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Understanding is a three-edged sword.

Kosh Naranek
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1
Introduction

At present, the Standard Model (SM) of elementary particle physics is generally recognized

as mankind’s most successful attempt to devise a theory of everything. In its current form,

the SM provides a unified, gauge-theoretical description of strong interactions, called quan-

tum chromodynamics (QCD), and the theory of electroweak interactions, as developed by

Glashow, Weinberg and Salam [1, 2]. For their work towards a unification of the electro-

magnetic and weak forces, the latter received the Nobel Prize in Physics, in 1979. Applying

the ideas of spontaneous symmetry breaking to the electroweak gauge symmetry [3, 4]

explains why one observes the electromagnetic and weak forces as two different entities

in nature. Indeed, the weak vector bosons acquire mass through the Higgs mechanism,

thus limiting the range of the weak force. In 2008, the theorists Nambu, Kobayashi and

Maskawa were awarded the Nobel Prize in Physics for their contributions to the under-

standing of spontaneous symmetry breaking in subatomic physics.

Neutrinos in and beyond the Standard Model

In spite of its enormous success in describing the available experimental data with high

accuracy, the SM is not deemed to be the last step in unification. The fact that the SM fails to

provide predictions for many parameters, including quark masses and electroweak coupling

constants, is often seen as a serious shortcoming of the theory. Moreover, the discovery of

neutrino oscillations enforces an extension of the SM, which predicted the neutrino masses

to be zero. Any theory that goes beyond the SM should incorporate (or, preferably, predict)

a set of additional parameters to relate the neutrino flavour eigenstates to the neutrino

mass eigenstates. On the other hand, the SM predicts the existence of the Higgs boson,

which has not been discovered yet. At this very moment, searches are taking place at the

Tevatron facility in Fermilab, using the same accelerator that led to the discovery of the top

quark. Expectations are also running high for the brand new Large Hadron Collider (LHC)

at CERN. There are many indications for a SM Higgs particle with a mass between 100
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and 200 GeV [5, 6], with the most recent combined analysis of Tevatron CDF and D0 data

putting a lower limit of 170 GeV at the 95% confidence level [7]. Therefore, most experts

agree that the god particle has a more than good chance of being discovered at LHC, which

has a discovery potential of up to 1 TeV. If the Higgs boson remains undetected, however,

then some other symmetry-breaking scheme must be at work. As a matter of fact, there

exist many alternatives to the Higgs mechanism for electroweak symmetry breaking (e.g.

technicolor models). Either way, physicists have high hopes that observations made at these

facilities will lead to new insights about the SM and, more importantly, about the road to

further unification schemes in the form of supersymmetric and grand-unified theories.

The establishment of a non-vanishing neutrino mass in neutrino-oscillation experiments is

without any doubt one of the major recent achievements in particle physics. It shows that

the picture of neutrinos in the SM is in need of a drastic review. Before the discovery of

neutrino oscillations, neutrinos had been observed as purely lefthanded weakly interacting

particles. As such, they remained massless, because the then known particle content did

not require the introduction of a righthanded singlet state νR. In order to explain flavor

oscillations, however, it is clear that the weak eigenstates νe, νµ and ντ must be seen as

quantum-mechanical superpositions of the mass eigenstates ν1, ν2 and ν3, which evolve in

time. Just like in the quark sector, with the Cabibbo-Kobayashi-Maskawa matrix, there is

a mass-mixing matrix that relates the flavor and mass eigenstates of neutrinos in terms of

three mixing angles and a CP-violating phase. In addition to these parameters, neutrino-

oscillation experiments are also sensitive to the mass differences ∆m2
i j
= m2

i
−m2

j
between

any two mass eigenstates.

The exciting results of the first oscillation experiments, together with the possibility of

discovering new beyond-the-SM physics, have triggered many studies related to the physics

of massive neutrinos. Ongoing and planned research activities try to find an answer to the

following central questions:

• What are the values of the mixing angles θ12, θ13 and θ23?

• What are the values (and signs) of ∆m2
12

and ∆m2
23

?

• What is the absolute neutrino mass scale?

• Is the neutrino a Dirac or Majorana particle?

• Is there CP violation for neutrinos?

To address these issues, the efforts are not restricted to oscillation experiments, whose main

goal is a precise determination of the mixing parameters and the mass hierarchy. A con-

siderable amount of work is also directed towards direct neutrino-mass searches, using the

kinematics of nuclear β decay to determine mνe
[8]. If the neutrino is a Majorana particle,

meaning that it cannot be distinguished from its own antiparticle, it is possible to observe

neutrinoless double beta decay [9]. Next to addressing a fundamental question about neu-

trinos, a half-life measurement of this process is sensitive to the effective Majorana mass

〈mνe
〉= |

∑
i
U2

ei
mi|, with Uei the mixing matrix elements. Furthermore, bounds on neutrino

masses are studied in the context of cosmological models [10]. Current data indicate an
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Table 1.1: Long-baseline accelerator experiments, organized by name, baseline length L,

mean energy of the neutrino beam 〈Eν〉 and years of running. More details can be found

on the websites.

Name url L (km) 〈Eν〉 (GeV ) Year

K2K http://neutrino.kek.jp/ 250 1.3 1999-2004

MINOS http://www-numi.fnal.gov/Minos/ 735 ∼ 4 2005-...

T2K http://jnusrv01.kek.jp/public/t2k/ 295 0.65 2009-...

NOνA http://www-nova.fnal.gov/ 810 ∼ 2 2014-...

MiniBooNE http://www-boone.fnal.gov/ 0.5 0.8 2002-...

upper limit
∑

mν < 0.7− 2.2 eV for the three generations of neutrinos [5]. Another im-

portant line of research deals with the role played by massive neutrinos in the observed

matter-antimatter asymmetry in the universe. Scenarios considering the generation of a

lepton asymmetry, by decaying heavy Majorana neutrinos, which can be converted into a

baryon asymmetry at the energy scale of the electroweak phase transition (∼ 200 GeV) are

actively investigated [11, 12]. Many more topics related to massive neutrinos can be found

in Ref. [5], where an extensive overview of neutrino experiments in nuclear and particle

physics, astrophysics and cosmology is presented.

Neutrinos as probes of weak physics

Besides sharpening our knowledge of particle physics, the ongoing and planned neutrino

experiments offer great opportunities for the hadronic- and nuclear-physics community.

Neutrinos are peculiar, in the sense that they only interact with matter through weak inter-

actions. In doing so, they violate parity in a maximal way, giving rise to the pure V−A struc-

ture of weak lepton and quark currents. Hence, neutrinos present themselves as unique

probes for exploring the axial sector in weak interactions.

Of course, one can not just cleanly scatter neutrinos from single quarks. Quarks are con-

fined in nucleons, which are bound inside the nuclei that compose the target material in

neutrino detectors. Given that neutrino events are very rare, these detectors often take the

shape of kiloton-sized tanks filled with mineral oil, or, of meters long steel plates. A specific

kind of oscillation experiments, called long-baseline experiments, study the oscillations of

accelerator νµ neutrinos by observing their interactions at a near detector, close to the neu-

trino source, and a far detector, separated by a distance L. Some examples are summarized

in Table 1.1. The MiniBooNE experiment is listed separately, because its main goal is to

check the anomalous LSND result, which hints at νµ → ν e oscillations at the ∆m2 ∼ 1 eV2

scale. So far, MiniBooNE has not observed oscillations at such a mass scale [13], indicat-

ing that the introduction of a fourth, sterile neutrino state may not be necessary after all

[6]. Contrary to reactor-based experiments, where neutrino energies are of the few-MeV

order, it is important to note that all accelerator experiments in Table 1.1 involve few-GeV

neutrinos. Indeed, a necessary condition to observe oscillations is given by L/Eν ¦ 1/∆m2.

Hence, for a typical baseline length of ∼ 100 km, one needs ∼ 1 GeV muon neutrinos to en-
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Figure 1.1: Schematic overview of the nuclear response to a weak probe as a function of

ω. We consider situations of moderate four-momentum transfers q2.

hance the sensitivity to oscillations at the atmospheric mass scale, ∆m2
atm
∼ few×10−3eV2.

As a consequence, a good understanding of neutrino-nucleus interactions in the few-GeV

energy range forms an essential ingredient in the analysis of long-baseline neutrino exper-

iments. This holds even more true for the next-generation Superbeams [14], which are

higher-intensity versions of the presently-running neutrino beams. Superbeams used in the

T2K and NOνA experiments will greatly improve the statistics, to the extent that statistical

uncertainties become negligible compared to systematic ones. Next to the important issues

of understanding the neutrino flux and detector efficiency, a major source of systematic er-

rors is the neutrino-interaction model. Indeed, in their Monte-Carlo simulations, neutrino

experiments rely on these models to distinguish between different types of events and to

reconstruct the neutrino energy. Thus, in order to extract the physical information, a real-

istic description of all relevant processes forms an essential input in experimental analyses.

In return, millions of neutrino events will be gathered in the next coming years, providing

an excellent testing ground for various models dealing with weak hadronic and nuclear

physics. More specifically, the Minerνa [15] and SciBooNE [16] experiments focus on

cross-section physics. Whereas the former will cover a broad range of energies, up to tens

of GeV, its proposal makes special mention of studying nuclear effects in weak interac-

tions at medium neutrino energies. The SciBooNE experiment has been using MiniBooNE’s

Booster beamline to study neutrino- and antineutrino-carbon interactions at 1-GeV neutrino

energies. Results of their analysis are expected soon.

Neutrino-nucleus interactions at medium energies

To see what processes contribute to the reaction strength at few-GeV incoming-neutrino

energies, we consider Fig. 1.1. There, the response of the nucleus is displayed as a func-

tion of the energy ω which is transferred to the system. Small energy transfers result in

the elastic peak, followed by inelastic scattering where the nucleus is excited into discrete

states. Just above the particle-emission threshold lies the giant-resonance region (GR).

The focus of this work will be on the energy region beyond the nucleon-emission thresh-

old, up to ∼ 1 GeV energy transfers, and moderate values of q2 = qµq
µ, with qµ = (ω,~q)
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the transferred four-momentum. There, one first distinguishes a broad peak that is cen-

tered about ω ∼ |~q |2/2M , where M represents the nucleon mass. This peak corresponds

to the quasi-elastic (QE) nucleon-knockout process. A similar structure appears when an

extra energy of 300 MeV is added to the nuclear system. In that case, the transferred

energy is sufficient to excite a single nucleon to a ∆ particle, resulting in the observed ∆

peak. One refers to the region between the QE and ∆ peaks as the dip region. Although

no dominant reaction mechanism has been identified so far, two-body mechanisms like

meson-exchange and isobar currents are recognized to play an important role there. At

even higher energy transfers, it becomes possible to excite higher-lying nucleon isobars.

Eventually, for ω ∼ 1 GeV, one enters the deep-inelastic scattering (DIS) regime, where the

impinging neutrinos start probing quark degrees of freedom. In this thesis, we concentrate

on a description of neutrino-nucleus interactions in the QE and ∆ regions.

The QE and∆ peaks have in common that they are dominated by one-body mechanisms. In

these regions, processes whereby a single bound nucleon absorbs the entire four-momentum

of the weak vector boson account for the major fraction of the strength. This observa-

tion is reflected in the frequently-used impulse approximation (IA), which states that the

many-body operator describing the transition between final and initial nuclear states can

be replaced by a sum of one-body current operators, which are free from medium effects.

Hence, employing the IA, the modeling of neutrino-nucleus processes decouples into two

main problems:

• How to describe the elementary (one-body) weak process?

• How to include nuclear effects?

The phenomenological form-factor approach

At energy transfers ω ≤ 1 GeV, the elementary process is most naturally described in terms

of hadronic degrees of freedom. Then, to lowest order, the invariant matrix element for

a semileptonic weak process is proportional to the contraction of a lepton and a hadron

current, M f i ∼ lαh
α. Whereas the V − A nature of weak interactions fully determines the

lepton current, the hadron current will generally assume a more complex form. Instead of

computing the hadron couplings from first principles in quark models, one usually resorts

to a more phenomenological point of view by introducing a set of vector and axial-vector

form factors. These form factors account for the finite size of hadrons by playing the role

of running electroweak coupling constants. Often, form factors can be parameterized as

dipole functions of Q2 = −q2. As a consequence, each form factor introduces at least two

parameters, namely a cutoff mass that acts as a size parameter and the value at Q2 = 0,

that determines the strength of the coupling. These parameters need to be constrained

by physical principles and experimental data. In addition, the form factors can be tested

against predictions of nucleon models. Within this context, it is worth mentioning that one

of the major goals of neutrino experiments like SciBooNE and Minerνa is providing better

constraints for the poorly-known axial mass MA.

One must realize, however, that the mentioned experiments use a variety of target nuclei,

including He, C, Fe and Pb. It is therefore crucial to understand the role of nuclear effects

when extracting form-factor information.
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Nuclear effects

The impinging neutrino interacts with a nucleon, moving inside a nucleus. Traditionally,

the effects of Fermi motion, Pauli blocking and nuclear binding are accommodated within

a relativistic Fermi-gas (RFG) description [17] of the nucleus. More advanced and realistic

descriptions of nuclear structure include the relativistic shell model [18–21] and spectral-

function approaches [22, 23], which extend beyond the mean-field picture. In this work, we

adopt an independent-particle model (IPM) for the nucleus, where the single-particle wave

functions are obtained in the Hartree approximation to the σ-ω Walecka model [19, 24].

Assuming fully occupied shell-model orbitals, we do not take into account the effect of

short-range nucleon-nucleon correlations, which contribute to the high-energy and high-

momentum part of the spectral function. Other studies include long-range correlations by

performing (Continuum) Random-Phase Approximation ((C)RPA) calculations [25–28]. At

small Q2, when the nucleus is probed with lower spatial resolution, multi-nucleon processes

may indeed become important. In that case, the IA is no longer justifiable and RPA corre-

lations produce sizeable effects. Throughout this text, however, we assume the IA to be a

valid approximation in the energy region dominated by the QE and ∆ peaks.

Another nuclear effect stems from the fact that the particles, produced in the primary weak

interaction, are subject to final-state interactions (FSI) with the remaining nucleons on

their way out of the nucleus. With respect to the QE process, one should compute the

attenuation of the escaping nucleon. For ∆ production, the effect is twofold. First, the

∆ mass and width are modified in a medium. Second, once the ∆ particle has decayed,

the decay products (mostly a pion and a nucleon, sometimes only a nucleon) undergo FSI.

∆ medium modifications can be estimated by calculating the in-medium self-energy in a

microscopic many-body framework [29]. The resulting shift in the mass and collisional

broadening of the width are necessary to account for photo-induced two-nucleon knockout

data in an energy regime that is dominated by ∆ creation [30]. For nucleon-knockout re-

actions, the attenuation of the outgoing nucleon is usually computed in optical-potential

models within the relativistic distorted-wave IA (RDWIA) [18, 19, 31–35], or in Glauber

models [19, 36, 37], which are multiple-scattering extensions of the eikonal approxima-

tion. In exclusive and semi-exclusive electron-scattering studies, where the single-particle

strength can be well isolated, both of these approaches provide a fair, quantum-mechanical

description of the (e, e′N) data [38]. The Glauber model developed in Gent [37], which

has been dubbed the relativistic multiple-scattering Glauber approximation (RMSGA), has

subsequently been applied to QE neutrino-nucleus reactions [19] and will serve to com-

pute FSI effects in this work. Other techniques to describe the propagation of pions and

nucleons through nuclei include Monte-Carlo simulation methods [25, 39, 40] and semi-

classical transport models [41, 42]. At the cost of giving up a fully quantum-mechanical

description, the transport models improve on the RMSGA by including inelasticities and

coupled-channel effects. Whereas the Glauber model predicts the amount of flux loss in

a specific channel, the transport model additionally predicts the cross-feeding into other

channels.

At present, the incorporation of nuclear effects in neutrino-event generators is being ac-

tively addressed by collaborations of experimentators and nuclear physicists. As a matter

of fact, the recent analysis of MiniBooNE’s QE result in terms of a Fermi-gas model [43] has
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undeniably shown the timeliness of such an effort. Now that neutrino experiments enter

the precision phase, it is our task to cross-check different nuclear models, and to distill a

framework that can serve as a dependable platform for future event selections and analyses.

Outline

This thesis has been organized in two major parts, covering the processes of neutrino-

induced QE nucleon knockout and ∆-mediated one-pion production respectively.

• Chapter 2 deals with QE neutrino-nucleus reactions. We discuss the kinematics and

cross section of the process. Introducing the IA and the IPM, the basic ingredient

in the formalism is the hadronic current matrix element between a bound-state and

scattering wave function. We derive a form-factor parameterization for the hadronic

current operator, and cover in detail how the form factors are constrained by theoret-

ical principles and experimental data. As for the nuclear model, we use bound-state

wave functions derived in the σ-ω Walecka model. It is shown how the cross section

can be presented in a relatively simple, closed form by introducing the notion of a

bound-state propagator. To account for FSI effects, we use a scattering wave function

obtained within the RMSGA.

Results are presented for various electron- and neutrino-induced distributions and

for different target nuclei. We study several applications of QE neutrino scattering,

including strangeness studies and the use of the Paschos-Wolfenstein relation as a

tool to determine the Weinberg angle at medium energies. In an attempt to put our

work into a more general perspective, we conclude with a comparison to other QE

approaches.

• In Chapter 3, we study the process of ∆-mediated one-pion production. Elementary

couplings, notably the N -∆ transition form factors and ∆-decay vertex, are discussed

in detail. Results for the free process are compared to available neutrino data. For

the reactions involving finite nuclei, a great deal of the nuclear-structure input is

identical to what is used in Chapter 2. The impact of nuclear effects, including ∆

medium modifications, on the cross section is illustrated for various target nuclei. We

consider the process of coherent pion production, computing the attenuation of the

pion within the RMSGA.

In the concluding chapter, we summarize our findings. A brief outlook is presented, indi-

cating future directions of research that are meant to help developing a reliable model for

medium-energy neutrino-nucleus interactions.
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2
Quasi-elastic nucleon knockout

In this chapter we focus on quasi-elastic (QE) neutrino-nucleus interactions. The term

quasi-elastic refers to those processes where a bound nucleon is knocked straight out of

the nucleus, leaving the residual nuclear system with an excitation energy that does not

exceed a few tens of MeV. Section 2.1 provides a general introduction to nucleon-knockout

reactions. First, we discuss the kinematics of the process and derive the cross-section for-

mula. The Rosenbluth-separation form of the cross section is worked out. In section 2.2, we

show how the building blocks of the nuclear responses, namely the nuclear-current matrix

elements, can be reduced to one-body expressions. The further development of the frame-

work boils down to determining appropriate expressions for the one-body hadron current,

for which a form-factor parameterization is developed in section 2.3. Theoretical and ex-

perimental constraints on all weak elastic form factors are discussed there. In section 2.4,

it is explained how we account for nuclear effects such as the motion of the struck nucleon

inside the nucleus and final-state interactions undergone by the ejectile on its way out of

the nucleus. Section 2.5 presents our results for QE nucleon-knockout cross sections. Both

electron- and neutrino-induced reactions are considered, comparing the former to inclusive

and semi-inclusive scattering data. As an application of QE neutrino scattering, we con-

sider a study of the Paschos-Wolfenstein relation in section 2.6, to test its potential as an

electroweak precision tool at medium energies. Section 2.7 is devoted to the role played

by strange quarks in QE studies. Finally, in section 2.8, we compare our work to other QE

neutrino-scattering approaches.

2.1 Neutrino-induced nucleon-knockout cross sections

2.1.1 Kinematics and cross section

A semi-leptonic interaction between a neutrino and a nucleus occurs through the exchange

of a weak vector boson. We distinguish neutral-current (NC) processes, mediated by a Z0
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z

y

x
φN

kA−1(EA−1, ~kA−1)

lepton-scattering plane

kl(El, ~kl)

kν(Eν, ~kν)

θl
θN

kN(EN , ~kN)

hadron-reaction plane

q(ω, ~q)

Figure 2.1: Kinematics for the quasi-elastic nucleon-knockout process

particle, and charged-current (CC) processes, where a W+ or W− is exchanged between

the lepton and hadron current. The neutrino-induced QE nucleon-knockout reactions can

be written as

ν + A
NC−→ ν + (A− 1) + N ,

ν + A
CC−→ l−+ (A− 1) + p.

(2.1)

Similarly, for an incoming antineutrino one has

ν + A
NC−→ ν + (A− 1) + N ,

ν + A
CC−→ l++ (A− 1) + n.

(2.2)

Here, the target nucleus is represented by its mass number A. The outgoing charged lepton

and the emitted nucleon are denoted by l and N . For CC processes, the charge exchange at

the vertex determines the nature of the emitted nucleon (proton p or neutron n).

To derive an expression for the QE cross sections, we start from the general formula [44]

d9σ =
1

β

mν

Eν

ml

El

d3~kl

(2π)3
mN

EN

d3~kN

(2π)3
mA−1

EA−1

d3~kA−1

(2π)3

×
∑

f i

���M (QE)

f i

���
2

(2π)4δ(4)(kν + kA− kl − kN − kA−1).

(2.3)

For the Dirac spinors, we adopt the Bjorken & Drell convention uu = 1. In appendix A, a

review of notations and conventions is provided. Equation (2.3) is usually evaluated in the

laboratory frame of reference, where the target nucleus has four-momentum k
µ
A = (mA,~0)

with mA its rest mass. Fig. 2.1 clarifies our choice of reference frame and summarizes the

notations for the four-momenta of all participating particles. We write kµ
ν
= (Eν ,~kν) for

the incoming (anti)neutrino and k
µ

l
= (El ,~kl) for the outgoing lepton. A four-momentum

qµ = kµ
ν
− k

µ

l
= (ω,~q) is absorbed by the nucleus, which subsequently emits a nucleon with

four-momentum k
µ
N = (EN ,~kN). The recoiling nucleus has k

µ
A−1 = (EA−1,~kA−1). The x yz
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−
1
4

ie
sin θW cos θW

J
µ
(lep)

−
1
2i

g
√

2
J

µ
(lep) −

1
2i

g
√

2
cos θcJ

ν
(nucl)

−
1
2

ie
sin θW cos θW

Jν
(nucl)

kν

kl

kN

kA−1

kA

i
M2

V +Q2(gµν −
qµqν

M2
V

)

CC
NC

MV =MW MZ,

Figure 2.2: Diagram for tree-level neutrino-induced QE nucleon-knockout calculations.

coordinate system is chosen such that the z axis lies along the momentum transfer ~q, the y

axis along ~kν ×~kl , and the x axis in the lepton-scattering plane.

In Eq. (2.3), the impinging neutrino’s relative velocity β = |~kν |/Eν is 1. The δ-function

expresses energy-momentum conservation and
∑

f i
|M (QE)

f i
|2 denotes the squared invariant

matrix element, which is appropriately averaged over initial spins and summed over final

spins. The invariant matrix element M
(QE)

f i
is the Lorentz scalar that contains all the physics

of the QE reaction mechanism. To proceed, the δ-function is exploited to integrate over the

three-momentum of the residual nucleus and the magnitude of the nucleon momentum.

One arrives at the fivefold cross section

d5σ

dEl d
2Ωl d

2ΩN

=
mνml mN mA−1kl kN

Eν(2π)
5mA

f −1
rec

∑

i f

���M (QE)

f i

���
2

, (2.4)

which depends on the solid angles Ωl and ΩN , determining the direction of the scattered

lepton and ejectile respectively. In Eq. (2.4), the hadronic recoil factor frec is given by

frec =
EA−1

mA

�����1+
EN

EA−1

(1−
~q ·~kN

k2
N

)

����� . (2.5)

2.1.2 General structure of the QE cross section

The invariant matrix element for the QE process can be constructed by applying the Feyn-

man rules in momentum space. To this end, Fig. 2.2 recapitulates the necessary coupling

strengths. Because of the small value of the weak coupling constant g = e/ sinθW , it is

safe to work in the one-boson-exchange approximation. Compared to the boson masses

MZ , MW ∼ 80 GeV, the transferred energies and momenta that are typical for QE scattering

(® 1 GeV) can be considered negligible. Hence, the boson propagator can be written as

i

M2
V
+Q2

(gµν −
qµqν

M2
V

)≈
i gµν

M2
V
+Q2

, (2.6)



12 2.1. Neutrino-induced nucleon-knockout cross sections

where Q2 = −qρqρ is the momentum transfer squared. With the couplings in Fig. 2.2, one

can easily construct the matrix element for a NC process

M
(QE)

f i
= i

GFp
2
〈Jρ(QE)

nucl
〉SW,ρσ〈Jσlep

〉. (2.7)

Here, GF is the Fermi constant, for which GF/
p

2 = g2/8M2
W

. Further on, the vertex func-

tions J
ρ(QE)

nucl
and Jσ

lep
are placed between brackets to indicate that they are evaluated be-

tween final and initial states. With

SW,ρσ =
gρσM2

Z

Q2+M2
Z

, (2.8)

the squared invariant matrix element can be cast in the form

∑
f i

���M (QE)

f i

���
2

=
G2

F
M4

Z

2(M2
Z
+Q2)2

H
ρσ

(QE)
Lρσ. (2.9)

The corresponding expression for the CC process is found by replacing MZ by MW and mul-

tiplying Eq. (2.9) with cos2 θC , the Cabibbo angle squared.

Combining Eqs. (2.9) and (2.4), the cross section is seen to be proportional to the contrac-

tion of the hadron tensor H
ρσ

(QE)
and the lepton tensor Lρσ. The latter is given by

Lρσ =
∑

sν ,sl

〈Jρ,lep〉†〈Jσ,lep〉. (2.10)

Introducing the Dirac spinors u(kν , sν) and u(kl , sl) for the incoming neutrino and scattered

lepton, the lepton-current matrix element can be written as

〈Jρ,lep〉= u(kl , sl)γρ(1+ hγ5)u(kν , sν), (2.11)

where h denotes the helicity of the incoming particle ( h = −1 for neutrinos, h = +1 for

antineutrinos ). The V − A (V + A) structure of the lepton current in Eq. (2.11) reflects

the maximally parity-violating character of (anti)neutrino interactions. Using Eq. (2.11) in

Eq. (2.10), the lepton tensor is found to be

Lρσ =
2

mνml

(kν ,ρkl,σ + kν ,σkl,ρ − kν · kl gρσ + h iεαρβσkα
ν
k
β

l
), (2.12)

with the definition ε0123 = +1.

The hadron tensor is written in a similar way as an expression that is bilinear in the nuclear-

current matrix elements

H
ρσ

(QE)
=
∑

f i
〈Jρ(QE)

nucl
〉†〈Jσ(QE)

nucl
〉. (2.13)

The nuclear-current matrix element 〈Jρ(QE)

nucl
〉 is much harder to write down than the lepton-

current one, as it involves the evaluation of many-body operators between final and initial

nuclear states. However, for the purpose of studying some general features of the QE cross

section, the expression Eq. (2.13) is fine. An in-depth discussion of the nuclear-current
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matrix element is postponed to the next section.

Let us now consider the contraction of the lepton and the hadron tensor. To do so, we

closely follow the method outlined in Ref. [45]. Next to the lepton tensor of Eq. (2.12), the

hadron tensor can be constructed as a second-rank Lorentz tensor

Hρσ = H
ρσ
V V + H

ρσ
VA + H

ρσ
AA , (2.14)

where V refers to a vector and A to an axial nuclear current. The different terms in

Eq. (2.14) are built from the four-momenta of the participating particles, namely q, kA and

kN . Each term of the hadron tensor in Eq. (2.14) has a corresponding response func-

tion, which can only depend on the Lorentz scalars derived from the above four-momenta.

Choosing the frame of reference as in Fig. 2.1, it is immediately seen that the response

functions are independent of φN , the ejected nucleon’s azimuthal angle. For the NC cross

sections, the contraction of the lepton and hadron tensors leads to

d5σ

dEl d
2Ωl d

2ΩN

=
mN mA−1kN

(2π)3
f −1
rec
σZ
�

vLRL + vT RT + vT T RT T cos 2φN + vT LRT L cosφN

+h(v′
T
R′

T
+ v′

T L
R′

T L
cosφN)

�
.

(2.15)

In Eq. (2.15), we used

σZ =

�
GF cos(θl/2)El M

2
Zp

2π(Q2+M2
Z
)

�2

, (2.16)

and the definitions of Table 2.1. Equation (2.15) provides a way to access the longitudi-

nal (L), transverse (T) and interference (T L) nuclear responses, by measuring the ejected

nucleon in coincidence with the scattered lepton. In this sense, the Rosenbluth formula

in Eq. (2.15) has been an important tool for nuclear-structure studies using various ex-

clusive and semi-exclusive channels in electron-scattering experiments [32, 38, 46, 47].

The primed contributions stem from contractions with the antisymmetric part of the lepton

tensor. Consequently, they acquire a different sign depending on the nature of the inci-

dent particles (neutrino or antineutrino). Due to the non-vanishing mass of the outgoing

lepton, CC processes imply expressions that are slightly more involved. The expressions

for the kinematic factors and response functions are listed in the lower part of Table 2.1.

Furthermore, σZ has to be replaced by σW± where

σW± =

�
GF cos(θc)El M

2
W

2π(Q2+M2
W
)

�2

ζ, ζ=

È
1−

m2
l

E2
l

. (2.17)

2.2 Nuclear-current matrix element

In the previous section, we derived a useful expression for neutrino-induced nucleon-

knockout cross sections. The basic quantities that emerged from this discussion are the

nuclear-current matrix elements 〈Jµ(QE)

nucl
〉; they are the building blocks of the electroweak

nuclear responses we wish to study. Moreover, all the information about the elementary
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Table 2.1: Kinematic factors and response functions for NC and CC (anti)neutrino-nucleus scattering. Hadronic matrix elements

are expressed in the spherical basis ~ez, ~e±1 = ∓ 1p
2
(~ex ± i~ey), J µ = (J 0, ~J ) with ~J = −J −1~e+1−J +1~e−1+J z~ez. For the CC case,

we only list those expressions that differ from the NC ones.

Kinematic factors Response functions

Neutral current

vL = 1 RL =

���J 0− ω

q
J z

���
2

vT = tan2 θl

2
+

Q2

2q2 RT =
��J +1

��2+
��J −1

��2

vT T = − Q2

2q2 RT T cos 2φ = 2ℜ
�
(J +1)†J −1

�

vT L = − 1p
2

q
tan2 θl

2
+

Q2

q2 RT L cosφ = −2ℜ
�
J 0− ω

q
J z
�
(J +1−J −1)†

v′
T
= tan

θl

2

q
tan2 θl

2
+

Q2

q2 R′
T
=

��J +1
��2−

��J −1
��2

v′
T L

= 1p
2

tan
θl

2
R′

T L
cosφ = −2ℜ

�
J 0− ω

q
J z
�
(J +1+J −1)†

Charged current

vLRL =
�
1+ ζ cosθl

�
|J 0|2+

�
1+ ζ cosθl − 2Eν El

q2 ζ
2 sin2 θl

�
|J z|2

−
�
ω

q

�
1+ ζ cosθl

�
+

m2
l

Elq

�
2ℜ(J 0(J z)†)

vT = 1− ζ cosθl +
Eν El

q2 ζ
2 sin2 θl

vT T = − Eν El

q2 ζ
2 sin2 θl

vT LRT L cosφ =
sinθlp

2q
(Eν + El)

�
2ℜ
��
J 0− ω

q
J z
�
(J +1−J −1)†− m2

l

q
J z(J +1−J −1)†

��

v′
T
=

Eν+El

q

�
1− ζ cosθl

�
− m2

l

Elq

v′
T L

= − sinθlp
2
ζ
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reaction mechanism and the nuclear dynamics is contained in these objects. As a conse-

quence, the nuclear-current matrix elements will be at the center of our modeling efforts.

In general, one can write

D
J
µ(QE)

nucl

E
=

­
(A− 1)(JRMR), kN ms

���Ĵµ(QE)

nucl

���A(0+, g.s.)

·
, (2.18)

where |A(0+, g.s.)〉 and 〈(A− 1)(JRMR)| denote the wave functions of the nuclear ground

state and the single-hole state of the residual system, respectively.

2.2.1 Impulse approximation

To simplify the calculation of Eq. (2.18), it is a common practice in medium-energy appli-

cations to introduce a number of approximations. First of all, one should understand that

the QE reaction mechanism involves the direct emission of a nucleon. In other words, the

detected nucleon comes straight from the vertex where it absorbed an energy ω and a mo-

mentum ~q. It is assumed that the major fraction of the transferred energy is carried by the

ejectile, leaving the residual nucleus with an excitation energy not exceeding a few tens of

MeV. Indeed, higher excitation energies point towards other reaction mechanisms starting

to play a role, such as two- and multi-nucleon knockout processes. The reaction strength

there can be at least partially understood in terms of two-body meson-exchange currents

[48, 49]. In this thesis, however, we will not consider processes that involve several tar-

get nucleons. Under these conditions, it is natural to invoke the impulse approximation

(IA), which states the replacement of the nuclear many-body current operator by a sum of

one-body current operators

Ĵ
µ(QE)

nucl
−→

A∑

k=1

Ĵµ(QE)(~rk). (2.19)

The operators in Eq. (2.19) are assumed to be exempted from medium effects, reflecting

the quasi-free nature of the QE process. In particular, we adopt the philosophy that the in-

medium vertex function Jµ(QE) has the same Lorentz structure as the free-nucleon one. Pos-

sible medium modifications to the free-nucleon’s form factors will be ignored, as searches

in A(e, e′p) studies have only led to small effects [50, 51]. For neutrino-induced nucleon

knockout, the Ĵµ(QE) represent weak one-nucleon currents between an initial, bound nu-

cleon and a final, scattered nucleon. Employing an independent-particle model (IPM),

the nuclear wave functions are obtained by fully anti-symmetrizing the product of single-

nucleon wave functions. It can be shown that each term of Eq. (2.19) yields the same

contribution to the matrix element of Eq. (2.18), given by

¬
Jµ(QE)

¶
=

∫
d~rφF(~r)Ĵ

µ(QE)(~r)ei~q·~rφB(~r). (2.20)

In Eq. (2.20), the φB and φF represent relativistic bound-state and scattering wave func-

tions.
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2.2.2 Nucleon-knockout dynamics

Working in the impulse approximation, it is instructive to review some kinematical and dy-

namical aspects of the QE process. Within the IA, the scattering from a nucleus is described

as an incoherent sum of one-body contributions. For a bound nucleon with four-momentum

kµ = (E,~p), the energy-momentum relations become

ω+ E = EN , ~q+ ~p =~kN . (2.21)

Combined with the general expression

q(ω,~q) + kA(mA,~0) = kN(EN ,~kN) + kA−1(EA−1,~kA−1), (2.22)

one obtains ~p = −~kA−1. We define ~pm ≡ ~p as the missing momentum. The residual nucleus

recoils with kinetic energy TA−1 ≈ p2
m
/2mA−1. Similarly, the missing energy is defined as

Em =ω− TN − TA−1, (2.23)

where TN = EN − mN . Equation (2.23) can be interpreted as the separation energy for

a particular hole state of the (A−1) system. Its relation to the excitation energy of the

residual nucleus is given by Eexc = Em− Es, where Es is the nucleon separation energy.

2.3 Weak one-nucleon current operator

2.3.1 Form-factor parameterization

We now wish to obtain an expression for the weak one-nucleon current operator Ĵµ(QE)(~r).

For on-mass shell nucleons, the matrix element in Eq. (2.20) is written in terms of the Dirac

spinors as [6] ¬
Jµ(QE)

¶
= u(k f , s f )Ĵ

µ(k f , ki)u(ki, si). (2.24)

Generally speaking, we wish to construct an operator Ĵµ that transforms like a four-vector

and obeys some general physical principles and symmetries. Lorentz covariance is automat-

ically imposed by manifestly working with tensors. The most basic procedure then consists

of collecting all possible four-vectors to parameterize Ĵµ. Using Dirac algebra and Gordon-

like identities to remove equivalent terms amongst the available four-momenta, γ matrices

and other possible combinations, one arrives at the following expression [52]

Ĵµ =Ĵ
µ
V + Ĵ

µ
A

= f1(Q
2)qµ+ f2(Q

2)γµ+ f3(Q
2)σµνqν

+ f4(Q
2)qµγ5+ f5(Q

2)γµγ5+ f6(Q
2)εµναβσαβqν .

(2.25)

Because the nucleons have a finite extension, we have to allow a running of the couplings to

the different terms in Eq. (2.25). To this end, we introduce six form factors ( fi, i = 1..6),

which are Lorentz-scalar functions of the squared momentum transfer Q2. The parity-

violating nature of weak interactions enforces the presence of both vector ( f1, f2 and f3)

and axial-vector ( f4, f5 and f6) contributions. Yet, not all terms are equally important.
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The term proportional to f6, for example, is odd under the time-reversal transformation.

Physical processes that violate this symmetry are very scarce [6], so f6 is usually put to

0. Indeed, one of the most sensitive ways to look for T violation is the search for an

electric dipole moment of the neutron or the electron, for which no non-zero value has been

reported yet [53]. The vector terms of Eq. (2.25) can be further constrained by recognizing

that the weak vector current and the isovector part of the electromagnetic current are

components of the same isospin current. As a consequence, the weak vector current is also

a conserved quantity. This is called the conserved vector current (CVC) hypothesis [54],

which is invoked in momentum space by putting qµ Ĵ
µ
V = 0. Applying CVC to Eq. (2.25)

entails f1 = 0 for each Q2. Furthermore, the remaining form factors are ensured to be real

by imposing that the weak current is hermitian. Adopting the widely-used notations for

the terms that are left, one arrives at the following expression for the weak one-nucleon

current operator

Ĵµ = F1(Q
2)γµ+

i

2mN

F2(Q
2)σµνqν + GA(Q

2)γµγ5+ GP(Q
2)qµγ5. (2.26)

The vector part is described by the weak Dirac and Pauli form factors F1 and F2, whereas the

axial part is parameterized as a function of the axial form factor GA and pseudoscalar form

factor GP . In literature, one refers to Eq. (2.26) as the cc2 form of the current operator.

Through the Gordon identity, the Ĵµ for a free nucleon can assume a large number of

equivalent forms, including [55, 56]

Ĵ
µ
cc1 = GM(Q

2)γµ−
1

2mN

F2(Q
2)(k

µ

i + k
µ
N) + GA(Q

2)γµγ5+ GP(Q
2)qµγ5,

Ĵ
µ
cc3 =

1

2mN

F1(Q
2)(k

µ

i + k
µ
N) +

i

2mN

GM(Q
2)σµνqν + GA(Q

2)γµγ5+ GP(Q
2)qµγ5.

(2.27)

When applying these vertex functions in connection to bound nucleons, as is the case in

Eq. (2.20), they will generally not produce identical results. Thus, for the description

of nuclear reactions, the various expressions for Ĵµ give rise to model dependences, better

known as off-shell ambiguities. For neutrino-induced reactions, however, the effect is rather

modest owing to the dominant axial coupling.

2.3.2 Weak vector and axial form factors

Weak vector form factors

The form factors F1 and F2 are connected to the electric and magnetic Sachs form factors

GE and GM through the relations GE = F1 − τF2 and GM = F1 + F2, with τ = Q2/4m2
N

. A

functional form for the weak vector form factors can be derived from the CVC hypothe-

sis, which relates them to the electromagnetic isovector F
EM ,V

i = F EM
i,p
− F EM

i,n
and isoscalar

F
EM ,S

i = F EM
i,p
+ F EM

i,n
ones. This leads to

Fi =





(1

2
− sin2 θW )F

EM ,V

i τ3− sin2 θW F
EM ,S

i − 1

2
F s

i
NC

F
EM ,V

i τ± CC,

(2.28)
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where i = 1, 2. In Eq. (2.28), the electroweak mixing angle sin2 θW = 0.2224 [57] is

introduced. The operators τ± and τ3 work in isospin space and are defined as

τ3|p〉= +|p〉, τ3|n〉= −|n〉,
τ+|n〉= +|p〉, τ+|p〉= 0,

τ−|p〉= −|n〉, τ−|n〉= 0.

(2.29)

NC processes receive contributions from both isovector and isoscalar currents. Assuming

that strange sea quarks play a similar role in protons and neutrons, part of the latter con-

sists of the strangeness form factors F s
1

and F s
2
. Because of the isovector character of CC

reactions, there is no strangeness sensitivity there.

The electromagnetic nucleon form factors GE,n, GM ,n, GE,p and GM ,n can be determined from

elastic eN scattering data. Early measurements using the Rosenbluth-separation technique

could be well accommodated with a dipole parameterization [32]

GD(Q
2) =

1

(1+
Q2

M2
V

)2
, MV = 843 MeV. (2.30)

At Q2 = 0, the electric and magnetic Sachs form factors should reproduce the electric

charge (in units of e) and anomalous magnetic moment (in units of the nuclear magneton

µB = eħh/2mp), respectively. Therefore,

GEp = GD, GM p = µpGD, GMn = µnGD, (2.31)

with µp = 2.793 and µn = −1.913. In general, the proton form factors can be well con-

strained from electron scattering off hydrogen. To the contrary, most of the information on

the neutron form factors comes from elastic scattering from a deuterium target. Because

of difficulties in modeling nuclear effects and experimental limits in neutron efficiency, the

form factors GMn(Q
2) and GEn(Q

2) are less well-known than their proton counterparts. For

the neutron electric form factor, one usually adopts the Galster parameterization [58]

GEn(Q
2) = −

τ

1+ 5.6τ
GMn(Q

2), (2.32)

which gives a fair description of elastic electron-deuteron scattering data. Owing to the

successful description of low-Q2 data, the parameterizations of Eqs. (2.31) and (2.32) have

been the preferred ones in QE-scattering studies. Nevertheless, recent recoil-polarization

measurements at JLab [59] have modified this simple picture. These data for the ratio

µpGEp/GM p drop off linearly with Q2, rather than staying approximately one, as one would

expect from Eq. (2.31). To understand the discrepancy between the electromagnetic form

factors obtained with the two techniques, most work has focused on two-photon exchange

contributions to elastic electron-nucleon scattering [60]. It has now been theoretically

established [60] that hard two-photon corrections, while hardly affecting the polarization-

transfer results, do correct the slope of the Rosenbluth plots at larger Q2, in a way that

would reconcile both experimental techniques. As the polarization method is believed to

be systematically more solid than the Rosenbluth-separation technique, the JLab result has

spurred new efforts to find parameterizations that can also account for the new data at
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Table 2.2: Fit parameters for the BBBA05 parameterization of Eq. (2.33), as taken from

Ref. [62]. The a0 impose the correct low-Q2 behavior and were not adjusted during the fit.

Form factor a0 a1 a2 b1 b2 b3 b4

GEp 1 −0.0578 0.00 11.1 13.6 33.0 0.00

GM p 1 0.150 0.00 11.1 19.6 7.54 0.00

GEn 0 1.25 1.30 −9.86 305 −758 802

GMn 1 1.81 0.00 14.1 20.7 68.7 0.00
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Figure 2.3: Ratio of BBBA05 to dipole functional form for the proton electric and magnetic

form factors.

Q2 > 1 GeV2 [61–65]. In Ref. [62], a new fit is suggested based on a single functional form

for all four elastic form factors

G(Q2) =

∑2

k=0
akτ

k

1+
∑4

k=1
bkτ

k
. (2.33)

The fit parameters for this so-called BBBA05 parameterization are summarized in Table 2.2.

In Fig. 2.3, the difference between the BBBA05 and dipole parameterizations is shown for

the proton form factors. For moderate Q2 values, the BBBA05 fit agrees with the dipole

behavior at the level of a few percent. Beyond Q2 > 1 GeV2, however, the BBBA05 param-

eterization starts to exhibit large deviations from the dipole one.

Vector strangeness form factors

To study the role of strange sea quarks in weak vector currents, we have introduced the

strangeness form factors F s
1

and F s
2

in Eq. (2.28). A dispersion analysis using a three-pole

ansatz results in the frequently used Forkel parameterization [66]

F s
1
=

1

6

−r2
s
Q2

(1+
Q2

M2
1

)2
, F s

2
=

µs

(1+
Q2

M2
2

)2
, (2.34)
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where M1 = 1.3 GeV and M2 = 1.26 GeV. The strangeness contribution to the nucleon’s

charge and anomalous magnetic moment can be interpreted in terms of the corresponding

Sachs form factors

Gs
E
= F s

1
−τF s

2
, Gs

M
= F s

1
+ F s

2
. (2.35)

Since the nucleon’s net strangeness charge is zero, one has Gs
E
(0) = 0. An attractive

tool to extract strangeness form-factor information is provided by parity-violating electron-

scattering (PVES) [67, 68]. As we have seen, purely electromagnetic scattering provides

access to the Sachs form factors GE,M , which include the strangeness contributions in

Eq. (2.35). The proton electric form factor, for example, can be decomposed in its quark

terms as

G
γ
E,p =

2

3
Gu

E
−

1

3
Gd

E
−

1

3
Gs

E
. (2.36)

On the other hand, the neutral weak vector form factor reads

GZ
E,p
=

�
1

4
−

2

3
sin2 θW

�
Gu

E
+

�
−

1

4
+

1

3
sin2 θW

�
(Gd

E
+ Gs

E
). (2.37)

By measuring the asymmetry A = (σR − σL)/(σR + σL), where σR(L) refers to right (left)

handed longitudinally polarized electrons, PVES experiments are sensitive to both of the

combinations in Eqs. (2.36) and (2.37), making it possible to access the strangeness contri-

butions.

In literature, detailed overviews of recent experimental efforts are available [69–71]. Dif-

ferent collaborations, such as HAPPEX (p, 4He; Q2 ∼ 0.1 GeV2) [72, 73], SAMPLE (p;

Q2 = 0.1 GeV2) [74], A4 (p; Q2 = 0.108 and 0.230 GeV2 ) [75, 76] and G0 (p; 0.12 <

Q2 < 1.00 GeV2) [77], have measured the asymmetry A for various Q2 and for hydrogen

and helium targets. The contributions of Gs
E

and Gs
M

to A can be disentangled by combining

results at forward and backward electron scattering angles. Forward scattering data are

most sensitive to Gs
E
, somewhat less sensitive to Gs

M
, and almost completely insensitive to

the axial form factors which are suppressed by (1−4 sin2 θW ) and a kinematical factor that

becomes 0 at forward angles [70]. A measurement at backward angles is dominated by the

term containing Gs
M

. On the other hand, it is also sensitive to the axial term, which is prone

to electroweak radiative corrections. Information on this contribution can be extracted

from a measurement of A from a deuterium target [74, 78], so that a combined analysis

with backward scattering data yields a value for Gs
M

. The PVES results, however, do not

yet allow any definite statements about the vector strangeness content of the nucleon. As

a matter of fact, all data are still compatible with Gs
E
= 0. This is not fully unexpected,

as the strange sea quarks do not contribute to the nucleon’s total charge. On the other

hand, some measurements [73, 74] point to small, positive values for the magnetic form

factor Gs
M

. Recent combined analyses of PVES data at Q2 = 0.1 GeV2 [69] and of PVES

and neutrino-scattering data in the range 0.45 < Q2 < 1.0 GeV2 [70] seem to confirm this

picture.

Values for the strangeness radius r2
s

and magnetic moment µs are also predicted in nucleon

models. Overviews of hadron-model estimates for the strangeness vector form factors can

be found in Refs. [71, 79, 80]. Here, we restrict ourselves to the selection of predictions pre-

sented in Table 2.3. Table 2.3 demonstrates the broad range of computed values, especially
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Table 2.3: Predictions for the strangeness parameters r2
s

and µs in various hadron-structure

models.

Model Ref. r2
s
( f m2) µs(µN)

VMD [81] 0.16 -0.31

KΛ [82] -0.007 -0.35

NJL [83] -0.17 -0.45

χQS(K) [84] -0.095 0.115

for F s
1
. Recognizing that sea-quark effects arise from a subtle interplay of quantum effects

in QCD, it is no surprise that the listed nucleon models experience difficulties in quantify-

ing them. Quite strikingly, most model predictions in Table 2.3 tend towards negative µs

values, contrary to what is suggested by the PVES data. Moreover, some recent lattice QCD

calculations do not resolve this discrepancy, yielding values of µs = −0.046± 0.019 [85]

and Gs
M
(Q2 = 0.23 GeV2) = −0.034± 0.021 [86].

Axial form factors

Whereas the weak vector form factors can be pretty well determined by relating them to

the electromagnetic ones through CVC, the situation for the axial form factors is much less

clear. Yet, assuming pion-pole dominance for the pseudoscalar form factor, the partially

conserved axial current hypothesis (PCAC) yields the relation

GP(Q
2) =

2mN

Q2+m2
π

GA(Q
2), (2.38)

with mπ the pion mass. Besides, the contribution of GP to the cross section is proportional

to the scattered lepton’s mass, and can be safely ignored for NC reactions. At Q2 = 0, the

form-factor values are given by

GA =

(−gAτ3+gs
A

2
NC

gAτ± CC
(2.39)

where gA = 1.26 is the axial coupling constant, as determined from neutron decay [54].

The Q2 dependence of GA is often parameterized in terms of a dipole

GA(Q
2) =

GA(0)

(1+
Q2

M2
A

)2
. (2.40)

The axial mass MA can be extracted from neutrino QE scattering data. We adopt the value

MA = 1.032 GeV, in close agreement with the world-average values reported in Refs. [87,

88]. A recent analysis of QE (anti)neutrino total and differential cross sections for a variety

of target nuclei resulted in the value [88]

MA = 0.999± 0.011. (2.41)
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Hereby, the authors employed the recent BBBA(07) vector form-factor parameterization

[63] and a relativistic Fermi-gas (RFG) model. On the other hand, a value of MA ≈ 1 GeV

is not in line with the recent results of the high-statistics K2K [89] and MiniBooNE [43]

experiments

MA =

(
1.20± 0.12 K2K

1.25± 0.12 MiniBooNE
(2.42)

Both of these experiments performed their analysis with an RFG model. In the MiniBooNE

case, an additional Pauli-blocking parameter κ is introduced, enabling a better description

of the low-Q2 data. The MA value shown in Eq. (2.42) was extracted from a fit to the Q2

shape beyond Q2 = 0.25 GeV2, where variations of κ have very little effect. The discrepancy

between the axial-mass values in Eqs. (2.41) and (2.42) is one of the major topics to be

addressed by future neutrino-scattering experiments.

Axial strangeness form factor

The experimental information on the axial strangeness parameter g s
A

emanates from polar-

ized deep-inelastic scattering (DIS) experiments and neutrino-scattering data [90]. The for-

mer determine the strangeness contribution to the nucleon’s spin, either directly in a semi-

inclusive measurement (by flavor-tagging) [91, 92], or indirectly by measuring the quark

flavor-summed structure function and assuming SU(3) f symmetry to access the strangeness

contribution [93–95]. Unfortunately, both methods suffer from large uncertainties related

to the extrapolation of the spin structure functions to vanishing Bjorken x [90]. Neverthe-

less, most results hint at a non-vanishing contribution of strange sea quarks to the nucleon

spin, −0.20<∆s < 0 [96, 97]. As an alternative, neutrino-nucleon scattering studies offer

some advantages over the lepton DIS methods. Theoretical uncertainties are smaller and

the sensitivity to GA(Q
2) is large. In fact, the strangeness contribution to the nucleon spin

is related to the axial strangeness form factor by ∆s = GA(Q
2 = 0) = g s

A
. The BNL E734

experiment took data for the νp and νp elastic processes to extract a g s
A

value from the ratio

of NC to CC cross sections [98]. Analyses of these data [99–101] have revealed large cor-

relations of g s
A

with MA and Gs
E,M

. For example, varying MA from 1.032 GeV to 1.086 GeV

allows for fitted g s
A

values that range from −0.21 to 0 [99]. Note that both axial-mass

values are still well within range of what is extracted from QE neutrino scattering data (

see Eqs. (2.41) and (2.42) ). The large experimental uncertainties of the E734 data led

the authors of Ref. [101] to conclude that no new strangeness information can be extracted

from this experiment alone. Therefore, some studies [70, 100] have combined the available

PVES data with the neutrino BNL data to extract a value for Gs
E
, Gs

M
and Gs

A
simultaneously.

Assuming MA = 1.026 GeV in Ref. [100], one finds Gs
E
= 0.02±0.09, Gs

M
= 0.00±0.21 and

Gs
A
= −0.09± 0.05 at Q2 = 0.5 GeV2. More recently, strange vector and axial form factors

were derived from a combined analysis of G0 and HAPPEX PVES data and neutrino BNL

data [70], in the range 0.45<Q2 < 1.0 GeV2. Their best fit involves a Gs
A

that becomes neg-

ative with decreasing Q2, hence supporting evidence for a negative∆s value. From this kind

of studies, it has become evident that the most clear-cut way to pin down all strangeness

form factors requires a combination of dedicated, high-statistics neutrino experiments and
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Figure 2.4: Comparison of a combined analysis of G0 and E734 data (closed circles) [70]

with predictions from the chiral quark soliton model (full line) for the strangeness form

factors Gs
E
, Gs

M
and Gs

A
. Values for r2

s
and µs are taken from Table 2.7, while g s

A
= −0.075

[104].

PVES experiments [90]. The axial strangeness form factor Gs
A
(Q2) has also been the subject

of theoretical studies [70]. As can be appreciated from Fig. 2.4, the strangeness form fac-

tors of the chiral quark-soliton model (χQS(K)) provide a fair description of the PVES and

BNL data [84, 102–104].

2.4 Modeling nuclear effects

In Section 2.2, we have explained how the specific dynamics of the nucleon-knockout pro-

cess makes the impulse approximation the preferred framework to compute QE cross sec-

tions in. When, in addition, the nuclear wave functions are constructed in an independent-

particle model, it is possible to write the involved nuclear-current matrix elements in terms

of the one-body expressions in Eq. (2.20). Under these quasi-free conditions, one adopts a

one-body operator that is free from medium effects. Its form-factor parameterization was

discussed in detail in Section 2.3.

The current section focuses on the inclusion of nuclear effects. First, we briefly outline



24 2.4. Modeling nuclear effects

the model that was used to compute the single-nucleon wave functions, and we derive an

explicit expression for the bound-state spinors. The second part deals with our treatment

of final-state interactions. Some basic features of the multiple-scattering Glauber approxi-

mation will be indicated, and an expression for the wave function of the outgoing nucleon

is presented.

2.4.1 Relativistic bound-state wave functions

To describe the nuclear ground state, we turn to the relativistic, quantum field-theoretical

framework developed by Walecka [105]. The well-known σ-ω model starts from the as-

sumption that nucleons in nuclei interact by exchanging mesons of the scalar (∼ σ) and

vector (∼ ω) type. Replacing the meson field operators with their expectation values at

high densities, a set of exactly-solvable mean-field equations can be distilled [105]. Efforts

to extend the σ-ωWalecka model include the interaction with pions and ρ mesons, as well

as the coupling to the photon field [106, 107]. Moreover, applying a relativistic Hartree

approximation to derive the corresponding equations of motion, one arrives at a set of

coupled field equations that carry the same content as Walecka’s mean-field theory [107].

Imposing the condition that the nuclear ground state is spherically symmetric and a parity

eigenstate, the general solutions of the Dirac equation can be written in a two-component

representation as

Ψα,m(~r) =

�
i

Gα(r)

r
Y+κ,m(~̂r)

− Fα(r)

r
Y−κ,m(~̂r)

�
, (2.43)

where m is the magnetic quantum number and α stands for all other quantum numbers that

specify a single-particle orbital. The functions Gα and Fα denote the radial wave functions,

which are computed using the W1 parameterization for the different field strengths [24].

This parameter set produces charge densities and average binding-energies per nucleon

that compare well with the available data on spherically-symmetric nuclei [24, 80]. Fur-

thermore, in the definition of the spherical two-spinors, we have introduced a generalized

angular momentum, defined as |κ|= j + 1/2.

When considering neutrino-nucleus scattering processes, the relativistic bound-state wave

functions in Eq. (2.43) are to be used in the one-body current expression of Eq. (2.20).

From a computational point of view, however, it is more rewarding to consider the hadronic

current in momentum space. So, alternatively, we write

¬
Jµ(QE)

¶
= u(k f , s f )Ĵ

µUα,m(~p), (2.44)

where the free Dirac spinor u(k f , s f ) represents the outgoing nucleon. The bound-state

spinorUα,m(~p) can be calculated as the Fourier transform of the bound-state wave functions

in Eq. (2.43)

Uα,m(~p) =
1

(2π)3/2

∫
Ψα,m(~r)e

−i~p·~r d~r. (2.45)

The result is

Uα,m(~p) = i(1−l)

r
2

π

1

p

�
gα(p)Y+κ,m(~̂p)

− fα(p)Y−κ,m(~̂p)

�
, (2.46)
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with

gα(p) =

∫ ∞

0

Gα(r) ̂ l(pr)dr, (2.47)

and

fα(p) = sgn(κ)

∫ ∞

0

Fα(r) ̂ l(pr)dr, l =

�
l + 1, κ < 0

l − 1, κ > 0

�
. (2.48)

In (2.47) and (2.48), ̂ l(x) = x jl(x) are the Ricatti-Bessel functions. With the hadronic

current in Eq. (2.44), we can derive an explicit expression for the hadronic tensor in the

impulse approximation

H
ρσ

(QE)
=

1

2 j + 1

∑
m;s f

〈Jρ(QE)〉†〈Jσ(QE)〉. (2.49)

Considering nucleon knockout from a specific shell, one can average over the number of

bound nucleons in that shell. When computing unpolarized cross sections, one can sum

over the spin s f of the outgoing nucleons. After some straightforward manipulations, we

find

H
ρσ

(QE)
=

1

2mN

Tr
�

SαÕ ρ( 6 kN +mN)O σ
�

, (2.50)

where O ρ = Ĵρ and Õ ρ = γ0(O ρ)†γ0. In Eq. (2.50), we have introduced the short notation

Sα(~p) =
1

2 j + 1

∑

m

Uα,m(~p)U α,m(~p). (2.51)

This expression, referred to as the bound-state propagator, can be cast in a form which is

similar to the free-nucleon projection operator [108]. Indeed, one finds

Sα(~p) = ( 6 kα+Mα), (2.52)

with the definitions

Mα =
1

(2π)3
π

p2

�
g2
α
(p)− f 2

α
(p)
�

,

Eα =
1

(2π)3
π

p2

�
g2
α
(p) + f 2

α
(p)
�

,

~kα =
1

(2π)3
π

p2

�
2gα(p) fα(p)~̂p

�
.

(2.53)

It goes without saying that the algebraic tric in Eq. (2.52) provides an elegant solution for

the numerical implementation of the QE process. What is more, working in spinor notation

has yielded the compact trace expression of Eq. (2.50), in contrast to the more cumbersome

integral expression of Eq. (2.20). Figure 2.5 shows the momentum wave functions for a

proton belonging to a specified carbon shell. Owing to the small contribution of the lower

wave-function component, the quantities Mα and Eα are almost equal.
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Figure 2.5: The left panel shows the momentum wave functions for the carbon nucleus. The

full (dashed) line corresponds to g(p) ( f (p)) for a 1s1/2 proton, the dotted (dash-dotted)

line represents g(p) ( f (p)) for a 1p3/2 proton. In the right panel, the quantities defined in

Eq. (2.53) are shown for a 1p3/2-shell 12C proton.

2.4.2 Final-state interactions

In the previous section, we have set forth a realistic description of the nuclear ground-state

in terms of the relativistic bound-state wave functions in Eq. (2.43). As a next step, the

scattering wave functionφF(~r) figuring in Eq. (2.20) needs to be modeled to account for the

final-state interactions (FSI) undergone by the ejectile. At this point, it is worth repeating

that the QE strength is dominated by direct one-nucleon knockout processes. Hence, the

detected nucleon comes straight from the vertex and carries all the information about the

elementary weak-boson couplings, such as the axial form factor GA(Q
2). A prerequisite

to disentangle this information, however, is the ability to compute the attenuation of the

ejectile’s wave function due to FSI mechanisms. The relativistic multiple-scattering Glauber

approximation (RMSGA) provides such a framework. As a matter of fact, under some

specific conditions explained below, the RMSGA allows to determine the exact number of

nucleons that exit the residual system undisturbed.

The Glauber model is a multiple-scattering extension of the eikonal approximation [36]. As

such, it describes the emission of a fast nucleon from a composite system of A−1 temporarily

frozen nucleons, acting as scattering centers. The framework is valid under circumstances

where the de Broglie wavelength λ of the ejectile satisfies λ < rs < R, with rs the typical

interaction range between the energetic particle and the spectator nucleons, and R the

range of the medium. Assuming rs ∼ 1 fm, the Glauber approach is believed to be valid

down to TN ≈ 300 MeV. A detailed formulation of the RMSGA can be found in Ref. [37].

In this approach, the relativistic scattering wave function adopts the form

φF(~r) = G (~b, z) φkN ,sN
(~r), (2.54)

where φkN ,sN
is a relativistic plane wave and G (~b, z) represents the scalar Dirac-Glauber

phase, which accounts for the impact of FSI mechanisms on the scattering wave function.
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Postulating linear trajectories so that every point scatterer in the forward path of the out-

going nucleon adds a phase to its wave function, one gets

G (~b, z) =
∏

α 6=B

�
1−
∫

d~r ′|φα(~r ′)|2θ (z′− z)Γ(~b′−~b)
�

, (2.55)

where the product over α extends over all occupied single-particle states in the target nu-

cleus, excluding the one from which the nucleon is ejected. The ~r ′(~b′, z′) are the coor-

dinates of the residual nucleons and ~r(~b, z) specifies the interaction point with the weak

vector boson. In Eq. (2.55), the z axis lies along the path of the ejected nucleon, and
~b is perpendicular to this path. Reflecting the diffractive nature of the nucleon-nucleon

collisions at intermediate energies, the profile function is parameterized as

Γ(~b) =
σtot

NN
(1− iεNN)

4πβ2
NN

exp

�
−b2

2β2
NN

�
. (2.56)

The parameters σtot
NN

(total cross section), βNN (slope parameter) and εNN (ratio of the

real and imaginary part of the scattering amplitude) depend on the ejectile’s energy. They

are obtained through interpolation of the pp and pn data available from the Particle Data

Group data base [53, 109]. In the limit of vanishing FSI, G (~b, z) is put equal to 1, which

corresponds to the relativistic plane-wave impulse approximation (RPWIA).

2.5 Cross-section results

To study QE cross sections and their sensitivities to model parameters and assumptions,

we have implemented the formalism presented above into a computer code. Baseline re-

sults are derived in the RPWIA, using the cc2 form of Eq. (2.26) for the one-body current

operator. As standard input for the form factors, we take the dipole parameterizations

of Eqs. (2.30), (2.32) and (2.40) with the values MV = 843 MeV, MA = 1032 MeV and

gA = 1.262. For the time being, we put Gs
E
= Gs

M
= Gs

A
= 0. A discussion of the nucleon’s

strangeness content in relation to QE cross sections is postponed to Section 2.7. Parameters

used in the computations of BSWF and Glauber phases are kept fixed throughout this work.

2.5.1 Inclusive eA scattering

An important test for any nuclear model is the comparison with inclusive electron-nucleus

scattering data. Indeed, putting our model to the test by contrasting its predictions with

inclusive QE data can yield valuable information about the reaction mechanisms that are

at work in this energy region. In inclusive processes, only the outgoing lepton is observed.

Recognizing that the Glauber approach takes away all strength due to inelastic scatterings

of the outgoing nucleon, we choose to neglect FSI effects in order to retain all possible

nucleon-knockout contributions to the inclusive eA data. In Figs. 2.6, 2.7 and 2.8, we

present RPWIA cross sections for electron-induced one-nucleon knockout from different

target nuclei.

As can be appreciated from these results, the RPWIA computations succeed well in de-

scribing the QE peak region. At the peak, they mostly overestimate the strength, whereas,
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Figure 2.6: RPWIA cross sections for the process e− + A→ e− + X , at specified incoming-

electron energies Ee and electron scattering angles θe′ . In the left (right) panel, data are

taken from Ref. [110] ([111]). At the peak, Q2 = 0.295 GeV2 (= 0.316 GeV2) in the left

(right) panel. For the reader’s convenience: 10−33 cm2 = 1nbarn.

towards lower energy transfers, they fall short in fully explaining the data. The good agree-

ment, both in size and shape, between our calculations and the electron data provides

sound evidence that single-nucleon knockout is the dominant mechanism in this energy

region. In Fig. 2.7, we compare the RPWIA results computed within our model to the ones

obtained in a simple RFG model. The latter sees the nucleus as a collection of nucleons,

belonging to a Fermi sea with Fermi momentum kF . Thus, each nucleon has an energy

E = (k2 + M2
N
)1/2 − Eb, where k < kF and Eb is a binding-energy correction which is put

in by hand. Despite its naiveness, the RFG model reproduces the QE peak reasonably well.

Indeed, the data are not extremely sensitive to the nucleon momentum distribution. Com-

pared to a more realistic treatment of the nucleus, however, there are some notable, qual-

itative differences. The peak strength predicted by the Fermi-gas model is slightly larger

than the RPWIA one. Moreover, the latter gives a better account of the tails in the ω distri-

bution.

The fact that both models underestimate the data for low energy transfers and in the dip

region is to be understood as a failure of the impulse approximation itself. It is well-known,

for example, that the dip region is prone to two-body kinematics [48]. A description in

terms of meson-exchange and isobar currents is mandatory in this energy region. The inclu-

sion of short-range nucleon-nucleon correlations in our nuclear model could also improve

the agreement with data [114, 115]. Multi-nucleon processes also play a non-negligible

role in the low-ω region of the QE peak and for small momentum transfers. In Ref. [23],

a growing disagreement between IA calculations and electron-scattering data is observed

for decreasing Q2, leading the authors to the conclusion that the IA can only be justified for

momentum transfers |~q |¦ 400 MeV. In QE kinematics, ω∼ |~q|2/2mN , this translates in the

breakdown of the IA at Q2 ∼ 0.15 GeV2. Scanning the nucleus with lower spatial resolu-

tion makes the contributions from collective, multi-nucleon excitations more important. In

this region of the (ω, |~q |) plane, the inclusion of long-range random-phase approximation
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Figure 2.7: Comparison of RPWIA (dashed line) and RFG (full line) calculations for the

process e− + A→ e− + X . For the helium (carbon) nucleus, kF = 169 MeV and Eb = 17

MeV (kF = 221 MeV and Eb = 25 MeV) are chosen. Helium data are taken from Ref. [112],

carbon data from Ref. [113]. At the peak, Q2 = 0.226 GeV2 (= 0.310 GeV2) in the left

(right) panel.

(RPA) corrections becomes indispensable. Figure 2.8 illustrates the breaking down of the

IA by comparing predictions that differ only in the direction of the observed electron. The

Q2 values at the peak position are 0.1 GeV2 and 0.224 GeV2 for the left and right panel

respectively. Clearly, the RPWIA calculations are in closer agreement with data in the latter

case.

2.5.2 Semi-inclusive observables and nuclear transparencies

When detecting an emitted nucleon in coincidence with the scattered lepton, the model-

ing of FSI mechanisms becomes essential when comparing with data. A frequently-used

quantity to estimate the overall effect of FSI in nucleon-emission processes is the nuclear

transparency: it provides a measure for the probability that a nucleon of a certain energy

can escape from the nucleus without being subject to any further interactions. Experimen-

tally, it is extracted from the ratio of the measured A(e, e′p) yield to the calculated one using

the PWIA, according to [117]

Tex p(Q
2) =

∫
∆3pm

d~pm

∫
∆Em

dEmYex p(~pm, Em,~kN)

cA

∫
∆3pm

d~pm

∫
∆Em

dEmYPW IA(~pm, Em)
. (2.57)

In Eq. (3.59), the quantities ∆3pm and ∆Em specify the phase-space volume in the missing

momentum and energy. To guarantee that the electro-induced proton-emission process is

predominantly quasi-elastic, one places the kinematics cuts |~pm | ¶ 300 MeV and Em ¶

80 MeV in combination with the requirement that the Bjorken variable x ≈ 1 [47, 117].

Furthermore, the factor cA in the denominator of Eq. (3.59) has been introduced to correct
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Figure 2.8: RPWIA results for e− + A → e− + X for scattering from a carbon target at

Ee = 560 MeV and different scattering angles. Data taken from Ref. [116]. At the peak,

Q2 = 0.1 GeV2 (= 0.224 GeV2) in the left (right) panel.

in a phenomenological way for short-range mechanisms. It accounts for the fact that short-

range correlations move a fraction of the single-particle strength to higher missing energies

and momenta and, hence, beyond the ranges covered in the integrations of Eq. (3.59). In

a similar way, theoretical predictions for the nuclear transparency can be obtained from

the ratio of RMSGA calculations to RPWIA ones. Figure 2.9 displays the transparencies

computed within the RMSGA and RDWIA models as a function of Q2, together with the

world data. Here, the 197Au data are compared to 208Pb calculations, and cA values of 0.9

(12C), 0.82 (56Fe) and 0.77 (208Pb) are adopted [117]. As can be appreciated from Fig. 2.9,

apart from some tendency to underestimate the data for heavier nuclei, the RMSGA predicts

the measured A(e, e′p) transparencies well. In addition, in Ref. [19], it has been shown

that the neutrino transparencies computed from A(ν ,ν ′p) reactions agree quite well with

their electron counterparts. It is therefore suggested that one could use RPWIA results to

predict the elastic single-nucleon knockout contribution to inclusive neutrino cross sections

by rescaling them with a transparency factor extracted from A(e, e′p) data.

2.5.3 QE neutrino-nucleus cross sections

Reaching a satisfying level of agreement with both inclusive and semi-inclusive electron

scattering data lends confidence that our QE nucleon-knockout framework will suit neu-

trino applications as well. Accordingly, in the Figs. 2.10 to 2.13, we present QE neutrino-

nucleus cross sections for different incoming neutrino energies and a choice of representa-

tive target nuclei employed by current and planned neutrino experiments.

Figure 2.10 explores the sensitivity of CC νA cross sections to uncertainties in the form fac-

tors. It appears that ambiguities related to different vector form-factor parameterizations

are well under control. For typical Q2 ® 1 GeV2 in QE reactions, the BBBA05 parame-

terization yields no appreciable differences with respect to the standard dipole one. As a

consequence, the vector part in the one-body current of Eq. (2.26) appears solid and well-
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Figure 2.10: RPWIA cross sections for 12C(νµ,µ
−) and an incoming energy of 1 GeV. In

the left panel, the full (dashed) line corresponds to the dipole (BBBA05) parameterization

for the vector form factors. The shaded region in the right panel corresponds to a 10%

variation in the axial mass.
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Figure 2.11: Study of vector and axial-vector form-factor contributions to the RPWIA cross

sections for the knockout of a 1p3/2 proton from carbon. The upper (lower) panels show CC

(NC) distributions against Q2 (the ejectile’s kinetic energy TN ) for Eνµ = 1 GeV (500 MeV).

In the right-hand panels, neutrino- and antineutrino-induced cross sections are compared.

tested against electron data. To the contrary, the axial sector remains largely unknown, as

the axial mass MA needs to be extracted from neutrino-scattering data. The effect of the

uncertainty on MA is assessed in Fig. 2.10. Clearly, increasing (decreasing) its value by 10%

leads to an increase (decrease) of the CC νA cross section by about the same amount.

Figure 2.11 displays NC and CC cross sections together with the separate contributions

they receive from vector and axial-vector form factors. The pseudoscalar form factor GP

gives rise to terms that are proportional to the outgoing lepton’s mass and, hence, does

not enter into the NC cross-section result. Nor does it play a role in the CC case, as can be

appreciated by comparing the axial contributions there. For NC cross sections, the term pro-

portional to G2
A

accounts for the bulk of the total strength. Suppressed by the weak mixing

angle, the F1 and F2 contributions to the NC responses are small. On the other hand, the CC

cross sections receive comparable shares from the vector and axial terms. In both cases, the

remainder of the strength is mainly due to the interference contribution GAF2 [19], which
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Figure 2.12: Comparison of electron- (full line) and muon-neutrino (dashed line) CC QE

cross sections. The left panels display RPWIA predictions for the knockout of a 1p3/2 pro-

ton from an oxygen nucleus as a function of the outgoing lepton energy. The right panel

compares total cross sections for an oxygen target.

dominates the transverse response function R′
T

in Eq. (2.15). Thus, a difference of ∼ 2GAF2

is what distinguishes the neutrino- and antineutrino-induced cross sections in Fig. 2.11.

All neutrino results presented so far relate to νµ (or νµ) scattering. As the majority of

neutrino experiments is based on neutrino beams from pion decays, muon neutrinos are

indeed the most frequently-used ones. Of course, the produced muon neutrinos undergo

flavor oscillations, provoking a certain number of νe events in the far detectors. Recently, it

has been shown [118] that uncertainties related to the ratio of νe to νµ QE cross sections

have a non-negligible impact on the sensitivity of future superbeam facilities to measuring

CP violation. Figure 2.12 compares RPWIA cross sections for νµ and νe probes as a function

of the incoming neutrino energy. At low energies, it is seen how the larger phase space

available for producing electrons results in larger cross sections for electron neutrinos. As

the incoming neutrino energy approaches 1 GeV, however, this effect soon dwindles to a

mere 1% level. For energies beyond 1 GeV, no appreciable differences can be observed be-

tween the RPWIA cross sections induced by νµ and νe.

In Fig. 2.13, we study the effect of FSI on QE nucleon-knockout cross sections. To this end,

two types of calculations are presented. First, we have computed cross sections within the

RMSGA framework, where the ejectile’s FSI are incorporated in an unfactorized way. As a

second approach, we have estimated the effect of FSI mechanisms by scaling the RPWIA

cross sections with a constant factor that is taken as a representative value for the A(e, e′p)
transparency. Correcting the measured transparencies from Fig. 2.9 with the factor cA, we

take T = 0.52 (= 0.34) for 12C (56Fe). In the region where the RMSGA produces reliable

results, i.e. for Tp > 200 MeV [19], a good to very good agreement is observed between

the rescaled RPWIA and the fully unfactorized RMSGA results. Again, this finding supports

the idea that a simple scaling of the RPWIA results allows one to reliably estimate the FSI

effects for the QE contribution to the inclusive neutrino cross section. It is important to

stress, however, that a cut in Em is needed in order to isolate this elastic nucleon-knockout
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Figure 2.13: CC 12C(νµ,µ
−) (left panels) and 56Fe(νµ,µ

−) (right panels) cross sections as

a function of the outgoing proton’s kinetic energy at different incoming energies. The

dashed (full) lines represent the unfactorized RMSGA (RPWIA) calculations. The dash-

dotted lines show the RPWIA results, scaled with a transparency factor T (12C) = 0.52 and

T (56Fe) = 0.34.
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channel.

2.6 Paschos-Wolfenstein relation in a hadronic picture

Lately, neutrinos have been regarded as interesting candidates for electroweak tests aiming

at a precision measurement of the Weinberg angle θW [119–121]. One of the most fun-

damental parameters in the Standard Model (SM), the weak mixing angle has been at the

center of research activities, involving both theoretical SM calculations [122, 123] and ex-

perimental efforts to determine its value. While all sin2 θW measurements near the Z0 pole

[124, 125] and for low Q2 values [126, 127] are in good agreement with the SM prediction,

an experiment by the NuTeV collaboration at Q2 = 20 GeV2 does not seem to corroborate

the calculated running of the Weinberg angle [119]. Explanations for this anomalous result

range from quantum chromodynamics (QCD) uncertainties [128, 129], to nuclear effects

[130, 131] and even interpretations involving new physics [132, 133]. Whether the sur-

prising NuTeV outcome can be resolved through a further analysis of the data or indeed

hints at new physics beyond the SM, is up to this day an unresolved issue [134].

In NuTeV’s analysis, the Paschos-Wolfenstein (PW) relation [135] plays an essential role in

relating the weak mixing angle to measured ratios of NC to CC deep-inelastic scattering

neutrino cross sections. This relation is traditionally defined as the following ratio of NC to

CC (anti)neutrino-nucleon cross sections

PW=
σNC(νN)−σNC(νN)

σCC(νN)−σCC(νN)
. (2.58)

Adopting the nucleon’s quark-parton structure, the PW relation can be computed starting

from the quark currents

̂(Z)
µ
=
∑

q=u,d

gq,Lqγµ(1− γ5)q+ gq,Rqγµ(1+ γ5)q NC,

̂(+)
µ
=

1

2
uγµ(1− γ5)d, ̂(−)

µ
=

1

2
dγµ(1− γ5)u CC,

(2.59)

with the quark coupling strengths

gu,L =
1

2
−

2

3
sin2 θW , gu,R = −

2

3
sin2 θW ,

gd,L = −
1

2
+

1

3
sin2 θW , gd,R =

1

3
sin2 θW .

(2.60)

Using these expressions, one immediately derives [136]

PW=

�
1

cos2 θc

��
1

2
− sin2 θW

�
. (2.61)

Equation (2.61) is valid for isoscalar targets, containing an equal number of u and d quarks,

and neglecting the role of s quarks.

Although the PW relation has been tested very well in the DIS regime with respect to
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genuine QCD mechanisms, little effort has been put in the intermediate-energy regime,

where an adequate description in terms of hadronic rather than partonic degrees of freedom

is needed. Therefore, in this section, we will explore what physics could be probed by

future measurements of the Paschos-Wolfenstein relation at medium energies. Adopting

our model for neutrino-induced nucleon knockout, we conduct a study of the PW relation

in the QE regime [137], assessing its sensitivity to various model parameters and model

dependencies. Knowing at what level nuclear uncertainties affect the PW relation, one can

put theoretical constraints on the accuracy with which variables can be determined from

it. In earlier work by Donnelly and Musolf [138], for example, nuclear uncertainties were

estimated too large to allow a sin2 θW determination in parity-violating electron scattering

(PVES) with a precision similar to other types of measurements. With the advent of high-

precision neutrino-scattering experiments such as MINERνA [139, 140], it is important to

check whether the PW relation at medium energies provides a powerful tool for a Weinberg-

angle extraction.

2.6.1 Paschos-Wolfenstein relation in neutrino-nucleus scattering

The cross sections in Eq. (2.15) constitute the ingredients for our study of the PW relation

with hadronic degrees of freedom:

PW=
σNC(νA)−σNC(νA)

σCC(νA)−σCC(νA)
. (2.62)

A numerical calculation of the PW relation according to Eq. (2.62) allows to investigate

the deviations from the prediction in Eq. (2.61) and to estimate the role of nuclear effects.

Before doing so, however, it is interesting to investigate whether the sin2 θW dependence of

Eq. (2.61) can be retrieved within a hadronic picture. First, integrating over all angles Ωl ,

ΩN in Eq. (2.15) nullifies the φ-dependent terms. Moreover, ignoring the small differences

between proton and neutron wave functions when evaluating the difference of ν- and ν-

induced cross sections, we retain only the contribution from the transverse R′
T

response.

Obviously, for NC processes, this contribution has to be considered for protons and neutrons

separately, whereas in the denominator, the charge-exchange feature of the interaction

forces neutrinos to interact with neutrons and antineutrinos with protons. Expressing the

differential cross sections in terms of the outgoing nucleon’s kinetic energy TN , we obtain

for an isoscalar nucleus

dσNC (νA)

dTN

− dσNC (νA)

dTN

dσCC (νA)

dTN

− dσCC (νA)

dTN

≈
�

1

cos2 θc

�

×

∑
τ3=±1

∑
α

∫ π
0

sinθl sin2 θl

2
dθl

∫ π
0

sinθN dθN kN f −1
rec

dTN

dEl

E2
l

M4
Z

(4Eν El sin2 θl
2
+M2

Z )
2

Eν+El

q
(R′

T
)NC

∑
α

∫ π
0

sinθl sin2 θl

2
dθl

∫ π
0

sinθN dθN kN f −1
rec

dTN

dEl

E2
l

M4
W

(4Eν El sin2 θl
2
+M2

W )
2

Eν+El

q
(R′

T
)CC

,

(2.63)

where the summation over α extends over all bound proton single-particle levels in the tar-

get nucleus. Furthermore, the mass of the outgoing lepton has been neglected in Eq. (2.63).
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Clearly, the main difference between numerator and denominator lies in the value of the

remaining transverse response function R′
T
, which is proportional to GA(Q

2)GM(Q
2). As-

suming that Q2 ≪ M2
Z
, M2

W
and disregarding differences in the contributions of different

shells, the expressions in numerator and denominator cancel to a large extent. In other

words, the PW relation is approximately given by

dσNC (νA)

dTN

− dσNC (νA)

dTN

dσCC (νA)

dTN

− dσCC (νA)

dTN

≈
�

1

cos2 θc

�∑
τ3=±1

GNC
A
(0)GNC

M
(0)

GCC
A (0)G

CC
M (0)

=

�
1

cos2 θc

� 
(
1

2
− sin2 θW ) +

g s
A

gA

 
sin2 θW (µp +µn) +

1

2
µs

(µp −µn)

!!
.

(2.64)

Apart from the standard value figuring in Eq. (2.61), an additional strangeness term ap-

pears. In (2.64), µp = F EM
2,p
(0) (µn = F EM

2,n
(0)) denotes the proton (neutron) magnetic

moment and µs = F s
2
(0) is the strangeness magnetic moment. We wish to stress that the

left-hand side of Eq. (2.64) is TN independent.

2.6.2 Results and discussion

In the analytic derivation described above, the DIS expression of the PW relation was re-

gained by making various approximations to our hadronic picture. Next, we will evaluate

numerically to what extent the nuclear medium affects this standard value of the PW rela-

tion. To this end, the nuclear effects are gradually included and the resulting PW curves

are compared with the expression (2.64). In a first series of calculations, we neglect

the strangeness content of the nucleon, putting g s
A
= 0 and µs = 0. A discussion of the

strangeness sensitivity of the PW relation is postponed to the end of this section. Results

will be presented for νe (ν e) scattering off both an isoscalar nucleus, 16
8
O, and a heavier one,

56
26

Fe, with neutron excess. For sufficiently high neutrino energies, Eν ® 1 GeV, Fig. 2.12

indicates that our findings are applicable to muon-neutrino scattering as well. As a general

starting point, we use dipole vector and axial form factors, the cc2 form for the one-nucleon

current and an on-shell weak mixing angle sin2 θW = 0.2224.

Relativistic plane-wave impulse approximation

Figure 2.14 displays the PW relation against the outgoing nucleon’s kinetic energy TN for

an incoming neutrino energy of 1 GeV and an 16
8
O target nucleus. Clearly, the 1p1/2-shell

contribution to the PW relation can not be distinguished from the total, shell-summed ex-

pression. Both curves show a remarkably constant behavior over a broad TN interval and

are in excellent agreement with the analytic value in Eq. (2.64). For an incoming neutrino

energy of 1 GeV, nuclear binding effects do not seem to influence the PW relation consider-

ably. As can be appreciated from Fig. 2.14, Eq. (2.64) provides a very good approximation

under those circumstances. In Fig. 2.15, we studied the sensitivity to the adopted param-

eterization for the electroweak form factors. Employing the updated BBBA05 parameteri-

zation for the weak vector form factors apparently yields no difference with respect to the
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Figure 2.14: The RPWIA Paschos-Wolfenstein relation as a function of the outgoing nu-

cleon’s kinetic energy TN for an incoming neutrino energy of 1 GeV and an 16O target

nucleus (full line). Also shown is the contribution of the 1p1/2 shell (dash-dotted). The

dashed line represents Eq. (2.64), with sin2 θW = 0.2224 and cosθc = 0.974.
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Figure 2.16: Paschos-Wolfenstein relation for total ν/ν−16O cross sections against incoming

neutrino energy. The dashed line represents the standard value.

usual dipole form. Indeed, the fact that the results in Figs. 2.14 and 2.15 are relatively

TN independent indicates that the Q2 dependence is largely cancelled out in the PW ratio.

Accordingly, the sensitivity to the adopted Q2 evolution of the form factors is minor. An

interesting by-product of this feature is that the PW relation does not depend on the axial

form factor’s cut-off mass MA, which constitutes a possible source of uncertainty in the de-

termination of g s
A

from neutrino cross-section ratios [101, 141]. Similarly, Fig. 2.15 shows

that the use of a different prescription for the weak one-nucleon current operator exercises

only the smallest of influences on the PW relation.

Most neutrino experiments, however, do not possess the discriminative power to measure

the ejectile’s kinematics. In this case, a comparison with experimental results is facilitated

by using total cross sections. Hence, it is useful to evaluate the integrated expression

PWint =
σNC(νA)−σNC(νA)

σCC(νA)−σCC(νA)
, (2.65)

obtained by integrating dσ/dTN over TN . Figure 2.16 displays PWint for ν/ν-16O cross

sections and various incoming neutrino energies ranging from 100 MeV to 2 GeV. From

Eν = 500 MeV onwards, the calculated values agree with the standard value at the 0.5

percent level, illustrating once more the validity of the approximation of Eq. (2.64) in the

RPWIA. However, large discrepancies are observed at lower incoming energies. There,

binding effects play an important role in the relative magnitude of the individual shell con-

tributions to the cross sections. As a result, the expressions in numerator and denominator

of Eq. (2.63) do not cancel entirely, thereby shifting PWint to larger values. With increas-

ing incoming neutrino energies, differences between the contributions of different shells

become of less importance and the numerically computed PW values take on the value for

the free nucleon.
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Figure 2.17: The Paschos-Wolfenstein relation as a function of TN for the 16O 1p1/2 shell.

The full (dash-dotted) line shows the RPWIA (RMSGA) case. The dashed lines represent

the standard PW value, with errors of 1%.

Final-state interactions

As a next step, we study the influence of FSI mechanisms on the PW relation. In the

Glauber model, FSI roughly halve the cross sections for 16O. Since the PW relation takes

ratios of cross sections, FSI effects cancel to a large extent, which is shown in Fig. 2.17 for

an incoming neutrino energy of 1 GeV. To better illustrate the influence of FSI mechanisms,

a ±1% error on the standard PW value is shown. In the region where the RMSGA produces

valid results, i.e. for TN ¦ 200 MeV [19], FSI mechanisms increase the computed PW ratio

by less than one percent.

Neutron excess

In the preceding discussion, the PW relation was investigated for a target with an equal

number of protons and neutrons. Neutrino-scattering experiments often employ heavier

target nuclei, with an excess amount of neutrons. The additional energy-dependent terms

that are introduced in the PW formula will affect the predicted PW standard value (2.64),

which required the perfect cancellation between proton and neutron contributions. Figure

2.18 shows the TN dependence of the PW relation for 56Fe at an incoming neutrino energy

of 1 GeV. The specific energy dependence of PW in the iron case is given shape by the

extra ν-induced CC cross sections in the denominator. Thereby, low PW values correspond

with the peak region and high values with the tail of the excess neutrons’ contribution to

σCC(νA). In general, the neutron excess in the iron target lowers PW values by ¦ 10%.

Correspondingly, of all nuclear effects looked into here, the neutron-excess correction to

the PW relation is the largest and most important one.

Model dependence and sin2 θW determination

Of course, to be relevant for future neutrino-scattering experiments, the above predictions

need to be discussed in terms of their model dependence. To this end, we follow the line
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Figure 2.18: The RPWIA Paschos-Wolfenstein relation as a function of TN for an iron target

(dash-dotted). Other notations refer to Fig. 2.14. For reference purposes, a dashed-line

denoting the 10%-reduced standard PW value is added.

of reasoning in Refs. [18, 141], where the difference between cross sections provided by a

relativistic Fermi-gas model (RFG) and a relativistic shell model (RSM) is assumed to rep-

resent a reasonable measure for the theoretical model uncertainty itself. While sizeable for

separate cross sections at lower incoming neutrino energies, nuclear-model dependences

already seem to vanish at Eν = 1 GeV where the RSM curves coincide with the RFG ones

[18]. A similar conclusion is reached in [19], where a comparison is made between RPWIA

shell-model cross sections and RFG results. As the neutrino energy increases to 1 GeV, the

RFG curves approach more and more the RPWIA predictions. In the same work, two meth-

ods to incorporate FSI mechanisms were compared: the Glauber approach applied here and

the relativistic optical-potential approximation. At Eν = 1 GeV, both techniques were found

to produce similar results down to remarkably low nucleon kinetic energies TN ∼ 200 MeV.

Hence, as nuclear-model uncertainties seem to be negligible at Eν = 1 GeV for separate

cross sections, we conclude that the PW relation, a superratio, mitigates these model de-

pendences well below the level of all other nuclear effects studied in this work.

For isoscalar target nuclei and energetic neutrinos, the whole of nuclear-model uncertain-

ties on the PW relation is seen to be well within percentage range. Evidently, this means

that a PW measurement with percent-level accuracy can only resolve non-isoscalar nuclear

effects. Notwithstanding the extreme stability with respect to theoretical uncertainties in

nuclear modeling, a quick glance at the PW relation’s Weinberg-angle sensitivity (from

Eq. (2.61))

∆PW

PW
=
−∆ sin2 θW

1

2
− sin2 θW

, (2.66)

immediately qualifies any ambition to exploit the PW relation as an electroweak precision

tool. From Eq. (2.66), a ±1% theoretical uncertainty on the PW relation would result

in an equally large nuclear-model error on the Weinberg angle ∆nuc(sin
2 θW ) = ∓0.0028.

On the contrary, a 10% measurement error for the parity-violating asymmetry APV in ~ee

Møller scattering at Q2 = 0.026 GeV2 translates in a 1% uncertainty on the corresponding
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Figure 2.19: The left (right) panel shows the RPWIA Paschos-Wolfenstein relation for the
16O 1p1/2 shell (an 56Fe target nucleus) and a 1 GeV incoming neutrino energy. Full (dash-

dotted) lines correspond to g s
A
= µs = 0 (g s

A
= −0.075,µs = 0.115). For comparison, the

standard PW values without strangeness are included (dashed lines).

Weinberg-angle value [127]. The newly proposed Qweak experiment at Jefferson Lab aims

at a 4% measurement of the proton’s weak charge Qp
w
, resulting in a 0.3% measurement

of sin2 θW [142]. In this type of experiments, the sensitivity to the weak mixing angle is

substantially enhanced by the factor 1/4−sin2 θW figuring in the APV expression. Obviously,

the PW relation cannot compete with the level of sensitivity achievable in this sector and is

therefore less suited as an electroweak precision test.

Strangeness

As a final point, we discuss the impact of the nucleon’s strangeness content on the PW

relation. For the strangeness parameter values, we adopt predictions from the chiral quark-

soliton model (CQSM) with kaon asymptotics, namely µs = 0.115 and g s
A
= −0.075 [84,

104]. It is important to stress that the available strangeness information still exhibits rel-

atively large error flags. Moreover, as discussed in Section 2.1, there exist fundamental

discrepancies between the experimentally favored positive µs and most hadron-model pre-

dictions. So, the values used here can be regarded as a model prediction for µs and g s
A

which

is compatible with currently available data. Figure 2.19 illustrates the influence of non-zero

strangeness parameters on the PW relation. As can be observed from the left panel, the in-

clusion of strangeness alters the PW relation for an isoscalar target by an amount of ∼ 1%.

For 56Fe, a nucleus with neutron excess, the effect is larger (∼ 2%). Summing over an equal

number of proton and neutron contributions effectively cancels all isovector-strangeness in-

terference terms, thereby reducing the PW relation to the analytic estimate (2.64). On the

contrary, the extra neutrons in 56Fe skew this proton-neutron balance, producing a larger

deviation from the PW relation without strangeness.

Clearly, strangeness adds a significant amount of uncertainty when attempting to deter-

mine sin2 θW from the PW relation. A simple way of visualizing the mutual influence of the

parameters entering the PW relation is by considering the correlation plots in Fig. 2.20. We

took Eq. (2.64) with the baseline parameter values as a starting point to calculate the lines
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Figure 2.20: Plots showing how sin2 θW and strangeness parameter values are correlated in

the PW relation. The full line corresponds to values of the indicated parameters for which

the PW relation is constant. The dash-dotted (dotted) lines have the same meaning, but

with PW equal to ±1% (±5%) the full-line value.

of constant PW. From the left panel of Fig. 2.20, one can infer that a 50% uncertainty on

g s
A

translates in a 0.7% error on sin2 θW if we assume that everything else is known. On the

other hand, extracting sin2 θW from the PW relation is visibly less sensitive to the value of

µs, yielding only a +0.3% increase if µs is changed from 0.115 to 0. Again, it emerges that

the limited information on g s
A

and µs presently at hand, does not allow one to exploit the

PW relation to probe the Weinberg angle with the sensitivity achievable in PVES. Turning

things around, however, a precisely known Weinberg-angle value may turn out valuable

in trying to pin down g s
A

from a measurement of the QE PW relation. In Ref. [18], for

example, the Paschos-Wolfenstein relation for proton knockout PWp was seen to have a

strong dependence on g s
A
. In addition, results presented here justify the optimism about a

model-independent g s
A

determination [101] by measuring PWp in the right circumstances,

i.e. with an isoscalar target nucleus and an incoming neutrino energy of about 1 GeV. To

study how the finite precision on sin2 θW and µs influences the accuracy with which g s
A

can

be extracted from PWp, we consider the correlation plots in Fig. 2.21. The curves were

again drawn from Eq. (2.64), now retaining only the proton contribution in the numerator

(τ3 = +1) to obtain lines of constant PWp. From this figure, we see that a 5% measurement

of PWp results in a ±0.067 determination of g s
A
. For comparison, the FINeSSE collaboration

[143] aims at a 6% measurement of the NC/CC ratio down to Q2 = 0.2 GeV2, correspond-

ing to a ±0.04 measurement of g s
A
. The left panel in Fig. 2.21 learns that a 1% uncertainty

on sin2 θW gives rise to a 20% uncertainty on g s
A
, assuming again that everything else is

fixed. The inconclusive information on µs available at present has a far more severe effect

on the value of g s
A
, as can be derived from the right panel. Shifting the strangeness magnetic

moment from 0.115 to 0, g s
A

changes by ∼ 0.07. We recall that nuclear-model uncertain-

ties can be mitigated to the 1% level, corresponding to ∆nuc(g
s
A
) ∼ 0.015. This analysis

stresses the importance of further experimental efforts to put more stringent limits on the

strangeness form factors of the nucleon. As apparent from this PWp case, experiments in

the vector and axial-vector sector heavily depend on each other in the sense that both types
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Figure 2.21: Correlation plots showing how the axial strangeness parameter g s
A

is inter-

twined with sin2 θW (left) and µs (right) through the PW relation for proton knockout PWp.

The full line corresponds to values of the indicated parameters for which PWp is constant.

The dash-dotted (dotted) lines have the same meaning, but with PWp equal to ±1% (±5%)

the full-line value.

of measurements need reliable input values for the other strangeness parameters.

2.7 Strangeness studies

Ratios of neutrino-induced cross sections are indeed considered as valuable tools for study-

ing the strangeness content of the nucleon, and notably the strangeness contribution to

the nucleon’s spin g s
A
. Our study of the Paschos-Wolfenstein relation has made clear that

nuclear-model uncertainties can be well controlled by choosing energetic neutrinos scatter-

ing off isoscalar target nuclei. Under these circumstances, ratios of cross sections provide

theoretically clean probes for strangeness studies. Another advantage of cross-section ra-

tios is that the sensitivity to strangeness parameters can be greatly enhanced if one opposes

cross sections with different strangeness responses. For example, a well-considered ratio is

the proton-to-neutron knockout ratio

Rν
p/n
=
σNC(νp→ νp)

σNC(νn→ νn)
,

Rν
p/n
=
σNC(νp→ νp)

σNC(νn→ νn)
,

(2.67)

which contrasts the opposite signs of strangeness-isovector interference contributions to

proton- and neutron-knockout processes. To avoid difficulties inherent to neutron detec-

tion, the denominator in Eq. (2.67) can be replaced by a CC cross section, yielding

Rν
NC/CC

=
σNC(νp→ νp)

σCC(νn→ µ−p)
,

Rν
NC/CC

=
σNC(νp→ νp)

σCC(νp→ µ+n)
.

(2.68)
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Since strange-quark contributions enter as isoscalar terms in the weak current, the purely

isovector denominators in Eq. (2.68) are not sensitive to strangeness variations. Consider-

ing the ratio of NC to CC cross sections thus enhances the overall sensitivity to strangeness

terms in the numerator. Other ratios that have been proposed include the Paschos-Wol-

fenstein relation for proton (R
p

PW ) and neutron (Rn
PW

) knockout and the longitudinal po-

larization asymmetry Al . The latter is defined as the difference between cross sections

for nucleon ejectiles with opposite helicities, normalized to the total NC nucleon-knockout

cross section,

Aν
l
=
σNC(νp→ νp, hp = +1)−σNC(νp→ νp, hp = −1)

σNC(νp→ νp, hp = +1) +σNC(νp→ νp, hp = −1)
,

Aν
l
=
σNC(νp→ νp, hp = +1)−σNC(νp→ νp, hp = −1)

σNC(νp→ νp, hp = +1) +σNC(νp→ νp, hp = −1)
.

(2.69)

Although a measurement would pose an immense experimental challenge, the quantities

in Eq. (2.69) prove to be strongly subject to strange-quark contributions [144].

Recently, the ratios introduced above have been at the center of a considerable number

of theoretical studies [18, 71, 141, 144–148]. Whereas most of these efforts focus on a

scrutiny of the individual ratios with respect to their strangeness sensitivity, the work pre-

sented in Ref. [71] takes a more systematic approach. There, a measure for the strangeness

sensitivity of a ratio R is defined as

����
R(s = 0)− R(s)

R(s = 0)

���� . (2.70)

Plotting the quantity in Eq. (2.70) for different ratios allows a direct comparison of their

sensitivity to the strangeness parameters g s
A
, µs and r2

s
. This is shown in Fig. 2.22 for the

case of 1-GeV (anti)neutrino scattering from 12C. Clearly, the antineutrino helicity asymme-

try Aν
l

has no equal when it comes to probing strangeness effects. It is the sole quantity that

is more sensitive to the vector than to the axial strangeness parameters. Nonetheless, only

Rν
p/n

can compete with Aν
l

in its sensitivity to g s
A
. For most ratios, the antineutrino version

exhibits a stronger strangeness sensitivity than the ratio constructed using neutrino-induced

cross sections. The sensitivity of some ratios strongly depends on the sign of the strangeness

parameters. Rν
p/n

and Rν
NC/CC

offer good perspectives in obtaining g s
A

information, and are

not affected too much by the influence of r2
s

and µs. The Paschos-Wolfenstein relation on

the other hand, is most sensitive to the vector strange form factors while its sensitivity to

g s
A

is rather marginal. It goes without saying that the information obtained in this way is

of great value to neutrino-scattering experiments aiming at a precision measurement of g s
A
,

such as FINeSSE [143]. In this respect, an important lesson to be drawn from Fig. 2.22

is the strong influence of strange vector form factors on the considered ratios. As already

concluded in the case of the Paschos-Wolfenstein relation in Section 2.6, it takes a set of

well-constrained vector parameters to extract new information on the axial ones.
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neutrino scattering off a carbon target nucleus.

2.8 Comparison to other work

We conclude this chapter with comparing our QE neutrino-nucleus cross sections to other

approaches. Generally speaking, one can make a distinction between two lines of research

according to how the term quasi-elastic scattering is filled in exactly. A first category of

QE studies, including our approach, adheres to the definition of a direct nucleon-knockout

mechanism. In this case, one is solely interested in those nucleons that escape the nu-

cleus without any further interaction. The recoiling (A− 1) system is left in a single-hole

state, corresponding to an excitation energy that does not exceed a few tens of MeV. Ex-

perimentally, these direct processes are selected by means of a cut in the missing energy

Em ≤ 80 MeV. To compute the attenuation of the scattering wave function, one makes

use of complex optical potentials in RDWIA models [19, 33–35], or Glauber approaches

[19] as applied in this thesis. The main motivation to pursue this line of work stems from

the possibility of a fully quantum-mechanical treatment of the nucleon-knockout process.

In addition, the RDWIA and RMSGA models have been tested extensively and with great

success against a plethora of exclusive and semi-exclusive (e, e′p) data [38].

Ongoing neutrino experiments, however, have limited means to identify the missing energy

of the recoiling nucleus. Thus, as long as the final nuclear state remains unobserved, a more

realistic viewpoint of QE scattering would be to consider

ν + A−→ ν ′/l + N + X , (2.71)
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Figure 2.23: Comparison of RPWIA and RMSGA calculations performed by the Ghent group

with results obtained in the Giessen coupled-channel transport model [149] for the NC

proton knockout from iron.
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which still allows for all final nuclear configurations X . Efforts to model the process in

Eq. (2.71) employ Monte-Carlo simulation methods [25] or semi-classical techniques, as

in the Giessen coupled-channel transport model [41]. Whereas a quantum-mechanical de-

scription is beyond the reach of these models, they manage to provide a more inclusive

description of QE reactions. Equation (2.71) indeed presupposes no cuts in Em, hence in-

cluding processes where several nucleons come off the nucleus, or where the final nucleus

breaks apart.

To put our calculations for the single-nucleon knockout channel in a more general per-

spective, in Fig. 2.23 we present a comparison with results obtained by the Giessen group

[149]. It should be noted that, in addition to QE interactions, the Giessen calculations

also consider the initial excitation of resonances as a source of the total nucleon-knockout

strength. For lower incoming neutrino energies, however, the contribution of ∆ production

is shown to be marginal [149]. Comparing our RPWIA calculations to the Giessen results

without FSI in Fig. 2.23, one then notices a good agreement at Eν = 500 MeV. On the other

hand, for Eν = 1 GeV, the Giessen strength is more than double compared to ours. At this

energy, initial ∆ excitation clearly leads to a significant contribution to nucleon knockout.

Comparing results where FSI are taken into account reveals even bigger contrasts. Our

RMSGA calculations describe the loss of flux due to inelastic interactions undergone by the

ejectile, retaining only those nucleons that come straight from the vertex. To the contrary,

when FSI are turned on in the Giessen model, the nucleons that are subject to secondary

interactions are not just absorbed but -through rescattering- ejected with a different energy,

angle, and/or charge. As shown in Fig. 2.23, this leads to a depletion of the high-Tp side

of the spectrum, in favor of an increase of secondary nucleons at lower nucleon kinetic

energies. As a matter of fact, rescatterings are seen to cause an enhancement of the total

proton-knockout yield, with respect to the case where no FSI are included. Interestingly,

the Giessen calculations seem to suggest that secondary processes and cross feeding make

the proton-knockout cross section to peak at high missing energies. This is an intriguing

result, as (e, e′p) measurements probing high missing energies have provided a quite dif-

ferent picture. Figure 2.24, for example, illustrates the Em dependence of 16O(e, e′p) data

taken from Ref. [38]. Beyond the peaks corresponding to proton knockout from the 1s

and 1p states of 16O, the data indicate a smooth Em dependence of the cross section for

Em > 100 MeV. Furthermore, compared to the single-particle contribution, the region of

higher missing energies is seen to account for only a small portion of the proton-knockout

cross section.
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Figure 2.24: Missing-energy dependence of 16O(e, e′p) data compared with theoretical cal-

culations by the Ghent group [38]. Figure taken from [38].
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3
Delta-mediated pion production

As evidenced in the introductory chapter, at moderate Q2, processes whereby a nucleon is

excited to a ∆ resonance account for the lion’s share of the weak nuclear response in the

energy region between the dip and DIS regimes. Moreover, a discussion of ∆ production in

this thesis seems all the more natural when considering the many similarities this process

shares with the QE one. Indeed, both the QE and ∆ peaks are especially prone to one-

body kinematics. Because of the ∆ mass, M∆ = 1232 MeV, one needs to transfer an extra

ω ≈ 300 MeV to the nuclear system. Consequently, most of the approximations and tools

introduced in the previous chapter can be equally well applied to the ∆-production case.

We continue to work in the IA, for example, using the same nuclear-physics input as before.

Of course, there are obvious differences. On the elementary level, one needs to discuss the

weak and strong couplings of the ∆. For nuclear reactions, medium modifications of ∆

properties should be accounted for. In addition, for pion production following ∆ decay, we

will need to compute FSI effects on the pion scattering wave function.

Accordingly, this chapter has been divided into three main parts. First, we investigate ∆

production on a free nucleon, focusing mainly on the elementary ∆ couplings. We intro-

duce the weak N −∆ transition form factors and discuss their theoretical and experimental

constraints. In relation to the decay vertex, special attention is paid to the notion of a con-

sistent coupling, which couples solely to the physical, spin-3/2 part of the ∆ propagator.

We present results for the free process and compare them to bubble-chamber data. Next,

turning to nuclear targets, we construct the eightfold differential cross section correspond-

ing to ∆-mediated one-pion production in a nucleus. Using the bound-state propagator

introduced in the previous chapter, and taking care of medium modifications to the mass

and width of the ∆, we present numerical RPWIA calculations for a range of target nuclei

and neutrino energies. A comparison with both inclusive electron-scattering data and al-

ternative theoretical approaches is provided. Finally, in the last section, we concentrate on

the process of coherent pion production off nuclei. Thereby, we go beyond the so-called

local approximation that is commonly adopted in other theoretical works. The pion attenu-
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Table 3.1: Clebsch-Gordan coefficients 〈1 I1
1

2
I2|32 I3〉 [53] for composing an isospin I = 3/2

state from I = 1 and I = 1/2 states.

I1 I2 \ I3 +3/2 +1/2 −1/2 −3/2

+1 +1/2 1

+1 −1/2
p

1/3

0 +1/2
p

2/3

0 −1/2
p

2/3

−1 +1/2
p

1/3

−1 −1/2 1

ation is computed in a Glauber approach. Results are presented for typical MiniBooNE and

MINERνA conditions.

3.1 Pion production on a nucleon

3.1.1 Isospin considerations

When exciting a free nucleon to a ∆, it will always decay into a pion and a nucleon. Al-

though non-resonant mechanisms also contribute to one-pion production [150, 151], in

this thesis, we adhere to the ∆-dominance model. Figure 3.1 shows a number of pion-

production calculations performed within the Sato-Lee model [150], which includes both

resonant and non-resonant terms. Clearly, ∆-mediated pion production accounts for the

major part of the cross section. Depending on the considered channel, non-resonant back-

grounds stand for 10-30% of the total strength. The role of the background has also been

quantified in Ref. [151, 152], yielding similar results at 1-GeV neutrino energies. As present

uncertainties on neutrino pion-production data are of the same level, the ∆-dominance ap-

proximation seems a reasonable one. Hence, assuming that all produced pions originate

from the decay of a ∆ resonance, the neutrino-induced CC processes under study are

ν + p
∆++→ l−+ p+π+, (3.1)

for scattering from a free proton, and

ν + n
∆+→ l−+ p+π0,

ν + n
∆+→ l−+ n+π+,

(3.2)

for scattering from a free neutron. Similarly, anti-neutrino CC scattering yields the reactions

ν + p
∆0

→ l++ p+π−,

ν + p
∆0

→ l++ n+π0,

(3.3)
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Figure 3.1: Total pion-production cross sections computed within the dynamical Sato-Lee

model [150]. The solid (dotted) curves represent full calculations, with (without) pion-

cloud effects on N −∆ transitions. The dashed curves are non-resonant background con-

tributions. Figure taken from Ref. [150].

and

ν + n
∆−→ l++ n+π−. (3.4)

The NC processes can be written concisely as

ν + p→ ν +∆+,

ν + n→ ν +∆0,
(3.5)

with the same decay channels as in Eqs. (3.2) and (3.3). The strength of the above reactions

can now be related by looking at Table 3.1. Writing in isospin notation, |I , I3〉,

∆++ = |3/2,+3/2〉,∆+ = |3/2,+1/2〉,∆0 = |3/2,−1/2〉,∆− = |3/2,−3/2〉, (3.6)

and similarly for the pion (I = 1), nucleon (I = 1/2) and weak vector boson (I = 1) states,

Table 3.1 provides the Clebsch-Gordan coefficients to derive the relative strength of the ∆

production and decay channels. Thus, concerning the reactions in Eqs. (3.1) and (3.2) for

example, the corresponding cross sections are related by the expressions

σ(W+p
∆++→ pπ+) = 9σ(W+n

∆+→ nπ+) =
9

2
σ(W+n

∆+→ pπ0). (3.7)
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Figure 3.2: Kinematics for neutrino-induced one-pion production on the nucleon.

3.1.2 Kinematics and cross section

In a laboratory frame of reference, the free pion-production process is described by the

following differential cross section [44]

d9σ =
1

β

mν

Eν

ml

El

d3~kl

(2π)3
mN

EN

d3~kN

(2π)3
d3~kπ

2Eπ(2π)
3

×
∑

f i

���M ( f ree)

f i

���
2

(2π)4δ(4)(kν + kN ,i − kl − kπ− kN).

(3.8)

Figure 3.2 defines our conventions for the kinematical variables. The different field nor-

malizations follow the Bjorken & Drell conventions, listed in appendix A. In Eq. (3.8), the

target nucleon has four-momentum k
µ

N ,i = (mN ,~0). We write kµ
ν
= (Eν ,~kν) for the incoming

(anti)neutrino, k
µ

l
= (El ,~kl) for the outgoing lepton, kµ

π
= (Eπ,~kπ) for the outgoing pion

and k
µ
N = (EN ,~kN) for the outgoing nucleon. The x yz coordinate system is chosen such

that the z axis lies along the momentum transfer ~q, the y axis along ~kν × ~kl , and the x

axis in the lepton-scattering plane. In Eq. (3.8), the incoming neutrino’s relative velocity

β = |~kν |/Eν is 1. The neutrino mass mν will later cancel with the neutrino normalization

factor appearing in the lepton tensor. The δ-function expresses energy-momentum con-

servation and
∑

f i
|M ( f ree)

f i
|2 denotes the squared invariant matrix element, appropriately

averaged over initial spins and summed over final spins. Using the δ-function to integrate

over the outgoing nucleon’s three-momentum and the magnitude of the pion’s momentum,

one arrives at the fivefold cross section

d5σ

dEl dΩl dΩπ
=

mνml |~kl |mN |~kπ|
2(2π)5Eν |EN + Eπ(|~kπ|2−~q ·~kπ)/|~kπ|2|

∑
f i

���M ( f ree)

f i

���
2

, (3.9)

where the solid angles Ωl and Ωπ define the direction of the outgoing lepton and pion

respectively.
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Figure 3.3: Feynman diagram for ∆-mediated one-pion production.

3.1.3 Matrix element for resonant one-pion production

Next to the kinematic phase-space factor, Eq. (3.9) contains the squared invariant matrix

element ∑
f i

���M ( f ree)

f i

���
2

=
1

2

∑

sν ;sl
sN ,i ;sN

h
M
( f ree)

f i

i†

M
( f ree)

f i
. (3.10)

Here, the sum over final lepton and nucleon spins is taken. Averaging over the initial

nucleon’s spin sN ,i leads to a factor 1/2. An explicit expression for the invariant matrix

element is obtained by applying the Feynman rules in momentum space. Working along

the same lines as in section 2.1 for the QE case, one finds for the CC pion-production

process

M
( f ree)

f i
= i

GF cosθcp
2
〈Jρ( f ree)

had
〉SW,ρσ〈Jσlep

〉, (3.11)

with GF the Fermi constant and θc the Cabibbo angle. The lepton current is identical to the

one in Eq. (2.11), and the weak boson propagator assumes the form of Eq. (2.8), but with

MZ replaced by MW . The hadron current J
ρ( f ree)

had
contains all the information about the

pion-production process. A ∆-dominance model translates itself in the diagram depicted in

Fig. 3.3. Introducing the spinors u(kN ,i, sN ,i) and u(kN , sN) for the incoming and scattered

nucleon, the hadron-current matrix element can be written as

〈Jρ( f ree)

had
〉= u(kN , sN)Γ

µ
∆πN S∆,µνΓ

νρ
W N∆u(kN ,i, sN ,i), (3.12)

where Γ
νρ
W N∆ denotes the vertex function corresponding to the weak production of a ∆

resonance. The ∆ decay into a pion and a nucleon is described by Γ
µ
∆πN , and S∆,µν is the

∆ propagator. Each of these couplings will be discussed in detail in the following sections.

Filling in the appropriate expressions in Eq. (3.11), and working out Eq. (3.10), the squared

invariant matrix element can be cast into the form

∑
f i

���M ( f ree)

f i

���
2

=
G2

F
cos2 θc M

4
W

2(M2
W
+Q2)2

H
ρσ

( f ree)
Lρσ, (3.13)

where the leptonic tensor is given by Eq. (2.12). Introducing the shorthand notation O σ =
Γ
µ
∆πN S∆,µνΓ

νσ
W N∆

, one arrives at the following expression for the hadronic tensor

H
ρσ

( f ree)
=

1

8m2
N

Tr
�
( 6 kN ,i +mN) eO ρ( 6 kN +mN)O σ

�
, (3.14)
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where eO ρ = γ0(O ρ)†γ0. Clearly, the least-known physics is contained in the vertex functions

of the matrix element of Eq. (3.12). Sections 3.1.4-3.1.6 provide an in-depth look at each

of these ∆ couplings.

3.1.4 N −∆ transition form factors

For the ∆-production vertex, we adopt the form [153]

Γ
νρ
W N∆(k∆, q) =

�
CV

3
(Q2)

mN

(gνρ 6 q− qνγρ) +
CV

4
(Q2)

m2
N

(gνρq · k∆− qνk
ρ
∆)

+
CV

5
(Q2)

m2
N

(gνρq · kN ,i − qνk
ρ

N ,i) + gνρCV
6
(Q2)

�
γ5

+
CA

3
(Q2)

mN

(gνρ 6 q− qνγρ) +
CA

4
(Q2)

m2
N

(gνρq · k∆− qνk
ρ
∆)

+ CA
5
(Q2)gνρ +

CA
6
(Q2)

m2
N

qνqρ,

(3.15)

which relates to the n→ ∆+ transition. The vector (CV
i

, i = 3..6) and axial (CA
i
, i = 3..6)

form factors are to be constrained by physical principles and experimental data. Owing to

the purely isovector N −∆ transition, the NC analogues of the transition form factors are

readily given by

C
V,NC

i = (1− 2 sin2 θW )C
V
i

, i = 3..6,

C
A,NC

i = CA
i
, i = 3..6.

(3.16)

Imposing weak vector current conservation, qρΓ
νρ
W N∆ = 0 leads to CV

6
= 0. The PCAC hy-

pothesis, together with the pion-pole dominance assumption, yields the following relation

between CA
5

and the pseudoscalar form factor CA
6

CA
6
= CA

5

m2
N

Q2+m2
π

. (3.17)

At Q2 = 0, the off-diagonal Goldberger-Treiman relation gives CA
5
= 1.2 [154]. Further-

more, CVC entails that the weak vector current and the isovector part of the electromag-

netic current are components of the same isospin current. Consequently, after extracting

the electromagnetic form factors from electroproduction data, the CV
i

, i = 3, 4, 5 follow

immediately by applying the appropriate transformations in isospin space. To extract the

vector form factors, it has been established that the magnetic-dipole (M1) dominance of the

electromagnetic N →∆ transition amplitude is a reasonable assumption [155]. Indeed, in

a simple quark picture, the N → ∆ transition can be interpreted as a spin flip of a u quark

induced by a 1/2+ → 3/2+ M1 multipole. This M1 dominance leads to the conditions

[154, 156]

CV
4
= −CV

3

mN

W
, CV

5
= 0, (3.18)
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Figure 3.4: Results for the axial transition form factor CA
5
(Q2). The full line represents

Eq. (3.21). The dash-dotted line shows a quenched lattice result, and is parameterized as

CA
5
(Q2) = CA

5
(0)(1+Q2/M̃2

A
)−2, CA

5
(0) = 0.9 and M̃A = 1.5 GeV [161]. The dotted line is

the χCQ result from Ref. [162].

where W is the invariant mass, defined as W =
p

k2
∆

. In other words, one is left with

CV
3

, the other CV
i

being either 0 or related to it. For its Q2 dependence, a modified-dipole

parameterization is extracted [157, 158]

CV
3
=

1.95DV

1+Q2/4M2
V

, (3.19)

with DV = (1+Q2/M2
V
)−2 the dipole function and MV = 0.84 GeV. Equation 3.19 results

from a ∆-dominance fit [157] to the Brookhaven (BNL) Q2 spectrum [159]. The faster-

than-dipole fall-off reflects the fact that the ∆ is a more extended object than a nucleon.

More recently, a direct analysis of the electroproduction helicity amplitudes from JLab and

Mainz experiments resulted in an alternative parameterization of the weak vector form

factors [160]

CV
3
=

2.13DV

1+Q2/4M2
V

, CV
4
=
−1.51

2.13
CV

3
, CV

5
=

0.48DV

1+Q2/0.776M2
V

, (3.20)

attributing a non-zero strength to the weak vector form factor CV
5

. In the remainder of this

work, we will refer to Eq. (3.20) as the Lalakulich fit of the vector form factors.

The axial form factors CA
i

are subject to much larger uncertainties, as they are constrained

by bubble-chamber neutrino data from the seventies and eighties, which have large error

bars. Just as in the QE case, the pseudoscalar form factor CA
6

appears in terms that are

proportional to the outgoing lepton mass. Hence, its contribution can be safely neglected in

NC channels and, as we concluded in section 2.5, even in νe- and νµ-induced CC reactions.

A popular parameterization for the remaining axial form factors is given by [41, 157, 158]

CA
5
=

1.2

(1+Q2/M2
A
)2

1

1+Q2/3.0M2
A

, CA
4
= −

CA
5

4
, CA

3
= 0, (3.21)
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where MA = 1.05 GeV. In Eq. (3.21), the Adler-model prescriptions [163] for CA
3

and CA
4

were used, which again leads to one independent form factor, CA
5
. The resulting Q2 depen-

dence for CA
5

was then found by a fit to BNL neutrino-scattering data. Fixing its value at

Q2 = 0 by PCAC, CA
5
(0) = 1.2, and keeping the axial mass at MA = 1.05 GeV, a best fit to the

BNL Q2 distribution was found for the factor 3.0 appearing in the modified-dipole form of

Eq. (3.21) [157]. One should realize, however, that there is still quite some arbitrariness

in the axial N −∆ form factors. The extracted axial-mass value, for example, is heavily

model-dependent [151, 164]. A re-analysis [151] of Argonne (ANL) bubble-chamber data

[165] within a model that includes background contributions next to the ∆-pole mecha-

nism reveals a CA
5
(0) value that is lower than the one predicted by the Goldberger-Treiman

relation. Various theoretical calculations of the most important axial form factor, CA
5
(Q2),

also reveal highly different pictures [161, 162, 166–169]. Recent chiral constituent-quark

(χCQ) results [162] and lattice QCD calculations [161, 166] seem to provide support for

CA
5
(0) < 1.2. Figure 3.4 compares the two theoretical results with the phenomenological

fit of Eq. (3.21). It can be clearly seen that all three approaches exhibit highly different Q2

evolutions.

3.1.5 The ∆ propagator

In the Rarita-Schwinger formalism for free spin-3/2 particles [170], a ∆ is constructed as

a field ψµ
a

that transforms under a Lorentz transformation as a product of a four-vector

and a Dirac spinor. As such, ψµ
a

has one Lorentz index µ= 0..3 and one Dirac spinor index

a = 0..3, which together constitute an object with 16 degrees of freedom. In contrast, a free

∆ has only 4 positive-energy and 4 negative-energy spin states, meaning that 8 restrictions

have to be imposed onψµ
a

in order to enforce the elimination of unwanted spin-1/2 degrees

of freedom. This leads to the Rarita-Schwinger equations [170]

�
i 6 ∂ −M∆

�
abψ

µ

b
= 0, γµψ

µ
a
= 0, ∂µψ

µ
a
= 0. (3.22)

Within the Rarita-Schwinger theory, the free ∆ propagator is given by [171]

S∆,µν(k∆) =
−( 6 k∆+M∆)

k2
∆
−M2

∆
+ iM∆Γ

�
gµν −

γµγν

3
−

2k∆,µk∆,ν

3M2
∆

−
γµk∆,ν − γνk∆,µ

3M∆

�
, (3.23)

where Γ stands for the free decay width of the ∆ resonance. In terms of the projection

operators on the spin-3/2 and spin-1/2 sectors, the propagator in Eq. (3.23) can also be

rewritten as [171]

S∆,µν(k∆)∼
�

1

M∆− 6 k∆
P3/2
µν
+

2(M∆+ 6 k∆)
3M2

∆

P
1/2
22,µν −

1
p

3M∆

�
P

1/2
12,µν + P

1/2
21,µν

��
, (3.24)

where only the P3/2
µν

term projects spin-3/2 states. It is explicitly given by

P3/2
µν
= gµν −

1

3
γµγν −

1

3k2
∆

�
6 k∆γµk∆,ν + γνk∆,µ 6 k∆

�
. (3.25)
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We note that the ∆ propagator in Eq. (3.23) is proportional to the pure spin-3/2 projection

operator if and only if it satisfies the conditions in Eq. (3.22). Requiring that

γµS∆,µν = S∆,µνγ
ν = k

µ
∆S∆,µν = S∆,µνk

ν
∆
= 0, (3.26)

it is seen that the restrictions are only met for an on-shell∆, for which W = M∆. Therefore,

in Ref. [171], it is put forward that every interaction vertex involving a ∆ propagator

should automatically remove the spin-1/2 contributions. ∆ interactions that couple to the

correct number of degrees of freedom are called consistent. The question is then: how do

we construct such interactions? Pascalutsa and collaborators [172] propose to start from

an interaction Lagrangian L that is gauge invariant with respect to the ∆ particle,

L = O αβGαβ = O αβ(∂αψβ − ∂βψα), (3.27)

where O αβ contains other fields than spin-3/2 fields, derivatives of those fields and all

kinds of γ-matrices. Applying the Feynman rules, the vertex function corresponding with

the interaction (3.27) is given by

Γ∆...(k∆, . . .)µ... = Õ αβ ...
�

ik∆,αδ
µ

β
− ik∆,βδ

µ
α

�
,

= i
�
Õ αµ...− Õ µα...

�
k∆,α,

(3.28)

where the index µ labels the spin-3/2 field. The function Õ differs from O in the sense

that all the fields are removed and the derivatives are replaced by momenta; it may depend

on all momenta and may have extra Lorentz indices for couplings to other particles. The

following observation can now be made

k∆,µΓ∆...(k∆, . . .)µ... = i
�
Õ αµ...− Õ µα...

�
k∆,αk∆,µ = 0, (3.29)

due to the contraction of the antisymmetric part between brackets with the symmetric

combination of momenta. In other words, the transversality condition in Eq. (3.29) is nec-

essarily fulfilled for the ∆ gauge-invariant interaction of Eq. (3.27). It is now immediately

clear how such interactions accomplish that only the physical spin-3/2 part is coupled. Re-

considering the matrix element in Eq. (3.12), one observes that the∆ propagator S∆,µν(k∆)

is sandwiched between two vertices

Γ
µ
∆πN(. . . , k∆)S∆,µν(k∆)Γ

νρ
W N∆(k∆, . . .). (3.30)

Thus, starting from consistent interaction Lagrangians to build the vertices Γ∆πN and ΓW N∆,

one knows that the transversality condition is satisfied upon contraction with the ∆ prop-

agator. As a consequence, the momentum-dependent terms of the latter drop out and one

gets

Γ
µ
∆πN(. . . , k∆)

�
gµν −

1

3
γµγν

�
Γ
νρ
W N∆(k∆, . . .), (3.31)

which again is equivalent to

Γ
µ
∆πN(. . . , k∆)P

3/2
µν
Γ
νρ
W N∆(k∆, . . .), (3.32)
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as the momentum-dependent part of the spin-3/2 projection operator in Eq. (3.25) van-

ishes anyway. This clearly shows that the gauge invariance of a ∆ interaction takes care of

the unwanted spin-1/2 parts in the ∆ propagator.

With the transversality condition of Eq. (3.29) at hand, it can be easily checked that the ∆-

production vertex of Eq. (3.15) is not a consistent interaction. Nevertheless, in this thesis,

we will stick to the form-factor parameterization of the W N∆ coupling as it is presented

in Eq. (3.15), arguing that the uncertainties in CA
i
(Q2) outweigh the spurious spin-1/2 con-

tributions to the cross sections. In the next section, we will discuss a consistent alternative

for the ∆ decay coupling. By comparing couplings that do or do not decouple non-physical

spin degrees of freedom, we will quantify the effect of unwanted spin-1/2 contributions in

Section 3.1.7.

3.1.6 ∆πN coupling

A common way of describing the ∆ decay is through the interaction Lagrangian [172]

LπN∆ =
fπN∆

mπ

ψµ~T
†(∂ µ ~φ)ψ+ h.c. , (3.33)

where ψµ, ~φ and ψ denote the spin-3/2 Rarita-Schwinger field, the pion field and the

nucleon field respectively. The operator ~T is the isospin 1/2 → 3/2 transition operator.

From (3.33), one derives the vertex function

Γ
µ
∆πN(kπ) =

fπN∆

mπ

kµ
π

. (3.34)

Clearly, the transversality condition of Eq. (3.29) is not fulfilled for this interaction, which

will consequently couple to unwanted spin-1/2 parts of the ∆ propagator. Therefore, as an

alternative for the ∆πN interaction Lagrangian, Pascalutsa et al. [172] propose the form

L (P)πN∆ =
f ∗
πN∆

mπM∆
εαβµνGβαγµγ5

~T †(∂ν ~φ)ψ+ h.c. . (3.35)

The inclusion of Gβα = ∂βψα − ∂αψβ makes L (P)πN∆ manifestly gauge invariant with respect

to the ∆ particle. From the previous section, it follows that L (P)πN∆ is consistent because it

solely couples to the physical spin-3/2 degrees of freedom of the ∆. The corresponding

vertex function becomes

Γ
µ(P)
∆πN(kπ, k∆) =

f ∗
πN∆

mπM∆
εµαβγkπ,αγβγ5k∆,γ . (3.36)

For free ∆s, the unphysical spin-1/2 terms are removed by both the Pascalutsa (3.36) and

the traditional (3.34) couplings. Therefore, calculating the free decay width from either

Eq. (3.34) or (3.36) will lead to the same expression, implying f ∗
πN∆
= fπN∆. In appendix

B, it is shown in detail how the energy-dependent ∆-width formula is derived. The result

is

Γ(W ) =
1

12π

f 2
πN∆

m2
π
W
|~qcm|3(mN + EN), (3.37)
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Figure 3.5: Q2 evolution of the cross section for νµ + p
∆++→ µ− + p + π+ at an incoming

neutrino energy of 1 GeV. The full (dash-dotted) line corresponds to the vector form-factor

parameterization of Eqs. (3.18) and (3.19) (Eq. (3.20)). The shaded region indicates a

10% variation in the axial mass, using the same vector form factors as the full line.

where ~qcm is the pion momentum in the center-of-mass frame of the decay pion and nu-

cleon,

|~qcm|=
p
(W 2−m2

π
−m2

N
)2− 4m2

π
m2

N

2W
. (3.38)

Requiring that Γ(W = M∆) equals the experimentally determined value of 120 MeV, one

obtains fπN∆ = 2.21.

3.1.7 Results and discussion

In this section, we present computations for the process

νµ+ p
∆++→ µ−+ p+π+. (3.39)

For scattering off a free nucleon, the strength of the process in Eq. (3.39) can be straight-

forwardly related to the other channels listed in Eq. (3.2) by applying the isospin relations

of Eq. (3.7). Unless otherwise stated, we use the vector form factors of Eqs. (3.18) and

(3.19), the axial form factors of Eq. (3.21) with MA = 1.05 GeV, and the ∆πN coupling

defined in Eq. (3.33).

The discussion presented here is centered about the elementary ∆ couplings and their

impact on pion-production cross sections. Figure 3.5 assesses to what extent the extracted

value for MA is sensitive to the specific choice for the vector form factors. To this end,

Fig. 3.5 compares the cross section computed with the Lalakulich fit of Eq. (3.20) and

MA = 1.05 GeV with the cross section computed with the M1-dominance form factors of

Eqs. (3.18) and (3.19) and a 10% variation in the axial mass. In order to reach consistency

between the two approaches, the axial mass used in the M1-dominance calculation needs

to be 5-10% higher than the one that is used together with the Lalakulich fit. Consequently,
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Figure 3.6: Cross sections for νµ+ p
∆++→ µ−+ p+π+ with the CA

5
(Q2) contained in Fig. 3.4.

In the left panel, Q2 distributions are shown for Eν = 1 GeV. The dashed line represents a

calculation with CA
5
(0) = 0.867 and MA = 985 MeV [151]. In the right panel, the shaded

region corresponds to a 15% variation in the axial mass. The solid (open) circles show BNL

[159] (ANL [165]) total cross-section data.

analysing data with the assumption of M1 dominance will generally lead to a 5-10% higher

MA value, compared to an analysis using the Lalakulich fit. This discrepancy is significant,

as the vector form factors are often regarded as well known when extracting the poorly-

known axial form factors from neutrino scattering data. It also underlines the necessity

of re-fitting the axial form factors, once a better parameterization for the vector ones has

become available. Indeed, as pointed out in our review of N−∆ transition form factors, the

current situation for the axial-vector form factors is somewhat more dramatic. Figure 3.6

appraises the sensitivity of the∆-production cross section to different parameterizations for

the most important axial transition form factor, CA
5
(Q2). In the left panel, we contrast com-

putations using a phenomenological result for CA
5
(Q2) with computations that employ the

theoretical calculations shown in Fig. 3.4. Next to the fit to BNL data given in Eq. (3.21),

the former involve a fit to ANL data within a model that includes background contribu-

tions, in addition to the ∆-pole mechanism [151]. Adopting the same Q2 dependence as in

Eq. (3.21), this leads to CA
5
(0) = 0.867 and MA = 985 MeV [151]. Clearly, the Q2 evolution

of the∆-production cross section exhibits a strong sensitivity to the adopted CA
5
(Q2) param-

eterization. Near Q2 = 0, cross sections using the χCQ, QCD and background-model results

are about 40% lower than the calculation with the ∆-dominance fit. This is almost entirely

due to the difference in CA
5
(0) values, which yields a ratio of (0.9)2/(1.2)2 ≈ 0.56 for the

dominant cross-section contribution. The soft CA
5
(Q2) predicted by the χCQ model results

in cross sections that are much lower over the whole Q2 range. On the other hand, the hard

CA
5

form factor predicted by the QCD calculation leads to more strength towards higher Q2

values. The ANL fit for CA
5

results in an integrated cross section that is about 30% lower than

the calculation performed with the BNL fit. To put things in a more general perspective, the

right panel of Fig. 3.6 makes a comparison between predictions based on different CA
5
(Q2)

parameterizations and the available total cross-section data. The latter mainly come from
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Figure 3.7: Invariant-mass dependence of the cross section for νµ + p
∆++→ µ− + p + π+

at an incoming neutrino energy of 1 GeV. The hadronic invariant mass is defined as

W =
p

m2
N
+ 2ωmN −Q2. The full (dashed) line uses the ∆πN coupling of Eq. (3.33)

(Eq. (3.35)).

two bubble-chamber experiments conducted at the Argonne (ANL) [165] and Brookhaven

(BNL) [159] national laboratories. First of all, it should be noted that very large differences

exist between the two data sets. For neutrino energies around 1 GeV, the BNL data exceed

the ANL data by 30%. Within our ∆-dominance model and with the CA
5
(Q2) parameteriza-

tion of Eq. (3.21), all data can be reasonably well covered if one admits a±15% uncertainty

on MA = 1.05 GeV. Further, one can see that the lattice-QCD calculation for CA
5
(Q2) leads to

a good description of the BNL cross-section data. On the other hand, the χCQ result under-

estimates both the BNL and ANL data. Finally, even though no background contributions

are included here, the ANL fit for CA
5
(Q2) [151] only leads to a small underestimation of the

ANL data by our ∆-dominance calculation, owing to the large error flags. Hence, we deem

that the current status of neutrino-scattering data does not allow an extraction of the axial

form-factor parameters to a level better than 20-30%. To investigate the impact of different

∆-decay couplings, we have computed W -distributions using both the traditional coupling

of Eq. (3.33) and the Pascalutsa coupling of Eq. (3.35). The results are shown in Fig. 3.7,

where it can be seen that differences between the two approaches are small. Apparantly,

the contribution of spurious spin-1/2 terms to ∆-production cross sections is minor. We

infer an effect smaller than 2%.

In Fig. 3.9, we compare our calculations for a Q2 distribution to ANL data. To this end, one

must realize that the ANL neutrino beam is not mono-energetic, but rather has a specific

energy distribution Φ(Eν) which is shown in Fig. 3.8. Correspondingly, instead of working

with a fixed incoming neutrino energy, one should consider the different available energies

in the neutrino beam by folding the Q2 distribution over the neutrino flux like this

〈
dσ

dQ2
〉=

∫ Eν ,max

Eν ,min

Φ(Eν)
dσ

dQ2 (Eν)dEν
∫ Eν ,max

Eν ,min

Φ(Eν)dEν

. (3.40)
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Figure 3.8: νµ flux for the ANL two-horn beam configuration, together with νµ, νe and ν e

backgrounds (graph taken from Ref. [173]). Units are cm of target material (H2 or D2)

traversed by the neutrinos.

This flux-averaged Q2 distribution, computed with the values Eν ,min = 0.5 GeV and Eν ,max =

6 GeV, is presented in Fig. 3.9. For comparison, we have also plotted a Q2 distribution

for a fixed Eν = 0.85 GeV, taken as an estimate for the average neutrino energy in the

ANL flux. As the form factors adopted in our model were fitted to BNL data, it is no

surprise to see that the calculations overshoot the ANL data. Although the curve for a

fixed, average neutrino energy gives a fairly good account of the flux-averaged result, it

clearly lacks strength in the high-Q2 region. Indeed, the wide-band ANL beam allows for a

lot of high-energy scattering events, which are only properly included in the flux-averaged

cross section of Eq. (3.40). Hence, the exercise sketched here highlights the importance of

accurately knowing the incoming-energy distribution when analysing neutrino scattering

data. Controlling the systematic uncertainties related to neutrino fluxes is indeed one of

the top priorities of running and planned experiments, as it is a prerequisite for extracting

any new information.

3.2 Pion production from nuclei

3.2.1 Cross section and super Rosenbluth formula

The extension of the free scattering processes in Eqs. (3.1)-(3.2) and (3.5) to reactions that

involve nuclear targets can be written as

νµ+ A
∆−→ νµ/µ−+ (A− 1) + N +π. (3.41)
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Figure 3.9: Flux-averaged Q2 distribution 〈 dσ

dQ2 〉 (full line) compared to ANL data [165] for

the process νµ+ p
∆++→ µ−+ p+π+. A kinematical cut W < 1.4 GeV is applied. The dashed

line corresponds to an average neutrino energy of Eν = 0.85 GeV.

Hereby, it is assumed that both the pion and the nucleon reach the detectors after the ∆

has decayed. It should be stressed that very often this will not be the case. Indeed, a

produced pion may be re-absorbed in the nuclear medium, or, the created ∆ may undergo

a pion-less decay triggered by collisions with surrounding nucleons. Clearly, the straight-

forward one-to-one relation between ∆ and one-pion production is lost when considering

neutrino-nucleus scattering. We will discuss the consequences of this fact in more detail

when dealing with nuclear effects.

Following the same line of reasoning as in section 3.1.2, the lab-frame cross section corre-

sponding to the process of Eq. (3.41) becomes

d8σ

dEl dΩl dEπdΩπdΩN

=
mνml |~kl |mN mA−1|~kπ||~kN |

2(2π)8Eν |EA−1+ EN + EN
~kN · (~kπ−~q)/|~kN |2|

×
∑

f i

���M (bound)

f i

���
2

.

(3.42)

Just like for QE νA scattering, one can work out a Rosenbluth separation scheme for the

considered A(ν , lπN)A− 1 process. Following the general method outlined by Donnelly

[45], the hadronic tensor H
ρσ

(bound)
can be constructed from the following independent four-

momenta

qµ, k
µ
A , kµ

π
and k

µ
N . (3.43)

In the laboratory system, the response functions accompanying each term of the hadronic

tensor then depend on only seven independent variables,

ω, |~q|, Eπ,θπ, EN ,θN and ∆φ, (3.44)

where ∆φ = φπ−φN denotes the difference of the azimuthal angles φπ and φN . Similarly,

the average azimuthal angle is defined as

φ =
φπ+φN

2
. (3.45)
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Developing the contraction of the lepton tensor Lρσ, given in Eq. (2.12), with the hadron

tensor H
ρσ

(bound)
, one arrives at a decomposition of the form

∑
f i

���M (bound)

f i

���
2

∼ LρσH
ρσ

(bound)

= vLRL

+ vT RT + vT T (RT T,a cos 2φ + RT T,b sin 2φ)

+ v
(1)

LT (R
(1)

LT,a cosφ + R
(1)

LT,b
sinφ)

+ v
(2)

LT (R
(2)

LT,a cosφ + R
(2)

LT,b
sinφ)

+ vT ′RT ′

+ v
(1)

LT ′(R
(1)

LT ′,a cosφ + R
(1)

LT ′,b sinφ)

+ v
(2)

LT ′(R
(2)

LT ′,a cosφ + R
(2)

LT ′,b sinφ).

(3.46)

The relations between the longitudinal (L), transverse (T , T T , T ′) and interference (LT ,

LT ′) nuclear responses in Eq. (3.46) and the components of the hadron tensor read

vLRL = L00H00
(bound)

+ L0z2ℜ(H0z
(bound)

) + LzzHzz
(bound)

RT = H x x
(bound)

+W
y y

(bound)

RT T,a cos 2φ + RT T,b sin 2φ = H x x
(bound)

−W
y y

(bound)

R
(1)

LT,a cosφ + R
(1)

LT,b
sinφ = 2ℜ(H0x

(bound)
)

R
(2)

LT,a cosφ + R
(2)

LT,b
sinφ = 2ℜ(H xz

(bound)
)

RT ′ = 2iℑ(H x y

(bound)
)

R
(1)

LT ′,a cosφ + R
(1)

LT ′,b sinφ = 2iℑ(H0y

(bound)
)

R
(2)

LT ′,a cosφ + R
(2)

LT ′,b sinφ = 2iℑ(H yz

(bound)
).

(3.47)

The value of the super Rosenbluth expression (3.46) lies in the fact that all responses R de-

pend on ∆φ, but not on φ. As pointed out in Ref. [45], this factorization of angular depen-

dencies enables a separation of the individual terms figuring in Eq. (3.46). Disentangling

different responses is indeed deemed desirable, since each of the contributions has differ-

ent sensitivities to particular information of the pion-production process. Consequently, the

Rosenbluth separation scheme has been aptly used in electron-scattering studies [174]. To

the contrary, neutrino experiments do not have the discriminative power to map out the

angular distributions. Nevertheless, the super Rosenbluth formula is also useful here, as it

allows the integration over φ to be performed analytically. Eventually, this amounts to an

inclusive cross section that is fully determined by RL, RT and RT ′ .

3.2.2 RPWIA and closed cross-section formula

The invariant matrix element in Eq. (3.42) carries the tag bound and involves nuclear cur-

rents between initial and final nuclear wave functions. Just like in the QE case, however,

one usually resorts to a number of assumptions that allow a reduction of the nuclear-current
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matrix elements to a form similar to Eq. (3.12). Here, we summarize the main approxima-

tions that enable this simplification and refer to section 2.2 for more detailed considera-

tions. First, we only consider processes where the residual (A− 1) system is left with an

excitation energy not exceeding a few tens of MeV. The major fraction of the transferred

energy is carried by the outgoing pion and nucleon. Further, we adopt the impulse approx-

imation: the nuclear many-body current is replaced by a sum of one-body current opera-

tors, exempt from medium effects. Assuming an independent-particle model for the nuclear

wave functions, the hadronic current matrix elements can then be written in the form of

Eq. (3.12), whereby the initial-nucleon free Dirac spinor is replaced by a bound-state spinor.

Using the single-particle wave functions introduced in section 2.4.1, and writing Uα,m(~p)

for the corresponding bound-state spinors, one has

〈Jµ
(bound)

〉= u(kN , sN)O µUα,m(~p), (3.48)

where O µ = Γρ∆πN S∆,ρσΓ
σµ
W N∆ is the one-body current operator for the elementary∆-mediated

one-pion production process. With Eq. (3.48), the nuclear hadron tensor is explicitly given

by

H
ρσ

(bound)
=

1

2 j + 1

∑

m;sN

〈Jρ
(bound)

〉†〈Jσ
(bound)

〉

= Tr

�
Sα(~p) eO ρ

( 6 kN +mN)

2mN

O σ
�

,

(3.49)

where eO ρ is short for γ0(O ρ)†γ0. In Eq. (3.49), we introduced the bound-state propagator

Sα(~p), defined as

Sα(~p) =
1

2 j + 1

∑

m

Uα,m(~p)U α,m(~p). (3.50)

As pointed out in section 2.4.1, the bound-state propagator can be cast in a form similar to

the Dirac projection operator (Eqs. (2.52) and (2.53)). In this manner, one can write down

a closed form for the squared invariant matrix element related to ∆-mediated one-pion

production from nuclei [175],

∑
f i

���M (bound)

f i

���
2

=
G2

F
cos2 θc M

4
W

2(M2
W
+Q2)2

H
ρσ

(bound)
Lρσ. (3.51)

Evidently, Eq. (3.51) holds for CC scattering. For NC reactions, the following substitutions

are in order: cos2 θc → 1 and M2
W
→ M2

Z
. Furthermore, it is assumed that both the pion

and the nucleon remain unaffected by the medium, implying that Eq. (3.51) refers to the

relativistic plane-wave impulse approximation. Note that Eq. (3.51) is readily found from

the free-nucleon expression in Eq. (3.13) by making the replacement

1

2

( 6 kN ,i +mN)

2mN

−→ (2π)3Sα(~p). (3.52)

For neutrino-nucleus scattering, the substitution of Eq. (3.52) ensures the natural inclusion

of Fermi-motion and nuclear-binding effects.
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Figure 3.10: Overview of medium corrections to the free ∆ width, using the parameteriza-

tions in Refs. [29, 176] for ρ = 0.75ρ0.

3.2.3 Medium modifications of ∆ properties

In a nuclear environment, the ∆ mass and width are modified with respect to their free

values. These medium modifications can be estimated by calculating the in-medium ∆

self-energy, as was e.g. done in Ref. [29]. The real part of the ∆ self-energy causes a

shift of the resonance position, whereas the imaginary part is related to the decay width.

Medium modifications for the width result from the competition between a Pauli-blocking

correction, reducing the free decay width, and a term proportional to the imaginary part

of the ∆ self-energy, including various meson and baryon interaction mechanisms and,

therefore, enhancing the free decay width. Writing eΓ for the in-medium ∆ width, one has

eΓ = ΓPauli− 2ℑ(Σ∆), (3.53)

with Σ∆ the ∆ self-energy. In terms of the free decay width Γ, the width corrected for

Pauli-blocking effects is given by

ΓPauli =
I1+ I2

2
Γ, (3.54)

where an explicit expression for the integrals I1 and I2 is provided in Ref. [176]. A conve-

nient parameterization of the imaginary part of Σ∆ is given in Ref. [29], as a function of

the nuclear density ρ,

−ℑ(Σ∆) = CQE

�
ρ

ρ0

�α
+ CA2

�
ρ

ρ0

�β
+ CA3

�
ρ

ρ0

�γ
, (3.55)

where ρ0 = 0.17 fm−3 is the saturation density in finite nuclei. The terms with the co-

efficients CQE, CA2 and CA3 correspond to the processes ∆N → πNN , ∆N → NN and

∆NN → NNN respectively. Whereas CQE enhances the number of ∆ decays with a pion,
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Figure 3.11: Total medium correction∆Γ = eΓ−Γ, using the parameterizations in Refs. [29,

176] at different nuclear densities.

the latter two contributions open up pion-less decay channels through two- and three-

body absorption mechanisms. The values of CQE, CA2, CA3, α, β and γ can be found in

Refs. [29, 176], where they are given as a function of the energy Eπ of a pion that would

excite a ∆ with W 2 = m2
π
+m2

N
+ 2EπmN . Medium corrections to the ∆ mass assume the

form
eM∆ = M∆+ℜ(Σ∆), (3.56)

with [177]

ℜ(Σ∆) = 40 MeV
ρ

ρ0

. (3.57)

The parameterizations in Eqs. (3.55) and (3.57) are particularly useful when used in con-

junction with a local density approximation for the nucleus. In position space, the depen-

dence of the width corrections on the nuclear density ρ(~r) can be accounted for by folding

over the nuclear volume. On the other hand, for RPWIA calculations in momentum space,

the integrations
∫

d~r are converted to delta functions expressing momentum conservation,

rendering the application of density-dependent∆medium modifications impossible. There-

fore, for our purposes, we shall adopt an effective nuclear density ρ = 0.75ρ0. Figure 3.10

plots the different corrections to the free ∆ decay width for this density value. The bumps

at W ∼ 1150 MeV arise from different parameterizations of the CA3 term for Tπ < 85 MeV

[176] and Tπ > 85 MeV [29]. Beyond Tπ = 315 MeV, we keep the medium corrections

fixed at their value for Tπ = 315 MeV. At the ∆ peak, we infer the following shifts

M∆ −→ M∆+ 30 MeV,

Γ−→ Γ+ 40 MeV.
(3.58)

One could object that the scheme (3.58) for ∆ medium modifications is guided by an

unrealistically-high average value for the probed nuclear density, leading to a strong over-

estimation of the effect. There exists some evidence, though, to back up the values in
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Eq. (3.58). In Ref. [178], a similar recipe was used to accommodate medium modifica-

tions in the calculation of 12C(γ, pn) and 12C(γ, pp) cross sections. There, the computa-

tions proved to compare favorably with the data in an energy regime where the reaction is

dominated by ∆ creation. It is worth stressing that photo-induced two-nucleon knockout

reactions receive very small contributions from background diagrams, who form an impor-

tant source of uncertainties when extracting resonance information. Hence, we consider

Eq. (3.58) to be a reliable estimate for ∆ medium modifications. It is very instructive,

however, to assess the density dependence of the medium corrections to the ∆ width.

In Fig. 3.11, we therefore show ∆Γ = eΓ − Γ at various values for the nuclear density

ρ. As one can appreciate, density dependences are sizeable. At the ∆ peak, we infer

∆Γ = 40, 20, 0 MeV for ρ = 0.75ρ0, 0.5ρ0, 0.25ρ0, respectively.

3.2.4 FSI effects

Computing FSI effects for pion-production processes presents itself as extremely challeng-

ing. Once a pion is produced, it will generally undergo a number of elastic or/and in-

elastic scatterings with the remaining nucleons in the rest nucleus. These rescatterings

can lead to the absorption of the pion. Through charge exchanges, the pion may leave

the nucleus in a different charge state. Or, in case it does manage to escape from the

nucleus, the pion’s energy and scattering angle may have changed. In an effort to esti-

mate the effect of charge-exchange and absorption mechanisms, Paschos and collaborators

[39, 179] have applied the Adler-Nussinov-Paschos pion multiple-scattering model [180]

to compute charge-exchange matrices, which relate initial (π+,π0,π−) distributions to final

ones. Another model [40] employs a Monte-Carlo simulation method [181] to deal with

the complex, multi-channel pion rescatterings. Recently, the Giessen group has applied its

semi-classical, coupled-channel transport model to neutrino-induced pion production from

nuclei [41, 149]. All the mentioned studies report very large FSI effects due to pion rescat-

terings inside nuclear targets.

In addition, it has become quite clear that a complete, quantum-mechanical description of

the involved inelasticities is impossible to achieve. Along the same lines, the Glauber model

introduced in the previous chapter to compute the elastic nucleon-knockout contribution to

QE neutrino scattering can not give a full account of pion-rescattering mechanisms either.

Instead, the RMSGA provides a quantum-mechanical framework in which the nuclear at-

tenuation of a fast pion (Tπ ¦ 700 MeV) can be computed. The procedure to do so is

very similar to the one outlined in section 2.4.2. All detailed considerations can be found

in Ref. [182]. Put simply, the Glauber approach allows to predict what fraction of the

originally produced pions and nucleons (from the ∆ decay) will effectively reach the detec-

tors. Unlike the cascade models, however, the RMSGA does not keep track of the inelastic

channels corresponding to the predicted loss of flux.

3.2.5 Results and discussion

In this section, we present computations for the process

νµ+ A
∆++→ µ−+ (A− 1) + p+π+. (3.59)
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Figure 3.12: Total cross sections per proton for νµ + p
∆++→ µ− + p + π+. The full line

represents the elementary process, for scattering from a free proton. The dash-dotted line

stands for the RFG calculations, whereas the dashed (dotted) line corresponds to scattering

from a carbon (iron) target nucleus. The right panel focusses on the threshold region.

It is important to note that, in νA scattering, the isospin relations of Eq. (3.7) can no

longer be applied to derive the strength of the isospin-related channels. Indeed, once pion

rescatterings are considered, charge-exchange mechanisms can affect the ratios between

the pionic final states [41].

We stick to the standard input values for the ∆ couplings: the vector form factors of

Eqs. (3.18) and (3.19), the axial form factors of Eq. (3.21) with MA = 1.05 GeV, and the

∆πN coupling of Eq. (3.33). For a comparison of RPWIA and RFG calculations, we adopt

kF = 225 MeV and an average binding energy of Eb = 20 MeV. The latter value can be

considered as a fair estimate for the weighted average of the centroids of the single-particle

strength distributions in typical even-even nuclei near the closed shells [183].

Nuclear-model effects - RPWIA vs RFG

In this discussion, the results of section 3.1.7 will be put in a more general perspective.

To this end, we will compare neutrino-nucleus with neutrino-nucleon cross sections. Fig-

ure 3.12 shows how the total νµ + p
∆++→ µ− + p + π+ strength varies with the incoming

neutrino energy. With similar input, our results for the elementary process compare very

well with the predictions published in Ref. [151]. The cross sections for target nuclei were

computed along the lines of section 3.2.2, i.e. using the closed RPWIA cross-section for-

mula without ∆ medium modifications and FSI effects. Turning to Fig. 3.12, it is seen how

the elementary cross section is halved near threshold. For higher incoming energies, the

effect dwindles to 20% at Eν = 800 MeV and 8% at Eν = 2 GeV. The RFG calculations

are in good to excellent agreement with both the carbon and iron RPWIA results. The only

discernable feature of Fig. 3.12 is that the iron curve exceeds the carbon and RFG ones by

roughly 15% just beyond threshold. This can be readily understood after recognizing that

the nucleon separation energy is larger for carbon than for iron. Also, the adopted binding-
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Figure 3.13: Cross section per proton for νµ+ p
∆++→ µ−+ p+π+ on carbon at an incoming

neutrino energy of 800 MeV. The full line represents the elementary process, whereas the

short-dashed (long-dashed) line stands for the RFG (RPWIA) calculation.

energy value for the RFG calculations is close to the weighted binding energy per nucleon

in a carbon nucleus, explaining the close agreement between these two cases. Clearly, the

νµA cross sections are very sensitive to binding-energy differences at lower incoming ener-

gies. These effects, however, vanish at higher neutrino energies and are of the order of

1% at Eν = 1 GeV. As a matter of fact, at sufficiently high energies RFG calculations with

a well-chosen binding-energy correction are almost indiscernible from the corresponding

RPWIA results. These findings are more detailedly assessed in Figs. 3.13, 3.14 and 3.15.

Figures 3.13 and 3.14 compare RFG and RPWIA computations. The former considers scat-

tering from a carbon target at Eν = 800 MeV, which corresponds to the mean energy of the

neutrino beam used by the MiniBooNE experiment. As can be appreciated from Fig. 3.13,

the RFG and RPWIA models produce almost identical results. In Fig. 3.14, we present the

ratio of RFG to carbon RPWIA results for the twofold cross section d2σ/dTπd cosθ ∗
π
, where

Tπ is the pion’s kinetic energy and θ ∗
π

its direction relative to the neutrino-beam. In the

threshold region, cross sections are extremely small and subject to large fluctuations. Be-

yond threshold, however, differences between the RFG and RPWIA result do not exceed the

5% level over the whole (Tπ,θ ∗
π
) range. Consequently, upon integrating over Tπ and θ ∗

π
,

we find that the total RFG cross section exceeds the RPWIA one by about 2%. Figure 3.15

compares the cross section for a carbon nucleus with the one for an iron nucleus at Eν = 1.5

GeV. Although the total strength, integrated over the outgoing muon energy El , is the same

for both nuclei, it is interesting to note that the iron cross section is shifted with respect

to the carbon one. Again, this reflects the fact that on average it requires more energy to

knock a proton out of a carbon nucleus than out of an iron nucleus, leaving therefore less

energy for the outgoing muon.
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GeV are considered.
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Figure 3.15: The νµ+p
∆++→ µ−+p+π+ cross section per proton as a function of the outgoing-

lepton energy El for Eν = 1.5 GeV. The full line represents the elementary process, whereas

the dashed (dotted) line refers to scattering from carbon (iron).
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Figure 3.16: Comparison of cross-section calculations to inclusive electron-scattering data.

Shown is d3σ/dΩl dω against energy transfer ω, for scattering off 16O at Ee = 1080 MeV

and θe′ = 32 degrees. The full line represents the primary∆-mediated one-pion production

strength, as computed in our RPWIA model with ∆ medium modifications. The dashed

(dotted) line denotes a calculation of ∆ production (the one-pion part of ∆ production)

carried out in the framework of Ref. [184]. Data are from Ref. [110, 187].

Primary pion production and inclusive observables

Like for QE scattering, we wish to test our model for ∆-mediated one-pion production

against inclusive electron-nucleus scattering data. To this end, in Fig. 3.16, we compare

RPWIA calculations for primary one-pion production to 16O(e, e′) data from Ref. [110]. The

term primary relates to pion production before rescatterings. As the intermediate ∆ reso-

nance is created inside an oxygen nucleus, we apply the medium modifications of Eq. (3.58)

in the denominator of the ∆ propagator. For comparison, we have included ∆-production

calculations performed in the framework of Lalakulich et al. [184], using the same nuclear-

physics input as the RPWIA calculations presented here. In the formalism of Ref. [184], the

inclusive ∆-production cross section is proportional to the free width,

d3σ

dEl dΩl

∼
Γ

(W 2−M2
∆
)2+M2

∆
Γ2

(3.60)

Hence, when including medium effects, the one-pion contribution (1-π) can be separated

from the full, inclusive cross section (incl) by adding only those corrections relating to the

pion decay channel to the width in the numerator of Eq. (3.60) [40, 185, 186]. Using the

parameterizations for the CQE term and Pauli correction discussed in section 3.2.3, with

ρ = 0.75ρ0 and at the ∆ peak, we find that the free decay width receives no appreciable

medium corrections with respect to the one-pion decay channel. So, the full and one-pion

computations in Fig. 3.16 are obtained by applying the medium modifications of Eq. (3.58)

in the denominator and, at the same time, adding the values of 40 MeV (incl) and 0 MeV

(1-π) to the width in the numerator of Eq. (3.60). Compared to the data, the peak of the

computed cross sections is moved towards higher energy transfers. Moreover, the inclusive
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Figure 3.17: Inclusive electron-scattering calculations by Buss et al. (Ref. [42]). The dotted

line represents the inclusive ∆-production strength. Figure taken from Ref. [42].

strength in the ∆ region is underestimated. These observations may point to the impor-

tance of non-resonant background contributions [42], which are not taken into account

here. Contrasting both of the Lalakulich calculations, it is seen that the one-pion contri-

bution comprises about 75-80% of the full inclusive result. The remainder of the strength

resides in pion-less decay modes, which have become available as additional decay channels

due to two- and three-body absorption processes such as ∆N → NN and ∆NN → NNN .

On the other hand, the major difference between the one-pion calculation by Lalakulich

and the ones presented in this thesis lies in the ∆ propagator and the presence of a ∆πN

decay vertex in our formalism. Using the free value fπN∆ = 2.21, it is observed that our

result for primary one-pion production agrees well with the Lalakulich one-pion result for

energy transfers up to the ∆ peak. For larger ω, however, both of the Lalakulich calcu-

lations are considerably smaller. There, the explicit inclusion of the ∆πN decay vertex

and the detailed treatment of the ∆ propagator (instead of the Breit-Wigner form used in

Ref. [184]) seem to account for a better agreement with data. Although our calculation for

primary one-pion production could never be measured as a separate contribution in the ∆

region, it can be safely concluded that it gives a fair estimate of the ∆-mediated one-pion

yield.

Other theoretical efforts on inclusive lepton scattering off nuclei include for example the

work presented in Ref. [42]. There, the nucleus is described as a local Fermi gas of nu-

cleons. The lepton-nucleus interaction is treated in the IA, and special attention is paid to

including in-medium effects on the pion-production mechanisms. Figure 3.17 shows the

total ∆-production contribution (dotted line ) for electron scattering off an oxygen target

at the same kinematics as in Fig. 3.16. Compared to the one-pion calculations presented

here, one can see that the inclusion of pion-less decay modes shifts the peak of the ∆ con-

tribution to lower energy transfers. Indeed, since no pion needs to be created, the pion-less

decay modes contribute strength in the low W (∼ low ω) region.

In view of recent results presented by the MiniBooNE and K2K collaborations, we con-

clude this paragraph with some computations for the specific neutrino energies and target

nuclei employed by these experiments. From an experimental viewpoint, the most acces-

sible distributions are the ones with respect to outgoing-muon variables. Fig. 3.18 depicts
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Figure 3.18: Cross section per proton for νµ+ p
∆++→ µ−+ p+π+ as a function of outgoing-

muon energy and scattering angle. The incoming neutrino energy is 800 MeV, the target

nucleus is carbon.
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Figure 3.19: Cross sections per proton for νµ+p
∆++→ µ−+p+π+, for 800 MeV neutrinos scat-

tering from a carbon target. The left (right) panel shows the cross section as a function of

the outgoing-muon scattering angle (energy). Each of the panels contrasts the elementary

cross section (full line) with RPWIA results, applying constant (dotted), energy-dependent

(dash-dotted) or no (dashed) ∆ medium modifications.
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Figure 3.20: ∆-production cross sections against scattered-electron energy, as computed

by Singh et al. (Ref. [185]) for CC νe scattering from 16O. The long-dashed (full) curve

corresponds to inclusive ∆ production, without (with) medium modifications. The short-

dashed curve represents the pion-production part of the full curve. Figure taken from

Ref. [185].

an RPWIA calculation, including ∆ medium modifications, for a two-fold differential cross

section against the outgoing-muon energy and scattering angle with respect to the neutrino

beam. The incoming neutrino energy is fixed at 800 MeV, corresponding to MiniBooNE’s

mean beam energy. Since MiniBooNE has carbon as target material, this calculation was

performed on a carbon nucleus. The result shown in Fig. 3.18 can be integrated over θl or

El to yield the one-fold cross sections displayed in Fig. 3.19. For comparison, we have also

computed the free cross section and the basic RPWIA one, for which no ∆ medium mod-

ifications are included. Relative to the free cross section, the RPWIA angular distribution

is reduced by about 20%. In general, the outgoing muon prefers a forward direction. A

minor angular shift between the free and the bound case is observed. This effect relates to

the change in the muon-energy distribution, depicted in the right-hand panel of Fig. 3.19.

Indeed, for scattering off bound protons, one observes a shift of the El distribution towards

lower values. Recognizing the correlation between high muon energies and forward scat-

tering angles, as can be appreciated in Fig. 3.18, the bound case will correspondingly yield

a larger number of events at slightly higher scattering angles. We also note that the RPWIA

result fades out sooner than the elementary cross section, because a certain amount of

energy is needed to knock the carbon proton out of its shell. Further, Fig. 3.19 shows that

the inclusion of ∆ medium modifications results in a 50% reduction of the basic RPWIA

results. In addition, we have looked into the effect of energy-dependent medium modifi-

cations relatively to our standard scheme which involves adding a constant 40 MeV to the

free decay width. To do so, we have used the energy-dependent parameterizations found

in Refs. [29, 176]. As can be appreciated, the angular distribution in Fig. 3.19 is hardly
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Figure 3.21: Cross section per proton for νµ + p
∆++→ µ− + p + π+ against outgoing-pion

kinetic energy and scattering angle. The incoming neutrino energy is 1.3 GeV, the target

nucleus is oxygen.

affected by this more detailed treatment of ∆ medium modifications. Likewise, the effect

on the muon-energy cross section is mild and does not extend beyond the few-percent level.

The muon-energy distribution is also observed to be shifted towards lower El , by an amount

that corresponds to the mass shift in Eq. (3.58). In Ref. [185], a similar effect is observed in

the case of electron-neutrinos scattering off oxygen. Figure 3.20 shows the calculations by

Singh et al. [185]. It is seen that medium-modification effects lead to a ∼ 40% reduction of

∆-mediated one-pion production. Furthermore, a distinction is made between the inclusive

∆-production cross section (full line) and the fraction of ∆s that eventually produces pions

(short-dashed line). From Fig. 3.20, one infers that only ∼ 80% of the ∆s, that are created

inside an oxygen nucleus, produce pions. The rest is categorized as QE-like, because of the

pion-less decay modes it corresponds to. From their results, it also follows that these QE-

like events mainly contribute in the region of high outgoing-lepton energy. These findings

corroborate our previous results for inclusive electron scattering.

Planned experiments like MINERνA are designed to achieve a good energy resolution for

both the muon and the produced hadrons. The ability to detect the outgoing pion or nu-

cleon or even both would allow a detailed study of different nuclear effects. In Figs. 3.21

and 3.22, we present cross sections versus the pion kinetic energy Tπ and pion scattering

angle relative to the beam direction θ ∗
π
. This time, we adopted K2K settings, namely an oxy-

gen target hit by neutrinos with an energy of 1.3 GeV. From the left-hand panel of Fig. 3.22,

one infers that, within the RPWIA model, the outgoing pion prefereably leaves the nucleus

along the beam direction. As for the kinetic-energy distribution, we observe a comparable

reduction and shift of the strength as in the muon-energy distribution.
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Figure 3.22: Cross sections per proton for νµ + p
∆++→ µ− + p + π+, for 1.3 GeV neutrinos

scattering from an oxygen target. The left (right) panel shows the cross section as a function

of the outgoing-pion scattering angle (kinetic energy). Each panel contrasts the elementary

cross section (full line) with the RPWIA result, with (dotted) and without (dashed) ∆

medium modifications.

FSI effects

At the end of this results section, in Fig. 3.23, we present a study of FSI effects for the

production of a pion on a proton in the 1p3/2 shell of an iron nucleus. To estimate the

effect of FSI mechanisms, we closely follow the lines of Ref. [182]. There, recognizing that

negative-energy terms give very small contributions for |~pm| ≤ 300 MeV, a factorized ap-

proach is achieved by neglecting the lower components of the bound-state wave functions.

Under these conditions, it is shown [182] how the RMSGA cross section can be obtained

by folding the RPWIA one over the transparency function

T (~pm) =
ρα

RMSGA
(~pm)

ρα(~pm)
. (3.61)

Thereby, the distorted momentum distribution ρα
RMSGA

is defined as

ρα
RMSGA

(~pm) =
∑

m,ms

���u(~pm, ms)U D
α,m
(~pm)

���
2

, (3.62)

with the distorted momentum-space wave function given by

U D
α,m
(~pm) =

1

(2π)3/2

∫
d~re−i~pm·~rΨα,m(~r)G †(~r). (3.63)

The denominator in Eq. (3.61) is given by the same formula as in Eq. (3.62), where the

scalar Glauber phase is now put equal to 1. Similar to the nucleon-knockout discussion in

section 2.4.2, the Glauber phase is written in terms of the profile functions ΓπN(~b), whose

energy-dependent parameters are fitted to the available πN scattering data [182].

The result of this Glauber approach is shown in Fig. 3.23. Below Tπ ∼ 500 MeV, some
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Figure 3.23: Study of nuclear effects on the pion kinetic-energy distribution describing the

process νµ+ p
∆++→ µ−+ p+π+ for a 1p3/2

56Fe proton and an incoming neutrino energy of

2 GeV. The full line represents the basic RPWIA result, the dashed and dash-dotted curves

additionally include the effect of ∆ medium modifications and FSI mechanisms.

profile-function parameters can not be interpolated any more, resulting in no cross-section

values there. Concentrating on the energy region where the RMSGA is expected to start

giving valid results, i.e. from Tπ = 700 MeV onwards, it is seen how only 25 to 30% of

the produced pions are predicted to leave the iron nucleus undisturbed. The lost flux re-

sults from pions that have been subject to inelastic, secondary collisions inside the nucleus.

Of course, most comments made in section 2.8 in relation to RMSGA computations of the

elastic nucleon-knockout strength, are also in place here. More specifically, the Glauber

calculations are known to provide rigorous estimates of FSI effects in situations where the

residual nucleus is left with an excitation energy that does not exceed a few tens of MeV.

Consequently, the RMSGA predictions shown in Fig. 3.23 lose some of their appeal when

one considers that, at their present stage, most neutrino experiments cannot place the ne-

cessary cuts in missing energy to isolate these events. One approach that provides a more

inclusive account of neutrino-induced pion production from nuclei is the Giessen coupled-

channel transport model [41, 149]. Within their framework, dubbed the GiBUU model,

a full record is kept of all inelasticities corresponding to charge-exchange reactions, pion

absorptions and changes in energy and scattering angle of the produced pions. In the case

of CC pion production, for example, it is inferred [41] that side-feeding from the domi-

nant π+ channel to the less-important π0 one results in a larger reduction of the former

with respect to the latter when FSI mechanisms are taken into account. Similarly, due

to secondary collisions, a lot of high-energy pions vanish, only to re-appear at the low-Tπ
side of the cross section. In this sense, one could say that the GiBUU transport model is

the preferred one in inclusive and semi-inclusive neutrino-scattering studies. On the other

hand, the Glauber framework provides a viable alternative for the description of exclusive

channels, which, through placing the necessary cuts in Em, may provide information about
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genuine quantum-mechanical effects.

3.3 Coherent pion production

A process that has recently received a lot of attention is the coherent production of pions on

nuclei,

ν + A−→ l + A+π. (3.64)

Here, the term coherent refers to νA scattering processes that leave the nuclear target in-

tact by transferring only a small four-momentum squared t = (q− kπ)
2. A number of new

experimental results motivates the surging interest in this type of processes. In particular,

both the K2K [188] and SciBooNE [189] collaborations have found no evidence for CC co-

herent pion production. On the other hand, the MiniBooNE experiment has reported [190]

NC events. At present, isolating the coherent events is a challenging task for most neutrino

experiments, owing to difficulties in setting the necessary experimental triggers. Instead,

coherent events are measured indirectly, by extracting them from the full data set while as-

suming some theoretical model for the incoherent pion-production strength. It is therefore

quite clear that the aforementioned experimental results await further confirmation.

In the meantime, our theoretical understanding of the process has been gradually increas-

ing. Generally speaking, there exist two distinct lines of research for the description of co-

herent pion production. A first method makes use of the PCAC principle to relate neutrino-

induced coherent pion production to elastic pion-nucleus scattering amplitudes at low Q2

[191, 192]. A second group of theoretical efforts adopts a more microscopic point of view

and starts from a nuclear description identical to the one used for the incoherent pion-

production process. Medium effects are included in the ∆ propagator and the nuclear

attenuation of the outgoing pion is taken into account. Some recent studies along this line

can be found in Refs. [193–196]. In this section, we will conduct a study of coherent pion

production along the latter lines.

3.3.1 Cross section

The lab-system cross section for ν + A−→ l + A+π assumes the following general form

d5σ

dEl dΩl dΩπ
=

1

2(2π)5
mνml kl kπ

Eν

∑
f i

���M (coh)

f i

���
2

. (3.65)

Neglecting the recoil of the final nucleus, all of the transferred energy is directed to the pro-

duced pion, ω = Eπ. The invariant matrix element related to coherent pion production can

be decomposed in the standard fashion as M
(coh)

f i
∼ 〈Jρ

lep
〉〈J (coh)

nucl,ρ
〉, where the lepton current

is identical to the one encountered in the QE and incoherent pion-production processes,

see Eq. (2.11). Assuming that the s-channel diagram of Fig. 3.3 dominates the coherent

pion-production process, and representing the outgoing pion by a plane wave, the nuclear

current is given in momentum space by

〈J (coh),µ

nucl
〉=
∑

α

CI

∫
d3~pmU α(~pm+~q−~kπ)O µUα(~pm), (3.66)
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A

W

A

Figure 3.24: Schematic overview of the coherent reaction ν + A→ l + A+π. The vertical

lines stand for FSI effects on the outgoing pion, which are neglected in the RPWIA.

where O µ = Γρ∆πN S∆,ρσΓ
σµ
W N∆. Let us examine the above equation more closely. The scat-

tering off the entire nucleus has been imposed by constructing the nuclear current as a

coherent sum of single-nucleon currents, letting the summation index α run over all oc-

cupied nucleon states in the target nucleus. Figure 3.24 presents a schematic picture of

the adopted reaction mechanisms. One-body mechanisms are considered to dominate the

reaction dynamics, meaning that the impinging neutrino is presumed to interact with a

single bound nucleon. In deriving Eq. (3.66), we have therefore adopted the IA. Construct-

ing the nuclear wave function in an IPM as a fully anti-symmetrized form of the product

of single-nucleon wave functions, the one-body currents found in the right-hand side of

Eq. (3.66) evaluate the free operator O µ between final and initial bound-state spinors of

the same single-particle state. Thereby, the momentum ~pm of the struck nucleon is not de-

fined sharply, but rather should be folded over in the full evaluation of the nuclear current

matrix element. Owing to momentum conservation, the final bound-state spinor’s momen-

tum is given by ~pm + ~q−~kπ. The constant CI in Eq. (3.66) guarantees the inclusion of the

correct isospin coefficient in the ∆ couplings. Put all together, Eq. (3.66) provides the most

general way to deal with coherent pion production in the RPWIA framework.

3.3.2 Local approximation

Most articles dedicated to neutrino-induced coherent pion production, however, make use

of an approximate form for the current (3.66). Indeed, in the so-called local approximation,

the momentum of the incoming nucleon is kept fixed in the evaluation of the operator O µ.
A widely-used scheme [194, 195] consists of sharing the momentum transferred to the

nucleus, ~Q = ~q−~kπ, between the initial and final nucleon, yielding

~pm = −
~Q

2
. (3.67)

Apart from guaranteeing energy-momentum conservation,

qµ+ k
µ

i = kµ
π
+ k

µ

f
; k

µ

i = (E,~pm), k
µ

f
= (E,−~pm), (3.68)
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the main physical motivation for the on-shell prescription (3.67) stems from the fact that,

with Gaussian nuclear wave functions, it leads to an exact treatment of the terms linear in

~pm/2mN in the elementary amplitude [197, 198]. On the other hand, there seems to be

some arbitrariness in the choice of an appropriate, average nucleon momentum in local-

approximation studies [199]. As a matter of fact, in pion photoproduction work [200–

202], some alternatives to Eq. (3.67) have been studied, including the frozen nucleon

approximation (~pm = ~0) and

~pm = −
A− 1

2A
~Q. (3.69)

It is found [200, 201] that the prescription (3.69) yields results that compare well to the

exact calculations, which involve a proper averaging over the nucleon momentum distribu-

tion. Moreover, both of the schemes (3.67) and (3.69) provide a fair description of pion

photo- and electroproduction data. Using either prescription, the ∆ four-momentum no

longer depends on ~pm and the nuclear current can be reformulated as

〈J (coh),µ

nucl
〉=
�∫

d3~pm

�∑

α

Uα(~pm)U α(~pm+~q−~kπ)
��

AB

CI

�
O µ(q, kπ)

�
BA . (3.70)

In Eq. (3.70), the indices A and B refer to the components of the corresponding 4 × 4

complex matrices. The pion-production operator is now independent of ~pm and may be

brought outside the integral and the sum expression. The isospin factor CI needs to be

modified according to the nature of the incoming nucleon.

Hence, the local approximation accomplishes a factorization of the nuclear-current matrix

element into a part that contains the elementary pion-production operator and a nuclear

form factor [203]

ρA(~q−~kπ) =
∫

d3~pm

�∑

α

Uα(~pm)U α(~pm+~q−~kπ)
�

, (3.71)

that reflects the ground-state properties of the nucleus. Transforming Eq. (3.71) in coordi-

nate space, it is seen how the nuclear form factor emerges as the Fourier transform of the

local nuclear density matrix ρA(~r,~r)

ρA(~q−~kπ) =
∫

d3~rei(~q−~kπ)·~r
∑

α

Ψα(~r)Ψα(~r),

=

∫
d3~rei(~q−~kπ)·~rρA(~r,~r).

(3.72)

From a numerical perspective, the separation of the involved complex-matrix expressions

O µ means an important reduction of computing time. Whereas the full expression in

Eq. (3.66) requires re-evaluating O µ for each point in the ~pm integral, in the local ap-

proximation, a single calculation at a fixed ~pm value is sufficient.

3.3.3 Medium effects

The formalism outlined above provides a general account of all ingredients necessary to

perform RPWIA calculations of neutrino-induced coherent pion production. To describe the
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nuclear ground-state, we will employ the bound-state wave functions introduced earlier

in section 2.4.1. In addition, one needs to consider the influence of the medium on the

produced ∆ and the outgoing pion. To account for medium modifications, we adopt the

substitutions of Eq. (3.58) for the mass and width in the ∆ propagator:

M∆ −→ M∆+ 30 MeV,

Γ−→ Γ+ 40 MeV,
(3.73)

Computing the nuclear attenuation on the ejected pion proves a more challenging task.

Indeed, the approach applied in our discussion of incoherent pion production, where the

RPWIA cross section was multiplied by a transparency factor T (~pm) to estimate FSI ef-

fects, does not seem adequate for coherent scattering. As pointed out in section 3.3.1, the

kinematic variables determining the fivefold coherent cross section of Eq. (3.65) do not fix

the incoming-nucleon’s momentum. Instead, the nuclear-current matrix element involves

a folding over the nucleon momentum distributions. As a consequence, in coherent pion

production, one has to resort to an unfactorized treatment of FSI effects.

Since the pion’s wave function is no longer represented by a plane wave, FSI calculations

are most naturally described in coordinate space. Combining Eqs. (3.70) and (3.72), in the

local approximation, the RPWIA nuclear-current matrix element is given by

〈J (coh),µ

nucl
〉= CIO µ(q, kπ)

�∫
d3~rei(~q−~kπ)·~rρA(~r,~r)

�
. (3.74)

Correspondingly, FSI mechanisms can be accounted for by making the following replace-

ments [195] in Eq. (3.74)

e−i~kπ·~r −→ φ∗
kπ
(~r),

~kπe−i~kπ·~r −→ i ~∇φ∗
kπ
(~r),

(3.75)

where φ∗
kπ
(~r) stands for the distorted outgoing-pion wave function. Within the Glauber ap-

proach, all information regarding pion rescatterings with the residual nucleons is contained

in the Glauber phase G (~b, z), and the pion scattering wave function becomes

φkπ
(~r) = G (~b, z)ei~kπ·~r , (3.76)

using the same notations as in section 2.4.2. Furthermore, it is important to note that the

second line in Eq. (3.75) will introduce some non-local behavior in the amplitudes. By

stating that the pion momentum is not strictly defined inside the nucleus, the operator

O µ(q, kπ) - being proportional to kα
π

- is indeed pulled back into the integral.

If the local approximation is not invoked, the nuclear-current expression becomes highly

involved,

〈J (coh),µ

nucl
〉=
∑

α

∫
d3~rd3~r ′Ψα(~r)φ

∗
kπ
(~r)O µ(q;~r,~r ′)ei~q·~r ′Ψα(~r

′). (3.77)

In coordinate space, the non-locality of the transition operator O µ is reflected by its de-

pendence on two position vectors, ~r and ~r ′. The resulting 6-dimensional integral in the
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Figure 3.25: Comparison between incoherent (full) and coherent (dashed) CC π+-

production cross sections.

matrix element poses a non-trivial numerical problem, that may be tackled by considering

a partial-wave expansion [203] for the integrandum in Eq. (3.77). For higher pion energies,

however, it will become harder and harder to reach convergence in the expansion series.

In that case, one might consider to exploit the smoothness of the integrandum by storing a

grid of 〈O µ〉 values and using interpolated values in the integration routine.

3.3.4 Results

Now, we will present calculations for neutrino-induced coherent pion production. Most of

our results involve carbon nuclei, because they are frequently employed as target material

by neutrino-scattering experiments (among other in the SciBooNE and MINERνA setups).

As a representative example, we adopt Eν = 1 GeV. The standard input values for the ∆

couplings are adopted: the vector form factors of Eqs. (3.18) and (3.19), the axial form

factors of Eq. (3.21) with MA = 1.05 GeV and CA
5
(0) = 1.2, and the ∆πN coupling defined

in Eq. (3.33), with fπN∆ = 2.21.

First, let us investigate some general characteristics of the coherent pion-production pro-

cess. To this end, in Figs. 3.25 to 3.27, we present a number of RPWIA computations that

have been performed in the local approximation with ~pm = −~Q/2. Figure 3.25 contrasts

angular distributions for the incoherent and coherent production of π+’s. Compared to

the incoherent cross sections, the coherent ones are markedly more forward-peaked. Both

the outgoing muon and pion are very likely to escape along the neutrino-beam direction

in coherent processes. This is a typical signature of coherent processes, because they re-

quire very low momentum transfers to maintain the nuclear target in its ground state. In

Fig. 3.26, we study the dependence of a CC coherent π+-production cross section on the

momentum transfers Q2 and t. The peak in the |t| distribution reflects the sharp fall-off

of the nuclear form factor ρA(~q −~kπ) which, as we saw in Eq. (3.70), largely determines

the behavior of coherent processes. Moreover, at an incoming neutrino energy of 1 GeV, all
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Figure 3.26: Dependence of the CC coherent π+-production cross section on Q2 and |t| =
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The full (dashed) line displays the result for a CA
5
(0) value of 1.2 (0.9). Retaining only

contributions proportional to (CA
5
)2 yields the dotted line.
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strength is located at Q2 ® 0.2 GeV2. As shown in Fig. 3.27, the axial form factors domi-

nate the cross section. Putting all vector form factors to zero only leads to minor changes

with respect to the situation where all form factors are taken into account. Consequently,

the coherent cross section is extremely sensitive to the value of CA
5
(0). Adopting a value

of CA
5
(0) = 0.9, as favored by a recent analysis of ANL data [151], may lead to a 40-50%

reduction with respect to CA
5
(0) = 1.2.

Turning to the influence of nuclear effects, Fig. 3.28 shows how ∆ medium modifications

and the nuclear attenuation on the outgoing pion affect the RPWIA cross section. Clearly,

the collisional broadening of the width produces a strong reduction of the coherent cross

section. In the peak region, the effect amounts to 50%. In the tail, where ∆→ πN decays

are absolutely dominant, medium modifications have little or no impact on the RPWIA cross

section. These findings are in very good agreement with the results reported in Refs. [193–

195]. It is worth mentioning that the latter studies use the full, density-dependent medium

modifications of Eq. (3.55), lending additional confidence to the reliability of our efficient

scheme, Γ → Γ + 40 MeV. In Fig. 3.28, we also illustrate the effect of FSI mechanisms

on the pion-momentum cross section. As explained in section 3.3.3, we replaced ei~kπ·~r

by G (~b, z)ei~kπ·~r in the nuclear current (3.74). To simplify the numerical calculations, the

asymptotic (free) pion momentum ~kπ was used in the evaluation of O µ. In the energy re-

gion where the Glauber approach is expected to be valid, i.e. for kπ > 800 MeV, we infer

that ∼ 40% of the produced pions reach the detectors. This FSI effect is larger than the one

reported in Refs. [194, 195], where the pion wave function is obtained as a solution of the

Klein-Gordon equation with a microscopic optical potential. To the contrary, the eikonal

approximation used in Ref. [193] predicts an even larger reduction of the RPWIA cross

section, finding that only 30% of the pions leave the nucleus undisturbed. Furthermore,
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Figure 3.29: Comparison between full and local-approximation calculations for CC coher-

ent π+ production.

from Fig. 3.28, it is obvious that the Glauber calculations cannot be trusted for low pion

energies. In this respect, it would be very interesting to compare our result with a typical

low-energy approach, for example an RDWIA calculation.

In section 3.3.2, it was explained how the local approximation is introduced for mostly

technical reasons, offering a substantial numerical advantage. In addition, for some well-

chosen ~pm values, the local approximation has been relatively successful in describing co-

herent pion photo- and electroproduction data. It has been pointed out [199], however,

that the usefulness of the local approximation depends very much on the nature of the

transition operator O µ. Hence, as the neutrino-induced process is dominated by axial tran-

sition currents, it is important to check whether the local approximation provides a valid

framework in this case too. In Fig. 3.29, we compare a local calculation, using ~pm = −~Q/2,

with a full calculation (3.66), which includes the proper averaging of 〈Ô µ〉 over the nu-

cleon momentum distribution. As one can appreciate, the full calculation differs consider-

ably from the local-approximation result, providing evidence that the latter may not be that

suitable for the description of neutrino-induced coherent pion-production processes. This

finding seems to corroborate the recent result by Leitner et al. [196], as can be appreci-

ated by looking at Fig. 3.30. Work to include nuclear attenuation effects along the lines of

Eq. (3.77) is currently in progress. In general, we again expect strong reductions of the full

RPWIA cross section, due to medium modifications and pion distortion effects.
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Figure 3.30: Comparison between full and local-approximation calculations by the Giessen

group. Figure taken from Ref. [196].
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4
Conclusions

Motivated by neutrino experiments entering the precision phase, we conducted a study of

quasi-free neutrino-nucleus interactions at typical accelerator-beam energies of 1 GeV. For

medium momentum transfers (Q2 ® 1 GeV2), the nuclear excitation spectrum reveals two

broad peaks (Fig. 1.1), corresponding to QE nucleon knockout and ∆ production. Dom-

inated by one-body kinematics, a theoretical description of these processes is most com-

monly formulated in terms of hadronic degrees of freedom, adopting the IA to express the

nuclear transition current as a sum of one-body hadron currents. Invoking, in addition,

an IPM for the nuclear wave functions, all modeling efforts can be concentrated on the

hadron-current matrix elements that contain all process-related dynamics. As a matter of

fact, by virtue of the IA and IPM, modeling these quantities becomes a two-step process.

First, one considers the elementary couplings of the free process. In this thesis, we adopt a

phenomenological parameterization for the weak hadron currents, based on the introduc-

tion of running, Q2-dependent coupling constants, dubbed form factors, to account for the

finite extension of hadrons. Next, we focus on nuclear effects. Nuclear-structure wise, we

adhere to a mean-field picture and obtain the corresponding single-nucleon wave functions

in the Hartree approximation to the σ-ω Walecka model [24]. Furthermore, an essential

ingredient in quasi-free scattering studies is the treatment of nuclear attenuation effects

on the outgoing hadrons. To deal with FSI mechanisms, we turn to the Glauber approach

developed in Ref. [37]. Postulating linear trajectories and frozen spectator nucleons, this

multiple-scattering extension of the eikonal approximation predicts what fraction of the

hadrons will reach the detectors without undergoing any secondary interactions. The full

model outlined here to describe neutrino-induced QE nucleon-knockout and ∆-mediated

one-pion production reactions is coined RMSGA.

More specifically, within the RMSGA model, we can compute neutrino-nucleus cross sec-

tions for direct knockout processes. From an experimental point of view, these reactions

correspond to the windows Em ≤ 80 MeV and |~pm| ≤ 300 MeV. Hence, establishing the

experimental triggers to select these events is an extremely challenging task in accelerator-
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based neutrino experiments because of the wide energy spread of the neutrino beam. Nev-

ertheless, planned neutrino experiments with a dedicated cross-section physics program,

such as MINERνA, aim at creating experimental conditions that have a large potential to

conduct this type of studies.

QE nucleon knockout

In section 2.5, we started our discussion of QE cross sections with a comparison of RPWIA

calculations to inclusive A(e, e′) data. To simplify the numerical calculations, we introduced

the notion of a bound-state propagator and obtained a closed form for the RPWIA cross

section in momentum space. For moderate Q2, we find that both the RPWIA and RFG cal-

culations provide a fair description of the QE peak region. Both models tend to overestimate

the strength at the peak, while the RPWIA predictions give a better account of the tails in

the ω distribution than the RFG ones. For Q2 ® 0.1 GeV2, the description gets worse and

we observe a break-down of the IA. There, multi-nucleon excitations become important,

making the inclusion of long-range RPA correlations indispensable.

Turning to neutrino-nucleus cross sections, it is seen that the current 20%-level uncertain-

ties on the value of MA translate in cross-section variations of the same order. For estimating

nuclear attenuation effects on the outgoing nucleon, we show that rescaling the RPWIA re-

sult with a factor extracted from A(e, e′p) transparencies leads to a very good agreement

with the full, unfactorized RMSGA calculations. In addition, RMSGA predictions prove

to compare favorably with data in exclusive and semi-exclusive electron-scattering studies

[38]. Hence, with the experimental windows |~pm| ≤ 300 MeV and Em ≤ 80 MeV, the elastic

nucleon-knockout contribution to the inclusive νA cross section may serve as a lever for a

precise determination of MA.

In section 2.6, we studied the possibility of a low-Q2 Weinberg-angle measurement through

the QE Paschos-Wolfenstein relation. Though nuclear-model effects are extremely well con-

trolled, the sin2 θW sensitivity of this super-ratio of ν(ν)A cross sections is still a great deal

smaller than in parity-violating electron-scattering experiments. On the other hand, the

proton-knockout part of the Paschos-Wolfenstein relation exhibits a rather strong depen-

dence on g s
A
. With a reliable input for the vector strangeness parameters, this ratio may

serve as a lever to extract new information on the strangeness contribution to the nucleon

spin. In section 2.7, we conducted a more systematic study of the strangeness sensitivity of

QE ν(ν)A cross-section ratios. Owing to its mild dependence on µs and r2
s
, the ratio Rν

p/n
is

one of the more viable candidates to extract a value for g s
A
.

∆-mediated one-pion production

We adopted a ∆-dominance model to study neutrino-induced one-pion production. In sec-

tion 3.1, we scrutinized the weak and strong ∆ couplings that are involved in the free

pion-production process. The lack of precision in neutrino bubble-chamber data produces

30%-level uncertainties on CA
5
(Q2) and the corresponding N(ν , lπ) cross-section predic-

tions. To the contrary, ambiguities in the ∆πN couplings related to unwanted spin-1/2

parts have little effect on the observables.
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Moving on to nuclear reactions in section 3.2, we computed cross sections for primary, i.e.

prior to knockout, pion production and compared them to inclusive electron-scattering data

and other theoretical approaches. Including medium modifications of ∆ properties by the

substitutions M∆ → M∆ + 30 MeV and Γ → Γ + 40 MeV results in a fair estimate of the

one-pion yield in the ∆ region. Under quasi-free conditions, where the detected pion is the

same as the one produced in the ∆ decay, we infer large nuclear attenuation effects. In the

case of an iron target, for example, only about one quarter of the pions leave the nucleus

without any further interactions.

Finally, in section 3.3, we focus on coherent pion production from nuclei. Dominated by

small momentum transfers, this reaction is extremely sensitive to the value of CA
5
(0). In the

local approximation, achieved by fixing the value of ~pm in the nuclear current operator Ô µ,
we show that nuclear effects decimate the ν + A−→ l + A+π cross sections. Just like for

incoherent pion production, our scheme for ∆ medium modifications leads to results that

are similar to those obtained by more involving approaches reported in literature. Also,

we find non-trivial differences between the ubiquitously-applied local approximation and a

full calculation, including the proper averaging of 〈Ô µ〉 over the nucleon momentum dis-

tribution. Although it performs nicely in photo- and electroproduction studies, the local

approximation seems questionable when used in the context of neutrino-induced coherent

pion production.

Outlook

As already stated earlier, neutrino experiments often do not have the means to select sam-

ples of quasi-free events. Instead, when the residual nuclear system remains unobserved,

one adopts a more inclusive notion of nucleon emission and pion production from nuclei. In

this sense, arguably the most interesting improvement to the model presented here would

be to extend it beyond the quasi-free regime.

For Em values higher than the separation energies for the deepest shells, one could first

study the importance of two-body mechanisms in inclusive neutrino-nucleus cross sections.

In electron-scattering studies, a direct calculation of these contributions [48, 204] is known

to explain, at least in part, the strength in the dip region [49]. Another, perhaps more

practical, approach consists of replacing the bound-state propagator (2.52), encoding fully-

occupied single-particle orbitals, by a spectral function S(Em,~pm) [22]. Apart from the

mean-field contribution, the latter additionally accounts for the effects from short-range

nucleon-nucleon correlations.

For even higher missing energies, corresponding to nuclear break-up scenarios where a

number of pions and/or nucleons come off the nucleus, the only viable way to provide an

inclusive description of νA reactions is by adopting Monte-Carlo or transport-model tech-

niques [41]. The RPWIA predictions presented in this thesis could hereby serve as input

before the produced hadrons are propagated in the nuclear medium.

In addition, the current model for quasi-free reactions leaves room for a number of improve-

ments. A study of non-resonant background contributions [151] in weak pion production

off nuclei is one possibility. Next to ∆ production, one could consider an extension towards

the second resonance region, including the P11(1440), D13(1520) and S11(1535) resonances
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[160]. Beyond this region, however, the number of unconstrained (axial) N−N ∗ couplings

becomes unmanageable. Hence, in the transition region towards DIS, the inclusive νA

strength is being actively investigated in quark-hadron duality studies [184]. Alternatively,

to obtain predictions in the transition region, one might consider the possibility of using

Regge-inspired models.



A
Notations and conventions

Natural units are assumed throughout this work, ħh= c = 1. We use the Einstein summation

convention, according to which repeated indices are summed over.

A.1 Four-vector notation

A general, contravariant four-vector x is written as

xµ = (x0, x1, x2, x3) = (x0, ~x). (A.1)

Its covariant form is found by lowering the Lorentz index

xµ = gµν xν = (x0,−~x), (A.2)

with the metric given by

gµν = gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 . (A.3)

The inner product of two four-vectors is defined as follows

x · y = xµ yµ = x0 y0− ~x · ~y . (A.4)

A.2 Dirac matrices

For the γ matrices, we use the familiar representation

γ0 =

�
1 0

0 −1

�
, ~γ=

�
0 ~σ

−~σ 0

�
, (A.5)
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where 0 and 1 are shorthand notations for the 2× 2 zero and identity matrix respectively.

The Pauli matrices are given by

σ1 =

�
0 1

1 0

�
, σ2 =

�
0 −i

i 0

�
, σ3 =

�
1 0

0 −1

�
. (A.6)

Important combinations of γ matrices are

γ5 = iγ0γ1γ2γ3 = γ5, σµν =
i

2

�
γµ,γν] (A.7)

With the definitions (A.5) and (A.6), one finds

γ5 =

�
0 1

1 0

�
. (A.8)

The γ matrices satisfy the anticommutation relations

{γµ,γν}= γµγν + γνγµ = 2gµν , {γµ,γ5}= 0. (A.9)

The totally antisymmetric tensor, or Levi-Civita symbol, is defined as

εµνρσ =




+1 if (µ,ν ,ρ,σ) is an even permutation of (0, 1, 2, 3)

−1 if (µ,ν ,ρ,σ) is an odd permutation of (0, 1, 2, 3)

0 if any index is repeated

. (A.10)

In derivations of spin-summed tensor quantities, one is often confronted with traces of

products of γ matrices. Some of the most occurring combinations are

Tr(odd number of γ matrices) = 0

Tr(γ5) = 0

Tr(γµγν) = 4gµν

Tr(γµγνγργσ) = 4(gµν gρσ − gµρ gνσ + gµσgνρ)

Tr(γ5γµγνγργσ) = 4iεµνρσ

(A.11)

A.3 Spinors and normalizations

The Dirac spinor for a particle with four-momentum k and spin four-vector s is written as

u(k, s). Using the shorthand notation 6 k = γµkµ, the spinor u satisfies the Dirac equation

( 6 k−m)u(k, s) = 0. (A.12)

The solutions for a free particle are given by

u(k, s) =

Ç
E +m

2m

�
χs

~σ·~k
E+m
χs

�
, (A.13)
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where E = +
p

k2+m2 and χs denotes the two-component spin state,

χms=+1/2 =

�
1

0

�
, χms=−1/2 =

�
0

1

�
. (A.14)

Defining the conjugate u = u†γ0, these spinors are normalized as u(k, s)u(k, s) = 1. The

energy projection operators are then given by

∑

±s

u(k, s)u(k, s) =

� 6 k+m

2m

�
. (A.15)

In accordance with this Dirac-spinor normalization, we have the factor
p

m/E appearing in

the phase-space volume of cross-section formulas. Assuming the positive-energy solutions

of the Klein-Gordon equation to be

φ(x) = e−ip·x 1
p
(2π)32E

, (A.16)

for pions, the factor
p

m/E needs to be replaced by 1/
p

2E.
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B
∆ width formula

In the πN center-of-mass (cm) frame, the differential decay rate of the ∆ is given by [44]

dΓ =
d3~kπ

2Eπ(2π)
3

mN

EN

d3~kN

(2π)3
(2π)4δ(4)(k∆− kπ− kN)

∑
f i

��M f i

��2 . (B.1)

Using the δ-function to integrate over ~kN , and integrating over kπ =

���~kπ
��� by employing the

property

δ( f (kπ)) =
δ(kπ− kπ, 0)

|∂ f /∂ kπ|kπ=kπ, 0

, f (kπ, 0) = 0 , (B.2)

yields for the total decay width

Γ =
mN kπ

2πM∆

∑
f i

��M f i

��2 . (B.3)

In Eq. (B.3), the cm pion momentum can be written as

kπ ≡ |~qcm|=
p
(W 2−m2

π
−m2

N
)2− 4m2

π
m2

N

2W
. (B.4)

The less tedious way to obtain an explicit expression for the squared invariant matrix el-

ement in Eq. (B.3) is to use the traditional ∆πN vertex function of Eq. (3.34). Then, the

invariant matrix element reads

M f i =
fπN∆

mπ

u(kN , sN)kπ,µU
µ
∆(k∆, s∆), (B.5)

with U
µ
∆ the free Rarita-Schwinger spinor. This gives

∑
f i

��M f i

��2 =
1

4

∑

s∆;sN

M †

f i
M f i

=
1

4

f 2
πN∆

m2
π

Tr

�
S νµ
∆ kπ,µ

� 6 kN +mN

2mN

�
kπ,ν

�
,

(B.6)
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where the Rarita-Schwinger projection operator is given by

S∆,µν =
∑

s∆

U∆,µU∆,ν

= −
� 6 k∆+M∆

2M∆

��
gµν −

γµγν

3
−

2k∆,µk∆,ν

3M2
∆

−
γµk∆,ν − γνk∆,µ

3M∆

�
.

(B.7)

The factor 1/4 in Eq. (B.6) stems from the averaging over ∆ spin states. Using the trace

identities in Eq. (A.11) to evaluate the trace expression in Eq. (B.6), one finds after some

straightforward algebra

∑
f i

��M f i

��2 =
f 2
πN∆

6m2
π
mN M∆

�
�
k∆ · kN +M∆mN

�
�
(kπ · k∆)2

M2
∆

−m2
π

��
. (B.8)

Combining Eqs. (B.8) and (B.3) then leads to the following formula for the ∆ width in the

cm frame

Γ =
f 2
πN∆

k3
π

12πm2
π

M∆
(EN +mN), (B.9)

where kπ is given in Eq. (B.4) and EN =
p

k2
π
+m2

N
. Extending Eq. (B.9) off-shell, by replac-

ing M∆ with W , yields the energy-dependent ∆ width of Eq. (3.37). To derive this formula,

we could have equally well started from the consistent ∆πN coupling in Eq. (3.36). Al-

though the corresponding calculation is much more cumbersome due to a more involved

trace expression, one can check that the same expression for Γ emerges from it.
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Samenvatting

Inleiding

In de zoektocht naar een allesbehelzende natuurkundige theorie vormt het standaardmodel

der elementaire deeltjes het meest recente orgelpunt. Als overkoepelende beschrijving van

de sterke en elektrozwakke wisselwerking is het standaardmodel uiterst succesvol, in die

zin dat alle experimentele resultaten tot nu toe steeds een interpretatie hebben gekregen

binnen dit raamwerk. Echter, ook het standaardmodel is volgens velen niet het eindpunt

van ons streven naar een verdere unificatie in de beschrijving van fysische processen. Om

deze bewering kracht bij te zetten, verwijst men vaak naar het ontbreken van voorspel-

lingen voor de waarden van verschillende parameters. Zo voorzag het standaardmodel

oorspronkelijk enkel in het bestaan van neutrino’s als massaloze, linkshandige deeltjes. De

ontdekking van neutrino-oscillaties toont overduidelijk aan dat dit beeld niet klopt, aange-

zien neutrino’s enkel van smaaktoestand kunnen veranderen wanneer ze een massa heb-

ben. Er dringt zich bijgevolg een uitbreiding van het standaardmodel op, waarin de zwakke

eigentoestanden |νe〉, |νµ〉 en |ντ〉 beschreven worden als kwantummechanische superposi-

ties van de massa-eigentoestanden |ν1〉, |ν2〉 en |ν3〉. Net als in de quarksector ontstaat er

een opmengingsmatrix die een verband legt tussen de zwakke- en massa-eigentoestanden

van de neutrino’s. Experimenten die neutrino-oscillaties onderzoeken, stellen zich dan tot

doel om deze matrix zo nauwkeurig mogelijk te bepalen.

Neutrino-experimenten

Lopende en geplande generaties van neutrino-experimenten creëren ongeziene opportu-

niteiten voor het onderzoek in zwakke hadronen- en kernfysica. Neutrino’s interageren

namelijk enkel via de zwakke interactie. Bovendien schenden ze pariteit op maximale wij-

ze, hetgeen aanleiding geeft tot de karakteristieke V−A structuur van de zwakke lepton- en

quarkstromen. Experimenten met neutrino’s lenen zich dus perfect tot een studie van de

axiale sector in zwakke interacties.

Uiteraard verlopen deze experimenten niet aan vrije quarks. Quarks zitten opgesloten

(“confined”) in nucleonen, welke dan weer gebonden zijn in de atoomkernen die het tref-

materiaal uitmaken van neutrinodetectoren. Aangezien neutrino-interacties zich slechts

zeer sporadisch voordoen, maken experimenten vaak gebruik van enorme hoeveelheden

trefmateriaal, in de vorm van meterslange stalen platen of vaten gevuld met een kiloton

baby-olie.

Een belangrijke categorie van neutrino-experimenten, “long-baseline” experimenten ge-

naamd, onderzoekt smaakoscillaties door te kijken naar νµ-interacties in een detector dicht-
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bij de bron en in een detector verder weg, op een afstand L van de eerste detector. Opdat

een dergelijke opstelling gevoelig zou zijn aan neutrino-oscillaties, moet voldaan zijn aan

L[km]/Eν[GeV] ¦ 1/∆m2[eV2], waarbij ∆m2 ∼ 3× 10−3eV2. Voor een typische afstand

van L ∼ 100 km betekent dit concreet dat de versnellers in deze faciliteiten muon-neutrino’s

met een energie van ongeveer 1 GeV moeten leveren.

Samenvattend leert dit ons dat een goed begrip van neutrino-atoomkern interacties bij 1-

GeV energieën een wezenlijk onderdeel zal vormen in de analyse van long-baseline experi-

menten. Vooral in de zogenaamde “Superbeam” experimenten, waar hoge-intensiteitsbun-

dels statistische fluctuaties ondergeschikt maken aan systematische onzekerheden, wordt

een realistische beschrijving van alle relevante processen in dit energiegebied noodzakelijk

om, onder meer, achtergronden te berekenen, verschillende soorten reacties te onderschei-

den en de neutrino-energie te reconstrueren. Naast experimenten die zich concentreren

op een bepaling van de oscillatie-parameters, zijn er ook waarvoor een verbeterde kennis

van neutrino-atoomkern werkzame doorsnedes een doel op zich is. Met name de SciBoo-

NE en MINERνA collaboraties plannen een doorgedreven studie van neutrino-interacties

met atoomkernen. Het SciBooNE experiment gebruikt hierbij een 1-GeV neutrinobundel

voor de studie van neutrino- en antineutrino-koolstof interacties. MINERνA beoogt een

veel breder energie-interval te onderzoeken, tot neutrino-energieën van een paar tientallen

GeV. Echter, ook zij zullen de nodige aandacht besteden aan o.a. de rol van kerneffecten in

neutrino-interacties van enkele GeV aan atoomkernen gaande van helium tot lood.

Neutrino-atoomkern interacties by intermediaire energieën

Het nucleair excitatiespectrum voor niet al te hoge waarden van het gekwadrateerde impuls-

viermomentum, Q2 < 1 GeV2, en energietransfers ω kleiner dan 1 GeV, wordt gedomineerd

door twee brede pieken. De eerste piek ligt voorbij de drempelenergie voor nucleon-

emissie, rond de waarde ω ∼ |~q |2/2M , met ~q de impulstransfer en M de nucleonmas-

sa. In dit gebied is het overgrote deel van de sterkte te wijten aan quasi-elastische (QE)

nucleon-uitstoot reacties. Zowat 300 MeV verderop ligt de tweede piek, waar de extra

energietransfer het mogelijk maakt om een nucleon tot een ∆ te exciteren. Om die reden

wordt de tweede bult meestal de ∆ piek genoemd. Tussen beide structuren in ligt een dal-

gebied, waarnaar in de literatuur verwezen wordt als de “dip”. In deze thesis spitsen we

onze aandacht toe op het QE- en het ∆-gebied. We ontwikkelen meer bepaald een theore-

tisch raamwerk voor de berekening van neutrino-atoomkern werkzame doorsnedes die de

dominante processen in beide gebieden beschrijven.

Theoretisch raamwerk

Kenmerkend voor de reacties in het QE- en ∆-gebied is dat ze hoofdzakelijk bepaald wor-

den door eendeeltjes-mechanismen. Anders gezegd, het leeuwendeel van hun sterkte daar

is afkomstig van processen waarbij één enkel gebonden nucleon het totale viermomentum

qµ van het zwakke ijkboson absorbeert. Een benadering die onder deze omstandigheden

vaak wordt aangewend, is de zogenaamde impulsbenadering (IA) (“impulse approximati-

on”). De IA bestaat er namelijk uit dat de veeldeeltjes-operator tussen de initiële en finale
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toestand van het A-nucleonen systeem vervangen wordt door een som van eendeeltjes-

operatoren. Van de aldus bekomen hadronstromen wordt verondersteld dat ze vrij zijn

van medium-effecten, en dus dezelfde structuur hebben als de overeenkomstige vrije (“on-

shell”) koppelingen. Op die manier valt het modelleren van neutrino-atoomkern interacties

uiteen in twee hoofdproblemen:

• Hoe kan het zwak eendeeltjes-proces beschreven worden?

• Hoe brengt men kerneffecten in rekening?

Fenomenologische aanpak met vormfactoren

Bij energietransfers ω ≤ 1 GeV vormt een beschrijving van het vrije eendeeltjes-proces

aan de hand van hadronische vrijheidsgraden het meest natuurlijke uitgangspunt. In een

laagste-orde behandeling is het invariant matrixelement voor een semileptonisch, zwak

proces dan evenredig met de contractie van de lepton- en de hadronstroom, M f i ∼ lαh
α.

Hoewel met de V−A natuur van de zwakke interactie de structuur van de leptonstroom

volledig bepaald is, neemt de hadronstroom in het algemeen een meer complexe vorm aan.

De verklaring hiervoor ligt in de eindige dimensie van de betrokken hadronen, waardoor zij

niet eenvoudigweg als puntdeeltjes kunnen beschouwd worden. Om deze hadronkoppelin-

gen dan wel te bepalen, kan men een beroep doen op ab initio berekeningen uitgevoerd in

een of ander quarkmodel. Als alternatief hiervoor wordt echter vaak gekozen voor een meer

fenomenologische aanpak door een set van vector en axiale vormfactoren in te voeren. De

vormfactoren spelen dan als het ware de rol van lopende (“running”) koppelingsconstan-

ten, die variëren al naargelang de resolutie waarmee de bewuste hadronen worden bekeken.

Op die manier worden vormfactoren vaak geparametriseerd als dipoolfuncties van Q2, wel-

ke nader bepaald kunnen worden met behulp van theoretische wetten en experimentele

gegevens. De zwakke vector vormfactoren, bijvoorbeeld, kunnen via de CVC-hypothese

aan de goed gekende elektromagnetische vormfactoren gerelateerd worden. Aangezien de

informatie over axiale vormfactoren enkel van neutrino-experimenten kan komen, is onze

kennis van die sector nog steeds heel beperkt. Een nauwkeurige meting van de axiale vorm-

factoren is dan ook een hoofddoel van experimenten als SciBooNE en MINERνA. Hiertoe is

het echter noodzakelijk om een goed beeld te hebben van de manier waarop kerneffecten

de gewenste informatie kunnen beïnvloeden.

Kerneffecten

Bij neutrino-atoomkern verstrooiing interageert het inkomend neutrino niet langer met een

vrij nucleon, maar met een gebonden nucleon dat rondbeweegt in de trefkern. Om de effec-

ten van Fermi-beweging, het uitsluitingsprincipe van Pauli en nucleaire binding in rekening

te brengen, beroept men zich traditioneel op een relativistisch Fermi-gas (RFG) model. In

zo’n RFG model wordt de atoomkern opgevat als een collectie nucleonen, welke de Fermi-

zee opvullen tot aan het Fermi-niveau kF . De energie van een nucleon is dan gegeven door

E = (k2+M2)1/2− Eb, met k < kF en Eb een bindingsenergie. Naast dit relatief eenvoudige

model bestaan er echter ook meer realistische beschrijvingen van de kernstructuur, zoals



114 Samenvatting

een gemiddeld-veld model of een benadering met spectraalfuncties. In deze thesis beschrij-

ven we de schillenstructuur van de atoomkern aan de hand van een gemiddeld-veld model:

de nucleonen in de kern bewegen onafhankelijk in een gemiddeld-veld potentiaal ontstaan

door de interacties met de omringende nucleonen. De golffuncties van de initiële en fina-

le A-nucleonen toestand ontstaan hierbij als een volledig geantisymmetriseerde vorm van

het product van de relativistische gebonden-toestand eendeeltjesgolffuncties. Deze laat-

ste bepalen we uit een Hartreebenadering van het σ-ω model ontwikkeld door Walecka.

In tegenstelling tot een spectraalfunctie-benadering, waar in rekening wordt gebracht dat

korte-dracht nucleon-nucleon correlaties een deel van de gemiddeld-veld sterkte verplaat-

sen naar een hoger (Em,~pm) gebied, nemen wij aan dat de eendeeltjesorbitalen volledig

bezet zijn. Zoals hierboven reeds gesteld, met de invoering van de IA, beschouwen we

geen processen waarbij meerdere nucleonen in de trefkern betrokken zijn. Uiteraard wordt

deze benadering minder accuraat wanneer de trefkern met een lagere ruimtelijke resolutie,

m.a.w. bij kleine Q2, gescand wordt. Op dat moment kunnen multi-nucleon mechanismen

een rol beginnen spelen, en moeten lange-dracht correlaties in rekening gebracht worden

met behulp van “(continuum) random-phase approximation” ((C)RPA) berekeningen.

Naast de beschrijving van de kernstructuur vormt de behandeling van finale toestandsin-

teracties (FSI) een essentieel ingrediënt in elke studie van neutrino-atoomkern interacties.

Eens geproduceerd in de primaire zwakke interactie, zullen de hadronen met de achter-

blijvende nucleonen in de trefkern interageren op hun weg naar buiten. In het geval van

∆-productie kan men stellen dat het effect tweeledig is. Ten eerste zullen de massa en de

vervalbreedte van de ∆ in een nucleair medium verschillen van hun vrije waarden. Verder,

nadat de ∆ is vervallen, zullen de vervalproducten (meestal een pion en een nucleon, soms

enkel een nucleon) onderhevig zijn aan FSI effecten.

Mediummodificaties van ∆ eigenschappen werden reeds onderzocht binnen het raamwerk

van een microscopisch ∆-gat model. Uit de berekening van de ∆ zelfenergie in het nucle-

air medium leidt men een verschuiving van de resonantiepositie en een vergroting van

de vervalbreedte af. Voor onze toepassingen gebruiken we de eenvoudige substitutie:

M∆ → M∆ + 30 MeV en Γ → Γ + 40 MeV, omdat het een succesvol recept is gebleken

in studies van foto-geïnduceerde twee-nucleon-uitstoot reacties.

De manier waarop FSI effecten in rekening gebracht worden, hangt sterk samen met het

type reactie onder beschouwing. In deze thesis bestuderen we reacties in het quasi-vrije re-

gime, gekenmerkt door de directe uitstoot van pionen en/of nucleonen waarbij de restkern

achterblijft met een excitatie-energie van maximaal enkele tientallen MeV. Onder die om-

standigheden wordt de nucleaire attenuatie van het ejectiel berekend in de relativistische

verstoorde-golf impulsbenadering (RDWIA) met behulp van pion/nucleon-kern optische

potentialen, of in Glaubermodellen, welke veeldeeltjesveralgemeningen zijn van de eiko-

nale benadering. Voor de berekening van directe-uitstoot werkzame doorsnedes, bogen

we hier op een relativistische uitbreiding van de Glauber veelvuldige-verstrooiingstheorie

(RMSGA), zoals ontwikkeld binnen onze onderzoeksgroep. In het kinematisch gebied waar

de eendeeltjessterkte overheerst, |~pm| ≤ 300 MeV en Em ≤ 80 MeV, leiden de RMSGA voor-

spellingen namelijk tot een behoorlijke beschrijving van nucleon-uitstoot data in exclusieve

en semi-exclusieve electron-verstrooiingsprocessen.

Een andere, meer inclusieve aanpak van uitstootreacties bestaat eruit om de eis van quasi-

vrije verstrooiing te laten varen en alle mogelijke nucleaire configuraties in de eindtoestand
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in beschouwing te nemen. In dit geval grijpt men vaak naar Monte-Carlo methodes of semi-

klassieke transportmodellen om pionen en nucleonen door de kern te propageren. Alhoewel

een kwantummechanische beschrijving van het probleem dan niet meer mogelijk is, bieden

deze technieken het voordeel dat ook inelasticiteiten en gekoppelde-kanaaleffecten in reke-

ning kunnen gebracht worden. Inderdaad, terwijl Glaubermodellen enkel een verlies van

flux voorspellen met betrekking tot de elastische uitstootsterkte, zijn transportmodellen in

staat om aan te duiden in welke inelastische kanalen die sterkte precies verdwenen is.

Resultaten

Quasi-elastische nucleon-uitstoot reacties

Als eerste test voor ons model starten we in hoofdstuk 2 de studie van QE werkzame door-

snedes met een vergelijking tussen berekeningen in de vlakke-golflimiet (RPWIA) en inclu-

sieve A(e, e′) data. Om de numerieke berekeningen te verlichten, voeren we het begrip van

gebonden-toestand propagator in. Dankzij deze analytische vereenvoudiging is het mogelijk

om een gesloten gedaante op te stellen voor de RPWIA werkzame doorsnedes in de mo-

mentumruimte.

We vinden dat, voor gematigde Q2 waarden, zowel de RPWIA als de RFG berekeningen een

goede beschrijving geven van het gebied rond de QE piek. Beide modellen vertonen de nei-

ging om de piekwaarden licht te overschatten. De RPWIA voorspellingen geven dan weer

een betere beschrijving van de staarten in de ω-distributie dan die van het RFG model.

Naar Q2 = 0.1 GeV2 toe, stellen we vast dat ons model het steeds slechter doet. Het is de IA

zelf die bij dergelijk lage Q2, en dus bij een kleinere ruimtelijke resolutie, geen realistisch

uitgangspunt meer vormt. Processen waarin meerdere nucleonen betrokken zijn, beginnen

een belangrijke rol te spelen, zodat een benadering met RPA correlaties daar noodzakelijk

wordt.

Kijken we naar neutrino-atoomkern interacties, dan zien we dat de huidige onzekerheden

op de axiale massa MA, welke van de orde van 20% zijn, aanleiding geven tot even grote

fluctuaties in de werkzame doorsnedes. Met betrekking tot FSI mechanismen tonen we aan

dat een herschaling van RPWIA berekeningen met een factor ontleend aan de experimenteel

bepaalde A(e, e′p) transparantie nagenoeg hetzelfde resultaat oplevert als de ongefactori-

seerde RMSGA berekeningen. Aangezien het RMSGA model met aanzienlijk succes getest

werd tegen A(e, e′p) data, besluiten we hieruit dat RMSGA predicties een realistisch beeld

geven van de elastische nucleon-uitstoot bijdrage tot de inclusieve νA werkzame doorsne-

de. Met andere woorden, een nauwkeurige meting van dit kanaal bij de kinematische cuts

|~pm| ≤ 300 MeV and Em ≤ 80 MeV zou kunnen leiden tot nieuwe informatie over MA.

Als toepassing op QE νA verstrooiing bestuderen we de mogelijkheid voor een meting van

de Weinberghoek bij lage Q2 door middel van de Paschos-Wolfenstein relatie. We tonen aan

dat de theoretische onzekerheden op deze super-ratio van ν(ν)A werkzame doorsnedes zeer

goed onder controle zijn. Echter, een meting van de asymmetrie APV in pariteitsschenden-

de electron-verstrooiingsexperimenten laat een bepaling van sin2 θW toe die tot 10 keer zo

nauwkeurig is als bij een meting van de Paschos-Wolfenstein relatie met dezelfde precisie.

Indien we enkel het proton-uitstoot deel van de Paschos-Wolfenstein relatie beschouwen,

dan blijkt hieruit een sterke g s
A

afhankelijkheid. Op voorwaarde dat de vectoriële vreemd-
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heidsparameters voldoende goed gekend zijn, is deze relatie dan ook bijzonder aantrek-

kelijk om nieuwe informatie over de bijdrage van vreemde quarks tot de nucleonspin te

onttrekken. Tot slot bekijken we de vreemdheidsgevoeligheid van verscheidene QE ν(ν)A

ratios op een meer systematische manier. Wegens de milde afhankelijkheid van de parame-

ters µs and r2
s

besluiten we dat de verhouding Rν
p/n

een van de meer geschikte kandidaten

is voor de bepaling van g s
A
.

Pionproductie na ∆-excitatie

In hoofdstuk 3 nemen we het proces van neutrino-geïnduceerde pionproductie onder de

loep. Hierbij wordt aangenomen dat elk geproduceerd pion afkomstig is van een ∆, geëx-

citeerd aan een nucleon. Na een gedetailleerde studie van de relevante zwakke en sterke

∆-koppelingen focussen we eerst op het elementaire proces: verstrooiing aan een vrij nu-

cleon. We stellen vast dat de huidige, grote onzekerheden op neutrinodata aanleiding

geven tot onzekerheden van de orde van 30% op zowel de axiale vormfactor CA
5
(Q2) als de

overeenkomstige N(ν , lπ) predicties. Ambiguïteiten in de ∆πN koppelingen, gerelateerd

aan ongewilde spin-1/2 delen van de ∆ propagator, hebben daarentegen maar een klein

effect op observabelen.

Voor de reactie met kernen berekenen we werkzame doorsnedes voor primaire pionproduc-

tie, vooraleer het pion de kern verlaat. Er wordt een vergelijking gemaakt met inclusieve

electrondata en berekeningen afkomstig van andere theoretische modellen. Mits de regels

M∆ → M∆ + 30 MeV, Γ→ Γ+ 40 MeV voor mediummodificaties van de massa en verval-

breedte van de∆ vinden we dat onze RPWIA berekeningen een goede schatting van de 1-π

sterkte in het∆ gebied geven. Onder quasi-vrije omstandigheden, waarbij het geproduceer-

de en gedetecteerde pion een en hetzelfde deeltje zijn, is het effect van FSI mechanismen

bijzonder groot. Voor een ijzerkern, bijvoorbeeld, komt slechts 25% van de pionen onver-

stoord uit de trefkern.

Tot slot bestuderen we de neutrino-geïnduceerde coherente productie van pionen aan ker-

nen. Aangezien de trefkern intact blijft, wordt dit proces gedomineerd door kleine momen-

tumtransfers en voorwaartse verstrooiingshoeken. Bovendien is de sterkte van de over-

eenkomstige werkzame doorsnedes bijna uitsluitend te wijten aan de axiale vormfactoren,

zodat deze reactie bijzonder gevoelig is aan de waarde CA
5
(0). De invloed van kerneffecten

wordt onderzocht aan de hand van RMSGA berekeningen in de lokale benadering, welke

erop neerkomt dat een constante waarde voor ~pm wordt gekozen bij de evaluatie van de

transitie-operator Ô µ. We vinden dat ∆-mediummodificaties en FSI de werkzame doorsne-

des voor ν + A −→ l + A+ π decimeren. Interessant om vast te stellen is dat, net als bij

incoherente pionproductie, ons eenvoudig schema voor ∆-mediummodificaties tot resulta-

ten leidt die zeer vergelijkbaar zijn met meer ingewikkelde benaderingen in de literatuur.

Er blijken ook belangrijke verschillen te bestaan tussen de pion-momentum distributies

verkregen met de lokale benadering en deze waarbij 〈Ô µ〉 op de gepaste wijze werd geïn-

tegreerd over ~pm. Hoewel de lokale benadering tot accurate resultaten leidt in coherente

foto-productie processen, heeft ze bij neutrino reacties de neiging om de werkelijke sterk-

te te overschatten. We besluiten bijgevolg dat het gebruik van de lokale benadering in

coherente pionproductie aan kernen door neutrino’s niet gerechtvaardigd is.
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Vooruitblik

Omwille van de strikte cuts Em ≤ 80 MeV en |~pm| ≤ 300 MeV is het voor de huidige

generatie van neutrino-experimenten allerminst vanzelfsprekend om quasi-vrije neutrino-

atoomkern interacties te isoleren. In het algemeen zal het finale nucleaire systeem onge-

detecteerd blijven, zodat een meer inclusieve aanpak van nucleonuitstoot en pionproductie

noodzakelijk wordt. Een bijzonder interessante uitbreiding van het huidige formalisme be-

staat er dan ook uit om de processen corresponderend met grotere Em te gaan beschrijven.

In de eerste plaats denken we hierbij aan tweedeeltjesmechanismen. Zo weet men uit

electron-verstrooiingsstudies dat een rechtstreekse berekening van tweedeeltjes-mesonuit-

wisselingsstromen ten dele de sterkte in de dip verklaart. Een meer praktische manier om

tweedeeltjesbijdragen te onderzoeken bestaat eruit om de gebonden-toestand propagator,

met volledig bezette eendeeltjesorbitalen, te vervangen door een spectraalfunctie S(Em,~pm)

die een deel (typisch ∼ 20%) van de gemiddeld-veldsterkte herschikt naar bijdragen van

korte-dracht nucleon-nucleon correlaties.

Voor de beschrijving van processen waarbij de trefkern opbreekt in verschillende stukken,

en meerdere pionen en/of nucleonen uitgestuurd worden, moeten we onze toevlucht ne-

men tot Monte-Carlo-simulaties of transportmodeltechnieken. De RPWIA resultaten in dit

werk zouden hierbij als input kunnen aangewend worden, vooraleer de geproduceerde ha-

dronen uit de trefkern gepropageerd worden.

Binnen het gepresenteerde raamwerk voor quasi-vrije neutrino-reacties zijn ook nog enkele

uitbreidingen mogelijk. Naast het dominante ∆-kanaal kan bijvoorbeeld een studie van

niet-resonante achtergrondcontributies tot de 1-π-sterkte aangevat worden. We kunnen het

formalisme eveneens toepassen op de resonanties in het tweede resonantiegebied, namelijk

de P11(1440), D13(1520) en S11(1535). Voorbij dit gebied, echter, loopt het aantal onbe-

kende axiale N − N ∗ koppelingen drastisch op, zodat een beschrijving van de inclusieve

νA werkzame doorsnedes daar beter steunt op quark-hadron-dualiteitsstudies of Regge-

gebaseerde modellen.


