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Abstract. Several classes of cosmological models with irrotational fluid flows and where the
underlying theory of gravitation is f(R)-gravity are investigated. The integrability conditions
describing a consistent evolution of the linearized field equations of shear-free dust universes are
presented. We also derive consistency relations of models with more severe constraints, such
as non-expanding spacetimes as well as those spacetimes with vanishing gravito-magnetic or
gravito-electric components of the Weyl tensor.

1. Introduction
Among the most common generalizations to the General Theory of Relativity (GR) to explain
current deficits in the energy budget of the universe, and hence to explain cosmic acceleration,
are higher-order theories of gravity. Models that include functions of the Ricci curvature R in
the Hilbert-Einstein action

A = 1
2

∫
d4x
√
−g [f(R) + 2Lm] , (1)

where Lm is the matter field Lagrangian, and result in fourth-order field equations are referred
to as f(R)-gravity theories [1, 2, 3, 4]. The generalized field equations arising from such
action, obtained using the standard variational principle with respect to the metric gab, can
be represented by

f ′Gab = Tm
ab +

1

2
(f −Rf ′)gab +∇b∇af

′ − gab∇c∇cf ′ , (2)

where Gab and Tm
ab are the standard notations for the Einstein tensor and the energy-momentum

tensor of standard matter. The extra terms on the right-hand side account for what is called the
curvature-fluid energy-momentum tensor and identically vanish in GR. Here f is a shorthand
for the f(R) function and primes indicate derivatives with respect to R.

We assume the universe is filled with standard matter and curvature fluid sources and its
total energy density, isotropic pressure, anisotropic pressure and heat flux terms are given,
respectively, by [5, 6]

µ ≡ µm
f ′

+ µR , p ≡ pm
f ′

+ pR , πab ≡
πmab
f ′

+ πRab , qa ≡
qma
f ′

+ qRa , (3)
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where µm and µR stand, respectively, for the energy density of standard matter and curvature
fluids, etc.

To linear-order perturbations around a Friedmann-Lemâıtre-Robertson-Walker (FLRW)
background, the curvature fluid component are defined as

µR =
1

f ′

[
1
2(Rf ′ − f)−Θf ′′Ṙ+ f ′′∇̃2R

]
, (4)

pR =
1

f ′

[
1
2(f −Rf ′) + f ′′R̈+ f ′′′Ṙ2 + 2

3

(
Θf ′′Ṙ− f ′′∇̃2R

)]
, (5)

qRa = − 1

f ′

[
f ′′′Ṙ∇̃aR+ f ′′∇̃aṘ− 1

3f
′′Θ∇̃aR

]
, (6)

πRab =
f ′′

f ′

[
∇̃〈a∇̃b〉R− σabṘ

]
, (7)

where the overdot ˙ and ∇̃ indicate time and covariant spatial derivatives. In the 1 + 3-covariant
decomposition formalism, fundamental observers with 4-velocity vectors ua slice spacetime into
constant time and space hypersurfaces. We use ua to define covariant time derivatives and the
projection tensor hab = uaub + gab is used is used to define the fully orthogonally projected
covariant derivative of tensors. We denote the orthogonally projected symmetric trace-free part
of vectors and rank-2 tensors as

V 〈a〉 = habV
b , S〈ab〉 =

[
h(ach

b)
d − 1

3h
abhcd

]
Scd , (8)

and the volume element for the rest spaces orthogonal to ua is given by [7]

εabc = udηdabc = −
√
|g|δ0[a δ1bδ2cδ3 d]ud ⇒ εabc = ε[abc], εabcu

c = 0, (9)

where ηabcd is the 4-dimensional volume element with the properties ηabcd = η[abcd] = 2εab[cud]−
2u[aεb]cd. In this work, brackets (ab) and square brackets [ab] denote symmetrization and anti-
symmetrization over the indices a and b. Covariant spatial divergence and curl of tensors are
given as

divV = ∇̃aVa , (divS)a = ∇̃bSab , (10)

curlVa = εabc∇̃bV c , curlSab = εcd(a∇̃cSb)
d . (11)

The full covariant derivative of ua can be split into its irreducible parts as

∇aub = −Aaub + 1
3habΘ + σab + εabcω

c, (12)

where Aa ≡ u̇a, Θ ≡ ∇̃au
a, σab ≡ ∇̃〈aub〉 and ωa ≡ εabc∇̃buc are the acceleration, expansion,

shear and vorticity (rotation) of the fluid flow. The Weyl conformal curvature tensor Cabcd is
defined from the Riemann tensor Ra

bcdas

Cab
cd = Rab

cd − 2g[a[cR
b]
d] +

R

3
g[a[cg

b]
d] (13)

and can be split into its “gravito-electric” and “gravito-magnetic” parts, respectively, as

Eab ≡ Cagbhu
guh, Hab = 1

2ηae
ghCghbdu

eud. (14)

Eab and Hab represent the free gravitational field, enabling gravitational action at a distance
(tidal forces and gravitational waves), and influence the motion of matter and radiation through
the geodesic deviation for timelike and null vector fields, respectively.
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The linearised evolution equations in f(R) gravity are given by [5, 8]:

µ̇m = −(µm + pm)Θ− ∇̃aqma , (15)

µ̇R = −(µR + pR)Θ +
µmf

′′

f ′2
Ṙ− ∇̃aqRa , (16)

Θ̇ = −1
3Θ2 − 1

2(µ+ 3p) + ∇̃aA
a , (17)

q̇ma = −4
3Θqma − µmAa , (18)

q̇Ra = −4
3ΘqRa +

µmf
′′

f ′2
∇̃aR− ∇̃apR − ∇̃bπRab , (19)

ω̇a = −2
3Θωa − 1

2εabc∇̃
bAc , (20)

σ̇ab = −2
3Θσab − Eab + 1

2πab + ∇̃〈aAb〉 , (21)

Ėab + 1
2 π̇ab = εcd〈a∇̃cHd

b〉 −ΘEab − 1
2 (µ+ p)σab − 1

2∇̃〈aqb〉 −
1
6Θπab , (22)

Ḣab = −ΘHab − εcd〈a∇̃cEd
b〉 + 1

2εcd〈a∇̃
cπ d

b〉 , (23)

and propagate consistent initial data on some initial hypersurface S0 uniquely along the
(generally future-directed) reference timelike congruence. The initial conditions to be specified
for the above evolution equations are restricted by the constraint equations

(C1)a := ∇̃bσab − 2
3∇̃aΘ + εabc∇̃bωc + qa = 0 , (24)

(C2)ab := εcd(a∇̃cσb)
d + ∇̃〈aωb〉 −Hab = 0 , (25)

(C3)a := ∇̃bHab + (µ+ p)ωa + 1
2εabc∇̃

bqc = 0 , (26)

(C4)a := ∇̃bEab + 1
2∇̃

bπab − 1
3∇̃aµ+ 1

3Θqa = 0 , (27)

(C5) := ∇̃aωa = 0 , (28)

(C6)a := ∇̃apm + (µm + pm)Aa = 0 (29)

which must remain satisfied on any hypersurface Σt for consistency of the field equations.

2. Consistency analysis of irrotational spacetimes
Irrotational fluid flows have vanishing vorticity (ωa = 0). Imposing this vanishing vorticity
condition on the evolution equations (15)-(23) results in Eq. (20) turning into a new constraint

(C6∗)a := εabc∇̃bAc = 0 =⇒ Aa = ∇̃aψ for some scalar ψ . (30)

To check for temporal consistency, we propagate this constraint to obtain(
εabc∇̃bAc

).
= 0 , (31)

which is an identity. Let us now take the curl of this constraint to check for spatial consistency:

curl(curl(Aa)) = ∇̃a

(
∇̃2ψ

)
− ∇̃2

(
∇̃aψ

)
+ 2

3

(
µ− 1

3Θ2
)
∇̃aψ = 0 , (32)

which is also an identity because for any scalar and vector field φ and Va

∇̃2
(
∇̃aψ

)
= ∇̃a

(
∇̃2ψ

)
+ 1

3R̃∇̃aψ , (33)

curl(curlVa) = ∇̃a

(
∇̃bVb

)
− ∇̃2Va + 2

3

(
µ− 1

3Θ2
)
Va . (34)
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2.1. Shear-free dust spacetimes
Pure dust spacetimes are characterised by w = 0 = pm , qma = 0 = Aa , π

m
ab = 0, and shear-free

models are fluid flow models with σab = 0. For such models, Eq. (21) turns into a new constraint

(C5d)ab := Eab − 1
2π

R
ab = 0 . (35)

the temporal and spatial consistencies of which have to be checked. Unlike for shear-free dust
spacetimes in GR, the electric component of the Weyl tensor does not vanish because of the
non-vanishing contribution of the anisotropic pressure πRab. But Eq. (25) shows that Hab does
vanish, leading to a modified constraint from Eq. (23)

(C6d)ab := εcd〈a∇̃cEd
b〉 −

1
2εcd〈a∇̃

cπd d
b〉 = 0 , (36)

which is an identity by virtue of Eq. (35). Moreover, Eq. (26) shows that qRa is irrotational and
can, therefore, be written as the gradient of a some scalar field φ:

qRa = ∇̃aφ . (37)

Since from (24), qRa = 2
3∇̃aΘ we have, for irrotational and shear-free dust spacetimes,

φ = 2
3Θ + C , (38)

for some spatially constant scalar C. Using Eq. (6) in (37), an interesting integrability condition
is obtained:

2
3f
′∇̃aΘ +

(
f ′′′Ṙ− 1

3Θf ′′
)
∇̃aR+ f ′′∇̃aṘ = 0 . (39)

In the GR limit, i.e., f = R , f ′ = 1 , f ′′ = f ′′′ = 0, the above consistency relation leads to
∇̃aΘ = 0 , which is trivially true for the class of models under consideration. To check for
temporal consistency of Eq. (35), let us take the time derivative of both sides of this equation
to obtain

π̇Rab + 2
3ΘπRab − 1

2∇̃〈aq
R
b〉 = 0 , (40)

which, using Eqs. (6) and (7), yields[
3

2

(
f ′′′

f ′
− f ′′2

f ′2

)
Ṙ− Θf ′′

6f ′

]
∇̃〈a∇̃b〉R+ 3f ′′

2f ′ ∇̃〈a∇̃b〉Ṙ = 0 . (41)

This implies that irrotational shear-free dust spacetimes governed by f(R) gravitational physics
evolve consistently if Eq. (41) is satisfied. Note that the GR limit of this equation is an identity
since the left-hand side vanishes identically. Now the curl of the above equation gives[

3

2

(
f ′′′

f ′
− f ′′2

f ′2

)
Ṙ− Θf ′′

6f ′

]
εcda∇̃c∇̃〈b∇̃d〉R+ 3f ′′

2f ′ εcda∇̃c∇̃〈b∇̃d〉Ṙ = 0 , (42)

which is an identity since, for any scalar field ψ,

εcda∇̃c∇̃〈b∇̃d〉ψ = εcda∇̃c∇̃(b∇̃d)ψ = εcda∇̃c∇̃b∇̃dψ = 0 . (43)

Thus, all irrotational shear-free dust spacetimes in f(R)-gravity are consistent.
If we make a further restriction and turn off Eab, a locally conformally flat metric is obtained.

For this class of models a new linearized constraint emerges from Eq. (22):

∇̃〈aqRb〉 = 0 =
(
Ṙf ′′′ − 1

3Θf ′′
)
∇̃〈a∇̃b〉R+ f ′′∇̃〈a∇̃b〉Ṙ , (44)
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and from Eq. (21) we get
πRab = 0 = f ′′∇̃〈a∇̃b〉R . (45)

For GR, f ′′ = 0 and an identity results. For f ′′ 6= 0, the equation leads to the constraint on the
Ricci curvature: ∇̃〈a∇̃b〉R = 0. Using this and the relation(

∇̃〈a∇̃b〉ψ
).

= ∇̃〈a∇̃b〉ψ̇ − 2
3Θ∇̃〈a∇̃b〉ψ + ψ̇∇̃〈aAb〉 , (46)

in Eq. (44) leads to an identity. As a result, linearised f(R) field equations in irrotational and
shear-free dust spacetimes with vanishing Weyl tensor are consistent.

2.2. Dust models with divergence-free Hab

A necessary condition for gravitational radiation is the the vanishing of the divergence of a
non-zero Hab. If we prescribe this condition on the field equations, Eq. (38) generalizes to

∇̃aφ = 2
3∇̃aΘ− ∇̃bσab . (47)

A subclass of such models, called “purely radiative” dust spacetimes, is a divergence-free Eab.
Such models in f(R) gravity are constrained further as

∇̃aµm + f ′∇̃aµR + f ′ΘqRa −
3f ′

2 ∇̃
bπRab = 0 (48)

as a result of Eq. (27). Purely radiative irrotational dust spacetimes in GR should be spatially
homogeneous (with ∇̃aµm = 0).

Models with vanishing gravito-electric component of the Weyl tensor are referred to as
anti-Newtonian models because they are considered to be the most extreme of non-Newtonian
gravitational models [9, 10, 11]. Although there are no anti-Newtonian solutions of linearized
perturbations of FLRW in GR, it has been shown that such restrictions are conditional (of
integrability conditions) in f(R) gravity [11].

2.3. Non-expanding spacetimes
Here we want to explore the (in)consistencies that emerge assuming theoretical cases of a
nonexpanding spacetime, i.e., Θ = 0. One gets the evolution equation for matter heat flux

q̇ma =
w

1 + w
∇̃aµm , (49)

and a new constraint arises from the Raychaudhuri equation (17)

(C6s) := ∇̃aA
a − 1

2f ′ (1 + 3w)µm − 1
2 (µR + 3pR) = 0 . (50)

It follows that dust models (Aa = 0 = qma ) have active gravitational mass µ+ 3p = 0. Since (15)
implies µd(t) = const, we notice that µR + 3pR = const, as well. From the definitions (4) and
(5) for µR and pR and the trace equation

3f ′′R̈+ 3Ṙ2f ′′′ + 3ΘṘf ′′ − 3f ′′∇̃2R−Rf ′ + 2f − µm + 3pm = 0 , (51)

we conclude that (2.3) implies
f − 2f ′′∇̃2R = const . (52)

Thus any nonrotating and noexpanding dust spacetime in f(R) cosmology should have a
gravitational Lagrangian that satisfies Eq. (52).
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3. Conclusion
We have looked at the consistency relations of linearized perturbations of FLRW universes
with irrotational fluid flows arising as a result of imposing special restrictions to the field
equations. We have shown that linearized shear-free dust models have a vanishing gravito-
magnetic component of the Weyl tensor. The case of vanishing full Weyl tensor in linearised
f(R) field equations has also been explored, as well as those models with purely gravito-magnetic
spacetimes. A subclass of gravito-magnetic models are those in which the divergence of Hab is
zero, a necessary condition for emission of gravitational waves. In GR, it is known that these
models are homogeneous dust FLRW universes. We have shown that the homogeneity condition
is not necessary in f(R) gravity. Lastly, we have derived an integrability condition for non-
rotating and no-expanding dust spacetimes in f(R) gravity.

Acknowledgments
ME acknowledges the hospitality of the Department of Physics of North-West University
(Mafikeng) where most of this work was conducted. AA acknowledges the Faculty Research
Committee of the Faculty of Agriculture, Science and Technology of North-West University for
financial support to attend the 61st Annual Conference of the South African Institute of Physics.

References
[1] Buchdahl H A 1970 Mon. Notices Royal Astron. Soc. 150 1
[2] Clifton T, Ferreira P G, Padilla A and Skordis C 2012 Phys. Rep. 513 1
[3] De Felice A and Tsujikawa S 2010 Living Rev. Relativ. 13 3
[4] Capozziello S and De Laurentis M 2011 Phys. Rep. 509 167
[5] Carloni S, Dunsby P and Troisi A 2008 Phys. Rev. D 77 024024
[6] Abebe A and Elmardi M 2015 Int. J. Geom. Methods Mod. Phys. 12 1550118
[7] Ellis G and van Elst H 1999 Cosmological models Theoretical and Observational Cosmology (Dordrecht:

Kluver) p 1
[8] Maartens R 1998 Phys. Rev.D 58 124006
[9] Maartens R, Lesame W M and Ellis G 1998 Class. Quantum Grav. 15 1005

[10] Wylleman L 2006 Class. Quantum Grav. 23 2727
[11] Abebe A 2014 Class. Quantum Grav. 31 115011

Proceedings of SAIP2016

SA Institute of Physics ISBN: 978-0-620-77094-1 224


