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1 Introduction

Supersymmetry (SUSY) is still one of the most attractive models for physics beyond the

Standard Model (SM). It not only solves the gauge hierarchy problem, but also provides a

dynamical mechanism for electroweak symmetry breaking. The minimal supersymmetric

extension of the SM, called the minimal supersymmetric standard model (MSSM) [1],

has roughly doubled the degrees of freedom of the SM and has many phenomenological

implications for, e.g. Higgs and flavor physics. The MSSM is usually defined with an ad-

hoc Z2 symmetry, known as R-parity, which can provide a dark matter (DM) candidate to

explain the DM relic density of the universe.

Another undeniable evidence of physics beyond the SM is neutrino masses and oscil-

lations [2]. Although the MSSM with explicit R-parity violation could explain neutrino

masses [3], the virtue of having a DM candidate would then be lost in general. Therefore, if

one insists on having a DM candidate in the MSSM, one has to include additional fields or

particles, e.g. right-handed neutrinos, in order to generate neutrino masses and oscillations.
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One of the most celebrated ways to generate neutrino masses is the seesaw mecha-

nism [4–11], which is often considered to be the most natural and attractive. The benefit

and drawback of the original seesaw is that its scale is generically around the scale of grand

unified theories (GUTs) ∼ 1012−16 GeV, which is not accessible for direct phenomenological

tests. There have been many alternatives or modifications to the original seesaw such that

the seesaw scale can be as low as GeV or TeV which can be tested in current or future

experiments. Nevertheless, one big drawback of many of these models is that the seesaw

scale is put in rather ad-hoc by hand to be low.

One popular variant of these proposals is the inverse seesaw (ISS) mechanism [12, 13],

which is an extension of the original seesaw model but with a much lower mass scale usually

below several TeV. The inverse seesaw mechanism generates small neutrino masses with

rather large Yukawa couplings and violates lepton number mildly. At such a low scale

the model can be tested at Hadron colliders (the LHC and at future 100 TeV colliders,

e.g. [14–16]) and future high energy lepton colliders (the Circular Electron Positron Col-

lider, e.g. [17, 18], International Linear Collider, e.g. [17, 18], and the FCC-ee, e.g. [19]),

for an overview and comparison of the different collider possibilities, see, e.g. [20]. Indirect

effects can also be tested at low-energy flavor physics experiments, e.g. [21], or in Higgs

decays, e.g. [22].

There is a plethora of ISS models and not surprisingly we are by far not the first to

discuss a supersymmetric version. For the sake of brevity we give here a short overview of

SUSY ISS models only. To our knowledge these models can be roughly categorized under

one of the four categories where each time the additional fields required in the ISS have to

be added: (i) MSSM [23–26], (ii) MSSM/NMSSM with extended gauge symmetry [27–32],

(iii) NMSSM [17, 33], and (iv) supersymmetric Left-Right symmetry model [34, 35]. We

briefly summarize these models as follows.

MSSM with additional gauge singlets: it has been pointed out in ref. [26] that by

adding only one pair of gauge singlets (S,N) to the MSSM it is sufficient to explain

the neutrino data using an ISS. One neutrino mass is generated at tree level while the

other non-zero neutrino masses are generated by loop effects. This is justifiable called

the minimal version of SUSY inverse seesaw model. In our approach we also aim for

minimality but we want to explain all neutrino masses at tree-level already which

forces us to introduce two pairs of extra gauge singlets. Of course it is also possible

and popular to introduce three pairs of the extra gauge singlets with opposite lepton

numbers, see, e.g. [23–25].

The gauge extended SUSY: in this class of models, the seesaw mechanism is derived

from a symmetry breaking pattern of a B−L extension of the MSSM. The gauge group

is SU(3)C × SU(2)L×U(1)Y ×U(1)B−L, which gives rise to three SM singlets due to

the U(1)B−L anomaly cancellation conditions. These singlets can be the right-hand

neutrinos for the seesaw mechanism. At the same time, the lightest right-handed

sneutrino could be the lightest SUSY particle (LSP) [27]. This is also attractive

since it can be embedded into SO(10) which was studied, e.g. in refs. [28–30], where

even an additional gauge factor U(1)R is introduced. Interestingly, the sneutrino in
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this class of models can survive all the dark matter constraints in the inverse seesaw

extension but not in the linear seesaw.

The NMSSM with an extra singlet sector: by adding an extra singlet sector to the

NMSSM [33], tiny neutrino masses can be radiatively generated by the SUSY breaking

parameters at very low scales similar to [26] which we mentioned above. In such a

model, the sneutrino or the lightest neutralino could be the LSP [17, 33]. In another

NMSSM extension [31, 32] they connect neutrino physics to asymmetric dark matter.

SU(2)L × SU(2)R × U(1)B−L: in the last class of supersymmetric inverse seesaw im-

plementations the MSSM gauge group is extended to a left-right symmetry SU(2)L×
SU(2)R ×U(1)B−L [34, 35]. In these models the B − L symmetry is broken at a low

scale ∼TeV and the neutrino masses are dynamically generated. Interestingly these

models can be embedded into SO(10) models which reduces the effective number of

parameters making the model more predictive.

In this paper we discuss a supersymmetric version of the ISS where a Z6 symmetry

plays the role of lepton number which is usually implemented as an approximate symmetry

in ISS models. Conventionally, R-parity is introduced to ensure proton stability. This is

not needed in our model since all R-parity violating operators are already forbidden by the

Z6-symmetry. The Z6 is broken in the same way as the electroweak symmetry in the MSSM

and both scales are related to SUSY breaking. Hence, in our model we have an intimate

connection between the seesaw scale and the TeV scale which gives a strong theoretical

motivation to have a low seesaw scale.

Our model is minimal not only with respect to symmetry extensions but also with

respect to the field content. Only five additional SM singlet fields are introduced to the

superpotential. The superfields N̂ c contain right-handed (RH) neutrinos and sneutrinos

while the singlet superfields Ŝ and X̂ contain new singlet scalars and fermions. Unlike

the NMSSM, in which the new singlet superfield also couples to the two Higgs-doublet

superfields, here the singlet superfields Ŝ and X̂ only couple to the RH neutrino superfields

N̂ c or to themselves. Our model hence would fall most closely under the first category of

an ISS extension of the MSSM since our additional symmetry is not gauged.

Since we gave up on some rather ad-hoc arguments about the scales involved in the

ISS we do not have to restrict ourselves to the original inverse seesaw mechanism with

MS �MD � µNS, where MS is the singlets mass term, MD the Dirac neutrino mass term

and µNS a supersymmetric mass term respectively. To remind the reader the ISS neutrino

mass matrix has the structure

Mν =


0 MD 0

MT
D 0 µNS

0 µTNS MS

 (1.1)

in the basis (ν, N c, S)T . In our setup the original ordering of mass hierarchies can be easily

generalized to three different types of inverse seesaw mechanisms: (i) MS � MD � µNS

– 3 –
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Superfield Q̂i Û ci Êci L̂i D̂c
i Ĥu Ĥd N̂ c

α Ŝα X̂

Z6 charge 5 5 5 3 3 2 4 1 5 2

Table 1. Superfield content of the model and charge assignment under the additional discrete

Z6 symmetry. The new superfields compared to the MSSM, N̂ c, Ŝ and X̂, are singlets under the

Standard Model gauge group. The indices i = 1, 2, 3 and α = 1, 2 are generation indices.

(ISS type I), (ii) MS ≈ MD � µNS (ISS type II), and (iii) MD � MS � µNS (ISS type

III). We investigate these three types of the ISS and find that they can have very different

phenomenology which is expected since, for instance, the Yukawa couplings turn out to be

very different in size.

This work is organized as follows: first we describe the model in section 2 and in

section 3 we discuss various phenomenological implications such as the neutrino mass spec-

trum and mixing, neutrinoless double beta decay, and charged lepton-flavor violations. We

summarize and conclude in section 4. In the appendix we have collected some explicit

expressions for mixing matrices which are too long for the main text.

2 The model

In this section, we describe the model in detail, that is the superpotential, the soft SUSY

breaking parameters, and the scalar potential. The aim is to construct a minimal su-

persymmetric inverse seesaw model. It is minimal in the sense that we want to extend

the MSSM with the least possible extra fields and symmetries to get a viable inverse see-

saw mechanism to generate neutrino masses at tree level which will be discussed in the

next section.

2.1 The superpotential

We impose a Z6 symmetry on the superpotential under which the superfields transform as

Φ̂→ Φ̂ exp

[
i q

2π

6

]
, (2.1)

where q runs from 0 to 5. The assignment of q for the superfields in our model is listed in

table 1.

This charge assignment is not unique but we have chosen the Z6 charges such that

they are compatible with SU(5) unification and such that we forbid the R-parity violating

operators of the MSSM. Because our superpotential does not conserve U(1) lepton number,

R-parity is not well defined.

The renormalizable superpotential compatible with the SM gauge symmetries and the

Z6 symmetry is then given by

W =WMSSM +Wν , (2.2)

where

WMSSM = Yu Q̂ĤuÛ
c − Yd Q̂ĤdD̂

c − Ye L̂ĤdÊ
c + µHĤuĤd , (2.3)

Wν = Yν L̂ĤuN̂
c + µNS N̂

cŜ +
λ

2
X̂ Ŝ2 +

κ

3
X̂3 , (2.4)
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and we have suppressed generation indices. In our conventions, we label the superfields

with a hat, the fermionic components of the matter fields (including N̂ c and X̂) without

hat and their scalar components with a tilde. This is twisted for the Higgs doublets and

X̂ (scalars without hat or tilde and fermions with a tilde). Note that the superfields N̂ c

will give rise to right-handed neutrinos and sneutrinos while the singlet superfields Ŝ and

X̂ will give rise to new singlet scalars and fermions.

For the MSSM fields we assume the conventional number of generations. To accom-

modate the neutrino masses and mixing at tree level we need at least two generations of

right-handed neutrino superfields N̂ c and two generations of additional singlet superfields

Ŝ for the realization of the ISS mechanism, see also [36]. For the sake of simplicity this is

what we assume throughout the rest of the paper. X̂ gives rise to lepton number violation

and its vacuum expectation value (vev) induces a Majorana mass term of S as we will see

in the next section.

2.2 The soft SUSY breaking terms and the scalar potential

The soft SUSY breaking terms can be grouped into the ordinary MSSM part and addi-

tional terms

− Lsoft = −Lsoft,MSSM − Lsoft,ν , (2.5)

where

−Lsoft,MSSM =
1

2
M1B̃B̃ +

1

2
M2W̃W̃ +

1

2
M3g̃g̃

+M2
Q̃
Q̃†Q̃+M2

ŨcŨ
c†Ũc +M2

D̃cD̃
c†D̃c +M2

L̃
L̃†L̃+M2

ẼcẼ
c†Ẽc

+M2
Hu
Hu
†Hu +M2

Hd
Hd
†Hd + (bHHuHd + H.c.)

+
(
AuQ̃HuŨ

c −AdQ̃HdD̃
c −AeL̃HdẼ

c + H.c.
)
, (2.6)

−Lsoft,ν = M2
ÑcÑ

c†Ñ c +M2
S̃
S̃†S̃ +M2

XX
†X + (bNSÑ

cS̃ + H.c.)

+

(
AνL̃HuÑ

c +
1

2
AλXS̃

2 +
1

3
AκX

3 + H.c.

)
, (2.7)

and where we have suppressed any gauge or generation indices.

To discuss the scalar potential we still have to add the D- and F -terms. Since the

new states do not have gauge interactions we only have to consider the F -terms for them

which are given by
∑

i |∂W/∂φi|2, where φi is the scalar component of the superfields to

be considered. The new part of the scalar potential then reads

Vnew = |YνL̃Hu + µNSS̃|2 + |µNSÑ
c + λX S̃|2 + | − YeHdẼ

c + YνHuÑ
c|2

+

∣∣∣∣12λ S̃2 + κX2

∣∣∣∣2 +M2
ÑcÑ

c†Ñ c +M2
S̃
S̃†S̃ +M2

XX
†X +

(
bNSÑ

cS̃ + H.c.
)

+

(
AνL̃HuÑ

c +
1

2
AλXS̃

2 +
1

3
AκX

3 + H.c.

)
. (2.8)

This is in general a very complicated potential since we have to consider three generations

of L̃ and Ẽc, two generations of Ñ c, two generations of S̃, and one generation of X. In

– 5 –
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addition, this potential mixes with the conventional MSSM potential. Before we study this

in more detail we will restrict ourselves to the case of one generation of slepton doublets,

right-handed sneutrinos and scalar singlets each. We also assume that all couplings and

mass parameters are real which allows us to understand some essential features and the

rest is left to a future detailed numerical study of the model.

Since we do not want to introduce any additional source of electroweak symmetry

breaking we set 〈L̃〉 = 0 and 〈Ẽc〉 = 0. Keep in mind that choosing the appropriate

parameters this is always possible, since there is a D-term quartic in L̃ and a D-term

quartic in Ẽc which dominates the potential for large field values and the other parameters

can be adjusted to allow only the trivial vacuum.

We define the vev of the relevant scalar fields as 〈H0
u〉 = vu, 〈H0

d〉 = vd, 〈Ñ c〉 = vN ,

〈S̃〉 = vS , and 〈X〉 = vX . The scalar potential is

Vscalar ⊃ (M2
Hu

+ µ2
H)v2

u + (M2
Hd

+ µ2
H)v2

d − 2bHvuvd +
1

8
(g2 + g′2)(v2

u − v2
d)

2

+ (µNSvS)2 + (µNSvN + λ vS vX)2 + (YνvuvN )2 +

(
1

2
λ v2

S + κ v2
X

)2

+M2
Ñcv

2
N +M2

S̃
v2
S +M2

Xv
2
X + 2

(
bNSvNvS +

1

2
AλvXv

2
S +

1

3
Aκv

3
X

)
= m2

Hu
v2
u + Y 2

ν v
2
Nv

2
u +m2

Hd
v2
d − 2bHvuvd +

1

8
(g2 + g′2)(v2

u − v2
d)

2

+m2
Sv

2
S +m2

Nv
2
N +M2

Xv
2
X + vNvS (2bNS + 2λµNS vX) +AλvXv

2
S

+
2

3
Aκv

3
X +

1

4
λ2 v4

S + κ2 v4
X + (λ2 + λκ) v2

Sv
2
X , (2.9)

where we have set m2
Hu

= M2
Hu

+ µ2
H , m2

Hd
= M2

Hd
+ µ2

H , m2
S = M2

S̃
+ µ2

NS and m2
N =

M2
Ñc + µ2

NS. The conventional MSSM Higgs part was taken from [37].

Now we are looking at the first derivatives to look for extrema of the potential

∂Vscalar

∂vu
= 2

(
m2
Hu

+ Y 2
ν v

2
N

)
vu − 2bHvd +

1

2
(g2 + g′2)(v3

u − vuv2
d) = 0 , (2.10)

∂Vscalar

∂vd
= 2m2

Hd
vd − 2bHvu +

1

2
(g2 + g′2)(v3

d − v2
uvd) = 0 , (2.11)

∂Vscalar

∂vS
= 2m2

SvS + vN (2 bNS + 2λµNS vX) + 2AλvXvS + λ2v3
S + 2(λ2 + λκ)vSv

2
X = 0 ,

(2.12)

∂Vscalar

∂vN
= 2(m2

N + Y 2
ν v

2
u)vN + (2 bNS + 2λµNS vX) vS = 0 , (2.13)

∂Vscalar

∂vX
= 2M2

XvX + 2λµNSvNvS +Aλv
2
S + 2Aκv

2
X + 4κ2v3

X + 2
(
λ2 + λκ

)
v2
SvX = 0 .

(2.14)

Here, we would like to note several features of these tadpole conditions in eqs. (2.10)–(2.14).

Once we switch off the vevs of the additional fields, i.e. vN = vS = vX = 0, these tadpole

conditions go back to the MSSM ones.

– 6 –
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The only viable solution from a phenomenological point of view of these tadpole con-

ditions is vN = vS = 0 and vX 6= 0. In particular we need vX 6= 0 to generate neutrino

masses. Its solution is

vX = − Aκ
4κ2

±

√
A2
κ − 8κ2M2

X

4κ2
. (2.15)

This will be important later on and tells us that in our setup the neutrino mass scale

is related to the scale of SUSY breaking which is different from many ISS models where

the right-handed neutrino masses are forbidden and the smallness of the fermionic singlet

masses are put in by hand due to the approximate lepton number conservation. Therefore,

our setup is minimal and we can derive all the masses without any willful assumption.

In principle one can now also discuss the second derivatives and study the conditions

for the potential to have a minimum but we do not find any simple, important insights

from there. In particular, the case above is a simplified version of the model under study

and the expressions get very lengthy for a more realistic case. For the later discussion we

just keep in mind that X gets an electroweak scale (= SUSY breaking scale) vev but S̃

and Ñ c do not receive a vev.

3 Phenomenology

In this section, we discuss some phenomenological aspects of our model. Like in any super-

symmetric model there is a huge amount of phenomenological aspects which could be dis-

cussed. In this work, we focus only on the features immediately related to neutrino masses

and mixing. That is the non-unitarity of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix, neutrinoless double beta decay and charged-lepton flavor violations (cLFV). Other

aspects will be discussed in future publications.

3.1 Leptonic masses and mixing

We begin with the relevant Yukawa couplings and mass terms relevant to the leptonic

sector in the Lagrangian

−Lν = −(Ye)ijLiHdE
c
j + (Yν)iαLiN

c
αHu + (µNS)αβN

c
αSβ +

1

2
λαβSαSβX + H.c., (3.1)

where i, j = 1, 2, 3 and α, β = 1, 2. We are working in a basis where the charged-lepton

Yukawa couplings are diagonal and

ml = yl v cosβ , (3.2)

where l = e, µ, τ , v = 174 GeV and v cosβ = 〈H0
d〉.

Since X receives a vev we define the mass matrix

MS = λ vX . (3.3)

Note that MS is symmetric since it is a Majorana mass matrix.

– 7 –
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We also define a Dirac neutrino mass matrix for the neutrinos

MD = Yνv sinβ , (3.4)

where v sinβ = 〈H0
u〉. Furthermore, the mixing term between N c and S is µNS. Using

these definitions it is easy to write down the full neutrino mass matrix

Mν =


0 MD 0

MT
D 0 µNS

0 µTNS MS

 (3.5)

in the basis (ν, N c, S)T . One will immediately recognise that this is the pattern of a double

or an inverse seesaw mechanism [13]. The double seesaw mechanism requires MS � µNS

whereas the inverse seesaw mechanism requires MS � µNS. The latter seems to be a

more natural choice here since MS is related to a potentially small Yukawa coupling and a

symmetry breaking.1

There is one important thing we would like to point out here. In our model we have

basically only one mass scale which is the SUSY breaking scale (assuming that the µ-

parameters are of the same order). This has to be seen in contrast to the conventional

seesaw models where there is another superheavy seesaw scale besides the electroweak

scale. Hence, in our model the question what triggers these huge gap between the two

scales simply does not occur.

The original definition of the inverse seesaw mechanism implies MS � MD � µNS.

Here we generalize this definition to realize three different types of the inverse seesaw

mechanisms according to the assumed hierarchies in the masses

(i) ISS type I: MS �MD � µNS,

(ii) ISS type II: MS ∼MD � µNS,

(iii) ISS type III: MD �MS � µNS.

The different cases are in the end assumptions about the size of the involved Yukawa

couplings. Keep in mind that the electroweak and Z6 symmetry breakings are related to

soft SUSY breaking parameters and it is plausible to assume that the vevs are similar in

size. The sizes of the Yukawa couplings are here not as well motivated and in the following

we discuss the three cases mentioned above. Note that these are simplified assumptions

though. In reality, it could well be that one generation looks more like ISS type I while

another generation behaves like type III.

One big advantage of this simplified assumption is that we can do a proper expansion

of the neutrino mass and mixing in terms of some expansion parameters, which we discuss

soon for the three cases mentioned above. Without loss of generality we also choose a basis

where µNS is diagonal, which implies in particular that µTNS = µNS from now on unless

stated otherwise.

1From that point of view an inverse seesaw mechanism is technically natural a la ’t-Hooft [38].
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Before we go through the details of the different types we would like to anticipate one

common result: in all three cases, the leading order expression for the light neutrino mass

matrix is the same and given by

mν = MD µ
−1
NSMS µ

−1
NSM

T
D , (3.6)

which is nothing else than the ordinary inverse seesaw formula and the other heavier mass

eigenstates have masses of the order of µNS ∼TeV with small corrections. From the above

formula it is also obvious that the inverse seesaw mechanism is in our model a direct

consequence of the Z6 breaking (MS ∼ vX).

The above formula can be rewritten

mν = Yν µ
−1
NS λµ

−1
NS Y

T
ν v

2
uvX ∼ Yν λY T

ν O(TeV) , (3.7)

where we have used the working assumption that the dimensionful quantities vu, vX and

µNS are all of the same order. The smallness of neutrino masses is hence completely given

by the moderate smallness of the Yukawa couplings Yν and λ. Their size is related to the

size of the respective expansion parameter as we will discuss in the following for the three

different ISS cases.

3.1.1 ISS type I

In this case we assume that µNS is O(TeV), MD ∼ εI µNS and MS ∼ ε2I µNS where εI is

the expansion parameter. We will quote the size of εI at the end of this subsection after

deriving the expression for the light neutrino masses.

Note that we start with the product MνM
†
ν instead of Mν alone. We diagonalise

the matrix MνM
†
ν in two steps. First, we do a block rotation, W , to separate the light

from the heavy states sufficiently involving only small mixing angles. Then we are left

with another rotation V , which acts upon the light and the heavy states separately. In

particular the rotation for the light states is the PMNS matrix to a good approximation.

So our diagonalisation condition reads

UIMνM
†
νU
†
I = VIWIMνM

†
νW

†
I V
†

I = VI

(
mνm

†
ν O(ε7I )

O(ε7I ) MRM
†
R

)
V †I

=

(
UPMNS 0

0 RI

)(
mνm

†
ν O(ε7I )

O(ε7I ) MRM
†
R

)(
U †PMNS 0

0 R†I

)
,

(3.8)

where UPMNS and RI diagonalise only the upper 3×3 and the lower 4×4 blocks, respectively.

As we will see very soon mνm
†
ν is of O(ε8I ) and MRM

†
R is of O(1). Hence, the remaining

off-diagonal elements of O(ε7I ) are negligible.

We present an explicit expression for WI and its elements wij in appendix A. Here we

just present WI and UI in terms of the leading order in εI

WI ∼

 1 w12η
3
I w13ηI

w21η
3
I 1 w23η

8
I

w31ηI w32η
4
I 1

 and UI ∼

 UPMNS η3
IUPMNSw12 ηIUPMNSw13

RI

(
w21η

3
I

w31ηI

)
RI

 .

(3.9)
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We have introduced here ηI = 1 which labels the order of the matrix elements in εI. For

instance, we write w12η
3
I which states that the element w12 is O(ε3I ).

For the light and heavy mass matrices we only quote the leading and next-to-leading

order contributions

mνm
†
ν = η8

IMDµ
−1
NSMSµ

−1
NSM

T
DM

∗
D(µ∗NS)−1M∗S(µ∗NS)−1M †D

− 1

2
η10

I MD(µNS)−1
(
MS(µNS)−1MT

DM
∗
D(µ∗NS)−1M∗S(µ∗NS)−1M †DMD(µNS)−1

+ 2MS(µNS)−1MT
DM

∗
D(µ∗NS)−1(µNS)−1MT

DM
∗
D(µ∗NS)−1M∗S

+ (µ∗NS)−1M †DMD(µNS)−1MS(µNS)−1MT
DM

∗
D(µ∗NS)−1M∗S

)
(µ∗NS)−1M †D ,

(3.10)

MRM
†
R =

(
µNSµ

∗
NS + η2

IM
T
DM

∗
D η2

I µNSM
∗
S

η2
IMSµ

∗
NS µNSµ

∗
NS + 1

2η
2
I (µNSM

†
DMDµ

−1
NS + (µ∗NS)−1M †DMDµ

∗
NS)

)
,

(3.11)

where we have quoted for convenience the orders in εI explicitly using ηI.

In our minimal setup MD is a 3×2 matrix and therefore the lightest neutrino is strictly

massless due to rank considerations. Our neutrino mass scale is hence given by
√

∆m2
32 ≈

5 · 10−2 eV and εI ∼ (0.01 eV/TeV)1/4 ∼ 10−4. This implies that Yν ∼ 10−4 and λ ∼ 10−8.

3.1.2 ISS type II

In the ISS type II we have again that µNS is O(TeV) but now MD ∼ MS ∼ εII µNS. Our

diagonalisation reads now

UIIMνM
†
νU
†
II = VIIWIIMνM

†
νW

†
IIV
†

II = VII

(
mνm

†
ν O(ε5II)

O(ε5II) MRM
†
R

)
V †II

=

(
UPMNS 0

0 RII

)(
mνm

†
ν O(ε5II)

O(ε5II) MRM
†
R

)(
U †PMNS 0

0 R†II

)
.

(3.12)

The neutrino mass matrices are

mνm
†
ν = η6

IIMDµ
−1
NSMSµ

−1
NSM

T
DM

∗
D(µ∗NS)−1M∗S(µ∗NS)−1M †D

− 1

2
η8

IIMDµ
−1
NSMSµ

−1
NSM

T
DM

∗
D(µ∗NS)−1M∗S(µ∗NS)−1M †DMDµ

−1
NS(µ∗NS)−1M †D

− η8
IIMDµ

−1
NSMSµ

−1
NSM

T
DM

∗
D(µ∗NS)−1µ−1

NSM
T
DM

∗
D(µ∗NS)−1M∗S(µ∗NS)−1M †D

− 1

2
η8

IIMDµ
−1
NS(µ∗NS)−1M †DMDµ

−1
NSMSµ

−1
NSM

T
DM

∗
D(µ∗NS)−1M∗S(µ∗NS)−1M †D ,

(3.13)

(MRM
†
R)11 = µNSµ

∗
NS + η2

IIM
T
DM

∗
D (3.14)

(MRM
†
R)22 = µNSµ

∗
NS + η2

IIMSM
∗
S + 1/2η2

IIµNSM
†
DMDµ

−1
NS

+ 1/2η2
II(µ

∗
NS)−1M †DMDµ

∗
NS (3.15)

(MRM
†
R)12 = ηIIµNSM

∗
S (3.16)

(MRM
†
R)21 = ηIIMSµ

∗
NS . (3.17)
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For later reference we write down explicitly WII and UII up to the leading orders in εII

WII ∼

 1 w12η
2
II w13ηII

w21η
2
II 1 w23η

5
II

w31ηII w32η
3
II 1

 and UII ∼

 UPMNS η2
IIUPMNSw12 ηIIUPMNSw13

RII

(
w21η

2
II

w31ηII

)
RI

 .

(3.18)

We have introduced here ηII to label the order of the elements in εII for convenience similar

to ISS type I. The explicit expression for WII can be found in appendix A.

For the expansion parameter εII in ISS type II we find εII ∼ (0.01 eV/TeV)1/3 ∼ 10−5

which is one order smaller than in ISS type I. For the Yukawa couplings this implies

Yν ∼ λ ∼ 10−5.

3.1.3 ISS type III

In the ISS type III we have again that µNS is O(TeV) but now MS ∼ εIII µNS and MD ∼
ε2III µNS. Our diagonalisation reads here

UIIIMνM
†
νU
†
III = VIIIWIIIMνM

†
νW

†
IIIV

†
III = VIII

(
mνm

†
ν O(ε7III)

O(ε7III) MRM
†
R

)
V †III

=

(
UPMNS 0

0 RIII

)(
mνm

†
ν O(ε7III)

O(ε7III) MRM
†
R

)(
U †PMNS 0

0 R†III

)
,

(3.19)

The explicit expression for WIII can be found in appendix A. The neutrino mass matrices are

mνm
†
ν = η10

IIIMDµ
−1
NSMSµ

−1
NSM

T
DM

∗
D(µ∗NS)−1M∗S(µ∗NS)−1M †D +O(η14

III) , (3.20)

MRM
†
R =

(
µNSµ

∗
NS ηIIIµNSM

∗
S

ηIIIMSµ
∗
NS µNSµ

∗
NS + η2

IIIMSM
∗
S

)
. (3.21)

For later reference we write down explicitly the leading orders of WIII and UIII

WIII ∼


1 w12η

3
III w13η

2
III

w21η
3
III 1 O(η13

III)

w31η
2
III w32η

5
III 1

 and

UIII ∼


UPMNS η3

IIIUPMNSw12 η
2
IIIUPMNSw13

RIII

(
w21η

3
III

w31η
2
III

)
RIII

 . (3.22)

We have introduced here ηIII to label the order of the elements in εIII for convenience

similar to ISS type I. The explicit expression for WIII can be found in appendix A.

For the expansion parameter in ISS type III we find εIII ∼ (0.01 eV/TeV)1/5 ∼ 10−3.

ISS type III exhibits hence the mildest hierarchies and it has the smallest neutrino Yukawa

couplings, Yν ∼ 10−6, and the largest singlet Yukawa coupling, λ ∼ 10−3.
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It is also remarkable that in all three cases the leading order formulas for the light

and the heavy neutrino masses are the same but there are differences in the next-to-

leading order terms which might potentially help to disentangle the three cases in precision

measurements in the future.

3.1.4 Non-unitarity of the mixing matrix

At this point we would like to comment on the non-unitarity of the PMNS matrix obtained

in our formalism. Only the full 7×7 mixing matrix will be unitary while any given sub-

matrix of this matrix does not have to be unitary. Let us illustrate this first with the ISS

type I as an example

1 = UIU
†
I =

(
UPMNS 0

0 RI

)
WIW

†
I

(
U †PMNS 0

0 R†I

)

∼

 UPMNS η3
IUPMNSw12 ηIUPMNSw13

RI

(
w21η

3
I

w31ηI

)
RI



×

 UPMNS η3
IUPMNSw12 ηIUPMNSw13

RI

(
w21η

3
I

w31ηI

)
RI


†

. (3.23)

For simplicity, we consider now only the first 3×3 block up to O(ε2I ) which we are inter-

ested in

1 ≈ UPMNSU
†
PMNS + η2

IUPMNSw13w
†
13U

†
PMNS . (3.24)

Note that expanding in εI or ηI gives here the same results since they always appear together

at the same order. Of course, technically speaking we have to expand in εI since this is the

small parameter while ηI is only a bookkeeping parameter equal to one (and not small).

After multiplying this equation from left with U−1
PMNS, from right with (U †PMNS)−1 and

inverting the whole equation we find

U †PMNSUPMNS ≈ (1 + η2
Iw13w

†
13)−1 , (3.25)

so that the deviation from unitarity is of O(ε2I ) = O(10−8), which is much smaller than

current constraints, see, for example, [39], but might be relevant in the future.

For the other two ISS types we find even smaller deviations from unitarity of O(ε2II) =

O(10−10) and O(ε4III) = O(10−12), respectively.

3.1.5 The Yukawa couplings

Although at this point we do not need it explicitly we derive some expressions for the Dirac

neutrino Yukawa coupling constants in terms of the Casas-Ibarra parameterization [40].

The advantage is that after fixing unknown parameters we can immediately calculate the

Yukawa matrix such that neutrino oscillation data is correctly reproduced in our model.
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From the neutrino mass matrix eq. (3.6), the leading contribution to active neutrino masses

is obtained as

mi ≡ U †PMNSmν U
∗
PMNS = U †PMNSMDµ

−1
NSMS(µ−1

NS)TMT
DU
∗
PMNS , (3.26)

where mi is the diagonal mass matrix of light, active neutrino states, mi =

diag(m1 ,m2 ,m3). Note that we have transposed here the second µ−1
NS for later conve-

nience, which we have not before since we are working in a basis where µNS is diagonal.

Since MS is not diagonal in general, we first need to diagonalise this matrix by a

unitary matrix VS , Md
S ≡ VSMSV

T
S . We can use this in eq. (3.26) and find

√
mi
√
mi = U †PMNSMDµ

−1
NSV

†
S

√
Md
S

√
Md
S V
∗
S (µ−1

NS)TMT
DU
∗
PMNS , (3.27)

from where we can easily derive the leading order expression for the neutrino Yukawa

couplings

Yν =
i

vu
UPMNS

√
mi Ω

(√
Md
S

)−1

VS µNS , (3.28)

where Ω is an arbitrary, orthogonal, complex matrix parameterized by

ΩNH =

 0 0

cosω sinω

−ξ sinω ξ cosω

 , ΩIH =

 cosω sinω

−ξ sinω ξ cosω

0 0

 , (3.29)

with ω being a complex parameter and ξ = ±1 corresponding to a parity degree of free-

dom. Here NH denotes normal neutrino mass hierarchy and IH denotes inverted neutrino

mass hierarchy.

3.2 Neutrinoless double beta decay

Once massive Majorana neutrinos are implemented into the SM, global lepton number

symmetry is broken by two units and an interesting phenomenom called neutrinoless dou-

ble beta (0νββ) decay can occur, for a recent review see [41]. The rate of 0νββ decay

is proportional to the modulus square of the effective mass, meff , which is gradually con-

strained by several experiments. The most stringent bound so far, |meff | < (61-161) meV,

is from the search for 0νββ decay of 136Xe by the KamLAND-Zen collaboration [42].

When we introduce only three massive Majorana neutrinos, meff can be expressed as

mactive
eff =

3∑
i=1

(UPMNS)2
eimi , (3.30)

where mi are the mass eigenvalues of the neutrinos and m1 (m3) is exactly equal to zero in

our model for the NH (IH) case. When we take the active neutrino mass and the mixing

angles given in [43] we obtain that |meff | is O(1) and O(10) meV in the NH and IH cases,

respectively. In addition to this standard contribution coming from the active neutrinos,
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one can get some other contributions in extensions of the minimal model with three light

active neutrinos only.

Especially, as we have mentioned before, there is no R-parity in our model, and one

might think of some contributions from the exchange of SUSY particles. The SUSY con-

tributions of 0νββ decay are induced by the R-parity violating L̂Q̂D̂c interaction of the

first generation [44]. However, such a term is forbidden due to the Z6 symmetry imposed

in our model. It means that we do not have any SUSY contribution to 0νββ decay.

As a result, we can focus on the non-SUSY contributions of the model. The contribu-

tions can be parameterized as

mnew
eff =

7∑
i=4

(Uei)
2mifβ(mi) , (3.31)

where fβ(x) denotes the suppression factor of the nuclear matrix element when the mass

scale x is larger than a typical scale O(100 MeV). Since the typical mass scales for addi-

tional gauge singlet fermions is µNS as we discussed above, we simply replace x by x = µNS

and treat µNS like a number for simplicity throughout the rest of this section. In the

current analysis, we adopt the expression

fβ(µNS) =
〈p2〉

µ2
NS + 〈p2〉 , (3.32)

with the typical momentum in the matrix element 〈p2〉 ' (200 MeV)2 [45]. As the typical

mass scale of the heavy neutrinos is of O(TeV), their contribution is given by [36, 46]

mnew
eff '

7∑
i=4

(Uei)
2 〈p2〉
µ2

NS

mi

= 〈p2〉
[
−(Ue4)2 |m4|

µ2
NS

+ (Ue5)2 |m5|
µ2

NS

− (Ue6)2 |m6|
µ2

NS

+ (Ue7)2 |m7|
µ2

NS

]
. (3.33)

Due to the particular structure of the mass matrix there are always two mass eigenstates

with almost the same mass but opposite sign as suggested in the above formula. To be

more precise all the absolute values of the heavier masses are given at the leading order by

µNS. At this order the cancellation is exact since also (Ue4)2 = (Ue5)2 and (Ue6)2 = (Ue7)2.

Nevertheless, this cancellation is not exact to all orders and the first non-vanishing order

in ISS type I is obtained as

mnew
eff '

7∑
i=4

(Uei)
2 〈p2〉
µ2

NS

MS . ε4I ·
(
8× 107 meV

)
·
(

TeV

µNS

)
≈ 8×10−9 meV ·

(
TeV

µNS

)
, (3.34)

which is negligibly small compared to the contribution from the light active neutrinos. In

ISS type II and III the contributions are even smaller as can be easily checked.

3.3 Charged lepton flavor violation

In the SM, cLFV is not allowed on the perturbative level, but this will immediately change

once neutrino masses are introduced. In the following we discuss some estimates for cLFV

in our model.
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3.3.1 The non-SUSY part

Let us begin with the discussion on the non-SUSY part which corresponds to sending the

SUSY breaking scale to infinity and there are no contributions from the SUSY partners

to the process µ → eγ for instance. To estimate the contributions of these processes we

refer to an early calculation by Cheng and Li [47], see also [48], but adapt their notation

to our conventions. We quote for simplicity the formulas for µ→ eγ only. The expressions

can be straight-forwardly extended to other processes. Each neutrino-like mass eigenstate

contributes to the amplitude

Ai =
GF√

2

emµ

32π2
UieU

∗
iµ F (m2

i /M
2
W ) , (3.35)

where i = 1, . . . , 7 and

F (x) =
10− 43x+ 78x2 − 49x3 + 4x4 + 18x3 log x

3(x− 1)4
(3.36)

for x > 0 and x 6= 1. For x� 1 this simplifies to

F (x) =
10

3
− x+O(x2) (3.37)

and for x� 1

F (x) =
4

3
− 1

x

(
11 + 6 log

1

x

)
+O(x−2) . (3.38)

The physical branching ratio (BR) is ∝ |∑iAi|2. So we shall first identify the largest

amplitude Ai to get a feeling for the maximal BR we can expect. The neutrino-like mass

eigenstates are either much lighter or much heavier than the W -boson, x� 1 or 1/x� 1.

Therefore, the dominant contribution is coming from the constant term of F (x) and we

consider the two cases separately. Let us begin with the light states, i = 1, 2, 3. If there

would be only three light states which do not mix with any other states we would find∑3
i=1 UieU

∗
iµ = 0 due to the unitarity of the PMNS matrix. Therefore, the leading term

contributions proportional to the constant term in eq. (3.37) all cancel out. The next

leading term in eq. (3.37) would be x = m2
ν/M

2
W ∼ 10−20, which is negligible compared

with the incomplete unitarity that we discuss now. The unitarity is only complete when

summed over all i = 1− 7, see the discussion in section 3.1.4, and therefore

3∑
i=1

UieU
∗
iµ =


O(ε2I ) = O(10−8) for ISS type I,

O(ε2II) = O(10−10) for ISS type II,

O(ε4III) = O(10−12) for ISS type III.

(3.39)

Since U as a 7×7 matrix is unitary this non-vanishing has to be compensated by the heavy

states such that we find as well

7∑
i=4

UieU
∗
iµ =


O(ε2I ) = O(10−8) for ISS type I,

O(ε2II) = O(10−10) for ISS type II,

O(ε4III) = O(10−12) for ISS type III.

(3.40)
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li lj

χ−
k

ν̃l

γ

Figure 1. Feynman diagram for charged lepton flavor violation which changes compared to the

case of the MSSM extended by right-handed neutrinos.

The branching ratio is defined with respect to the width of the muon Γ(µ → eνν̄) =

m5
µG

2
F /192π3 such that we find

BR(µ→ eγ) =
48π2|∑iAi|2

m2
µG

2
F

=
3α

32π

∣∣∣∣∣∑
i

UieU
∗
iµ F (m2

i /M
2
W )

∣∣∣∣∣
2

=


O(10−20) for ISS type I,

O(10−24) for ISS type II,

O(10−28) for ISS type III,

(3.41)

which are all far below the current bound BR(µ → eγ) < 4.2 × 10−13 at 90% confidence

level of the MEG experiment [49]. The branching ratios for other cLFV processes are

similarly suppressed but their bounds are generally weaker.

3.3.2 The SUSY part

There are also contributions to cLFV from loops involving supersymmetric partners [50, 51].

While the pieces involving the charged sleptons do not change, there are major changes

for the contributions involving scalar partners of the neutrinos (of both chiralities) and the

singlets, cf. figure 1. Importantly, X receives a vev which induces a mass splitting for the

CP-even and CP-odd components of the sneutrinos and we define

ν̃L =
1√
2

(φL + i σL) , (3.42)

Ñ =
1√
2

(φR + i σR) , (3.43)

S̃ =
1√
2

(φS + i σS) . (3.44)

Note though that the experimental bounds on cLFV from the SUSY contributions can

always be satisfied by making the SUSY states heavy enough. And at this point we have

no constraint on the SUSY scale. In the future we plan to put our model into the SARAH
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package [52, 53] such that we can include additional constraints and give more quantitative

statements. Note that if there are sources of CP violation CP-even and CP-odd scalars

can mix with each other which we neglect here.

In fact, we used the SARAH code to derive the following expressions for the scalar mass

matrices. In the basis (φL, φN , φS) the mass matrix for the CP-even sneutrinos reads

m2
ν̃R =


mφLφL mT

φRφL
vu<

(
Y T
ν µ
∗
NS

)
mφLφR mφRφR vX<

(
µNSλ

∗
)

+ <
(
bNS

)
vu<

(
µTNSY

∗
ν

)
vX<

(
λµ†NS

)
+ <

(
bTNS

)
mφSφS

 , (3.45)

where

mφLφL = v2
u<
(
Y T
ν Y

∗
ν

)
+ 2<

(
M2
L̃

)
+

1

2
M2
Z cos(2β) , (3.46)

mφLφR = −vd<
(
Yνµ

∗
H

)
+ vu<

(
Aν

)
, (3.47)

mφRφR = <
(
M2
Ñc

)
+ <

(
µNSµ

†
NS

)
+ v2

u<
(
YνY

†
ν

)
, (3.48)

mφSφS = <
(
M2
S̃

)
+ <

(
µTNSµ

∗
NS

)
+ vX

(
<
(
Aλ

)
+ vX

(
<
(
λκ∗

)
+ <

(
λλ∗

)))
. (3.49)

This matrix is diagonalised by ZR:

ZRm2
ν̃RZ

R,† = d2
ν̃R , (3.50)

with φLφN
φS

 = ZR,†ν̃R. (3.51)

In the basis (σL, σN , σS) the mass matrix for the CP-odd sneutrinos reads

m2
νI =


mσLσL mT

σRσL
vu<

(
Y T
ν µ
∗
NS

)
mσLσR mσRσR −vX<

(
µNSλ

∗
)

+ <
(
bNS

)
vu<

(
µTNSY

∗
ν

)
−vX<

(
λµ†NS

)
+ <

(
bTNS

)
mσSσS

 , (3.52)

where

mσLσL = v2
u<
(
Y T
ν Y

∗
ν

)
+ <

(
M2
L̃

)
+

1

2
M2
Z cos(2β) , (3.53)

mσLσR = −vd<
(
Yνµ

∗
H

)
+ vu<

(
Aν

)
, (3.54)

mσRσR = <
(
M2
Ñc

)
+ <

(
µNSµ

†
NS

)
+ v2

u<
(
YνY

†
ν

)
, (3.55)

mσSσS = <
(
M2
S̃

)
+ <

(
µTNSµ

∗
NS

)
− vX

(
<
(
Aλ

)
+ vX

(
<
(
λκ∗

)
−<

(
λλ∗

)))
. (3.56)

This matrix is diagonalised by ZI :

ZIm2
ν̃IZ

I,† = d2
ν̃I , (3.57)
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with σLσN
σS

 = ZI,†ν̃I . (3.58)

Note that the difference between the two mass matrices is proportional to the vevs vN and

vS as expected.

To make the computation easier we follow a similar approach as described in [54].

Instead of treating CP-even and CP-odd scalars separately we define a larger set of sneu-

trino states

ν̃ =

(
ν̃R

ν̃I

)
, (3.59)

which has a block diagonal mass matrix

m2
ν̃ =

(
m2
ν̃R

0

0 m2
ν̃I

)
, (3.60)

which is diagonalised by Z ν̃ :

Z ν̃m2
ν̃Z

ν̃,† = d2
ν̃ , (3.61)

which is of course also block diagonal and unitary.

The vertices of the sneutrinos coupling to charginos and charged leptons, which are

the relevant vertices here, can be easily reconciled from the MSSM vertices extended by

right-handed neutrinos. Due to the normalisation of the fields, they get rescaled by a

factor of 1/
√

2 and the couplings to the CP-odd scalars receive an additional factor of i

for the incoming vertex and a factor of −i for the outgoing vertex, cf. figure 1. Therefore,

the contributions from the CP-even and CP-odd scalars can be added up. In the limit of

vanishing vX we obtain the correct result as if there were only seven complex sneutrinos.

At this point we will not go into any more details for the full computation. There are

excellent and detailed calculations for cLFV in supersymmetric inverse seesaw models in

the literature, e.g. [55]. Instead, we want to discuss a bit more the qualitative features of

the sneutrino mass matrices.

As we have discussed before in section 2.2 the vev vX is expected to be of the same

order as the soft SUSY breaking parameters. Furthermore, it is a generic assumption that

the soft trilinear couplings are proportional to the corresponding Yukawa couplings and

hence Aν is suppressed in our model. To zeroth order in ε that implies first of all that CP

even and CP odd sneutrinos have the same mass and

m2
ν̃R ≈ m2

ν̃I ≈

<(M2
L̃

) + 1
2M

2
Z cos(2β) 0 0

0 <(M2
Ñc + µNSµ

†
NS) <(bNS)

0 <(bTNS) <(M2
S̃

+ µ†NSµNS)

 . (3.62)

At this point we do not know how bNS relates to M2
Ñc + µNSµ

†
NS and M2

S̃c + µ†NSµNS so

that we do not know if the mixing in this sector is large or small. Since we are working
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in a basis where µNS is diagonal it is also reasonable to assume that bNS is diagonal. And

hence the leading order contributions to cLFV are expected to be induced by M2
L̃

and M2
Ñc

if the mixing between right-handed sneutrinos and scalar singlets is small. If this mixing

is large M2
S̃

could give sizeable cLFV in addition. It is also interesting to note that the

mixing between left-handed sneutrinos and the new singlets is expected to be rather small

due to a suppression by smallish Yukawa couplings.

This concludes our discussion for charged-lepton flavor violation in our model. We

have seen that the non-SUSY contributions are much smaller than current bounds and the

SUSY contributions can in principle be suppressed by pushing SUSY partners to the heavy

limit. With the constraints given in this work so far, the SUSY partners do not necessarily

have to be light. Nevertheless, this could change once we discuss potential dark matter

candidates, for instance, and some interesting non-trivial interplay might emerge.

4 Summary and conclusions

In this work, we have proposed a minimal supersymmetric inverse seesaw model with only

two generations of right-handed neutrinos N̂ c, two generations of singlet fields Ŝ, one

symmetry breaking singlet field X̂ and a Z6 symmetry compared to the MSSM. With the

Z6 charge assignments listed in table 1 we have successfully forbidden some unwanted terms

(e.g. L̂ĤuŜ, ĤuĤdN̂
c in the superpotential) and retained those (e.g. L̂ĤuN̂

c) relevant for

generating the neutrino mass. In our model we also have an intimate relation between the

scale of electroweak symmetry breaking (or SUSY breaking) and the mass scales in the

neutrino sector avoiding a common ad-hoc assumption in many models. This makes our

model very well motivated and attractive from a model building point of view.

We have studied three different types of our model according to the mass hierarchy

among MS , MD and µNS. In all three types, we find three light active neutrino states

with one neutrino being massless due to our minimality assumption. The mixing angles

are consistent with current oscillation data which can be easily understood from the re-

formulation of our leading order light neutrino mass matrix in terms of the Casas-Ibarra

parametrization as we have discussed. So we fulfill the minimal requirement of any neutrino

mass model.

Due to the fact that the neutrino mixing matrix is now enlarged the 3×3 matrix tested

in oscillations is expected to be non-unitary but our estimates for this effect is far below

current bounds. Furthermore, since in our model the light active neutrinos are Majorana

particles we predict neutrinoless double beta decay with an effective mass O(1) meV and

O(10) meV for the normal and inverted hierarchy neutrino masses, respectively. These

tiny numbers are experimentally challenging but on the other hand a confirmed positive

signal for non-unitarity in the mixing matrix or neutrinoless double beta decay in the near

future would immediately challenge our model in its minimal version.

Furthermore, we have shown qualitatively that charged lepton flavor violation with

both SUSY and non-SUSY contributions can easily be below the current experimental

bounds. The non-SUSY contributions are in fact far below current and future bounds

and the SUSY contributions are under control since up to this point the SUSY breaking

parameters can easily be in the few to several TeV region suppressing cLFV sufficiently.
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This might nevertheless change if we include further constraints. Our model has a rich

dark matter and collider phenomenology which is beyond the scope of the current work but

will be discussed in future publications in detail. Still we would like to use this opportunity

to make a few general comments.

1. Although we did not impose R-parity in our model, the conventional R-parity vio-

lating operators, such as LQDc, LLEc, U cDcDc, and LHu are not allowed by the Z6

symmetry.

2. We have shown that the sneutrinos from the superfields L̂, N̂ c, and Ŝ can all be

mixed. In such a setup the lightest sneutrino could be a dark matter candidate.

In the conventional MSSM, if the LSP is a left-handed sneutrino, it has been ruled

out already by current direct detection experiments because of its large elastic cross-

section with nuclei via Z-boson exchange. However, in our current model the left-

handed sneutrinos can mix with the right-handed sneutrinos and extra singlets. In

such a case, the elastic scattering cross section can be suppressed or diluted to satisfy

direct detection constraints.

3. The additional fermionic states which we have introduced are all expected to have

masses around a TeV. This is around the corner from the collider physics point of

view and the model can be tested in current and upcoming experiments. This is

indeed the main motivation for many low scale seesaw models while here it is just

another appealing feature.

4. The presence of a number of sneutrinos coming from the mixing of ν̃L, Ñ c, and S̃

would distinguish the current model from the conventional MSSM. The sneutrinos

can be directly produced via Z-boson exchange, or indirectly in some subsequent

decays of heavier SUSY particles. If the mixing angle among the inert sneutrinos

and the left-handed sneutrino is sufficiently small, the decay of the heavier sneutrinos

may be prolonged such that it travels a distance without any tracks but suddenly

decays with a vertex at some distance from the primary interaction point. Such an

event may be detectable using the MATHUSLA detector [56, 57].

5. Any attempt towards a complete model of particle physics should also provide a

dynamical mechanism for baryogenesis. The seesaw mechanism offers with Leptoge-

nesis [58] an extremely popular solution for this. If this baryogenesis mechanism or

another mechanism works in our model is left for another future study.

In summary our model provides a novel and rather minimal approach to supersym-

metric inverse seesaw models which comes in three variants with distinct phenomenologies

already in the lepton sector alone. Similar to any low scale seesaw model and in particular

supersymmetric models our model provides an incredibly rich phenomenology from which

we have just touched the tip of the iceberg. In fact, it can be tested at the energy, the

intensity and the precision frontier as we have started to discuss here but will be discussed

in greater detail in future work.
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A Explicit expressions for mixing of light and heavy neutrinos

Since the explicit expressions for the mixing between the light and the heavy neutrinos, W ,

are rather long and not insightful we present them here in the appendix. Our expressions

are unitary up to order ε2 which is sufficient for our purposes. We also use η to label the

order in ε explicitly throughout the appendix.

To make the expressions shorter we define the abbreviations

A = MDµ
−1
NS, B = MSµ

−1
NS, D = MT

DM
∗
D, E = (µ∗NS)−1µ−1

NS . (A.1)

For the ISS type I the mixing matrix elements are

(WI)11 = 1− 1/2 η2
IAA

† + η4
I (AA†)2 − 1/4 η6

I (AA†)3 + 1/2 η8
IABB

†A†AA†

+ η8
IABEDB†A† + 1/4 η8

I (AA†)4 − 1/4 η10
I AA

†ABB†A†AA†

− 1/2 η10
I AA

†ABEDB†A† − 1/8 η10
I (AA†)5 , (A.2)

(WI)22 = 1 + 1/2 η8
I B
†A†AA†AB + η8

I B
†A†ABDE , (A.3)

(WI)33 = 1− 1/2 η2
I A
†A+ η4

I (A†A)2 − 1/4 η6
I (A†A)3 + 1/4 η8

I (A†A)4

− 1/8 η10
I (A†A)5 , (A.4)

(WI)12 = η3
I AB − η5

I AA
†AB − η5

I ABDE + 1/4 η7
I (AA†)2AB

+ 1/2η7
I AA

†ABDE − 1/2 η9
I (AA†)3AB − η9

I (AA†)2ABDE , (A.5)

(WI)13 = − ηIA+ η3
I AA

†A− 3/4 η5
I (AA†)2A+ 1/8 η7

I (AA†)3A

− 1/4 η9
I (AA†)4A , (A.6)

(WI)23 = 1/4 η8
I B
† (A†A)3 , (A.7)

(WI)21 = − η3
I B
†A† + 1/2 η5

I B
†A†AA† + η5

I EDB†A† , (A.8)

(WI)31 = ηIA
† − η3

I A
†AA† + 3/4 η5

I (A†A)2A† − 1/8 η7
I (A†A)3A†

+ 1/2 η9
I A
†ABB†A†AA† + η9

I A
†ABEDB†A† + 1/4 η9

I (A†A)4A† , (A.9)

(WI)32 = η4
I A
†AB − 1/2 η6

I (A†A)2B − η6
I A
†ABDE + 1/2 η8

I (A†A)3B

+ η8
I (A†A)2BDE − 1/4 η10

I (A†A)4B − 1/2 η10
I (A†A)3BDE , (A.10)

where we have quoted for convenience the orders in ηI explicitly.
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For the ISS type II the mixing matrix elements are

(WII)11 = 1− 1/2 η2
IIAA

† + η4
II (AA†)2 + 1/2 η6

IIABB
†A†AA† + η6

IIABEDB†A†

− 1/4 η8
IIAA

†ABB†A†AA† − 1/2 η8
IIAA

†ABEDB†A† , (A.11)

(WII)22 = 1 + 1/2 η6
IIB
†A†AA†AB + η6

IIB
†A†ABDE , (A.12)

(WII)33 = 1− 1/2 η2
IIA
†A+ η4

IIA
†AA†A , (A.13)

(WII)12 = η2
IIAB − η4

IIAA
†AB − η4

IIABDE + 1/4 η6
II (AA†)2AB

+ 1/2 η6
IIAA

†ABDE − 1/2 η8
II (AA†)3AB − η8

II (AA†)2ABDE , (A.14)

(WII)13 = − ηIIA+ η3
IIAA

†A− 1/2 η5
II (AA†)2A , (A.15)

(WII)23 = − η5
IIB

†(A†A)2 , (A.16)

(WII)21 = − η2
IIB

†A† + 1/2 η4
IIB

†A†AA† + η4
IIEDB†A† , (A.17)

(WII)31 = ηIIA
† − η3

IIA
†AA† + 1/2 η5

II (A†A)2A† + 1/2 η7
IIA
†ABB†A†AA†

+ η7
IIA
†ABEDB†A† , (A.18)

(WII)32 = η3
IIA
†AB − 1/2 η5

II(A
†A)2B − η5

IIA
†ABDE + 1/2 η7

II (A†A)3B

+ η7
II (A†A)2BDE − 1/4 η9

II (A†A)4B − 1/2 η9
II (A†A)3BDE , (A.19)

where we have quoted for convenience the orders in ηII explicitly.

For the ISS type III the mixing matrix elements are

(WIII)11 = 1 , (A.20)

(WIII)22 = 1 , (A.21)

(WIII)33 = 1 , (A.22)

(WIII)12 = η3
IIIAB , (A.23)

(WIII)13 = −η2
IIIA , (A.24)

(WIII)23 = O(η13
III) , (A.25)

(WIII)21 = −η3
IIIB

†A† , (A.26)

(WIII)31 = −η2
IIIA

† , (A.27)

(WIII)32 = η5
IIIA

†AB , (A.28)

where we have quoted for convenience the orders in ηIII explicitly.
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