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Wemake a gauge theory from the Open 𝑝-brane system andmap it into the Open 2-Brane one. Due to the presence of second-class
constraints in this model, we encounter some problems during the procedure of quantization. In this regard, considering boundary
conditions as Dirac conditions, one can drive the constrained structure of the model at first. Then, with the help of BFT formalism
of constraint systems, the Open 2-Brane model is embedded into an extended phase space. For this purpose, we introduce some
tensor fields to convert ungauged theory into the gauged one. This is the novel part of our research, while mostly scalar and vector
fields are used to convert second-class constraints into first ones.

1. Introduction

In the scenario of point-like particles, the infinite mass leads
to several infinities, which obliged physicists to developed
methods of renormalization to overcome these problems.
Afterwards, although string theory as a theoretical frame
work provided some tools to simplify the unification of
general relativity and quantum mechanics, it leads to the
complicated big bang cosmology and inflation scenarios. In
this theme, it is important to knowhow to quantize string and
𝐷-brane actions [1, 2]. As amatter of fact, this is possible using
Dirac’s point of view, since these actions include primary
second-class constraints and actually are not gauge invariant.

As the pioneer who proposed the correlation between
gauge theories and constrained systems, Dirac classified
constraints into first- and second-class ones. He also implied
that the existence of second-class constraints is due to the
presence of some nonphysical degrees of freedom, which
destroys the gauge invariance [3]. Hence, these extra degrees
of freedom must be omitted or changed to physical ones to
enhance gauge symmetries of the model [4]. In this regard,
there are several methods available to convert second-class
systems into first-class ones [3–5].

Due to the presence of gauge degrees of freedom, quanti-
zation of a first-class system is straightforward, but dealing
with second-class systems gives rise to some difficulties.

Quantizing a system which includes second-class constraints
is not possible due to the presence of extra coordinates in
the primary phase space. Dirac solved this incompatibility
by converting Poisson brackets into another kind, which are
known as Dirac brackets in respect of him, today. Although
his approach is serviceable in some cases, dealing with Dirac
brackets is not generally an easy task. Some difficulties such as
factor ordering and inverting Poisson brackets matrix of con-
straintsmay causeDirac’s approach to not be practical [6–10].

A question might have been raised which is why do
not we vanish second-class constraints directly? One should
say that it is not always possible to vanish second-class
constraints, while they may omit some of the dynamics of the
system automatically. It is more wise to convert second-class
constraints into first-class ones, which leaves the dynamics of
the system intact. This has been shown in some models that
the embedding process does not change the dynamics of the
system [4, 11–13].

To convert a second-class system to a first-class one, there
have existed severalmethods such as gauge unfixing approach
(GU) [14, 15], BFT method [16–19], and the symplectic
formalism [12, 20–22].

The BFT method has been proposed to convert a gauge
noninvariant system to a gauge invariant one.This method is
based on embedding procedure; that is, to convert second-
class constraints into first-class ones as gauge symmetries,
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one should increase phase space of the primary model and
redefine constrained equations in the extended phase space.

Depending on the structure of second-class constraints,
the extended phase space has different forms. Sometimes,
the procedure of BFT embedding is complicated and even
impossible to do. It has been shown that if the Poisson bracket
matrix of second-class constraints has constant components,
extension of the phase space is straightforward and added
correction terms to Hamiltonian will be limited in number
[10].

In this research, according to constraints’ algebra which
leads to the constant Poisson bracket matrix, we use finite
BFT approach to convert second-class constraints to first-
class one, in order to obtain the gauged version of Open 2-
Brane System.

The interesting and almost problematic point in the study
of Open string problem in the presence of background mag-
netic field is that after imposing mixed boundary conditions
on equations of motion, the fields’ Poisson brackets are not
vanished at boundaries and they are equal to a constant value
which is proportional to the present background field [23–
27].This problem also leads to a contradiction whenwe study
secondary constraints.

The idea of considering boundary conditions as con-
straints of a physical system was proposed by the late 1990s
[28–30]. In fact, boundary conditions in the background
magnetic field are first-order equations of time variable,
whereas the Euler-Lagrange equation is a second-order one,
which means that the acceleration determines the dynamics
of the motion. Hence, boundary conditions in Lagrangian
equations are called acceleration-free equations [24–27, 30].
So, these objects do not play any role in the dynamics of
the system. Instead, they set up some identities in the phase
space which satisfy Dirac’s constrained conditions. Also,
the difference between constraints, obtained from boundary
conditions equations and other constraints, could be evident
in Hamiltonian approach [30].

By the idea of boundary conditions as Dirac condi-
tions, we study the constrained structure of bosonic 𝑝-
brane systems [31–33]. First of all, we simplify the action
of this theory, based on existed symmetries of the model.
Then, constrained structure of the model with 𝑝 = 2,
that is, bosonic Open 𝑝-brane system, is obtained and the
consistency condition of constraints is checked in order to
obtain secondary constraints. Considering Poisson brackets
of constraints, we prove the second-class nature of them.

2. Action of Open 𝑝-Brane

𝐷 branes are particular types of branes.They are places in the
space where strings are located. 𝐷𝑝 brane is stretched out in
𝑃 spatial dimensions which sweeps out a (𝑃 + 1) dimensional
world volume [34, 35]. The action studied in this paper is
the bosonic part of a classical action for an Open 𝑝-brane
ending on a 𝐷𝑞-brane [33, 36, 37]. To simplify the model,
in this procedure we avoid probing other aspects such as
terms related to fermionic parts of the action as much as
possible, and we only consider the aspects of action which
impose mixed boundary conditions in order to decrease the

generality of our research. This means that we ignore all
additional couplings to 𝐷𝑝-brane which are available in the
context of string theory, by setting all backgrounds to zero.
Some more general models are studied at [38–42].

The action of such a system can be written as

𝑆

= −
1

4𝜋�́�
∫
∑

𝑑
𝑝+1

𝜁√−ℎ [𝐺𝜇]ℎ
𝛼𝛽 𝜕𝑋
𝜇

𝜕𝜁𝛼

𝜕𝑋𝜇

𝜕𝜁𝛽
+ (𝑝 − 1)] ,

(1)

where the values of 𝜇 vary from zero to 𝐷. Also, 𝛼, 𝛽 =

{0, 1, . . . , 𝑝} and (𝑝 − 1) is the cosmological term.
This model has a large surface of global symmetries,

which are determined by the world volume and the target
space. To study a simpler model, we consider the dynamics
of fields in the flat target space

𝐺𝜇] = 𝜂𝜇]. (2)

Also, we let �́� be a constant numerical parameter. More-
over, the world volume has diffeomorphisms and scaling
invariance. These symmetries can be fixed by determining a
metric on it.We consider this metric as ℎ𝛼𝛽 = (−, +, +, . . . , +).

The canonical momentum and the Hamiltonian are
defined as follows:

Π𝜇 = 𝜕𝜏𝑋
𝜇
,

𝐻 =
1

2
∫

𝑑
𝑝
𝜁

(2𝜋)
𝑝

[(Π𝑖)
2

+ (Π𝑎)
2

+

𝑝

∑

𝑘=1

(𝜕𝑘𝑋
𝑘
)
2

+

𝑝

∑

𝑘=1

(𝜕𝑘𝑋
𝑎
)
2

+ (𝑝 − 1)] ,

(3)

where 𝜕𝑘 = 𝜕/𝜕𝜎
𝑘, 𝑖 = 0, 1, . . . , 𝑞, and 𝑎 = 𝑞 + 1, . . . , 𝐷.

It is evident that, in directions orthogonal to 𝐷 branes,
the boundary condition is the form of Dirichlet boundary
condition and toward 𝐷-brane is the form of Neumann
boundary condition. Assuming 𝑞 ≥ 𝑝, that is, the dimension
of 𝐷-brane being less than or equal to the space dimension,
we can only have Neumann boundary condition. Dynamic
boundary points with Neumann boundary conditions are as
follows:

𝜕𝑘𝑋
𝑖
(0) = 𝜕𝑘𝑋

𝑖
(𝜋) = 0. (4)

Obviously these equations are at most first-class derivatives
with respect to the time and are called acceleration-free
equations. As we mentioned before, such equations do not
play any roles in present object dynamics of the theory and
they only limit available phase spaces; thus they satisfy Dirac
constrained condition.

3. Constraint Structure of Open
2-Brane System

It is important to know how to quantize string and 𝐷-brane
action.The alternativemethod is solving all of the constraints
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of the system at first. So, in this section and as an example,
we analyse Open 2-Brane system. As we know, a 2-Brane
is surrounded by a three-dimensional hyper surface. The
Neumann boundary conditions are imposed at the end of
Open 2-Brane [33],

𝜕1𝑋
𝑖
(0) = 𝜕1𝑋

𝑖
(𝜋) ,

𝜕2𝑋
𝑖
(0) = 𝜕2𝑋

𝑖
(𝜋) .

(5)

The boundary conditions can be rewritten in terms of normal
2-Brane modes

(1)
𝜙
𝑖(0)

𝑚
= ∑
𝑛

𝑛𝑋
𝑖

𝑛𝑚
≈ 0,

(1)
𝜙
𝑖(0)

𝑚
= ∑
𝑛

(−1)
𝑛

𝑛𝑋
𝑖

𝑛𝑚
≈ 0,

(2)
𝜙
𝑖(0)

𝑛
= ∑
𝑚

𝑚𝑋
𝑖

𝑛𝑚
≈ 0,

(2)
𝜙
𝑖(0)

𝑛
= ∑
𝑚

(−1)
𝑚

𝑚𝑋
𝑖

𝑛𝑚
≈ 0,

(6)

where ≈ means weak equality.
The canonical Hamiltonian can be written as

𝐻 =
1

2
∑
𝑛

∑
𝑚

𝜂𝑖𝑗 [𝑃
𝑖

𝑛𝑚
𝑃
𝑗

(−𝑛)(−𝑚)

+ (𝑛
2

+ 𝑚
2
) 𝑋
𝑖

𝑛𝑚
𝑋
𝑗

(−𝑛)(−𝑚)
] +

1

2

⋅ ∑
𝑛

∑
𝑚

𝜂𝑎𝑏 [𝑃
𝑎

𝑛𝑚
𝑃
𝑏

(−𝑛)(−𝑚)

+ (𝑛
2

+ 𝑚
2
) 𝑋
𝑎

𝑛𝑚
𝑋
𝑏

(−𝑛)(−𝑚)
] .

(7)

Hence, primary constraints must be held all the time; we set
the complete time derivative of first-class constraints equal to
zero. In this manner, the consistency procedure gives the set
of secondary constraint [33]

(1)
Ψ
𝑖(0)

𝑚
= {𝐻,

(1)
𝜙
𝑖(0)

𝑚
}
𝑃𝐵

= ∑
𝑛

𝑛𝑃
𝑖

𝑛𝑚
≈ 0,

(1)
Ψ
𝑖(0)

𝑚
= {𝐻,

(1)
𝜙
𝑖(0)

}
𝑃𝐵

= ∑
𝑛

(−1)
𝑛

𝑛𝑃
𝑖

𝑛𝑚
≈ 0,

(2)
Ψ
𝑖(0)

𝑚
= {𝐻,

(2)
𝜙
𝑖(0)

𝑚
}
𝑃𝐵

= ∑
𝑛

𝑚𝑃
𝑖

𝑛𝑚
≈ 0,

(2)
Ψ
𝑖(0)

= {𝐻,
(2)

𝜙
𝑖(0)

}
𝑃𝐵

= ∑
𝑛

(−1)
𝑚

𝑚𝑃
𝑖

𝑛𝑚
≈ 0.

(8)

By further imposing the time consistency of the sec-
ondary constraints, new constraints will be obtained as
follows:
(1)

𝜙
𝑖(1)

𝑚
= {𝐻,

(1)
Ψ
𝑖(0)

𝑚
}
𝑃𝐵

= −∑
𝑛

𝑛 (𝑛
2

+ 𝑚
2
) 𝑋
𝑖

𝑛𝑚
≈ 0,

(1)
𝜙
𝑖(1)

𝑚
= {𝐻,

(1)
Ψ
𝑖(0)

𝑚
}
𝑃𝐵

= −∑
𝑛

(−1)
𝑛

𝑛 (𝑛
2

+ 𝑚
2
) 𝑋
𝑖

𝑛𝑚

≈ 0,

(2)
𝜙
𝑖(1)

𝑛
= {𝐻,

(2)
Ψ
𝑖(0)

𝑚
}
𝑃𝐵

= −∑
𝑚

𝑚 (𝑛
2

+ 𝑚
2
) 𝑋
𝑖

𝑛𝑚
≈ 0,

(2)
𝜙
𝑖(1)

𝑚
= {𝐻,

(2)
Ψ
𝑖(0)

}
𝑃𝐵

= −∑
𝑛

(−1)
𝑚

𝑛 (𝑛
2

+ 𝑚
2
) 𝑋
𝑖

𝑛𝑚
≈ 0.

(9)

Continuing this procedure, we will obtain the complete chain
structure of constraints of the model [4]. Hence, we will have

(1)
𝜙
𝑖(𝑘)

𝑚
= (−1)

𝑘
∑
𝑛

𝑛 (𝑛
2

+ 𝑚
2
)
𝑘

𝑋
𝑖

𝑛𝑚
≈ 0,

(1)
𝜙
𝑖(𝑘)

𝑚
= (−1)

𝑘
∑
𝑛

(−1)
𝑛

𝑛 (𝑛
2

+ 𝑚
2
)
𝑘

𝑋
𝑖

𝑛𝑚
≈ 0,

(2)
𝜙
𝑖(𝑘)

𝑛
= (−1)

𝑘
∑
𝑚

𝑚 (𝑛
2

+ 𝑚
2
)
𝑘

𝑋
𝑖

𝑛𝑚
≈ 0,

(2)
𝜙
𝑖(𝑘)

𝑛
= (−1)

𝑘
∑
𝑚

(−1)
𝑚

𝑛 (𝑛
2

+ 𝑚
2
)
𝑘

X𝑖
𝑛𝑚

≈ 0,

(1)
Ψ
𝑖(𝑘)

𝑚
= (−1)

𝑘
∑
𝑛

𝑛 (𝑛
2

+ 𝑚
2
)
𝑘

𝑃
𝑖

𝑛𝑚
≈ 0,

(1)
Ψ
𝑖(𝑘)

𝑚
= (−1)

𝑘
∑
𝑛

(−1)
𝑛

𝑛 (𝑛
2

+ 𝑚
2
)
𝑘

𝑃
𝑖

𝑛𝑚
≈ 0,

(2)
Ψ
𝑖(𝑘)

𝑛
= (−1)

𝑘
∑
𝑚

𝑚 (𝑛
2

+ 𝑚
2
)
𝑘

𝑃
𝑖

𝑛𝑚
≈ 0,

(2)
Ψ
𝑖(𝑘)

𝑛
= (−1)

𝑘
∑
𝑚

(−1)
𝑚

𝑛 (𝑛
2

+ 𝑚
2
)
𝑘

𝑃
𝑖

𝑛𝑚
≈ 0.

(10)

Summing over 𝑘s and noting the fact that the result must be
equal to zero, these constraints make a close set. Hence, we
may find the following sets of equations of constraints which
obviously are independent from 𝑘:

(1)
𝜒
𝑖

𝑛𝑚
= 𝑋
𝑖

𝑛𝑚
− 𝑋
𝑖

(−𝑛)𝑚
≈ 0,

(2)
𝜒
𝑖

𝑛𝑚
= 𝑋
𝑖

𝑛𝑚
− 𝑋
𝑖

𝑛(−𝑚)
≈ 0,

(1)
𝜑
𝑖

𝑛𝑚
= 𝑃
𝑖

𝑛𝑚
− 𝑃
𝑖

(−𝑛)𝑚
≈ 0,

(2)
𝜑
𝑖

𝑛𝑚
= 𝑃
𝑖

𝑛𝑚
− 𝑃
𝑖

𝑛(−𝑚)
≈ 0.

(11)

4. Gauging the Model

The emergence of second-class constraints in the Noninvari-
ant Open 2-Brane model is due to the presence of a broken
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gauge symmetry. As we mentioned before, the gauging
process will be done via the BFT method. This method is
based on extending the phase space of the original model by
introducing some auxiliary variables.

Considering a pure second-class systemwhere its dynam-
ics is defined by the Hamiltonian𝐻

(0) in the phase space with
coordinates (𝑝, 𝑞) and a set of second-class constraints Θ𝛼 in
which 𝛼 = {1, . . . , 𝑚}, we will have the Poisson bracket matrix
as the following invertible matrix:

Δ 𝛼𝛽 = {Θ𝛼, Θ𝛽} . (12)

For our model, the gauge structure constructing Poisson
bracket matrix of second-class constraint is constant matrix
as follows:

Δ = (

0 0 2𝜂
𝑖𝑗

𝜂
𝑖𝑗

0 0 𝜂
𝑖𝑗

2𝜂
𝑖𝑗

−2𝜂
𝑖𝑗

−𝜂
𝑖𝑗

0 0

−𝜂
𝑖𝑗

−2𝜂
𝑖𝑗

0 0

) . (13)

Now, we enlarge the phase space by the variable 𝜉
𝛼 which

satisfies the following algebra [10, 16–19]:

{𝑞𝑖, 𝑝𝑖} = 𝛿𝑖𝑗,

{𝑞𝑖, 𝑞𝑗} = {𝑝𝑖, 𝑝𝑗} = 0,

{𝜉𝛼, 𝑞𝑖} = {𝜉𝛼, 𝑝𝑖} = 0,

{𝜉𝛼, 𝜉𝛽} = 𝜔𝛼𝛽,

(14)

where 𝜔𝛼𝛽 is an antisymmetric invertible matrix. The first-
class constraints in the extended phase space (𝑝, 𝑞) ⊕ 𝜉 are
defined by

𝜏𝛼 = 𝜏𝛼 (𝑝, 𝑞, 𝜉) , 𝛼 = 1, 2, . . . , 𝑚, (15)

which satisfy the following boundary condition:

𝜏
(0)

𝛼
(𝑝, 𝑞, 0) = Θ𝛼 (𝑝, 𝑞) . (16)

For special cases where the matrix Δ 𝛼𝛽 is symplectic or
constant, a systematicmethod is inventedwhich proposes the
following choices [10]:

𝜔 = −Δ,

Ω = 1.
(17)

These choices lead to the following finite order embed-
ding formalism for constraints:

𝜏𝛼 = 𝜏
(0)

𝛼
+ 𝜉
𝛼
. (18)

Another important point is that, in order to enlarge the
phase space in string theory, we should introduce tensor

fields, in contrast with other theories that scaler and vector
fields must be added. So the new set of constraints will be

(1)
𝜏
𝑖

𝑛𝑚
=
(1)

𝜒
𝑖

𝑛𝑚
+
(1)

𝜉
𝑖

𝑛𝑚
,

(2)
𝜏
𝑖

𝑛𝑚
=
(2)

𝜒
𝑖

𝑛𝑚
+
(2)

𝜉
𝑖

𝑛𝑚
,

(3)
𝜏
𝑖

𝑛𝑚
=
(1)

𝜑
𝑖

𝑛𝑚
+
(3)

𝜉
𝑖

𝑛𝑚
,

(4)
𝜏
𝑖

𝑛𝑚
=
(2)

𝜑
𝑖

𝑛𝑚
+
(4)

𝜉
𝑖

𝑛𝑚
.

(19)

The generators of Hamiltonian correction terms [10, 16–
19] will be

𝐺
(0)

1
= {𝑋
𝑖

𝑛𝑚
− 𝑋
𝑖

(−𝑛)𝑚
, 𝐻
(0)

}

= 2 (𝑃
𝑖

(−𝑛)(−𝑚)
− 𝑃
𝑖

𝑛(−𝑚)
) ,

𝐺
(0)

2
= {𝑋
𝑖

𝑛𝑚
− 𝑋
𝑖

𝑛(−𝑚)
, 𝐻
(0)

}

= 2 (𝑃
𝑖

(−𝑛)(−𝑚)
− 𝑃
𝑖

(−𝑛)𝑚
) ,

𝐺
(0)

3
= {𝑃
𝑖

𝑛𝑚
− 𝑃
𝑖

(−𝑛)𝑚
, 𝐻
(0)

}

= 2 (𝑛
2

+ 𝑚
2
) (𝑋
𝑖

(−𝑛)(−𝑚)
− 𝑋
𝑖

𝑛(−𝑚)
) ,

𝐺
(0)

4
= {𝑃
𝑖

𝑛𝑚
− 𝑃
𝑖

𝑛(−𝑚)
, 𝐻
(0)

}

= 2 (𝑛
2

+ 𝑚
2
) (𝑋
𝑖

(−𝑛)(−𝑚)
− 𝑋
𝑖

(−𝑛)𝑚
) .

(20)

Hence, first-order Hamiltonian is obtained as

�̃�
(1)

= −2𝜂
𝑖𝑗

[(𝑃
𝑖

(−𝑛)(−𝑚)
− 𝑃
𝑖

𝑛(−𝑚)
) (2
(3)

𝜉
𝑖

𝑛𝑚
+
(4)

𝜉
𝑖

𝑛𝑚
)

− (𝑃
𝑖

(−𝑛)(−𝑚)
+ 𝑃
𝑖

(−𝑛)𝑚
) (2
(4)

𝜉
𝑖

𝑛𝑚
+
(3)

𝜉
𝑖

𝑛𝑚
)

+ 2 (𝑛
2

+ 𝑚
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𝑖
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𝑖
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)
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(1)

𝜉
𝑖

𝑛𝑚
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(2)

𝜉
𝑖

𝑛𝑚
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𝑖

(−𝑛)(−𝑚)
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𝑖

(−𝑛)𝑚
)

⋅ (
(1)

𝜉
𝑖

𝑛𝑚
+ 2
(2)

𝜉
𝑖

𝑛𝑚
)] ,

(21)

and the generators in the second correction term of Hamilto-
nian are investigated as

𝐺
(1)

1
= {𝑋
𝑖

𝑛𝑚
− 𝑋
𝑖

(−𝑛)𝑚
, �̃�
(1)
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(3)

𝜉
𝑖
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+ 6
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𝜉
𝑖

𝑛(−𝑚)
+ 2
(3)

𝜉
𝑖

(−𝑛)𝑚
− 2
(3)

𝜉
𝑖

𝑛𝑚
+ 4
(4)

𝜉
𝑖

(−𝑛)𝑚

− 2
(4)

𝜉
𝑖

𝑛𝑚
,
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(22)

Hence, the second-order correction of Hamiltonian is
obtained as

�̃�
(2)

=
−1

2
𝜂
𝑖𝑗

[(2
(3)

𝜉
𝑖

𝑛𝑚
+
(4)

𝜉
𝑖

𝑛𝑚
) 𝐺
(1)

1

− (2
(1)

𝜉
𝑖

𝑛𝑚
+
(2)

𝜉
𝑖

𝑛𝑚
) 𝐺
(1)

3
+ (2
(4)

𝜉
𝑖

𝑛𝑚
+
(3)

𝜉
𝑖

𝑛𝑚
) 𝐺
(1)

2

− (
(1)

𝜉
𝑖

𝑛𝑚
+ 2
(2)

𝜉
𝑖

𝑛𝑚
) 𝐺
(1)

2
] .

(23)

It is easy to see that 𝐺
(𝑛)

𝛼
vanished for 𝑛 ≥ 2. This leads to

the truncated series for Hamiltonian for 𝑛 ≥ 2

𝐻𝑇 = 𝐻
(0)

+ �̃�
(1)

+ �̃�
(2)

. (24)

Thus, by introducing some tensor fields, first-class con-
straints of second ones would be obtained and the Hamil-
tonian investigated in such away will be fully gauged in the
extended phase space.

5. Conclusion

String theory is an extremely good theory to describe the
world. So, quantizing string and 𝐷-brane action is an inter-
esting topic to work on. An appropriate approach to do such
an investigation is the formalism of constrained systems.

In this survey, first, we extracted the constrained structure
of the Open 2-Brane System in the flat space. Because the
boundary conditions are usually relations between fields and
their derivatives, we considered the Neumann boundary
conditions as Dirac constraints which are not consequences
of a singular Lagrangian. In other words, the momenta are
not independent functions of velocities which is a new feature
in the context of constrained systems. Finally, we got four
second-class constraints. As we know, first-class constraints
are the generators of gauge transformations, while the advent
of second-class constraints restricts the system to a smaller
submanifold of the phase space in which a Poisson structure
can be recognized. This means that gauge symmetries are
broken.

We desire to have a quantized theory, but quantization
of second-class system is nontrivial and is more difficult in
comparison with first-class one. Difficulties such as factor
ordering problem or noninvertible nature of some Pois-
son brackets matrices of constraint may arise dealing with
second-class systems.Also, the construction of a BRST charge
is only possible for first-class systems. More importantly, the
usual quantization method like canonical quantization and
path integral approach is only used for first-class constrained
systems. Since, physical theories tend to be gauged theories,
and the presence of second-class constraints is against this
assumption, we convert the Noninvariant Open 2-Brane
System to a first-class one by means of BFT method.

As wementioned, for special cases when theΔ-matrix has
constant elements, the finite order BFT embedding can be
applied. This is the reason that we only studied the bosonic
part of a classical action for anOpen𝑝-brane ending on a𝐷𝑞-
brane and avoid additional couplings to 𝐷𝑝-brane by setting
all background fields to zero.

Finally, in the last section we found correction terms for
constraints and Hamiltonian in the extended phase space.
All in all, one can easily check that first-class constraints
and Hamiltonian of Open 2-Brane System represent a gauge
invariant theory.
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