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Sophisticated high-energy and large momentum-transfer scattering experiments combined with ab-initio 
calculations can reveal the short-distance behavior of nucleon pairs in nuclei. On an opposite energy and 
resolution scale, elastic electron scattering experiments are used to extract the charge density and charge 
radius of different nuclei. We show that even though the charge density has no obvious connection 
with nuclear short-range correlations, it can be used to extract properties of such correlations. This is 
accomplished by using the nuclear contact formalism to derive a relation between the charge density and 
the proton–proton nuclear contacts that describe the probability of two protons being at close proximity. 
With this relation, the values of the proton–proton contacts are extracted for various nuclei using only the 
nuclear charge density and a solution of the two-nucleon Schroedinger equation as inputs. For symmetric 
nuclei, the proton–neutron contacts can also be extracted from the charge density. Good agreement is 
obtained with previous extractions of the nuclear contacts. These results imply that one can predict (with 
reasonably good accuracy) the results of high-energy and large momentum-transfer electron-scattering 
experiments and ab-initio calculations of high momentum tails using only experimental data of elastic 
scattering experiments.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Many efforts have been devoted in the last couple of decades 
to the study of nuclear short-range correlations (SRCs) and the 
short-range properties of the nuclear force. Sophisticated high-
energy and large momentum-transfer electron and proton scat-
tering experiments [1–11], together with ab-initio calculations 
[12–20], were performed. This led to a good understanding of the 
main properties of nuclear SRCs. For example, the dominance of 
neutron–proton pairs due to the significant nuclear tensor force 
was identified. Calculations of momentum distributions of differ-
ent nuclei revealed high momentum tails similar in shape to the
deuteron high momentum tail, showing the universal aspects of 
SRCs. Nevertheless, ab-initio numerical calculations are limited to 
light and medium-size nuclei, and only recently SRCs calculations 
for 40Ca became accessible. In addition, experimental data are only 
available for selected nuclei. See also recent reviews [21–23].

Significant progress in the study of SRCs was made in the field 
of atomic physics when the contact theory was presented [24]. 
A single parameter, called the contact, describing the probability 
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to find two atoms close to each other, was shown to be related to 
many other properties of the atomic system [25]. Some of these 
relations are intuitive, such as a relation between the contact and 
the high momentum tail of the momentum distribution. Others, 
however, are less intuitive, such as relationships between the con-
tact parameter and thermodynamic properties of the system, for 
instance, the energy of the system, its pressure, and its entropy. 
See also Ref. [26] for improvements in a few of these relations.

The contact formalism was recently generalized to nuclear sys-
tems [27–30]. The nuclear contacts were defined, and were shown 
to be related to many different nuclear quantities, such as the 
two-nucleon density [30], high momentum tails [28,30,31], the 
Coulomb sum-rule [32], the Levinger constant [27,33], and electron 
scattering experiments [34]. However, the corresponding connec-
tion between the nuclear contacts and the low-energy or thermo-
dynamic nuclear properties was not discovered.

Here, we use the nuclear contact formalism to show that nu-
clear SRCs and the nuclear charge-density, closely related to the 
one-body proton density, do indeed have direct connection. This is 
surprising because the charge density of a given nucleus is mea-
sured in elastic scattering experiments that are much simpler than 
the high-energy experiments devoted to the study of SRCs. The 
charge density and charge radius of nuclei can be explained using 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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mean field theories, i.e. without an explicit need for nuclear SRCs. 
Experimental results of the charge density are available for many 
nuclei, see e.g. Ref. [35]. Therefore, it might seem that the charge 
density and SRCs are two unrelated aspects of nuclear systems. To 
connect these two entities we use both the charge density and the 
contact formalism to build a simple model for the proton–proton 
pair density ρpp(r), i.e. for the probability of finding two protons 
separated by a distance r. Assuming only the continuity of the 
proton–proton pair density, we obtain a direct relation between 
the nuclear contacts and the charge density. Since the charge den-
sity of many nuclei is known experimentally, this new relation can 
be used to understand the properties of nuclear SRCs of nuclei that 
are not reachable by ab-initio calculations or not yet studied exper-
imentally in SRC experiments.

The two main building blocks of the nuclear contact formal-
ism are the contacts and the universal functions ϕα

i j (r), with the 
index i j representing the three possible pairs of nucleons: proton–
proton (pp), proton–neutron (pn) and neutron–neutron (nn) and 
α the quantum numbers of the pair. The universal functions de-
scribe the motion of a pair of nucleons being close to each other 
inside the nucleus, interacting mostly with each other, and not 
with the rest of the nucleons in the system. They can be sim-
ply calculated by solving the two-nucleon Schroedinger equation 
for zero-energy with a given nucleon–nucleon potential. The two 
most significant channels are [30]: the spin-zero s-wave channel, 
occupied by all three kinds of pairs (pp, pn and nn) and denoted 
by α = 0, and the spin-one deuteron channel (s-wave and d-wave 
coupled), occupied only by pn pairs and denoted by α = 1. Here, 
the nucleon-nucleon AV18 potential [36] is used for the calcula-
tion of the universal functions. ϕα

i j (r) are normalized such that ∫ ∞
kF

|ϕ̃α
i j (k)|2dk/(2π)3 = 1, where ϕ̃α

i j (k) is the Fourier transform 
of ϕα

i j (r), and kF = 1.3 fm−1.

The nuclear contacts are generally matrices denoted by Cαβ

i j , 
but we will focus here only on the diagonal elements Cα

i j , which 
are proportional to the probability of finding an i j pair in the chan-
nel α close to each other in the nucleus. The values of the contacts 
are nucleus-dependent, while the two-body functions ϕα

i j (r) are 
identical for all nuclei. As mentioned above, several relations con-
necting these nuclear contacts and different nuclear quantities and 
reactions have been derived. Thus, given the values of the contacts, 
different experimental and numerical results can be described. Re-
cently, the values of the contacts for several A ≤ 40 nuclei have 
been extracted [30], from available Variational Monte Carlo (VMC) 
calculations [37,38]. Obtaining the values of the contacts is still 
a challenge for heavier nuclei. We note that the description of 
SRCs using the contacts and the universal functions is based on 
the asymptotic factorization of the total wave function [28]. The 
wave function of the VMC method is built as a product of Jastrow 
correlation functions [37], resembling the assumed factorization. 
Therefore, the asymptotic factorization should be further inves-
tigated using other ab-initio methods, but this goes beyond the 
scope of this work.

We now connect nuclear SRCs with the charge density using a 
simple description of the two-body pp pair-density. The pp pair-
density ρpp(r) describes the probability to find a pp pair at a 
relative distance r in a given nucleus, and is normalized to the 
total number of pp pairs, i.e. 

∫
dr ρpp(r) = Z(Z − 1)/2. For small 

distances, this density is clearly related to short-range correlations, 
and can be expressed using the nuclear contacts [30]

ρpp(r) = C0
pp|ϕ0

pp(r)|2. (1)

Previous work [30] found that this relation holds for r < r0 ≈ 0.9
fm for nuclei with A ≤ 40.
For large separation distances, we expect that no correlations 
will be relevant and thus the two-body pp pair-density can be 
written using the one-body point-proton density ρp(r) [39]:

ρpp(r) ∝ ρU C
pp (r) ≡

∫
dR ρp(R + r/2)ρp(R − r/2), (2)

integrating over all possible locations of the center-of-mass R of 
the pp pair. This asymptotic behavior does not account for the 
fermionic nature of the pp pair. To understand its effect, we ex-
amine the Fermi-gas model for infinite nuclear matter having a 
constant proton density ρp . In this model, the probability to find 
two protons at positions r1 and r2 is given by

ρpp(r1, r2) = 1

2
ρ2

p

⎡
⎣1 − 1

2

(
3 j1(k

p
F r)

kp
F r

)2
⎤
⎦ , (3)

where j1 is a spherical Bessel function, r = |r1 − r2| and kp
F is the 

proton Fermi momentum. Based on this expression, and integrat-
ing over the center of mass of the pair R = r1 + r2, we expect that 
the pp density of finite nuclei at large distances will obey

ρpp(r) −−−→
r→∞ ρ F

pp(r) ≡ NρU C
pp (r)

⎡
⎣1 − 1

2

(
3 j1(k

p
F r)

kp
F r

)2
⎤
⎦ . (4)

Here, N is a normalization factor, fixing the normalization of 
ρ F

pp(r) to the number of pp pairs. This provides an asymptotic ex-
pression for the pp density that can be calculated directly from the 
one-body point-proton density. The charge density, measured in 
elastic scattering experiments, is slightly different than the point-
proton density, due to the structure of protons and neutrons and 
their internal charge distribution. Nevertheless, for medium-size 
and heavy nuclei this difference becomes small, and the experi-
mental charge distribution can be used in Eq. (2) to a good ap-
proximation. In addition, since Eq. (4) is based on the nuclear 
matter expression, we might not expect it to hold for the light 
nuclei. Shell model calculations for 16O using harmonic oscillator 
orbitals (with 

√
h̄/mω = 1.79 fm, following Ref. [40]) agree with 

the plane-wave nuclear matter correction (used in Eqs. (3) and 
(4)). For kp

F = 0.9 fm−1 less than 2% difference is seen for r < 4
fm, and for a more realistic value of kp

F = 1.05 fm−1 an agreement 
with 10% accuracy is obtained for the same range.

If SRCs were not significant in nuclear systems, then ρ F
pp(r)

might have been a good approximation for the exact ρpp(r) for 
all r. Thus, we can expect that the asymptotic expression of Eq. (4)
will hold for r � r0, because SRCs are significant for r � r0.

We now have expressions for both small-distance and large-
distance asymptotics of ρpp(r) that can be compared to results of 
available VMC numerical calculations [37,38], calculated using the 
AV18 [36] and UX [41] potentials. The results for 40Ca are pre-
sented in Fig. 1. First observe that the uncorrelated ρU C

pp , calculated 
using either the VMC point-proton density or experimental charge 
distribution [35], coincides with the VMC pp density for large dis-
tances (r � 3 fm). Then note that the uncorrelated pp density 
including the Fermi statistic ρ F

pp describes (as expected) the full 
ρpp density for r � r0 reasonably well. For smaller separations the 
contact relation, Eq. (1), using the AV18 potential, is seen to agree 
with the VMC calculations for r � r0. Most importantly, one can 
see that around r0 ≈ 0.9 fm both the contact and the ρ F

pp expres-
sions seem to describe the value of the full ρpp reasonably well.

The Fermi momentum is calculated via its relation to the pro-
ton density. For infinite nuclear matter kp

F = (3π2ρp)1/3. For finite 
nuclei, ρp depends on the location. In the local density approxima-
tion, the Fermi momentum at the pair’s center of mass R is given 
by
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Fig. 1. The pp density for 40Ca. The red line shows the full pp density ρpp of the 
VMC calculations [38]. The blue lines show the calculated ρU C

pp , based on Eq. (2), 
using the one-body point-proton density of the VMC calculations (solid) or the ex-
perimental charge density (dashed), using the three-parameter Fermi model [35]. 
The green lines show the corresponding uncorrelated pp density with the Fermi-
statistic correction, using Eq. (4). The black line shows the contact expression for 
the pp density, using the AV18 potential and the contact value extracted in Ref. [30]
by fitting to the VMC data in coordinate space. The blue, green and red lines are all 
normalized to the number of pp pairs. The vertical magenta line shows the location 
of r = 0.9 fm.

kp
F (R) = (3π2ρp(R))1/3. (5)

We can use this expression of the proton Fermi momentum kp
F (R)

for evaluating Eq. (3), or instead we can use the weighted average 
value

kp
F =

∫
dr kp

F (r)ρp(r)∫
dr ρp(r)

. (6)

In the calculations presented in Fig. 1, we have used this last re-
lation resulting in a numerical value of kp

F ≈ 1.05 fm−1 for 40Ca. 
Another possible choice for kp

F is to use the value of ρp(r) at the 
center of the nucleus, i.e. r = 0,

kp
F = (3π2ρp(0))1/3. (7)

In any case, we only need to know the proton density ρp(r) to ob-
tain kp

F . We will use below Eq. (6) for the calculation of the Fermi 
momentum. We note that the following results are not sensitive to 
the exact value of kp

F , and are almost unchanged if Eq. (7) is used 
instead of Eq. (6).

We now use these results to extract the value of the pp con-
tact for any nucleus using only its charge distribution. Since ρpp

should be well described by ρ F
pp for r > r0 ≈ 0.9 fm and by the 

contact expression for r < r0, we can extract the value of C0
pp by 

only requiring the continuity of ρpp at r = r0. This gives the rela-
tion

C0
pp = ρ F

pp(r0)

|ϕ0
pp(r0)|2

, (8)

which is our new relation that connects the charge distribution 
and the pp contact. We recall that for calculating ρ F

pp we only need 
to know the point-proton density ρp(r) (or the charge distribu-
tion), and that ϕ0

pp is simply calculated by solving the two-nucleon 
Schroedinger equation. The ratio of pp contacts of two nuclei, X1

and X2, is then given by

C0
pp(X1)

C0 (X2)
= ρ F ,X1

pp (r0)

ρ
F ,X2(r )

, (9)

pp pp 0
Fig. 2. The pp contact values as a function of A, extracted based on Eq. (8), using 
the VMC proton density and the experimental charge density (blue triangles and red 
squares, correspondingly). Previously extracted values of the pp contacts are shown 
as black points (taken from table I of Ref. [30], without the A/2 normalization). The 
black line is a fit of the form C0

pp = b Z 2/A, with b = 0.02. See the text for more 
details.

where ρ F ,X
pp is the uncorrelated pp density of nucleus X, with 

Fermi corrections. The universal two-body functions cancel in tak-
ing the ratio so that this contact ratio is independent of the model 
of the nucleon-nucleon potential.

The calculations shown in Fig. 1 imply that this new relation 
can be used to extract the value of the 40Ca pp contact C0

pp us-
ing its charge distribution. Inspecting the figure we see that the 
VMC results are well reproduced by the contact expression for 
r ≤ 1 fm and by ρ F

pp for r ≥ 2 fm. In between we see a discrep-
ancy of about 10–20% which we attribute to the contribution of 
� 
= 0 channels neglected here and to three-body correlations. The 
use of the infinite nuclear-matter approximation might also have 
some contribution to this difference. We thus expect our error to 
be of the order of 10%. To get a more concrete estimate for the 
uncertainties in C0

pp we vary r0 between 0.8 fm to 1 fm.
We next use Eq. (8) to extract the pp contacts of different nu-

clei. For nuclei up to A = 40, we can use the VMC calculations for 
the point-proton density, or the experimental data [35]. For heavier 
nuclei, only experimental data is available. Using this new method, 
the extracted pp contacts for various nuclei, ranging from 4He to 
208Pb, are presented in Fig. 2, as a function of the number of nu-
cleons A, in log-log scale. One can see that the flexibility of using 
either the VMC point-proton densities or experimental charge den-
sities has little impact on the extracted values of the contacts. 
Contact values of A ≤ 40 nuclei that were previously extracted 
by fitting directly the short-distance part of the VMC two-body 
densities in coordinate space [30] are also presented in the fig-
ure. Overall good agreement is observed between these values and 
the values extracted here using the charge density. This strength-
ens the validity of the relation between the nuclear contacts and 
the charge density. We note that some deviations are seen for the 
light nuclei (A ≤ 9). This is expected due to the use of the nuclear 
matter expression in deriving Eq. (4). Thus, our model for the pp
pair-density is best suited for application to medium to heavy nu-
clei. Notice that both 40Ca and 48Ca are presented in the figure and 
have similar pp contact values, given the uncertainties. The black 
line in the figure represents a fit of the form C0

pp(A) = b Z 2/A, 
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where b is a fitting parameter, and the value of Z was estimated 
using the relation

Z ≈ A

2

[
1 − ac A2/3

4aA

]
≈ A

2

[
1 − 0.0075A2/3

]
, (10)

obtained from the semi-empirical mass formula looking for the 
value of Z, for a given A, that minimize the mass. ac ≈ 0.711 MeV 
and aA ≈ 23.7 MeV are the coefficients of the Coulomb and asym-
metry terms in the mass formula. The fitted value of b is 0.02. The 
black line seems to describe the data well, especially for medium 
size and heavy nuclei. This indicates that the pp contacts, i.e. the 
probability of finding a correlated pp pair in the nucleus, scale like 
Z 2/A. Similar scaling, C0

pp ∝ Z , was postulated in [28] and can also 
describe these results reasonably well. A qualitative explanation of 
the Z 2/A behavior is that the number of pairs must be multiplied 
by the probability for a proton to be at a given location, which is 
the inverse of the nuclear volume, i.e., the inverse of A assuming 
constant density. This behavior is significantly different from the 
naive combinatorial scaling of the number of pp pairs.

To better understand this scaling of the pp contact values, we 
examine a simple model, similar to the Fermi-gas model, in which 
the nucleus is a sphere with volume V. The proton density is just 
Z/V inside the nucleus radius, and vanishes outside. In this case, 
for V → ∞, the integration over R in ρU C

pp just gives additional 
factor of V, and we get

ρ F
pp(r) ≈ 1

2

Z 2

V

⎡
⎣1 − 1

2

(
3 j1(k

p
F r)

kp
F r

)2
⎤
⎦ (11)

We expect this result to hold for heavy nuclei. We can use kp
F =

(3π2ρp)1/3 = (3π2 Z/V )1/3. For the volume of the nucleus we can 
use the approximate relation V = 4π

3 R3
0 A, where R0 ≈ 1.2 fm. Us-

ing these relations, it turns out that the term in the large brackets 
in Eq. (11) for r = r0, is almost constant for all nuclei, i.e. approx-
imately A-independent, and equals approximately 3/5. Eventually, 
following Eq. (8), we get

C0
pp ≈ 9

40π

1

R3
0

1

|ϕ0
pp(r0)|2

Z 2

A
≈ (0.023 ± 0.002)

Z 2

A
, (12)

using |ϕ0
pp(r0)|2 ≈ 1.8311 fm−3 for the AV18 potential, and r0 =

0.9 fm, and estimating the error by varying r0 between 0.8 fm 
to 1 fm. Using this simple model, we have obtained here the Z 2/A
scaling of the C0

pp contacts, seen in Fig. 2. The numerical coefficient 
obtained here also agrees with the fitted value of b, presented 
above.

As mentioned before, in principle, the point-proton density 
should be used in Eq. (2) and not the charge density. A possible 
way for calculating the point-proton density from the experimen-
tal charge density is described in Ref. [42]. Calculating the point 
density of 40Ca based on Eqs. (17) and (18) of that paper, and 
assuming the neutron density is the same as the proton density, 
leads to a small correction of less than 10% in the extracted pp
contact of 40Ca. The correction for heavier nuclei is expected to be 
even smaller.

We have shown here that the pp contacts can be evaluated us-
ing only the charge density. We will now present an even more 
surprising relation: the connection between the charge density and 
neutron–proton SRCs. To this end we focus on symmetric (N = Z ) 
nuclei. For pp pairs we had to consider only one channel, the spin-
zero channel. In contrast, for pn pairs we have a more complicated 
situation as there are two leading SRC channels: the spin-zero 
Fig. 3. The pn deuteron contact values as a function of A, for symmetric nuclei, 
extracted using Eq. (16), using the VMC point-proton densities and experimental 
charge densities (blue triangles and red squares, correspondingly). Previously ex-
tracted values for symmetric nuclei are shown as black points (taken from table 
I of Ref. [30], without the A/2 normalization). The black line is a fit of the form 
C1

pn(A) = aA, resulting a = 0.056.

channel and the spin-one channel (the deuteron channel). To re-
solve this problem we note that, due to isospin symmetry [30], for 
symmetric nuclei the pp and pn spin-zero contacts are the same.

As before, also for pn pairs we start with the uncorrelated two-
body density given by

ρU C
pn (r) =

∫
d3 Rρp(R + r/2)ρn(R − r/2). (13)

The one-body neutron density ρn(r) is not as accessible exper-
imentally as the proton density, however for symmetric nuclei, 
isospin symmetry implies that ρn(r) ≈ ρp(r). It follows that for 
symmetric nuclei ρU C

pn (r) ≈ ρU C
pp (r). Since protons and neutrons are 

distinguishable, there is no correction due to the Fermi statistics 
here. At small distances we use the contact relation for the pn
density [30]

ρpn(r) = C0
pn|ϕ0

pn(r)|2 + C1
pn|ϕ1

pn(r)|2. (14)

As for the pp case, we expect both the contact relation and the 
uncorrelated expression to describe reasonably well the full pn
density around r = r0. Thus, by requiring only the continuity of 
the pn density at r0, we find that

C0
pn|ϕ0

pn(r0)|2 + C1
pn|ϕ1

pn(r0)|2 = ρU C
pn (r0). (15)

For symmetric nuclei, C0
pn ≈ C0

pp , and also, generally, ϕ0
pn(r) ≈

ϕ0
pp(r). Thus, utilizing Eq. (8) we obtain

C1
pn = ρU C

pn (r0) − ρ F
pp(r0)

|ϕ1
pn(r0)|2

. (16)

This relation indicates that the ratio of two pn deuteron-channel 
contacts, for two symmetric nuclei, does not depend on the po-
tential, similar to Eq. (9). Eq. (16) can be used to extract the 
values of the pn deuteron-channel contacts for symmetric nuclei, 
using only the proton density as an input. The results are pre-
sented in Fig. 3 for several symmetric nuclei (A ≤ 40). The values 
were extracted using both the VMC point-proton densities and ex-
perimental charge densities. The values extracted using these two 
possibilities agree with each other for each nucleus. The extracted 



488 R. Weiss et al. / Physics Letters B 790 (2019) 484–489
values are also compared to previous values extracted by fitting to 
the VMC densities directly [30]. Fair agreement is observed. The 
extraction of the pn contact values using the charge density seems 
to slightly underestimate the values of the contact for A ≤ 40. The 
uncertainties of the contacts extracted here are obtained by vary-
ing r0 between 0.8 fm and 1 fm. The black line is a fit of the form 
C1

pn(A) = aA, yielding

C1
pn(A) = (0.056 ± 0.001)A. (17)

We can analyze the pn deuteron-contact scaling as we did for 
the pp case. Using the same model, we get for symmetric nu-
clei C1

pn(A) ≈ (0.073 ± 0.008)A, where we have used |ϕ1
pn(r0)|2 =

0.3335 fm−3 for r = 0.9 fm and R0 = 1.2 fm. This is a linear 
relation between C1

pn(A) and A, in agreement with Fig. 3. The co-
efficient obtained using this simple model is larger than the fitted 
value of a presented above. Notice that Fig. 3 includes only A ≤ 40
nuclei while we expect this model to work for heavy nuclei, as 
seen from the fit in Fig. 2. This can explain the difference obtained 
here between the two values of a.

The A-dependence of the deuteron-channel contact was stud-
ied before, using a relation between the contacts and the Levinger 
constant [27,28,33]. The Levinger constant L relates the photo-
absorption cross section of a nucleus A, σA(ω), with the same 
cross section for the deuteron, σd(ω), [43]

σA(ω) = L
N Z

A
σd(ω). (18)

Here, 100 MeV < h̄ω < 200 MeV is the photon energy. The idea 
that the photon is absorbed by a pn pair was used to show that 
the Levinger constant is related to the probability to find a corre-
lated pn pair in a nucleus A relative to that of the deuteron [27,33]. 
Using the contacts, this relation can be written as

C1
pn(A) = L

N Z

A
C1

pn(d). (19)

The deuteron’s spin-one contact C1
pn(d) describes the probability 

to find a correlated pair in the deuteron with momentum above 
kF . For the AV18 potential, and kF = 1.3 fm−1, C1

pn(d) = 0.0475 ±
0.0005. Using the experimental estimation of L = 5.5 ±0.2 [27] we 
obtain

C1
pn(A) = (0.26 ± 0.01)

N Z

A
= (0.065 ± 0.003)A, (20)

where the last equality holds for symmetric nuclei. Thus, compar-
ing to Eq. (17), there is agreement to within 10% between the 
experimental value of the Levinger constant and the contact val-
ues extracted using the charge density.

In [30] the nuclear contacts were related to the high-moment-
um scaling factor a2 = (2/A)σA/σD , that is extracted from inclu-
sive electron scattering cross-section ratios, in a similar fashion to 
the Levinger constant. Fomin et al. [4], evaluated a2 from inclusive 
experiments carried out at Jefferson laboratory, and have found 
that for medium-size and heavy nuclei it is roughly a constant 
a2 = 4.3 ± 0.3, after correcting for center-of-mass motion. Utiliz-
ing this value we get C1

pn(A) = (0.085 ± 0.006)A for symmetric 
nuclei, a value somewhat larger than the other extractions. For ex-
ample, using the value of C0

pp of 40Ca, presented in Fig. 2, and the 
interpolated value of a2 ≈ 4.15 we get C1

pn(40Ca) ≈ 3.5, which is 
more than 30% larger than the value presented in Fig. 3. The use 
of the value of a2 without the center-of-mass correction of Ref. [4]
leads to a larger discrepancy. These discrepancies require further 
investigation.
To emphasize the implications of these results, we focus on the 
example of 40Ca. Based on Figs. 2 and 3, we have C1

pn(40Ca) ≈
2.2 and C0

pp(40Ca) ≈ 0.15. Thus, the ratio of total correlated pn
deuteron pairs to correlated pp pairs (with relative momentum 
above kF ) in 40Ca is C1

pn(40Ca)/C0
pp(40Ca) ≈ 15. This agrees with 

the known dominance of correlated pn pairs over pp pairs [7,9]. 
As a result, we are led to the conclusion that the pn dominance 
of SRC pairs can be explained using only the charge distribution. 
If we use the scaling of the pp contacts obtained above, and the 
scaling of the pn contacts based on the relation to the Levinger 
constant, we obtain

C1
pn

C0
pp

= LC1
pn(d)

b

N

Z
≈ 13

N

Z
. (21)

This provides a prediction for the scaling of the ratio between the 
amount of SRC pn (deuteron) pairs and pp pairs, valid for medium-
heavy nuclei, that should be checked when sufficient experimental 
data will be available. We note that the numerical factor might be 
model dependent but the N/Z scaling should be model indepen-
dent.

The same idea can be applied to not only the pn to pp ra-
tio but also to other nuclear quantities, such as high momentum 
tails and the Coulomb sum rule, which can be described using the 
nuclear contacts. On the other hand, some properties of nuclear 
SRCs, such as the center-of-mass momentum distribution of the 
pairs [44], cannot be explored using this model.

To conclude, charge density and nuclear SRCs seem naively to 
be two unrelated aspects of nuclear systems. Nevertheless, the use 
of the generalized nuclear contact formalism leads to the deriva-
tion of a direct relation between the two. Namely, we have been 
able to extract the nuclear contacts, which are proportional to the 
probability of finding pairs of nucleons in a close proximity in 
the nucleus, using only the charge density. The pp contacts for 
various nuclei, and the pn contacts for symmetric nuclei, are eval-
uated and compared to previously known values of the contacts, 
and a good agreement was observed. Since charge densities are 
known for many nuclei, this provides a useful way for extracting 
SRC properties of heavy nuclei, for which ab-initio calculations are 
presently almost impossible. This new relation also shows that the 
ratio of pp contacts, for two nuclei, does not depend on the choice 
of a particular nucleon-nucleon interaction. This holds also for the 
pn contacts of symmetric nuclei. The scaling of the pp and pn
contacts is also discussed and identified, leading to a prediction 
regarding the pn to pp ratio of SRC pairs. The extracted values of 
the pn contacts seem to agree with a previous relation, connect-
ing the Levinger constant and the contacts, and with the known 
pn dominance. The relation between the contacts and a2 requires 
further investigation.

The nuclear contacts are directly related to several nuclear 
quantities and reactions, such as the high-momentum tail of 
momentum distributions, high momentum-transfer and energy-
transfer electron-scattering experiments sensitive to nuclear SRCs, 
the Coulomb sum-rule, and the properties of nuclear matter. The 
use of the new relations presented in this work can provide pre-
dictions for such sophisticated experiments and calculations for 
different nuclei using only the widely known charge distribution 
of each nucleus.
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