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Abstract
This dissertation is split into two distinct halves. The first covers various calcu-

lations done in order gain insights on holography in de Sitter space. The dispersion

relation of linear perturbations of empty de Sitter space are numerically computed as

a function of the location of a hypersurface on which conformal Dirichlet boundary

conditions are imposed. When the hypersurface is near the south pole, the dispersion

relation is linear, whereas for a hypersurface near the cosmological horizon, it satisfies

that of the incompressible Navier-Stokes equation. This result is shown to hold for

non-linear perturbations. We also compute the thermodynamic stability of rotating

black holes in dS4 as a function of their mass and angular momentum. We focus

particularly on the rotating Nariai geometry, which is a near horizon limit of the ro-

tating black hole as the outer and cosmological horizons tend towards each other. We

study massless scalar fields in these backgrounds and obtain their quasinormal mode

spectrum explicitly. We uncover an interesting structure in their two-point functions,

namely that they resemble thermal Green’s functions of a two-dimensional conformal

field theory. The second half of this dissertation deals with the study of multicen-

tered black holes in string theory and their finite temperature extensions. We show

that there exist finite temperature single-centered solutions in N = 2 supergravity
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Abstract

in asymptotically flat space that admit bound states with BPS probe particles. We

compute the existence regions of these bound states as well as their dependence on

temperature. We embed these solutions in Fayet-Illiopoulos gauged supergravity and

show that bound states persist in asymptotically AdS4 spacetimes. We make attempts

to understand these disordered bound states as amorphous/glassy phases of the dual

conformal field theory.
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Chapter 1

Act I: De Sitter Space

The future of our universe is bleak. Its energy density is dominated by a positive

cosmological constant [1, 2] that pushes spacetime points apart. As a result, only a

finite region of spacetime, known as the causal or static patch, can communicate with

a single observer. Everything outside of this region, beyond the cosmological horizon,

accelerates too quickly for signals to ever reach our intrepid experimenter. What is

the nature of the cosmological horizon? At first glance it appears very similar to

the horizon of a black hole in the sense that they both act like one-way membranes

for light signals. Upon further inspection one sees that the semiclassical (or slightly

quantum) behavior of these horizons is very similar as well, in the sense that they both

have an associated entropy and temperature [3]. Is it then the case that cosmological

horizons and black hole horizons are one and the same objects? If we manage to

understand the quantum mechanical features of black holes, can we then say that we

understand the quantum mechanical features of de Sitter space and its horizon?

The answer is no. While it is true that the low energy behavior of these two

1
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horizons exhibit universal properties that match nicely (as we demonstrate further in

chapter 2), the questions we are concerned with involve high energies. Furthermore,

even before we confront the quantum behavior of these different spacetimes, we are

struck with the fact that, while the black hole horizon is a unique null surface defining

the causal structure of the spacetime, the de Sitter horizon depends on the observer’s

specific timelike worldline. Furthermore, the de Sitter observer will never be able to

approach her horizon or probe it! This difference, although mild seeming, is an added

confusion in an already mired field of theoretical physics. The fact that horizons

have an entropy is but one of many puzzles that have confused theoretical physicists

for the past 40 years. If we accept there is an entropy, then we must ask what it

counts, and why it is so large. For black holes we have the intuitive picture that the

entropy must be counting inequivalent ways of constructing the black hole, hidden

behind the horizon. The de Sitter entropy moves with the observer, and therefore the

interpretation of the counting is much more mysterious.

For black hole horizons, some insights into the nature of the horizon entropy have

come from string theory. For some classes of supersymmetric black holes in asymp-

totically flat space, the microstate counting can be done exactly [4, 5, 6] revealing

exact agreement with Hawking’s calculation. The new ingredients that were required

to account for the enormous increase in entropy of the black holes were given by

D-branes, extended objects that can wrap internal cycles of a microscopic compact

space. The complexity of these wrapped configurations—the multiple ways in which

these branes can wrap these cycles—was just the ingredient needed to ensure the

agreement in counting.

2
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Before continuing we would like to mention a caveat. Successfully counting the

microstates of black holes suggests we have a microscopic theory that captures the

degrees of freedom of the black hole when gravity is strongly coupled. However,

D-branes in string theory are well defined solitonic objects when gravity is weakly

coupled. So how can we trust the counting? As it turns out, we can because the

number of wrapped D-brane configurations is an index protected by supersymme-

try. That is, the counting does not change as we crank up the coupling strength of

gravity. It was only later understood that there was another effect at play, in terms

of a much more powerful strong/weak duality known as the AdS/CFT correspon-

dence [17] which posits that strongly coupled gravity in asymptotically Anti de Sitter

spacetimes, maximally symmetric solutions to Einstein gravity with a negative cos-

mological constant, are holographically dual to weakly interacting conformal gauge

theories living at the (conformal) boundary of these spacetimes at spatial infinity.

Indeed since the near horizon regions of the supersymmetric black holes studied in

[4, 5, 6] all have AdS factors, the microstate counting is simply an application of the

Cardy formula [7, 8] from the point of view of the dual conformal field theory.

We do not have a similar picture for de Sitter space and its horizon. There are

no weakly gravitating states that we know of that, as we crank up the strength

of gravity, backreact into the cosmological constant and give rise to horizons that

surround every distinct observer. Viewed in this light, the black hole horizon and the

cosmological horizon are two disparate objects whose quantum gravity interpretations

will generically be quite different.

Motivated by these differences, quantum gravity in the context of de Sitter space

3
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has been the subject of much speculation and research [9, 10, 11, 12, 13, 14, 15,

16, 18, 19, 20] (for a thorough review, see also [28]). The goal of this research has

namely been to understand holography in the context of de Sitter space and moreover

shed light on the nature of the de Sitter entropy, albeit such attempts have so far

been unsatisfactory. One particularly successful avenue towards tackling this problem

[14, 15, 16, 21, 22, 23, 24] has been the suggestion that quantum gravity in de Sitter

space is also holographically dual to a CFT, although unlike in AdS holography, the

CFT is Euclidean and lives on the future boundary at I+ (see figure 2.1). A naive

use of the Cardy formula for a certain small class of de Sitter backgrounds where the

asymptotic symmetry group can be identified with a Virasoro algebra (such as dS3 or

the Nariai geometry in dS4) seems to give the correct counting. However a detailed

understanding of these dual CFT states, the analogs of the wrapped D-branes, and

what they imply on the gravity side is still lacking.

In search of more motivation to think about this problem, may we add that not

only is our universe tending towards a de Sitter phase in the future, but it also exited

a phase well approximated by de Sitter space, known as inflation, in the past. Thus

if we are to gain any grasp on the evolution of the universe, we are twice confronted

with the need to understand quantum gravity in de Sitter space.

The successes of AdS/CFT can act as a guiding principle for how to make sense

of holography in dS. However, while de Sitter space and Anti-de Sitter space are

related by analytic continuation, their holographic duals are, at least naively, not.

Thus we gain little insight from analytically continuing results from AdS/CFT for
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Chapter 1: Act I: De Sitter Space

use in the de Sitter context1. One point of view is that, unlike AdS/CFT, de Sitter

holography should only be capable of describing a single static patch [11, 13, 26, 27,

29, 30, 31, 32, 33, 34, 35, 36]. It is not at all clear how the physics of the static patch

observer is captured by the theory at I+, whose observables are given by correlators

between causally disconnected points. The static patch observer can at most observe

a tiny region of I+ where her worldline intersects the future boundary. The geometry

outside her future horizon thus seems akin to a gauge choice since it will never affect

the physics she observes [35].

In the following chapters, we will try to address some of the issues raised above.

The focus will be exploratory given the conceptual nature of the challenges at hand.

In chapter 2 we attempt to address the issue of relating the data of the observer’s

worldline with the data on I+. This is done by allowing the experimenter to perturb

the spacetime around her while imposing (conformal) Dirichlet boundary conditions

on the timelike hypersurface of the lab wall. We look at the spectrum of linear and

non-linear perturbations of the background spacetime with these boundary conditions

and study how the spectrum changes continuously as we move the lab wall closer to the

de Sitter horizon (and beyond). What we uncover might suggest a novel interpretation

of holography in dS. To be specific, in AdS/CFT we identify the boundary at spatial

infinity with the UV of the CFT; in dS, the data at I+ is seen to be equivalent to

the worldline of the observer deep in the bulk of the static patch. Furthermore, if we

study the near horizon dynamics of the de Sitter horizon, a surface that is not deep

within the static patch, we find that it is mathematically equivalent, upon analytic

1For an example where analytic continuation of AdS results can prove quite useful for de Sitter
space see [25].
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continuation, to the near horizon dynamics of a hyperbolic black hole deep within the

bulk of AdS, usually identified with the IR description of the CFT. These mappings

suggest a role reversal of IR and UV physics in dS when comparing with the standard

AdS/CFT dictionary.

In chapter 3 we look at the spectrum of rotating black holes in dS4 and study

them in depth. The classical evolution of these backgrounds tends toward empty de

Sitter space, the most entropic configuration, via a superradiant instability. Even so,

empty de Sitter space is unstable to the nucleation of large black holes, mediated by

a Euclidean instanton [37] and hence the Nariai (largest possible) [38] black hole is

of particular interest. We also study free scalar fields in rotating Nariai, whose wave

equation can be solved explicitly in terms of hypergeometric functions. With these

solutions, we compute the quasinormal mode spectrum and find that they correspond

precisely to the poles of the boundary-to-boundary correlation functions at future

infinity. Furthermore, these correlation functions are exactly of the form of retarded

thermal Green’s functions of a two-dimensional CFT, giving credence to the duality

proposed in [74].

It is our hope that the observations made in chapters 2 and 3 will be understood

from the point of view of a full quantum gravity theory, but until then we can only

wish that they can give some insights into how to frame ones’ thoughts when trying

to understand holography in de Sitter.
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Chapter 2

Incompressible Fluids of the de

Sitter Horizon and Beyond

2.1 I+/Static Patch Schizophrenia

There have been several attempts to relate general relativity to fluid mechanics

dating back to the 1970s with the black hole membrane paradigm [39, 40, 41] (see

[42] for an application to de Sitter space). The membrane paradigm focuses on the

observation that the equations governing the dynamics of horizon surfaces in general

relativity can be written in a form analogous to that of the Navier-Stokes equation of

fluid mechanics. However, whilst finding a striking analogy, the central equation of the

membrane paradigm is often referred to as the Damour-Navier-Stokes equation, high-

lighting the fact that it differs from the Navier-Stokes equation in key ways. Building

on this, recent papers [43, 44, 45] constructed a setup where near horizon dynamics

in gravity precisely relates the Einstein equation to the incompressible Navier-Stokes

7



Chapter 2: Incompressible Fluids of the de Sitter Horizon and Beyond

equation. These studies were also inspired by analyses of connections between grav-

ity and fluid mechanics in the context of the AdS/CFT correspondence [46, 47, 48]

and the low energy limit of the dual field theory. Given the striking similarities be-

tween the thermodynamics of a black hole horizon and a cosmological horizon, it is

natural to extend such a fluid/gravity correspondence to include spacetimes with a

cosmological horizon.

After reviewing the classical geometry of de Sitter space, the first part of this

chapter will explore some of the classical features of the cosmological horizon as viewed

by an observer in a purely de Sitter universe – the static patch observer. We examine

the Einstein equation both linearly and non-linearly and uncover that the solutions

are characterized by solutions to the incompressible Navier-Stokes equation on a two-

sphere.1 This same equation recently appeared in the context of the Schwarzschild

black hole [45] and requires the velocity field vi(τ, Ωj) where Ωi = {θ, φ} and the

pressure P (τ, Ωj) to satisfy

∂τv
i +∇i

S2P + vj∇j
S2v

i − ν
(
∇2

S2vi + Ri
jv

j
)

= 0 , ∇i
S2vi = 0 (2.1.1)

where ν is the viscosity. Indices are raised and lowered with respect to the round

metric gij on the S2 of radius rS for which Rij(= gij/r2
S) is the Ricci tensor. At the

linearized level, this is done by imposing Dirichlet boundary conditions on a timelike

surface arbitrarily close to the cosmological horizon and the absence of incoming flux

from the past horizon of the static patch. These boundary conditions resemble the

solipsistic boundary conditions of [36], which allow for an examination of the isolated

1As in [45], we analyze the metric through the first three orders in a near-horizon expansion. A
generalization of the all-orders proof of [49] might be possible in our case, but we will not attempt
to do so herein.
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Chapter 2: Incompressible Fluids of the de Sitter Horizon and Beyond

static patch dynamics, unperturbed by external sources from the past horizon. We

find that the linearized solutions must obey the dispersion relation of the incom-

pressible, linearized (pressureless) Navier-Stokes equation (2.3.19). At the non-linear

level, again in a near cosmological horizon expansion, we impose (conformal) Dirichlet

boundary conditions on a timelike slice and regularity of the solutions as they ap-

proach the future horizon. By (conformal) Dirichlet boundary conditions, we mean

analysing perturbations which leave the induced geometry on a fixed timelike hyper-

surface of constant extrinsic curvature unchanged up to a conformal factor.2 Then,

we comment briefly on the possibilities of deforming this non-linear fluid by placing

a small black hole at the origin of the static patch. In an attempt to connect our

fluid dynamical modes to the analogous excitations of the worldline, which are the

quasinormal modes, we return to the linearized analysis to study how the linearized

dispersion relation varies as we push the surface from the cosmological horizon to the

worldline.

In the second part of this chapter we make some mathematical observations about

spacelike slices foliating the region outside the future horizon of the static patch. We

examine the behavior of linearized solutions to the Einstein equation near, but outside,

the future cosmological horizon. Our solutions are subjected to Dirichlet boundary

conditions on a fixed spacelike surface and to contain incoming flux solely from a single

static patch observer. We find a discrete set of modes obeying the dispersion relation

of the linearized Navier-Stokes equation, where the time coordinate has become the

non-compact spacelike coordinate moving us along the spacelike slice. The non-linear

2Henceforth, in the non-linear analysis, we will refer to these boundary conditions as Dirichlet
boundary conditions.
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solutions to the Einstein equation which satisfy Dirichlet boundary conditions on the

spacelike slice and which are regular at the horizon from which flux is coming, are

indeed characterized by solutions to the incompressible Navier-Stokes equation. The

Navier-Stokes equation uncovered here on the spacelike slice is equivalent to that

discussed in the context of the timelike surface, except that the sign of the viscosity

is flipped. We end by noting that the setup of the problem in this future diamond of

de Sitter space, and in particular the pole structure at I+, is connected by an analytic

continuation to analogous problems in Lorentzian AdS4 with hyperbolic slicing.

2.2 Geometry and Framework

In what follows we will study the geometries of several patches of de Sitter space

pertinent to our analysis. Instead of the global patch of de Sitter space containing

the past and future infinities, denoted by I− and I+, we will focus on patches that

are more suited to the description of local observers.

2.2.1 The Static Patch

The four-dimensional static patch metric solves the Einstein equation in the pres-

ence of a cosmological constant Λ > 0,

Gµν ≡ Gµν + Λgµν = 0 (2.2.2)

and is given by:

ds2 = −
(
1− (r/()2

)
dt2 +

(
1− (r/()2

)−1
dr2 + r2dΩ2

2 , (2.2.3)
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where r ∈ [0, (], t ∈ R and dΩ2
2 is the round metric on S2. The quantity ( is the de

Sitter length and is related to the cosmological constant as Λ = +3/(2. The above

metric covers a quarter of the global de Sitter geometry, it describes the intersection

of the future and past causal diamonds of a constant r worldline beginning at I− and

ending at I+. We call this the Southern patch of de Sitter space.

One notices that r = ( corresponds to a cosmological event horizon, beyond which

events are forever out of causal contact from the Southern observer. The Killing

vector ∂t becomes null at r = ( and the above coordinate system breaks down.

The Southern patch can be smoothly connected to another region covering an

additional quarter of de Sitter space, by continuing the above metric to r ∈ [(,∞].

For r > (, t becomes a spacelike coordinate and r becomes timelike. We can consider

gluing two such regions, one behind the past cosmological horizon, known as the past

diamond containing I−, and the other beyond the future cosmological horizon, known

as the future diamond containing I+.

The remaining quarter of the global de Sitter space is given by an additional static

patch system known as the Northern patch. The Southern and Northern patches

each intersects I± at a single point. In figure 2.1 we demonstrate the several patches

discussed above in a Penrose diagram.

2.2.2 Null Foliations

It will be convenient to introduce an additional coordinate system which smoothly

covers both the Southern patch and the future diamond. This is achieved by the
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Chapter 2: Incompressible Fluids of the de Sitter Horizon and Beyond

Fig. 2.1: Penrose diagram of de Sitter space indicating the various static patches and

future/past diamonds.

following coordinate transformation:

(du = dt− dr

(1− (r/()2)
, v =

r

(
, (2.2.4)

leading to the metric

ds2

(2
= −(1− v2)du2 − 2dudv + v2dΩ2

2 . (2.2.5)

Up to a constant time shift we find u( = t − ( tanh−1 r/(. Constant u surfaces are

null lines emanating from the origin at v = 0 and ending at I+ where v = ∞. The

norm of the Killing vector ∂u changes sign at v = 1.

2.2.3 Approaching the Horizon

Finally, we would like to introduce a dimensionless parameter α > 0 allowing us

to approach the cosmological horizon. In order to achieve this, we rescale time to

u = τ/2α and define ρ = (1 − v)/2α. As we take the limit α → 0, we redshift time

12
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S
.
P
.

Fig. 2.2: Penrose diagram of de Sitter space indicating constant ρ (red) and τ (gray

diagonal) slices.

and for any finite ρ, v will be forced to lie near the cosmological horizon. The metric

is given by:

ds2

(2
=

(
− ρ

α
+ ρ2

)
dτ 2 + 2dτdρ + (1− 2αρ)2 dΩ2

2 . (2.2.6)

The coordinate range of ρ covering the Southern patch is given by ρ ∈ [0, 1/2α] and

the norm of ∂u vanishes at ρ = 0. The constant ρ and τ surfaces are shown in

figure 2.2.

As opposed to the Schwarzschild case, where a similar expansion would continue

for indefinite powers of α, the above expansion terminates at order O(α3). This is

due to the absence of a term ∼ 2M/r in the gττ component. We could of course

add such a term, which would correspond to introducing a small mass or black hole

centered at the origin of the static patch.
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2.3 Incompressible Fluids

Having specified the geometry relevant to our problem, we proceed to discuss

the nature of perturbations solving the Einstein equation with positive Λ near the

cosmological horizon. We begin with a linearized analysis.

2.3.1 Linearized Analysis

Linearized gravity about spherically symmetric spaces with non-zero cosmological

constant was examined in [50, 51]. The two gravitational degrees of freedom transform

as a (divergenceless) vector and a scalar under the SO(3) symmetry of the S2. There

is no transverse-traceless tensorial spherical harmonic for a two-sphere. Let us work

in a gauge where δgij = 0 for xi ∈ {Ω}. The metric vector perturbations can be

expressed as:

δgit = Vi ×
(
1− (r/()2

)
(1 + r∂r) Φv , (2.3.7)

δgir = Vi ×
r

(1− (r/()2)
∂tΦv . (2.3.8)

The vector spherical harmonic Vi satisfies the following relations on the unit two-

sphere:

(
∇2

S2 + k2
V

)
Vi = 0 , ∇i

S2Vi = 0 , (2.3.9)

with eigenvalues are k2
V = l(l + 1)− 1 and l = 1, 2, . . . The master field Φv obeys the

master equation:
(
∇2

g(2) −
l(l + 1)

r2

)
Φv = 0 , (2.3.10)

where g(2) corresponds to the two-dimensional de Sitter static patch. A similar result

holds for the scalar perturbations, which we discuss in appendix A.1.
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The solutions to the above equation were analyzed in [35] and are found to be

hypergeometric functions. For our purposes we would like to obtain the linearized

solutions in the null coordinate system (2.2.5). Assuming a Fourier decomposition in

time, Φv = e−2iαωt(τ,ρ)/&ϕv(ρ), the equation of motion becomes:

(
4ρ2 (1− αρ)2 ∂2

ρ + 4ρ (1− αρ) (1− 2αρ) ∂ρ+

4α2(1− 2αρ)2ω2 − 4αρ (1− αρ) (k2
V + 1)

(1− 2αρ)2

)
ϕv = 0 . (2.3.11)

The two linearly independent solutions for l > 1 are given by:

ϕout
v = ρ−iαω

2F1

[
a1, b1; c1;

αρ

−1 + 2αρ

]
(1− 2αρ)2iαω

(1− αρ)iαω , (2.3.12)

ϕin
v = ρ+iαω

2F1

[
a2, b2; c2;

αρ

−1 + 2αρ

]
(1− αρ)−iαω , (2.3.13)

with:

a1 = −l − 2iαω , b1 = 1 + l − 2iαω , c1 = 1− 2iαω ; (2.3.14)

a2 = −l , b2 = 1 + l , c2 = 1 + 2iαω . (2.3.15)

The superscripts ‘out’ and ‘in’ indicate that the mode is purely outgoing at the future

horizon or purely incoming from the past horizon. The above expressions are linearly

independent solutions for (ci − ai − bi) = 2iαω /∈ Z (see [52]). In the case where

(ci − ai − bi) = 2iαω is an integer, logarithmic solutions will appear. Given that a2

and b2 are integers ϕin
v is in fact a finite polynomial for 2iαω /∈ Z, as it can be shown

that the hypergeometric series terminates. For l = 1, the linearized perturbations

become time independent and are like the introduction of a small amount of angular

momentum (we discuss this case in appendix A.2).
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The linearized purely outgoing metric components (2.3.7) in the (τ, ρ)-coordinate

system become:

δgout
iτ = 2Vi × e−iωτ ρiαω+1(1− αρ)−iαω+1

(
1− (1− 2αρ)

2α
∂ρ

)
ϕout

v , (2.3.16)

δgout
iρ = −2αVi × e−iωτ

(
1− αρ

ρ

)−iαω [(
1− iω(1− 2αρ)

2ρ(1− αρ)

)
− (1− 2αρ)

2α
∂ρ

]
ϕout

v .

(2.3.17)

Both δgout
iτ and δgout

iρ are regular at the future horizon ρ = 0.

2.3.2 Linearized Fluid Modes

Having written down the linearized solutions, we now discuss the choice of bound-

ary conditions. We impose Dirichlet boundary conditions on a given timelike hy-

persurface at some fixed ρ, and without loss of generality, we choose the location of

this timelike hypersurface to be at ρ = 1. Taking α → 0 pushes this hypersurface

arbitrarily near the cosmological horizon and thus allows us to probe the near horizon

dynamics.

Our particular Dirichlet boundary condition, shown in figure 2.3, is that the lin-

earized perturbations are purely outgoing and leave the intrinsic geometry of the ρ = 1

hypersurface unchanged.3 Imposing δgout
iτ (ρ = 1) = 0 enforces a discrete dispersion

relation, which to leading order in α is given by:

ωf = −i (l(l + 1)− 2) , l = 1, 2, . . . (2.3.18)

We interpret these linearized modes as fluid modes of the velocity field vi of the

3This is the simplest choice of Dirichlet boundary conditions and thus allows for a clear analysis.
In general, we can choose more involved Dirichlet boundary conditions on the ρ = 1 hypersurface.
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Fig. 2.3: Our boundary conditions for the linearized modes are such that the induced

metric on the ρ = 1 slice is unchanged and there is no incoming flux from the past

horizon.

incompressible, linearized (pressureless) Navier-Stokes equation on a sphere:

∂τvi = ν
(
∇2

S2vi + Rijv
j
)

, ∇i
S2vi = 0 , (2.3.19)

where the viscosity ν = 1. The incompressibility of the fluid is equivalent to the

vanishing divergence of Vi, which can be seen by identifying vi ∼ e−iωτVi. We further

note that the explicit modes (2.3.16) with ω = ωf decay in time and are regular at

the future horizon ρ = 0.4

By arguments similar to those in [43], one expects that the result ν = 1 corre-

sponds to a ratio of shear viscosity to entropy density which is 1/4π. This suggests

that the incompressible fluid we have found near the de Sitter horizon shares this

feature with the fluids found near the Schwarzschild, Rindler and planar AdS black

hole horizons [43, 44, 45, 53] (see also [42]).

4If these modes are taken back in time to t→ −∞ they diverge and the perturbative solution is
no longer reliable. As usual we only consider wavepackets of the linearized solutions which are finite
for all asymptotia.
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There is also a decoupled set of scalar excitations which transform as scalars under

the SO(3) of the S2. However, the incompressibility condition implies that we could

only consider the spherically symmetric scalar mode, which reduces the fluid vector

field to a trivial one(see appendix A.1). We will not consider such modes in what

follows and simply set them to zero in the linearized analysis.

2.3.3 Non-linear Analysis

Having analyzed the linearized case, we now turn to the question of non-linear de-

formations. The analysis follows directly the Schwarzschild case analyzed in [45].5 In

particular, in this non-linear analysis, we impose the (conformal) Dirichlet boundary

conditions on the hypersurface as in [45].

To be precise, we will consider the following finite deformation of the static patch

geometry as an expansion in α:6

ds2

(2
= − ρ

α
dτ 2 (2.3.20)

+ ρ2dτ 2 + 2dτdρ + dΩ2
2 + (1− ρ)

[
v2dτ 2 − 2vidτdxi

]
− 2ρPdτ 2

+ α
[
(−4ρ + 2P ) dΩ2

2 + (1− ρ)vivjdxidxj

−
(
ρ2 − 1

) (
∇2vi + Rjiv

j
)
dτdxi − 2vidρdxi +

(
v2 + 2P

)
dτdρ + 2 (1− ρ) φ(α)

i dτdxi
]

+ α2
(
4ρ2dΩ2

2 + 2g(α2)
ρi dxidρ + g(α2)

ij dxidxj
)

+ . . . .

The vi, P and φ(α)
i are functions of (τ, Ωi) only while the g

(α2)
iρ and g

(α2)
ij are functions

5It should be noted that we have presented a more complete linearized analysis than would be
possible for the Schwarzschild case, given the existence of exact linearized solutions in dS4.

6When writing out the metric (2.3.20) we have omitted the metric components

g(α)
ττ , g

(α2)
ττ , g

(α2)
ρτ , g

(α2)
iτ and higher order contributions since these do not affect the Einstein equation

to the order that we consider.
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of (τ, ρ, Ωi). We have chosen a gauge where gρρ = 0. As boundary conditions we

require the perturbations to preserve the induced metric on the hypersurface ρ = 1

ds2
3d =

(
− 1

α
+ 1

)
dτ 2 + (1− 2α)2 dΩ2

2 , (2.3.21)

up to a conformal factor

1 + 2αP +O(α2) . (2.3.22)

We also study perturbations such that this hypersurface has constant mean extrinsic

curvature and that the solution is regular at the future horizon ρ = 0. These bound-

ary conditions are the natural extension of the boundary conditions imposed on the

linearized fluid modes of the last section.

We now examine the conditions on the deformation parameters imposed by the

Einstein equation with a positive cosmological constant Gµν = 0 up to and including

O(α0). We further assume that the only excited field is the metric. The first non-

trivial condition appears at O(α−1). Here, for Gττ = 0 to be satisfied, the velocity

field vi is required to be incompressible. At the next order O(α0), the non-trivial

equations are Gττ = Gτi = 0. From the Gτi = 0, it follows that the (vi, P ) need to

satisfy the non-linear incompressible Navier-Stokes equation (2.1.1) on a unit S2. Our

result is in complete accordance with the linearized analysis.7

From the Gττ = 0 Einstein equation at O(α0) we find the requirement

∇i
S2φ

(α)
i = 2∂τP + ∂τ (v

2) + total derivatives on the 2-sphere. (2.3.23)

7We would not expect to see the pressure in the linearized analysis since at the linear level
vector and scalar representations of SO(3) decouple. This is no longer the case at second order in
perturbation theory where we expect the equation for the vector representation to be affected by
scalars as in the non-linear case. As in the linearized analysis, we have not considered sound modes,
which would contribute to the divergence of vi.
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The above relation implies:

∂τ

(
ˆ

v2dΩ2

)
= −2∂τ

(
ˆ

PdΩ2

)
. (2.3.24)

There is a similar condition between the velocity and pressure fields in the Schwarzschild

case [45]. Such an integral relation can be compared to changes in the horizon area.

This component of the Einstein equation also determines a scalar function involving

g(α2)
ρi , g(α2)

ij .

2.3.4 Deformations of the Fluid

A natural question to ask about the fluid is whether one can deform it. In this

section, we discuss two simple examples of possible deformations of the fluid.

The first is given by adding a small non-rotating black hole of mass M at the origin

of the static patch. This changes the −gtt = grr components of the metric (2.2.3) to

V (r) = 1 − (r/()2 − 2M/r. For positive values of M , adding the black hole has the

effect of pulling in the cosmological horizon and thus decreasing its size. For small

ε ≡ M/(, the new position of the cosmological horizon is given by rcos = ((1− ε) to

leading order. In the analogous case of the Schwarzschild black hole, placing a mass

at the center of the static patch corresponds to extracting some mass from the black

hole, thus shrinking its horizon. The mass deformation we have described preserves

the spherical symmetry of the background and thus the near horizon dynamics are

expected to be governed by the Navier-Stokes equation on a sphere.

A slightly more involved deformation corresponds to placing a small rotating mass

at the origin of the static patch. This will cause the cosmological horizon itself to
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rotate. The function determining the positions of the horizons is now given by:

V (r) = (1 + (a/r)2)
(
1− (r/()2

)
− 2M/r . (2.3.25)

As with the mass term, adding angular momentum shrinks the cosmological horizon.

To lowest order in small ε and small υ ≡ (a/()2 we find that:

rcos = (

(
1− ε(1− υ)− 3

2
ε2 +O(ε3, ε2υ, ευ2, υ3)

)
. (2.3.26)

The angular momentum of the space-time becomes Q∂φ
= −aM/ (1 + (a/()2). It

should be noted that a finite deformation with angular momentum will also deform

the sphere into a spheroidal surface. Thus we lose spherical symmetry and it might be

possible that the near horizon dynamics is no longer governed by the Navier-Stokes

equation on the round metric of S2.

2.4 Pushing the Timelike Surface

So far we have analyzed the behavior near the cosmological horizon. Another

timelike surface of interest in the static patch is given by the observer’s worldline

at r = 0.8 Returning to the analysis of linearized gravity, if we impose Dirichlet

boundary conditions leaving the worldline unperturbed for purely outgoing modes,

we obtain another set of discrete modes known as quasinormal modes (see for example

[54]). In the original static patch coordinates (2.2.3) these are given (for the vector

8Due to its resemblance with the boundary of AdS in the presence of an eternal black hole, recent
work has emphasized the potential importance of the worldline as a candidate for the ultraviolet
(holographic) description of the static patch [33, 36]. Although such a holographic duality is far from
clear, one expects that the infrared behavior must give rise to the Navier-Stokes equation described
in the former section.

21



Chapter 2: Incompressible Fluids of the de Sitter Horizon and Beyond

modes) by:

ωn( = −i (n + l + 1) , n = 0, 1, 2, . . . (2.4.27)

Due to the fact that l ≥ 1, a gapless mode is absent in the above spectrum of

quasinormal modes. This is in contrast to the fluid modes (2.3.18) which have ωf = 0

at l = 1. The gapless mode is absent due to the fact that the ω = 0, l = 1 perturbation

diverges on the worldline, as shown in appendix A.2. It reappears in the spectrum as

soon as we ‘puff up’ the thickness of the worldline.

2.4.1 ‘Flowing’ the Dispersion Relations

Our aim is to study the behavior of perturbative data on constant r surfaces as we

push them from the horizon toward the worldline. There is a clear distinction between

the lowest n = 0 quasinormal modes (2.4.27) and the fluid modes (2.3.18). Given

a constant r slice at some position r = rc we impose Dirichlet boundary conditions

leaving the induced metric on the r = rc unchanged. This constant r surface is directly

analogous to the timelike hypersurface at ρ = 1 considered above. Furthermore, we

require that the modes are purely outgoing. As before, these two conditions will only

be satisfied for a discrete set of modes, but the dispersion relation will now depend

on the dimensionless parameter x = rc/(. For the surface near the horizon we have

x → 1 and as we approach the worldline we have x → 0. For general x, the problem

cannot be approached analytically and we must resort to numerics.

The dispersion relation corresponds to the pole structure of the Green’s function

of the vector modes on the particular cutoff surface. Thus, naturally, a flow of the

dispersion relation corresponds to a flow of the Green’s function itself. For an in-
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compressible fluid on an S2 described by (2.1.1) we can readily obtain the tree level

retarded Green’s function of vi (see for example [56]).

To perform the analysis, it is in fact more convenient to use the (τ, ρ)-coordinate

system introduced in (2.2.6). To study different timelike hypersurfaces we fix ρ = 1

and tune α from the horizon at 0 to the worldline at 1/2. We must then study for

what values of (complex) ω the purely outgoing solutions δgout
iτ in (2.3.16) vanish at

the ρ = 1 hypersurface. It is relatively straight forward to compute the corrections

to the dispersion relation perturbatively in α. For instance, to linear order in α we

find:9

ν = 1 +
α

2

(
5 + 3k2

V

)
. (2.4.28)

Expression (2.4.28) is only reliable for l2 ! 2/3α.

2.4.2 Numerical Results

Since we impose Dirichlet boundary conditions at ρ = 1, α parametrizes the

location of our cutoff surface rc with respect to the cosmological horizon. The relation

is given by

α =
(− rc

2(
=

1− x

2
. (2.4.29)

As we move rc away from the cosmological horizon, we expect to deviate from

our quadratic dispersion relation (2.3.18). Generically when searching for zeros of

δgout
iτ (ρ = 1) in (2.3.16) for arbitrary but fixed rc and l, one runs the risk of finding

any one of a tower of such zeros (see (2.4.27) for example).

9It is amusing to note that such a correction could be obtained by adding a suitable forcing term
to our incompressible Navier-Stokes equation [56].
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In order to make our analysis clear, we perform a search for the lowest lying zeros

at a given rc and l and do not present the rest of the tower. In the plots in figures 2.4

and 2.5 we have not searched for the l = 1 mode as this is where ω = 0 and therefore

our solutions ϕout
v and ϕin

v degenerate. We cover this case in appendix A.2. In what

follows we will only examine the case of pure (negative) imaginary ω given that both

the quasinormal modes (2.4.27) and the fluid modes (2.3.18) obey this property. It

would be interesting to extend the analysis to general ω in the lower complex plane.

We now describe how the spectrum behaves as we approach rc = (. As a reference,

we also present the results for rc close to the pole rc = 0 in figure 2.4 where the linear

dispersion relation is apparent. As rc is increased, we start to observe a deviation

from the linear behavior and the poles start to cluster into staircase-like behavior.

For rc close to the horizon, starting from the plot at the top left corner of figure 2.5,

we note that there are (at least) three distinct sets of modes separated by large gaps.

The l = 2 mode lies on the fluid dispersion relation line (meaning that it satisfies the
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Fig. 2.4: Flow of frequency spectrum iω( vs l as we move away from rc ≈ 0 toward

the cosmological horizon.
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Fig. 2.5: Flow of frequency spectrum iω( vs l as we approach rc = (. Points obeying

the fluid dispersion relation are represented in blue.

dispersion relation given by (2.3.18) with quartic corrections as in (2.4.28)), whereas

the rest do not. As we move rc closer to the horizon, we see that the non-fluid modes

get pushed higher and in the fourth plot, the l = 3 mode is plucked down to the

fluid line. This happens once again for the l = 4 mode near rc = 0.9865( whereas
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the non-fluid modes keep getting pulled higher. The reason for these jumps is that

the lowest lying zeroes of δgout
iτ are modified discontinuously as a function of rc as

is visually depicted in figure A.1 of appendix A.3. Finally, we find that arbitrarily

close to the horizon the dispersion relation lies entirely on the fluid dispersion relation

(2.3.18) computed analytically.
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Fig. 2.6: Flow of fluid mode frequencies with fit lines. The gray line is given by

iω( = (l(l + 1)− 2) while the orange line is given by iω( = ν(α) (l(l + 1)− 2) with

ν(α) given by (2.4.28). Note that the orange line fits the data better away from rc = (

and the gray and orange lines coincide at the horizon, as expected.

As a check of our analysis in the previous section, in figure 2.6 we show that the

correction at O(α) of the fluid viscosity gives the correct behavior for the fluid mode

frequencies for small but nonzero α. Notice that the orange line in figure 2.6 fits the
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data better than the gray line for rc parametrically displaced from the cosmological

horizon. The orange line is precisely the dispersion relation corrected to O(α) in our

analysis of linear perturbations of the background metric of the static patch. The

gray line does not include O(α) corrections.

It is interesting to note that all observed spectra of iω( are monotonically increas-

ing functions of l. This is a feature that we may expect by continuity away from the

modes analytically computed at rc = (, but holds as we push rc a finite amount from

the surface, even when jumps occur.

2.5 Incompressible Fluids on Spacelike Slices?

So far we have discussed several aspects of the static patch, which is the region

accessible to a single observer. We would now like to briefly discuss some aspects of

the future diamond. After all, future infinity is clearly a viable candidate location for

the non-perturbative definition of an asymptotically de Sitter universe. Ordinarily,

we would not associate the dual theory on I+ with the static patch observer. On

the other hand, if we impose boundary conditions where there is no incoming flux

from the Northern diamond, such that all data reaching I+ is coming from a single

static patch one might conceive of such a relation.10 In this section we will make

some simple mathematical observations about the behavior of metric deformations

on a spacelike slice just outside the cosmological horizon.

10Such ‘holographic projections’ of the static patch observer were also considered in the rotating
Nariai geometry [57, 74, 59]. In that case a near cosmological horizon limit allowed for an isolated
space-time whose (spacelike) boundary is of the same type as the spacelike slice we are discussing
here.
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2.5.1 Linearized Analysis

Our aim is to solve the linearized equations in the future diamond, imposing

Dirichlet boundary conditions on a constant r surface arbitrarily close to the cosmo-

logical horizon. In order to choose an appropriate near horizon coordinate system we

begin with the future diamond, described by (2.2.3) with r ∈ [(,∞]. As before, we

introduce the following coordinate transformation:

t

(
=

1

2α
τ̃ − 1

2
log

(
−ρ̃ (1− αρ̃)−1) , r = ((1− 2αρ̃) . (2.5.30)

In what follows we will drop the tildes. The metric becomes:

ds2

(2
=

(
− ρ

α
+ ρ2

)
dτ 2 + 2dτdρ + (1− 2ρα)2 dΩ2

2 . (2.5.31)

Taking α → 0 with α > 0, constant ρ slices for ρ < 0 now correspond to spacelike

slices just above the cosmological horizon. This slice receives data from the future

horizons of both the Southern and Northern patches. If we are to isolate one of the

observers, say the Southern observer, we must impose that the incoming flux from

the Northern static patch vanishes, as shown in figure 2.7.

The vector mode with vanishing flux from the Northern patch is generated by a

master field ΦS
v = e−2iαωt(τ,ρ)/&ϕS

v , with:

ϕS
v = (−ρ)−iαω

2F1

[
a1, b1; c1; αρ(−1 + 2αρ)−1

]
(1− αρ)−iαω(1− 2αρ)2iαω , (2.5.32)

where

a1 = −l − 2iαω , b1 = 1 + l − 2iαω , c1 = 1− 2iαω . (2.5.33)
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Fig. 2.7: Our boundary conditions for the linearized modes are such that the induced

metric on the ρ = −1 slice is unchanged and there is no incoming flux from the

Northern static patch.

The linearized metric deformation is given by:

δgS
iτ = 2Vi × e−iωτ (−ρ)iαω+1(1− αρ)−iαω+1

(
1− (1− 2αρ)

2α
∂ρ

)
ϕS

v , (2.5.34)

δgS
iρ = −2αVi × e−iωτ

(
1− αρ

−ρ

)−iαω [(
1− iω(1− 2αρ)

2ρ(1− αρ)

)
− (1− 2αρ)

2α
∂ρ

]
ϕS

v .

(2.5.35)

Demanding that the above vector modes vanish at the spacelike ρ = −1 hyper-

surface in the limit where α → 0 gives the discrete relation:

ωsf = +i (l(l + 1)− 2) , l = 1, 2, . . . (2.5.36)

This is precisely the same dispersion relation that was found earlier in (2.3.18) for

the Lorentzian hypersurface but with νsf = −1.11 To linear order in α we find:

νsf = −1 +
α

2

(
5 + 3k2

V

)
. (2.5.37)

11We note that a time-reversal τ → −τ transformation leads to vi → −vi and thus introduces a
sign change to the viscosity term νsf in the non-linear Navier-Stokes equation (2.1.1). Thus, one
can interpret a negative viscosity fluid as a time-reversed version of a positive viscosity fluid. We
thank R. Loganayagam for pointing this out to us.
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It is not hard to show perturbatively in α that νsf (α) = −ν(−α). Upon evaluating

the linearized metric modes on the ‘spacelike fluid’ frequencies (2.5.36) we find that

the vector modes are regular as we approach the ρ→ 0 horizon.

2.5.2 Non-linear Analysis

We would now like to perform a non-linear analysis of the metric deformations in

an α expansion, again in the context of the spacelike slices. The cutoff surface will

now be at ρ = −1. Non-linear deformations analogous to those presented for timelike

slicings are:

ds2

(2
= − ρ

α
dτ 2 (2.5.38)

+ ρ2dτ 2 + 2dτdρ + dΩ2
2 + (1 + ρ)

[
v2dτ 2 − 2vidτdxi

]
+ 2ρPdτ 2

− α
[
(4ρ + 2P ) dΩ2

2 − (1 + ρ)vivjdxidxj

+
(
ρ2 − 1

) (
∇2vi + Rjiv

j
)
dτdxi + 2vidρdxi −

(
v2 + 2P

)
dτdρ + 2 (1 + ρ) φ(α)

i dτdxi
]

+ α2
(
4ρ2dΩ2

2 + 2g(α2)
ρi dxidρ + g(α2)

ij dxidxj
)

+ . . . .

On the spacelike slice at ρ = −1, the internal geometry is conformally equal to

ds2
3d =

(
1

α
+ 1

)
dτ 2 + (1 + 2α)2 dΩ2

2 , (2.5.39)

with a conformal factor

1− 2αP +O(α2) . (2.5.40)

Similarly to the timelike case, for this metric to solve the Einstein equation through

O(α0), (vi, P ) are required to solve the incompressible Navier-Stokes equation:

∂τv
i + vj∇j

S2v
i +∇i

S2P − νsf

(
∇2

S2vi + Ri
jv

j
)

= 0 (2.5.41)
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with

νsf = −1 . (2.5.42)

Note again that the viscosity νsf has changed sign from the fluid on the timelike

slices. By integrating the Gττ = 0 condition at O(α0) over the sphere, we again find

the constraint that

∂τ

(
ˆ

v2dΩ2

)
= −2∂τ

(
ˆ

PdΩ2

)
. (2.5.43)

Hence the structure of the Einstein equation with positive cosmological constant on

the timelike slice near the cosmological horizon with the specified boundary conditions

is closely mimicked in this spacelike context.

2.5.3 Pushing the Spacelike Slice to I+

We now wish to push the spacelike slice all the way to I+ and study the constraints

on ω. We impose fast-falling Dirichlet boundary conditions at I+ and no incoming

flux from the Northern patch.

Reverting to static patch (r, t)-coordinates, the solutions Φv(r, t) = e−iωtϕv(r)

analogous to (2.3.12) and (2.3.13) near I+ were computed in [35] and are given by:

ϕ−v =

(
r2

(2
− 1

)−iω&/2 (r

(

)iω

2F1

(
a1; b1; c1;

(2

r2

)
, (2.5.44)

ϕ+
v =

(
r2

(2
− 1

)−iω&/2 (r

(

)−1+iω&

2F1

(
a2; b2; c2;

(2

r2

)
, (2.5.45)

with

a1 =
1

2
(1 + l − iω() , b1 =

1

2
(−l − iω() , c1 =

1

2
; (2.5.46)

a2 =
1

2
(1− l − iω() , b2 =

1

2
(2 + l − iω() , c2 =

3

2
. (2.5.47)
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As we approach I+ in the limit r → ∞ we find ϕ−v ∼ 1 and ϕ+
v ∼ (/r. Note that

(c2 − a2 − b2) = iω(. In order to eliminate deformations of the conformal metric at

I+ we switch off the slow falling mode ϕ−v .

Our task is to eliminate the incoming Northern flux upon turning on ϕ+
v . It is

not hard to see that this will require (c2 − a2 − b2) = iω( to be an integer. We must

further ensure that metric fluctuations are analytic for iω( ∈ Z+. To achieve this, we

must eliminate the logarithmic term in the hypergeometric identity (A.4.10). This

implies that either

a2 = −n1 or b2 = −n2 , ni = 0, 1, 2, . . . (2.5.48)

It turns out that of the two possibilities, only the second one is sufficient to eliminate

the Northern incoming flux. In the first case, we have to impose a further inequality

n1 ≥ l, whose origin is explained in appendix A.4. Hence, defining n1 ≡ l + ñ1, ñ1 =

0, 1, 2, . . . and imposing no further condition on the integer n2, we obtain the following

conditions:

ωI
+

n ( = −i(2ñ1 + 1 + l) , ñ1 = 0, 1, 2, . . . (2.5.49)

ωI
+

n ( = −i(2n2 + 2 + l) , n2 = 0, 1, 2, . . . (2.5.50)

which combines into one single tower of modes

ωI
+

n ( = −i(n + l + 1) , n = 0, 1, 2, . . . (2.5.51)

Curiously, and perhaps interestingly, this is exactly the same set of modes as the

quasinormal mode spectrum (2.4.27) in the Southern patch.
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2.5.4 Topological Black Holes in AdS4

In fact, the above calculation is mathematically equivalent to the computation of

quasinormal modes for the massless topological black hole in AdS4 [60, 61, 62] (see

also [63]) upon continuing k2
V → −k2

V . This is due to the fact that the metric of the

massless topological AdS4:

ds2 = −
(
−1 +

(
r̃

(AdS

)2
)

dt̃2 +

(
−1 +

(
r̃

(AdS

)2
)−1

dr̃2 + r̃2dH2
2 (2.5.52)

is related to the static patch metric by an analytic continuation. The two-dimensional

space: dH2
2 = (dξ2+sinh2 ξdφ̃2) is the standard metric on the hyperbolic two-manifold.

The analytic continuation from the static patch metric (2.2.3) to the above metric is

given by:

(→ i(AdS , t→ it̃ , r → ir̃ , θ → iξ , φ→ φ̃ . (2.5.53)

An observer in the massless topological AdS4 geometry observes a Hawking temper-

ature given by T = 1/2π(AdS. If one considers compact quotient of H2, there is a

finite entropy proportional to ((AdS/(P )2 associated with the horizon at r̃ = (AdS.

We also expect such mathematical similarities to hold between the boundary correla-

tors near the boundary of topological AdS4 black holes and those near I+ (using the

boundary conditions discussed above). It is also interesting to note that at the non-

linear level one can add negative energy to (2.5.52) and create spherically symmetric

asymptotically AdS4 topological black holes. This occurs up to a critical negative

mass, for which one finds a solution interpolating between AdS4 near the boundary

and AdS2×H2 [60]. Similarly, adding sufficient mass to the static patch leads to the

Nariai solution which interpolates between dS4 near I+ and dS2 × S2. We hope to
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further uncover this map in future work, as it may provide insight into the nature of

the static patch observer.
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Chapter 3

A de Sitter Hoedown

3.1 Rotating Black Holes

We continue our explorative work by switching focus and examining the thermo-

dynamics of black holes in dS. In particular we will study the properties of general

Kerr-de Sitter black holes [67, 68]. We treat the black hole and cosmological horizons

as thermal entities in their own right and obtain the regions of phase space where

they have positive and negative specific heats. Generally, the black hole horizons are

out of thermal equilibrium with the cosmological horizon. However, there are three

limits where one can define a Euclidean instanton associated to the Lorentzian space-

time [57]. Firstly, the black hole may be extremal, in which case the Euclidean time

coordinate need not be periodically identified. Secondly, there is the lukewarm solu-

tion which is defined by the black hole and cosmological horizons sharing the same

temperature. Finally, there is the rotating Nariai geometry where the black hole and

cosmological horizons approach each other.
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Of the three limits, it is only in the rotating Nariai geometry that the angular

velocities of the black hole and cosmological horizons tend to coincide. Thus, even

though the lukewarm configuration may be in thermal equilibrium, it is out of rota-

tional equilibrium and will generally exchange particles carrying angular momentum,

a process enhanced by superradiance at the quantum level [69]. We will find that

this effect is absent in the rotating Nariai limit. Upon perturbations of this space-

time, however, thermodynamic evolution of the system leads it to the most entropic

configuration - pure de Sitter space. Thus, the equilibrium of the rotating Nariai

geometry is found to be unstable. Even so, this geometry is interesting in its own

right given that it is mediated from a Euclidean instanton and can thus serve as a

natural starting point in the thermal evolution.

In the second part of the chapter we focus on the rotating Nariai geometry and

in particular we consider massless scalar waves about this geometry. We find explicit

solutions to the wave equation, which are given explicitly by hypergeometric functions.

Equipped with these solutions we proceed to compute the quasi-normal modes of

the rotating Nariai geometry by imposing that the waves are purely ingoing at the

black hole horizon and purely outgoing at the cosmological horizon (see for example

[70]). These quasinormal modes encode the dissipative information of the spacetime

upon scalar perturbations. We find two quantization conditions, one related to the

frequency and the other to the axial angular momentum of the modes.

Finally, we discuss our results in light of the proposal that the rotating Nariai

geometry is holographically dual to a two-dimensional Euclidean CFT [74]. The

evidence for the proposal rests in the study of the asymptotic symmetry group [75] of
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the rotating Nariai geometry, which is given by a single copy of the Virasoro algebra

with a positive central charge. It is found that there is a striking agreement between

the various quantities computed for the bulk scalars and those expected from the

CFT, upon a suitable identification of the scalar field parameters. In particular, the

thermal boundary-to-boundary correlators of the scalar field at I+ take the form of a

two-point function at finite temperature in a two-dimensional CFT. In fact, they imply

the presence of both left and right-moving sectors. The right-moving temperature is

precisely the Hawking temperature of the cosmological horizon in the dS2 part of the

geometry and the left moving temperature is related to the periodicity of the axial

coordinate of the black hole. To have complete consistency, we have to also posit

the existence of an additional U(1) symmetry whose zero-mode coincides with the

zero-mode of the left moving Virasoro.

Some of our discussion bears resemblance to the analogous discussion for the

Kerr/CFT correspondence [76]. On the other hand, we have found clear distinctions

between the two. For instance, one can define various vacua for the scalar field in the

rotating Nariai geometry. Moreover, one observes cosmological particle production

at I+ as opposed to Schwinger pair-production at the timelike boundary of NHEK

geometry. This is reminiscent of the striking difference between scalar fields in de

Sitter space, which contain a complex valued parameter worth of vacua, and scalars

in anti-de Sitter space which exhibit no such family. Thus, although classically the

NHEK and rotating Nariai geometries are related by an analytic continuation in the

coordinates, they are significantly different at the quantum level.
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3.2 Geometry and Conserved Charges

Our story begins with the four-dimensional Einstein-Hilbert action endowed with

a positive cosmological constant

Ig =
1

16πG

ˆ

M
d4x
√
−g (R− 2Λ) , Λ ≡ +

3

(2
, (3.2.1)

where we set G = 1 in what follows. The metric of the rotating black hole in de Sitter

space is a two-parameter solution given by

ds2 = −∆r

ρ2

(
dt− a

Ξ
sin2 θdφ

)2

+
ρ2

∆r
dr2

+
ρ2

∆θ
dθ2 +

∆θ

ρ2
sin2 θ

(
adt− r2 + a2

Ξ
dφ

)2

(3.2.2)

where we have defined the following objects:

∆r = (r2 + a2)

(
1− r2

(2

)
− 2Mr, Ξ = 1 +

a2

(2
, (3.2.3)

∆θ = 1 +
a2

(2
cos2 θ, ρ2 = r2 + a2 cos2 θ. (3.2.4)

The parameters a and M will be related to the angular momentum and mass of the

black hole solution. We will be mostly concerned in the parameter space allowing ∆r

to contain four (possible repeated) real roots.1 We generally write ∆r as

∆r = − 1

(2
(r − rc)(r − r+)(r − r−)(r + rn), rn > rc ≥ r+ ≥ r− > 0 (3.2.5)

with the following conditions obeyed:

(rc + r+)(rc + r−)(r+ + r−) = 2M(2,
∏

i

ri = a2(2 = −(2
∑

i≤j

rirj, rn =
∑

i#=n

ri.

(3.2.6)

1Solutions with two positive real and two complex roots also exist, however such configurations
require imaginary a and M < 0.
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We have denoted the locations of the cosmological, outer, inner and negative horizons

as rc, r+, r− and rn respectively. Note that the negative root −rn may be physical

in the case of rotating black holes given that the singularity is a ring singularity that

observers can go through. Furthermore, note that 3.2.6 implies M > 0. The de Sitter

length is denoted by (.

Conserved Charges and the First Law

The conserved charges of the full spacetime have been computed in [77, 78] based

on the classic construction by Brown and York [79], and are given by

Q∂t = −M

Ξ2
, Q∂φ

= −aM

Ξ2
. (3.2.7)

It may seem surprising to find a negative energy however this follows quite naturally

from a thermodynamic argument. As we shall see, the most entropic configuration is

given by pure de Sitter space which in four-dimensions has vanishing energy. Thus,

it is natural that low entropy fluctuations such as the black holes carry less energy

than de Sitter space itself.

On the other hand our interest will lie in the thermodynamic properties of the

black hole horizon which can be treated as a thermodynamic entity in itself. The

energy and angular momentum of the black hole horizon can be defined to be

E ≡ −Q∂t =
M

Ξ2
, J ≡ −Q∂φ

=
aM

Ξ2
. (3.2.8)

The reason we choose these definitions is that they reduce to the Minkowksi values

in the limit ( → ∞. Additionally, as we shall soon see, they are the ones that give
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the correct first law of thermodynamics.2

The entropies of the cosmological horizon Sc and black hole SBH are given by

Sc =
π(r2

c + a2)

Ξ
, SBH =

π(r2
+ + a2)

Ξ
. (3.2.9)

In the presence of rotation the first law of thermodynamics becomes

dE = THdS + Ω̃HdJ, (3.2.10)

where Ω̃H and TH are the angular velocity of the black hole horizon with respect to a

non-rotating boundary and Hawking temperature of the black hole. Explicitly, they

are given by

TH =
|∆′

r(r+)|
4π(r2

+ + a2)
=

(2r2
+ − 3r4

+ − a2r2
+ − a2(2

4π(2r+(r2
+ + a2)

(3.2.11)

Ω̃H ≡ ΩH − Ω∞ =
aΞ

r2
+ + a2

− a

(2
. (3.2.12)

Note that the angular velocity as r →∞ is defined as

Ω∞ ≡ − lim
r→∞

(
gtφ

gφφ

)
=

a

(2
. (3.2.13)

Finally, the temperature and angular momentum of the cosmological horizon, Tc

and Ω̃c, are given by 3.2.11 and 3.2.12 with r+ replaced by rc.

The Various Limits of Parameter Space

There are various regions of interest in the parameter space of the rotating de

Sitter black hole. We list them below:

2It is an interesting point that the definitions of energy and angular momentum for the black
hole are precisely minus those for the full cosmological horizon. It is tempting to view the black
hole as inducing an equal and negative energy and angular momentum at the horizon, as an electric
charge inside a conducting sphere would [12].
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• The Extremal Limit corresponds to r+ → r− such that the black hole becomes

extremal and its temperature vanishes.

• The Lukewarm Limit corresponds to the black hole and cosmological horizons

having the same temperature without necessarily coinciding.

• The Rotating Nariai Limit corresponds to r+ → rc such that the black hole and

and cosmological horizons coincide.
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Fig. 3.1: The physically allowed configurations for Kerr-de Sitter space. We are using

units where ( = 1.

It is important to note that in all these limits, one can take a sensible analytic

continuation to the Euclidean instanton [57]. This is in sharp contrast to the generic

de Sitter black hole which is out of thermal equilibrium with the cosmological horizon.
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Particularly, the rotating Nariai instanton is argued to mediate the nucleation of

rotating black holes in direct analogy to the original case of the non-rotating Nariai

instanton as studied by Ginsparg and Perry [37] (see also [80]).

The lukewarm solution also plays a potentially interesting role as the unique rotat-

ing black hole which is in a stable thermal equilibrium with the cosmological horizon

at non-zero temperatures. One can obtain an explicit condition for when the black

holes are lukewarm, namely

Mlw = a

(
1 +

a2

(2

)
. (3.2.14)

Having said this, it should also be noted that to attain a system which is in com-

plete thermal equilibrium all thermodynamic chemical potentials must be equal. The

angular velocity of the cosmological and black hole horizons for the lukewarm config-

urations are not equivalent unless we are also at the rotating Nariai limit so in general

there will be exchange of particles carrying angular momentum.

Geometry of the Rotating Nariai Limit

As mentioned above, the rotating Nariai geometry possesses the interesting feature

of being in thermal equilibrium with respect to both its temperature and its angu-

lar velocity. Here we present the near horizon limit leading to the rotating Nariai

geometry.

We will take the Nariai limit r+ → rc and the near horizon limit simultaneously.

This is the Nariai analog of the near-NHEK limit of extremal black holes considered

in [81, 82]. We define the non-extremality parameter

λ =
rc − r+

εrc
. (3.2.15)
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where ε is a small parameter which we will take to zero. In order to go to the near

horizon limit, we must go to a non-rotating frame with respect to the cosmological

horizon and rescale the coordinates as follows:

t̂ = bεt , x =
r − r+

εrc
, φ̂ = φ− ΩHt, (3.2.16)

where

ΩH ≡
Ξa

r2
+ + a2

, b ≡ rc(rc − r−)(3rc + r−)

(2(a2 + r2
c )

. (3.2.17)

Taking ε→ 0 with λ, t, r, φ held fixed, we find the rotating Nariai metric [57]

ds2 = Γ(θ)

(
−x(λ− x)dt̂2 +

dx2

x(λ− x)
+ α(θ)dθ2

)
+ γ(θ)(dφ̂ + kxdt̂)2, (3.2.18)

with φ̂ ∼ φ̂ + 2π, x ∈ (0, λ), and

Γ(θ) =
ρ2

crc

b(a2 + r2
c )

, α(θ) =
b(a2 + r2

c )

rc∆θ
, γ(θ) =

∆θ(r2
c + a2) sin2 θ

ρ2
cΞ

2
, (3.2.19)

k =
2ar2

cΞ

b(a2 + r2
c )

2
, ρ2

c = r2
c + a2 cos2 θ.

At fixed polar angle, one can recognize the above geometry as an S1 fibration over

two-dimensional de Sitter space [83]. The black hole horizon is located at x = 0

and the cosmological horizon is located at x = λ and they have the same Hawking

temperature

TRN = λ/4π. (3.2.20)

Furthermore, both horizons have vanishing angular velocity in the limit λ→ 0.

Global Coordinates

It will be useful to write down the rotating Nariai geometry in global coordinates.

This amounts to writing the dS2 piece in its global form

ds2 = Γ(θ)
(
−dτ 2 + cosh2 τdψ2 + α(θ)dθ2

)
+ γ(θ) (dφ− k sinh τdψ)2 (3.2.21)
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where τ ∈ (−∞,∞) and ψ ∼ ψ +2π in order to have a single cover of the global dS2.

Constant time slices in this spacetime have an S1 × S2 topology.

3.3 Thermal Phase Structure

In this section we wish to explore the thermodynamic stability and thermal evo-

lution of the Kerr-de Sitter spacetimes. We begin by discussing stability of the black

holes as it arises in the canonical and grand canonical ensembles. We conclude with

an evaluation of the thermal evolution based on the total entropy of our system, which

we take to be the sum of the cosmological and black hole horizon entropies. Explicit

expressions for the objects we compute are presented in appendix B.1.

Thermal Stability

In addition to the first law of thermodynamics, one can study the thermal stability

of our system. The measure of thermal stability depends on the ensemble we choose.

Canonical Ensemble

The canonical ensemble is defined at a fixed temperature and angular momentum

for the black hole. The relevant thermodynamic potential is given by the Helmoltz

free energy

F = E − THSBH (3.3.22)

and we must examine the specific heat capacity at fixed angular momentum,

CJ =

(
∂E

∂TH

)

J

= TH
∂SBH

∂TH
. (3.3.23)
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From the above expression, one notes that both the extremal and rotating Nariai

solutions have vanishing specific heat.

In Fig. 2 (a) we exhibit the allowed rotating black hole configurations in the

(r+, a)-plane. The black hole horizons with positive specific heat inhabit the region

below the dotted line. Notice that for a given angular momentum, there is a phase

transition from positive to negative specific heat as one increases r+. This was first

observed in [67] and corresponds to the point where the temperature of the black hole

reaches a maximum with respect to r+. The physically allowed parameter space is

bounded by the rotating Nariai solutions, and the extremal black hole solutions. The

point where the two curves meet is the ultracold point.

We note that most but not all lukewarm configurations have positive specific heat.

Extremal and rotating Nariai configurations have vanishing specific heat. Finally,

regions where the cosmological horizon has greater (smaller) temperature than the

black hole horizon is given by the region above (below) the lukewarm curve.

Grand Canonical Ensemble

The grand canonical ensemble is defined at a fixed temperature and angular ve-

locity. In this case, the relevant thermodynamic potential is given by the Gibbs free

energy,

G = E − THSBH − Ω̃HJ (3.3.24)

which is a function of the intrinsic parameters TH and Ω̃H . The stability in the grand

canonical ensemble is given by analyzing the full Hessian

Hij =

(
∂2SBH

∂Xi∂Xj

)
, Xi = E, J. (3.3.25)
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Fig. 3.2: Left: Phase space of allowed solutions in the (r+, a)-plane. Above the green

(dotted) line, the black hole horizon has negative specific heat. The red (solid) line

indicates the lukewarm configurations. Right: Constant J curves in the (r+, a)-plane.

We are plotting in units where ( = 1.

A system that is thermally stable will have a total entropy function lying at a maxi-

mum, as a function of the extensive parameters. This gives rise to the conditions

∂2SBH

∂E2
< 0,

∂2SBH

∂J2
< 0,

∂2SBH

∂J2

∂2SBH

∂E2
−

(
∂2SBH

∂J∂E

)2

> 0. (3.3.26)

The first condition is equivalent to the specific heat at fixed angular momentum

being positive, the second condition is the analogous statement for fixed energy fluc-

tuations and the third is the requirement that the Hessian have positive determinant.

In Fig. 3 (a) we demonstrate the regions of positive and negative ∂S2
BH/∂J2. It is

further found that the Hessian, given explicitly in B.1.3 is negative definite for all

configuration space, indicating that all black holes are thermally unstable once we

allow angular momentum to be exchanged.
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Fig. 3.3: Left: Regions of negative ∂S2
BH/∂J2 below the green (dotted) curve. Right:

Constant E curves in the (r+, a)-plane. We are plotting in units where ( = 1.

Thermal Evolution

We would like to address the issue of the thermal evolution of the black holes

immersed within the cosmological horizon. First note that the cosmological horizon

has lower temperature than the black hole horizon when we are in the region above the

lukewarm line in Fig. 1. Secondly, the cosmological horizon has an angular velocity

that is less or equal to that of the black hole horizon, where equality only holds in

the rotating Nariai limit. Thus, most configurations are out of thermal equilibrium

and will thermally evolve.

The total entropy of our system is taken to be the sum of the black hole and

cosmological entropies,

Stot ≡ SBH + Sc =
π(r2

+ + a2)

Ξ
+

π(r2
c + a2)

Ξ
. (3.3.27)

Furthermore, the total energy and angular momentum of our spacetime is zero, as it
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was noticed earlier that the conserved charges of the cosmological horizon are equal

and opposite to those of the black hole.

Our system will evolve thermodynamically in the direction that maximizes total

entropy for fixed total energy and angular momentum. In Fig. 4 we demonstrate

constant Stot contours throughout the configuration space. The system evolves to

the pure de Sitter configuration which indeed is the most entropic configuration.

Particularly, upon nucleation of the rotating Nariai black hole the two horizons will

exchange angular momentum and energy until the black hole spins down and fully

evaporates.
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Fig. 3.4: Contour plot of constant total entropy curves. The direction of increasing

entropy is toward the origin of the configuration space, i.e. pure de Sitter space. We

plot in units where ( = 1.

In order to determine the direction in which the thermal evolution proceeds
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throughout our configuration space, we would require knowledge of the emission rates

of angular momentum and energy from one horizon to the other (e.g. [69, 84]). In

appendix B.2 we present the qualitative possibilities that may appear as we vary the

relative rate of emission of energy and angular momentum.

3.4 Scalar Waves

At this point we will turn to the issue of the wave equation for scalar fields [85]

in the Kerr-de Sitter geometry. We will not be able to obtain explicit solutions in

general, the only exception being when we take the rotating Nariai limit. Indeed,

the rotating Nariai instanton mediates the semi-classical production of the rotating

Nariai geometry [57] and it is thus a natural configuration to study as the starting

point in the thermal evolution of Kerr-de Sitter space. Furthermore, the asymptotic

symmetry group of this geometry was recently studied and found to consist of a

centrally extended copy of the Virasoro algebra [74] suggesting that there may be a

holographic interpretation of the spacetime in terms of a two-dimensional conformal

field theory.

Scalar Wave Equation

A simple way to examine the superradiant properties of a rotating black hole are

by analyzing a scalar field in the black hole background. The equation of motion for

a massless scalar is given by

∇2Φ(r, t, Ω) = 0. (3.4.28)
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One can impose an ansatz for which the variables separate and obtain an angular and

radial equation. If we choose Φ(r, t, Ω) = R(r)Ylm(θ)e−iωt+imφ, with m ∈ Z, we find

two decoupled equations for the angular and radial parts.

The angular equation is given by the spheroidal harmonic equation
(

1

sin θ

d

dθ
∆θ sin θ

d

dθ
−

(
mΞ− aω sin2 θ

)2

∆θ sin2 θ
+ jlm

)
Ylm(θ) = 0. (3.4.29)

It is not hard to prove that the separation constants jlm are discrete for a given ω,

however their values are only known numerically. Our normalization for the Ylm is

given in appendix B.4. The radial equation is given by

(
d

dr
∆r

d

dr
+

1

∆r

(
aΞm− ω(a2 + r2)

)2 − jlm

)
R(r) = 0. (3.4.30)

The above equations are generally not analytically solvable. They are, however,

regions where an approximate analytic grasp is possible. For instance, when the

black hole is near-extremal, i.e. r+ → r−, we can solve the wave-equation in the near

horizon region. More precisely, if we define the parameter

x =
r − r+

r+
(3.4.31)

and a unitless Hawking temperature τH ∝ (r+− r−) then one can match the x. τH

and x/ 1 solutions in the region τH / x/ 1 and compute the reflection coefficient.

This situation has been discussed for the near-extremal Kerr black hole [81], and we

will not pursue it here.

Rotating Nariai Limit

We will instead focus on the rotating Nariai limit. In this limit, the black hole and

cosmological horizons coincide and we must take a near horizon limit to reveal the
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underlying geometry where observers reside. The small parameters relevant to this

limit are the near extremality parameter λ and the near horizon variable x defined

by

x =
(r − r+)

εrc
, λ =

(rc − r+)

εrc
. (3.4.32)

In the limit ε→ 0 with λ fixed, we find that our radial equation tends to
(

x(x− λ)
d2

dx2
+ (2x− λ)

d

dx
+

(ω̃ + mkx)2

x(x− λ)
+ j̃lm

)
R(x) = 0, (3.4.33)

where we have defined

k ≡ arcΞ

(r2
c + a2)

2(2

(3rc + r−)(rc − r−)
, j̃lm ≡

jlm(2

(3rc + r−)(rc − r−)
. (3.4.34)

We note that in order to obtain the above equation, we have to restrict ourselves to

frequencies satisfying the ‘near superradiant bound’

ω = mΩH + εω̃
rc(rc − r−)(3rc + r−)

(2(a2 + r2
c )

, ΩH ≡
aΞ

r2
+ + a2

(3.4.35)

and the sign of ω̃ determines if we are above or below the bound ω = mΩH . In this

limit the black hole horizon resides at x = 0 and the cosmological horizon resides at

x = λ.

It is interesting to note that R(x) obeys the equation of motion for the radial part

of a charged massive scalar field in two-dimensional de Sitter space (with de Sitter

radius (2), in the presence of an E-field [86]. Explicitly, the E-field and mass m2
2 are

related to the four-dimensional quantities by:

qE = mk, m2
2(

2
2 = j̃lm. (3.4.36)

Furthermore, we identify the radial equation as the equation satisfied by the radial

part of a massive scalar field in the rotating Nariai geometry 3.2.18. The frequency ω̃
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becomes the frequency of the modes in the t̂-coordinate, thus giving a time dependence

of the form e−iω̃t̂.

The solution to this equation is given by a linear combination of hypergeometric

functions. An explicit solution in the region 0 < x < λ is given by

R(x) = (λ− x)−inR
[
c1 × xiω̃/λ R1(x) + c2 × x−iω̃/λ R2(x)

]
(3.4.37)

where

R1(x) = 2F1 (h− − imk, h+ − imk, 1 + 2iω̃/λ, x/λ) , (3.4.38)

R2(x) = 2F1 (h− − i(nR + ω̃/λ), h+ − i(nR + ω̃/λ), 1− 2iω̃/λ, x/λ) .(3.4.39)

We have defined the following convenient quantities

h± ≡ 1

2
± i

µ

2
, µ =

√
4j̃lm + 4m2k2 − 1, (3.4.40)

nR ≡ mk + ω̃/λ, (3.4.41)

and we assume for later convenience that iµ = h+ − h− (when real) is non-integral.

The expressions h± are complex for large angular momentum along the two-sphere.

This property will be related to the oscillatory behavior of modes at I±. Also, it is

worth noting that h± have an implicit dependence on ω̃ through the j̃lm.

We now proceed to explore the above solution in the various interesting regions

of the geometry: the horizons and the boundary of the rotating Nariai geometry.

Behavior Near the Cosmological Horizon

Demanding that our wavepackets have ingoing group velocity at the black hole

horizon leads us to impose c1 = 0. Having done so, we can expand our solution

52



Chapter 3: A de Sitter Hoedown

near the cosmological horizon3 and find a linear combination of ingoing and outgoing

waves4

R(x) =
[
Aout(λ− x)−inR + Ain(λ− x)inR

]
(3.4.42)

where the ingoing and outgoing coefficients are given by

Aout =
Γ[1− 2iω̃/λ]Γ[2inR]λ−iω̃/λ

Γ[h+ + imk]Γ[h− + imk]
, (3.4.43)

Ain =
Γ[1− 2iω̃/λ]Γ[−2inR]λ−i(2nR+ω̃/λ)

Γ[h+ − i(nR + ω̃/λ)]Γ[h− − i(nR + ω̃/λ)]
. (3.4.44)

It is important to note that in the above, we are implicitly considering the case where

Re nR > 0. In the case where Re nR < 0, one must switch the labels Ain and Aout.

Behavior at Late/Early Times

We now want to consider the behavior of scalar waves in the rotating Nariai

geometry as they approach the asymptotic past or future, i.e. λ < x < ∞. In order

to do so we introduce the following two linearly independent solutions to 3.4.33:

R−(x) = x−h−+inR (x− λ)−inR
2F1 (h− − i(nR + ω̃/λ), h− − imk, 2h−, λ/x) ,(3.4.45)

R+(x) = x−h++inR (x− λ)−inR
2F1 (h+ − imk, h+ − i(nR + ω̃/λ), 2h+, λ/x) .(3.4.46)

Note that in the large x limit, the above solutions behave as:

R±(x) ∼ x−h± . (3.4.47)

3In what follows we perform each expansion using hypergeometric function identities found in
Abramowitz & Stegun [87].

4The subscripts out, in refer to the direction in which positive energy flux is traveling, i.e. the
out modes have positive flux escaping the cosmological horizon. These need not coincide with the
direction of the group velocity. We define flux in 3.6.68.
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Given that x becomes timelike in the region x > λ, R+(x) corresponds to positive

frequency modes and R−(x) corresponds to negative frequency modes for real µ at

I+, where increasing x corresponds to the direction of increasing time. Note that t̂

is now a spacelike variable whose range is [−∞,∞] in the region x > λ. Forward

spatial motion in this patch is defined along the direction of decreasing t̂.

As in the previous subsection, we can expand both R− and R+ near x = λ using

hypergeometric function identities. We find

R−(x) = x−h−+inR

(
B−

out (x− λ)−inR + B−
in(x− λ)inRx−2inR

)
, (3.4.48)

where the coefficients are found to be

B−
out =

Γ[2h−]Γ[2inR]

Γ[h− + imk]Γ[h− + i(nR + ω̃/λ)]
, (3.4.49)

B−
in =

Γ[2h−]Γ[−2inR]

Γ[h− − imk]Γ[h− − i(nR + ω̃/λ)]
. (3.4.50)

Similarly, the R+ modes near x = λ are given by

R+(x) = x−h++inR

(
B+

out (x− λ)−inR + B+
in(x− λ)inRx−2inR

)
, (3.4.51)

where the coefficients are found to be

B+
out =

Γ[2h+]Γ[2inR]

Γ[h+ + imk]Γ[h+ + i(nR + ω̃/λ)]
, (3.4.52)

B+
in =

Γ[2h+]Γ[−2inR]

Γ[h+ − imk]Γ[h+ − i(nR + ω̃/λ)]
. (3.4.53)

Matching the Flux

At this point, we would like to match the outgoing flux across the future cosmo-

logical horizon. We begin by defining the general solution for x > λ:

Rtot(x) = αR−(x) + βR+(x). (3.4.54)
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Matching the outgoing flux across the future cosmological horizon x = λ, amounts

to matching the out coefficient in 3.4.42 with the out coefficients in 3.4.54. More

precisely, we would like to solve the following set of equations

αB−
out + βB+

out = Aout, (3.4.55)

αB−
in + βB+

in = 0 (3.4.56)

where 3.4.56 implies no localization of flux on the future cosmological horizon. Ex-

plicit expressions for α and β are provided in appendix B.3. For future reference,

however, we would like to note the ratio of these coefficients:

α

β
= λ−iµ Γ[iµ]Γ[h− − imk]Γ[h− − i(nR + ω̃/λ)]

Γ[−iµ]Γ[h+ − imk]Γ[h+ − i(nR + ω̃/λ)]
. (3.4.57)

3.5 Dissipation and Correlation

Given the explicit form of the solution, it is natural to study two objects. The first

is related to the dissipative properties of the thermal background, which are encoded

in the quasinormal modes. The second object we will study is the thermal boundary-

to-boundary correlator at I±. The motivation for studying such correlators stems

from the possibility that there exists a holographic theory living at the I± boundary

[74].

Quasinormal Modes of Rotating Nariai

As was noted, having found the solution in the rotating Nariai geometry we can

obtain the quasinormal modes due to scalar fluctuations. These are obtained im-

posing that the scalar wave has purely ingoing flux at the black hole horizon and
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purely outgoing flux at the cosmological horizon. As we mentioned, they encode the

dissipative behavior of the thermal background under scalar perturbations.

For Re nR > 0 and Re ω̃ > 0, this amounts to restricting the values of the angular

momentum to the following discrete set

ω̃ = −iλ(n + h±)/2− λmk/2, n = 0, 1, 2, 3, . . . (3.5.58)

= −2πiTRN (n + h±)− λmk/2, n = 0, 1, 2, 3, . . . (3.5.59)

since they would lead to a vanishing Ain coefficient in 3.4.42. The imaginary part of

the quasinormal modes is clearly related to the temperature of the horizons 3.2.20.

For RenR < 0 and Re ω̃ > 0, we find that the quasinormal modes become

|m|k = −i (n + h±) , n = 0, 1, 2, 3, . . . (3.5.60)

It is important to note that the set of modes 3.5.60 imposes a condition on the frequen-

cies ω̃ through the implicit dependence of h± on ω̃. When m = 0, the quasinormal

modes 3.5.58 reduce to those of the non-rotating Nariai geometry [88].

Two-Point Functions: Thermal Background

According the the notion that there is a holographic dual living at I+ [74], it is

natural to obtain the retarded thermal boundary-to-boundary correlators [89, 90] at

I+ of the near horizon region 3.2.18.

By imposing the boundary condition that our excitations are purely incoming at

the horizon we fix the behavior of the scalar field at I+. The thermal boundary-to-

boundary two-point function is defined by taking variational derivatives of the action
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with respect to the boundary value Φ0 of the scalar field

Gth
R (q, q′) ≡ δ

δΦ0(q)

δImatter

δΦ0(q′)
, q, q′ ∈ {ω̃, m, l}. (3.5.61)

and the matter action for the scalar field is given by the expression5

Imatter =
1

2

ˆ

M
d4x
√
−g∂µΦ∂µΦ. (3.5.62)

As we observed earlier, the late time behavior of the scalar field (in momentum

space) about the thermal background is given by

Φ ∼ αx−h+ + βx−h− . (3.5.63)

Modes with either of the falloffs h± are normalizable with respect to the Klein-Gordon

inner product given by,

(Φ1, Φ2) = −i

ˆ

Σ

d3x
√

hnµ
(
Φ1
←→
∂µ Φ∗2

)
(3.5.64)

where Σ is a constant time slice with unit normal vector nµ and hij is the induced

metric on Σ. Thus, we have the freedom to choose whether we are ‘sourcing’ an

operator with conformal weight h+ or h−, i.e. whether we take variational derivatives

of the action with respect to β or α as the boundary value. The two different choices

lead to the following two Green’s functions

Gth
R ∼

α

β
or Gth

R ∼
β

α
(3.5.65)

for a conformal weight h+ or h− respectively. The ratio α/β was given in 3.4.57.

5Further details of the derivation are given in appendix B.4.
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3.6 Superradiance/Cosmological Particle Produc-

tion

Rotating black holes are known to superradiate. Classically, this means that an

incoming wave toward the black hole horizon will be reflected back from the gravita-

tional potential with a reflection coefficient larger than unity. Quantum mechanically

it gives rise to spontaneous emission of radiation from the black hole horizon carrying

angular momentum.

We can get a basic idea of the process by considering the heat transfer THdS of a

black hole upon the scattering of a quantum with energy ω and angular momentum

m > 0. The first law of thermodynamics tells us that

THδSBH ≈ δEBH

(
1− m

ω
ΩH

)
(3.6.66)

giving us a simple condition ω < mΩH for the extraction of energy from the black

hole.

It has been further noted [69, 91] that the presence of a cosmological horizon intro-

duces another condition for superradiance. Namely, given the conserved charges of the

cosmological horizon 3.2.7, one obtains a first law for the cosmological horizon. The

crucial difference with the black hole horizon is that there is a relative sign between

the charges which leads to the following condition for the onset of superradiance

TcδSc ≈ δEc

(
−1 +

m

ω
Ωc

)
(3.6.67)

which leads to the relation ω > mΩc. Clearly, this condition is only relevant when

the incoming wave is sent from a region near the cosmological horizon.
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Superadiance in the Rotating Nariai Limit

We can effectively analyze superradiance in the rotating Nariai limit using our

analysis of the scalar wave. We choose boundary conditions such that we have an

incoming wave originating near the cosmological horizon which is purely ingoing at

the black hole horizon. The flux is given by

f =
1

2i

[
x(λ− x)R∗ d

dx
R− x(λ− x)R

d

dx
R∗

]
. (3.6.68)

The absorption cross-section of the black hole is given by the ratio of the absorbed

flux at the black hole horizon to incoming flux from the cosmological horizon and is

found to be

σabs =
fabs

fin
=

2 sinh(2πω̃/λ) sinh(2πnR)

cosh(2π(nR + ω̃/λ)) + cosh(πµ)
. (3.6.69)

Thus, when −mkλ < ω̃ < 0 the absorption cross-section becomes negative and our

system exhibits superradiance. This agrees with our original definition of ω̃, since it

is precisely the deviation away from the superradiant bound. Thus, we can recover

the condition on the original frequency ω:

mΩc < ω < mΩH . (3.6.70)

Notice that as λ→ 0, with ω̃ and m fixed, the absorption cross-section tends to unity,

implying that all incoming radiation is absorbed by the black hole horizon and thus

superradiance is absent.

Particle production in the Rotating Nariai Limit

Given that we are in a cosmological spacetime, we must also investigate the pro-

duction of particles at late times starting from a given initial vacuum state [71, 72].

59



Chapter 3: A de Sitter Hoedown

The appropriate metric to address this question is the global metric given by

ds2 = Γ(θ)
(
−dτ 2 + cosh2 τdψ2 + α(θ)dθ2

)
+ γ(θ) (dφ− k sinh τdψ)2 , (3.6.71)

where τ ∈ [−∞,∞] and ψ ∼ ψ + 2π. Notice that this metric contains no horizons,

and no single observer can fully access it.

Choosing an ansatz of the form Φ(τ, ψ, Ω) = T (τ)Ylm(θ)ei(qψ+mφ) with m and q

being integers, we find that T (τ) obeys

(
d2

dτ 2
+ tanh τ

d

dτ
+ sech2τ (q + mk sinh τ)2 + j̃lm

)
T (τ) = 0. (3.6.72)

If we perform the coordinate transformations t = sinh τ and subsequently z = t − i,

the solution is found to be

T (z) = (z + 2i)(−iñ+2q)/2 (
c1 × ziñ/2 T1(z) + c2 × z−iñ/2 T2(z)

)
(3.6.73)

where the expressions for T1(z) and T2(z) are:

T1(z) = 2F1 (h− + q, h+ + q, 1 + iñ, iz/2) , (3.6.74)

T2(z) = 2F1 (h− − imk, h+ − imk, 1− iñ, iz/2) (3.6.75)

and we have defined ñ ≡ mk − iq.

We can obtain the form of the solution for early times, t→ −∞, by using hyper-

geometric identities. We choose c1 and c2 such that

Tin(t) =
(−t)−h−

√
µ

, (3.6.76)

where we have normalized with respect to the Klein-Gordon inner product 3.5.64.

Notice that when h− becomes complex and thus acquires a negative imaginary part,
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and we obtain an incoming particle state with positive frequency at I−. Thus we

can expand the in-modes as a sum of creation an annihilation operators of the |in〉

vacuum:

Φin(t, ψ, Ω) =
∑

n∈{m,l,q}

(
Φ(n)

in (t, ψ, Ω)ain,n + Φ(n)∗
in (t, ψ, Ω)a†in,n

)
(3.6.77)

with

Φ(n)
in (t, ψ, Ω) = Tin(t)Ylm(θ)ei(mφ+qψ). (3.6.78)

normalized by the Klein-Gordon inner product 3.5.64. The creation and annihilation

operators obey the usual commutation relations with the following normalization

[ain,n, a
†
in,m] = δnm, [ain,n, ain,m] = 0, [a†in,n, a

†
in,m] = 0. (3.6.79)

Furthermore, the ain,n operators annihilate the |in〉 vacuum, i.e. ain,n|in〉 = 0.

The choice of c1 and c2 giving rise to the purely incoming particle state at past

infinity 3.6.76 gives rise to the following behavior at future infinity I+

lim
t→+∞

Tin(t) = b+

(
t−h+

√
µ

)
+ b−

(
t−h−

√
µ

)
. (3.6.80)

Thus, if we define |out〉 as the vacuum state with no outgoing particles on future

infinity, which is annihilated by modes of the form

Tout(t) =
t−h+

√
µ

(3.6.81)

we find the following Bogoliubov transformation

aout,n = b+ain,n + b∗−a†in,n. (3.6.82)

Thus, cosmological particle production due to the fact that b− is non-vanishing. In

other words,

|in〉 2= |out〉. (3.6.83)
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The expectation value of the number of out-particles produced in the |in〉 vacuum is

given by

〈in|a†out,naout,n|in〉 = |b−|2 (3.6.84)

= cosh2 (πmk) csch2
(πµ

2

)
(3.6.85)

and one can check explicitly that the relation

|b+|2 − |b−|2 = 1 (3.6.86)

is satisfied.6 As a consistency check, one may observe that for m → 0, the result

tends to that of cosmological particle production in dS2.

Since the form of the wave equation is qualitatively similar for the rotating Nariai

geometry in any number of dimensions, we don’t expect this result to be sensitive

to the dimensionality of our spacetime. This is in contrast to the regular de Sitter

geometry which only exhibits particle production in even dimensions [92].

Euclidean Modes - A Proposal

We would like to explore one last vacuum in the global coordinates which we

will call the Euclidean vacuum. In regular de Sitter space, it is well known that

there exists a family of de Sitter invariant vacua known as the α-vacua, which are

parameterized by the complex parameter α [71, 72, 73]. The α-vacuum modes are

given by a Bogoliubov transformation of the in-modes. The corresponding Green’s

function in the α-vacuum has a singularity both along null separations as well as

6We work in the Riemann sheet with −π ≤ Argz < π such that e−iπ = −1.

62



Chapter 3: A de Sitter Hoedown

separations on antipodal points of the sphere, which are separated by a horizon for

any given observer.

There is a particular value of α for which the modes become analytic in the

lower hemisphere of the Euclidean de Sitter geometry, which is of course Sd+1, and

the vacuum defined becomes the CPT invariant Euclidean vacuum |E〉. This is the

unique α-vacuum that reduces to the Minkowski vacuum at short distances. The

boundary-to-boundary two-point function in the Euclidean vacuum behaves as that

of a d-dimensional Euclidean conformal field theory at zero temperature [15].

In a similar fashion, we would like to define the positive frequency Euclidean

modes ΦE
n in the global rotating Nariai geometry as those which are analytic in

the lower hemisphere of the S2 arising from the Euclideanization of the dS2 part of

the geometry. A motivation for this definition is the physical relation between the

rotating Nariai geometry and dS2 in the presence of an E-field, as was previously

noted. Furthermore, they reduce to the Euclidean modes (without the Ylm(θ)) for a

massive scalar in dS2 in the limit m→ 0.

Let us analytically continue τ to iϑ such that our z-variable in 3.6.73 becomes

z → zE = i(sin ϑ− 1). (3.6.87)

The upper and lower hemispheres of the S2 are parameterized by ϑ ∈ [0, π/2] and

ϑ ∈ [−π/2, 0) respectively. The argument of the solution in global coordinates then

becomes iz/2→ (− sin ϑ + 1)/2 which in turn becomes unity at the pole of the lower

hemisphere. Thus, we order for 3.6.73 to be analytic in the lower hemisphere, we
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have to take a linear combination given by

c1 = −2−iñ e−πñ/2 × Γ[h+ + imk]Γ[h− + imk]Γ[1− iñ]

Γ[h+ − q]Γ[h− − q]Γ[1 + iñ]
c2. (3.6.88)

Thus, we can obtain the Wightman function in the Euclidean vacuum as usual

GEuc
W (x, x′) = 〈E|ΦE(x)ΦE(x′)|E〉 =

∑

n∈{l,m,q}

ΦE
n (x)ΦE∗

n (x′). (3.6.89)

We hope to study the Euclidean modes and more generally the possibility of α-vacua

in the rotating Nariai geometry in a future work.

3.7 The rotating Nariai/CFT Correspondence

Having discussed various properties of the Kerr-de Sitter geometry and in par-

ticular the rotating Nariai limit, we would like to make contact with the proposal

that quantum gravity in a rotating Nariai background is holographically dual to a

two-dimensional Euclidean conformal field theory living at I+.

Asymptotic Symmetries

In [74] it was shown that upon defining suitable boundary conditions, the asymp-

totic symmetry group of the extremal rotating Nariai geometry was given by a single

centrally extended Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + m(m2 − 1)
cL

12
δm,−n (3.7.90)

with positive central charge given by,

cL =
12r2

c

√
(1− 3r2

c/(
2)(1 + r2

c/(
2)

−1 + 6r2
c/(

2 + 3r4
c/(

4
, (3.7.91)
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and the Ln are the generators of the algebra. Assuming unitarity and modular in-

variance, the Cardy formula was then used to compute the cosmological entropy of

the extremal Nariai geometry

Sc =
π2

3
TLcL, TL =

1

2πk
(3.7.92)

where the reciprocal of the left-moving temperature was precisely the chemical po-

tential conjugate to the angular momentum,

dSc =
1

TL
dQ∂φ

. (3.7.93)

Finite Temperature Two-point Function

One of the most generic features of a two-dimensional conformal field theory is

given by the structure of its two-point functions at finite temperature. More precisely,

the thermal two-point function in Euclidean momentum-space is given by [93]

GE(ωL, ωR) ∼ T 2hL−2
L T 2hR−2

R Γ

[
hL +

ωL

2πTL

]
Γ

[
hL −

ωL

2πTL

]
×

Γ

[
hR +

ωR − iqRΩR

2πTR

]
Γ

[
hR −

ωR − iqRΩR

2πTR

]
(3.7.94)

where for a spin-zero field hL = hR and the Euclidean Matsubara frequencies ωL/R

are related to the Lorentzian frequencies ω̃L/R by an analytic continuation. The

Lorentzian Green’s function GR is given by,

GR(iω̃L, iω̃R) = GE(ωL, ωR). (3.7.95)

We have also included a chemical potential ΩR and charge qR for the right movers for

reasons that will soon be clear.
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The poles of the Lorentzian retarded correlator lying in the lower half-plane char-

acterize the decay of perturbations in the CFT and are given by the following discrete

set of Lorentzian frequencies7

ω̃L = −2πiTL(n + hL), n = 0, 1, 2, 3, . . . (3.7.96)

ω̃R = −2πiTR(n + hR) + qRΩR, n = 0, 1, 2, 3, . . . (3.7.97)

The above pole structure can be compared to the poles of the thermal boundary-

to-boundary correlator 3.5.65 computed earlier. We immediately observe that they

have an identical structure provided that we make the following identifications8

TL =
1

2πk
, TR =

λ

4π
, ω̃L = m, ω̃R = ω̃, (3.7.98)

hL = hR = h±, qR = −m, ΩR =
kλ

2
. (3.7.99)

One can recognize TL as the left-moving temperature used in 3.7.92. The right

moving temperature TR is precisely the cosmological temperature observed by ob-

servers in the rotating Nariai geometry with non-zero λ, equation 3.2.20. The left

and right moving frequencies are given by the ∂t̂ and ∂φ eigenvalues of the scalar

modes, and the right moving U(1) charge is also given by the ∂φ eigenvalue. Thus,

if we are to identify the right moving frequency in the CFT with the ∂t̂ eigenvalue

we must also posit the existence of a U(1) current algebra whose zero mode coincides

with the zero mode of the right moving Virasoro algebra. This is a similar situation

to that encountered in the Kerr/CFT correspondence [81, 94].

7The relation Γ[z]Γ[1− z] = π csc(πz) is helpful to verify the pole structure.
8Interestingly, the quasinormal modes of the rotating Nariai spacetime obtained in 3.5.58 and

3.5.60 also have the same structure.
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3.8 Summary and Outlook

We have explored various aspects of rotating black holes in de Sitter space. Start-

ing with the thermal phase structure, we have discussed a one-parameter family of

black hole configurations which has both cosmological and black hole horizons with

equal temperature and angular velocity - the rotating Nariai configurations. Geo-

metrically, these solutions are the near horizon region between the black hole and

cosmological horizons in the limit where the two coincide. They are given by an S2

fibration over dS2. It is found that they are in an unstable thermodynamic equilib-

rium, in that small thermal fluctuations result in the system thermally evolving to

the most entropic configuration - pure de Sitter space.

Nevertheless, the rotating Nariai geometries serve as a natural starting point for

thermal evolution as they can be created from a Euclidean instanton out of nothing

[57, 80]. Furthermore, they are an interesting type of extremal geometry with a rich

asymptotic symmetry group consisting of (at least) one copy of the Virasoro algebra,

indicating a possible holographic interpretation [74]. Thus, we ventured into the study

of scalar perturbations about this geometry.

We uncovered the explicit quasinormal mode structure of this spacetime, as well

as the absorption cross-section of the black hole horizon due to an incoming wave

originating near the cosmological horizon. Generally, there is a regime in the frequen-

cies of the incoming waves where the absorption cross-section is negative, indicating

superradiant scattering. However, in the strict limit where the black hole and cos-

mological horizons coincide we have found that the absorption cross-section tends to

unity and thus superradiance is no longer present. Quantum mechanically, this may
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imply that spontaneous emission is suppressed in this limit.

Furthermore, we have explored the cosmological properties of the rotating Nariai

geometry. We have found evidence for at least three vacua. The |in〉 and |out〉 vacuum

states are those with no incoming particles from I− and no outgoing particles at I+

respectively. Starting at I− with the |in〉 vacuum, we observed the cosmological

production of particles at I+ and explicitly computed the expectation value of the

number of particles produced. We have also proposed that the Euclidean vacuum

is simply given by those modes which are analytic in the lower hemisphere of the

Euclidean dS2, i.e. S2, part of the geometry. It would be very interesting to put

the proposed Euclidean vacuum on a firm footing by carefully examining its analytic

structure. Furthermore, it would be extremely interesting to examine the possibility

of a complex parameter worth of vacua analogous to the α-vacua of de Sitter space

[71, 92] in the rotating Nariai geometry.

Finally, we have computed the boundary-to-boundary correlation functions in

the static patch coordinates of the rotating Nariai geometry. The poles of these

correlators precisely match the poles of the correlators of a two-dimensional conformal

field theory, provided we make a suitable identification of the quantum numbers of the

scalar field with those of the operator dual to the scalar in the CFT. This resonates

well with the aforementioned proposal that these geometries have a holographic dual

given by a two-dimensional conformal field theory. Natural objects to study along

this direction would be three-point functions and boundary-to-boundary correlators

of vector fields and fermions. The study of fermions in this background might also be

motivated by recent results uncovering a Fermi surface in the AdS2×S2 near horizon
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region of an extremal charge black hole in AdS4 [95, 96]. A possible de Sitter analogue

might be a Fermi surface in the dS2×S2 near horizon region of the non-rotating Nariai

geometry and rotational generalizations thereof.
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Act II: String Glasses and

Multicentered Black Holes

We now pass from de Sitter space to what seems to be the completely unrelated

world of multicentered black hole bound states and their potentially glassy nature.

There is reason to believe, however, that the departure is not so extreme. To show

this, we will take a brief detour.

4.1 The case for glasses

We encounter most of the phases of water early on in life: liquid water, solid ice,

vapor gas. We emphasize the word most because water also has a glass phase [97]

(or two) known as (low/high density) amorphous ice which arises when it is cooled

extremely quickly. The difference between amorphous and conventional ice is that

ice is a hexagonal crystal whereas amorphous ice, microscopically, looks disordered.
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If we compare two snapshots of microscopic arrangements of water in its liquid and

glass phase, it would be difficult or near impossible to tell which is which without any

information about the time scales involved in the motion of these molecules. This is

true of any substance that has a glass transition.

It is difficult to swallow the idea that this is an actual phase transition without any

discontinuous phenomena or changes in behavior. It could very well be that glasses are

simply slow moving liquids, with the slow speed dictated by the low temperature. This

is not the case. Experimental evidence for the liquid-glass phase transition is obtained

by observing the dramatic growth of viscosity of the supercooled liquid, at which

point it falls out of equilibrium. We gather this because all macroscopic observables

measured in the lab continue to evolve, and their time evolution depends on the

cooling rate, allowing us to tell, in principle, when the glass fell out of equilibrium.

The glass is now stuck, and the time it takes for the glass to relax into its equilibrium

state starts to diverge; all this despite any changes in the microscopic structure [98].

Glasses are thus out of equilibrium, disordered systems, with time dependent phe-

nomena, whose relaxation time scales diverge. All the interesting physical behavior

comes from the fast process by which the glass is cooled, trapping it in one of a

plethora of local metastable states that are ‘far’ from the ground state equilibrium

configuration. One would thus conclude that gaining any theoretical control over

this glassy transition is a daunting task, given the lack of symmetries or organizing

structures that we are accustomed to in physics. This intuition is correct.

Despite the seemingly impossible and ambitious task of understanding the nature

of glasses and the glass transition, progress has been made. This is especially true in
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the theory of spin glasses. These are systems that can be formed by sprinkling mag-

netic impurities in a metal such as copper at random points. They can be modeled by

discrete spins on a lattice, like the Ising model, where the couplings Jij between lat-

tice sites i and j are random and disordered, sampled from a probability distribution

P (Jij). Spin glasses are theoretical models with quenched disorder, that is, where the

disorder is manifest in the Hamiltonian of the system (in the couplings Jij) and time

independent on experimental time scales. This is in contrast with the window-type

“structural” glasses, where the disorder is spontaneously generated in the solution

space. It may be possible to use the important advances in the understanding of spin

and structural glasses towards the study of string theory and the disordered states

that arise there. We hold this opinion.

4.2 Glasses and de Sitter space

Disorder is a crucial feature of glassy systems and is responsible for much of the

characteristic features of glasses. One effect of disorder in a glass, is that state space

breaks up into different ergodic components—small valleys in the free energy land-

scape that obey the ergodic theorem, despite ergodicity being broken over the whole

state space. Within each ergodic component, cluster decomposition (the factoriza-

tion of correlation functions at large distances) holds, although it fails for correlation

functions taken with respect to the Gibbs measure.

Let us be explicit. In the study of spin glasses, the failure of the ergodic theo-

rem and cluster decomposition is characterized by the state space splitting up into

different “pure states” [100]. Each pure state is an ergodically connected component
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of configuration space—ensembles of states that are ‘close enough’ to each other in

configuration space such that any configuration can reach another via thermal fluctu-

ations at low temperatures. For a spin glass below a critical temperature, the Gibbs

measure breaks into a sum over these pure states, each obeying cluster decomposition

within them. Although not a spin glass, a simple example where this occurs is the

Ising model with spins at lattice site i denoted by si. At high temperatures, cluster

decomposition holds and implies 〈si sj〉 = 0 = 〈si〉〈sj〉 as |i− j| → ∞, where expec-

tation values are taken with respect to the Gibbs measure. At low temperatures, the

Ising model has a phase transition and 〈si sj〉 = m2 2= 〈si〉〈sj〉 = 0 · 0. If we break up

the Gibbs measure into pure states, however,

pG = 1
2p+ + 1

2p− , (4.2.1)

where we have defined p± = limh→0±
1
Z e−β(H+h

P
i si), then correlation functions taken

with respect to the pure state probability measures p± do obey cluster decomposition:

〈si sj〉± = m2 = 〈si〉±〈sj〉±. In a generic glassy system, the splitting into different,

multiple pure states will not be as straightforward as in the Ising example, but it is

certainly a generic feature.

In [99], it was observed that scalar field correlation functions in a de Sitter back-

ground also fail to obey cluster decomposition. Specifically, they noticed that the

state space of a quantum field in de Sitter space continuously breaks apart as differ-

ent parts of the wavefunction fall out of causal contact across super-horizon scales.

Correlation functions within the regions that do remain in causal contact with each

other obey cluster decomposition, whereas correlation functions across super-horizon

scales do not. Is it the case that field configurations within a single cosmological
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horizon act like the ergodic components of a spin glass? If this is true, we certainly

need more evidence.

As shown in [99, 101], a light quantum field in de Sitter space exhibits another

feature reminscent of glassiness: ultrametricity. Ultrametricity, is a qualifier for a

metric space where distances between a triplet of points (x, y, z) obey a stronger

condition than the triangle inequality, specifically d(x, y) ≤ max{d(x, z), d(z, y)}. In

an ultrametric space, any three points form an isosceles triangle with one short side.

Moreover, ultrametricity is manifest for systems where points can be placed as leaves

on a a hierarchical tree, such as the evolutionary tree to give but one example. The

distance between any two leaves is equal to how far up the tree one must go to

find a common parent node. For a spin glass, the points in the ultrametric space

are precisely the pure states mentioned above. This was crucially the organizing

principle that led to the solution of the Sherrington Kirkpatrick model [102] and is a

characteristic feature of a whole slew of other spin glass models. In the context of de

Sitter we have a very similar story where ultrametricity manifests itself in a suitably

defined distance between late time field configurations of a light scalar.

This is striking. Mean field configurations of glasses and of quantum fields in de

Sitter space break up into ergodic components, and the distances between these mean

field configurations lie in an ultrametric space. There is, however, a key difference

between spin glasses and de Sitter space in how this splitting up into ergodic compo-

nents occurs. The picture we are painting is that a quantum field in de Sitter space

breaks up into different ergodic components because the inflating universe on which it

lives acts like a branched diffusion process, at each step taking parts of the quantum
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field out of causal contact with one another and thus forcing these individual pieces

to freeze and classicalize. This is very much in contrast with spin glasses, where

the breaking up into pure states occurs for purely static configurations. Namely the

branching process does not happen in time, but with the lowering of temperature. If

the analogy is to hold, then time evolution for a scalar in a fixed de Sitter background

is related to the lowering of temperature in a glass.

This analogy is curious and by no means fully explored, but we will shift our focus

away from de Sitter space for the remainder of the dissertation. Instead we will look

for systems in string theory that appear to have explicit glassy characteristics, namely

disorder and complexity.

4.3 Complexity in string theory

What exactly do we mean by complexity? For the purpose of illustration let us

discuss the specific Sherrington-Kirkpatrick Hamiltonian, given by H =
∑

i,j Jijsisj

where Jij are random couplings between all spins on the lattice, sampled from a

random probability distribution. Because the couplings are random, and all spins feel

each other, a generic configuration will thus have frustrated bonds and will exhibit, at

low enough temperatures, very slow relaxation, getting stuck in a local minimum of

the rugged free energy landscape of H. Finding the true ground state is an NP-hard

problem, giving a precise meaning to what we take to be the complexity of the glass.

And this complexity in turn is another way of saying that the free energy landscape of

H is rugged and therefore breaks up into superselection sectors at low temperatures.

String theory, in fact, presents us with similarly, if not more, complex microscopic
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systems. These appear when studying the microstates that give rise to the entropy

of black holes, as alluded to in chapter 1. Consider for instance (as reviewed in detail

in [100]), a “3-charge” D4-brane wrapped on a smooth four-cycle Σ inside a six-torus

T 6 = (T 2)1× (T 2)2× (T 2)3, and bound to n pointlike D0-branes. Denote the number

of intersection points of Σ with the sub-tori (T 2)A by PA, A = 1, 2, 3 — these are the

D4-charges of the system. Then Σ has ∼ P3 ≡ 6 P 1P 2P 3 worldvolume deformation

and flux degrees of freedom.

In the Cardy regime, when n . P3, the pointlike D0-brane degrees of freedom

dominate the degeneracy of supersymmetric ground states, and a simple computa-

tion shows that the number of these states agrees exactly with the exponential of the

Bekenstein-Hawking entropy of the D4-D0 black hole. However, away from the Cardy

regime, i.e. when P3 " n, the order P3 D4-degrees of freedom, coming from worldvol-

ume and flux deformations of Σ, become entropically dominant and the microstate

counting problem becomes far more difficult. Each choice of worldvolume fluxes in-

duces a different, highly complex potential on the moduli space of deformations of Σ,

and the ground states of the system correspond to the minima of this vast D-brane

landscape. On the other hand, on the black hole side, an exponentially large num-

ber of molecule-like, multicentered stationary black hole bound state configurations

appears [104], all with the same total charge, and they entropically dominate the

single centered black hole [105]. In chapter 6, we study the temperature dependence

of these multi-black hole bound states and argue in a probe analysis that black hole

bound states persist at least metastably for nonextremal black holes, up to a critical

temperature where the single-centered D4-D0 black hole regains dominance (see also
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T ↘ 0

Fig. 4.1: The transition from a hot state single centered black hole to a multi-probe

bound state configurations consisting of many probe halos orbiting the giant “galac-

tic” black hole. This arises as the black hole is cooled and freezes into a multicentered

state that lowers its free energy.

[107] for a closely related analysis). This is akin to a glass melting as it is heated up.

In chapter 7 we extend the argument to multicentered black holes in AdS, and give

a holographic interpretation of the glassiness of the system.

This transition between a single black hole and a zoo of metastable multi-black

hole configurations is reminiscent of a structural glass transition and the rugged free

energy landscape picture associated to the glass phase. Pictorially, once in a particu-

lar multicentered configuration, it may take exponentially long for the system to find

its most entropic equilibrium configuration, as it evolves via exponentially suppressed

thermal and quantum tunneling. The slow relaxation is exacerbated, far from equi-
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librium, by local relaxation processes that push the system in the direction of other

highly stable quasi-equilibrium states rather than towards the true maximal entropy

equilibrium configuration.

This picture is compelling, and is the focus of the remainder of this dissertation.

However, before delving into a discussion on whether a glass transition actually occurs

for large and static multicentered black molecules, in chapter 5 we take a step back

and try to understand the dynamics of these multicentered systems in a limit known

as supergoop. We do this to get a handle on how these system behave dynamically,

whether their motion is classically integrable, and if they exhibit chaos. We then

return to the static problem in chapters 6 and 7 where we attempt to characterize the

glassiness of the transition from single black hole to multicentered black hole bound

states.
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Supergoop Dynamics

5.1 Introduction

5.1.1 Supergoop

When sufficiently far separated and moving slowly close to a ground state config-

uration, the black hole constituents of a black molecule can be thought of as point-

like particles, moving in an approximately flat background, interacting with each

other through specific static and velocity dependent interactions. These effective

inter-particle interactions are highly constrained by the fact that these BPS systems

preserve four supercharges: A nonrenormalization theorem [103] implies that once a

metric has been fixed on the configuration space, the static and first order velocity

dependent interactions are of a fixed form. For the flat metric:

H =
N∑

p=1

1

2mp



(pp −Ap)
2 +

(
N∑

q=1

κpq

|xp − xq|
+ θp

)2


 + fermions , (5.1.1)
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where Ap is the vector potential produced at xp by a collection of Dirac monopoles

of charge κpq at positions xq. The coefficients κpq = −κqp equal the electric-magnetic

symplectic products between the charges of the centers p and q. The parameters θp

and masses mp are fixed by the BPS central charge of each center. If the configuration

space metric is not flat, the mp may depend on xp.

As a result of this nonrenormalization theorem, exactly the same supersymmetric

Lagrangians also appear in very different physical contexts where four supercharges

are preserved and the low energy degrees of freedom can be identified with spatial

positions. One example is a mixture of well-separated elementary particles obtained

by wrapping D-branes around various internal cycles of a Calabi-Yau manifold, inter-

acting with each other through gravitational, vector and scalar interactions. Clearly

this can be viewed as an extreme limit of the multi-black hole systems considered

above, where the dyonic black holes have been replaced by dyonic particles. Another

example are monopoles and dyons in N = 2 Yang-Mills theories [108].

A more remote example [103] is a collection of space-localized wrapped D-branes

at weak string coupling in the substringy distance regime. Their low energy degrees of

freedom are given by a (0+1)-dimensional supersymmetric quiver quantum mechanics,

with a position 3-vector and a U(1) gauge symmetry for each singly wrapped brane

(identified with the nodes of the quiver) and the lightest brane-brane stretched open

string modes represented as bifundamental oscillator degrees of freedom (identified

with the arrows of the quiver). When the branes are all well separated, i.e. when the

quiver theory is on the Coulomb branch, the open string modes become very massive

and can be integrated out. Again, the resulting effective theory for the position

80



Chapter 5: Supergoop Dynamics

degrees of freedom must necessarily be of the form (5.1.1) fixed by supersymmetry.

The coefficients κpq are now identified with the net number of arrows between two

nodes.

Thus this type of supersymmetric multi-particle mechanics appears in many con-

texts, in widely different regimes. Much effort has been put into understanding and

counting the supersymmetric ground states of such systems, in part because of their

key role in physics derivations of BPS wall-crossing formulae [103, 105, 109, 110, 111].

However, little has been said about excitations or dynamics for these systems. There

are a few exceptions: [112] studied the classical and quantum dynamics of the two-

particle system and found it was integrable, and in [106] the persistence of the black

hole molecular configurations at finite temperature was studied. However, no studies

of multi-particle dynamics or statistical mechanics have been done so far. In this

paper we wish to take steps in these directions.

Besides the motivation for understanding D-brane and black hole statistical me-

chanics and their potentially interesting interpretation as holographic glasses, such

studies would also be of intrinsic interest, as these systems are rather unusual in sev-

eral aspects. Due to the special form of the potential (5.1.1), an N -particle bound

state will have a 2(N − 1)-dimensional moduli space of zero energy ground state

configurations folded in a very complicated way into the 3(N − 1)-dimensional full

configuration space (factoring out the center of mass). Naively one might therefore

think that even at very low temperatures, the system would behave like a liquid, ex-

ploring large parts of the configuration space by flowing along the continuous valley

of minimal energy configurations. As a simple example consider the case N = 2.
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The particle distance is fixed and the moduli space is a sphere. One might think a

probability density initially localized near a point on that sphere would quickly dif-

fuse out over it. However, due to the effective electron-monopole Lorentz interaction

between the particles, this is not quite right, as diffusion is obstructed by magnetic

trapping. Another way of understanding this is conservation of angular momentum:

Monopole-electron pairs carry intrinsic spin directed along their connecting axis, of

magnitude equal to half their symplectic product. Hence they behave like gyroscopes.

They resist changing direction; kicks will just cause them to wobble.

Thus it is natural to hypothesize that these supersymmetric multi-particle systems

behave partly like a liquid and partly like a solid at very low temperatures — like

goop. We will therefore refer to this peculiar state of matter as supergoop.

5.1.2 Dynamics

Many times we study Hamiltonian systems that are classically integrable. For this

to be the case one requires the existence of at least N conserved charges (with all

mutual Poisson brackets vanishing) for a system with a 2N -dimensional phase space.

Examples include single one-dimensional particles with an arbitrary potential, since

the energy is conserved, and two body problems with a central force. Phase space

trajectories of a classically integrable system will map N -dimensional tori. Generally,

however, our system will not be classically integrable and we must confront a chaotic

system. The simplest example of a chaotic system is the double pendulum which has a

four-dimensional phase space with a single conserved quantity: the energy. One then

studies the phase space trajectories of the double pendulum as a function of increasing
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energy. For sufficiently low energies the trajectories are constrained to live on a two-

dimensional torus displaying quasi-integrable behavior. As the energy is increased this

torus is deformed and eventually breaks apart into smaller tori. This process is seen

to continue until there is no visible structure in the phase diagram, i.e. the system

tends toward ergodicity. What is perhaps most remarkable about the transition to

chaos is that it occurs in a gradual fashion in which smaller and smaller islands of

regular behavior are spawned before the system loses all manifest structure. A crucial

question, especially for a system with many degrees of freedom, is quantifying when

all ordered behavior disappears and how it depends on the parameters of the system

(see for example [113, 114]).

It is our aim to begin a systematic study of the dynamical aspects of the underlying

brane system on the Coulomb branch. In this paper we mainly address the case of

a three particle configuration. This is already a difficult non-integrable three-body

problem. To render the problem tractable, we study first the classical ground states

and subsequently the motion of a probe particle in a fixed background consisting

of a two-centered bound state. Remarkably, we discover that the motion of the

probe is classically integrable! This is due to the presence of an additional hidden

conserved quantity and is somewhat reminiscent of the integrability of a Newtonian

probe particle interacting gravitationally with a background of two fixed masses, as

discovered by Euler and Jacobi. We then study the transition to chaos for a system

of two probes in the presence of a heavy fixed particle, with the motion restricted to

live on a line. This setup is directly analogous to the double pendulum, allowing us to

exploit many of the tools developed for the study of the double pendulum. As for the
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double pendulum, by studying Poincaré sections we observe the formation of islands

in phase space and the eventual transition to global chaos with no apparent structure

in phase space. Finally, we begin to address the far more intricate dynamics of a

system with a large number of centers. We provide a brief exposition of the behavior

of a probe particle inside a molecule with a given number of fixed centers. We observe

highly complex trajectories that become trapped for long times in the sense that they

do not explore the entire molecule.

We would like to add that, after this work was submitted for publication, we

became aware of [115, 116, 117, 118], which elegantly prove the classical integrability

that we discuss in Section 5.5.

5.2 General Framework

Consider a system of branes wrapped on the cycles of a six-dimensional compact

space, such that they are pointlike in the non-compact (3 + 1)-dimensions. The

interactions between them are governed by strings whose ends reside on the branes

themselves. The low energy physics is governed by an N = 4 supersymmetric quiver

quantum mechanics [119]. The nodes of the quivers have gauge groups associated to

them and the low energy string degrees of freedom are chiral multiplets transforming

in the bifundamental between two given nodes. The position degrees of freedom xp of

the branes are scalars in the vector multiplets of the gauge groups. It was shown in

[103] that if we study the Coulomb branch of the branes, i.e. integrate out the massive

chiral multiplets, a non-trivial potential is generated which governs the dynamics of

the xp. The system of branes allows for a large family of bound states with fixed
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equilibrium distances as classical ground states. If the branes move too close the

stretched strings become light and even tachyonic and the system enters the Higgs

phase.1 On the other hand, if there is a sufficiently large number nB of branes placed

at a single point, such that the product of the string coupling gs and nB becomes

large, the system is best described by closed string exchange and hence supergravity.

In what follows we will consider the theory of supersymmetric multiparticle mechanics

describing the Coulomb branch of the brane system. This has the advantage of being

a simple setup which is interesting in and of its own right while reproducing many of

the features of the multicentered configurations that exist in supergravity.

5.2.1 Supersymmetric multiparticles

The theory we consider is the multiparticle supersymmetric mechanics, which we

refer to as supergoop, studied for example in [103, 104, 112, 120, 121, 122, 123, 124,

125, 126, 127, 128, 129]. We simply state the Lagrangian of the system, referring to

[103] for details.

The supergoop Lagrangian is given by:

L =
∑

p

mp

2

(
ẋ2

p + D2
p + 2iλ̄pλ̇p

)
+

∑

p

(−UpDp + Ap · ẋp)+
∑

p,q

(
Cpqλ̄pλq + Cpq · λ̄pσλq

)
,

(5.2.2)

where λp is the fermionic superpartner to xp. The Dp fields are auxiliary non-

dynamical scalars. We have defined the functions:

Up =
∑

q

κpq

2rpq
+ θp , Ap = −1

2

∑

q

κpq

[
Ad(rpq) + Ad(rqp)

]
, (5.2.3)

1In fact, the weak string coupling limit gs → 0 always pushes the system to the Higgs phase.
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where:

Ad(x) =
−y

2r(z ± r)
x̂ +

x

2r(z ± r)
ŷ (5.2.4)

is the vector potential of a single magnetic monopole of unit charge at the origin

and rpq ≡ xp − xq. For the Lagrangian to be supersymmetric we further require

κpq = −κqp. In the quiver quantum mechanics context, the κpq are the number of

bifundamentals connecting two nodes. The supercharges are given by:

Qα = −
∑

p

i σγ
αλp

γ ·(pp −Ap)+λp
αUp , Q̄β =

∑

q

i σβ
γ λ̄γ

q ·(pq −Aq)−λ̄β
q Uq . (5.2.5)

The Weyl spinors obey (λα)∗ ≡ λ̄α and the σβ
α are the usual Pauli matrices. The

Hamiltonian of our system is defined as:

H =
∑

p

pp · ẋp − L , pp ≡ mpẋp + Ap . (5.2.6)

Upon integrating out the the D-terms we find:

H =
1

2mp

∑

p

[
(pp −Ap)

2 + U2
p

]
+

∑

p<q

κpq

2r3
pq

rpq · λ̄pqσλpq , (5.2.7)

where λpq ≡ λp−λq. Notice that the particle interactions include velocity dependent

forces. Furthermore, the system has three-body interactions due to the appearance

of U2
p in H.

As usual our Hamiltonian H is related to the supercharges as {Qα, Q̄β}D.B. =

−2iδβ
αH. However this is most easily checked in the quantum mechanics context where

pp → −i∇p and we replace the above Dirac bracket relation with the anticommutation

relation:

{Qα, Q̄β} = 2δβ
αH , (5.2.8)

where {λp
α, λ̄β

q } = m−1
p δp

qδ
α
β .
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Fig. 5.1: Examples of ground states for 100 electric Γe = (0, 1) plus 100 magnetic

Γm = (1, 0) particles.

5.2.2 Classical features and multicentered black holes

To study the classical properties of this theory, we can turn the fermionic fields off

and only consider the bosonic part of (5.2.2). Static BPS configurations occur when

Up = 0 for all p, i.e. when:

∑

q

κpq

2rpq
= −θp , ∀ p . (5.2.9)

Taking the sum over p of (5.2.9) we find that the θp’s must satisfy:
∑

p θp = 0. The

solutions to equation (5.2.9) are bound states of particles, see for example figure 5.1.

Given that a system of N particles has 3N -degrees of freedom which are constrained

only by (N − 1) equations, the bound states have a (2N + 1)-dimensional classical

moduli space M. This moduli space cannot be accessed dynamically at low temper-
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atures however, due to the velocity dependent forces which constrain the particles to

oscillate about a fixed location if given a small kick (just like an electron in the pres-

ence of a magnetic field). As the energy is increased, the rigid structure of the bound

state is deteriorated and eventually lost completely. In the following sections we study

the dynamical features of this system, with a particular focus on the three-particle

system.

Equation (5.2.9) is a familiar expression in supergravity. It recreates the integra-

bility condition of [104] for multi-centered black hole bound states in four-dimensional

N = 2 supergravity:
N∑

q

〈Γp, Γq〉
|xp − xq|

= 2Im
[
e−iαZp

]
r=∞ . (5.2.10)

The above expression involves electric-magnetic charge vectors Γ =
(
P I , QI

)
with a

duality invariant symplectic product given by:

〈Γ, Γ̃〉 = P IQ̃I −QIP̃
I . (5.2.11)

Expression (5.2.10) also involves a function called the central charge Zp(z) which

depends on the vector multiplet scalars za of the supergravity theory, as well as the

charge vector Γp. At spatial infinity we can write Zp|r=∞ = mpeiαp where mp is

the ADM mass of a BPS particle of charge Γp. If we denote Z =
∑

p Zp then the

parameter α in (5.2.10) is given by α = arg (Z|r=∞). Thus we may rewrite (5.2.10) as

N∑

q

〈Γp, Γq〉
2rpq

= mp sin (αp − α) . (5.2.12)

The supersymmetric multi-particle mechanics in (5.2.2) may be considered as a toy

model for the dynamics of the multi-centered black hole bound states if we make the
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identifications

κpq = 〈Γp, Γq〉 and θp = −mp sin (αp − α) . (5.2.13)

5.2.3 Three particles

Much of the discussion that follows will concern the three particle system, which

already exhibits rich dynamic and non-dynamic features. Here we describe some of

the characteristic features of its zero energy configurations.

Classically, the (supersymmetric) ground states are found by setting U1 = U2 =

U3 = 0. Explicitly:

κ12

2r12
− κ31

2r31
= −θ1 , − κ12

2r12
+

κ23

2r23
= −θ2 , − κ31

2r31
+

κ23

2r23
= θ3 , (5.2.14)

with θ3 = −(θ1 + θ2). Notice that the third equation follows from the other two.

We also require that the three relative distances r12, r23 and r13 satisfy the triangle

inequality. The three particles have nine position degrees of freedom and the above

equations only constrain two of them. Factoring out the center of mass leaves us

with (9 − 2 − 3) = 4 unconstrained degrees of freedom. Hence, even when three-

particle bound states form, there is an infinite classical moduli space of connected

(and possibly also disconnected) ground states. In the case of a two-particle bound

state the classical moduli space is simply a two-sphere of fixed radius κ12/2θ1.

If we have κ31, κ12 and κ23 positive we find there exist scaling solutions given by

rij → λκij with λ→ 0 with the κ’s obeying the triangle inequality [105]. Thus, in this

regime the particles can come arbitrarily close to each other with no cost in energy.2

2When thinking about scaling solutions in the gravitational context from the point of view of
a far away observer, the scaling solutions are continuously connected to a single center and will
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Away from the scaling regime the solution to (5.2.14) corresponds to a bound state

for which the particles may oscillate about a fixed equilibrium radius upon small

perturbations.

As an example, when θ3 = −3, θ2 = −2, θ1 = 5, κ12 = −1, κ13 = −1 and κ23 = 1,

with the three particles living on a line and particle 3 between particles 2 and 1, we

find the solution:

r12 = 1
20

(
7 +

√
19

)
≈ 0.57, r13 = 1

30

(
8−

√
19

)
≈ 0.12 , r23 = 1

12

(
1 +

√
19

)
≈ 0.45 .

(5.2.15)

Note that the triangle inequality is saturated since we have considered a collinear

example. We should note, however, that there are clear instances where no solutions

exist, such as when (κ13, κ23, θ3) > (0, 0, 0), for example.

5.2.4 Regime of validity

Since we are free to choose the set of αp, (5.2.13) does not really constrain the

values of the θp in any way. There is, however, a restriction stemming from the

requirement of the validity of the Coulomb branch description assuming our system

comes out of integrating strings [103, 130]. The distances between particles must

be smaller than the string scale, but larger than the ten dimensional Planck scale.

For larger distances, the suitable description is given by the exchange of light closed

strings (in which case supergravity is the reliable description). Furthermore, the

velocities should be small compared to the speed of light to avoid higher derivative

look like a single centered black hole or particle. On the other hand, nearby observers will observe
that the proper distance between the particles never shrinks to zero due to the formation of infinite
throats (at least at zero temperature).
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corrections to the non-relativistic Lagrangian (5.2.2).

Consider first two particles with masses m1 and m2 and call the string length

ls. The restriction is found to be [103]: κ12 / lsθ1 and µ . l2sθ
3
1/κ

2
12, where µ ≡

m1m2/(m1 + m2) is the reduced mass of two particles. Indeed, if κ12 . lsθ1 the

distance between the two particles in a bound state will be much larger than ls

and the appropriate description becomes that of supergravity. When µ / l2sθ
3
1/κ

2
12,

the open strings between the branes become light and the appropriate description

becomes that of the Higgs branch and eventually the fused D-brane system itself. For

the multiparticle system, the Coulomb branch description is reliable so long as the

inter-particle distances are sufficiently large that the massive strings can be reliably

integrated out, i.e. rij . ls
√
|θi/mi − θj/mj| and sufficiently small that we remain

in the substringy regime, i.e. rij / ls.

5.3 Classical Phase Space

Having discussed the general framework of the system under study, we now discuss

some of its dynamical features, beginning with the classical phase space. Recall that

the Hamiltonian of our system is given by:

H =
1

2mp

∑

p

[
(pp −Ap)

2 + U2
p

]
(5.3.16)

The Hamilton equations of motion are given by:

∇xpH = −ṗp , ∇ppH = ẋp . (5.3.17)

For N -particles we have a 3 × 2N = 6N dimensional phase space. As manifest

conserved quantities we have the energy, the center of mass momentum, and the
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center of mass angular momentum.

5.3.1 Two particles are integrable

We review the classical properties of the two particle problem in appendix C.1.

Recall that a classically integrable system with a 2N -dimensional phase space has

at least N conserved quantities with mutually vanishing Poisson brackets. Phase

space trajectories for integrable systems reside on N -dimensional tori. In the case of

two-particles we have a 12-dimensional phase space. There are six manifest conserved

quantities given by the net momentum and angular momentum. As shown by D’Hoker

and Vinet [122, 123], the presence of a conserved Runge-Lenz vector (C.1.2) leads to

an enhanced SO(3, 1) symmetry. The angular momentum and Runge-Lenz vector

are three-vectors, the Hamiltonian is a scalar and there exist two relations amongst

the seven quantities, hence there is a total of (3 + 3 + 2) = 8 conserved quantities.

Factoring out the center of mass yields a (maximally) super-integrable system.3 The

super-integrability implies its equations can be separated in more than one coordinate

system and one can solve for the quantum mechanical spectrum algebraically, as done

in [112]. Further, it implies that trajectories in coordinate space follow paths which

are closed in the case of bound orbits.

5.3.2 Three particles are chaotic

In the case of three-particles we have an 18-dimensional phase space and there is

no longer a sufficient number of conserved quantities to render the system integrable.

3A super-integrable system [131] is a system with a 2N -dimensional phase space which has more
than N conserved quantities. A maximally super-integrable system has 2N−1 conserved quantities.
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Thus, such systems will exhibit chaotic behavior.

We may use several numerical tools to analyze the chaotic nature of such a system.

For instance, we can study the Lyapunov exponent λ parameterizing the divergence

of phase space trajectories with nearby initial conditions. Given two trajectories in

phase space with initial separation δz0, the Lyapunov exponent is defined by the limit:

λ = lim
t→∞

lim
δz0→0

1

t
log

δz(t)

δz0
. (5.3.18)

We can also study Poincaré sections in phase space. These are found by recording

the location of a trajectory in a particular subspace of phase space each time it

crosses some fiducial point (such as crossing the origin with positive velocity). These

are particularly useful for lower dimensional systems such as the double pendulum,

where they clearly depict the breakdown of the integrable motion on a two-torus as

the energy is increased (see chapter 11 of [113] for a discussion). We will discuss and

examine the Poincaré sections of a collinear three particle system in section 5.6.

Six of the phase space dimensions can be eliminated from net momentum conser-

vation and factoring out the center of mass. We can also kill another four due to net

angular momentum and energy conservation. The remaining 8-dimensions in phase

space (as far as we know) are unconstrained by symmetries. Needless to say, systems

with more than three particles will also display chaotic properties. A simpler setup,

which we refer to as the Euler-Jacobi setup, is that of a probe particle moving in the

background of two fixed centers.
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5.4 Euler-Jacobi Ground States

The simplest question we can ask about our system is what the (supersymmetric)

ground states are, both classically and quantum mechanically. Classically there may

be continuous moduli spaces of zero energy configurations. Quantum mechanically,

given that the probe is a particle in the presence of a background magnetic field,

we expect the continuous classical moduli space to give rise to a degenerate set of

quantum ground states due to Landau degeneracies.

5.4.1 Euler-Jacobi three body problem

We will consider a probe particle of mass m3 in the background of two fixed

centers unless otherwise specified. The background particles have masses m1 and m2

both very large compared to m3, charge vectors Γ1 and Γ2 with symplectic product

κ12 > 0 and Fayet-Iliopoulos constant θ1 = −θ2 < 0. They sit along the z-axis at

z = ±κ12/4θ1 ≡ ±a. By choosing m1 and m2 much larger than m3, the backreaction

of the probe on the fixed centers is suppressed by O(m3/m1, m3/m2). The probe also

has charge vector γ3 and Fayet-Iliopoulos constant θ3.

We may also consider the possibility of forming supersymmetric bound states

between the probe and the fixed centers. In such a case, a non-zero θ3 requires us

to modify the background condition θ1 = −θ2, since now the θ’s must add to zero.

We thus demand |θ3| / |θ1|, |θ2| such that the correction to the positions of the

original fixed centers is of order O(θ3/θ1, θ3/θ2). The intersection products of the

probe with the centers are given by κ31 and κ32. To avoid any large backreaction

from the probe due to the κ interactions we further require that κ31/r31 and κ32/r32
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are small compared to κ12/r12 ∼ θ2.

The Hamiltonian governing the dynamics of the probe is given by:

Hprobe =
1

2m3
(p3 −A3)

2 +
1

2m3

(
θ3 +

κ31

2r31
+

κ32

2r32

)2

. (5.4.19)

Notice that the two scaling transformations:

(p3(t),x3(t) ; κij, θ3, m3, r12, t)→ (σ p3(t), λ σ−1 x3(t) ; λ κij, σ θ3, σ
2 m3, λ σ−1 r12, λ t) ,

(5.4.20)

generate a family of solutions parameterized by λ and σ. Given a solution to the

equation of motion for some O(1) parameters, we can exploit the scaling symmetries

to map the solution to a rescaled one in the regime of validity for the Coulomb branch

description as discussed in section 5.2.4. In particular, we require λ.
√

σ and λ/ σ

which can be achieved for large σ. Notice that in this regime the velocity (which scales

as σ−1) becomes parametrically small.

5.4.2 Classical Ground States

As noted in (5.2.9), the space of classical ground states M is given by setting

Up = 0. Satisfying this condition gives rise to time independent classical bound

states. In the probe limit, where the two background centers are fixed, this amounts

to solving the algebraic equation:

1

2

κ31√
ρ2 + (z − a)2

+
1

2

κ32√
ρ2 + (z + a)2

= −θ3 , (5.4.21)

where ρ2 = x2 + y2 and φ = tan−1(y/x). One can easily prove that the effective

magnetic field B = ∇3 × A3 is always perpendicular to the tangent of M. This
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remains true for the moduli space of a probe in a background of more than two

centers as well.

Consider first the case θ3 = 0. We find:

ρ2 =
(a− z)2κ2

32 − (a + z)2κ2
31

(κ2
31 − κ2

32)
. (5.4.22)

For ρ(z) above to have solutions we choose κ31 > 0 > κ32 and furthermore |κ31| >

|κ32|, we find a continuum of solutions between z = [z−, z+] where:

z± = ±a
|κ32| ∓| κ31|
|κ31| ± |κ32|

. (5.4.23)

Note that z− < −a < z+ < a and thus the θ3 = 0 surfaces enclose the fixed charge

at z = −a in this case. Similarly, for |κ31| < |κ32| the probe encloses only the center

at z = a. For κ31 = −κ32 and θ3, the classical moduli space M becomes the z = 0

plane.

For θ3 2= 0 finding ρ(z) amounts to solving a quartic equation. In order to do so,

it is convenient to go to prolate spheroidal coordinates:

ρ = a
√

(ξ2 − 1)(1− η2) , z = aξη , φ = φ , (5.4.24)

such that:

2aθ3(η
2 − ξ2) = (κ31 + κ32)ξ + (κ31 − κ32)η . (5.4.25)

In the above we have implicitly used that η ∈ [−1, 1] and ξ ∈ [1,∞]. We can easily

find a solution for η = η(ξ):

η(ξ) =
1

4

(
δ1 − δ2 ±

√
(δ1 − δ2)2 + 8(δ1 + δ2)ξ + 16ξ2

)
, (5.4.26)

where δ1 ≡ κ31/(aθ3) and δ2 ≡ κ32/(aθ3). In figure 5.2 we show the different quali-

tative types of M as a function of δ1 and δ2. The qualitative features of each region
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Fig. 5.2: Left: Classical moduli space M in the δ1 − δ2 plane for θ3 2= 0. The nature

of M for the different regions is shown in figure 5.3. Right: Classical moduli space

for M with θ3 = 0. In regions i and ii the centers at z = a and z = −a are enclosed

respectively.

are shown in figure 5.3. Notice that upon defining the prolate coordinates (5.4.24)

we have scaled out the distance r12 = a between the fixed centers. To obtain physical

distances we simply multiply by r12 = a.

5.4.3 Quantum Ground States

From the classical point of view, our particle is nothing more than a charged

particle in the presence of magnetic fields constrained to live on a surface. Thus, given

a time independent supersymmetric bound state configuration we can compute the

lowest Landau degeneracies dL by computing the degeneracy of states with vanishing

energy for the constrained particle. Such a setup has been addressed for non-uniform
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Fig. 5.3: Classical moduli space in the δ1 − δ2 plane for θ3 2= 0. The order of the

figures left to right starting at the top are the regions in figure 5.2.
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magnetic fields everywhere normal to the surface [132], which is precisely the situation

we find ourselves in. Following [103], the lowest Landau degeneracies are given by the

total flux through the classical moduli space M. For instance, as we discuss below,

the Landau degeneracy of the fixed background is given by κ21. Upon studying the

phase diagram and corresponding M in figures 5.2 and 5.3, we find that the total

degeneracy is:

I, II and III : dtot = κ12 × |κ31| or dtot = κ12 × |κ32| , (5.4.27)

IV and V : dtot = κ12 × |κ31 + κ32| . (5.4.28)

For regions I, II and III, the degeneracy of states depends on which of the two back-

ground centers is encircled by M. Notice there is a jump in the number of ground

states as we vary δ1 and δ2. Since we are in the probe limit, we expect these results

to be correct up to order O(κ31/κ12) and O(κ32/κ12).

From the supersymmetric quantum mechanics point of view, recall that {Qα, Q̄β} =

2δβ
αH. In the absence of the probe, the ground state of the background is given by

[103]:

|b〉 = Ψα(9x1 − 9x2)
¯̃λα|0〉 , λ̃ ≡ λ1 − λ2 . (5.4.29)

The center of mass coordinate 9x0 ≡ (m19x1 + m29x2) /(m1 + m2) and center of mass

spinor λ0 ≡ (m1λ1 + m2λ2) /(m1 + m2) drop out and thus |b〉 is naturally a function

of the relative background position vector and spinor. The state |0〉 is annihilated

by λ̃ and defines a three-dimensional Hilbert space through action of ¯̃λ. There are

κ12 ground states filling a spin-(κ12 − 1)/2 multiplet. From the last term in the

Hamiltonian (5.2.7), we observe that there exist spin-spin couplings between the

background spinors λ1 and λ2 and the probe spinor λ3. It is convenient to introduce
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the relative spinors λ13 ≡ λ1 − λ3 and λ23 ≡ λ2 − λ3 and their associated vacua |023〉

and |013〉, such that λ23|023〉 = 0 and so on. Both |023〉 and |013〉 have an associated

three-dimensional Hilbert space and the general state must be a tensor product of all

linear combinations of all such states, finally tensored with |b〉. Given that the probe

is sensitive to the background B-field, it will go into spin one-half states of |013〉 and

|023〉 aligning with the B-fields from the fixed particles at z = ±a. This will split the

lowest Landau degeneracies. It would be interesting to compute the explicit ground

state wavefunctions.

For the sake of completeness we briefly mention another method to compute the

number of ground states. One can associate a quiver diagram Q to the data (κij, θi)

of a particular configuration [119, 103]. It turns out that the dimension of the moduli

space M(Q,N, θ) of the quiver Q can be related to the number of BPS ground states.

In particular, for the three body problem where each particle is a different species

we have a quiver theory Q with N = (1, 1, 1), κ12 arrows between nodes 1 and 2, κ13

arrows between nodes 1 and 3 and κ23 arrows between nodes 2 and 3. The quiver

diagram is presented in figure 5.4. The Fayet-Iliopoulos constants θv are additional

parameters associated with each node v. Ground state degeneracies for similar setups

to the one we are studying have been computed in [105]. Notice that scaling solutions

can occur only for quivers with closed loops. In our problem, with κ12 > 0, we find

that regions I, II and III correspond to quivers with closed loops and regions IV and

V correspond to quivers with no closed loops.
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Fig. 5.4: Three node quiver with a closed loop (left) and without a closed loop (right).

5.5 Euler-Jacobi Dynamics: classical integrability

The equations governing the probe are dictated by the Hamiltonian in (5.2.6).

There are two obvious constants of motion in this problem, namely the energy and

the angular momentum in the direction of the line where the two centers are placed.

If the system is to be rendered integrable, there must exist a third constant of motion.

Such a constant of motion was found for the problem of a Newtonian probe interacting

gravitationally with a background of two fixed massive particles [133, 134], also known

as the Euler-Jacobi three-body problem. We will show that the analogous problem

in the theory under consideration is also integrable. This was previously shown and

discussed in [115, 116, 117, 118].

5.5.1 Setup and coordinate systems

Recall that we are considering two fixed background centers sitting on the z-axis

at z = ±κ12/4aθ1 ≡ ±a. Let us go to a cylindrical system with metric:

ds2 = dρ2 + ρ2dφ2 + dz2 , (5.5.30)
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Fig. 5.5: The Euler-Jacobi flower. The red balls represent the fixed background

centers and the blue line represents the classical trajectory of the probe. In this case,

the trajectory precesses around only one of the fixed centers.

where the Cartesian and cylindrical coordinates are related by x = ρ cos φ, y = ρ sin φ

and z = z. One observes that the Lagrangian and Hamiltonian are independent of the

φ coordinate which implies a symmetry. The conserved quantity of this symmetry is

given by the angular momentum in the z-direction, such that the canonical momentum

pφ = l is constant. The probe Hamiltonian (5.4.19) in cylindrical coordinates becomes:

Hprobe =
1

2m3
(p′i − Ai(ρ, φ, z)) gij

(
p′j − Aj(ρ, φ, z)

)
+

(U3(ρ, z))2

2m3
, (5.5.31)

where the p′i are the conjugate momenta in the cylindrical coordinates. The relation

between conjugate momenta between the primed and unprimed coordinate systems

is pi = p′j ∂x′j/∂xi.

The third constant of motion is not manifest in cylindrical coordinates. One must

go to the prolate spheroidal coordinates (5.4.24) with metric:

ds2 = a2(ξ2 − η2)

[
dξ2

(ξ2 − 1)
+

dη2

(1− η2)

]
+ a2(ξ2 − 1)(1− η2)dφ2 . (5.5.32)
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Once in this coordinate system, we note that our Hamiltonian takes the following

form:

Hprobe =
Hξ + Hη

ξ2 − η2
, (5.5.33)

where Hξ depends only on ξ and p2
ξ and Hη depends only on η and p2

η. Thus, we can

write:

Hprobeξ
2 −Hξ = Hη + Hprobeη

2 ≡ G , (5.5.34)

where G must be a constant of motion. More explicitly we have:

Hξ = p2
ξ

(ξ2 − 1)

2a2m3
+

p2
φ

2a2m3(ξ2 − 1)
+pφ

ξ(κ31 − κ32)

2a2m3(ξ2 − 1)
+

(κ31 − κ32)2

8a2m3(ξ2 − 1)
+

θ3ξ(κ31 + κ32 + aθ3ξ)

2am3
,

and

Hη = p2
η

(1− η2)

2a2m3
+

p2
φ

2a2m3(1− η2)
+pφ

η(κ31 + κ32)

2a2m3(η2 − 1)
+

(κ31 + κ32)2

8a2m3(1− η2)
+

θ3η(κ31 − κ32 − aθ3η)

2am3
.

We conclude that the probe-two-center problem of supergoop is integrable, providing

another example to the distinguished list of integrable classical systems. In this

system, one observes highly symmetric spatial trajectories, as illustrated in figure

5.5.1.

5.6 Beyond Euler-Jacobi: the stringy double pen-

dulum

If we move away from the probe approximation and allow backreaction with the

fixed centers, our system is no longer integrable and begins to show chaotic features.

For instance, one can study trajectories in phase space and see whether they are

103



Chapter 5: Supergoop Dynamics

!10 !5 5 10
z

!0.4

!0.2

0.2

0.4

pz

10 11 12 13 14 15
y

!0.20

!0.15

!0.10

!0.05

0.05

0.10

0.15

py

Fig. 5.6: Examples of closed phase space trajectories in the integrable probe regime.

The plots show slices of phase space in the Cartesian coordinate system.

closed. One could also compute the Lyapunov coefficient of the system. In figures 5.6

and 5.7 we demonstrate the trajectories in phase space for the probe orbiting around

both centers as we exit the probe limit.

As we increase the number of degrees of freedom, the analysis of chaotic systems

becomes increasingly challenging. The canonical example of a double pendulum,

which already displays a significant set of features generic to chaotic systems at large,

can be effectively analyzed with the use of Poincaré sections. For a double pendulum,

the phase space is four-dimensional with a single constant of motion – the total energy.

Hence the system is not integrable.

5.6.1 Collinear dynamics

Away from the probe limit, as we already noted, our system has an 18-dimensional

phase space and becomes a complicated three-body problem. In order to study the
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Fig. 5.7: Examples of open phase space trajectories in the chaotic regime. The plots

show slices of phase space in the Cartesian coordinate system.

transition to chaos of our system, it is instructive to find a setup that allows us to

use the same tools used to analyze the double pendulum. This can be achieved by

restricting the particles to be collinear, i.e. placing them on a line and only considering

deformations along this direction. Notice that a system consisting of particles on a

line will stay on the line so long as the velocities of the particles are parallel to the line

itself. This is because the magnetic force v ×B will vanish in this situation. Hence,

the collinear system is a consistent truncation of our original Lagrangian (5.2.2). This

is no longer true for the coplanar case.

As was already discussed, we need at least three particles to find chaotic features.

Three backreacting particles on a line have six degrees of freedom with a conserved

energy, a situation closer to the triple pendulum. We can however take the mass of

one of them to be much larger than the other two such that they behave as two probes

in a fixed background. The probes are allowed to interact with each other since we
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do not restrict the θi and κij in any way, except
∑

i θi = 0. The equations governing

the two probes can be extracted from the two-probe Hamiltonian:

Hcol =
p2

2

2m2
+

p2
3

2m3
+

1

2m2

(
θ2 +

κ21

2x21
+

κ23

2x23

)2

+
1

2m3

(
θ3 +

κ31

2x31
+

κ32

2x32

)2

.

(5.6.35)

The above Hamiltonian is a good approximation for the three-particle system in the

limit where m1 . m2, m3. In this limit one particle becomes non-dynamical and

the energy is fully contained in the motion of the two light particles. Thus there is

a conserved quantity associated to the motion of the light particles and we are left

with a three-dimensional phase space, which is also the dimensionality of the double

pendulum phase space.

The ground state (x∗21, x
∗
31) is found by setting U2 = U3 = 0. In addition to

imposing the triangle inequality to fully specify the ground state, we must also declare

the ordering of the three particles on the line. A given ground state is mapped to

a family of ground states via the scaling relation (x∗21, x
∗
31; κij) → λ(x∗21, x

∗
31; κij).

Slightly increasing the energy leads to small oscillations about the equilibrium position

(x∗21, x
∗
31). The linearized normal frequencies are the eigenvalues of the Ω2 matrix:

Ω2
jl = M−1

jk ∂k∂lHcol , M−1
ij ≡ 1

mi
δij , i, j, k = {2, 3} . (5.6.36)

The derivatives of Hcol are evaluated at the equilibrium point. Though the general

formulae for the normal frequencies are quite involved they are readily computed.

As an example, the normal frequencies for κ13 = κ12 = −κ23 = 1, θ1 = −θ2 = −1,

θ3 = 0, and m2 = m3 = 1 are:

ω2
± =

2

81

(
121± 13

√
73

)
≈






5.73

0.25
. (5.6.37)
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5.6.2 Poincaré Sections

When the system is integrable or quasi-integrable, i.e. for sufficiently low energies,

the trajectories in the four-dimensional phase space will reside on two-dimensional

tori, since the system is simply given by two linearly coupled oscillators. Since it

is hard to visualize motion on the torus, we study instead particular snapshots of

the system, known as Poincaré sections (see [113, 114] for a more complete discus-

sion). For a given energy, we can record (over many different initial conditions) the

coordinate and conjugate momentum of one particle every time the other particle

has positive momentum and crosses a particular point. The resulting contours in

phase space, collectively known as a Poincaré section, display the transition from

quasi-integrable to chaotic behavior in our system.

For sufficiently low energies, the Poincaré sections are given by two fixed points

surrounded by a set of concentric contours. The fixed points correspond to motion in

one of the two normal modes. It is useful to define the winding number w, which is

the ratio of the number periods one particle completes for every full period completed

by the other. At the linearized level away from the fixed point, the winding number

w = ω1/ω2. If w is not a rational number, the trajectory will never quite return to

its original position and thus fills one of the concentric contours. As the energy is

increased, the winding number is detuned and eventually may even become rational.

Hence, parts of the phase space acquire new fixed points with their own concentric

contours. These correspond to nonlinear resonances. The last tori to break are those

with the ‘most’ irrational w (the golden mean (
√

5 − 1)/2 is the ‘most’ irrational

number, as defined by the speed of convergence of its continued fraction expansion).
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The breaking of the original two islands into an increasing number is qualitatively

similar to the case of a double pendulum. Eventually, there is essentially no visible

structure left in the Poincaré section and we are in a regime of global chaos.

We give an example of this in figure 5.8. Similar transitions to chaos are found for

examples where the κ’s form closed and non-closed loops. In several examples where

the κ’s form a closed loop and obey the triangle inequality, and the θ’s have the same

sign, the formation of islands around fixed points representing nonlinear resonances

seems to be far less manifest in the Poincaré sections. In other words, global chaos

seems to set in much more quickly. We hope to study these issues systematically in

the future.
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Fig. 5.8
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Fig. 5.8 (Continued): Poincaré sections of collinear setup with κ31 = 10, κ32 = −10,

κ21 = −10 and θ3 = −1, θ2 = 1 and energies E = {0.10, 0.20, 0.23, 0.26, 0.27, 0.30}.

Note that the κ’s form a closed loop. The horizontal axis represents the position

of particle 3 while the vertical axis represents its conjugate momentum. Any given

plot is produced by varying the initial positions and momenta of the two probes

subject to a fixed total energy. The pair (x3(t), p3(t)) is plotted every time the

resulting trajectory of particle 2 crosses some fiducial point (x2(t) = xc) with positive

momentum (p2(t) > 0), i.e. roughly every time particle 2 completes a full cycle as it

oscillates back and forth. In the quasi-integrable regime, different initial conditions

correspond to different contours. The first Poincaré section shows a quasi-integrable

behavior with two fixed points corresponding to the two low energy normal modes.
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5.7 Trapping

In this section, we envision a trapping problem. The setup consists of a localized

bound state and another particle, which we take to be a probe, beginning inside the

molecule. The probe begins its life at a random position well within the molecule.

We explore the dynamical evolution of the probe as we vary the initial energy.

5.7.1 Setup and Energetics

Our setup will consist of a probe with charge γp = (1, 0) in the presence of a bulk

molecule comprised of a number Nc of fixed electric centers of charge γc = (0, κ). The

positions of the electric centers will be obtained by drawing random points from a

ball of radius Rmol using the algorithm in [136, 137]. The classical probe Hamiltonian

in this background is given by:

Hprobe =
(pp −Ap)

2

2mp
+

1

2mp

(
Nc∑

i=1

κpi

rpi
+ θp

)2

. (5.7.38)

Since all the background centers have the same charge, the κpi ≡ κ are all equal.

Also, to ensure that trapping occurs we require that κ and θp have opposite signs.

The zero energy configurations are given by setting the second term in Hprobe to zero.

As usual, there is a classical moduli space M due to the fact that we have three

probe coordinate degrees of freedom and we are solving only one equation. We could

search for non-zero static minima of Hprobe, but a simple computation of the gradient

of the potential shows that there are only zero energy minima. The minimal energy

required for the probe to reach infinity is Emin = θ2
p/2mp.

For probe energies Ein ≥ θ2
p/2mp the probe can easily escape the molecule. For

111



Chapter 5: Supergoop Dynamics

energies in the range Ein < θ2
p/2mp, we observe trapping. Our goal is to begin

quantifying the amount of classical trapping. We do this by studying the fractional

volume fV (Ein, t) covered by the probe as a function of initial energy Ein and total

trajectory time t. We estimate fV by studying how many centers the probe trajectory

approaches to within one-half of the average inter-particle distance ri.p. ∼ Rmol/N
1/3
c .

We again stress that we keep the molecule and initial positions of our probe fixed

through all the trials, only varying the initial velocity of the probe. We take mp = 1,

θp = −10, Rmol = 20, Nc = 100 and κ = 1 for the presented data.

5.7.2 A trap

At low energies, we witness characteristic trapping: figure 5.9 shows one such

example where a probe is confined to less than 20% of the molecule, exploring the

same part of the molecule over and over again. We remind the reader that it is possible

to be trapped in one region indefinitely and this behavior should not (necessarily) be

looked at as a failure of not integrating for a long enough period of time. Indeed,

as is seen in the Euler-Jacobi flower of figure 5.5.1, probes can remain in one part

of a molecule for arbitrarily long periods of time. As we increase the energy, we

see a transition that opens up more of phase space to the probe. Little pockets

in the potential landscape form through which the probe particle can escape and

begin exploring other regions of the molecule. Often this happens by sudden jumps,

as illustrated in the middle row of figure 5.9. We have tracked the energies of the

probe and the numerics are stable. The jump is not due to an erroneous kick in the

integrator but rather appears to be due to small pockets through which the probe
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can escape given enough time. Finally, at high energies (e.g. around one half of the

escape energy), the probe uniformly explores the entire molecule, as illustrated in the

last row of figure 5.9.

It is also interesting to study the Schrödinger equation for the probe in this back-

ground to see if the wavefunction exhibits trapping via some avatar of Anderson

localization.4

4Thanks to Douglas Stanford for discussions on the quantum dynamics.
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Fig. 5.9: The first row represents a low energy probe, which remains stuck in a subset

of the phase space for seemingly arbitrarily long times. The second row represents an

intermediate energy probe which illustrates the non-uniform escapes that occur from

the low energy trapping behavior. We see that for a while it remains trapped in some

subset of phase space, after which it escapes and gets stuck in some other subset of

phase space. The final row represents a high energy probe which uniformly explores

the molecule. The associated plots represent the percentage of the molecule explored

as a function of the integration time, up to 15000 time steps in increments of 1500.
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Fig. 5.9 (Continued): The tapering off of the high energy probe is simply due to

saturating the entire molecule. Below these points the increase is very uniform. The

initial energy increases from 50% of the escape energy in the first row to 60% of the

escape energy in the third row. These percentages, however, are very dependent on

the parameters (e.g. κ, θ, etc.) in the problem.
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5.7.3 Topology of the potential landscape

To illustrate the potential landscape and gain some intuition for the motion of

trajectories, we set up a co-planar molecule. Again, all centers in the molecule have

equal charge and their positions are chosen by uniformly selecting Nc points on a

disk of size Rmol [138]. A probe in this background will not remain in the plane

due to the magnetic fields which will push it out. However, for a molecule where

every center attracts the probe, at low energies the deviations from the plane are

small relative to the size of the molecule, which can be made arbitrarily large. Thus,

plotting equipotential contours over this two-dimensional molecule gives an accurate

picture of the potential landscape which can be used to understand the trajectories.

See figure 5.10 for such a comparison. For a fixed molecule size, as the magnitude of κ

is increased relative to the magnitude of θ, the topology of the equipotentials changes

by expelling the low energy part of the landscape to the outside of the molecule, as

can be seen in figure 5.10. This mimics the change in topology of the moduli space

in going from Region V to Region IV in figures 5.2 and 5.3. Topology changes in the

moduli space of the three center setup also occurs as κ is increased while keeping θ

fixed as well as the distance between the background centers.

5.8 Holography of Chaotic Trajectories?

We end our journey by discussing how the picture we are developing may fit into

the broader context of holography. The usual interpretation of a large black hole in

an asymptotically anti-de Sitter space is that we have prepared the dual CFT in some
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Fig. 5.10: These contour plots show equipotential surfaces in the plane of a 2D

molecule consisting of one hundred centers. From left to right, we have chosen κ = 1,

κ = 1.5, κ = 3.5, and in all cases θ = −10. We observe that as the magnitude

of κ increases, the minima (blue region), which initially lied near each center, are

collectively expelled, forming an overall minimum that surrounds the molecule as a

whole. For κ = 1, the trajectory remains close to the plane of the molecule and has

been superimposed on the left contour plot (transparent white line). The axes label

the x and y positions of the probe particle.
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finite temperature state. On the other hand, the presence of a vast number of distinct

entropically relevant multicentered black hole configurations inside an anti-de Sitter

universe (see chapter 7) implies a vast number of minima in the free energy of the dual

CFT (as a function of configuration space). In particular, the usual assumptions of the

no-hair theorem fail since a set of macroscopic charges does not uniquely fix the bulk

solutions. In fact, the solutions are characterized by a large collection of multipole

moments. Furthermore, though most of them do not constitute true ground states,

they can be very long lived, decaying mostly through thermal and quantum tunneling.

We can access information about the relaxation and response of the CFT by com-

puting boundary-to-boundary correlators in the bulk. In the large frequency (or large

mass) limit two-point functions have been associated to bulk geodesics which begin

and end their life near the boundary of AdS [139, 140, 141, 142]. Such geodesics will

become highly complex and chaotic in the bulk due to the presence of the non-trivial

black molecule, as evidenced by our simpler setup. In fact, a geodesic may become

trapped in some very long lived unstable orbit before escaping back to the bound-

ary. Thus, the two-point function expressed as a path integral over bulk trajectories

and the applicability of the saddle point approximation may be a somewhat involved

issue. This picture suggests that the linear response properties of the dual CFT, to

the extent that they are captured by the two-point function in the geodesic approxi-

mation, in the multicentered/glassy phase are rather different from those in a usual

thermal state, where for example the motion of geodesics is integrable. The motion

of a very massive probe or high energy graviton falling into the bulk corresponds to

a point-like source cascading to lower energies (and covering larger size) in the CFT.

118



Chapter 5: Supergoop Dynamics

Eventually the excitation returns back to a point-like source at some other point on

the two-sphere where the CFT resides. From the bulk point of view this is when the

particle dropped into the molecule returns back out. The chaotic nature of the bulk

physics suggests chaotic behavior of the boundary theory itself.

One may also consider the dynamical features at zero temperature for which

asymptotically AdS3 multicentered configurations are known [143]. The possible

presence of classical chaotic behavior of the bulk AdS3 should correspond to quantum

dynamics in the dual CFT2. One effect of particular interest in chaotic systems is

known as quantum scarring, where it has been observed that the wavefunction of a

chaotic system peaks on closed classical trajectories [144]. We hope to explore these

issues further in future work.
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Hot Halos and Galactic Glasses

(Carbonado)

6.1 Layout of the chapter

The main focus of this chapter consists of exploring the nature of finite tempera-

ture black hole bound states in N = 2 supergravity in four dimensions. To be more

or less self-contained we begin by reviewing in section 7.1 the relevant Lagrangians

and notations (more background can be found in [145]). In section 6.3 we present

a simple consistent truncation scheme valid for any N = 2 string compactification,

within which we derive and describe a family of exact non-extremal black hole solu-

tions (previously found in [146]). These will serve as our galactic black hole cores,

dressed by halos of much smaller probe black holes. The probe potentials are intro-

duced in section 6.4 and the existence of nonextremal bound states is established. A

systematic exploration of the parameter regime in which metastable and stable bound
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states exist is given in section 6.5; the results are shown in fig. 6.3. We discuss the

thermodynamic properties of the system and find a phase structure confirming several

of the glass-like features outlined above. The diagram is suggestive of quantum criti-

cal points attained by dialing the asymptotic moduli to the black hole attractor fixed

point. Across this point, the ratio of probe-induced spin to probe induced D6 mag-

netic dipole moment changes sign. In the appendix we estimate the configurational

entropy of multi-probe BPS galaxies and find it grows linearly with the system’s size

(charge), and that it scales to zero with a nontrivial exponent near the critical points.

In interesting recent work [107, 147], analogous but complementary finite temper-

ature bound states in five dimensions were independently explored, with qualitatively

similar results (see appendix D of [107] for a detailed comparison).

6.2 Setup and notation

Four dimensional N = 2 supergravity coupled to massless vector and hypermul-

tiplets has a bosonic action of the general form [148, 149]

S4D =
1

8π

ˆ

d4x
√
−g

(
1
2R−GAB̄ ∂µz

A∂µz̄B̄ − hXY ∂µq
X∂µqY

)

− 1

32π

ˆ

d4x
√
−g

(
Im NIJ F I

µνF
Jµν − Re NIJ F I

µνF̃
Jµν

)
,

where the zA (A = 1, . . . , n) are the vectormultiplet scalars, F I
µν = ∂µAI

ν − ∂νAI
µ

(I = 0, 1, . . . , n) are the vector field strengths, F̃µν ≡ 1
2εµνρσF̃ ρσ, and the qX are

the hypermultiplet scalars. We put GN = 1. As GAB̄ and NIJ only depend on

the zA, and hXY depends only on the qX , the hypermultiplets decouple from the

vector multiplets and we will not need to consider them further. The vectors AI are
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sourced by electric charges QI and magnetic charges P I .1 The space of charge vectors

Γ = (P I , QI) carries a canonical, duality invariant, symplectic product, which in the

standard symplectic basis can be expressed as

〈Γ, Γ̃〉 = P IQ̃I −QIP̃
I . (6.2.1)

The metric GAB̄ is special Kähler, i.e. it is derived from a prepotential F (X):

GAB̄ = ∂zA ∂̄z̄B̄K , K = − log i〈Ω, Ω〉 , Ω = (XI , ∂XIF ) , XA = X0zA .

(6.2.2)

The variable X0 drops out of all observable quantities; we gauge fix X0 ≡ 1. The

prepotential F (X) is a locally defined holomorphic function, homogeneous of degree

2 in the XI . It also determines the electromagnetic couplings NIJ :

NIJ = F̄IJ + 2i
(Im FIK)XK(Im FJL)XL

XM(Im FMN)XN
, FIJ = ∂XI∂XJ F . (6.2.3)

In type IIA Calabi-Yau compactifications the coordinates zA = BA + iJA are

identified complexified Kähler moduli and, ignoring string worldsheet instanton cor-

rections, the prepotential takes the form

F (X) =
1

6X0
DABCXAXBXC (6.2.4)

where the DABC are triple 4-cycle intersection numbers. The charges (P0, PA, Q0, QA)

are identified with wrapped (D6,D4,D0,D2) charges. For a Calabi-Yau with a single

Kähler modulus z = z1 (i.e. n = 1), the cubic prepotential (6.2.4) becomes

F (X) = D
(X1)3

6X0
. (6.2.5)

1Magnetic charges have an upper index, but we will further on often use lower indices for both
electric and magnetic charges, to make expressions involving powers of magnetic charges less clumsy.
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The examples we consider in this paper will all be effectively reducible to this case.

The special Kähler metric (6.2.2) is then just the Poincaré metric on the upper half

plane:

Gzz̄ =
3

4 (Im z)2
, (6.2.6)

and the electromagnetic coupling matrix (6.2.3) becomes, with z = x + iy,

N = D




x3

3 + iyx2

2 + iy3

6 −x2

2 −
iyx
2

−x2

2 −
iyx
2 x + iy

2



 (6.2.7)

N = 2 supersymmetry implies that the mass of any state of charge Γ in a vacuum

with asymptotic moduli z0 is bounded below by the absolute value of the central

charge Z(Γ, z0), defined by

Z(Γ, z) = −eK/2 〈Γ, Ω〉 . (6.2.8)

States saturating this bound are supersymmetric and called BPS. In the n = 1 case

(6.2.5), for a charge Γ = (P0, P1, Q0, Q1), (6.2.8) becomes

Z(Γ, z) =

√
3

2
√

D(Im z)3

(
D
6 P0z

3 − D
2 P1z

2 + Q1z + Q0

)
. (6.2.9)

To write down the action of a point particle in a general background, it is convenient

to introduce the dual magnetic field strengths

GI = Im NIJ F̃ J − Re NIJ F J . (6.2.10)

The electromagnetic equation of motion dGI = 0 implies the existence of dual mag-

netic gauge potentials BI such that GIµν = ∂µBIν − ∂νBIµ. Collecting the elec-

tric and magnetic gauge field strengths and potentials into duality covariant vectors
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F = (F I , GI) and A = (AI , BI), the action for a point particle of mass m and charge

γ = (pI , qI) is [104, 150]

Sγ = −
ˆ

m ds− 1

2

ˆ

〈γ, Aµ〉dxµ . (6.2.11)

The mass depends on the scalars z. In particular when the particle is BPS, we have

m = |Z(γ, z)| . (6.2.12)

6.3 Non-extremal black hole background

We will now construct a class of exact, spherically symmetric, nonextremal single

centered black hole solutions for any prepotential of the form (6.2.4). These are

essentially the solutions found in [146, 151]. In the nonsupersymmetric extremal

limit they belong to the class studied in [152, 153, 154, 155].

6.3.1 Equations of motion

The black hole metric is of the general form

ds2 = −e2U(τ) dt2 + e−2U(τ)

(
c4

sinh4 cτ
dτ 2 +

c2

sinh2 cτ
dΩ2

2

)
, (6.3.13)

where τ is an (inverse) radial coordinate with τ = 0 corresponding to spatial infinity

and τ =∞ to the horizon. The parameter c is a positive constant parametrizing the

deviation from extremality.
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The scalars depend on τ only, and the electromagnetic field is given by2

F I = PI ω−(ImN )IJ(QJ+ReNJKPK) :ω , ω = sin θ dθ∧dφ , :ω = −e2Udt∧dτ

(6.3.14)

Note that this automatically satisfies the Bianchi identity dF I = 0, because the

NIJ and U depend on τ . Moreover, for this particular form of F I , we have GI =

QIω+(· · · ):ω, hence the equations of motion dGI = 0 are also automatically satisfied.

The scalar and metric equations of motion can be obtained from an effective

particle action [156]

Seff =

ˆ ∞

0

dτ
(
U̇2 + GAB̄ żA ˙̄zB̄ − Veff(U, z, z̄)

)
, (6.3.15)

with effective potential

Veff = −c2 − e2U
(
|Z|2 + 4GAB̄∂A |Z| ∂̄B̄ |Z|

)
, (6.3.16)

supplemented with the constraint that the total particle energy must vanish:

U̇2 + GAB̄ żA ˙̄zB̄ + Veff = 0 . (6.3.17)

6.3.2 Consistent truncations

Solving this system in general appears intractable, but special classes of solutions

can nevertheless be found. First, the general problem with an arbitrary number n of

vector multiplets can be consistently reduced to an effective single vector multiplet

problem by the truncation [105], for any choice of constant KA (inside the Kähler

2In form notation, F = 1
2Fµνdxµ ∧ dxν , A = Aµdxµ.
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cone):

zA = KAẑ1 , (F 0, FA, G0, GA) =
(
F̂ 0, KAF̂ 1, K3Ĝ0, (K

2)AĜ1

)
, (6.3.18)

where (K2)A ≡ DABCKBKC and K3 ≡ DABCKAKBKC . It is easily checked that the

equations of motion then consistently reduce to the n = 1 case (6.2.5), with D = K3.

To remain consistent we must also choose the black hole charge to be of the form

Γ =
(
P̂ 0, KAP̂ 1, K3Q̂0, (K

2)AQ̂1

)
, (6.3.19)

which sources the reduced fields as a charge (P̂ I , Q̂I) in the effective n = 1 theory.

We will henceforth normalize KA such that D = K3 = 1, and drop the hats on the

reduced quantities.

The effective metric on the scalar space parametrized by z1 ≡ z ≡ x + iy is given

by (6.2.6) and the effective potential is Veff(U, x, y) = −c2 − e2UV (x, y) with

V =
3

y3

(
Q0 + Q1x− 1

2P1x
2 + 1

6P0x
3
)2

+
1

y

(
Q1 − P1x + 1

2P0x
2
)2

+
y

4
(P1 − P0x)2 +

y3

12
P 2

0 .(6.3.20)

The resulting equations of motion are still hard to solve in the generic case, but when

x = 0, the coupling matrix (6.2.7) becomes pure imaginary and diagonal, and the

system simplifies considerably. This motivates a search for solutions with constant

x(τ) = 0. In this case the fields strengths (6.3.14) are of the simple form

F 0 = P0 ω −Q0
6
y3 : ω , F 1 = P1 ω −Q1

2
y : ω ,

G0 = Q0 ω + P0
y3

6 : ω , G1 = Q1 ω + P1
y
2 : ω .

(6.3.21)

Consistency of the ansatz x(τ) = 0 requires ∂xV |x=0 = 0, which leads to the conditions

Q0Q1 = Q1P1 = P0P1 = 0, leaving the possibility to have D4-D0 (Γ = (0, P1, Q0, 0)),

D6-D2 (Γ = (P0, 0, 0, Q1)), or D6-D0 (Γ = (P0, 0, Q0, 0)) background charges. In the

following we specialize to these cases.
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6.3.3 Solving the equations of motion

Putting y = eφ, the remaining equations of motion for U and φ derived from

(6.3.15) take the form

Ü = e2U
(
v1e

aφ + v2e
bφ

)
, (6.3.22)

φ̈ = 2
3e

2U
(
av1e

aφ + bv2e
bφ

)
, (6.3.23)

together with the constraint (6.3.17) (which just fixes the value of c). For the

D4-D0 system, we have (v1, v2; a, b) =
(
3Q2

0,
P 2

1
4 ;−3, 1

)
, for D6-D2 (v1, v2; a, b) =

(
Q2

1,
P 2

0
12 ;−1, 3

)
and for D6-D0 (v1, v2; a, b) =

(
3Q2

0,
P 2

0
12 ;−3, 3

)
. This system is of

Toda form [157]. Following the method of [151], we set α ≡ 2U + aφ, β ≡ 2U + bφ.

The system of equations of motion for U and φ then becomes

α̈ = α0 eα + γ0 eβ,

β̈ = δ0 eα + β0 eβ.

where α0 = 2
3 (3 + a2) v1, β0 = 2

3 (3 + b2) v2, γ0 = 2
3 (3 + ab) v2, and δ0 = 2

3 (3 + ab) v2.

These two equations decouple if ab = −3, which happens to be the case for the D4-D0

and D6-D2 systems. In these cases the equations of motion integrate to

α (τ) = log

(
2c2

1

α0 sinh2 (c1τ + c2)

)
,

β (τ) = log

(
2c2

3

β0 sinh2 (c3τ + c4)

)
,

(6.3.24)

where c1, c2, c3, c4 are positive integration constants and (α0, β0) =
(
24Q2

0,
2P 2

1
3

)
for

the D4-D0 while (α0, β0) =
(

8Q2
1

3 , 2P 2
0

3

)
for the D6-D2.
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Specializing to the D4-D0 case, this implies for the original fields

e−4U =
2|Q0P 3

1 |
3c1c3

3

sinh (c1τ + c2) sinh3 (c3τ + c4), (6.3.25)

y2 = e2φ =
6|Q0|
|P1|

c3

c1

sinh (c1τ + c2)

sinh (c3τ + c4)
. (6.3.26)

The constraint (6.3.17) fixes c2 = (c2
1 + 3c2

3)/4. Regularity of φ at the horizon τ =∞

requires c1 = c3. The asymptotic boundary conditions U(τ = 0) = 0, y(τ = 0) = y0

further imply

sinh c2 =
c y3/2

0

2
√

3 |Q0|
, sinh c4 =

√
3 c

|P1| y1/2
0

. (6.3.27)

6.3.4 The D4-D0 solution

Putting everything together, denoting3

H0 ≡
|Q0|
c

sinh(cτ + c2) , H1 ≡
|P1|
c

sinh(cτ + c4) , (6.3.28)

we get for the metric warp factor and the scalar

e−2U =

√
2

3
H0H3

1 (6.3.29)

y =

√
6H0

H1
, (6.3.30)

and for the gauge potentials A = (AI , BI), obtained by integrating the field strengths

(6.3.21):

A0 = 1
2Q0

(√
c2 + Q2

0

H2
0
− c

)
dt , A1 = P1(1− cos θ) dφ ,

B0 = Q0(1− cos θ) dφ , B1 = − 3
2P1

(√
c2 + P 2

1

H2
1
− c

)
dt .

(6.3.31)

3This notation is motivated by the fact that in the c→ 0 extremal limit, H0 and H1 become the
flat space D0 resp. D4 harmonic functions ubiquitous in the description of the well-known extremal
solutions.
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We have chosen a gauge here in which the electric potentials vanish at the horizon

and the Dirac monopole potentials are regular on the northern sphere.

Notice that for c = 0 the modulus y at the horizon τ =∞ is fixed at an attractor

point y3 independent of y0:

y3 =

√
6|Q0|
|P1|

. (6.3.32)

For c > 0, the horizon value of y becomes y0-dependent, but for y0 = y3, it still

remains true that the scalars do not flow. In this sense it can still be viewed as some

kind of attractor point even in the nonextremal case.

6.3.5 Mass, entropy, temperature and specific heat

The ADM mass of the black hole can be read off from the asymptotic behavior of

the metric:

M =
c

4
(coth c2 + 3 coth c4) (6.3.33)

=
1

4

√

c2 +
12 Q2

0

y3
0

+
3

4

√
c2 +

P 2
1 y0

3
. (6.3.34)

In the extremal limit c = 0, this becomes M =
√

3
4 |P1|y1/2

0 +
√

3
2
|Q0|
y
3/2
0

. When P1 and

Q0 have the same sign, this equals the absolute value of the central charge and the

extremal limit is supersymmetric. When P1 and Q0 have opposite sign the mass is

strictly larger than the absolute value of the central charge and the extremal limit is

nonsupersymmetric.

The Bekenstein-Hawking entropy can be read off from the near horizon (τ →∞)

behavior of the metric. Introducing r ≡ e−cτ , this is:

ds2 8 −4πc2

S
r2dt2 +

4S

π
dr2 +

S

π
dΩ2

2 , (6.3.35)
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Fig. 6.1: (a): Rescaled temperature T̃ ≡ √y0P1 T as a function of Q̃0 and c̃, multiplied

by 103. Red is warm, blue is cold. The temperature reaches its maximum at fixed Q̃0

on the thick curve. (b): Specific heat for Q̃0 = 0, diverging at ccrit = 1/2
√

6 ≈ 0.2,

where the temperature reaches a maximum T̃max =
√

3/8π ≈ 69× 10−3.

where S = Ahor/4 is the Bekenstein-Hawking entropy:

S = π

√
2|Q0P 3

1 |
3

e(c2+3c4)/2 (6.3.36)

= π

(
c +

√

c2 +
12 Q2

0

y3
0

)1/2 (
c +

√
c2 +

P 2
1 y0

3

)3/2

. (6.3.37)

The temperature can be read off from the near-horizon metric by Wick rotating

the time coordinate and fixing its periodicity β = 1/T by requiring regularity at the

origin r = 0. This yields

T =
c

2S
. (6.3.38)

Whereas the mass and entropy of the single centered D4-D0 black hole are mono-

tonic function of c, this is not so for the temperature, as is clear from figure 6.1 (the
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rescaled tilde variables will be defined in (6.3.39) and below): The temperature starts

at zero in the extremal limit c = 0, acquires a maximal value at some intermediate

c, and goes to zero again in the Schwarzchild black hole limit c → ∞. The rescaled

specific heat ∂M
∂T at fixed P1, Q0, y0 diverges at this point [158] and changes sign from

positive to negative.

6.3.6 Scaling symmetries

It turns out to be very useful to keep in mind the scaling symmetries X →

λn1
1 λn2

2 X, λi ∈ R+, acting on the various quantities defined so far with exponents

P1 Q0 c y0 τ H0 H1 M S T
n1 1 1 1 0 −1 0 0 1 2 −1
n2 1 3 3

2 1 −3
2

3
2 −1

2
3
2 3 −3

2

The first symmetry descends from a general symmetry of Einstein gravity coupled to

vectors, the second from a general symmetry valid for cubic prepotentials [105]. The

scalings of the derived quantities H0, H1, M , S and T follow from the scalings of the

charges and of c, y0 and τ . A consequence of these symmetries is that physical quan-

tities will depend only on invariant combinations of the parameters, up to an overall

factor determined by the scaling properties of the quantity under consideration. We

choose our independent invariant parameters to be

Q̃0 ≡
Q0

y2
0P1

c̃ ≡ c
√

y0P1
. (6.3.39)

A quantity X with scaling exponents (n1, n2) will then have the functional dependence

X(P1, y0, Q0, c) = P n1
1 yn2−n1

0 X̃(Q̃0, c̃) , X̃(Q̃0, c̃) = X(1, 1, Q̃0, c̃) . (6.3.40)
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For example the ADM mass (6.3.34) can be written as M = P1
√

y0M̃ with M̃ =

(
1
4

√
c̃2 + 12 Q̃2

0 + 3
4

√
c̃2 + 1

3

)
, the entropy as S = P 2

1 y0S̃ and the temperature as

T = T̃ /P1
√

y0.

6.4 Probe bound states

In this section we explicitly demonstrate the existence of bound states of probe

particles in the nonextremal D4-D0 black hole backgrounds described in the previous

section.

6.4.1 BPS probes

We will in this paper primarily consider probe particles of charge γ = (p0, p1, q0, q1)

that are themselves BPS. These “particles” could themselves be large black holes, but

they must be much smaller than the background black hole so backreaction can be

neglected. In thermal equilibrium the probe black hole will acquire the temperature

of the background black hole, so it will not quite be BPS. However, the background

temperature is parametrically suppressed as T ∼ 1/M in the limit of large background

black hole mass M , as can be seen explicitly from the scaling table in section 7.2.5.

Hence for any fixed probe size, the thermal contribution to the probe energy, which is

proportional to T , will vanish in the large M limit, and thus the BPS approximation

is justified.4

4More precisely, the probe thermal energy is of order ET ∼ TSp, with Sp the probe entropy.
Scaling up the background charges uniformly by a factor of λ1 while keeping the probe fixed scales
ET ∝ T ∝ 1/λ1 → 0, whereas the probe potential remains invariant (as we will confirm below).
Assuming this potential is not exactly flat, we can therefore neglect the thermal energy. Strictly
speaking, this argument only tells us we can assume the probe to be extremal, but not necessarily
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The static potential for a BPS particle can be obtained from (7.1.9) and the

solutions found in the previous section. It consists of two parts, a gravitational part

Vg = eU |Z(γ, y)| and an electromagnetic part Vem = 1
2〈γ, A0〉. Explicitly Vp = Vg+Vem

with

Vg =
1

4

√(
q0

H0
+

3 p1

H1

)2

+
6 H0

H1

(
q1

H0
− p0

H1

)2

. (6.4.41)

and

Vem = −1

4

q0

Q0

(√

c2 +
Q2

0

H2
0

− c

)
− 3

4

p1

P1

(√

c2 +
P 2

1

H2
1

− c

)
, (6.4.42)

To avoid complications with marginal stability decays of the probe as it moves

around in the nontrivial background, we will only consider probes that are themselves

single centered black holes or particles. The BPS probe entropy is given by Sp ≡ π
√
D,

where the so-called discriminant D must be positive for a solution to exist; in the case

at hand this is [159]:

D =
2

3
p3

1q0 − p2
0q

2
0 − 2 p0p1q0q1 +

1

3
p2

1q
2
1 −

8

9
p0q

3
1 ≥ 0. (6.4.43)

Finding an explicit parametrization of this subset of charges seems hard, but is actu-

ally made easy by using the invariance of D under shifts (p0, p1, q0, q1) = γ → γa =

(p0, p1 + p0a, q0 − q1a − p1
a2

2 − p0
a3

6 , q1 + p1a + p0
a2

2 ) with a ∈ R. This invariance

follows from the axionic shift symmetry z → z − a of the supergravity theory under

consideration, which leaves in particular the black hole entropy invariant.5

BPS. However non-BPS extremal black holes are expected to be unstable to decay into lighter
particles, as will be confirmed explicitly in section 6.5, and this on a time scale exponentially smaller
than possible instabilities of the background black hole. This justifies considering primarily BPS
probes.

5Explicitly: D(γ) = minz |Z(γ, z)|2 = minz |Z(γ, z − a)|2 = minz |Z(γa, z)|2 = D(γa).
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Thus, in the parametrization

p1/p0 = k , q1/p0 = −b +
k2

2
, q0/p0 = n + bk − k3

6
, (6.4.44)

we get simply

D = p4
0

(
8
9b

3 − n2
)
, (6.4.45)

and we may explicitly parametrize the solutions to the constraint (6.4.43) as b =
(

9
8(n

2 + D
p4
0
)
)1/3

, D ≥ 0.

In type IIA compactifications, k may be thought of as the U(1) flux on the wrapped

D6, which carries no entropy, while b and n are the “entropic” contributions to the

charges [105].

6.4.2 Scalings and validity of probe approximation

Besides the scaling symmetries described in section 7.2.5, we have an additional

symmetry uniformly scaling only the probe charge γ, present because we work to

linear order in γ. All in all we get the following scalings X → λn1
1 λn2

2 λn3
3 X:

P1 Q0 c y0 τ p0 p1 q1 q0 k b n mp Sp Vp

n1 1 1 1 0 −1 0 0 0 0 0 0 0 0 0 0
n2 1 3 3

2 1 −3
2 0 1 2 3 1 2 3 3

2 3 3
2

n3 0 0 0 0 0 1 1 1 1 0 0 0 1 2 1

The action on the background is the same as before, and we used the third scaling

to set to zero the action of the λ1-scaling symmetry on the probe charge. In addition

to these continuous symmetries, there is a Z2 symmetry inverting the signs of all

charges, and another Z2 inverting only the signs of D2 and D6-charges. We point out

here that the probe potential does not scale with the size of the black hole.
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Analogous to (6.3.39) and (6.3.40), we can scale out powers p0 in addition to P1,

y0 according to the following scaling dimensions:

X = P n1
1 yn2−n1

0 pn3
0 X̃ . (6.4.46)

So for example k = y0k̃, b = y2
0 b̃, n = y3

0ñ, and Sp = y3
0p

2
0S̃p with S̃p = π

√
8
9 b̃

3 − ñ2.

Some care has to be taken not to forget the regime of validity of the probe approx-

imation. The ratio probe mass mp over background black hole mass M has scaling

weights (−1, 0, 1), so mp

M = y0p0

P1

m̃p

M̃
. From this we see that for typical tilde variables

of order 1 (and p0 2= 0), we must keep y0p0 / P1 to guarantee mp/M / 1. In-

deed, when y0 ∼ P1, a single pure D6 becomes as massive as P1 D4-branes, i.e. the

background black hole, thus spoiling the probe approximation. In particular, since

y0 → ∞ is the M-theory decoupling limit [143], this means that black hole bound

states in AdS3×S2 (of which the exact supersymmetric versions were constructed in

[143]) are not reliably captured by the 4d probe analysis of this paper, in particular

not for non-BPS configurations. On the other hand, for any fixed value of y0 and

the probe charges, we can always send P1 → ∞ to make the probe approximation

arbitrarily accurate.

6.4.3 Bound states

The probe will form a stationary “molecular” bound state with the black hole

whenever the potential has a nontrivial local minimum. In the supersymmetric case,

the discovery of such probe bound states led the way to the construction of general

nonlinear black hole bound state solutions in N = 2 supergravity [104]. In partic-

ular their existence made it clear that such bound states had to exist, and quite
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Fig. 6.2: Examples of probe potentials. Local minima give rise to bound states.

The radial u coordinate is defined by u
1−u = c̃

sinh(c̃τ̃) . The horizon is at u = 0 and

spatial infinity at u = 1. In general, the potential always goes up from the horizon

(for c > 0) and has at most one bump and at most one interior local minimum.

On the left we show probe potentials at (Q̃0, c̃, k̃, 9D̃, ñ) equal to (.01, .01, .5, 0, 0) for

(1), (.4, .01, .65, 0, 0) for (2) and (−.4, .01, 2, .01, .15) for (3). On the right we show

the same but at c̃ = .08. At this higher temperature, the minima of (1) and (2)

have become positive and more shallow, while (3) has lost its minimum altogether.

Increasing c̃ even more wipes out all local minima.
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remarkably, the simple explicit formula for the equilibrium radius obtained from the

probe analysis is formally exactly the same as the corresponding formula obtained

from supergravity. This was later explained as being a consequence of the constraints

imposed by supersymmetry [103]. There is no reason to expect a similar exact match

in the nonextremal case, but a probe analysis will still provide reliable information

about the existence of bound states in suitable regimes.

To reproduce first the supersymmetric result, we consider the case of supersym-

metric background, c → 0, P1, Q0 > 0. The probe potential is then of the form Vp =

√
V 2

em + ∆2 + Vem. This makes the BPS bound Vp ≥ 0 manifest. If a BPS-saturating

supersymmetric minimum Vp = 0 exists, it is reached at the radius req = 1/τeq for

which ∆(τeq) = 0 and Vem(τeq) < 0. The first condition is q1H1(τeq)− p0H0(τeq) = 0,

or explicitly, using limc→0 H0 = Q0τ + y
3/2
0

2
√

3
and limc→0 H1 = P1τ +

√
3

y
1/2
0

:

req, BPS =
p0Q0 − q1P1

q1

√
3
y0
− p0

√
y3
0

12

. (6.4.47)

This reproduces the standard BPS equilibrium separation formula for two-centered

bound states of this kind [104].

In the nonextremal case there is no such simple expression for req, but by conti-

nuity there will obviously still exist bound states for suitable values of the charges

and the nonextremality parameter c. Some examples of probe potentials with local

minima are shown in fig. 6.2. As suggested by the figure, increasing the nonextremal-

ity parameter c typically tends to push up the local minimum, until it eventually

disappears altogether and the probe rolls into the black hole. This is to be expected,

since going away from extremality means adding more mass. Thus the gravitational

pull becomes increasingly more important, eventually overpowering all other forces.
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In some cases however, in particular for small positive values of Q̃0, going away from

c = 0 initially decreases the value of the potential at the local minimum. An example

is potential (1) in the figure (as opposed to (2)): At c = 0 this is a supersymmetric

(i.e. V = 0) local minimum, whereas for small but nonzero c̃ it is negative. For larger

c̃ is goes positive again. Thus, interestingly, slightly heating a supersymmetric black

hole with small Q̃0 will make it unstable to emission of such charges. We view this

as an interesting interplay between supersymmetric and thermal physics. For non-

BPS extremal black holes (Q̃0 < 0), negative energy6 probe bound states exist for

sufficiently small c̃ for all values of Q̃0. An example is potential (3) in the figure.

In the following section we discuss existence and stability in more detail.

6.5 Existence, stability and phases

6.5.1 Supersymmetric bound states

In the supersymmetric case Q̃0 > 0, c̃ = 0, using the parametrization (6.4.44), a

straightforward analysis shows that a BPS bound state exists if and only if

Q̃0 < q̃1 <
1

6
or

1

6
< q̃1 < Q̃0 , (6.5.48)

where q̃1 = k̃2

2 − b, and

sign k̃ = sign p0 , D̃ =
8

9
b̃3 − ñ2 ≥ 0 . (6.5.49)

6Recall we defined the probe potential energy to be zero at the horizon. For a BPS background,
this zero coincides with the BPS bound, so the energy must be nonnegative. For a non-BPS back-
ground, the total energy still satisfies the BPS bound, of course, but the conventional zero of our
potential no longer coincides with it, thus allowing energies to become negative.
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Fig. 6.3: Existence and stability regions of hot black molecules in the (Q̃0, c̃)-plane.

The figure on the right zooms in on a smaller region but is otherwise the same as

the figure on the left. No bound states exist in the grey region. In the yellow region

bound states exists, but they are all positive energy (curve (2) in fig. 6.2). In the green

region, negative energy bound states exist (curve (1) in fig. 6.2a). The orange overlay

is the region where the black hole core itself is unstable for emission of particles to

infinity. The blue overlay in the lower left corner is the region within the Q̃0 < −1
6

range where pure fluxed D6 probe bound states exist (when Q̃0 > −1
6 these always

exist and moreover they always produce the lowest energy bound states). The dotted

line is the maximal temperature line also shown in fig. 6.1. The grey regions touch

the zero temperature axis at Q̃0 = ±1
6 , or equivalently when y0 coincides with the

black hole fixed point y3.

The equilibrium distance (6.4.47) expressed in rescaled variables is r̃eq = 1√
3

Q̃0−q̃1

q̃1−1/6 .

The boundary D̃ = 0 corresponds to vanishing probe entropy, the boundary q̃1 =

Q̃0 to a vanishing bound state radius and hence absorption of the probe by the
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background black hole, and finally the boundary q̃1 = 1
6 corresponds to an infinite

bound state radius and hence to decay at marginal stability. This is brought in a more

conventional form by returning to the non-scaled variables, which turns the existence

condition (6.5.48) into 6Q0

P1
< 6q1

p0
< y2

0 or 6Q0

P1
> 6q1

p0
> y2

0. The absorption wall is

then clearly seen to correspond to a vanishing probe-background symplectic product

〈γ, Γ〉 = 0, while the marginal stability wall is at y0 =
√

6q1

p0
.

Notice there exist bound states for all values of Q̃0 ≥ 0 except 1/6. The number

of possible bound states will not be constant however. In particular when Q̃0 → 1/6

(or equivalently y0 → y3, where y3 = 6Q0

P1
as in (6.3.32)), the allowed region in the

probe charge space shrinks to zero. In appendix D.1 we compute the number of probe

bound states, allowing multiple probes with different charges and taking into account

the lowest Landau level degeneracies due to the magnetic interaction between the

background black hole and the probe charges (but ignoring mutual magnetic interac-

tions between the probes themselves). We do not count the internal microstates of

the black holes. The logarithm of the number of configurations defined in this way

is thus the analog of the notion of configurational entropy in the theory of glasses

[160, 161, 162]. The final result for the number N (ε) of such configurations with total

probe mass over black hole mass less than ε is given by equation (D.1.18):

logN (ε) ∼ ε5/6
∣∣y2

0 − y2
3

∣∣1/3 P1

y1/6
0

, (6.5.50)

with y3 = 6Q0

P1
. Thus we see that the number of allowed configurations indeed goes to

zero when the critical point y0 = y3 is approached, with a nontrivial scaling exponent

1/3.

It is interesting that even this restricted counting already gives an exponential
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growth of the number of configurations N in the P1 → ∞ thermodynamic limit.

This is typical for glasses [160, 161, 162]. The growth is not as fast as the black

hole entropy itself (it is at most P 3/2
1 , if we allow going to the boundary of the probe

regime, cf. eq. (D.1.6)), but the exponentially large number of configurations should

nevertheless have important consequences for the thermodynamics of this system.

6.5.2 Hot black molecules

For nonsupersymmetric black holes the analysis becomes more complicated, re-

quiring some numerical assistance to scan the space of possible probe bound states

for given (Q̃0, c̃). The results of this work are summarized in fig. 6.3. We identify

four different regions:

1. In the grey region filling the high temperature region, no molecular bound

states of any kind exist, as gravity overpowers all other forces.

2. In the yellow regions right below it, bound states exist for some probe charges,

but all of them have positive energy at their minimum, so they are metastable (recall

we put the zero of the probe potential at the horizon). An example is potential

(2) in fig. 6.2. When approaching the grey-yellow boundary, the minima become

higher, are pushed to large radii and become very shallow, while the number of probe

configurations goes to zero. This should give a scaling law analogous to (6.5.50) but

we did not try to extract the scaling exponent. The grey region touches the T = 0

axis at the quantum critical points Q̃0 = ±1
6 ≈ 0.1667. For Q̃0 > −1

6 , we numerically

observed with high accuracy that the probe particles forming the lowest energy bound

states are always zero entropy b = n = 0, k 2= 0 particles. In IIA language these
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are pure D6-branes with U(1) flux, which uplift in M-theory to smooth “bubbling”

geometries [163, 164, 165, 166, 167, 168, 169]. In particular the bound state surviving

the longest when c is increased is of this type. For Q̃0 < −1
6 this is no longer the

case, and in fact there are no bound states of this type for −3
2 < Q̃0 < −1

6 . The blue

overlay shows where they reappear in the region Q̃0 < −3
2 .

3. In the green regions enclosed in the yellow, negative energy bound states exist.

Such bound states are energetically stable against tunneling of the probe into the

black hole or out to infinity. The green line along the positive Q̃0 axis represents the

BPS bound states discussed in section 6.5.1, which have zero energy. The negative Q̃0

axis represents extremal nonsupersymmetric bound states. There is no BPS bound

forbidding negative energy states, and by the rule that everything that is not forbidden

is allowed, we find indeed that a large subset has deep negative energy minima.

Interestingly, due to the transient dipping effect described at the end of 6.4.3, there

is a small but finite region on the Q̃0 > 0 (i.e. BPS) side at finite temperature where

negative energy bound states exist. It extends to Q̃0 = 1
54 ≈ 0.0185 (see end of next

paragraph).

4. The orange overlay is the region where the background black hole itself is un-

stable to emission of particles to spatial infinity. We take such emissions to be possible

whenever there exists some probe charge such that the probe potential becomes neg-

ative at spatial infinity. Notice that the red region includes the green region. Hence

whenever a bound state exists that is stable against tunneling of the probe out of its

minimum, the background black hole will be unstable to emission of particles. We

note, however, that whenever the probe potential exhibits a minimum, it is always
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found to be lower than the value of the potential at infinity. The destabilizing probe

type kicking in first (at the highest c) is again a pure fluxed D6 brane, b = n = 0,

over the entire range of Q̃0 we scanned. This allows computing the boundary of the

red region analytically as the value of c for which the asymptotic value of Vp has a

double zero viewed as a function of k:

cBHstab =
1

4
√

3

3∆− 1√
(∆ + 1)(∆ + 5)

, ∆ ≡
√

1− 48 Q̃0 . (6.5.51)

The critical line reaches zero at ∆ = 1
3 , i.e. Q̃0 = 1

54 , which is numerically seen to

coincide with the edge of the green region. It asymptotes for Q̃0 → −∞ to
√

3
4 ≈ 0.433.

6.5.3 Bound states in a box

The black holes under consideration live in asymptotically flat space. Non-BPS

black holes are unstable due to Hawking radiation and possibly other emission in-

stabilities, and hot flat space is unstable due to nucleation of black holes [170, 171].

As a result, it is hard to make sense of this infinitely large system as a statistical

mechanical model. To make it better defined, we can put the system in a finite box,

either by imposing a cutoff by hand at some finite radius or by embedding the system

in AdS4 (as in chapter 7), along the lines of [172, 173, 174, 175], allowing the black

hole to achieve thermal equilibrium with its environment in the box. In simple setups

that do not give rise to black molecules, one sees that depending on the size of the box

and the temperature, the final equilibrium state can either be a big black hole , or an

ordinary thermal gas.7 In the case at hand, we may expect much more complicated,

7In the context of AdS4 this transition is nothing more than the Hawking-Page transition [173].
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Fig. 6.4: Same as fig. 6.3, but for the system confined in a box, which can be viewed

as a rough model for AdS. The box is implemented as a cutoff at radius c̃
sinh(c̃τ̃) = 1,

i.e. u = 1/2 (with u defined in fig. 6.2). Bound states with equilibrium positions at

u > 1/2 are discarded, and decay is defined as emission to u = 1/2.
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glass-like behavior at sufficiently low temperatures, due to the exponentially large

number of complex stationary configurations that exist.

Implementing the constraint of putting the system in a box by hand is not too

hard. For example we could cut off space at some fixed radial coordinate distance, say

r̃ ≡ c̃
sinh(c̃τ̃) = 1 (that is r =

√
y0P1 in unrescaled variables), and hold the system at a

fixed temperature, fixed y0, and fixed total charge. We can then repeat the existence

and stability analysis done for the asymptotically flat case. This is shown in fig. 6.4,

the boxed analog of fig. 6.3 (not plotting the blue region). All the qualitative features

remain intact, except that the phase boundaries are pushed down significantly. In

fact, they are pushed down below the dotted line indicating the maximal tempera-

ture T̃ as a function of c̃ at fixed Q̃0. Thus, all bound states occur in the region of

positive specific heat, and we can say that at sufficiently high temperature, there is

only the black hole solution, and it is stable. For the infinite system we could only

make the analogous statement for sufficiently high nonextremality parameter (mass)

of the black hole. If we imagine the existence of some holographic dual field the-

ory description of the system under consideration, with the black hole representing

the unique disordered high temperature thermodynamic equilibrium state and the

multiple bound state configurations as the (meta)stable thermodynamic states char-

acteristic for glassy systems below their critical temperature, then a positive specific

heat throughout the parameter regime of interest is certainly an expected feature.
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6.5.4 Thermodynamics and phase structure

Figures 6.3 and 6.4 are certainly suggestive of an interesting phase structure, with

the attractor points of the extremal black holes at (Q̃0, c̃) = (±1
6 , 0) corresponding to

quantum critical points, the grey regions corresponding to the “normal” disordered

high temperature phase and the colored regions to glass-like phases.

However, to say anything definitive about phase structure of this system, a more

careful study of the thermodynamic weight of various configurations is needed, as

well as an analysis of candidate order parameters and how they scale near phase

boundaries and near the critical points. We will leave a full analysis to future work

and restrict ourselves here to some simple observations.

At fixed temperature, a thermodynamic system will try to minimize its free energy

F = E − TS. The free energy satisfies the first law

δF = −SδT + δW , (6.5.52)

where δW denotes the work delivered to the system in some infinitesimal process

during which the temperature changes by an infinitesimal amount δT . In particular

this means that if we move a probe particle from some position r = R into the

black hole, while keeping the temperature fixed, the total change in free energy of

the system δF = δFBH + δFp must be equal to δW = Vp(horizon) − Vp(R), with

Vp = Vg + Vem the probe potential defined in (7.4.55).8 Since Vp(horizon) = 0, this

8Recall we are treating the probe as a structureless object without internal thermal energy. See
footnote 4 for the argument of why this is justified in the probe limit even if the probe itself is
a black hole. The argument extends to thermal kinetic energy of the probe moving around in its
potential well (provided this lies at finite rescaled radius), which we thus ignore as well.
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means

F (probe at R)− F (probe in BH) = Vp(r = R) , (6.5.53)

and thus at fixed temperature the configuration with the probe outside of the black

hole will be thermodynamically favored over the one with the probe inside simply

whenever Vp(R) is negative.

As a check, we note that for R = ∞, this is the statement that δFBH + δFp =

−Vg(∞)−Vem(∞). Since δFp = −mp = −Vg(∞) (as the probe is first at infinity and

then gone, and we are allowed to ignore as before thermal contributions to the probe

free energy), this is equivalent to δFBH = −Vem, which can be directly checked from

the expressions in 6.3.5, without using the first law, taking care to vary c at the same

time as the charges to keep T fixed.

To conclude, figures 6.3 and 6.4 give information about the thermodynamic prefer-

ences of the system for perturbations around the single black hole state. For example

when in the green region, the black hole will start to populate black hole halos of

many different charge types. We should keep in mind however that as soon as the

number of such probes becomes macroscopic, or when they coalesce into black holes

of size comparable to the background black hole, our neglect of the thermal internal,

kinetic and inter-probe interaction energies is no longer justified. Hence we cannot

read off the endpoint of this evolution from the diagrams. Nevertheless, the existence

of exponentially many bound states with free energy below the black hole free energy

strongly suggests glass-like behavior. This is not entirely obvious though, since the

plots also show that the black hole core of any negative energy bound state is always

unstable to emission of particles to infinity or to the boundary of the confining box,
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so for a sufficiently large box, it is conceivable that the final equilibrium state may

still be a simple dilute charged gas. We will revisit such questions in future work.

Finally, let us comment on the tentative interpretation of the points Q̃0 = ±1
6

at T = 0 as quantum critical points. As we mentioned several times already, they

correspond to the case in which the scalars at infinity are at the extremal attractor

point, y0 = y3 =
√

6|Q0|
|P1| . In this case, the background scalars do not flow but rather

are constant over all of space, and no molecular bound state configurations exist –

everything has been sucked into the black hole or pushed away to infinity. (It is

known that this remains true away from the probe limit, at least in the BPS case:

non-marginal bound states cannot exist at the attractor point of the total charge.) At

zero temperature, the geometry is that of an extremal Reissner-Nordström black hole,

developing in particular an AdS2 × S2 throat, suggestive of a holographic conformal

fixed point.

Taking y0 away from the attractor point but still keeping T = 0, the AdS2 is

preserved but the scalars will now flow from y0 at infinity to y3 at the horizon. Putting

the system in a box of finite radius R and decreasing R while keeping y0 fixed will

have roughly the same effect as moving y0 along the attractor flow towards the fixed

point y3; in particular near Q̃0 = 1
6 , the configurational entropy will decrease by some

power of R dictated by (6.5.50). In a hypothetical field theory dual, regardless of

the large r asymptotics of spacetime [43], decreasing R would correspond to flowing

to the IR, so this would correspond to a power law decrease of the configurational

entropy when coarse graining over increasing length scales.

If |Q̃0| = 1
6 is to be a quantum critical point associated to a quantum phase
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transition, then we should see different physical properties on the two sides of it. Near

the supersymmetric critical point, one such property can be inferred by inspecting

(6.5.48). Recall that pulling a probe out of the background black hole produces a D6

magnetic dipole moment pointing along the radial direction, equal to µ = p0req =

p0
√

y0P1
1√
3

Q̃0−q̃1

q̃1− 1
6

, as well as an angular momentum J = 1
2〈γ, Γ〉 = 1

2P1y2
0p0(Q̃0 − q̃1).

Hence

9J = g9µ , g ≡
√

3
2 y3/2

0

(
q̃1 − 1

6

)
. (6.5.54)

From (6.5.48) we see that the range of possible values of |g| runs from 0 to a maximal

value proportional to |Q̃0 − 1
6 |, and that it changes sign across the phase boundaries.

The coefficient g is a physical observable, and could be used as an order parameter

to distinguish the two putative phases.
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Chapter 7

Hot Halos in AdS

7.1 The Model

7.1.1 Qualitative features and motivation

The bulk gravity theory we considered in the previous chapter consists of four-

dimensional Einstein gravity coupled to two U(1) gauge fields and a non-minimally

coupled scalar. In this chapter, we add a scalar potential with an AdS4 vacuum solu-

tion, with tunable parameters controlling the scalar vev and the AdS curvature scale.

This allows us to embed our previous solutions in AdS4. The specific Lagrangian we

start from is given below in (7.1.1) and the part we will actually use in this chapter

is given in (7.1.5). It can be viewed as a bosonic truncation of the simplest possible

N = 2 gauged supergravity theory, sometimes called Fayet-Iliopoulos (FI) gauged

supergravity [176, 177, 178] (for a concise review with black holes in mind see [179]).

In the flat space limit (vanishing scalar potential), the model reduces to the one
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considered in chapter 6, which was obtained there as a universal consistent truncation

of any Calabi-Yau compactification of type IIA string theory. One motivation for our

choice of model is that this flat space limit is known to have stationary BPS black

hole bound states of arbitrary complexity [104, 105, 180, 181, 182], which persist at

finite temperatures (as in the previous chapter and [107]). Hence by continuity we

are guaranteed that black hole bound states will also exist in the present model, at

least in the limit in which the size of the black holes is much smaller than the AdS

radius. Another motivation is that the asymptotically flat background black hole

solutions used in chapter 6 have explicit asymptotically AdS counterparts [179, 183].

This allows us to copy the probe strategy followed in chapter 6, making manifest

the specific new features induced by the lift to AdS4. The final motivation is the

plausibility that this model has a suitable (stable) embedding in string theory, possibly

with a holographic dual description as a three-dimensional conformal field theory.

The string theory embedding will have at least one important imprint on the

low energy physics which is not determined by the 4d bulk Lagrangian (7.1.1) itself,

namely the spectrum of charged particles. To stay as close as possible to chapter 6,

we will assume the charged particles in the model are all much heavier than the AdS

curvature scale.1 This allows treating them as well-localized probes. As detailed in

section 7.1.3 below, we will infer their mass by thinking of them as black holes much

smaller than any of the length scales of the background.

1 We should note that if we literally considered N = 2 FI-gauged supergravity and not just
its bosonic sector, this assumption would be violated, as the gravitino is charged, and has a mass
of order the AdS scale in vacua with unbroken supersymmetry. Moreover the simplest stringy
extensions of the model typically have plenty of light charged matter, including bosonic species,
leading to superconducting charged condensates [184, 185, 186] which would qualitatively alter the
setup. We will return to this in section 7.6.3
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7.1.2 Bulk action

Our notation is chosen to parallel that of chapter 6, the asymptotically flat limit

of the model.2 The light field content consists of the metric gµν , a complex scalar z ≡

x+ iy and two U(1) gauge fields AI
µ, I = 0, 1, with field strengths F I

µν ≡ ∂µAI
ν−∂νAI

µ.

The four-dimensional bulk action is taken to be the bosonic sector of Fayet-Iliopoulos

N = 2 gauged supergravity with cubic prepotential: S = 1
8π

´

d4x
√
−gL with

L =
1

2(2
p

R− 3

4(2
p

(∂x)2 + (∂y)2

y2
− Vg(x, y)−GIJF I

µνF
Jµν + ΘIJF I

µνF̃
Jµν , (7.1.1)

where F̃µν ≡ 1
2εµνρσF ρσ, with ε0123 = +

√
−g. The scalar is neutral but is non-

minimally coupled to the electromangnetic field strengths through the coupling and

theta angle matrices

G =




1
6y

3 + 1
2x

2y −1
2xy

−1
2xy 1

2y



 , Θ =




1
3x

3 −1
2x

2

−1
2x

2 x



 . (7.1.2)

The scalar potential Vg for N = 2 Fayet-Iliopoulos-gauged supergravity is schemat-

ically of the form Vg = |DW |2 − 3|W |2 where W ∼ 1
y3/2

(
−gp1

z2

2 + gq0

)
, which is

also of the form of Gukov-Vafa-Witten-type N = 1 superpotentials arising from flux

compactifications [187]. It leads to the following potential:

Vg(x, y) = − 3

2(4
p

gp1

(
gp1y + gq0

1

y
+ gp1

x2

y

)
. (7.1.3)

In the context of flux compactifications, the constants gp1 and gq0 would be fixed by

the choice of fluxes supporting the compactification, and by values of moduli we are

taking to be frozen here.

2 To conform to more standard conventions, we will however change the normalization of the
gauge fields by a factor − 1

2 : Anew
µ = − 1

2Aold
µ .
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We will take (gp1 , gq0) to be arbitrarily tunable but fixed real valued parameters of

the theory. If they have the same sign, which we assume from now on, the potential

is extremized at a negative local maximum z = z0, giving rise to an AdS4 vacuum

with AdS length (, with

x0 = 0 , v =
√

gq0

gp1

, Vg = − 3

(4
p

√
g3

p1
gq0 = − 3

(2
p(

2
. (7.1.4)

In this vacuum the scalar has the conformally coupled value m2 = −2/(2, above

the Breitenlohner-Freedman AdS tachyon bound [188], which for AdS4 is m2
BF =

−2.25/(2.

For the background black hole solutions which we consider, it is consistent to put

x ≡ 0, in which case the coupling matrix G becomes diagonal and the theta angle

matrix Θ is zero. Putting furthermore y ≡ v eχ, the Lagrangian (7.1.1) then simplifies

to

L =
1

2(2
p

(
R− 3

2
(∂χ)2 +

6

(2
cosh χ

)
− 1

6
v3 e3χ F 2

0 −
1

2
v eχ F 2

1 . (7.1.5)

Without making a commitment to any stringy interpretation at this point, we

reparametrize the gi by constants k and N as follows

gq0 ≡
1

k
gp1 ≡

1

N
. (7.1.6)

Then we have

v =

√
N

k
,

(2

(2
p

=
N2

v
=
√

kN3 . (7.1.7)

If the gravity theory has a CFT dual, its central charge is proportional to the second

quantity, the AdS radius squared in four dimensional Planck units (see e.g. [189] for

a general discussion). This will also be evident from the scaling of various thermody-

namic quantities in (7.2.29) further down. In ABJM theory [190], a Chern-Simons-

153



Chapter 7: Hot Halos in AdS

matter CFT proposed to be dual to type IIA string theory on AdS4 × CP 3 with k

units of magnetic RR 2-form flux and N units of magnetic 6-form flux turned on in

the CP 3, the central charge is of the same form, with N interpreted as the rank of

the gauge group, and k as the inverse coupling constant of the Chern-Simons theory.

The quantity v2 = N/k is identified with the ’t Hooft coupling λ in this setting, and

(s = (/
√

v with the string length. Further down we will see that other quantities such

as particle mass spectra have ABJM-like scalings with k and N .

However, the model we are considering is not the low energy effective action of the

ABJM AdS4 × CP 3 compactification, as in this theory one of the U(1)s is actually

massive, Higgsed by a charged scalar (the universal 4d axion) with D0- and D4-

charges proportional to (g−1
q0

, g−1
p1

) ∝ (k,N) [190]. One of the consequences of this

is that D2 and D6 charges will come with strings attached and that one of the two

electrostatic forces will fall off exponentially rather than by the usual Coulomb law.

7.1.3 Probe action

Since our model has two U(1)s, the electromagnetic fields couple to two magnetic

charges pI and two electric charges qI , I = 0, 1. The qI couple electrically to the AI ,

while the pI couple electrically to the dual gauge potentials BI , defined as

dBI = GI = GIJ F̃ J −ΘIJF J . (7.1.8)

The equations of motion for F I are the Bianchi identities for GI and vice versa.

With these dual gauge fields one can conveniently write down a general expression

for the action of a probe particle in a general background. For a probe charge γ =
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(p0, p1, q0, q1) this is [150, 104]

Sγ = −
ˆ

mγ(z) ds−
ˆ

qIA
I − pIBI . (7.1.9)

We will take probe charges to be quantized in units of order 1, roughly thinking of

them as wrapped D6, D4, D2 and D0 brane charges in a type IIA compactification.

The mass m(p, q; z) depends on the charges and the local background scalar value

z = x + iy. We will consider probe black holes which are much smaller than the

AdS radius as well as much smaller than the background black hole, albeit at the

same temperature. As argued in chapter 6 and as we will check again in section 7.4.1

below, in this limit, the background becomes effectively cold from the point of view of

the probe, in the sense that the thermal contribution to its mass becomes negligible.

Hence the probe acquires the properties of an extremal black hole in asymptotically

flat space. Extremal asymptotically flat black holes in N = 2 supergravity may be

BPS or non-BPS. In the first case, their mass is given by the absolute value of the

central charge of the asymptotically flat N = 2 supersymmetry algebra, which for

our model is

mγ(z) =
1

(p

√
3

4y3

∣∣∣∣
1

6
p0z3 − 1

2
p1z2 + q1z + q0

∣∣∣∣ . (7.1.10)

In the second case, the mass is strictly greater than this. As in chapter 6, we re-

strict ourselves to probe charges that are in fact BPS. Besides being the simplest to

analyze systematically, BPS probes are also the most stable. Although non strictly

supersymmetric in AdS, the phase space for decay of these nearly-BPS probes will

generically be much smaller than for probe charges which have a non-BPS flat space

limit.

When x = 0, (7.1.10) reduces to mγ =
√

3
2&p

[
(1

6p
0y3/2 − q1y−1/2)2 + (1

2p
1y1/2 +
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q0y−3/2)2
]1/2

. Since we work with normalization conventions in which charges are

integrally quantized, we can read off the orders of magnitude of the masses of various

types of charge. Expressed in terms of the AdS scale ( and the the parameters v, N

and k introduced in (7.1.4) and (7.1.7), these are:

( mD0 ∼
N

v2
= k , ( mD2 ∼

N

v
=
√

Nk , ( mD4 ∼ N , ( mD6 ∼ Nv =

√
N3

k
.

(7.1.11)

Notice that this agrees with the masses of wrapped D0- and D4-branes in ABJM

theory [190] (D2- and D6-branes carry magnetic charge for the massive U(1) in ABJM,

and as a result would come with additional magnetic flux strings attached to them).

The condition that all charged particles be much heavier than the AdS scale is thus

1
N / v /

√
N , or equivalently N3 . k . 1.

As in chapter 6, we may parametrize the charges as γ = (p0, p1, q1, q0) = g(1, κ,−b+

κ2

2 , n + bκ− κ3

6 ). The parameter κ can be thought of as proportional to U(1) world-

volume flux on the wrapped D-brane; switching it on effectively shifts z → z − κ in

(7.1.10). The (flat) BPS black hole entropy is independent of κ and given by sγ =

πg2
√

8
9b

3 − n2 [159]. For charges γ = g(0, 1, κ, n − κ2

2 ), this becomes sγ = πg2
√

2
3n.

Evidently the quantities under the square root must be positive for the black hole

to exist. We should note however that not all BPS particles have a realization as

a single centered black hole in supergravity, even when we allow singular limits in

which the horizon goes to zero size. Some BPS states are realized as multi-centered

bound states [104]. A notable example is a pure wrapped D4-brane, which has a

negative worldvolume curvature-induced D0-charge q0 = −p3
1/24, and is realized as a

two particle bound state of charges (1, p1

2 , p2
1
8 ,−p3

1
48) and (−1, p1

2 ,−p2
1
8 ,−p3

1
48) [105].
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7.2 Background solution

We consider a spherically symmetric nonextremal charged black hole metric of the

form

ds2 = −V (r) dt2 +
1

V (r)
dr2 + W (r) dΩ2

2 . (7.2.12)

The scalar z is assumed to only depend on the radial coordinate r. Note that r is in

principle not the Schwarzschild radial coordinate; namely because it can go negative.

In general the black hole may have arbitrary electric and magnetic charges QI and

P I , but as in chapter 6 we limit ourselves to a setup with P 0 = 0 and Q1 = 0, in

which case we can consistently set x = 0 throughout, and the field strengths

F 0 = Q0
3

y(r)3

dt ∧ dr

W (r)
, F 1 = −1

2
P1 sin θ dθ ∧ dφ (7.2.13)

automatically solve the Bianchi identities and equations of motion chapter 6.

Exact solutions satisfying this ansatz, for arbitrary charges P1, Q0 and mass M ,

were constructed in [183] (related solutions were considered in [191, 192, 193, 194,

195, 196, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207]). These solutions will be

the starting point for our analysis.3

3This is not the most general set of solutions compatible with the ansatz. Indeed in the neutral
limit, it reduces to the standard hairless AdS-Schwarzschild solution, while it is known that there
also exist hairy solutions with the same boundary conditions [208] (for a recent discussion see [209]).
The (numerically constructed) hairy neutral black hole is thermodynamically disfavored compared
to the hairless one [208], and thus by continuity the same will be true for at least a finite range of
charged black holes, for which this restriction will not invalidate the thermodynamic analysis. It is
not known however if this continues to hold for arbitrary charges. In principle it should be possible
to address this question by (numerically) analyzing the reduced equations of motion obtained e.g.
in [202].

157



Chapter 7: Hot Halos in AdS

7.2.1 Metric, scalar and gauge potentials

For any given mass M and charges P1, Q0, the solution of [183] can be written in

the form (7.2.12) with x = 0 and

V (r) =
1

W

(
r2 − c2 +

1

(2
W 2

)
, W (r) =

√
f0f 3

1 , y(r) = v

√
f0

f1
, (7.2.14)

where the fi are functions linear in r:

f0(r) = r + a0 , f1(r) = r + a1 , (7.2.15)

the AdS length ( and asymptotic scalar v = y|r=∞ are fixed by gq0 and gp1 as in (7.1.4),

and c, a0 and a1 are positive constants determined by the mass M and charges Q0

and P1 of the black hole:

a0 =
√

c2 + 12
v3 (2

pQ
2
0, a1 =

√
c2 + v

3(
2
pP

2
1 , (7.2.16)

with c = c(M, Q0, P1) the unique positive solution to

M(2
p = 1

4a0 + 3
4a1 = 1

4

√
c2 + 12

v3 (2
pQ

2
0 + 3

4

√
c2 + v

3(
2
pP

2
1 . (7.2.17)

The definition and computation of the mass M is subtle due to the presence of the

m2 < 0 scalar. We computed it as in [208, 210]. The parameter c is a measure for the

deviation from extremality, as in the asymptotically flat case studied in chapter 6.

However in the case at hand the point c = 0 is not physically reachable: extremality

occurs at some nonzero value of c, as will be clear from the discussion further down.

Notice that when a0 = a1, i.e. when |Q0| = v2|P1|/6, the profile of the scalar field

becomes constant everywhere and the metric becomes that of the ordinary Reissner-

Nordstrom-AdS black hole.
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We denote the radial location of the outer horizon by r+. It satisfies V (r+) = 0,

that is:

r2
+ − c2 +

1

(2
(r+ + a0)(r+ + a1)

3 = 0 , (7.2.18)

and in addition W (r) > 0 and V (r) > 0 for all r > r+.

The gauge potentials AI and their magnetic duals BI are obtained by integrating

the field strengths F I and GI specified by (7.2.13) and (7.1.8):

A0 =

(
3

v3

Q0

r + a0
− φ0

)
dt , A1 =

1

2
P1

(
cos θ ± 1

)
dφ , (7.2.19)

B0 =
1

2
Q0

(
cos θ ± 1

)
dφ , B1 = −

(
v

4

P1

r + a1
− φ1

)
dt . (7.2.20)

We choose the integration constants φ0 and φ1 such that the electric potentials vanish

at the black hole horizon r = r+. This guarantees regularity of the gauge connection

after Euclidean continuation of the solution, and fixes

φ0 =
3

v3

Q0

r+ + a0
, φ1 =

v

4

P1

r+ + a1
, (7.2.21)

The asymptotic scalar profile in the standard Schwarzschild radial coordinate

rs =
√

W (r) is given by log y(rs) = α
rs

+ β
r2
s

+ · · · , where α = (a0 − a1)/2 and

β = −α2/2. Thus all solutions found in [183] obey the generalized conformally

invariant boundary condition β = fα2 of [208], for a specific value of f (which depends

on the normalization of the scalar).4

4These generalize the “standard” Dirichlet (α = 0) and “alternate” Neumann (β = 0) zero source
boundary conditions. In language of the dual CFT, the α = 0 boundary conditions corresponds to a
CFT where the operator O dual to the scalar has dimension ∆ = 2, while β = 0 boundary conditions
correspond to a CFT where this operator has dimension ∆ = 1. The α = 0 CFT is the IR fixed point
of a relevant double trace deformation ∆LCFT ∝ O2 of the β = 0 CFT, while the β + α2

2 = 0 CFT is
obtained from the β = 0 one by an approximately marginal triple trace deformation ∆LCFT ∝ O3.
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7.2.2 Parametrization

We found it most convenient to parametrize the vacua by ( and v and the black

hole solutions by r+, u0 and u1, where we define

uI ≡ r+ + aI . (7.2.22)

The parameters c, a0, a1 appearing in the solution as given above can be written in

terms of (r+, uI) as:

c =

√
r2
+ +

1

(2
u0u3

1 , aI = uI − r+ , (7.2.23)

and thus the conserved quantitities Q0, P1 and M are obtained using the relations

(7.2.16)-(7.2.17). Explicitly:

(p|Q0| =
√

v3

12

√
u0(u0 − 2r+)− u0u3

1

(2
, (p|P1| =

√
3

v

√
u1(u1 − 2r+)− u0u3

1

(2
,

(2
pM =

1

4
(u0 + 3u1)− r+ . (7.2.24)

The AdS-Reissner-Nordstrom limit corresponds to u0 = u1 ≡ u, while the neutral

AdS-Schwarzschild limit has r+ = 1
2(u−

1
&2 u

3), with M = 1
2(u + 1

&2 u
3)/(2

p.

7.2.3 Entropy and temperature

The black hole entropy is one quarter of the horizon area, which in our parametriza-

tion takes the simple form

S =
π
√

u0u3
1

(2
p

. (7.2.25)

Its temperature T is obtained in the standard way by requiring regularity of the

Euclidean continuation at r = r+ by imposing Euclidean time periodicity 1/T , giving

T =
V ′(r+)

4π
=

2r+ + u2
1(3u0 + u1)/(2

4π
√

u0u3
1

. (7.2.26)
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Notice that in the flat space limit, the BPS black holes would have r+ = 0 and are

thus connected to finite temperature black holes in AdS where we do not take the

strict (→∞ limit.

7.2.4 Physical region of parameter space

The physical parameter range is given by the values of (r+, u0, u1) for which the

constants aI and c appearing in the metric are all positive, and for which T > 0 and

φI ∈ R. This implies in particular that uI > 0, as can be seen by making use of

(7.2.16) and (7.2.23). The horizon radial position can be either positive or negative:

for example a large neutral AdS-Schwarzschild black hole has r+ < 0 while a small

neutral black hole has r+ > 0.

To obtain all possible black hole solutions for a given (T, φ0, φ1), we solve numer-

ically for (r+, u0, u1) and retain the solutions with u0, u1 > 0. This guarantees the

solution is physical and that r+ is indeed the outer horizon, i.e. V (r) > 0, W (r) > 0

for all r > r+.5

7.2.5 Scaling symmetries and invariant parametrization

We have parametrized the solutions by a total of 5 parameters (v, (, r+, u0, u1),

with the first two fixing the AdS vacuum and the last three parametrizing the black

hole solutions within a given vacuum. However, as in the asymptotically flat case

chapter 6, there are two scaling symmetries trivially relating different solutions. They

5To see this, express V and W in terms of (r+, u0, u1) and x ≡ r − r+. Then W =√
(u0 + x)(u1 + x)3, which is manifestly positive for x > 0, since uI > 0. Furthermore WV =(

2r+ + 1
&2 u2

1(3u0 + u1)
)
x+

(
1 + 3

&2 u1(u0 + u1)
)
x2 + 1

&2 (u0 +3u1)x3 + 1
&2 x4, which is also manifestly

positive, since the coefficient of x equals 4ST > 0, and uI > 0.
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act as X → λn1
1 λn2

2 X, λi ∈ R+, on the various quantities X defined so far, with the

exponents (n1, n2) indicated in the first two lines of this table:

( v k N r+ u0 u1 M Q0 P1 S T φ0 φ1 r
n1 1 0 1 1 1 1 1 1 1 1 2 −1 0 0 1
n2 0 1 −3

2
1
2 0 0 0 0 3

2 −1
2 0 0 −3

2
1
2 0

δ −1 0 0 0 −1 −1 −1 1 0 0 0 1 1 1 −1
N# 0 0 1 1 0 0 0 2 1 1 2 0 1 1 0
v# 0 1 −2 0 0 0 0 −1 1 −1 −1 0 −2 0 0

The third line shows the mass dimension δ. Physical observables will depend only on

invariant combinations of the parameters, up to an overall factor determined by the

scaling properties of the observable. Specifically, we will express any quantity X of

mass dimension δ and scaling exponent (n1, n2) in terms of a dimensionless, scaling

invariant X̃, as follows:

X = (−δNn1+δ vn2−(n1+δ)/2X̃ . (7.2.27)

The quantities N and k were introduced in (7.1.7). The last two lines of the table

indicate the powers of N and v appearing in various quantities. We will display our

phase diagrams as functions of the rescaled intensive variables
(
T̃ , φ̃0, φ̃1

)
related to

the original ones by

T =
1

(
T̃ , φ0 =

N

v2(
φ̃0 , φ1 =

N

(
φ̃1 . (7.2.28)

The extensive variables (7.2.24) and (7.2.25) are related to their invariant counterparts

by

Q0 = Nv Q̃0 , P1 =
N

v
P̃ 1, M =

N2

v(
M̃ , S =

N2

v
S̃ . (7.2.29)

Working consistently with the rescaled variables instead of the original ones effectively

sets

(p ≡ 1, ( ≡ 1 v ≡ 1 (7.2.30)
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in the expressions of the previous sections. In what follows we will always use rescaled

variables, and to avoid cluttering we will therefore drop the tildes, keeping in mind

that in order to get the actual physical quantities, we need to rescale as indicated

above.

Finally note that besides the obvious charge conjugation symmetry (P1, Q0) →

(−P1,−Q0), the background metric and scalar profile are also invariant under (P1, Q0)→

(P1,−Q0). This descends from an enhanced Z2 symmetry of the action that exists

only when the pseudoscalar x is zero.

7.3 Background thermodynamics

Before moving on to examine probe black holes in the black hole background, we

analyze the phase structure of the background itself, which is already quite interesting.

For AdS-Reissner-Nordstrom black holes without running scalars this was done in

[174, 211]. This case corresponds to the locus u0 = u1 in our setup, since then

y(r) = v is constant. The general case exhibits a considerably richer structure.

7.3.1 Thermodynamic equilibrium and stability

We will mostly work in a thermodynamic ensemble with fixed temperature T

and chemical potentials φ0, φ1 dual to the charges Q0 and P1, and fixed charges

P 0 = 0, Q1 = 0. That is to say, if we imagine coupling the system to a reservoir at

fixed temperature T and potentials φI , the total (system plus reservoir) entropy will

change as ∆Stot = ∆S − 1
T ∆E + φ0

T ∆Q0 + φ1

T ∆P1 = −∆F/T , where ∆E, ∆Q0, ∆P1
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and ∆S refer to the system, and we have defined

F ≡ E − T S − φ0Q0 − φ1P1. (7.3.31)

Stable equilibrium with the reservoir requires Stot to be maximized, or equivalently

F to be minimized under variations of energy and charges; locally this requires

F ′ = 0 , F ′′ > 0 . (7.3.32)

The derivatives are understood to be with respect to the system’s extensive variables,

at fixed, externally tuned values of T , φ0 and φ1. The parametrization of the extensive

variables can be arbitrary. We will work with the black hole metric parameters

(u0, u1, r+) defined in 7.2.2. Thus, using (7.2.24) and (7.2.25) keeping in mind (7.2.30),

F =
1

4
u0 +

3

4
u1 − r+ − πT

√
u0u3

1 −
φ0

2
√

3

√
u2

0 − 2u0r+ − u0u3
1

−
√

3 φ1

√
u2

1 − 2u1r+ − u0u3
1. (7.3.33)

Solving F ′ = 0 in (7.3.32) at fixed (T, φ0, φ1) then provides the local equilibrium

relation between (T, φ0, φ1) and (r+, u0, u1):

T =
2r+ + 3u0u2

1 + u3
1

4π
√

u0u3
1

,

φ0 =

√
3

2

√
u2

0 − 2u0r+ − u0u3
1

u0
, φ1 =

√
3

4

√
u2

1 − 2u1r+ − u0u3
1

u1
, (7.3.34)

in agreement with the values obtained earlier in (7.2.21) and (7.2.26) by requiring

regularity of the Euclidean continuation. The corresponding equilibrium free energy

is remarkably simple:

Feq =
r+

2
. (7.3.35)
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This can also be obtained as the on shell Euclidean action IE = F/T , provided

the action is defined with the appropriate boundary counterterms, as in [208]. Note

that this simple expression suggests a nice interpretation of the radial coordinate r.

Roughly, it is to free energy what the Schwarzschild radial coordinate is to entropy.

We can also give a more physical interpretation to the parameters u0, u1 by noticing

that at equilibrium

u0 = 3
Q0

φ0
, u1 =

1

4

P1

φ1
. (7.3.36)

This shows that u0 and u1 can be thought of as the black hole’s D0- and D4-charge

susceptibilities.

For the system-reservoir equilibrium to be stable under small fluctuations, we

need a positive definite Hessian, that is F ′′ > 0 at fixed T, and φI . Stability under

arbitrarily large fluctuations requires the minimum to be global.

Note that although we are analyzing stability in this (partial) grand canonical en-

semble, this does not necessarily mean we are actually considering a physical situation

in which the system is truly coupled to a reservoir. Indeed, in the case of global AdS

black holes (dual to thermal states of a CFT3 living on a 2-sphere), it is physically

most natural to consider the physical system to be isolated, since there is no natural

“outside” environment for the 2-sphere. However even for isolated systems, a grand

canonical stability analysis provides information. More specifically, an instability in

the grand canonical ensemble will, for sufficiently large isolated systems, indicate a

thermodynamic tendency towards the formation of inhomogeneities in the distribu-

tion of the energy and charge. Essentially, for a subsystem small compared to the

complete system, this is because the remainder of the system acts as a reservoir. In
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0.5 1.0 1.5 2.0
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!0.4

!0.2

0.2
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F

Fig. 7.1: AdS-Schwarzschild free energy F for a black hole of size u coupled to a heat

bath at temperatures (from left to right) πT = 0.75, 0.95, 1.15. A local minimum

corresponds to a perturbatively stable black hole, which is globally stable if it is

negative. A local maximum corresponds to a perturbatively unstable black hole.

view of the fact that instabilities towards the formation of inhomogeneities is exactly

what we want to investigate in this chapter, this is therefore an appropriate ensemble

to consider.6

7.3.2 Schwarzschild illustration

As a simple check and illustration of the above discussion, consider first the AdS-

Schwarzschild black hole (fig. 7.1). This amounts to setting u0 = u1 ≡ u and r+ =

1
2(u− u3), so S = πu2, M = 1

2(u + u3), and:

F = M − TS =
1

2
(u + u3)− πTu2 . (7.3.37)

6By the same token, it would actually have been even more appropriate for us to consider the
ensemble where all charges are allowed to fluctuate, including P 0 and Q1. Unfortunately this is
obstructed by the lack of explicit black holes solutions for the general charge case.
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The local equilibrium condition (7.3.32) is ∂uF = 1
2 + 3

2u
2 − 2πTu = 0 and ∂2

uF =

3u−2πT > 0. The first equation expresses the equilibrium temperature in terms of u:

Teq(u) = 1
4π (u−1 +3u). Plugging this value for T into (7.3.37) gives Feq = 1

4(u−u3) =

1
2r+, confirming (7.3.35). The minimum value of Teq(u), reached at u = 1/

√
3, is

Tmin =
√

3/2π; there are no black holes at temperatures below this. For any given

T > Tmin, there are two solutions u to the equilibrium equation, hence two black

hole solutions. The larger one will be at a local minimum of F (u) (F ′′(u) > 0), the

smaller one at a local maximum. The local minimum of F (u) is not necessarily a

global minimum. To verify global minimality, we also have to compare to the free

energy at the boundary points of state space, in this case at u = 0. From the third

expression in (7.3.37), it follows that for any value of T , we have F = 0 when u = 0.7

Therefore global stability requires Feq < 0. This is the case if and only if u > 1. Hence

a first order phase transition occurs at u = 1, where Teq = 1/π. This was first pointed

out by Hawking and Page [173]. The transition is accompanied by a macroscopic jump

in mass and entropy in the large N limit and can thus be considered to be a first

order phase transition. In the context of the AdS-CFT correspondence, it can be

interpreted as a confinement-deconfinement phase transition occurring on the sphere

at a temperature of the order of the inverse curvature radius [212].
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Fig. 7.2: Phase diagrams for the black hole background. On the left we have φ1 =

0.4 φ0 and on the right φ1 = φ0. The different regions are labeled by a the signs of the

free energies of the black hole solutions in the region. For example (−+) is a region

with two black holes, one with negative and one with positive free energy, while (−)

indicates a region with just one black hole, with negative free energy. Across the

dotted lines either ∆0 or ∆1 changes sign. The white regions represent configurations

where no black holes exist. The Hawking-Page transition occurs at the thick black

line, terminating in the orange dot.

7.3.3 Background phase diagram

Figure 7.2 shows the phase diagrams in the (φ0, T ) plane, for two different fixed

φ1/φ0 ratios. The diagrams are obtained by solving (7.3.34) for r+, u0 and u1. For

7This is true in the classical gravity approximation N → ∞ where N was defined in (7.2.27).
At one loop, there will be a contribution from thermal fluctuations, capturing the free energy of
an ideal thermal gas in global AdS, but this will be of order 1 in a large N expansion, and hence
negligible to leading order.
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the φ0 and φ1 equations this can be done in a relatively simple closed form:

r+ =
u1

2

∆0∆1 − u4
1

∆0 + u2
1

, u0 = u1
∆1 + u2

1

∆0 + u2
1

, where ∆0 ≡ 1− 4

3
φ2

0, ∆1 ≡ 1− 16

3
φ2

1 ,

(7.3.38)

The remaining relation to be inverted is

T =
∆0 + 3u2

1

4πu1

√
∆1 + u2

1

∆0 + u2
1

. (7.3.39)

This can be reduced to finding the roots of a cubic polynomial but as usual the explicit

expression for the solutions is not illuminating. The charges and entropy in terms of

u1 and φ0, φ1 are

Q0 =
u1φ0

3

∆1 + u2
1

∆0 + u2
1

, P1 = 4 u1φ1 , S = πu2
1

√
∆1 + u2

1

∆0 + u2
1

= π

√
Q0P 3

1√
φ0φ3

1

, (7.3.40)

the free energy is F = r+/2 with r+ as in (7.3.38), and the energy is

M =
u1

4

4u2
1 + 2u4

1 + 3∆0 + ∆1 − 2∆0∆1

∆0 + u2
1

. (7.3.41)

Recall that the Reissner-Nordstrom limit corresponds to u0 = u1, which implies

∆0 = ∆1, or φ1 = φ0/2.

We list some notable features:

1. The temperature (7.3.39) diverges for u1 → ∞, so at high temperatures there

will always be at least one solution, with negative free energy. It is continuously

connected to the large AdS-Schwarzschild black hole by tuning φ0 and φ1 to

zero. As long as ∆0 and ∆1 are positive (corresponding to the region below

the lower dotted line in the figure), the temperature goes infinite again when

u1 → 0, providing a second high temperature solution branch. This solution is
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continuously connected to the small Schwarzschild black hole. It ceases to exist

when crossing over to ∆0 < 0 or ∆1 < 0 (from below to above the (lower) dotted

line in the figure), as the quantity under the square root then becomes negative

for u1 → 0. When ∆0 > 0 and ∆1 < 0 (region between the dotted lines), there

is only one high temperature solution. However when ∆0 < 0 (region above the

(upper) dotted line), a new high temperature branch emerges for values of u1

approaching the zero of the denominator, i.e. for u2
1 → −∆0. In contrast to the

small u1 branch, it has negative free energy.

2. In regions with two black holes, the one with the lowest free energy is locally

stable (F ′′ > 0), the other one unstable. When there is a unique black hole

solution, it is locally stable. When crossing the dotted lines (corresponding

to sign changes of the ∆I), the stable black hole always continues smoothly,

whereas the unstable black hole becomes singular. Consider for example the

case ∆1 > 0 with ∆0 small and negative. Putting u1 = w
√
−∆0 and dropping

subleading terms turns (7.3.39) into T ≈
√

∆1(3w2−1)

4πw
√

w2−1
, which relates a finite fixed

w to a finite fixed T . Sending ∆0 up to zero at fixed w thus corresponds to

a black hole with u1 → 0, u0 ≈ w∆1√
−∆0(v2−1)

→ ∞, r+ ∼ −
√
−∆0 → 0−,

Q0 ∼ 1/
√
−∆0 → ∞, and M ∼ 1/

√
−∆0 → ∞. The scalar profile and

geometry becomes singular in this limit; for instance at the horizon we have

y =
√

u0/u1 ∼ −1/∆0 →∞.

3. The white gaps in the plot occur when the black hole free energy at fixed

reservoir temperature and potentials fails to have a local extremum as a function

of the extensive variables (r+, u0, u1), the analog of the upper curve in fig.
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7.1. In this case none of the family of black holes we consider can exist in

equilibrium with the reservoir. When crossing over into a white gap a stable

and an unstable saddle point of the free energy coalesce and disappear. At

the boundary the Hessian F ′′ develops a zeromode and detF ′′ = 0. It can be

checked that detF ′′ ∝ (3 u0 + u1 − 4 r+)(2 u0u5
1 + r+(u0 − u1)u2

1 − 2 r2
+), up

to factors that remain positive throughout; this provides the boundaries of the

white gaps.

4. For the white gaps below the dotted line (∆0, ∆1 > 0), a Hawking-Page transi-

tion occurs before reaching the gap. This is indicated by the thick line forming

the boundary between the yellow and red regions. In the red region the free en-

ergy still has a local minimum, but it is positive, so the black holes we consider

are thermodynamically disfavored compared to a thermal gas in empty AdS.

This is the analog of the middle curve in fig. 7.1. The transition temperature

THP is obtained by solving F = 1
2r+ = 0, which gives u1 = (∆0∆1)1/4 and

THP =

√
∆0 + 3

√
∆1

4π
. (7.3.42)

which is real if ∆0, ∆1 > 0. On the Reissner-Nordstrom locus, we have ∆0 = ∆1

and this becomes THP =
√

∆0/π, reproducing [174]. For neutral black holes we

have ∆0 = ∆1 = 1 and THP = 1/π, reproducing [173].

5. When ∆0 < ∆1, as is the case in the figure on the left, there is also a white

gap above the dotted line, i.e. for ∆0 < 0. The instability associated to it is of

a very different nature than the Hawking-Page instability. It is still true that

the disappearance of black hole solutions is due to the coalescence and then
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disappearance of a pair of saddle points of the free energy (7.3.33) (one locally

stable, the other one unstable), but now this happens for saddle points at a

negative value of F , so the thermodynamically preferred state cannot possibly

be that of a thermal gas in empty AdS (which has F = 0). Indeed there is a

much more violent instability in this regime: whenever φ0 >
√

3
2 , the free energy

(7.3.33) is unbounded below, with a runway in the large u0 direction. To see

this, it is convenient to first eliminate r+ in favor of the charge P1 = ∂φ1F =

√
3
√

u1(u1 − 2r+)− u0u3
1, in terms of which

F =
u0

4

(
1+2u2

1−
2φ0√

3

[(
1−u1

u0

)(
1+u2

1

)
+

P 2
1

3u0u1

]1/2)−πT
√

u0u3
1−φ1P1+

P 2
1

6u1
+

u1

4
.

(7.3.43)

In the large u0 limit at fixed u1 and P1, the leading term is linear in u0, with

coefficient proportional to 1 + 2u2
1 − 2φ0√

3

√
1 + u2

1. When φ0 >
√

3
2 , this becomes

negative for a range of u1 values, implying the free energy is unbounded be-

low in this regime. When brought in contact with an infinite reservoir, the

system will soak up Q0-charge without bound. For large systems in isolation,

one expects a corresponding instability to formation of clumps with large Q0

densities. In the limit of an infinitely large system (the planar limit, which will

be detailed in section 7.3.5), the system acts as an infinite reservoir for finite

subsystems, and there again appears to be no limit on how large the charge

accumulation can get. This would appear rather unphysical. However, in this

limit the solution becomes singular, with the scalar y and curvature growing

without bound towards the black hole, outside the regime of validity of the 4d

(truncated) supergravity approximation. Presumably, assuming the model has
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a UV completion, the runaway will therefore be cured by degrees of freedom

beyond those considered in our setup. .

6. The limit ∆1 → ∆0 is subtle when ∆0 < 0. Naively, (7.3.38) would seem to im-

ply that the limiting solution is just the u0 = u1 AdS-Reissner-Nordstrom black

hole with constant scalar profile. This is indeed one of the limiting solutions,

but it misses the solution branch with u2
1 approaching −∆0: From (7.3.38) and

(7.3.39) it follows that with ∆1 −∆0 ≡ δ and u2
1 + ∆0 ≡ ε both small, we have

2πT ≈
√
−∆0(1 + δ/ε) and u0/u1 ≈ 1 + δ/ε ≈ −(2πT )2/∆0. This is different

from 1 in general so the limiting black hole will not be the RN solution and in

particular it will have a nontrivial scalar profile. For T <
√
−∆0

2π , this black hole

has lower free energy than the AdS-RN solution, for T >
√
−∆0

2π it has higher free

energy. When T =
√
−∆0

2π the two solutions coincide with u0 = u1 =
√
−∆0, and

the Hessian degenerates. This is also the location where the white gap begins

to open up when ∆0 < ∆1.

7. The orange dot in the figure corresponds to the singular point u1 → 0 with

either ∆0 = 0 and T = 3
√

∆1

4π (as in the left panel of the figure) or ∆1 = 0 and

T =
√

∆0

4π (as in the right panel). When ∆1 = 0, Q0/P1 diverges, and when

∆0 = 0, P1/Q0 diverges. This results in singular limiting solutions, similar to

the other degenerations we discussed.

7.3.4 The flat space / small black hole limit

The asymptotically flat space limit (analyzed in chapter 6) corresponds to taking

N ∝ (/(p →∞ keeping the original, unrescaled Q0, P1 and M(p fixed. From (7.2.29)
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it can be seen that in terms of the rescaled variables we are working with here (which

were indicated by tildes in (7.2.29)), this means we take (Q0, P1, M) ∼ 1
N → 0, or

equivalently (r+, u0, u1) ∼ 1
N → 0. From (7.3.34) it follows that for generic nonex-

tremal black holes in this scaling limit we have T → ∞ while the φI remain finite.

This is evident as well from (7.2.28)), as we are taking the limit with fixed physical

temperature and potentials in Planck units. At any rate, since we can now drop

terms of higher order in u1 in expressions such as (7.3.39), it becomes easy to invert

the relations between intensive and extensive variables; in particular Q0 = φ0

12 π T

√
∆3

1
∆0

,

P1 = φ1

πT

√
∆0∆1, M =

√
∆0∆3

1

16πT ( 1
∆0

+ 3
∆1
− 2), S =

√
∆0∆3

1

16πT 2 , and F =
√

∆0∆3
1

16πT > 0.

From these expressions we see there is another limit which sends the extensive

quantities to zero in the appropriate way, namely taking (∆0, ∆1) ∼ 1
N → 0 (hence

|φ0| →
√

3
2 , |φ1| →

√
3

4 ), keeping T , the physical temperature in AdS units, fixed.

Curiously, from the flat space point of view, this is in fact an extremal limit, since

the temperature goes to zero in Planck units: T(p ∼ 1/N . Indeed in this limit the

entropy becomes S = π
√

2
3 |Q0P 3

1 |, reproducing the well-known flat space extremal

D4-D0 entropy formula.

7.3.5 The planar / large black hole limit

It is often simpler to work in a limit in which we can effectively replace the spherical

S2 black hole geometry by an R2 planar one. This is achieved by zooming in on a

small solid angle of the geometry, say around the north pole, while simultaneously

scaling up all extensive quantities. In the dual CFT this limit can be thought of as a

thermodynamic limit in which the system of interest is living on a flat two-dimensional
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plane and in contact with a heat reservoir with which it can exchange energy and

charge, through a far away boundary.

The required scalings parallel those used in [174] in the RN case. Introducing a

new radial coordinate ρ > 0 related to the old one r by r = r+ + ρ, we put:

u0 = λ ū0 , u1 = λ ū1 , r+ = λ3 r̄+ , ρ = λ ρ̄ , t = t̄/λ , θ = θ̄/λ , φ = φ̄ ,

(7.3.44)

sending λ→∞ while keeping the barred quantities fixed. For the conformal boundary

metric we thus get dΩ2
2 = dθ2+sin2 θdφ2 → (dθ̄2+θ̄2dφ̄2)/λ2. The quantity in brackets

is the flat planar metric in polar coordinates; let x̄, ȳ be the corresponding Cartesian

coordinates. Then in the limit λ→∞ the metric and scalar (7.2.12) become8

ds2 = −V̄ dt̄2 +
1

V̄
dρ̄2 + W̄ (dx̄2 + dȳ2) , y =

√
ū0 + ρ̄

ū1 + ρ̄
, (7.3.45)

where

V̄ =
2 r̄+ρ̄ + (ū0 + ρ̄)(ū1 + ρ̄)3 − ū0ū3

1√
(ū0 + ρ̄)(ū1 + ρ̄)3

, W̄ =
√

(ū0 + ρ̄)(ū1 + ρ̄)3 . (7.3.46)

In fact the original spherical solution differs from this one only in that we have

dropped a term ρ̄2/λ2 in the numerator of V̄ . Under this scaling we have M ∼ λ3,

Q0 ∼ λ2, P1 ∼ λ2, φI ∼ λ, T ∼ λ. In the global phase diagram discussed in section

7.3.3, the planar limit thus corresponds to going along diagonal rays out to infinity.

Analogous to (7.3.44) we can introduce barred quantities for these physical variables.

These actually satisfy largely the same relations as the unbarred quantities in section

7.3.3, except that the constant +1 drops out in the relation between φI and ∆I in

8Explicit factors of ) or v do not appear here because we are still working in the rescaled invariant
coordinates of section 7.2.5, including for the metric and coordinates.
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(7.3.38), and that the lower order terms drop out in the expression for the mass in

(7.3.41), so that in fact M̄ = −r̄+ = −2F̄ . Since the mass must be positive, the free

energy of planar black holes must be negative. Similarly, in (7.3.34), the quadratic

terms u2
0 and u2

1 under the square roots in the expressions for the potentials drop out

in the planar limit.

The gauge potentials (7.2.19) remain unchanged, apart from the small θ expansion:

Ā0 = φ̄0

( ū0

ū0 + ρ̄
− 1

)
dt̄ Ā1 = −1

4
P̄1θ̄

2dφ̄ , (7.3.47)

B̄0 = −1

4
Q̄0θ̄

2dφ̄ , B̄1 = −φ̄1

( ū1

ū1 + ρ̄
− 1

)
dt̄ . (7.3.48)

Here we used the relations (7.2.21), Q0 = u0φ0/3 and P1 = 4u1φ1. Note that in the

planar limit we get (by construction) an additional scaling symmetry X̄ → λn3X̄

besides those listed in section 7.2.5, with scaling exponents k given by

v ( r̄+ ū0 ū1 M̄ Q̄0 P̄ 1 S̄ T̄ φ̄0 φ̄1 ρ̄
n3 0 0 3 1 1 3 2 2 2 1 1 1 1

This scaling is that of a CFT in a 2d box of fixed size L, in the limit that T and the

φI are all much larger than the IR cutoff 1/L imposed by the box. Thermodynamic

quantities will only depend nontrivially on scale invariant ratios. This allows us to

plot the full planar phase diagram in terms of the two scale-invariant variables, for

example T/φ0 and φ1/φ0 as shown in the panel on the right of figure 7.3.

7.3.6 Hyperscaling violating limits

Upon setting P1/Q0 or Q0/P1 to zero, as was the case for most degenerations

discussed in section 7.3.3, our planar backgrounds reduce to the hyperscaling violating

geometries studied in [213, 214, 215, 216, 217] and other recent works. These are
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Fig. 7.3: Left: Planar black hole temperature T/φ0 as a function of u1/φ0, using

(7.3.39), for φ1/φ0 = 0.1, 0.4, 0.495, 0.505, 0.7, corresponding respectively to the dash-

dotted, dashed and solid blue curves, and to the solid and dotted red curves. Lines

of constant T/φ0 intersect the curves in two points or not at all, illustrating that

for given intensive variables, there are always either two black hole solutions or none

at all. Right: Planar black hole phase diagram. The colored region has two black

holes, the white has none. It corresponds to the gaps in accessible temperatures for

the curves on the left. The dotted lines denote the Reissner-Nordstrom locus, where

one of the planar solutions has no scalar hair. In the white gap, the background

becomes unstable to soaking up Q0 charge as discussed in remark 5 in the previous

section.

characterized in general by a dynamic critical exponent z and a hyperscaling violation

exponent θ, parametrizing the radial scaling behavior of the metric (cf. eq. (1.1) of

[214]).

To see this, we fix the temperature T and use (7.3.34) to write r+ = −3
2u0u2

1 −
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Fig. 7.4: Lines of constant charge for P̄ 1 = 1, ±Q̄0 =

10−5, 10−4, 10−3, 10−2, 10−1, 1/6, 0.316, 1, with the larger values of |Q̄0| being

closest to the φ1 = 0 axis at high temperatures. The value Q̄0 = 1/6 corresponds

to the Reissner-Nordstrom solution. In the lower half of the plane, the hue of the

lines goes up according to entropy (going up in red to yellow direction), while in the

upper half of the plane, the mass (=free energy) is indicated in this way. At low

temperatures the lowest values of |Q̄0| have the lowest free energy and the lowest

entropy. The stable and unstable branches connect at the boundary of the white

gap.

1
2u

3
1 + 2πT

√
u0u3

1, and obtain from (7.3.46)9

V =
4πT

√
u0u3

1 ρ + 3(u0u1 + u2
1) ρ2 + (u0 + 3u1) ρ3 + ρ4

W
,

W = (ρ + u0)
1/2(ρ + u1)

3/2 . (7.3.49)

For finite nonzero u0 and u1, the solution is regular; in particular when T = 0 it has

9We drop the bars in the notation of planar quantities in this section.
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an AdS2 × R2 near horizon geometry. However if we send u1 → 0 then for ρ/ u0:

ds2 = −u1/2
0 ρ3/2dt2 +

dρ2

u1/2
0 ρ3/2

+ u1/2
0 ρ3/2

(
dx2 + dy2

)
, y =

√
u0/ρ . (7.3.50)

This is a hyperscaling violating geometry with θ = −1 and z = 1. Similarly, if we

send u0 → 0 then for ρ/ u1:

ds2 = −3u1/2
1 ρ3/2dt2 +

dρ2

3u1/2
1 ρ3/2

+ u3/2
1 ρ1/2

(
dx2 + dy2

)
, y =

√
ρ/u1 . (7.3.51)

This is a hyperscaling violating geometry with θ and z tending to infinity with the

ratio η ≡ −z/θ = 1 fixed. Notice that the above metric (7.3.51) is conformal to

AdS2 × R2. These geometries were studied in the context of the U(1)4 truncation of

N = 8 gauged supergravity in [218].

To see what this limit corresponds to in our phase diagram, we use (the planar

limit of) (7.3.34), obtaining

φ0 =

√
3

2

√
3u2

1 − 4πT
√

u3
1/u0 , φ1 =

√
3

4

√
u2

1 + 2u0u1 − 4πT
√

u0u1 . (7.3.52)

Combining this with (7.3.36) provides the charges Q0 = u0φ0/3 and P1 = 4u1φ1.

Notice that for these expressions to be real, and therefore the solution to be physical,

T must be bounded above for a given u0, u1. Specifically when u1 → 0, we need

4πT <
√

u0u1 → 0 and when u0 → 0, we need 4πT < 3
√

u0u1 → 0.

Thus, when u0 → 0 (metric (7.3.51)), we get φ0 ∝ u1, φ1 ∝ u1 and T ∝ √u0u1,

implying T/φ0 → 0 while φ1/φ0 remains finite and tunable to any desired value

satisfying |φ1/φ0| > 1/
√

12. Hence this limit corresponds to the zero temperature

boundary in the phase diagram fig. 7.3. The charge ratio in this limit is P1/Q0 ∝

u1/u0 →∞, that is the black hole becomes purely D4-charged in this limit.

179



Chapter 7: Hot Halos in AdS

Similarly, when u1 → 0, we get φ1/φ0 →∞, while T/φ1 remains finite; this is the

boundary at infinity in fig. 7.3. The charge ratio is P1/Q0 ∝
√

u1/u0 → 0; the black

hole becomes purely D0-charged in this limit.

Besides the u0 → 0 solutions we just described, there are also regular T = 0

solutions with u0 and u1 finite that have AdS2 × R2 near-horizon geometries. Their

free energy is F = −4
3φ0φ2

1+
1
27φ

3
0, whereas the free energy of the u0 = 0 solution is F =

− 16
3
√

3
φ3

1. Away from the boundary point φ1/φ0 = 1/
√

12, the latter is always lower

than the former, so the hyperscaling-violating geometry is always thermodynamically

preferred. At the boundary point, the two solutions coincide.

The entropy S = π
√

u0u3
1 vanishes when u0 = 0 or u1 = 0. Hence we conclude that

at T = 0, the system under study has vanishing entropy in its thermodynamically

preferred state; it does not suffer from the entropy anomaly typical for Einstein-

Maxwell setups with scalar-independent couplings.

7.4 Probe bound states

We now proceed to establish the existence of bound states of these black holes

with suitably charged probes. The probes are assumed much heavier than the AdS

scale, and in particular they can be black holes themselves, as long as they are much

smaller than the length scales set by the background solution. We compute the

probe potentials from (7.1.9); a local minimum indicates a bound state. We take the

probe potential to be zero at the horizon, so negative/positive values of the potential

energy indicate stable/metastable bound states. On the other hand, since the probes

are massive, an escape to infinity would require an infinite amount of energy; the
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global AdS metric acts as a confining box. This is a significant difference with the

asymptotically flat case studied in chapter 6.

Most of our analysis is numerical. We provide some analytic results in the planar

zero temperature limit in section 7.4.5.

7.4.1 Probe potential and validity of the approximation

Consider a probe with (D6,D4,D2,D0)-brane charge (p0, p1, q1, q0). In the spirit of

section 7.2.5 it will be convenient to introduce rescaled charges

p̂0 = v2 p0

g
, p̂1 = v

p1

g
, q̂1 =

q1

g
, q̂0 =

1

v

q0

g
, (7.4.53)

with g an at this point arbitrary constant. This differs from the rescaling used for

the background black hole charges (7.2.29) in that there is no factor of N involved

here; in its place we now have g, which we can think of as parametrizing the order of

magnitude of the probe charges. We do this because we want to keep the quantized

probe charges fixed and finite while taking the N → ∞ limit. Notice that since

charge is quantized in order 1 units in our conventions, the hatted probe charges are

quantized in units given by the above scaling factors. At fixed finite v, these can

be made arbitrarily small by taking g large, making the rescaled charges effectively

continuous. Furthermore, ratios of probe to background charges, masses and length

scales will involve the rescaled variables (tilde-variables for the background, hatted

variables for the probes) and a universal overall factor g
N . For example q0

Q0
= g

N
q̂0

Q̃0
and,

using (7.1.11),
mp0D6

M ∼ g
N

p̂0

M̃
. The discussion in section 7.1.3 implies that for order

1 rescaled probe charges, the probe black hole entropy will be of order g2v−1, hence

the ratio of its linear size over the AdS length scale will be of order gv−1/2(p/( = g
N .
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Thus, for finite rescaled variables, the probe approximation will be justified provided

g / N .

The static potential Vp obtained from (7.1.9) and the solutions described in section

7.2.1 consists of two parts, a gravitational part Vgrav(r) =
√

V (r) mγ(y(r)) and an

electromagnetic part Vem = qIAI − pIBI . Explicitly

Vp =
gN

(v
V̂p , V̂p = V̂grav + V̂em , (7.4.54)

with:

V̂grav =

√
3

2

√

(ρ(ρ + 2r+) + f0f 3
1 − u0u3

1)

[(
p̂1

2f1
+

q̂0

f0

)2

+
f0

f1

(
p̂0

6 f1
− q̂1

f0

)2]
,

(7.4.55)

and

V̂em = −φ0q̂0ρ

f0
− φ1p̂1ρ

f1
, (7.4.56)

where as before

f0 = ρ + u0 , f1 = ρ + u1 , ρ ≡ r − r+ . (7.4.57)

The radial coordinate ρ vanishes at the horizon. In the above expressions, the back-

ground variables are understood to be rescaled as in section 7.2.5, but we have sup-

pressed the tildes here.

In contrast to the background metric and scalar, the probe potential is qualita-

tively altered when flipping the sign of Q0 or P 1. Because of this we have to consider

both possible signs of φ1/φ0 separately. Notice however that we still have the following

symmetry:

(p̂0, p̂1, q̂1, q̂0)→ (−p̂0, +p̂1,−q̂1, +q̂0) . (7.4.58)

This allows us to assume p̂0 ≥ 0 without loss of generality.
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Finally let us check the claim made in section 7.1.3 that from the probe point

of view the background temperature is effectively zero. The fraction of the probe’s

energy that is thermal when it has the same temperature as the background is, for

order 1 values of the rescaled variables, Tsγ/mγ ∼ (g2v−1)/(gNv−1) = g/N , so again

if g / N , the probe will effectively be extremal.

In what follows we will mostly drop the hats (and tildes) in our notation, which

is equivalent to setting ( ≡ 1, N ≡ 1, v ≡ 1, g ≡ 1. To restore the factors (, N , v

and g in equations, one should keep in mind the following scaling weights:

[(] = (1, 0, 0) , [v] = (0, 1, 0) , [N ] = (1,
1

2
, 0) , [g] = (0,

1

2
, 1) . (7.4.59)

The first two entries correspond to the weights (n1, n2) for background quantities given

in section 7.2.5, the third one is nonzero only for quantities involving the probe; it is

its overall multiplicative scale (because we are working to linear order for the probes,

there is an additional scaling symmetry associated to scaling up the probe charge

and mass). From this we see that for example the weights of the probe potential are

[Vp] = (0, 0, 1). We will restore the original factors in the concluding sections.

7.4.2 Thermodynamic interpretation

When a small probe charge is expelled from a black hole, the black hole entropy

changes by an amount

δSBH =
1

T
δEBH −

φ0

T
δQ0,BH −

φ1

T
δP 1

BH . (7.4.60)

Here we used the microcanonical definitions of temperature and chemical potentials,

taking into account that the potentials for D2 and D6 charge are zero. Conservation
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of charge implies δQ0,BH = −q0 and δP 1
BH = −p1. Conservation of energy implies

δEBH = −Etot
p , where Etot

p is the sum of the probe’s rest mass energy plus the binding

energy due to the probe-black hole interaction. Up to an additive constant E0 this

equals the natural total energy Ep obtained from the probe action given in section

7.1.3:

Etot
p = Ep + E0 , Ep ≡ Vp + Ekin

p , (7.4.61)

where Vp is the probe potential derived there, and Ekin
p is the probe kinetic energy. The

additive constant E0 is easily obtained by considering a probe at rest asymptotically

far away from the black hole. In this case there is no binding energy so Etot
p is just

the probe’s gravitational rest mass energy Vgrav, defined in (7.4.55). On the other

hand in this situation we have Ep = Vp = Vgrav − q0φ0 − p1φ1, as can be seen from

(7.4.56). Hence E0 = q0φ0 + p1φ1. Putting everything together, the constant term

cancels with the other potential dependent terms in δSBH, leaving us with the simple

result

δSBH = −Ep

T
, (7.4.62)

where Ep = Vp(ρ) + Ekin
p . The change in the total microcanonical entropy of the

system for a given final state |α〉 of the probe viewed as a particle (here α is a one

particle state label which includes charge and energy Ep) is thus

δS|α = Sp −
Ep

T
≡ −Fp

T
, (7.4.63)

where Sp is the probe’s internal entropy. Recall that Vp/T ∝ gN
v while Sp ∝ g2

v , so in

the probe limit g / N , the probe’s internal entropy contribution to Fp is generically

subleading.
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In the planar limit it is also natural to take the system S of interest to correspond

to a finite (but parametrically large) part of the xy-plane, with the remainder of

the plane viewed as the reservoir. In this case, by definition, δStot = −δFS/T , and

(7.4.63) reduces to

δFS = Fp . (7.4.64)

We can now take the system size to infinity, and view this as a formula for the change

of total free energy in the grand canonical ensemble.

Thus, in equilibrium, the probability of finding a single probe in a given state α

relative to the probability of having no probes is e−Fα/T . In particular we see that

if the minimum of the probe potential is negative, ejecting such probes is thermody-

namically preferred at large N , while if it is positive, swallowing them is preferred. If

Fα is positive for all possible probe charges, we get a cold, exponentially dilute gas in

the large N limit (so interactions can be neglected), with average occupation number

of the 1-particle state |α〉 given by

〈Nα〉 = e−Fα/T . (7.4.65)

Alternatively these occupation numbers can be obtained by considering the thermal

atmosphere of the black hole as a statistical mechanical system in the grand canonical

ensemble, with the black hole acting as a reservoir. We do not distinguish between

Bose or Fermi statistics here because the gas is dilute (the average occupation number

is e−N suppressed).
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Fig. 7.5: Probe potentials at different temperatures for φ1/φ0 = −0.49 and φ0 = 1.15.

The coordinate σ used here is defined as σ ≡ ρ/(1 + ρ). The plots are made for

pure fluxed D6 probes. Left: κ = 0.2908 and the probe potential is plotted for

T = 0.01, 0.02, and 0.04 for probes around the stable background. Right: κ = 1.0566

and the probe potential is plotted for T = 0.01, 0.02 and 0.06 for probes around the

unstable background.

7.4.3 Probe bound states for spherical black holes

We will focus in particular on bound states with “pure fluxed D6” probes — these

are probes with charges γ̂ = (p̂0, p̂1, q̂1, q̂0) defined by expanding eκx = 1+ p̂1x+ q̂1x2−

q̂0x3 +O(x4), i.e.:

γ̂ =
(
1, κ,

κ2

2
,−κ3

6

)
# γ =

g

v2

(
1, κv,

(κv)2

2
,−(κv)3

6

)
, (7.4.66)

in other words b = n = 0 in the parametrization introduced at the end of section

7.1.3. Note that our charge quantizations then require (up to possible O(1) factors

or shifts):

g ∈ v2Z , κ ∈ 1

v
Z . (7.4.67)

186



Chapter 7: Hot Halos in AdS

(Recall v2 = N/k.) Such probes can be thought of as wrapped D6-branes with world-

volume flux F2 ∝ κv turned on, which lift to smooth, locally Taub-NUT “bubbling”

geometries in M-theory [165, 169]. The motivation for this restriction is in part sim-

plifying the search for bound states, and in part the observation made in chapter 6

that in the asymptotically flat case, at least in a large part of parameter space, these

charges form bound states more easily than any other charge which has a single cen-

tered realization. Numerical explorations in the present setup confirm this, although

we do not investigate this exhaustively.

The search for bound states proceeds by looking for local minima of Vp = Vgrav +

Vem defined in equations (7.4.55) and (7.4.56), for all possible values of κ. This is

done numerically. Note that Vp = 0 at the event horizon and therefore probe bound

states with Vp < 0 are thermodynamically favorable configurations as explained in

section 7.4.2. Thus, such bound states are stable, and conversely, local minima of

the probe potential such that Vp > 0 are metastable to tunneling into the black hole.

Some examples are shown in figure 7.5.

A universal feature we observe is that for any given (φ0, φ1) all bound states with

fixed charges disappear at sufficiently high temperatures (depending on the probe

charge). Intuitively the reason is clear: when the temperature is increased, black

holes gain mass rather than charge, the gravitational pull becomes stronger, and

eventually gravitational collapse is inevitable — the probe is pulled into the black

hole.

We display the existence regions of probe bound states in figures 7.6-7.9 which

correspond to slices of phase space where the background potentials satisfy φ1/φ0 =
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±0.49 ,±0.6 and ±1. The bound state existence regions have many common features

which we describe below.

1. Bound states around the stable black hole background —the black hole with

lowest free energy— are represented by the green and yellow regions with labels

(s±) in figures 7.6-7.9. The green (s−) regions demarcate where stable bound

states exist, in the sense that these bound states have negative potential energy.

Metastable bound states live in the yellow (s +) regions. Bound states around

the unstable black hole background are shown in the orange (u +) and blue

(u−) regions of our diagrams, with the (u−) regions representing stable bound

states and (u +) regions labelling metastable bound states.

2. Recall that the probes are sensitive to the signs of φ0 and φ1. Figures 7.6,

7.7 and 7.9 are slices of phase space where the potentials satisfy, respectively,

φ1/φ0 = ±0.49 ,±0.6 and ±1, with the minus sign holding in the left hand

columns. When the potentials have opposite sign, there exist stable bound

states between the probe and the black holes. As in chapter 6, in a small region,

there also exist stable (negative energy) bound states when the potentials have

the same sign. In this case the (u−) bound states lie in a thin sliver below the

lower dotted line (where ∆1 changes sign). This happens for φ1/φ0 > 1/2 for

arbitrarily high T .

3. The (u±) regions disappear as we cross the lower dotted line from below. This

is expected since the background to which the probes are bound have diverging

charge as we cross the dotted line from below and stop existing altogether above
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it. One caveat is shown in figure 7.6 where the (u±) regions seep across the

dotted line near the orange dot. These are probes bound to a black hole with

negative free energy and are closer in nature to the bound state regions across

the white gap than those across the dotted line. Naturally there are no bound

states of type (u±) above the dotted line when φ1/φ0 > 1/2 as we cross into a

region where only one black hole exists.

4. While the (u±) bound states generically disappear when crossing the lower

dotted line from below, nothing analogous can be said for the (s±) bound

states above the dotted line as we cross it from above. Since nothing singular

happens for the stable backgrounds as the lower dotted line is crossed, this

matches with our expectations. A clear example of bound states dipping below

the dotted line can be seen in the left hand column of figure 7.8.

5. When |φ1/φ0| = 1 there are no (u±) regions above the dotted lines, even when

the potentials have opposite signs. This should not be taken to mean that

there are no bound states around the unstable black hole above the dotted line

beyond a certain ratio of φ1/φ0. As in chapter 6, the disappearance of bound

states may indicate that the favored probes for forming bound states are not

pure fluxed D6 branes in this region of parameter space.

6. In all cases considered, the (s +) regions open up at large φ0. By this we mean

that bound states at large chemical potential exist for larger values of T . This

is consistent with the existence of a large region of (s +) bound states in the

planar limit as shown in section 7.4.4 below.
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Fig. 7.6: Existence regions for probe bound states with background potentials set

at φ1/ φ0 = ±0.49, with the negative ratio in the left column. We label bound state

regions with (s/u±). A bound state region labeled s means it forms around the stable

black hole and similarly, u regions represents probes bound to the unstable black hole.

The ± denote whether the bound state has positive resp. negative potential energy.

States with positive potential energy are unstable to tunneling into the black hole.

The grayscale background echoes the background phase diagrams of section 7.3.3.

The rightmost panel shows a close-up near the orange dot cusp for φ1/ φ0 = −0.49.

Notice that the top corner of the (s +) region smoothly connects to the top corner

of the (u +) region. The top of the (s−) region connects to the (u−) region in the

same way. This can be understood simply from continuity in the extensive variable

u1.
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Fig. 7.7: Existence regions for probe bound states with φ1/ φ0 = ±0.6, with the

negative ratio being in the left column.

Fig. 7.8: Left: Probe bound states with φ1/ φ0 = −0.6, around the stable background.

Note that the (s±) regions dip below the dotted line. Right: Zoom of the (u +)

bound states above the dotted line with φ1/ φ0 = 0.6.

191



Chapter 7: Hot Halos in AdS

Fig. 7.9: Existence regions for probe bound states with φ1/ φ0 = ±1, with the negative

sign holding in the left hand column.

7.4.4 Probe bound states in the planar limit

One can obtain the probe potential in the planar limit (7.3.44) either directly from

the probe particle action (7.1.9) or by scaling the parameters in (7.4.55-7.4.56). In

the latter case one must be careful to divide by an overall factor of λ coming from the

fact that we have scaled dt = dt̄/λ in the probe action. The planar black hole probe

potential equals the spherical black hole potential except that the ρ2 term under the

square root disappears:

Vgrav =

√
3

2

√

(2ρr+ + f0f 3
1 − u0u3

1)

[(
p1

2f1
+

q0

f0

)2

+
f0

f1

(
p0

6 f1
− q1

f0

)2]
, (7.4.68)

and

Vem = −φ0q0ρ

f0
− φ1p1ρ

f1
. (7.4.69)

Here all background quantities should be understood as rescaled variables as in (7.3.44),

but again to avoid cluttering we drop the bars here, referring to section 7.6.1 for a
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Fig. 7.10: Existence regions for planar bound states. The regions labeled (s +) show

bound states around the stable black brane with positive potential energy. If we

zoom in closer to small T/φ0 near the boundary of the white gaps, we see more

interesting features as shown in the two rightmost panels. We find no evidence for

(u±) bound states below φ1/φ0 < −1/2, even when considering more general charges

corresponding to b, n 2= 0 in the parametrization given at the end of section 7.1.3.

recap of how to restore the original scales. Because of the extra scaling symmetry

discussed in section 7.3.5, we can scale out the appropriate powers of φ0 from the

various quantities occurring in the expression for the potential, reducing its depen-

dence on φ0 to an overall factor. Accordingly all nontrivial dependence of the probe

potential on the electric potentials and temperature will be in terms of scale invari-

ant quantities e.g. the ratios φ1/φ0 and T/φ0. The bound state existence regions are

shown in figures 7.10.

As expected from our spherical analysis, bound states with negative energy only

exist when φ1/φ0 < 0. Bound states about the unstable black hole only live in a very

thin sliver of parameter space for φ1/φ0 > 0.
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Fig. 7.11: Left: Minimal values of the potential as a function of probe charge pa-

rameter κ and background parameter φ1/φ0, computed using the expansion of Vp to

second order in τ . The minima are negative above the dotted line, positive below.

The lowest minimum attained for a given value of φ1 is Vmin ≈ −4× 10−4φ1. Right:

Separation ρeq = u1τeq of the minimum from the horizon, where u1 = 4|φ1|/
√

3.

Lighter is further away. The rescaled separation τeq only depends on κ, not on the

potentials. The maximal separation is given by τmax ≈ 0.025; at the edge values of κ

the separation drops to zero.

7.4.5 Analytic results for T = 0

In simple limits, it is straightforward to confirm our numerical results analytically.

At zero temperature, the thermodynamically preferred planar solution is the u0 = 0

solution discussed in section 7.3.6. In this limit the explicit probe potential for the

charges (7.4.66) becomes quite simple:

Vp =
φ0κ3

6
− φ1 κ τ

1 + τ
+
|φ1|
3

√
(3 + 3τ + τ 2)

(
κ2 +

τ

1 + τ

)3
, τ ≡ ρ/u1 , (7.4.70)
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with u1 = 4|φ1|/
√

3. Expanded to first order at small τ , this becomes, say for φ1 > 0:

Vp

φ1
=
|κ|3

6

(
sgn κ · φ0

φ1
+
√

12

)
+

|κ|√
12

(
|κ|2 + 3−

√
12 sgn κ

)
τ +O(τ 2) . (7.4.71)

Since we need |φ1/φ0| ≥ 1/
√

12 to have a black hole solution, the zeroth order term

is always nonnegative.10 The first order term is negative if 0 < κ<
√√

12− 3 ≈

0.68125. In this case a bound state exists, which may have negative energy if φ1/φ0

is sufficiently close to −1/
√

12, This is illustrated in figure 7.11. These observations

are consistent with the numerical results of figure 7.10.

We can repeat this analysis for the thermodynamically disfavored planar solution,

again at T = 0. In this branch, u1 = 2|φ0|/3 and u0 = |φ0|
3 (12φ2

1/φ
2
0 − 1). In this

limit, Vp is slightly more complicated than (7.4.70), however expanded to first order

in τ = ρ/u0 we find:

Vp

|φ0|
=

(
−κ3

6
− κ

2

φ1

φ0

(
12φ2

1

φ2
0
− 1

)
+

1

24

√(
1 + 12 φ2

1

φ2
0

) (
−1 + 2 κ2 + 12 φ2

1

φ2
0

)3
)

τ

+O(τ 2) . (7.4.72)

If the coefficient of τ is negative in this expansion, then the potential admits a mini-

mum with negative energy. It is straightforward to check that this only happens for

a special range of values with 0 < κ< 1 and −1/2 < φ1/φ0 < −1/
√

12 shown in

figure 7.12. These results are consistent with those presented in figure 7.10.

The thick lines in figures 7.11 and 7.12 coincide with ρeq = 0 and represent the

boundary of the allowed region of κs admitting bound states for a given φ1/φ0 at

T = 0. Naturally, one might wonder if ρeq = 0 identically at the edges of the various

10The fact that this is nonzero is an artifact of the degenerate limit u0 → 0. At any finite u0, the
potential will drop to zero for ρ/ u0.
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Fig. 7.12: Left: Minimal values of the potential as a function of probe charge param-

eter κ and background parameter φ1/φ0, using the expansion of Vp to second order

in τ . Minima exist (and are negative) within the black curve. Right: Separation

ρeq = u0τeq of the minimum from the horizon. Lighter is further away, along the black

curve the distance drops to zero.

(s/u±) regions in figure 7.10. The answer is no. To show this, in figure 7.13 we plot

ρeq as a function of T/φ0 for fixed φ1/φ0 = −0.297 and −0.32 for the numerically

found probe charge such that Vp is lowest at its minimum. Within the exitence region,

ρeq never vanishes, remaining finite until the bound state disappears completely.

7.5 Small black holes, caged wall crossing and AdS-

goop

7.5.1 Small black hole limit

Consider again the small black hole / asymptotically flat space limit discussed

in section 7.3.4, more specifically the flat space BPS limit, i.e. ∆0 = εδ0, ∆1 = εδ1,
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Fig. 7.13: Left: Equilibrium distances ρeq/φ0 for φ1/φ0 = −0.297 with φ0 > 0. The

upper curve shows bound state distances for probes bound to the stable black brane,

the lower curve for probes bound to the unstable brane. The probe charge is chosen

such that Vp is lowest at its minimum. The two curves meet at the boundary of the

white region where the solutions degenerate. Right: Equilibrium distances ρeq/φ0

for φ1/φ0 = −0.32 and φ0 > 0. Again the upper curve shows bound state distances

for probes bound to the stable black brane. Note that ρeq never vanishes within the

existence regions for bound states.
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ε → 0, φ0 →
√

3
2 , φ1 →

√
3

4 . In this limit (7.3.39) is solved on the small black hole

branch by

u1 =
ε

4πT

√
δ0δ1 , (7.5.73)

where T is the temperature in AdS units, which can take any finite value. Furthermore

r+ = ε2

4πT

√
δ0δ3

1 and u0 = ε
4πT

√
δ3
1

δ0
, and if we restrict to values of ρ of order ε, the

probe potential is given by

Vp =

√
3

2
ρ

[√(
p1

2f1
+

q0

f0

)2

+
f0

f1

(
p0

6 f1
− q1

f0

)2

−
(

p1

2f1
+

q0

f0

)]
, (7.5.74)

up to subleading terms at small ε→ 0. This is minimized at Vp = 0 when p0

6 f1
− q1

f0
= 0,

or equivalently at r ≈ ρ = ρeq where

ρeq =
ε

4πT

√
δ1

δ0

p0δ1 − 6 q1δ0

6 q1 − p0
=
√

12
p0Q0 − q1P 1

6 q1 − p0
. (7.5.75)

Returning to the original, non-rescaled variables, this becomes

ρeq = (p
p0Q0 − q1P1

q1

√
3
v − p0

√
v3

12

, (7.5.76)

reproducing the well known BPS equilibrium separation formula [104]. Bound states

of this kind exist if 1 < ξ < α or α < ξ < 1, where α ≡ ∆1
∆0

= 6 Q0

P1v2 and ξ ≡

6 q1

p0v2 (restoring the original v dependence here to make the dependence on the scalar

manifest). When ξ → 1, the expression for ρeq given in (7.5.76) diverges. In the

asymptotically flat case, this corresponds to decay at marginal stability, also know as

wall crossing: the bound state disappears from the spectrum once ξ has crossed the

wall. In the present case however, the divergence merely signals we exit the regime

of validity of the small ρ approximation. Indeed, since AdS acts as an infinitely deep

gravitational potential well, the true radius cannot diverge; instead when ρeq becomes
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of order ( the bound state will start feeling the confining effect of AdS. We return to

this below. When ξ → α, the bound state radius vanishes and the two centers merge.

When α = 1, the bound states around the small black hole disappear altogether. This

is easy to understand: At this locus, the background solution reduces to the constant

scalar Reissner-Nordstrom solution, and without running scalars, there cannot be a

stable potential. We refer to chapter 6 for further discussion.

7.5.2 Confined wall crossing

When ρ is no longer restricted to order ε values and is allowed to get larger, the

potential given in (7.5.74) — i.e. the probe potential in asymptotically flat space —

is no longer accurate. Instead of the factor ρ, the gravitational part of the potential

gets a factor
√

ρ2 + ρ4. Thus the proper potential is Vp = Vp(above) + δVp, where the

correction term is (still to leading order at small ε):

δVp =
(√

1 + ρ2 − 1
)
·
√

3

2
ρ

√(
p1

2f1
+

q0

f0

)2

+
f0

f1

(
p0

6 f1
− q1

f0

)2

. (7.5.77)

When ρ is of order ε, this is a negligible correction. When ρ . ε on the other hand,

we have f0 ≈ f1 ≈ ρ, and

δVp ≈
(√

1 + ρ2 − 1
) √3

2

√(p1

2
+ q0

)2
+

(p0

6
− q1

)2
. (7.5.78)

The quantity multiplying the ρ-dependent factor is nothing but the (rescaled) mass

of the probe in the vacuum; that is, δVp ≈ mγ(
√

1 + ρ2 − 1). As alluded to earlier,

the presence of this confining potential term is that no actual decay will happen when

crossing the analog of a wall of marginal stability, i.e. when varying parameters such

that we pass through ξ ≡ 6 q1

p0v2 = 1 (from above or below depending on the ratio ∆1
∆0

).

199



Chapter 7: Hot Halos in AdS

However, something nontrivial does happen when ξ approaches 1. As long as ξ is

bounded away from 1, the minimum of the potential ρeq will be of order ε. When ξ

approaches 1, this will rapidly increase to a much large radius, and roughly stabilise

there. At the same time, the local minimum will get lifted well above its near-BPS

value, thus becoming metastable for decay back into the global minimum at ρ = 0.

Eventually the local minimum may disappear altogether.

To get some intuition, let us use the following toy model for the potential:

V (ρ) =

(
ε

ρ
+ θ

)2

+ ρ2 . (7.5.79)

The first term represents the flat space potential, the second term the AdS correction.

This captures the typical behavior of the probe potential of interest quite well as long

as ρ is well below 1 but not much smaller than ε. Now, as long as θ / −ε, there will

be a local minimum near ρ = −ε/θ (obtained by minimizing the first term at zero),

with energy V ∼ ε2/θ2 (from the correction). This corresponds to bound state of size

ε, very close to its flat space BPS analog. When θ becomes positive, the flat space

state disappears. In contrast, the full potential in AdS still has a local minimum,

at ρ ≈ θ1/3ε1/3, with an energy V ∼ θ2 (for θ .
√

ε). These scalings with ε are

consistent with numerical observations. Note however that this is entirely due to the

gravitational trapping effect of AdS, the additional inter-particle interaction being

now repulsive over the entire range of distances.

7.5.3 AdS supergoop

A natural question is how to generalize the two-particle black hole - probe picture

developed so far to a system of n > 2 interacting dyonic particles in AdS. In asymp-
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totically flat space with unbroken N = 2 supersymmetry, at low energies and for

well-separated dyons (which can be black holes, solitons or D-particles), a universal

description is provided by a particular N = 4 supersymmetric “quiver” quantum me-

chanics [103] as described in chapter 5 (see also [111, 112, 120, 121, 122, 123, 124, 125,

126, 127, 128, 129, 219, 220, 221, 222, 223]). The supersymmetry completely fixes the

static potential and magnetic interactions up to a set of integers κij equal to the sym-

plectic product of the electromagnetic charges of particle pairs (i, j), i, j = 1, . . . , n,

and a set of real numbers θi determined by the charges and by vacuum moduli. In

turn this completely determines the degeneracies of BPS bound states (which tends

to be large due to the large Landau level degeneracies induced by the simultaneous

presence of magnetic and electric monopole charges). Explicitly in flat space the

n-particle static potential is of the form

V (n)
flat =

n∑

i=1

1

2mi

( n∑

j=1

κij

2|xi − xj|
+ θi

)2

. (7.5.80)

The magnetic interaction is of Dirac monopole form and completely determined by

the κij; we refer to [103]) for details.

In AdS we do not have the same bulk supersymmetry structure, and hence it is not

obvious what the appropriate generalization should be. However the considerations

made in section 7.5.2, as well as more elementary considerations regarding the effective

Newtonian description of nonrelativistic particles confined to global AdS, suggest the

following simple modification of the static potential:

V (n)
AdS = V (n)

flat +
n∑

i=1

1

2

mix2
i

(2
, (7.5.81)

where ( is the AdS length and xi is the position of the i-th particle in isotropic
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coordinates. Indeed this is the effective Newtonian potential one gets for a nonrela-

tivistic probe particle moving in global AdS4, when expanding the metric in isotropic

coordinates,

ds2 =
−

(
1 + x2

4&2

)2
dt2 + dx2

(
1− x2

4&2

)2 , (7.5.82)

at small velocities and small potential energies. Isotropic coordinates are appropriate

here, as they allow us to keep the translationally invariant flat space expressions for

the static and magnetic interaction potentials.

It would be interesting to study dynamical aspects of this system, along the lines

of the analogous flat space study of [220]. Due to the magnetic interactions, the

dynamics has rather peculiar properties, with magnetic trapping, dynamical rigidity

and precession drift being some of the more striking features. A key differences with

the flat space system is that supersymmetry is broken. At the classical level one

expects the high-dimensional moduli space to get lifted; at the quantum level one

expects similarly the lowest Landau level to split up.
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Fig. 7.14 (Continued): Here we show various features of the potential as a function of

the probe charge parameter κ, for fixed P 1 = 1, Q0 = −10−3, and incremental values

of M (or T ). Parametrizing M = (1 + δ)Mextr with Mextr ≈ 0.2205 the minimal

(T = 0) mass for the given charges, the blue, green, brown, orange and red curves

correspond to δ = (10−8, 10−7, 10−6, 10−5, 10−4). The vertical axis is rescaled by a

factor 104 in all four plots. Top left: positions of the local minimum (dotted) and

of the top of the barrier separating it from the horizon (solid). Top right: values of

the potential in the local minimum. Bottom left: Barrier height for absorption into

the black hole. Bottom right: Barrier height for emission from the black hole.

We see the local minima lie at increasingly higher energies and become increasingly

more shallow when the temperature is raised, until they eventually disappear. Note

also that at low temperatures, charges with small κ do not minimize the energy of

the local minimum (hence are not thermodynamically favored in equilibrium), but

they do have the lowest and thinnest barriers to climb (hence their transition rates

can be expected to be the fastest).
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7.6 Holographic interpretation

In the previous sections we have demonstrated the existence of black hole bound

states in the probe approximation. As long as the conditions for the probe approxi-

mation to be valid are met, i.e. g / N , there is no limit on the size, charge or number

of bound black holes. In the large N limit, each of these configurations corresponds to

a (generically metastable) macroscopic thermodynamic state, with individual black

holes representing pockets of mutually thermalized degrees of freedom at different

positions and scales. These need not be in equilibrium with each other, since they

may have different temperatures and chemical potentials. Furthermore, generically,

these individual configurations will not minimize the free energy. However as there

are exponentially many of them, and equilibration over the space of configurations

will typically be slow (as it requires tunneling or thermal activation of large objects),

the existence of these configurations can be expected to have a large impact on the

thermodynamic behavior of the system at finite time scales. This picture leads us to

conjecture that in such phases, the system behaves as a glass.

As a first step to make this idea more precise, we now turn to a number of prelim-

inary observations regarding the holographic interpretation of our results, assuming

a dual CFT exists. For simplicity, and because it has the most straightforward ther-

modynamical interpretation, we will mainly comment on the planar limit. In this

section we will make the distinction between rescaled variables introduced in section

7.2.5 and the original variables explicit again.
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7.6.1 Holographic dictionary for background

The dual CFT has central charge proportional to

c ≡ (2

(2
p

=
N2

v
. (7.6.83)

Spherical black holes are dual to thermal states of the CFT on a 2-sphere of some

arbitrary radius R. Bulk energies in units of 1/( are identified with CFT energies

in units of 1/R; for example ( T = R TCFT, ( φ = R φCFT, ( M = R ECFT. Planar

black holes are dual to thermal states on the infinite plane. They are obtained by

zooming in on a small solid angle of the 2-sphere and taking the radius R of the

2-sphere to infinity while keeping the intensive variables fixed in the CFT. Indeed,

defining λ ≡ R/( → ∞, thermodynamic quantities will then scale with λ exactly

as in the planar limit discussed in section 7.3.5. With this identification, the barred

intensive thermodynamic variables introduced there are directly identified with their

CFT counterparts: TCFT = &
RT = T̄ , φCFT = φ̄. The barred extensive quantities on

the other hand get identified with planar densities of the CFT, upon multiplication by

a factor 1/4π(2; for example the entropy density of the CFT, defined as the entropy

per unit coordinate volume, is s ≡ sCFT ≡ S
4πR2 = S̄

4π&2 , and the energy density is

e ≡ eCFT = M̄
4π&2 .

The CFT interpretation of the charges Q0 and P 1 depends on the duality frame

chosen in the bulk [224]. In our explicit bulk Lagrangian, we used a duality frame in

which Q0 is electric and P 1 is magnetic, but to streamline the discussion, and since

we have been working throughout in a grand canonical ensemble with fixed dual

potentials φ0 and φ1, we will for the purpose of holographic interpretations consider a

duality frame in which both Q0 and P 1 are considered electric. In this case the bulk
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U(1) gauge charges are identified with global U(1) charges in the CFT. Denoting the

associated charge densities by J t
0 and J t

1, we have (for homogeneous planar solutions)

the identifications J t
0 = Q̄0

4π&2 , J t
1 = P̄1

4π&2 .

In summary, CFT quantities are related as follows to the dimensionless, scaling

invariant tilde-variables of section 7.2.5 (which we used for example in all the phase

diagrams of the preceding sections):

TCFT =
1

(
˜̄T , φ0,CFT =

N

v2(
˜̄φ0 , φ1,CFT =

N

(
˜̄φ1 , (7.6.84)

and

s =
N2

v

˜̄S

4π(2
, e =

N2

v(

˜̄M

4π(2
, J t

0 = Nv
˜̄Q0

4π(2
, J t

1 =
N

v

˜̄P 1

4π(2
, (7.6.85)

where for example ˜̄S = π
√

˜̄u0 ˜̄u3
1. Transport coefficients are easily obtained by making

use of the general formulae of e.g. [55]. The D0-charge DC conductivity σ0, suscepti-

bility Ξ0 and diffusion coefficient D0 are:

σ0 =
y3

hor

12π
=

v3

12π

˜̄u3/2
0

˜̄u3/2
1

, Ξ0 =
J t

0

φ0,CFT
=

v3

12π(
˜̄u0 , D0 = (

˜̄u1/2
0

˜̄u3/2
1

. (7.6.86)

Here we made use of (7.3.36) and the explicit expressions for metric and scalar given

in (7.3.45). Similarly the D4-charge transport coefficients are

σ1 =
1

πyhor
=

1

πv

˜̄u1/2
1

˜̄u1/2
0

, Ξ1 =
J t

1

φ1,CFT
=

1

πv(
˜̄u1 , D1 = (

1

˜̄u1/2
0

˜̄u1/2
1

. (7.6.87)

The charge transport coefficients satisfy the Einstein relation σ = ΞD, as they should

[55]. As always (in single black hole setups at finite temperature), the viscosity is

given by η = s/4π. The expressions given above imply various relations, for instance

s = c

4
√

D0D3
1

.
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To give a simple fully explicit (albeit degenerate) example, consider the hyper-

scaling violating limit (7.3.51), at T = 0, ˜̄φ0/
˜̄φ1 =

√
12, i.e. at the boundary of the

existence region in figure 7.3. Denoting u ≡ ˜̄u1, we have ˜̄φ1 =
√

3
4 u, ˜̄φ0 = 3

2u, so

TCFT = 0 , φ0,CFT =
N

v2(
· 3

2
u , φ1,CFT =

N

(
·
√

3

4
u , (7.6.88)

and

s = 0 , e =
N2

v(
· 1

4π(2
· u3

2
, J t

0 = 0 , J t
1 =

N

v
· 1

4π(2
·
√

3 u2 , (7.6.89)

while the metric and scalar are given by

ds2 = −3

√
uρ̄3

(3
dt̄2 +

dρ̄2

3
√

uρ̄3

&3

+

√
u3ρ̄

(

(
dx̄2 + dȳ2

)
, y = v

√
ρ̄

u(
. (7.6.90)

In this limit the D0-charge transport coefficients vanish while the D4 conductivity

and diffusion coefficient diverge.

7.6.2 Holographic dictionary for bound states

We now turn to the holographic interpretation of the black hole bound states. Con-

sider first the case of pure Maxwell electrodynamics with Lagrangian L = − 1
8πγ FµνF µν ,

and a particle with q units of electric charge at rest in a fixed planar empty AdS back-

ground, i.e. in a metric ds2 = (2−dt2+dz2+dx2+dy2

z2 (where z ≡ (2/ρ). Without loss of

generality we can assume the particle to be at (x, y, z) = (0, 0, zp). Since the metric is

conformally flat and Maxwell’s equations are conformally invariant, the electromag-

netic field is identical to the field produced by a particle at rest in flat space. The

electrostatic potential satisfies Dirichlet boundary conditions at the plane z = 0, that

is At = 0 and hence Ftx = Fty = 0 (or E‖ = 0) at z = 0. This is nothing but the
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classic textbook problem of a charge in the presence of an infinite perfect conductor,

solved most elegantly by the method of image charges. The potential is thus, with

our charge conventions (compare to (7.1.5), (7.1.9) and (7.2.19)):

At =
γq

2

(
1√

(z − zp)2 + x2 + y2
− 1√

(z + zp)2 + x2 + y2

)
. (7.6.91)

The expectation value of the charge density in the dual CFT is given by the elec-

tric field strength at the boundary [225] (as is the induced charge density on the

conducting plate in the classic electrostatics problem):

jt =
1

2πγ
Fzt|z=0 =

qzp

2πs3
, s ≡

√
z2

p + x2 + y2 . (7.6.92)

We fixed the normalization by requiring the density to integrate to the total charge

q. The radius of the charge density peak is R ∼ zp = (2/ρp.

Let us now consider instead a magnetically charged particle. Dirichlet boundary

conditions on the vector potential imply B⊥ ≡ Fxy = ∂xAy − ∂yAx = 0; they forbid

magnetic flux through the z = 0 boundary surface. The boundary conditions thus

break electromagnetic duality: The magnetic field sourced by a magnetic charge, sub-

ject to the boundary conditions at hand, is not obtained by dualizing the electrostatic

field 7.6.91, as this would give a magnetic field with B‖ = 0 instead of B⊥ = 0. Rather

it is obtained by dualizing the electrostatic field of a point charge with boundary con-

ditions E⊥ = 0. This can again be constructed by the method of image charges, but

this time with an image charge +q instead of −q. The nonvanishing components of

the electromagnetic field strength at z = 0 are then (Fxt, Fyt) = γq
s3 (x, y). This dual-

izes to the magnetostatic fields (Fzx, Fzy) = p
s3 (−y, x) where p is now the magnetic

charge. In the CFT dual, this corresponds to a medium with zero net charge density
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but with a nontrivial stationary vortex current,

(jx, jy) =
p

2πγs3
(−y, x) . (7.6.93)

This can also be viewed as a “magnetization” current j = ∇ × m = (∂ym,−∂xm)

where the magnetization density is

m =
p

2πγs
. (7.6.94)

In the context of two dimensional incompressible fluid dynamics (see e.g. [245]), m is

called the stream function, and ω ≡ ∇× j = −∇2m is called the vorticity. The total

current through a line from the origin to infinity is given by m(∞)−m(0) = p
2πzp

.

Putting things together, we see that a general dyonic particle with charge (q, p) at

(x, y, z) = (0, 0, zp) will correspond to a charge density jt = qzp

2πs3 and a magnetization

density m = p
2πγs .

Applying this to our model with the D0 and D4 charges considered to be electric

charges (and the scalar kept fixed), we see from (7.1.5) that we have γ0 = γD0 = 6
v3

and γ1 = γD4 = v
2 . Hence for an arbitrary probe charge (p0, p1, q1, q0), we get, in the

notation (7.4.53): the following D0 and D4 charge and magnetization densities:

jt
0 =

gvzp

2πs3
q̂0 , jt

1 =
gzp

2πvs3
p̂1 , (7.6.95)

m0 =
gv

12πs
p̂0 m1 =

g

πvs
q̂1 , (7.6.96)

where we recall s =
√

z2
p + x2 + y2. Note that under the symmetry (7.4.58), the

magnetizations flip sign, while the charge densities remain invariant.

For typical values of ρ̃p = ρp/(, i.e. order 1 or smaller, zp is of order ( or larger,

causing the current density to be concentrated in a region of order ( or larger. The
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charge density due to the probe will generically be much smaller than the background

charge density (7.6.85) provided g / N , which, not surprisingly, was the condition for

the probe approximation to be valid. However since the background magnetization

was zero, the magnetizations and corresponding spatial currents are entirely due to

the probe.

Probes located at different positions will produce these currents appropriately

translated in the (x, y)-plane, and multiple probes will produce currents which are

superpositions of single probe currents. An example is shown in figure 7.15.

More generally, the probes will also source the scalar and the metric, which in the

CFT corresponds to fluctuations in the expectation value of some scalar operator and

in the energy-momentum tensor. This can be studied in a similar way but we will

not do this here.

For global AdS, a similar analysis can be done, although we can no longer make

use of the simple map to flat space electromagnetism, so the gauge field propagator

will be somewhat more involved. We give the relevant expressions in appendix E.1.

To get a solution involving magnetic charge which is also consistent with Dirichlet

boundary conditions on the vector potential, the total magnetic charge must be zero

(otherwise the magnetic flux through the boundary cannot be everywhere zero). In a

dynamic setup, where we start off with a purely electrically charged black hole, this

will be guaranteed by charge conservation.

A linearized analysis using the vacuum propagators for the supergravity fields

would give fairly detailed information about the holographic dual of multi-dyon con-

figurations in the AdS supergoop limit, when all particles involved are small. However
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to treat the case of a large black hole with probe bound states, more work is needed,

since even at the linearized level the propagators for the gauge and other fields are

significantly affected by the background geometry. However one can expect the basic

features outlined above to carry over. For example in the example illustrated in figure

7.11, we see that the probe separation ρp takes values in a range [0, 0.025 u (], with

u as in (7.6.88). Defining as before zp ≡ (2/ρp, we thus get that zp takes values in a

range going from zp = ∞ down to values of order zmin
p ∼ (/u ∼ N/φ1,CFT. So in this

regime the typical size of the current vortices and other features may reasonably be

expected to be rfeature ∼ N/φ1,CFT. Though reasonable, it is certainly not obvious,

since the probes in this example are located inside a near-horizon throat, quite dif-

ferent from the asymptotic AdS geometries they connect to. Nevertheless on general

grounds one expects a relation between the equilibrium separation of the probe in

the bulk and the energy scale of the corresponding structure in the CFT. Indeed this

can be seen more directly by considering the energy scale of the probe potential Vp

and its relation to the probe equilibrium position ρp and some CFT energy scale, say

φ1,CFT. Since these all scale with the same power of λ in the planar limit, their overall

scales must be proportional. More explicitly, recalling that V̄p = gN
v&

ˆ̄Vp, ρ̄p = ( ˜̄ρ and

φ1,CFT = N
&

˜̄φ1, we see that up to factors depending only on the rescaled variables, we

get the scale relations V̄p ∝ gN
v&2 ρ̄p ∝ g

v φ1,CFT .

We defer a more in depth analysis of the structure of the holographic dual to

black hole bound states to future work. For now we conclude that probe bound states

correspond to thermodynamic states with disordered, frozen regions characterized by

changes in the charge density and most notably by (possibly metastable) persistent
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currents. The total charge and current generated by each bound charge is proportional

to g. Relative sizes of the two different charge densities and currents are set by the

individual charges (which for a particular background will be constrained to a specific

range). The spatial size and energy scales are set by the separation of the probe

from the horizon; the closer to the horizon the lower the energy scale. There is in

general an upper bound on the horizon separation and therefore an upper bound

on the energy scale. Thus although localized in the bulk, the probes correspond to

delocalized IR effects in the CFT, and the contributions of many different probes get

superimposed onto each other. Local densities will therefore not significantly differ

from the single black hole case. However dynamically one would expect things to

differ substantially, due to the fact that the bound state structure packages degrees

of freedom into pockets that only weakly interact with each other in the bulk. This

we will be further discussed in section 7.7. When temperature is increased, the

vortex/magnetization structures become increasingly less stable and one by one, over

a range of temperatures, they decay; the currents drop to zero and the charge excesses

melt away into the background.

7.6.3 String realizations?

It would of course be desirable to have an explicit dual CFT realization of all

this. A first step towards this goal is to find an explicit bulk string realization. The

model we have studied can be characterized as the bosonic sector of an N = 2 Fayet-

Iliopoulos gauged supergravity with cubic prepotential. The two massless U(1)s we

have are sourced by charges which are parametrically heavier than the AdS scale —
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they can be thought of as wrapped D0, D2, D4 and D6 branes in type IIA.

In the flat space limit, this model is a universal subsector of any type IIA Calabi-

Yau compactification, providing a consistent truncation of the corresponding four

dimensional effective theories. It would therefore seem logical that it should be equally

easy to embed the AdS version of the model in string theory. In particular, flux

compactifications such as type IIA on CP3 with N units of RR 6-form flux and k

units of RR 2-form flux through the CP3 (this one specifically being dual to the

ABJM quiver Chern-Simons CFT [190]), or related compactifications [226, 227, 228,

229, 230, 232, 233, 234, 235, 236, 237], would appear to be natural candidates.

However there is a general obstruction to this idea. Any AdS4×M6 Freund-Rubin

compactification of type IIA string theory which is supported by magnetic RR 6-

form flux (plus any other fluxes) — i.e. any IIA theory which is holographically dual

to a theory involving D2-branes (plus any other branes) — will have the property

that some linear combination of the U(1)s obtained by naively reducing the RR

potentials coupling to wrapped D-branes is in fact Higgsed and thus massive. The

mechanism for this was exhibited explicitly for CP3 e.g. in [190], and it can be argued

in general as follows. When a U(1) is Higgsed, magnetic monopole charges necessarily

come with confining strings attached. They are magnetic flux lines squeezed together

by the Meissner effect. In the present context, the Higgs field is the universal 4d

dilaton-axion, and the corresponding flux strings are actually fundamental strings.

And indeed in the presence of N units of RR 6-form flux on M6, a D6 wrapped

on M6 must come with N fundamental strings attached, and similarly a D2-brane

wrapped on a 2-cycle threaded by k units of 2-form flux must come with k fundamental
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strings attached. This follows directly from integrating the Maxwell equations for the

worldvolume U(1) gauge field on the D-branes: Without the additional strings there

would be an uncanceled tadpole. This shows that a U(1) coupling to these charges

has become massive. For particular combinations of D6- and D2-charges, the tadpoles

will cancel, but generically they will not and in any case it will not be possible to

increase for example just the D6-charge at will, in contrast to the situation in the

model we considered.

Thus, in such setups, one of the U(1)s we have presumed massless will actually be

massive. This will cause generic probes to come with strings attached (stretched from

the horizon to the probe), and it will cause the massive photon to decay exponentially

rather than polynomially. It can be checked that generically these “stringy” effects

scale in exactly the same way as the other forces we considered. For example the probe

potential (7.4.54) for a D6 is Vp ∝ p̂0gN/v( (times something of order 1). A single

D6 means p0 = 1, which by (7.4.53) implies p̂0 = v2/g, so we conclude Vp ∝ Nv/(.

On the other hand, a string stretched over a coordinate distance ∆ρ would have an

energy (w.r.t. our t-coordinate) of order Es ∼ ∆ρ/(2
s ∝ v/( (times something of order

1, assuming ∆ρ/( is of other 1). But by the above arguments, a single D6 comes

not with one, but with N strings attached. Hence Es ∝ Nv/(, the same scaling as

the potential. This turns out to be the case for various other similar comparisons

of scales. We conclude that in these models, the features we have exhibited are not

obviously obliterated, nor are they obviously preserved.

There are of course compactifications which can consistently be truncated to the

model we consider. The simplest case in perhaps M-theory on AdS4 × S7, which
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corresponds to the case k = 1 of the IIA CP3 compactification considered above.

The problem with these is that they have very light charged matter, with masses of

the order of the AdS scale, which will tend to condense and form superconducting

condensates [184, 185]. This would again qualitatively affect our discussion. To

physically trust our model, we need all charged matter to be parametrically heavy,

which in at least the simpler examples means charges should be wrapped D-branes

in a type II picture; in the usual Freund-Rubin compactifications, towers of charged

KK modes tend to have masses going all the way down to the AdS scale [241].

Borrowing language originating from the study of AdS5 - CFT4 pairs [238, 239,

240], we might call such heavy charges “baryonic”. Indeed since it takes as many

quarks as there are colors to make a baryon, states with nonzero baryon number in

the CFT are guaranteed to be heavy. From the bulk dual point of view, baryons

are heavy because they correspond to internally wrapped D- or M-branes. Similar

considerations hold for the AdS4 × Y7 - CFT3 analogs [242, 243]. Examples are M-

theory compactifications on Sasaki-Einstein manifolds with nonzero betti number,

such as Q111 = SU(2)3/U(1)2, or quotients thereof [226, 228, 229, 230, 233, 234, 235,

236, 242, 243]. Although this comes closer, our model is again not quite a consistent

truncation of the low energy effective action of such models [226, 228, 231]; there are

additional light scalars involved, which again may be expected to qualitatively change

the analysis.

It would be very interesting to follow a more direct top-down approach and see if

bound states of the type we have found in our model (or variants thereof) persist in

models with a UV completion in string theory.

216



Chapter 7: Hot Halos in AdS

7.7 Conclusions and outlook

Let us summarize our findings and the picture it suggests of the holographic dual

of a structural glass.

7.7.1 Black hole bound states

Most of the this work was concerned with a complete analysis of the thermody-

namic phases of a well-known class of charged AdS black holes with running scalars

[183], and with establishing the existence of stationary bound states of such black

holes with other charged black holes. These are the simplest generalization to AdS

of the rich and extensively studied class of stationary BPS black hole bound states in

ungauged N = 2 supergravity, and of their (less studied) finite temperature counter-

parts. Our analysis was done in a probe approximation. The probe itself was allowed

to be an arbitrarily large black hole, as long as the background black hole was much

larger. Although these are not exact solutions, they do establish the existence of

such solutions in the same way as the solution to the Kepler problem establishes the

existence of a solution to Einstein’s equations describing the Earth orbiting the Sun.

We found that bound states are ubiquitous at low temperatures, including in

the planar limit. Some of these bound states are energetically stable (in which case

they are also thermodynamically favored), while others are metastable to absorption

by the black hole. This depends on the charges of the probe and the background

and on the temperature. When a given bound state is heated up, it will always

become metastable and eventually disappear altogether, as the probe is pulled into the

background black hole. This is intuitive: increasing the temperature means increasing
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the energy and hence the gravitational pull.

The intuition for the actual existence of bound states is somewhat more subtle.

The presence of a nonminimally coupled scalar is crucial. Electrostatic forces by

themselves are not sufficient. The electrostatic repulsion is maximized with respect

to the gravitational attraction by choosing the charge of the probe black hole to be

proportional to that of the background black hole and the temperature to be zero.

In the asymptotically flat case, this situation leads to an exact cancelation between

electrostatic repulsion and gravitational attraction; in all other cases the gravitational

attraction wins. In AdS, there is an additional gravitational force pushing the black

holes together, so even in the case of proportional charges, the gravitational attraction

wins, and indeed no black hole bound states exist for pure Einstein-Maxwell in AdS.

However, in the presence of nonminimally coupled scalars (i.e. scalar-dependent elec-

tromagnetic coupling constants), the situation changes, and stationary bound states

can be formed with (say) an electrically charged black hole, provided the probe black

hole has repulsive electric charge and, crucially, some magnetic charge. The required

additional scalar-driven repulsive force can be understood as being due to a conflict

of interest between electric and magnetic charges. Part of the energy of any charged

black hole is electromagnetic. The electrostatic energy increases when the coupling

constant increases, while the magnetostatic energy increases when the coupling is

decreased. In an electrically charged background with a scalar dependent coupling

constant, the scalar will thus be driven towards lower values of the coupling when

approaching the black hole. A magnetically charged probe in such a background

will therefore become heavier when moved towards the black hole. Under favorable
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circumstances, this effect (combined with electrostatic repulsion) is strong enough to

more than compensate for the increase in gravitational attraction by the black hole,

and a net repulsive force can arise close to the black hole. Given the confining nature

of AdS, there will therefore be a minimum of the potential somewhere, and we get a

stationary black hole bound state.

This intuition is corroborated by the fact that for solutions without running scalars

(i.e. on the Reissner-Nordstrom locus in parameter space), no bound states ever

exist, and by the fact that we found no bound states with probes that do not have

magnetic charge. It also fits the observation that bound states are formed most easily

around backgrounds for which the scalar runs over the longest range, which is the

case in particular for solutions approaching the hyperscaling-violating limit detailed

in sections 7.3.6 and 7.4.5.
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Fig. 7.15: Left: A random collection of probe black holes, represented by spheres. The

size of each sphere is proportional to the D0-charge, while the thickness of the line pro-

jecting the probe onto the boundary z = 0 is proportional to the D6-charge. Red/blue

= positive/negative D6-charge. Notice that because of the symmetry (7.4.58), one

expects positive and negative D6-charge probes to be present in equal abundance.

Right: Corresponding 3-currents in the CFT. Brighter means higher charge density

jt
0, flow lines indicate the direction of the current 9j0. D0-charge determines charge

density, D6-charge determines current density. Smaller values of zp lead to smaller

structures. Positive and negative D6-charges produce oppositely circulating currents.
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de Sitter Fluids

A.1 Scalar Perturbations

Gravitational perturbations in static dS4 consist of a scalar and vector mode of

the SO(3) of the two-sphere. There are no tensor modes in four dimensions. Scalar

harmonic perturbations can be reduced to a single Ishibashi-Kodama master field

[50, 51], which obeys the same effective equation as that of the vector perturbations

except that the angular number l begins at l = 0 (instead of l = 1 in the vector case).

An incompressible fluid requires a divergenceless velocity field vi. The scalar

harmonic allows only the possibility vi ∝ Si ≡ −∇iS. S is the scalar harmonic on

the sphere which satisfies:

(
∇2

S2 + k2
S

)
S = 0 , k2

S = l(l + 1) , l = 0, 1, 2, . . . (A.1.1)

Imposing incompressibility leads to

∇i
S2vi ∝ ∇2

S2S = −k2
SS (A.1.2)
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which vanishes for kS = 0, i.e. the spherically symmetric mode l = 0. In this case

vi = 0 and we are left with a trivial fluid.

Thus, in the case of an incompressible fluid, the scalar mode only consists of trivial

fluids. It would be interesting to investigate the case of a compressible fluid which

allows for sound modes.1

A.2 The l = 1 Vector Perturbation

Gravitational vector perturbations with l = 1 differ from l > 2. We follow the

discussion in [50, 51]. In addition to equation 2.3.9, spherical vector harmonics satisfy

the following equation:

(
∇2

S2 + k2
V − 3

)
Vij = 0 , Vij ≡ −

1

2kV
[DiVj + DjVi] , (A.2.3)

where Di ≡ (∇S2)i. For k2
V −3 ≤ 0 it can be shown that Vij vanishes and therefore, V i

must be a Killing vector on the sphere. In this case, we parametrize the perturbations

as:

δgai = rfaVi, (A.2.4)

where xa = {t, r} and xi = {θ, φ}. Given that Vij = 0 implies δgij = 0, we can no

longer fix the gauge freedom by imposing δgij = 0. Instead, we will fix the gauge

fr = 0. From [51], using the only gauge invariant object Fab:

r−1Fab = Da

(
fb

r

)
−Db

(
fa

r

)
, Da ≡

(
∇g(2)

)
a

(A.2.5)

1In [43], it was shown for planar horizons that the speed of sound for the scalar sound mode goes
to infinity and effectively decouples from the non-relativistic fluid sector.
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the Einstein equation imply that Fab is:

Fab =
3J

r3
εab (A.2.6)

with J constant. In the case of a perturbation about a spherically symmetric black

hole, this corresponds to giving it a small amount of angular momentum [51].

We can study the r dependence of the metric components. Given that the con-

nection term will drop out due to anti-symmetrization, we can replace the covariant

derivatives with ordinary derivatives and find:

− 3J

r4
= ∂r

(
ft

r

)
. (A.2.7)

The above integrates to

ft(r) = J

(
1

r2
− r

r3
c

)
, (A.2.8)

where we have set Dirichlet boundary conditions on δgit at r = rc. Hence, the

perturbed metric reads

ds2 = ds2
0 + J

[
1

r
− r2

r3
c

]
Vi(θ, φ)dtdxi (A.2.9)

with Vi a Killing vector on S2.

A.3 Mind the Gap

Looking at the last two plots in figure 2.5, we see that as we move the cutoff

surface away from the cosmological horizon, the zeroes for l = 9 and l = 10 modes

jump discontinuously. We would like to describe how this behavior arises. Recall that

our goal was to find the lowest lying zero of δgout
iτ (ρ = 1) as a function of ω on the
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Fig. A.1: Flow of δgout
iτ (ρ = 1) for l = 10 as we move rc away from the cosmological

horizon. We wish to find frequencies that make this function vanish. As we vary rc

the lowest lying zero jumps.

negative imaginary axis as we move rc. Notice in figure A.1 that as we move rc to

smaller values, the lowest lying zero disappears and the new lowest lying zero is at a

finite distance away in frequency space.
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A.4 Hypergeometric Gymnastics

For (c− a− b) positive integer the following relation holds [64]:

2F1 (a; b; c; z) =
Γ(c− a− b)Γ(c)

Γ(c− b)Γ(c− a)

c−a−b−1∑

n=0

(a)n(b)n

(1 + a + b− c)nn!
(1− z)n

+ (z − 1)c−a−b Γ(c)

Γ(a)Γ(b)

∞∑

n=0

(c− b)n(c− a)n

n!(n + c− a− b)!
[kn − log(1− z)] (1− z)n , (A.4.10)

where (a)n ≡ Γ(a + n)/Γ(a) are the Pochhammer symbols and

kn = ψ(n + 1) + ψ(n + 1 + c− a− b)− ψ(n + c− a)− ψ(n + c− b) (A.4.11)

with ψ(z) = d log Γ(z)/dz.

We treat the case covered by equation (A.4.10) as it is relevant to the text. To

eliminate the log terms, we require 1/Γ(a)Γ(b) = 0. In the case of a = −n1, n1 =

0, 1, 2, . . ., if c − b > 0 (which in the spacelike case becomes n1 ≥ l), then the whole

second sum vanishes and we get [65]:

2F1 (a; b; c; z) =
Γ(c− a− b)Γ(c)

Γ(c− b)Γ(c− a)
2F1 (a; b; 1− c; 1− z) (A.4.12)

which goes to a constant as r → 1 (here z = (2/r2) and translates into the modes

with no incoming flux from the Northern patch. So, these are the modes we want.2

In the other regime c−b ≤ 0, the first sum vanishes completely due to the gamma

function’s poles. Naively, we would think that the whole expression is zero, however,

the second term contains a divergent term ψ(n + c − b) in the sum that will cancel

out the divergence in 1/Γ(a) for n ≤ −(c− b). then we actually have

ψ(n + c− b)

Γ(a)
∼ Γ(−a + 1) (A.4.13)

2In the case of b = −n2, n2 = 0, 1, 2, . . ., the analogous inequality in the first regime is c− a > 0.
However, our parameters imply that c−a > 0 is always true. Thus we are always in this first regime
which gives the modes that we want and there is no further restriction on n2.
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leading to[65]:

2F1 (a; b; c; z) ∼ Γ(c)Γ(−a + 1)

(c− a− b)!Γ(b)
(1− z)c−a−b

2F1 (c− b; c− a; 1 + c; 1− z) .

(A.4.14)

This implies that the ϕ+
v tends to (r2 − 1)iω/2 (as r → 1) which is an incoming wave

from the Northern patch and should be excluded.
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Rotating Black Holes

B.1 Explicit Thermodynamic Expressions

Below we present explicit expressions for the specific heat at fixed angular mo-

mentum, CJ , the second partial derivative of the entropy with respect to the angular

momentum and the determinant of the Hessian given in 3.3.26. Our results are given

in the (r+, a)-basis.

The specific heat is given by:

CJ(r+, a) =
1

(a2 + (2)
×

2(4π
(
a2 + r2

+

)
2
(
3r4

+ − (2r2
+ + a2

(
(2 + r2

+

))

((2 − r2
+) a6 + (−3(4 + 13r2

+(2 − 6r4
+) a4 + r2

+ (−6(4 + 23r2
+(2 − 9r4

+) a2 + (2r4
+ ((2 + 3r2

+)
.

(B.1.1)
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The second derivative of the entropy with respect to J is given by:

∂2SBH

∂J2
= 8

(
a2 + (2

)
πr2×

(−3(4 + 6r2(2 + r4) a4 + ((6 − 13r2(4 + 23r4(2 − 3r6) a2 + (2r2 ((2 − 3r2)2

(2 (3r4 − (2r2 + a2 ((2 + r2))3 . (B.1.2)

The determinant of the Hessian is given by:

det Hij = −
64 (a2 + (2)4 π2r4

+

((
(2 − r2

+

)
a2 + r2

+

(
(2 + 3r2

+

))

(2 (3r4
+ − (2r2

+ + a2 ((2 + r2
+)) 4

. (B.1.3)

We note that it is negative definite in the physical configuration space.

B.2 Thermal Evolution

We obtain three qualitative possibilities for thermal evolution assuming that the

emission rates are dominated by angular momentum, energy and a combination

thereof. Below, we show plots of the vector field (cJ ∂JStot, cM ∂MStot) where cJ

and cM are constants determining the relative emission rate.

The first case corresponds to a situation where there is an ‘energy pump’ between

the two horizons keeping the energy fixed for each horizon, i.e. cM / 1. In this case,

depicted in Fig. 5 (a), the thermal flow will be along lines of constant energy depicted

in Fig. 3 (b), and will lead to the complete spin-down of the black hole.

The second case corresponds to a situation where there is an ‘angular momentum’

pump between the two horizons keeping the angular momentum fixed for each horizon

and depicted in Fig. 5 (b), i.e. cJ / 1. One notices that large extremal black holes
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Fig. B.1: Left: Thermal evolution when emission of energy is suppressed. Right:

Thermal evolution when emission of angular momentum is suppressed.

evolve toward the rotating Nariai limit before spinning down and evolving toward the

origin. Notice that once the lukewarm line is reached the system evolves along it.

Finally, we can consider a situation where both angular momentum and energy are

emitted at similar rates, i.e. cJ ∼ cM , as depicted in Fig. B.2.

B.3 Explicit Expressions for α and β

The explicit expressions for α and β are as follows:

α =
λh−−i(nR+ω̃/λ) csc [π (h− − i(nR + ω̃/λ)] Γ[h− − ikm]Γ [h− + i (nR + ω̃/λ)]

πΓ[2h−]Q
,

(B.3.4)
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Fig. B.2: Thermal evolution when emission of energy and angular momentum is

comparable.

β = −λh+−i(nR+ω̃/λ) csc [π (h− + i(nR + ω̃/λ)] Γ[h+ − ikm]Γ [h+ + i (nR + ω̃/λ)]

πΓ[2h+]Q

(B.3.5)

where we have defined:

Q

Γ
[
1− 2iω̃

λ

]
]
≡ csc[π(h− − ikm)] csc [π (h− − i(nR + ω̃/λ))]

− csc[π(h− + ikm)] csc [π (h− + i (nR + ω̃/λ))] . (B.3.6)
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B.4 Thermal Boundary-to-Boundary Correlator

We will discuss in some more detail the computation of the retarded thermal

boundary-to-boundary correlator.1 Begin with a wave-packet expressed as a sum

over modes

Φ(x, t̂, Ω) =
∑

m,l

ˆ

dω̃

2π

(
γlmω̃e−iω̃t̂eimφ̂Ylm(θ)R(x)

)
. (B.4.7)

The on-shell action for a massless scalar field is given by

Imatter =
1

2

ˆ

M
d4x
√
−g∂µΦ∂µΦ =

1

2

ˆ

∂M
d3x
√
−gnµΦ∂µΦ (B.4.8)

where we have integrated by parts and set the bulk integral to zero since it vanishes

on-shell. The only boundary term relevant to us will be the one at I+. The nµ is a

unit normal vector which is orthogonal to the boundary. Using the late time behavior

of the R(x) function in the rotating Nariai limit 3.4.54 and evaluating the action we

find

Imatter =
1

2

∑

m,l

ˆ

dω̃

2π
α(ω̃, m, l)β(−ω̃,−m, l) + . . . (B.4.9)

where the dots correspond to terms that oscillate infinitely fast at the boundary. We

may drop such terms by adding a small imaginary part to x, as is done for the vacuum

state of the harmonic oscillator.

In order to obtain this expression, we have used the following completeness and

orthonormality properties of the spheroidal harmonics,

∑

l,m

Ylm(θ)eimφ̂Ylm(θ′)e−imφ̂′ = δ2(Ω, Ω′), (B.4.10)

ˆ

dθdφ̂
√

h̃Ylm(θ)eimφ̂Yl′m′(θ)e−im′φ̂ = δm−m′δl−l′ (B.4.11)

1A similar situation for AdS is discussed in [89, 90].
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where h̃ij is the induced metric at fixed x and t and we are working in a basis where

Ylm(θ) are real.

To compute the thermal boundary-to-boundary correlator, we must define which

excitation, i.e. α or β, corresponds to the boundary value of the field. Once we have

defined the boundary value, we can take variational derivatives with respect to it.

For instance, choosing α as the boundary value at I+ we can write the action as

Imatter =
1

2

∑

m,l

ˆ

dω̃

2π
α(ω̃, m, l)α(−ω̃,−m, l)Gth

R (l, m, ω̃) (B.4.12)

where the thermal boundary-to-boundary correlator in momentum space is thus found

to be:

Gth
R ∼

β

α
. (B.4.13)
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Substringy Bound States

C.1 Two-Body Problem

In this appendix we discuss the motion of a single probe particle in the background

of a fixed charge sitting at the origin. This was studied at length in [112]. The

Hamiltonian of this system is given by

H =
1

2m
(p−A)2 +

1

2m

( κ

2r
+ θ

)2

, p ≡ mẋ + A (C.1.1)

and is conserved. For simplicity we choose κ > 0 and allow θ to be either positive

or negative. Other than the Hamiltonian, this system admits two vector-valued con-

served quantities known as the angular momentum L and the Runge-Lenz vector n.

Explicitly

L = x× (p−A) +
κ

2r
x , and n =

(
x +

1

θ
L

)
× (p−A) . (C.1.2)

Since this system is superintegrable, the probe particle’s trajectories can be found

algebraically.
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First, notice that n · ẋ = 0 implying that n is perpendicular to the plane of motion

of the probe particle. We use this fact to orient our axes such that n = |n|ẑ. It is

straightforward to show that

|n| =

√
2mH

θ2

(
L2 − κ2

4

)
, (C.1.3)

which implies that |L| ≥ κ/2. With this choice of coordinates, the particle’s trajectory

is constrained to lie in a plane of constant z. The magnitude of z can be obtained by

computing n · x = |n|z = −
(
L2 − κ2

4

)
/θ, giving

z = −|θ|
θ

√
L2 − κ2

4

2mH
. (C.1.4)

We have yet to choose an orientation for the x − y plane; we do so by aligning

our coordinates such that Ly = 0 and Lx points in the positive x direction. The

components of the angular momentum are given by

Lx =

√

L2 − θ2

2mH

(
L2 − κ2

4

)
, Lz =

√
θ2

2mH

(
L2 − κ2

4

)
. (C.1.5)

We can determine the particle’s trajectory explicitly by noticing that (C.1.2) im-

plies that L · x = κ r/2 or

(
1− e2

)
(x− x0)

2 + 2(e(x− x0) + y2 = (2 , (C.1.6)

which is the equation for a conic section in cartesian coordinates. The quantities e

and ( are the eccentricity and the semi-latus rectum of the conic section respectively

and are given by

e =
2Lx

κ
=

2

κ

√

L2 − θ2

2mH

(
L2 − κ2

4

)
, ( =

4L2 − κ2

κ
√

8mH
. (C.1.7)
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Fig. C.1: Scatering angle.

The quantity x0 ≡
√

L2 − θ2

2mH

(
L2 − κ2

4

)
/(|θ| −

√
2mH) is the location of one of the

foci of the conic section.

The overall shape of a conic section is determined by its eccentricity, with elliptic

orbits corresponding to e < 1, while parabolic and hyperbolic orbits correspond to

e = 1 and e > 1 respectively. Intuition predicates that bound orbits should only

happen for θ < 0, while θ > 0 gives rise to parabolic or hyperbolic orbits. For

positive θ the Hamiltonian is bound such that 2mH ≥ θ2 which implies that e ≥ 1,

thus verifying our intuition.

For e < 1 the length of the semi-major axis a of the elliptic orbit is given by

a =
2(

1− e2
∼

κ
√

H/2m

Hescape −H
+O (1) (C.1.8)

so as the energy approaches the escape energy Hescape = θ2/2m (or as e approaches

1), the size of the bound orbit diverges. We end this appendix with a discussion of

scattering for e ≥ 1. Since the trajectory of the particle is given by a conic section in
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the x− y plane, the scattering angle as defined in figure C.1 is given by

ϕ = 2 arccot
(√

e2 − 1
)

. (C.1.9)

For parabolic orbits (e = 1), ϕ = π and we see that the particle completely back

scatters. As we increase e the scattering angle decreases monotonically.

236



Appendix D

Flat Space Hot Bound States

D.1 Counting configurations

There exist supersymmetric probe bound state solutions for all values of Q̃0 ≥

0 except 1/6. The number of possible bound state solutions will not be constant

however. In particular when Q̃0 → 1/6, the allowed region in the probe charge

space shrinks to zero. In this appendix we obtain an estimate for the number of

supersymmetric probe bound state solutions near this point. First we consider the

case in which we simply count the number of allowed probe charges, later on we will

include the lowest Landau level degeneracies for each choice of probe.

D.1.1 Single probe

For a single probe, this number is N1 =
∑

γ∈A 1, where A is the allowed region in

probe charge space, bounded by the requirement that the bound state exists and the

probe approximation is satisfied. As we take the limit P1 → ∞, A will contain an
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increasingly large number of charges, hence the number of lattice points contained in

A can be estimated by computing the volume of A in charge space:

N1 ≈
ˆ

A

dp0 dp1 dq1 dq0 1 =

ˆ

dp0 p3
0y

6
0

ˆ

Ã

db̃ dñ dk̃ . (D.1.1)

Here Ã is the region of allowed values of (k̃, ñ, b̃). Since |k̃| is bounded by
√

2(Q̃0 + b̃)

and
√

2(1
6 + b̃) according to (6.5.48), the integral over k̃ gives a factor f1(b̃) ∼∣∣∣∣

√
1
6 + b̃−

√
Q̃0 + b̃

∣∣∣∣. (We drop irrelevant numerical factors here and in what follows.)

Because of the constraint ñ2 ≤ 8
9 b̃

3, the integral over ñ gives a factor f2(b̃) ∼ b̃3/2.

Performing the integral over b̃ gives

ˆ

db̃ f1(b̃) f2(b̃) ∼ |Q̃0 − 1
6 | b̃

2
max . (D.1.2)

Here b̃2
max is the maximal value of b̃, which we have assumed to be very large so we

are allowed to drop terms of order b̃max and lower. The reason bmax is not infinite is

the requirement that the probe approximation should be valid. To estimate it, recall

that mp/M = y0p0

P1

m̃p

M̃
. Since we are exploring the region Q̃0 ≈ 1/6, M̃ is of order 1.

For large b̃, m̃p ∼ q̃0 ∼ b̃3/2, so the probe approximation requires b̃max =
(
ε P1

y0p0

)α

,

where α = 2/3 and ε ∼ mp/M is some small number, the maximal mp/M we allow.

We are then left with the integral over p0:

N1(
mp

M < ε) ∼ ε2α
∣∣∣Q̃0 − 1

6

∣∣∣
ˆ εP1/y0

0

dp0 p3−2α
0 y6−2α

0 P 2α
1 (D.1.3)

∼ ε4
∣∣∣Q̃0 − 1

6

∣∣∣ y2
0P

4
1 (D.1.4)

= ε4
∣∣∣6Q0

P1
− y2

0

∣∣∣ P 4
1 . (D.1.5)

The upper integral bound p0 < εP1/y0 comes again from requiring that we remain

within the probe approximation, this time in the limit of large p0. Notice that the final
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result does not depend on the actual value of α. In fact, we could have inferred the

prefactor simply from the scaling symmetries of the system: From (D.1.1) it is clear

that N1 has scaling weights (0, 6, 4) under the symmetries of 6.4.2, while ε, P1 and

y0 have scaling weights (−1, 0, 1), (1, 1, 0) and (0, 1, 0), respectively. This uniquely

determines their powers.

The above expressions are valid when
∣∣∣Q̃0 − 1

6

∣∣∣ / 1, i.e.
∣∣∣6Q0

P1
− y2

0

∣∣∣ / Q0

P1
, or in

other words close to the attractor point: y0 → y3 =
√

6Q0

P1
. Notice that since the

probe approximation requires y0 / P1 (as discussed in section 6.4.2), self-consistency

in this regime requires Q0 / P 3
1 , i.e. we are necessarily in the non-Cardy regime.

Pushing y0 and ε as high up as possible while conceivably still yielding more or

less sensible results, i.e.

y0 ∼ P1 , Q0 ∼ P 3
1 , ε ∼ 1 , (D.1.6)

we get

N1,max ∼ P 6
1 . (D.1.7)

D.1.2 Multiple probes

In the probe approximation we can also easily build multi-probe bound states:

By assumption, the probes do not backreact so we can simply superimpose the single

probe configurations, as long as we keep the total probe mass
∑

i mpi small compared

to M .1 Imagine a general situation in which the number of single probe states with

1In general the probes will interact with each other, with interaction strength given by their
mutual symplectic products. For probes which happen to have small symplectic products with
the background black hole, i.e. probes which are close to be swallowed by the black hole, these
interactions become important even in the probe limit. We will ignore such boundary cases here.
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mp/M < ε is given by

N1(ε) = Aεn , (D.1.8)

where A is some large number. In the case at hand n = 4, but we will keep things

slightly more general here for future reference. The density of single particle states

at mp

M = ε is then dN1(ε) = nεn−1A. For K labeled probes, the density of states at

mi
M = εi, i = 1, . . . , K is

dNK(ε1, . . . , εK) = (nA)Kεn−1
1 · · · εn−1

K dε1 · · · dεK . (D.1.9)

The total number of states with an arbitrary number K of unlabeled probes satisfying

∑
i

mi
M < ε is therefore

N (ε) =
∞∑

K=0

(nA)K

K!

ˆ

P
i εi<ε

dε1 · · · dεK εn−1
1 · · · εn−1

K . (D.1.10)

The 1/K! corrects in a classical way for overcounting.2 The integral can be factorized

by representing the constraint
∑

i εi < ε as the contour integral 1
2πi

´

dλ
λ eλ(ε−

P
i εi),

where the contour is taken to be on the right of the pole at λ = 0. This yields

N (ε) =
1

2πi

ˆ

dλ

λ
eλε

∞∑

K=0

(nA)K

K!

(
ˆ

dε1 εn−1
1 e−λε1

)K

=
1

2πi

ˆ

dλ

λ
exp

(
λε +

n!A

λn

)
. (D.1.11)

At large A this can be computed by saddle point evaluation. To leading order,

dropping order one numerical factors:

logN (ε) ∼ (Aεn)
1

n+1 . (D.1.12)

2We do not use quantum statistics because the probability that two probes occupy the same
quantum microstate is completely negligible in this setup. This is already true if the probes are
considered to be point particles without internal degrees of freedom, but becomes obvious without
work when one takes into account the huge number of internal microstates the individual probe
black holes can choose from.
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Applying this to (D.1.5) gives for the total number of distinct probe configurations

N (ε) ≈ exp
(
κ ε4/5

∣∣y2
3 − y2

0

∣∣1/5
P 4/5

1

)
, (D.1.13)

where κ is some order 1 constant and y3 = 6Q0

P1
is the attractor fixed point.

In the regime (D.1.6), we thus get a configurational entropy

logNmax ∼ P 6/5
1 . (D.1.14)

D.1.3 Including Landau level degeneracies

A single probe bound to the background black hole has classically an S2 moduli

space, but because a magnetic field threads the sphere, the space of quantum BPS

ground states (i.e. the lowest Landau level) will be degenerate. The degeneracy is

given by the effective magnetic flux as seen by the probe [103]:

dγ = |p0Q0 − q1P1| = p0P1y
2
0|Q̃0 − q̃1| . (D.1.15)

To count the total number of such one particle ground states (ignoring the internal

degrees of freedom of the probe and of the black hole), it suffices to replace the 1 in

(D.1.1) by the LLL degeneracy factor dγ. Because this has scaling dimensions (1, 3, 1),

doing so will add an additional factor εy0P 2
1 to the final result (D.1.5). Furthermore,

because the insertion |Q̃0 − q̃1| is of generically of order |Q̃0 − 1
6 | over the integration

domain, its effect will be to modify the power of |Q̃0 − 1
6 | from linear to quadratic.

All in all we get

NLLL,1(ε) ∼ ε5
∣∣∣Q̃0 − 1

6

∣∣∣
2

y3
0P

6
1 (D.1.16)

= ε5
∣∣∣6Q0

P1
− y2

0

∣∣∣
2 P 6

1

y0
. (D.1.17)
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For the multi-probe system we get from this, using (D.1.12),

logNLLL(ε) ∼ ε5/6
∣∣∣6Q0

P1
− y2

0

∣∣∣
1/3 P1

y1/6
0

(D.1.18)

Finally, in regime (D.1.6), we get a configurational entropy

logNLLL, max ∼ P 3/2
1 . (D.1.19)

Recall that the entropy of the black hole scales as P 3
1 .
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Electric Charges in AdS

E.1 Gauge Field Propagator in Global AdS4

The electric potential due to a stationary charge q sitting at a point 9xp in Minkowski

space is given by

At =
q

4π|9x− 9xp|
. (E.1.1)

This seemingly simple expression gives us a lot of information about the electric field

of a particle in flat space. Notably, we can discern that multipole moments of the

electric field get washed out as we get farther away from the particle. This is an

obvious sanity check, as a point charge sitting at 9xp is no different than a point

charge sitting at the origin when regarded by a far away observer.

We wish to determine the exact form of Aµ in analogy with (E.1.1). That is, for a

static particle sitting at an arbitrary point 9xp in the bulk of AdS4 with metric given

by

ds2 = −
(

1 +
r2

(2

)
dt2 +

dr2

(
1 + r2

&2

) + r2dΩ2 . (E.1.2)
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We follow the derivation of [244], which is formulated in Euclidean space. This

amounts to taking t→ iτ in (E.1.2).

The action of a gauge field in Euclidean AdS4 is given by

SA =

ˆ

d4x
√

g
(

1
4F

µνFµν − AµJ
µ
)

, (E.1.3)

and its response to an external current Jν is

Aµ(x) =

ˆ

d4x′
√

g Gµν′ (x, x′) Jν′ (x′) , (E.1.4)

where Gµν′ (x, x′) is the propagator. Maxwell’s equations ∇µF µν = −Jν impose

∇µ (∂µGνν′ − ∂νGµν′) = −gνν′
δ(x, x′)
√

g
. (E.1.5)

The expression for the gauge invariant part of Gµν′ (x, x′) can be given in a man-

ifestly coordinate independent way. To do this we note that Euclidean AdS can be

constructed by embedding the hyperboloid

−X2
0 + X2

E + X2
1 + X2

2 + X2
3 = −(2 (E.1.6)

in 5-dimensional minkowski space with metric

ds2
5d = g5d

µνdXµdXν = −dX2
0 + dX2

E + dX2
1 + dX2

2 + dX2
3 . (E.1.7)

We obtain the metric (E.1.2) by parametrizing the hyperboloid as

X1 = x = r sin θ cos φ , X2 = y = r sin θ sin φ , X3 = z = r cos θ

X0 =
√

(2 + r2 cosh (τ/() , XE =
√

(2 + r2 sinh (τ/() . (E.1.8)

For two points corresponding to 9X and 9X ′ on the hyperboloid in (E.1.6), we define a

bilinear

u (X, X ′) = −1− P (X, X ′)

(2
(E.1.9)
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where P (X, X ′) = gµνXµX ′ν is the dot product in the ambient minkowski space.

The quantity P is related to the geodesic distance D between points 9X and 9X ′ by

P = cosh D/(. In terms of u, the gauge invariant part of the propagator is given by

Gµν′ (x, x′) = − (∂µ∂ν′u) F (u) , (E.1.10)

where

F (u) =
1

4π2

1

u(2 + u)
. (E.1.11)

In terms of the coordinates (E.1.8), u (X, X ′) is given by

u = −1− 9x · 9x′

(2
+

√
1 +

r2

(2

√
1 +

r′2

(2
cosh

(
τ − τ ′

(

)
, (E.1.12)

where 9x · 9x′ the standard flat Euclidean dot product between the two vectors and

r2 = 9x · 9x.

We wish to evaluate (E.1.4) for a point charge sitting motionless at 9xp, that is

Jν′ (9x′) =

(
q
δ (9x′ − 9xp)√

g
, 0, 0, 0

)
. (E.1.13)

This boils down to computing

Aµ = − q

4π2

ˆ

dτ ′ (∂µ∂τ ′u)
1

u(2 + u)

∣∣∣∣
7x′=7xp

. (E.1.14)

Because F (u) is even in τ ′ and ∂τ ′u is odd, the integral vanishes for all components

of Aµ except Aτ . Computing the integral is straightforward and the final result is

Aτ =
q

4π2(

(
2 + w − v√
v (2 + w)

arctan

[√
v (2 + w)

v

]
+

2 + v − w√
w (2 + v)

arctan

[
w√

w (2 + v)

])
,

(E.1.15)

where we have defined the quantities

v ≡ −1− 9x · 9xp

(2
+

√
1 +

r2

(2

√
1 +

r2
p

(2
and w ≡ −1 +

9x · 9xp

(2
+

√
1 +

r2

(2

√
1 +

r2
p

(2
.

(E.1.16)
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Fig. E.1: Charge density σ0 for a point charge with q = 1 induced on the conformal

sphere in units where ( = 1. We take φ = 0. Left: the charge is located at 9xp =

(0.4, 0, 0). Right: the charge is located at 9xp = (8, 0, 0).

For large ( we find

v =
(9x− 9xp)

2

2(2
+O

(
(−4

)
, w =

(9x + 9xp)
2

2(2
+O

(
(−4

)
, (E.1.17)

and

Aτ =
q

4π|9x− 9xp|
+O

(
(−2

)
. (E.1.18)

We have chosen our normalization such that we get the correct result in the ( → ∞

limit, this is why our conventions differ by a factor of 4 in F (u) from those used

in [244].

The charge density induced on the conformal sphere is given simply by σ0 =

limr→∞ r2F tr. We provide some plots of this charge density in figure E.1. We have

checked that our expression correctly gives q when integrated over the S2.

In order to obtain the U(1) currents induced by a magnetic charge, as explained

in the main text, it is not possible to dualize the field strength formed by Aτ as the

corresponding magnetic field would not obey the correct Dirichlet conditions on the
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boundary sphere. The currents are obtained by dualizing the field strength obtained

from

Amag
τ =

p

4π2(

(
2 + w − v√
v (2 + w)

arctan

[√
v (2 + w)

v

]
− 2 + v − w√

w (2 + v)
arctan

[
w√

w (2 + v)

])
,

(E.1.19)

in which case (jθ, jφ) = limr→∞ r2(F̃ rθ
mag, F̃

rφ
mag).
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