

C.2 The φ̄λ and φλ̄ sector

We can also consider the 〈φiλ̄iλjφ̄j〉 and 〈φiλ̄iGjψ̄j〉 correlators. There are 6 contributing

kernels

K φ̄λφλ̄(z1, z2, z3, z4) = −2(q − 1)J2Gφ(z13)Gλ(z24)(Gφ(z34))q−2Gψ(z34) (C.17)

Kλφ̄λ̄φ(z1, z2, z3, z4) = 2(q − 1)J2Gλ(z13)Gφ(z24)(Gφ(z34))q−2Gψ(z34) (C.18)

K φ̄λψḠ(z1, z2, z3, z4) = 2J2Gφ(z13)Gλ(z24)(Gφ(z34))q−1 (C.19)

Kλφ̄Ḡψ(z1, z2, z3, z4) = 2J2Gλ(z13)Gφ(z24)(Gφ(z34))q−1 (C.20)

Kψ̄Gφλ̄(z1, z2, z3, z4) = 2J2Gψ(z13)GG(z24)(Gφ(z34))q−1 (C.21)

KGψ̄λ̄φ(z1, z2, z3, z4) = 2J2GG(z13)Gψ(z24)(Gφ(z34))q−1 . (C.22)
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With a similar set of eigenfunctions, the above kernels act as a multiplication of the fol-

lowing

kφ̄λφλ̄ =
(q−1)2q(µq−1)Γ(−2hλ)Γ(1−2hφ)Γ(−h+hφ+hλ)Γ

(
h̃− 1

2 +hφ+hλ

)
(µq2−1)2 Γ(2hλ)Γ(2hφ)Γ(2−h−hφ−hλ)Γ

(
h̃+ 1

2−hφ−hλ
) (C.23)

kλφ̄λ̄φ =
(q−1)2q(µq−1)Γ(−2hλ)Γ(1−2hφ)Γ(−h+hφ+hλ)Γ

(
h̃− 1

2 +hφ+hλ

)
(µq2−1)2 Γ(2hλ)Γ(2hφ)Γ(2−h−hφ−hλ)Γ

(
h̃+ 1

2−hφ−hλ
) (C.24)

kφ̄λψḠ =−
(q−1)qΓ(−2hλ)Γ(1−2hφ)Γ(−h+hφ+hλ)Γ

(
h̃− 1

2 +hφ+hλ

)
2(µq2−1)Γ(2hλ)Γ(2hφ)Γ(2−h−hφ−hλ)Γ

(
h̃+ 1

2−hφ−hλ
) (C.25)

kλφ̄Ḡψ =
(q−1)qΓ(−2hλ)Γ(1−2hφ)Γ(−h+hφ+hλ)Γ

(
h̃− 1

2 +hφ+hλ

)
2(µq2−1)Γ(2hλ)Γ(2hφ)Γ(2−h−hφ−hλ)Γ

(
h̃+ 1

2−hφ−hλ
) (C.26)

kψ̄Gφλ̄ =
2(q−1)2q(µq−1)Γ(−2hλ)Γ(1−2hφ)Γ(1−h+hφ+hλ)Γ

(
h̃− 1

2 +hφ+hλ

)
(µq2−1)3 Γ(1+2hλ)Γ(1+2hφ)Γ(2−h−hφ−hλ)Γ

(
h̃+ 1

2−hφ−hλ
) (C.27)

kGψ̄λ̄φ =−
2(q−1)2q(µq−1)Γ(−2hλ)Γ(1−2hφ)Γ(1−h+hφ+hλ)Γ

(
h̃− 1

2 +hφ+hλ

)
(µq2−1)3 Γ(1+2hλ)Γ(1+2hφ)Γ(2−h−hφ−hλ)Γ

(
h̃−hφ−hλ

)
(C.28)

The final eigenvalues are obtained from diagonalizing the following matrix
0 0 kφ̄λφλ̄ kφ̄λψḠ

0 0 kψ̄Gφλ̄ 0

kλφ̄λ̄φ kλφ̄Ḡψ 0 0

kGψ̄λ̄φ 0 0 0

 (C.29)

Once more we omit the analytic expression of the eigenvalues but only give the dimensions

of the operators that is of most interest to us. This is obtained in a similar manner as above

and the result is present in figure 15. From the plot, we indeed observe that there is no

half-integer higher-spin operators in the limit (4.1) at any q. These behavior is compatible

with the results from the bosonic operator spectrum since we do not expect conserved

anti-holomorphic fermionic operators due to the absence of supersymmetry in the left-

moving sector. The only conserved operator appears at µ = 1, s = 3
2 , which correspond

to the left-moving supercharges emerging as the model develops an enhanced N = (2, 2)

supersymmetry at µ = 1, as we expected.
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(a) The operators with the lowest dimension in

the φ̄λ sector at q = 2. There is no higher-spin

conserved operators in this sector.
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(b) The φ̄λ channel at general q. The curves

represent the dimensions of the spin-3 operators

in models with different q.

Figure 15. The lowest dimensions of the fermionic operators in the 〈φiλ̄iλj φ̄j〉 and 〈φiλ̄iGjψ̄j〉
four point functions. The plots illustrate how does the dimension change as a function of µ. The

jumps of the curves are due to the fact that as µ becomes smaller than 1, the branch of operators

with the lowest dimension when µ ≥ 1 ceases to exist so the operators with the second lowest

dimensions become the “lowest” one at µ < 1.
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[20] M. Cvetič and I. Papadimitriou, AdS2 holographic dictionary, JHEP 12 (2016) 008

[Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].

[21] D. Grumiller, R. McNees, J. Salzer, C. Valcárcel and D. Vassilevich, Menagerie of AdS2
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[111] A.M. Garćıa-Garćıa, Y. Jia and J.J.M. Verbaarschot, Universality and Thouless energy in

the supersymmetric Sachdev-Ye-Kitaev Model, Phys. Rev. D 97 (2018) 106003

[arXiv:1801.01071] [INSPIRE].

[112] K. Bulycheva, N = 2 SYK model in the superspace formalism, JHEP 04 (2018) 036

[arXiv:1801.09006] [INSPIRE].

[113] Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized

Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].

[114] M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher Dimensional Generalizations of

the SYK Model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].

[115] R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen and S. Sachdev, Thermoelectric

transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and

holography, Phys. Rev. B 95 (2017) 155131 [arXiv:1612.00849] [INSPIRE].

[116] G. Turiaci and H. Verlinde, Towards a 2d QFT Analog of the SYK Model, JHEP 10 (2017)

167 [arXiv:1701.00528] [INSPIRE].

[117] M. Berkooz, P. Narayan, M. Rozali and J. Simón, Comments on the Random Thirring

Model, JHEP 09 (2017) 057 [arXiv:1702.05105] [INSPIRE].

[118] Y. Gu, A. Lucas and X.-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous

Sachdev-Ye-Kitaev chains, SciPost Phys. 2 (2017) 018 [arXiv:1702.08462] [INSPIRE].

[119] S.-K. Jian and H. Yao, Solvable Sachdev-Ye-Kitaev models in higher dimensions: from

diffusion to many-body localization, Phys. Rev. Lett. 119 (2017) 206602

[arXiv:1703.02051] [INSPIRE].

[120] X. Chen, R. Fan, Y. Chen, H. Zhai and P. Zhang, Competition between Chaotic and

Nonchaotic Phases in a Quadratically Coupled Sachdev-Ye-Kitaev Model, Phys. Rev. Lett.

119 (2017) 207603 [arXiv:1705.03406] [INSPIRE].

[121] Y. Chen, H. Zhai and P. Zhang, Tunable Quantum Chaos in the Sachdev-Ye-Kitaev Model

Coupled to a Thermal Bath, JHEP 07 (2017) 150 [arXiv:1705.09818] [INSPIRE].

[122] P. Zhang, Dispersive Sachdev-Ye-Kitaev model: Band structure and quantum chaos, Phys.

Rev. B 96 (2017) 205138 [arXiv:1707.09589] [INSPIRE].

[123] S.-K. Jian, Z.-Y. Xian and H. Yao, Quantum criticality and duality in the

Sachdev-Ye-Kitaev/AdS2 chain, Phys. Rev. B 97 (2018) 205141 [arXiv:1709.02810]

[INSPIRE].

[124] D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian

OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].

[125] W. Cai, X.-H. Ge and G.-H. Yang, Diffusion in higher dimensional SYK model with

complex fermions, JHEP 01 (2018) 076 [arXiv:1711.07903] [INSPIRE].

[126] X.-H. Ge, S.-J. Sin, Y. Tian, S.-F. Wu and S.-Y. Wu, Charged BTZ-like black hole solutions

and the diffusivity-butterfly velocity relation, JHEP 01 (2018) 068 [arXiv:1712.00705]

[INSPIRE].

[127] K. Bulycheva, A note on the SYK model with complex fermions, JHEP 12 (2017) 069

[arXiv:1706.07411] [INSPIRE].

– 40 –

https://doi.org/10.1007/JHEP03(2018)028
https://arxiv.org/abs/1712.07398
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07398
https://doi.org/10.1103/PhysRevD.97.106003
https://arxiv.org/abs/1801.01071
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.01071
https://doi.org/10.1007/JHEP04(2018)036
https://arxiv.org/abs/1801.09006
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.09006
https://doi.org/10.1007/JHEP05(2017)125
https://arxiv.org/abs/1609.07832
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.07832
https://doi.org/10.1007/JHEP01(2017)138
https://arxiv.org/abs/1610.02422
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.02422
https://doi.org/10.1103/PhysRevB.95.155131
https://arxiv.org/abs/1612.00849
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00849
https://doi.org/10.1007/JHEP10(2017)167
https://doi.org/10.1007/JHEP10(2017)167
https://arxiv.org/abs/1701.00528
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.00528
https://doi.org/10.1007/JHEP09(2017)057
https://arxiv.org/abs/1702.05105
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.05105
https://doi.org/10.21468/SciPostPhys.2.3.018
https://arxiv.org/abs/1702.08462
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.08462
https://doi.org/10.1103/PhysRevLett.119.206602
https://arxiv.org/abs/1703.02051
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.02051
https://doi.org/10.1103/PhysRevLett.119.207603
https://doi.org/10.1103/PhysRevLett.119.207603
https://arxiv.org/abs/1705.03406
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,119,207603%22
https://doi.org/10.1007/JHEP07(2017)150
https://arxiv.org/abs/1705.09818
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.09818
https://doi.org/10.1103/PhysRevB.96.205138
https://doi.org/10.1103/PhysRevB.96.205138
https://arxiv.org/abs/1707.09589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.09589
https://doi.org/10.1103/PhysRevB.97.205141
https://arxiv.org/abs/1709.02810
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.02810
https://doi.org/10.1007/JHEP07(2018)085
https://arxiv.org/abs/1711.03816
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.03816
https://doi.org/10.1007/JHEP01(2018)076
https://arxiv.org/abs/1711.07903
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.07903
https://doi.org/10.1007/JHEP01(2018)068
https://arxiv.org/abs/1712.00705
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.00705
https://doi.org/10.1007/JHEP12(2017)069
https://arxiv.org/abs/1706.07411
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.07411


J
H
E
P
1
2
(
2
0
1
8
)
0
6
5

[128] E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159

[hep-th/9301042] [INSPIRE].

[129] M.R. Gaberdiel, W. Li, C. Peng and H. Zhang, The supersymmetric affine Yangian, JHEP

05 (2018) 200 [arXiv:1711.07449] [INSPIRE].

[130] M.R. Gaberdiel, W. Li and C. Peng, Twin-plane-partitions and N = 2 affine Yangian,

arXiv:1807.11304 [INSPIRE].
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