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Outer Sphere Adsorption of Pb(II)EDTA on Goethite*
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Abstract
FTIR and EXAFS spectroscopic measurements were performed on Pb(II)EDTA adsorbed on goethite as functions
of pH (4-6), Pb(II)EDTA concentration (0.11 µM - 72 µM), and ionic strength (16 µM - 0.5M).  FTIR
measurements show no evidence for carboxylate-Fe(III) bonding or protonation of EDTA at Pb:EDTA = 1:1.  Both
FTIR and EXAFS measurements suggest that EDTA acts as a hexadentate ligand, with all four of its carboxylate
and both amine groups bonded to Pb(II).  No evidence was observed for inner-sphere Pb(II)-goethite bonding at
Pb:EDTA = 1:1.  Hence, the adsorbed complexes should have composition Pb(II)EDTA2-.  Since substantial uptake
of PbEDTA(II)2- occurred in the samples, we infer that Pb(II)EDTA2- adsorbed as outer-sphere complexes and/or as
complexes that lose part of their solvation shells and hydrogen bond directly to goethite surface sites.  We propose
the term “hydration-sphere” for the latter type of complexes because they should occupy space in the primary
hydration spheres of goethite surface functional groups, and to distinguish this mode of sorption from common
structural definitions of inner- and outer-sphere complexes.  The similarity of Pb(II) uptake isotherms to those of
other divalent metal ions complexed by EDTA suggests that they too adsorb by these mechanisms.  The lack of
evidence for inner-sphere EDTA-Fe(III) bonding suggests that previously proposed metal-ligand - promoted
dissolution mechanisms should be modified, specifically to account for the presence of outer-sphere precursor
species.
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1. INTRODUCTION

Pb(II) and EDTA are common, toxic contaminants in surface and ground waters, and their

transport, toxicity, and bioavailability are heavily impacted by ternary (and higher order) interactions with

water, each other, and oxide and (oxy)hydroxide surfaces.  Pb(II) contamination is ubiquitous, arising

from mine wastes, leakage of paint and combustion of leaded fuels, and industrial activities such as

smelting.  EDTA is a common constituent of household products and industrial processes, typically

entering the environment via discharge of sewage effluent to natural waters (Means et al., 1980).  Once

present in the subsurface, EDTA is slow to degrade (Means, 1980; Kari and Giger, 1995).  Due to its

tendency to chelate metal ions, it induces long-lived perturbations of metal ion speciation in the

subsurface.  Pb(II) and EDTA each adsorb strongly on oxide surfaces (Jenne, 1967; Hem 1976; Erel and

Morgan, 1992; Jardine et al. 1993; Szecsody et al., 1994; Nowack and Sigg, 1996, 1997, and references

therein).  When mutually present, EDTA may complex Pb(II) and strongly affect its adsorptive behavior.

For example, addition of EDTA to lead-contaminated soils dramatically increases the bioavailability of

Pb(II) to plants, presumably due to liberation of adsorbed Pb(II) from mineral surfaces and solid phases

(Jøgensen, 1993; Huang et al 1996, 1997; Blaylock et al, 1997).  The speciation of Pb(II)EDTA and

EDTA in sub-surface environments is also impacted by dissolution of Fe-oxides and the subsequent

formation of aqueous and adsorbed Fe(III)EDTA complexes.  Several authors have proposed that Pb(II)

and EDTA co-adsorb on oxides as ternary complexes (Bowers and Huang, 1986; Girvin et al. 1993;

Jardine et al., 1993; Szecsody et al., 1994; Zachara et al., 1995; Nowack and Sigg, 1996, 1997).  Both

inner- and outer-sphere models have been proposed.  The actual mechanism has been difficult to assign.

The extent of Pb(II)EDTA uptake is dependent on ionic strength at near- and sub-neutral pHs (Nowack

and Sigg, 1996), suggesting predominantly electrostatic sorption.  However, Pb(II)EDTA also exhibits

weak but finite uptake on Fe- and Al-oxides at pH • pHPZC (Bowers and Huang1986; Nowack and Sigg,

1996), suggesting the existence of non-electrostatic bonding forces.  It is of practical importance to

distinguish between these modes of sorption because the distance of approach and type of bonding of

ions to oxide surfaces heavily influence the adsorbing ion’s chemical properties and reactivity (Stumm,

1992).  Fundamental knowledge regarding the reaction rates and stoichiometries of any of the

components of such systems would also be of great use in modeling Pb(II) and EDTA mobility under the

dynamic chemical conditions of aquifers and would improve our ability to design remediation strategies.
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The primary objectives of this study were to define the modes of sorption (inner vs. outer-sphere),

and the molecular structures, compositions, and reaction stoichiometries of Pb(II)EDTA ternary

complexes on goethite using extended x-ray absorption fine structure (EXAFS) and Fourier transform

infrared (FTIR) spectroscopic measurements.  Little is known about these defining aspects or about the

molecular transformations occurring between Pb(II)EDTA adsorption and Fe-oxide dissolution.  FTIR

measurements directly probe vibrations of the EDTA molecule, which are highly sensitive to its structure,

protonation state, and coordination environment.  Both diffuse reflectance (DR-FTIR) and attenuated total

reflectance (ATR-FTIR) measurements were performed in this study.  EXAFS measurements provide

quantitative information about molecular structure from the perspective of Pb(II).  Goethite (α-FeOOH) is

a common mineral in soils, surface waters, and aquifers, and has large sorptive capacities for both Pb(II)

and EDTA (Gunneriusson et al., 1994; Nowack and Sigg, 1996). 

This study is an extension of our EXAFS and FTIR measurements of Pb(II) and carboxylate

adsorption, on Al- and Fe-oxides (Bargar et al., 1996; 1997a,b,c,d; 1998; 1999; Nordin et al., 1997; 1998;

Persson et al., 1998a,b).  The results of the current study suggest that Pb(II)EDTA2- adsorbs primarily as

outer-sphere ions and/or via direct hydrogen bonds to surface functional groups, which displace part of

the aqueous solvation shell.

1.1 Previous Work

Bowers and Huang (1986) studied electrophoretic mobility and metal ion uptake of divalent

metal ion-EDTA complexes on γ-Al2O3.  They observed (1) a weak surface charge reversal in the

presence of Ni(II)EDTA, (2) ligand-like uptake of Pb(II)EDTA and Ni(II)EDTA, both extending to pH •

pHpzc, (3) a relative independence of Me(II)EDTA uptake on the identity of Me(II), and (4) a correlation

between Me(II)EDTA adsorption density and the inferred density of AlOH2

+ surface functional groups.

Based on these observations, the authors concluded that Me(II)EDTA complexes adsorbed via hydrogen-

bonding ion-pair formation with AlOH2
+ groups; however, they offered no molecular model of the

hydrogen-bonding interactions.  Girvin et al. (1993) studied the pH dependence of Co(II) and Co(III)

uptake on γ-Al 2O3 in 0.1 to 0.001M M NaClO4.  They proposed that free carboxylate groups (i.e., not

bonded to Co) of quinquidentate Co(II)/(III)EDTA complexes (i.e., 3 carboxylate and 2 amine groups

bonded to Co(II)) hydrogen bond to surface hydroxyls, and that carboxylate-surface hydrogen bonding

may also occur for fully coordinated hexidentate complexes.
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Szecsody et al. (1994) measured Co(II)EDTA sorption on Fe-coated sand and Fe(III) release over

a variety of reaction times.  Bryce et al. (1994) found that EDTA and Ni(II)EDTA sorption on ferrihydrite

is fast (occurring in minutes) and that Ni(II) adsorption occurs faster than the formation of Ni(II)EDTA

solution complexes.  Zachara et al. (1995) found that, at pH • 5, Co(II)EDTA adsorption on goethite and

aquifer sands is followed by significant Co(II)EDTA dissociation within 30 minutes.  Nowack and Sigg

(1996, 1997) studied Me(II)- and Me(III)-EDTA uptake on goethite and metal-ligand promoted

dissolution of goethite and ferrihydrite.  Their results show that Pb(II)EDTA uptake is weak but positive

at pH > pHpzc, and that it is ionic-strength dependent.  They proposed a Me(II)EDTA-promoted

dissolution model in which quinquidentate Me(II)EDTA complexes bond to surface ≡Fe sites and then

transform into an activated complex having EDTA simultaneously bonded to Fe(III) and Me(II) as

tridentate iminodiacetic ligands.

XAFS investigations of Pb(II) sorption on Al- and Fe-oxides and -(oxy)hydroxides in the absence

of strongly complexing ligands have been performed by several groups (Chisholm-Brause et al., 1990;

Roe et al., 1991; Manceau et al., 1992; Bargar et al., 1996; 1997a,b,d; 1998).  These studies show that

Pb(II) ions adsorb on Al- and Fe-oxides preferentially as fully hydrolyzed, mononuclear complexes that

are bonded to edges of surface AlO6 or FeO6 octahedra in bidentate and/or tridentate fashions.  EDTA has

four carboxylate groups that, in principle, can bond to Pb(II) and/or Fe(III).  FTIR investigations of

carboxylate adsorption on Al- and Fe-oxides and -(oxy)hydroxides have shown that carboxylates can

adsorb as inner-sphere and outer-sphere surface complexes.  The mode of coordination to the surface has

been shown to be sensitive to factors such as the composition and structure of the ligand, pH, and ionic

strength (Nordin et al., 1997; Nordin et al., 1998; Persson et al., 1998a; Persson et al., 1998b).

For outer-sphere complexes, the most negatively charged (fully ionized) form of the ligand (L4-) was

found to be stabilized at the interface.

2. MATERIALS and METHODS

2.1 Materials

Goethite (45 m2/g, pHpzc = 8.9 in absence of CO2) was supplied by Alexander Robertson, Department of

Civil and Environmental Engineering, Stanford University, and was synthesized according to the procedure

described in Van Geen et al. (1994).  XPS analyses of the powders showed the surfaces to have only Fe, O, and
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adventitious carbon.  FTIR measurements in this study showed no trace of NO3

-, SO4

2-, or ClO4

- impurities.

Regional and full powder XRD scans showed no extra peaks attributable to other Fe-oxides.

2.2 FTIR Sample Preparation, Measurement, and Analysis

All solutions were prepared from Milli-Q water boiled under N2 to remove CO2.  Goethite stock

suspensions (5.5 g/L) were adjusted to pH 4 with 0.7 mM HCl and sparged with Ar overnight to remove CO2 and

help disperse goethite.  Suspensions were stirred with Teflon-coated stir bars, and water-saturated Ar was bubbled

through samples during all pH measurements and adjustments.  Aliquots of goethite stock suspension were added

to 20 mL (DR-FTIR) or 50 mL (ATR-FTIR) polycarbonate centrifuge tubes and adjusted to the approximate final

pH with NaOH or HCl.  Samples were wrapped in Al foil, aliquots of 1:1 Pb(II)EDTA solution (as PbCl
2
and

Na2EDTAH2) were added, and pH was readjusted to the target value.  Typically, pHs stabilized within 30 seconds

of pH adjustment and did not change thereafter over a 24-hour time interval.  Samples were rotated end-over-end

for 15 - 24 hrs. before FTIR measurements.

Following end-over-end rotation, samples were centrifuged for 15 - 45 min. at 2,000xg to 19,000xg, RCF

to concentrate the solid.  ≥ 99.5% (by mass) of the supernatant could thus be removed.  Based on 48% - 99%

uptake, surface-bound Pb(II)EDTA was in excess of dissolved EDTA by factors ≥ 100.  Dissolved Pb(II) was

measured by graphite-furnace atomic absorption (GFAA) spectrometry.  Supernatants were filtered (0.45 µm

cellulose Millipore membranes) prior to GFAA analysis.  Results are given in Table 1.

FTIR spectra were collected using a Perkin-Elmer 2000 spectrometer (4 cm-1 resolution, mirror velocity of

1 cm-1/sec.), Harrick diffuse reflectance accessory (deuterated triglycine sulfate detector) (DR-FTIR

measurements) and a horizontal Amtir ATR assembly (45• incidence angle) with a mercury-cadmium-telluride

detector.  500 scans (DR-FTIR) or 4,000 scans (ATR-FTIR) were measured for each sample.  DR-FTIR analysis:

centrifuged samples were placed on filter membranes (Schleicher & Schuell, membranfilter® 0.025 µm) in an Ar-

filled desiccator for approximately 25 min. to remove water by capillary action.  To verify that evaporative

desiccation did not occur, a piece of polypropylene film was placed over the open (exposed) side of test wet paste-

on-filter samples to prevent evaporation.  These samples became desiccated to the same level as the others in about

25 min.  The presence of water peaks in DR-FTIR spectra (prior to background subtraction) indicated that some

water remained on the surfaces following this procedure.  10 mg of sample were gently mixed with 0.5 gm of

preground KBr and loaded into DR-FTIR sample holders.  Previous studies (Bargar et al., 1999) suggest that

dispersal in KBr should not perturb adsorbate speciation.  The spectrum of clean goethite (pH 4) was subtracted
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from sample spectra (subtraction factors ranged between 0.95 and 1.05; 1.0 is expected for perfectly measured and

mixed samples) to remove bulk goethite peaks.  The similarity of DR- and ATR-FTIR sample spectra presented

herein suggest that DR-FTIR sample preparation procedures did not perturb Pb(II)EDTA adsorbate speciation.

ATR-FTIR analysis: wet centrifuged Pb(II)EDTA-reacted goethite was spread over the ATR crystal to a thickness

of 1 to 2 mm, over which was placed several mL of supernatant.  Water-saturated Ar was maintained over samples

during data collection.  Supernatant and clean goethite spectra were subtracted from sample spectra to remove

peaks from bulk water, aqueous complexes, and bulk goethite.

2.4  XAFS Sample Preparation, Measurement, and Analysis

Samples were prepared in 65 mL polycarbonate centrifuge tubes under N
2
atmosphere in batch mode

similar to ATR- and DR-FTIR samples (Table 2).  Prior to addition of Pb(II), goethite suspensions were sparged

with N
2
 for 20 minutes at pH 3 (adjusted with 1 mM HNO3) to remove adsorbed CO2 and helped disperse the

goethite.  Pb(II)EDTA stock solution (25 mM Pb(NO3)
2
in 25 mM Na2EDTAH2) was added to samples while they

were vigorously stirred.  After adjustment the target pH, samples were rotated end-over-end for 36 - 60 hr. and

centrifuged (17,150 g at 21° C for 15 min.). We have detected no effect of electrolyte type on the adsorbed species

(cf., section 3.1).  Typically, > 99.5% of the supernatant was removed.  Hence, surface-bound Pb(II)EDTA

exceeded dissolved EDTA by 35x to 1,800x. Pb LIII-edge EXAFS fluorescence data were collected at

room temperature at SSRL BL 4-3 using a Lytle-type detector.  Data collection parameters were: silicon (220)

double-crystal monochromator (approximately 6.4 eV FWHM resolution) detuned 35%, 2x20 mm beam size

defined by Ta slits.  An As 6-µx filter and Al foils were used as fluorescent x-ray filters.  The second inflection

point of the Pb foil edge-jump was set to 13,055 eV.

EXAFS spectra were background-subtracted, spline-fit, k3-weighted and quantitatively analyzed in k-

space using the EXAFSPAK software (George, 1993) following procedures described in Bargar et al. (1997a,b).

Backscattering phase and amplitude functions required for numerical fitting of spectra were obtained from XAFS

of well-characterized, crystalline model compounds and FEFF 6 calculations (S0

2=1, exch=1,3, Ion=0) (Rehr and

Albers, 1990; Rehr et al., 1991; 1992).  The full structure out to 6 Å was used as FEFF input to obtain correct

potentials.  Pb-O and Pb-C bond distances (RPb-O, Pb-C) and corresponding coordination numbers (CNs) were found to

be accurate to ±0.03 Å, ± 20%, respectively, based on fits to model compounds (Bargar et al., 1997a; Bargar

et al., 1998).  A single value of Eo was varied for all shells.  Second- and third-shell Debye-Waller (σ2) values

were initially allowed to vary during fitting.  Second-shell (Pb-C) σ2 values were found to cluster around 0.013 Å2
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and henceforward were fixed to this value.  Third-shell (Pb-O) σ2 values were fixed at 0.012 Å2 for the same

reason.  Parameters allowed to float in fits were: RPb-O, RPb-C, RPb-N, CNPb-O, CNPb-C, and σ2

Pb-O.

3. RESULTS

3.1  FTIR Spectra of Pb(II)EDTA Adsorbed on Goethite

FTIR spectra of the Pb(II)EDTA/goethite samples are presented in Figs. 2 - 4.  The C-O

stretching frequencies of the carboxylate groups on the EDTA molecule (about 1350 - 1650 cm-1) are

relatively intense, sensitive to the ionization and coordination states of the molecule, and thus can be used

to deduce the structures of EDTA complexes (Nakamoto, 1986).  The most intense carboxylate IR

absorption peak in this region is the asymmetric C-O stretching frequency, denoted in this paper as νasym

(•1600 cm-1 in Figs. 2-4), which can have values ranging from about 1550 cm-1 to about 1650 cm-1,

depending upon the coordination of the EDTA molecule (Nakamoto, 1986).  Carboxylate-Pb(II) and -

Fe(III) bonding, produce C-O νasym values of 1570 to 1600 cm-1 (Sawer and Tacket, 1963; Reed and Kula,

1971; McConnell and Nuttall, 1977; Nakamoto, 1986; Rojo et al., 1992; Yugeng, 1993, and this paper),

and 1610 to 1696 cm-1 (Busch and J.C. Bailar, 1953; Morris and Busch, 1956; Fujita et al., 1962; Sievers

and J.C. Bailar, 1962; Scott et al., 1973; Nakamoto, 1986), respectively (Fig. 2).  In both cases, the

intensities of C-O νasym are proportional to the number of EDTA carboxylate groups bonded to the given

metal ion (Nakamoto et al., 1963).  Peaks occurring between about 1350 and 1450 cm-1 belong to the

C-O symmetric stretching frequency (νsym).  Their shapes and positions are also sensitive to the

coordination state of EDTA, and their qualitative comparison provides another means to infer the

structures and bonding of EDTA molecules.

ATR-FTIR spectra of Pb(II)EDTA/goethite (0.1M M NaCl) as a function of pH are presented in

Fig. 2.  The energy positions of C-O νasym in the sorption sample spectra (1569 cm-1) are consistent with

νasym energy values for carboxylate groups bonded to Pb(II).  In contrast, C-O νasym occurs at 1609 cm-1 for

Fe(III)EDTA-(aq), and 1617 cm-1 for H2EDTA2-, which should be the stable form of uncomplexed aqueous

EDTA between pH 4 and 6.  There are no distinguishable Fe(III)- bonded EDTA peak contributions to C-

O νasym in the sorption sample spectra.  To illustrate this point, the C-O νasym peak in the pH 6 sample was

fit with a Gaussian/Lorentzian lineshape (for which χ2 = 0.00002790 abs2) over the energy range 1500 to

1631 cm-1 (Fig. 2).  Comparison of this fit to the sample spectrum shows little evidence for amplitude at
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1609 cm-1.  When a carboxylate-Fe(III) peak was forced to be present 1609 cm-1 in the fits, and its height

and width were allowed to vary, the resultant feature accounted for less than 0.2% of the total peak area,

and the overall fit quality improved by an insignificant amount (χ2 = 0.00002789 abs2).  Furthermore, the

C-O νsym regions of the spectrum closely match that of Pb(II)EDTA2-(aq) and differ from the C-O νasym

region of Fe(III)EDTA-(aq).  We conclude that carboxylate-Fe(III)-bonded EDTA species do not occur in

the samples at detectable concentrations.  Thus, the spectra suggest that the predominant adsorbate

species are Pb(II)EDTA2- chelate complexes electronically and structurally similar to Pb(II)EDTA2-(aq).

To ascertain the extent to which Pb(II)EDTA adsorbate speciation was affected by sorption

density, we measured spectra of Pb(II)EDTA/goethite at sorption densities ranging from 0.06 to 1

µmol./m2.  DR-FTIR spectra for these samples are presented in Fig. 3 (ATR-FTIR measurements lacked

sufficient sensitivity to be used at the lowest of these sorption densities).  The position of the C-O νasym

peak in all spectra suggests that EDTA carboxylate groups are bonded to Pb(II).  Based on the results of

Bargar et al, (1999), we ascribe the slight shifting of the DR-FTIR C-O νasym to higher frequency with

increasing sorption density to a decrease in inter-particle spacing allowed by decreasing surface charge,

which reduces the inter-particle water content in the DF-FTIR samples.  This tenet is supported by the

suspension properties of the goethite, which flocculated quickly in the 0.98 µmol./m2 sample but very

slowly at 0.06 µmol./m2, and by the observation that C-O νasym in the lowest-sorption-density DR sample

occurs at the same frequency as in ATR-FTIR spectra.  The C-O νasym peaks are symmetric and show no

evidence for any shoulder at 1610 cm-1, indicating that Fe(III)-bonded carboxylate groups were not

present at detectable concentrations.  Furthermore, the C-O νsym, regions of the spectra are similar to that

of Pb(II)EDTA2-(aq) and different from that of Fe(III)EDTA-(aq).  Thus, we conclude that non-inner-

sphere Pb(II)EDTA2- complexes predominated at all sorption densities studied.

Figure 4 shows the effect of ionic strength on the Pb(II)EDTA/goethite spectra.  The spectra

indicate the presence of carboxylate groups bonded to Pb(II) and contain no discernible evidence for

carboxylate bonding to Fe(III).  Spectra from samples prepared in NaNO3 and NaClO4 are also presented

in Fig. 4.  The peak positions are similar to the other spectra, suggesting Pb(II)EDTA adsorbate speciation

is not significantly affected by the composition of the electrolyte medium in these measurements.

3.2  EXAFS Spectra of Pb(II)EDTA Adsorbed on Goethite
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EXAFS spectra of Pb(II)EDTA/goethite were measured to characterize the structures and

coordination environment of adsorbate species from the perspective of the metal ion.  Spectra were

recorded at pH 5 for the purposes of measuring adsorbate species at conditions of sufficiently high

uptake, necessary to collect usable data, in the presence and absence of EDTA (Fig. 5).  EXAFS fitting

results are presented in Table 2.  All Pb(II)EDTA/goethite sorption sample EXAFS spectra and FTs

closely resemble those of Pb(II)EDTA2- (aq) and differ substantially from those of Pb(II) on goethite in

the absence of EDTA (cf., Fig. 5).  Pb LIII-edge EXAFS spectra are highly sensitive to the local Pb

coordination environment, hence these observations suggest that the predominant Pb(II)EDTA adsorbate

species on goethite are Pb(II)EDTA2- chelate complexes, in agreement with the FTIR results.  The

spectrum from the sample having an excess of Pb(II) (Pb:EDTA = 2:1) can be fit (Fig. 5) using a linear

combination of the spectra from the Γ =1.8 µmol./m2 Pb(II)EDTA/goethite sample and Pb(II) adsorbed on

goethite as an inner-sphere complex.  This observation suggests that excess Pb(II) adsorbs on goethite as

inner-sphere complexes.

3.3  Pb(II) 1st Coordination Shell

Vibrational spectroscopy (Krishnan and Plane, 1968) and crystal structures (van Remoortere et

al., 1971; Shields et al., 1973; Harrison et al., 1982; Harrison and Steel, 1982) of Pb(II)EDTA and

Sn(II)EDTA complexes indicate that the first coordination shell should contain two N atoms at distances

similar to first-shell O atoms.  EXAFS contributions from O and N are sufficiently similar that it is often

not possible to distinguish between them in unconstrained fits to spectra (accordingly, we refer to the

mixed first-shell as O/N).  However, for this reason, if the N shell were neglected in fits to the

Pb(II)EDTA spectra, the fit-derived values of the N coordination number (CNPb-O) were found to increase

by about two (from about 4 to about 6 O atoms), and the Pb-N distance (RPb-O) decreased by about 0.02 Å,

with little change in the quality of fit.  Exclusion of N from fits would not change our EXAFS-based

interpretations, since the same number of O/N atoms at about the same distances would be obtained.

Nevertheless, inclusion of N in the first shell should more closely approximate physical reality.

Therefore, two N atoms were included in the first-shell fits reported in Table 2, with σ2 constrained to

have the values obtained for first-shell oxygens.  FEFF 6-derived phase and amplitude parameters for N,

C, and O in Pb(II)EDTA were derived from a model based on the crystal structure of Sn2EDTAx2H2O

(van Remoortere et al., 1971) (Fig. 6) because no reliable Pb(II)EDTA structures were available in the
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literature, to our knowledge.  Sn(II) is an excellent model for Pb(II) because the two ions have very

similar coordination chemistries and radii (Sn(II) is 5% smaller than Pb(II)) (Greenwood and

Earnshaw, 1985).

Fits to the sample spectra indicate that the inner-most parts of Pb(II) first coordination shells are

composed of approximately 6 to 7 O/N atoms at distances ranging from 2.38 to 2.53 Å (Table 2).  Bargar

et al (1997a,c) pointed out that EXAFS-determined CNs for Pb(II) 1st shells, which are derived from the

normalized EXAFS amplitudes may underestimate the true CN by up to 50% due to amplitude reducing

effects.  Therefore, the EXAFS-derived CNs and Pb-O/N distances suggest that the inner-most part of the

Pb(II) 1st shell consists of 6 O/N, which we attribute to the 2 amine N and 4 carboxylate O atoms of

EDTA.  The full CN can be estimated from RPb-O/N by comparing it to CN vs. RPb-O trends observed in

oxides, oxosalts, and hydrates (Bargar et al, 1997a).  This approach works well because the average and

minimum RPb-O vary rapidly with CN (Fig. 7).  Since the minimum RPb-O/N in EXAFS samples ranges from

2.38 to 2.47 Å, the minimum RPb-O curve in Fig. 7 suggests that the true CN for Pb(II)EDTA first-shells is

7 to 8 O/N atoms.  The 7th and 8th O atoms are most likely water molecules, the distances of which may be

estimated from the average RPb-O curve in Fig. 7, yielding RPb-OH2 ≈ 3.3 Å.  This result is consistent with the

structures of Sn(II)EDTA complexes in crystals (van Remoortere et al., 1971; Shields et al., 1973;

Harrison et al., 1982; Harrison and Steel, 1982), which suggests that the electron lone pairs are

stereochemically active, preventing the close approach of ligands external to the EDTA molecule (i.e., <

2.75 Å).

3.4  Pb(II) 2nd Coordination Shell

The Pb(II)EDTA sorption sample and aqueous solution spectra contain strong second

frequencies, manifest in the FTs (Fig. 5) as peaks at ca 2.7 Å (uncorrected for phase shift).  Fits to the

spectra indicate the Pb(II)-second shell distance is 3.20 to 3.30 Å, depending upon whether the

backscatter is O, N or C.  This distance corresponds closely to expected distances to C neighbors, of

which there are many (up to 10).  In Sn(II)EDTA (Fig. 6), Sn-C distances are 3.11, 3.21, 3.22, 3.23, 3.26,

2x3.27, 3.32, 3.36, and 3.46 Å.  Hence, the 2nd-shell peak of our EXAFS samples can be interpreted in

terms of Pb-C single scattering (SS).  This assignment is supported by the excellent fits provided by a

single shell of C atoms (Fig. 5).  To ascertain whether the 2nd-shell FT peak could arise from multiple

scattering (MS), we conducted FEFF 6 calculations on the structure shown in Fig. 6.  Only two MS paths

have distances in the relevant range (< 3.5 Å).  Both are triangular Pb-C-O-Pb paths (effective path
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lengths of 3.3 to 3.4 Å).  Such paths give rise to weak scattering in PbCO3 and Pb(NO3)2 in comparison to

the same number of SS paths of the same distance.  Hence, the <3.5 Å MS paths in Pb(II)EDTA

complexes should be weak in comparison to Pb-C SS.

3.5  Pb(II) 3rd Coordination Shell

Pb(II)EDTA2-(aq) and all sorption sample spectra contain a substantial third frequency, manifest

in the FTs (Fig. 5) as a peak at ca 3.6 Å (uncorrected for phase shift), which corresponds to Pb-O

distances of 4.2 to 4.3 Å.  This distance matches the expected distances to the four EDTA carboxylate O

atoms not bonded to Pb(II) (denoted Odistal).  In Sn(II)EDTA, Sn-Odistal = 4.26, 4.48, 4.58, and 4.60 Å.  The

carboxylate C atoms that bridge between Sn(II)-bonded O and Odistal are interposed almost directly

between Sn(II) and Odistal (cf, Fig. 6), giving rise to pseudo-linear Sn-Odistal-C-Sn, Sn-C-Odistal-Sn, and Sn-C-

Odistal-C-Sn MS paths.  The shortest of these paths has Reffective ≥ 4.29 Å.  To ascertain whether the 3rd-shell

FT peaks could arise from these MS paths, we used their FEFF 6-derived phase and amplitude parameters

to fit the sample spectra.  Both RMS and CNMS were allowed to float.  Figure 8 shows the MS and SS fits to

the residual EXAFS spectrum from the 1.8 µmol./m2 Pb(II)EDTA/goethite sample.  The SS Pb-Odistal paths

provide substantially better fits to the EXAFS frequencies than do the MS paths, suggesting the 3rd-shell

is dominated by Pb-Odistal SS.

Both SS and MS 3rd-shell paths arise from, and hence are highly sensitive to, the position

(distance) of Odistal.  Hence, changes in RPb-Odistal (and possibly CNPb-Odistal) can be used to infer changes in

bonding of the distal carboxylate O atoms for SS or MS.  The values of RPb-Odistal and CNPb-Odistal for our

sorption samples are similar to those for aqueous Pb(II)EDTA2-, indicating the distal carboxylate O atoms

of the adsorbed complexes have the same structural environment as those in aqueous solution.  Hence,

they should not be bonded to Fe(III), in agreement with our FTIR results.

4. DISCUSSION

4.1  Outer-Sphere and Hydration-Sphere Adsorption of Pb(II)EDTA on Goethite

Our FTIR and EXAFS results indicate that carboxylate-Fesfc (“sfc” denotes the specified atom is

part of the goethite surface) and Pb-Osfc bonding did not exist in our samples at detectable concentrations

and that, in the adsorbed complexes, EDTA acts as a hexadentate ligand to Pb(II).  The EXAFS spectra



12

contain no evidence for inner sphere bonding of Pb(II) to goethite at Pb:EDTA = 1:1.  We conclude that

inner-sphere bonding of Pb(II)EDTA complexes did not occur to a detectable extent in these samples.

Since substantial Pb(II)EDTA2- uptake was observed in the samples, it follows that Pb(II)EDTA

complexes should have been adsorbed either as outer-sphere complexes, i.e., retaining their complete

aqueous solvation spheres, and/or via direct hydrogen bonds to surface functional groups, which displace

part of the aqueous solvation shell.  There were no major spectral changes as functions of pH, ionic

strength, and [PbEDTA]T.  If the complexes had clustered into larger multimeric species, the

accompanying changes in structure necessary to bind together anionic complexes, such as EDTA

bridging between Pb(II) atoms, should have been detected in both EXAFS and FTIR spectra.  Hence, we

conclude that clustering of the complexes did not occur.

Several previous studies indicate that Pb(II)EDTA and other Me(II)EDTA complexes exhibit

significant positive uptake at pH • pHPZC on both Fe- and Al-oxides.  Nowack and Sigg (1996) showed

Pb(II)EDTA uptake on goethite at pH 8 (the highest pH for which they measured Pb(II)) compared to a

pHPZC of 7.4. Bowers and Huang (1986) showed Pb(II)EDTA uptake on γ-Al 2O3 up to pH 10 vs. a reported

pHPZC of 9.0 to 9.7.  Ni(II)EDTA and Co(II)EDTA uptake isotherms are nearly identical to that of

Pb(II)EDTA, all other conditions being equal (Bowers and Huang, 1986; Nowack and Sigg, 1996).

Nowack and Sigg show Ni(II)EDTA uptake on goethite as high as pH 9, whereas Girvin et al. (1993)

show that Co(II)EDTA adsorbs on γ-Al 2O3 at pH 9.5 (isoelectric point reported to be 9.2).  In all cases, the

authors argued that the complexes should have had composition Me(II)EDTA 2-.  These observations

suggest that anionic Me(II)EDTA complexes can adsorb on neutral and/or negatively charged surfaces.

This conclusion implies the existence of short-range surface-adsorbate forces such as hydrogen bonding.

Others (e.g., Bowers and Huang, (1986) and Girvin et al. (1993)) have proposed that Me(II)/(III)EDTA

complexes may hydrogen bond to oxide surface sites.  Given the donor capacity of the carboxylate

oxygens (in adsorbed Pb(II)EDTA complexes) not bonded to Pb(II), it is plausible that hydrogen bonds

could form between them and surface (hydr-)oxo groups.  This mode of sorption falls between common

structural definitions of inner-sphere (i.e., covalently bonded to the oxide surface) and outer-sphere (i.e.,

adsorbates retain complete shells of solvating water molecules) complexes (Sposito, 1984).  Since the

chemical potentials and properties of ions are heavily influenced by their distance of approach and

bonding to oxide surfaces (Stumm, 1992), a unique designation is warranted to distinguish this mode of

hydrogen-bonding sorption from inner- and outer-sphere mechanisms (defined above).  Hydrogen-
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bonded complexes should occupy space in the primary hydration spheres of surface sites, which

otherwise would be filled by solvating water molecules or solute ions.  Hence, we propose the name

hydration-sphere complexes for this mode of adsorption.

Since Pb(II)EDTA uptake is correlated with the density of protonated surface functional groups

(Bowers and Huang, 1986), we infer that EDTA methyl H atoms do not form hydrogen bonds to

negatively charged surface (hydr)oxo groups (i.e., the chelate does not act as a hydrogen bond donor to

surface sites) to an extent sufficient to influence sorptive behavior.  Hence, hydration-sphere bonding

should be dominated by surface donor/ chelate acceptor hydrogen bonding interactions.  The ATR-FTIR

spectra provide permissive evidence for the hypothesis that Pb(II)EDTA2- complexes bond to goethite as

hydration-sphere complexes.  For Pb(II)EDTA complexes adsorbed to goethite, C-O νasym (1569 cm-1) is

shifted to a substantially lower frequency than for Pb(II)EDTA complexes in bulk aqueous solution (C-O

νasym • 1580 cm-1; cf., Fig. 2).  Because the C-O νasym frequency is sensitive to the chemical environment,

this peak shift suggests a significant difference between the coordination environments of adsorbed and

aqueous Pb(II)EDTA.  Since the EXAFS and FTIR spectral features imply the absence of carboxylate-

and/or amine-Fe(III) bonding, we attribute this peak shift to hydrogen bonding interactions between

goethite surface sites and EDTA carboxylate groups and/or solvation shells of adsorbed complexes, such

as proposed by Bargar et al. (1996).

Several general conclusions regarding other divalent metal ion EDTA complexes follow from the

preceding conclusion.  First, our results suggest that Me(II)EDTA complexes can hydrogen bond to oxide

surfaces even when all carboxylate arms of EDTA are bonded to the central Me ion.  A second conclusion

follows from the remarkable (nearly identical) similarity of other Me(II)EDTA (Me = Co, Ni, Cu, Zn)

uptake isotherms on goethite and on alumina to those of Pb(II)EDTA on each oxide.  Since these

complexes have the same charge, the similarity of their uptake isotherms implies that they adsorb via the

same mechanisms (i.e., outer-sphere and/or hydration-sphere).  Therefore, we suggest that adsorbed

EDTA complexes of divalent Ni, Cu, Zn, and Co should also reside in the hydration sphere of goethite

surfaces sites.  Since hydrogen bonding does not directly involve the metal atoms of the oxide substrate, a

third conclusion is that all of the above conclusions should hold for sorption on oxides with similar

charging behavior.  This conclusion is consistent with the results of Bowers and Huang (1986) and Girvin

et al. (1993).  A fourth conclusion regards the dramatically lower sorptive capacity of Fe(III)- and Al(III)-

oxides for Co(III)EDTA as compared to Co(II)EDTA (Girvin et al., 1993; Nowack and Sigg, 1996).
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Girvin explained the difference in uptake by proposing that quinquidentate Co(II)EDTA complexes

hydrogen bond to goethite surface sites mores strongly than hexadentate Co(III)EDTA- because the latter

did not have a free carboxylate arm.  The discussion above suggests that Co(II)EDTA complexes also

should have no free carboxylate arms on goethite.  Therefore, the difference in uptake should be

attributed primarily to the difference in charge of these complexes, and not to the absence of free

carboxylate arms.  Cases in which Me(II)EDTA complexes exhibit greater uptake than Me(III)EDTA

complexes at pH • pHpzc, e.g., Pb(II) vs. Co(III) on goethite (Nowack and Sigg, 1996), can be attributed to

different partial charges and/or Lewis base strength on carboxylate oxygens, which are influenced by the

charge, radius, electronic configuration, and Lewis acidity of cations (Shriver et al., 1990).

4.2  Implications for Surface Complexation Models

Both EXAFS and FTIR results suggest that Pb(II) adsorbate species (observed in this study) had

composition Pb(II)EDTA2-.  There was no evidence for the existence of adsorbed Pb(II)HEDTA- or other

protonation states.  Hence, adsorption should proceed according to:

≡FeOH2
+ + PbEDTA2-   =   ≡FeOH2

+•••PbEDTA2- (1)

where ≡FeOH2
+ denotes a structurally undifferentiated, positively charged surface functional group (the

number of protons and charge on the site were chosen to be consistent with common descriptions of

goethite surface Brönsted acid/base groups, e.g., Bowers and Huang (1996) and Zachara et al. (1995)),

and "•••" denotes outer-sphere and/or hydrogen bond associations to protonated surface functional

groups.  Based on the similarities of Pb(II)EDTA uptake to those of other Me(II)EDTA complexes, we

suggest that reaction (1) should also occur for Co(II)-, Ni(II)-, Cu(II)-, and Zn(II)EDTA adsorption on Fe-

and Al-oxides.

4.3  Implications for Goethite Dissolution Mechanisms

Both proton- and (metal-)ligand-promoted mechanisms have been proposed to describe Fe- and

Al-oxide dissolution in the presence of metal-EDTA complexes.  Szecsody et al. (1994) proposed a

(metal-)ligand-promoted model in which Me(II)EDTA complexes bond to surface hydroxyl groups

(denoted as ≡FeOH2) and dissociate to form adsorbed Me(II) ions and outer-sphere Fesfc.-bonded EDTA
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complexes, which were proposed to evolve to surface-bound Fe(III)EDTA chelate complexes and then

detach from the surfaces.  At pH 6.5, the onset of Fe(III)EDTA release into solution was found to lag the

onset of EDTA release from dissociated Me(II)EDTA complexes  (• 2 h.) by several hundred hours.

Thus, a significant concentration of adsorbed outer-sphere EDTA (not bonded to Me(II)) should have

accumulated at oxide-water interfaces prior to Fe(III)EDTA release.  In our system, such a build-up of

adsorbed outer-sphere EDTA should have been detectable and distinguishable from adsorbed

Pb(II)EDTA chelate complexes, since the FTIR spectra of these species are different (cf., Fig. 2).  The

absence of FTIR spectral signatures corresponding to free or Fe(III)- bonded EDTA carboxylate groups

suggests that the dissolution-promoting EDTA surface species proposed by Szecsody et al. did not occur

at significant concentrations in our samples.  An alternative explanation for the retarded release of Fe(III)

observed by Szecsody et al. is that the Fe-oxide dissolution rate was limited by proton-attack mechanisms

that are apparently slower than Co(II)EDTA dissociation.  This is consistent with the dissolution-rate

measurements of Szecsody et al. at pH 4.5, which they showed to be consistent with proton-promoted

dissolution (as well as metal-ligand-promoted dissolution).

Nowack and Sigg (1996) proposed a Me(II)EDTA-promoted dissolution model in which

quinquidentate Me(II)EDTA complexes (i.e., one free carboxylate group) adsorb to ≡Fesfc sites via inner-

sphere bonding between the free carboxylate group and surface Fe atoms, followed by opening of the

EDTA ring and simultaneous bonding of EDTA as a tridentate iminodiacetate ligand to each goethite

surface Fe atoms and adsorbed Me(II) ions.  Formation of these activated complexes (denoted herein as

Pb(II)EDTA-Fesfc.) was proposed to be the rate-determining step.  Fe(III) detachment was thought to

follow dissociation of the remaining Me(II)-EDTA bonds. The proposed precursor complexes should be

observable by spectroscopic methods, since they exist at detectable concentrations for periods of hours to

weeks before being consumed.  However, we observed no such species, even though dissolution should

have reached steady state.  These observations suggest at least one of the following conclusions: (1) the

dissolution rate of goethite in the presence of Pb(II)EDTA is controlled by proton-promoted dissolution,

and inner-sphere EDTA-Fesfc. species did not occur; (2) the inner-sphere Pb(II)EDTA-Fesfc. precursor

complexes of Nowack and Sigg existed at very low (undetectable) concentrations in our samples; (3) the

outer-sphere complexes observed in our samples were precursors to Nowack and Sigg’s Pb(II)EDTA-Fesfc.

precursor species, and the rate of formation of the latter complexes was very slow and/or rate determining

(in which case Nowack and Sigg’s Pb(II)EDTA-Fesfc. precursor species would be difficult to detect
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spectroscopically because they would be consumed as quickly as they were formed); (4) the outer-sphere

complexes observed in our samples were immediate precursors to iminodiacetate activated complexes.

 Bryce et al. (1994) have argued that closure of the EDTA chelate via formation of amine-Me(II)

bonds (as opposed to bonding by a carboxylate group) should be the rate-determining step for ferrihydrite

(hydrous Fe(III)-oxide) dissolution in the presence of Ni(II)EDTA, based on comparison to the reaction

rates in bulk aqueous solution.  This argument suggests that scenario (3) above is unlikely, since it

requires that formation of EDTA carboxylate-Fesfc bonds be as slow or slower than ring closure around

Fe(III).  Suggestion (2) above implies that the concentrations of inner-sphere bonded Pb(II)EDTA-Fesfc.

precursor complexes should not in general be directly related to the macroscopically measured adsorption

density (which is dominated by hydration-sphere bonded complexes), since the reaction stoichiometries

of inner-sphere and hydration-sphere adsorption reactions are likely to differ substantially.  Furthermore,

if the precursor complexes form quickly (as proposed by Nowack and Sigg and as necessitated by the

very low concentration of the species), they should be in equilibrium with bulk solution, since many of

the possible routes to their formation are faster.  Hence, rate constants for the explicitly described

dissolution mechanisms determined using macroscopically measured adsorption densities may be

inaccurate, particularly when extrapolated to solution conditions different from those used to calibrate the

model.

5  SUMMARY AND CONCLUSIONS

ATR-, DR-FTIR, and EXAFS spectra of Pb(II)EDTA adsorbed on goethite are similar to the

corresponding spectra of aqueous Pb(II)EDTA2-, indicating an intact chelate complex on goethite, with 4

carboxylate and 2 amine groups bonded to Pb(II), at all conditions examined in this study (pH 4 - 6,

[Pb(II)EDTA]T = 0.014 to 2.7 mM, 0.8 mM to 0.5 M ionic strength, varying electrolytes).  EXAFS

analysis suggests the Pb(II)-O coordination shell is composed of 6 O/N atoms at 2.45 to 2.5 Å and an

additional 1 to 2 water molecules at about 3.3 Å.  No evidence for bonding between EDTA molecules and

surface Fe atoms was observed in any samples, nor were any vibrational frequencies corresponding to

protonated carboxylate groups.  Since EXAFS and FTIR spectra of Pb(II)EDTA adsorbed on goethite are

similar to the corresponding spectra of aqueous Pb(II)EDTA
2-

, we conclude that the complexes had

composition Pb(II)EDTA
2-

.
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Comparison of the FTIR and EXAFS results to the uptake characteristics of Pb(II)EDTA2- on

goethite suggests that Pb(II)EDTA
2-

 adsorption is consistent with outer-sphere complexes and/or a

hydrogen bonding mechanism in which carboxylate oxygens on the chelate complex directly hydrogen

bond to protonated surface functional groups, displacing waters of solvation from PbEDTA(II)2-.  Since

complexes adsorbed according to this latter mechanism occupy space next to goethite surface functional

groups, which would otherwise be occupied by solvating water molecules, we designate them as

hydration-sphere complexes.  These results suggest that Me(II)EDTA complexes having no free

carboxylate arms can participate in hydrogen bonding interactions with oxide surfaces.  Metal-ligand-

promoted dissolution models should be modified to account for the existence of outer-sphere and/or

hydration-sphere complexes.  Based on the current results and the striking similarity of Co(II)-, Ni(II)-,

Cu(II), and Zn(II)-EDTA uptake isotherms to those for Pb(II)EDTA, we propose that Co(II)-, Ni(II)-,

Cu(II), and Zn(II)EDTA adsorbed on goethite and alumina should not have free carboxylate arms and

hence should be predominantly outer- or hydration-sphere complexes.
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Table 1.  Final sample conditions.  [Pb]T:[EDTA]T = 1:1 unless noted
otherwise.  [PbL]T is the total concentration of adsorbed and dissolved
Pb(II)EDTA species in solution.  [PbL]eq is the final concentration of all
dissolved Pb(II)EDTA species.  *This sample had [Pb]T:[EDTA]T = 2:1.

Method pH
electrolyte
(molarity)

Sorption
Density

(µmol./m2)
[PbL]T

(µM)
[PbL]eq

(µM)
solid:liqui

d (g/L)
ATR-FTIR 4.01 0.01 NaCl 0.51 137.5 14.70 5.4
ATR-FTIR 4.05 0.01 NaClO4 0.53 137.5 9.50 5.4
ATR-FTIR 4.13 0.5 NaCl 0.27 137.5 72.10 5.4
ATR-FTIR 5.06 0.01 NaCl 0.54 137.5 5.80 5.4
ATR-FTIR 5.99 0.01 NaCl 0.49 137.5 18.40 5.4
DR-FTIR 4.03 .01 NaCl 0.09 24.9 2.60 5.3
DR-FTIR 4.04 .01 NaCl 0.50 127.8 5.00 5.4
DR-FTIR 4.04 .01 NaCl 1.01 252.7 9.00 5.3
DR-FTIR 4.97 .01 NaCl 0.06 13.5 0.11 5.4
DR-FTIR 5.05 .01 NaCl 0.11 27.5 0.30 5.5
DR-FTIR 5.03 .01 NaCl 0.55 135.1 1.75 5.4
DR-FTIR 5.06 .01 NaCl 0.98 267.4 31.60 5.3
DR-FTIR 5.08 .01 NaNO3 0.93 266.3 43.20 5.3
DR-FTIR 5.03 No Control 1.07 267.0 8.80 5.3
DR-FTIR 6.01 .01 NaCl 0.20 47.4 0.98 5.2
DR-FTIR 5.99 .01 NaCl 0.83 239.6 42.00 5.3
EXAFS 5.04 .01 NaNO3 0.88 178.0 17.30 4.0
EXAFS 5.04 .01 NaNO3 1.11 848.0 598.00 5.0
EXAFS 5.03 .01 NaNO3 1.84 2716.0 2300.00 5.0
EXAFS 5.04 .01 NaNO3 3.0 800.0* 262.50 5.0
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Table  2.  EXAFS fit results.  CN = coordination number, R = interatomic distance, σ2 = Debye-Waller
factor (Å2), and Γ = sorption density (µmol./m2).  Accuracies of R are estimated to be ±0.03 Å for all
shells.  Accuracies of CN are estimated to be ±20% for Pb-O and Pb-N, and ± 30% for Pb-C.  Least
squares precisions are given in parentheses.  * This variable was fixed during fits (cf., section 2.4).  †
Data are from Bargar et al. (1997).

Pb-O Pb-N Pb-C
(σ2 = .013)

Pb-Odistal

(σ2 = .012)

Sample CN R(Å) σ2 CN R(Å) σ2 CN R(Å) CN R(Å)

pH 5.04  Γ 0.88
1:1 Pb:EDTA

3.5
(0.6)

2.53
(.009)

0.011
(.003)

2.0* 2.38
(.018)

0.011* 8.2
(0.4)

3.32
(.008)

4.7
(.40)

4.25
(.010)

pH 5.04  Γ 1.11
1:1 Pb:EDTA

3.8
(0.4)

2.53
(.005)

0.013
(.002)

2.0* 2.41
(.019)

0.013* 8.9
(0.3)

3.31
(.007)

5.4
(0.4)

4.24
(.007)

pH 5.03  Γ 1.84
1:1 Pb:EDTA

3.8
(0.3)

2.52
(.005)

0.014
(.002)

2.0* 2.41
(.020)

0.014* 8.7
(0.3)

3.31
(.005)

4.9
(0.3)

4.24
(.006)

Pb(II)EDTA2-(aq) 4.9
(0.4)

2.51
(.005)

0.018
(.001)

2.0* 2.47
(.018)

0.018* 9.0
(0.4)

3.31
(.006)

4.7
(0.4)

4.23
(.008)

pH 6.02  Γ 4.0
 No EDTA†

2.4
(0.8)

2.27
(.009)

0.01 .2  Fe
(0.1)

3.36
(.035)

0.01 -- -- -- --
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FIGURE CAPTIONS

Figure 1.  Pb(II)EDTA uptake on goethite at pH 5.  Open circles are DR-FTIR data points (0.01 M

NaCl), and open squares are EXAFS data points (0.01 M NaNO3).  Nonsystematic error on data points is

± 6%.

Figure 2.  ATR-FTIR spectra of Pb(II)EDTA/ goethite as a function of pH.  Γ = has units of µmol./m2.

Shaded regions give the reported range of C-O νasym frequencies for carboxylate-Fe(III) and -Pb(II)

bonding.  Dashed lines give fits to spectra.  Pb(II)EDTA 2- and Fe(III)EDTA- are from 1:1, 20 mM

solutions at pH 6, whereas H2EDTA2- is 50 mM, pH 4.

Figure 3.  Normalized spectra of Pb(II)EDTA/ goethite as a function of Pb(II)EDTA concentration at pH

5.  Dashed lines indicate fitted contributions from contaminant carbonate adsorbate species.  The small,

narrow peak at about 1380 cm-1 is due to trace nitrate contamination.

Figure 4.  Normalized ATR- and DR-FTIR spectra of Pb(II)EDTA/goethite in differing electrolytes of

ionic strength and composition.  The extra amplitude in the 0.01 M NaNO3 spectrum at ca. 1390 cm-1

is due to the presence of nitrate ν3 frequencies.

Figure 5.  EXAFS spectra and Fourier Transforms (FTs) of Pb(II)EDTA/goethite at pH 5.  Dashed lines

are fits to spectra.  The “No EDTA” sample is from Bargar et al. (1998a).  The fit to “2:1 Pb:EDTA” is a

linear combination of the unsmoothed, background-subtracted, splined, k3-weighted EXAFS of “Γ=1.8

µmol./m2” (57% contribution) and “No EDTA” (43% contribution), obtained by least-squares fitting.

Only % contribution of components were varied in fits.

Figure 6.  Structure of Sn(2) site in Sn2EDTAx2H2O (van Remoortere et al., 1971).

Figure 7.  Pb-O bond length (RPb-O) vs. coordination number (CN) of Pb(II) environments in oxides,

hydroxides, and oxysalts.  Solid circles give average Pb-O bond lengths and were fit to data between 5 •

CN • 12 (dashed line, correlation coefficient = 0.94), as described in Bargar et al. (1997a).  Minimum Pb-

O bond lengths for each Pb(II) coordination environment (dotted line, correlation coefficient = 0.86) were

fit between 2 • CN • 12.

Figure 8.  Comparison of SS and MS fits (dashed lines) to EXAFS 3rd-shell frequency.  Solid lines are

residuals from spline-fit k3-weighted spectrum of the pH 5, 1.8 µmol./m2 sample after subtraction of the

lower shells.
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Bargar et al.   FIGURE 1.
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Bargar et al.   FIGURE 2.
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Bargar et al.   FIGURE 3.
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Bargar et al.   FIGURE 4.
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Bargar et al.   FIGURE 5.
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Bargar et al.   FIGURE 6

Sn
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Bargar et al.   FIGURE 7.
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Bargar et al.   FIGURE 8.
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