
SLAC-TN-66-41 
W. R. Nelson 
September 1966 

MULTIPLE ELASTIC SCATTERING OF MUONS WITH ENERGY LOSS 

INTRODUCTION: 
The root-mean-square lateral displacement and scattering angle due to 

multiple scattering of muons in iron and silicon dioxide are calculated for 
incident momenta of 5, 10, and 20 BeV/c. The defining equation is the Fermi 

diffusion equation’ which has been solved by Eyges’ with energy loss considered. 
A second order polynomial is fitted to existing range-momentum data, 4 and the 
integral expressions of Eyges are numerically integrated to obtain yrms and 
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JXSTRIBUTION FUNCTIONS: 
The distribution function F(t, y, e), which describes the multiple elastic 

scattering of charged particles as they pass through matter, can be obtained 
by solving the Fermi diffusion equation’ 

dF -= 
at - e :y” -+ 2-3 (1) 

where W = 2p B/Es 

and where the notation and units are Rossi and Greisen’s’ (eg. , t in radiation 
lengths. ) 

Consider a system of Cartesian coordinates with the origin at the point of 
incidence and the t-axis along the direction of motion of the incident particles. 
The other two axis will be the y and z axes, and we will consider the 
projection of motion of the particles on the (t, y) plane, so that F(t, y, 0 ) dy de 
will be the number of particles at the thickness t having a lateral displacement 
(y, dy) and traveling at an angle (0, de) with the t axis. Because of symmetry, 
F also represents the distribution in the (t, z) plane, and the independent nature 
of the y and z orthogonal directions implies that F(t, y, 0,) . F(t,z ,e,) dy dx deydez 
represents the general case in three dimensions. 

Equation (1) is derived in Rossi and Greisen’ under the assumption that 8 
is small, and is solved for the special case of a parallel and infinitely narrow 
beam of monoenergetic charge particles traversing some scattering substance 
with no energy loss. 

Eyges’ has treated the same problem by accounting for the energy loss. He 
assumes that w2 is some known function of t and neglects the fact that a particle 
at t has traveled a somewhat greater distance than t due to deviations caused 
by scattering--a good approximation for high energy particles. 

Eyges obtains the result* 

W,y,e) = 
1 t!J2A2 - 2y0Al + y2 A0 

4a [ B(t) ] 1’2 4B 1 (2) 
where B(t) = AoA2 - A; (3) 

* 
Equation (14) of Eyges’ does not agree with Eq. (2) above, although his 
other equations do agree with this paper. 
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(W) 2m 
0 W2(rl) 

and where rl is an integration variable in length units. 
If W2 is constant, Eq. (2) reduces to the Fermi solution as given by 

(4) 

(5) 

(6) 

Eq. (1.62) in Rossi and Greisen. ’ 
If we integrate F(t, y, 0) either over y or over 8 , we get for the angular 

and lateral distribution functions, respectively 

G(t,e) = F(t,y,O) dy 
-00 

cc 

H&y) = 
/ 

F(t, Y, 8) de 

-co 
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=* exp -c2 
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The fact that Eqs. (7) and (8) are Gaussian in 8 and y is a result of the sim- 
plifications introduced in the derivation of Eq. (1). 3 



MEAN SQUARE SCATTERING ANGLES AND DISPLACEMENTS: 
The mean square projected angle of scattering is easily obtained from 

Eq. (7) as follows: 

00 
<e2> = 

/ 
e2 w, e) de 

-00 

=* J2exp (-&) de 
-00 

(9) 
= 2Ao(t) 

and similarly for the mean square lateral displacement 

00 
<Y2) = 

/ 
y2 Wt,y) dy 

-00 

= 2A2(t) 

= 2 (10) 

CALCULATIONS : 
The quantities (e2> and <y2> can be calculated from Eqs. (9) and (10) 

when the functional form of W2(v) is known and integrable. 
Since 

w s iis- = 2PS 
ES 21.2 (MeV) (11) 

a knowledge of pp versus range is needed. 



Range-energy functions have been developed by Barkas and Fig. 1 plots 
pfi versus range for muons in Fe and Si02. The curves represent second 
order polynomial fits to Barkas data, which was extended to higher energies 
using Sternheimer’s 5 recipe for ionization loss. Table I gives the various con- 

stants used in the calculations. Figure 1 is consistent with Fig. 11 of SLAC- 

TN-66-37. 
The functional form of pfl is given by 

loglo PB = Co + Cl log10 (R -q) + c2[loglo @  -rl)] 2 (12) 

where R is the maximum range possible for a given incident energy, and where 

Co, Cl, and C2 are given in Table II for pp in MeV/c and residual range in 
centimeters . 

The integrations in Eqs. (9) and (10) were performed numerically on the 
IBM-7090 using the FWTRAN II subroutine SIMPN. 6 Each calculation was 
carried out to a residual range corresponding to a pfl of 100 MeV/c. Figures 
2 and 3, respectively, plot &&- and m versus the distance into 
the scattering material. 

If we neglect energy loss (i.e., p/3 = constant), Eqs. (9) and (10) reduce to 
2 

2 1 Es 
<e> =2 pp t 

0 
and 

( > 
2 

ES <y2> = ; - t3 
w 

(13) 

(14) 

which correspond to Eqs. (1.67) and (1.68), respectively, in Rossi and Greisen. 1 

This special case is compared in Fig. 2 and 3 for pp = 20 BeV/c and for Si02. 
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TABLE I 

A 
z 
I 
P 
*VI 0 

cO 
c1 

c2 

Fe Si02 

55.85 
26 

288 eV 
7.85 -3 g-cm 

13.9 -2 g-cm 

21.63 
10.8 

136.5 eV 
2.30 -3 g-cm 

27.4 -2 g-cm 

TABLE II 

Fe Si02 

1.79722 1.62158 

0.42107 0.31971 

0.12263 0.11734 
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FIG. l-- pp vs RESIDUAL RANGE FOR MUONS IN Fe AND SiO, 
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FIG. 2--RMS PROJECTED ANGLE DUE TO MULTIPLE 
ELASTIC SCATTERING OF MUONS OF VARIOUS 
LNCIDENT MOMENTA IN IRON AND SILICON 
DIOXIDE. 
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FIG. 3--RMS LATERAL DISPLACEMENT DUE TO MULTIPLE 
ELASTIC SCATTERING OF MUONS OF VARIOUS 
INCIDENT MOMENTA IN IRON AND SILICON 
DIOXIDE. 


