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CASIMIR AND BEYOND: LONG-RANGE 
FORCES BETWEEN NEUTRAL 
AND CHARGED PARTICLES* 

J. SUCHER;· 

Department of Physics, University of Maryland, College Park, MD 20742 

In quantum field theory the concept of a Lagrangian interaction density, expressed in terms of 
fields, is primary. Forces between two particles are regarded as arising primarily from the 
exchange of quanta of the bosonic fields. Thns, in contrast to nonrelativistic quantum 
mechanics, the concept of a two-body potential is secondary. Potentials are not given a priori 
but must be defined. I review the issues involved when such definitions are made, with par
ticular emphasis on the implications for the concept of "long-range force", of relevance to the 
Casimir effect. I give a survey of results obtained with dispersion-theoretic methods for the 
forces arising from photon exchange between both neutral and charged particles, including 
particles with spin-1/2. I emphasize that, in contrast to the methods employing the concept of 
zero-point energy, no cutoff-dependent quantities need to be evaluated in this approach. 
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1 INTRODUCTION 

The celebrated paper of Casimir and Polder concerning the electromag
netic forces between neutral systems appeared in the February 15, 1948 
issue of the Physical Review, 50 years and 5 weeks ago [l). In this paper 
there appears a famous formula [Eq. 56), describing the asymptotic form 
of the interaction energy of two hydrogenic atoms A and B: 

EL(R--+ oo) = -(23/47r)(Tic/ R7 )a(A)o:(B). (1) 

Here the a's denote the static electric polarizabilities of the atoms. There 
also appears another famous formula [Eq. 25) for the interaction energy of 

* Based on lectures given at the Workshop on Casimir Forces, Harvard-Smithsonian Insti
tute for Atomic and Molecular Physics, March 1998 

t Corresponding Anthor: jsucher@physics.umd.edu 
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two parallel infinitely conducting plates. The final sentence of the paper 
reads: 

"The very simple form of Eq. (56) and the analogous formula (25) sug
gest that it might be possible to derive these expressions, perhaps apart 
from numericalfactors, by more elementary considerations. This would be 
desirable since it would give a more physical background to our result, a 
result which in our opinion is rather remarkable. So far we have not been 
able to find such a simple argument. " 

In view of this anniversary, I thought it would be appropriate to describe 
an approach to these problems which I believe comes close to meeting the 
desire expressed in this quote. Here I interpret the word "elementary" in 
the sense of "fundamental", as in "fundamental principles." In particular, I 
will sketch how a generalization of ( 1) may be obtained which is based 
only on general principles of relativistic qantum field theory (RQFf), 
without any recourse to "models" of the systems involved and without the 
need to evaluate any cutoff-dependent quantities. 

The concept of potential in both classical and nonrelativistic quantum 
mechanics, including the passage from one to the other, is a familiar one. 
However, if the classical forces are velocity dependent the relationship is 
less clear. As a relevant example, consider U D, the v2/c2 correction to the 
Coulomb interaction Uc between charged particles, first obtained by Dar
win from classical electrodynamics [2], 

(2) 

On writing vi= p/mi and then replacing Pi by P? one obtains an oper
ator, which is however not unique because of the question of operator 
ordering. Although there is an ordering which is consistent with quantum 
electrodynamics (QED), the point is that lack of uniqueness in potentials is 
the norm in RQFf. 

In the following I will describe an approach [3] which makes the source 
of such ambiguities clear and, more importantly, has a number of desirable 
features: i) it retains the enormous simplification achieved by the use of 
Feynman graphs and techniques in the computation of field-theoretic 
effects, ii) it avoids any a a priori nonrelativistic approximations, iii) it 
maintains Lorentz and gauge invariance at any stage of calculation, and 
iv) it avoids the introduction of cutoffs in the computation of long-range 
forces. 
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2 S-MATRIX APPROACH TO EFFECTIVE POTENTIALS 

The basic idea is quite simple: we first consider the scattering problem and 
the associated two-body transition amplitude T. We then ask to what extent 
T can be regarded as arising from an effective two-body potential, to be 
used in a Schrbdinger type of equation. To be more explicit, we define an 
interaction operator V, acting directly in configuration space, as a Fourier 
transform of an on-shell amplitude, obtained from gauge-invariant subsets 
of Feynman diagrams, modified by appropriate subtractions to avoid dou
ble counting; V is constrained by the requirement that when used in an a 
priori specified type of relativistic SchrOdinger equation it reproduces 
Tc.m., the value of T in the center-of-momentum system (c.m.s.). For 
spin-0 particles Aand B this equation is taken to have the natural form 

h¢ = W ¢, h = ho + V, (3) 

where h0 is defined by 

ho= E'J +E'ff, (4) 

with 

E? = (mT + P~p) 1 / 2 , Pop= -i8/8r. (5) 

The associated potential-theory transition amplitude TP01is given by 

Tpat (p'IV + V(W - ho - V + ic:)- 1Vlp). (6) 

The field-theory transition amplitude Tis given in the c.m.s. by 

(7) 

where M(s,t) denotes the invariant Feynman amplitude ands and tare the 
invariant squares of energy and momentum transfer, respectively: 

(8) 

Here the p's denote initial and final four-momenta. The potential V, 
which in general will be nonlocal and/or depend parametrically on s = w2, 

is then required to generate Tc.nr from (6), 

(9) 

a condition which is to be satisfied order-by-order in perturbation theory. 
(To apply (3) to bound states, one looks for normalizable solutions of (3). 
The associated eigenvalues will correspond to poles of M at values of s 
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below the threshold s0 == (mA + m8)2 and so can be interpreted as the 
masses of bound states.) 

3 USE OF ANALYTICITY AND UNITARITY 

In the computation of potentials from scattering amplitudes it is both con
venient and physically appealing to utilize the fact that such amplitudes 
are analytic functions of the variables on which they depend. In particular, 
the contribution Ms(s,t) to M from a set S of Feynman diagrams is, for 
fixed s, usually found to be an analytic function of t, now regarded as a 
complex variable, with singularities only on the real t-axis. If Ms vanishes 
as t ~ 00 one can use Cauchy's theorem to write Ms(s,t) in the form 

Ms(s, t) = Jr- 1 j dt'ps(s, t')/(t' - t), (10) 

where Ps(s,t), the so-called spectral function, is proportional to the discon
tinuity of Ms(s,t) across the real t-axis: 

ps(s, t) = (2i)- 1 [Ms(s, t + iO) - Ms(s, t - iO)]. (11) 

A practical advantage of this relationship is that the spectral function is 
often relatively easy to calculate and/or expressible in terms the ampli
tudes associated with other physical processes, by use of the ideas of uni
tarity or generalized unitarity [ 4]. A conceptual advantage is that 
ambiguities in the potential Vs corresponding to Ms may be limited by the 
sensible requirement that it be defined in such a way that is reproduces 
Ms(s,t) not only in the physical region of the scattering, i.e. for 

(12) 

with p the magnitude of the 3-momentum of A or Bin the c.m.s., but also 
for t outside this region, where Ms(s,t) is uniquely determined by analytic 
continuation. After all, the analyticity properties of Ms(s,t) arise from one 
of the deepest properties of RQFI, namely locality, and reproducing the 
properties of field theory is the leitmotiv of our approach. For spin-0 parti
cles it is useful to eliminate the kinematic energy factors in (7) by defining 
a modified potential U via 

(13) 
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and to require that U be local, depending only parametrically on s or 
equivalently on p2. We then find, by inversion of the Fourier transform and 
use of the spectral representation (10), that Us= Us(r; p2) may be 
expressed directly in terms of p s: 

Us(r; p2) = (167r2mAms)-1 j dtps(s, t)exp(-t112r). (14) 

In general, there is a nearest right-hand branch point at a value t0 ;?: 0, 
equal to the minimum mass of the particle systems being exchanged by A 

and B in the graphs included in the set S, and a nearest left-hand branch 
point at a value to < O; the function Ps vanishes in the interval (to, ta). 
It can be shown that the contribution to Us from the region t::;; 0 always 
gives rise to a short-range potential, i.e. one which vanishes exponentially 
as r becomes large. However, if t0 = 0, as is always the case when only 
zero-mass quanta such as photons or neutrinos are exchanged, the integral 
from 0 to infinity yields a long-range (LR) potential UgR, i.e. one which 
falls off as an inverse power of r for large r: 

UgR(r;p2) = (167r2mAmsr)-l 1= dtps(s, t)exp(-t112r), (15) 

The relation (15) is especially convenient for the analysis of a 
long-range force, associated with the exchange of zero-mass quanta. For it 
is clear from the Laplace transform character of (15) that to determine the 
asymptotic form of Us at large rit suffices to know the behavior of Ps near 
t=O. 

For the physical examples which have been studied for the to= 0 case, 
the spectral function p can be represented in the neighborhood oft= 0 by a 
Laurent expansion in z = t 112, with a simple pole in z. Dropping the sub
script S, we have 

p(s, t) = a2(s)c1/2 + a3(s) + a4(s)t1l2 + · · ·. (16) 

Substitution into (15) then yields an expansion for uLR in inverse pow
ers of r, with coefficients which depend on s or, equivalently, on the square 
of the c.m. momentum p: 

ULR(r;p2) = c2(p2)r-2 + C3(p2)r-3 + C4(p2)r-4 + ... ' (17) 

where 

(18) 
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With this as background, we are ready to tum to some specific applica
tions. 

4 POTENTIALS FROM ONE- AND TWO-QUANTUM 
EXCHANGE 

Let us consider some examples of forces arising from the exchange of one 
or two quanta between spin-0 particles A and B, first for massive quanta 
and then for massless quanta. 

4.1 Exchange of massive spin-0 quanta 

As perhaps the simplest example of the techniques sketched above, con
sider a theory of two complex scalar fields ¢A and ¢ 8 , both interacting with 
a neutral scalar field ¢ of mass µ, with an interaction Lagrangian 
L1 = -G Al A¢ A¢ + (A -7 B). The one-quantum exchange amplitude is 
!vf.2) =-GA G8 /(t- µ2) and the discontinuity of (t - µ2r 1 is just -in8 (t- µ2). 

Thus a simple calculation yields, 

u(2l =Uy= -(gAgB/47r7·)exp(-µr)(gx = Gx/2mx). (19) 

This is of course just the potential first obtained by Yukawa, for infi
nitely massive nucleons. The corresponding 0 2 = YapUYYop takes into 
account recoil corrections to the static potential Uy, to all orders in vie. 

Note that rJ2) is independent of s only because !vf.2l is. In higher orders 
this feature disappears. 

A more complicated example in the same theory is provided by consid
ering the fourth-order potential arising from the exchange of two quanta. 
There are now two Feynman diagrams, a two-rung ladder or "box" dia
gram with amplitude M~4) and a "crossed box" diagram with amplitude 
M~4). Here a key tool is generalized unitarity [4], which states that in 
order to find discontinuities of Feynman integrals one need only replace 
selected propagator factors such as (k2 - m2 + iE rl by their discontinuity: 

(20) 

This puts the four-momentum k on the mass shell, k2= m2; in addition 
one must fix the energy to be positive, by including a factor 8(k0), so that 
the effective rule is 
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To avoid double counting, one must subtract the discontinuity of the iter
ation amplitude M/4), generated by 0 2) in second-order perturbation the
ory. One obtains in this way a "net" fourth-order spectral function: 
p~~t = p(4) p}4l, which now depends not only on t but also on p 2. For 

p2 = 0, one finds, using (14), with TJ = 4mlµn 112, that [5] 

U,~!~ = (m/J1) 2(9A9a/4Jrr) 2exp(-2µr)[I-ri(µr)- 1l2+0(r-1)]. (22) 

4.2 Exchange of photons 

Now let us consider the LRF arising from exchange of photons between 
spinless systems A and B. If at least one of A and Bis neutral, the one-pho
ton exchange potential V1y is short-range. However, the two-photon 
exchange potential V2y can be long-range. Further, in studying the large-r 
behavior of V2y, we need not worry about the effects of iteration of V1y, 

since this can only contribute to short-range effects. So in some ways this 
case is actually simpler than that of two charged particles, even if these are 
pointlike! In the study of V2y a key role is played by the (Compton) ampli
tude M1y for photon scattering by either particle. For a spinless particle 
M1y may be written in the form 

(23) 

where cr and t are the invariant squared energy and momentum transfer, 

1J"=(p+k) 2 , t=(p-p1)2, iJ=(p-k1) 2 =-G-t+2m2 . (24) 

The quantity (j the cross-momentum transfer, is defined for use below. 
Using Lorentz and gauge invariance one can show that on the photon 
mass-shell the tensor amplitude Mµv may be written in the form [6] 

M'lV(p',k';p,k) = FE(G,t)rft + FM(G,t)rJ:r. (25) 

The notation corresponds to a special choice of gauge-invariant tensors 
which may be regarded as "electric" and "magnetic", but which I need not 
reproduce here. 

Their main feature is that if the particle is neutral, the accompanying 
coefficients may be shown to have the property 

2 Fx(m ,0) = 4JrCtx, (X = E,M), (26) 
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where aE and aM denote the static electric and magnetic polarizabilities of 
the particle. This explains the nomenclature. Moreover, the F x admit spec
tral representations of the form 

Fx(a, t) = n-1 j da'px(a', t)[(a' - a)- 1 +(a' - a-)- 1]. (27) 

where a- is defined by (24). With co= (cr - m2)!2m, one finds from (26) 
and (27) the sum rule 

2n2ax = fo 00 
dwpx(a, O)/w. (28) 

In terms of such tensors, the amplitude M2y for two-photon exchange is 
given by 

MJ~l = (i/2) I d4 kd4 k' J(Q - k - k')MA(PA., k';pA, -k): 

MB(P's, -k';pB, k)(k2 + iE)-1(k'2 + iE)-1. (29) 

Here M ~"(PA., k'; p A, - k) is the tensor amplitude for the emission of 
two virtual photons by A and M~"(p's, -k';pB, k) that for absorption of 
two virtual photons by B, both of them off-shell extensions of the on-shell 
tensors; the colon in (29) denotes a summation over tensor indices. 

4.2.1 Both A and B neutral 

When one takes the t-discontinuity of M2y by using (21), the photons go on 
the mass shell and, with both A and B neutral, one can use the form (25) 
for both MA and M8 in (29) to carry out the indicated contraction. This 
already shows that U2y is a quadratic functional of the invariants Fj and 
FJ/. To obtain the asymptotic form of U2y one needs only the value of the 
spectral function Pzy near t = 0 and this can be expressed in terms of inte
grals involving the spectral functions Pi(a, 0) and p~(a, 0). On use of 
(26) and the sum rule (28) one finds that for large r and low energies V2y 

falls of as r-7, with a coefficient which is a quadratic function of the static 
polarizabilities [ 6], 

V2, = -D(1ic)/r7 , 

D = (23/4n)(a~a~ + atra~) - (7 /4n)(a~a~ + atra~). (30) 

The purely electric terms coincide with (1), the result of CP. In the case 
of two atoms, (30) is a good approximation only for separations which are 
large compared to the maximum wavelengths for dipole emission, of order 
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a- 1a with a the Bohr radius. The potential between two atoms at smaller 
distances, but still large compared to a, can also be studied by these meth
ods [6]. The form of the integrals involved led to the conjecture that for r 
large compared to a, a very good approximation to V2y is given by an arc
tangent function,[7] 

Vi,= -(C/r6 )(2/'rr)arctan(d/r), (31) 

where d = (23/8C)aAaB and C is the factor in the Wang-London potential 
VwL= -C!r6. Comparison with available numerical calculations shows that 
(31) interpolates to 2% accuracy between VwL (which neglects retarda
tion) and the asymptotic formula (1). 

4.2.2 A neutral, B charged 

The same techniques can be applied to the case of a neutral composite A 

and a charged particle B, since V1y is still short-range [8]. However, the 
invariant amplitudes F,~ then contain pole terms and the identification 
(26) fails. For an elementary B, with charge es, these pole terms can be 
calculated explicitly by using scalar QED; they correspond to contribu
tions to the spectral functions pf which are proportional to o ( u - m ~). 
The result is 

Vi,(r) = - (e~/47r)[(l/2)aEr- 4 - (11/47r)aEr-4(,\B/r) 

- (5/4Tr)aMr-4(,\B/r) + · · ·] (32) 

where AB = m[/, the a's refer to the polarizabilities of A, and the dots 
denote terms which fall off as llr7 or faster. The l 1/47t term was first 
found by J. Bernabeu and R. Tarrach [9], using the present methods, and 
by E. Kelsey and L. Spruch [10] using hybrid QED. The latter authors also 
suggested that its presence could be tested by study of the fine structure of 
Rydberg states of helium. Measurements of these, with n = 10 for the outer 
electron, were carried out by S. Lundeen and co-workers over a period of 
years[ 11]. It turns out that the asymptotic formula (32) is not accurate 
enough at n= 10, but a general theory based on the present method can be 
worked out which gives the potential at any separation large compared to 
the Bohr radius[5]. The whole subject is discussed at length in "Casimir", 
which includes relevant articles by Lundeen, Spruch, G.W.F. Drake, R. 
Drachman, and G. Feinberg and me, with references to the literature [3]. 
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5 LRF BETWEEN CHARGED PARTICLES: 
BEYOND THE COULOMB POTENTIAL 

The extension of these methods to the case of two charged particles runs at 
once into a serious difficulty: Some of the integrals associated with 
two-photon exchange are infrared (IR) divergent. Thus it appears at first 
sight that a two-photon exchange potential does not exist! Some reflection 
leads to the realization that these IR divergences are the counterpart in 
quantum field theory of the well-known fact that in NRQM the Coulomb 
interaction cannot be treated in perturbation theory; the second Born 
approximation diverges, not just for zero momentum transfer but 'for any 
value of t. The cure for this problem turns out to be precisely the subtrac
tions which are necessary anyhow to avoid double counting [12]. For con
creteness, let us study the case of two point-like spin-0 particles, with 
charges eAand es, and confine our attention to the so-called generalized 
ladder approximation to M(s,t), i.e. to graphs which only involve photon 
exchange between the particles. 

5.1 One-photon exchange potential 

Before considering two-photon exchange we must define a one-photon 
exchange potential Viy· Note that however V1y is defined, it must reduce to 
the Coulomb potential in the static limit. Since this is long-range, the asso
ciated iteration amplitude M1 is likely to be equivalent to a long-range 
potential. Thus, even if one were unaware of the IR divergence problem 
one would have to compute M1 to find just the long-range part of V2y. If 
one uses Feynman gauge in writing down the (gauge invariant) one-pho
ton exchange amplitude M 1 Y' one gets a numerator factor 
(p A + p '.4)·(p B +p's) = s - u, where u = (p A - p 8)2 is the cross momentum 
transfer. Since u = 2m~ + 2m~ - s - t we have 

(33) 

Simple Fourier transformation of (33) yields a term proportional to Uc, 
with an energy-dependent coefficient, plus a contact term proportional to 
o(r). Such a potential is not suitable for use in a SchrOdinger type of equa
tion. In second-order perturbation theory it would lead to an ultraviolet 
(UV) divergence. A potential which is iterable can be obtained by first 
writing M1y in a different form (which does not change its value on the 
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mass shell) and then finding an equivalent operator in r-space which 
involves derivative operators. One is thereby led to what can be termed a 
Feynman-gauge inspired (FGI) potential VtGI, 

(34) 

where z~P = (l+p;p/2E';rE'jf) 1l 2 and Yop = (mAmB/E~{E'jf) 1 l2 

The corresponding Coulomb-gauge inspired (CGI) one-photon exchange 

potential vlccn is given by [13] 

V1~GI := (35) 

Yap( { E'J',{ E'jf, Uc} }+(1/2){p?,{p_?, (bij +i\rj )Uc]} }yap)/ 4mAmB. 

The t-discontinuity of the iteration amplitude M1 obtained from either 
choice is IR finite but behaves as l/t for small t; this behavior leads to a 
logarithmic divergence in the spectral integral, consistent with the nature 
of the IR divergence of M1 itself. 

5.2 Two-photon exchange potential 

To compute the field theory amplitude Af4) in scalar QED one must study 
the integrals associated with the five fourth-order Feynman diagrams 
which enter the game: (a) the two-rung ladder graph, (b) the two-rung 
crossed ladder graph, (c) the two single-seagull graphs and (e): the dou
ble-seagull graph. Both (a) and (b) are UV convergent but IR divergent, 
whereas ( c) and ( d) are UV divergent but IR convergent. But the t-discon
tinuity of each of these is divergence free. The net spectral function 
behaves again as lit for small t, corresponding to the IR divergence but the 
coefficient of t-1 is equal and opposite to that appearing in M1. The differ
ence spectral function p diff then goes like r 112; this is integrable at t = 0 
and therefore yields a finite V2y. On using V1; 01 to compute M 1 one finds 
that [12] 

17FGJ _ CFGJ 7.-2 + CFGI~-3 + ... 
V2-y - 2 ·3 ' (36) 

where, with k = eAe814rr, 

c~-cI = k2 /2(mA + mB), crcr = -7k2 /61rmAmB. (37) 

In contrast, use of ·ViCOI yields [13), 

(38) 
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where 

(39) 

Thus we see that in the case of two charged particles the leading asymp
totic behavior of V2y depends on the precise definition of V1y. This obser
vation resolves a longstanding puzzle in the literature and shows that in the 
case of two charged particles not just the concept of potential but even that 
of its asymptotic form is not without ambiguity. Furthermore, one can 
show that the difference between the two choices of V1y is connected with 
the form of the so-called orbit-orbit interaction, U0 _0 . To see this, note that 
in the n.r. limit (34) yields as the leading correction to Uc an interaction 
U0 _0 of the form 

u/;'_~1 = {p?, {p_?, b';j, Uc}} /4mAmB, (40) 

whereas (35) yields 

u~~~I = (1/2){p?, {p_?, (b'ij + 1\rj), Uc }}/4mAmB (41) 

The latter is a manifestly hermitian form of the orbit-orbit interaction 
U0 _0 familiar from atomic physics, usually obtained by reduction of the 
Breit operator to n.r. form. It can be shown that in the computation of 
atomic level shifts to order a2Ry, the difference between these two forms 
of U0 _0 is precisely accounted for by the l/r2 term in (36). One can also 
understand the difference between the two V's in the framework of classi
cal electrodynamics [13, 14]. 

6 INCLUSION OF SPIN-112 

6.1 Continuum dissolution 

The inclusion of spin-1/2 particles is straightforward, once one recognizes 
the main pitfall encountered when dealing with relativistic Dirac-like 
equations. As is by now well known, if one wishes to describe the interac
tions of electrons using such equations, e.g. in the context of the helium 
atom, even the Coulomb potential Uc must be accompanied by posi
tive-energy Casimir-type projection operators. Otherwise, there are no 
normalizable solutions which correspond to the discrete spectrum of the 
atom or ion [15, 16]. The cure for this disease, which I like to call "contin-
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uum dissolution'', is to go back to first principles. Using field theory, one 
finds that putative interaction potentials such as Uc always come accom
panied by positive-energy projection operators which keep the (product) 
bound states from mixing with the negative-energy states responsible for a 
continuous degeneracy. In the absence of an external field, i.e. in the pure 
two-body case, the problem is ameliorated because of momentum conser
vation. However, starting from field theory one again finds that the effec
tive interaction operators come equipped with projection operators for the 
Dirac particles. In particular, for two spin-112 particles the counterpart of 
Eq. (3) is 

(42) 

where 

h'J = aA · p 0 P + f3AmA, h'IJ' = -aB · p 0 P + f3BmB, (43) 

and A'.;!'+ is the product of free (Casimir-type) positive-energy projection 
operators: 

Aop A 0 P A 0 P A 0 P · = (E 0 p + h?P)j2E0 p (44) ++ - +;A +;B• +;i i i i · 

6.2 One- and two-photon exchange potentials 

With this understanding, the one-photon exchange potential takes the form 

(45) 

where V 1y is required to reproduce M 1y when sandwiched between 
on-shell Dirac spinor plane waves. This leads to two natural choices for 
V 1y which are local in Dirac-spinor space, 

u{y01 =Uc+ Ua, ufy01 =Uc+ UB, (46) 

where U G and U 8 are the Gaunt and Breit potentials defined by 

Ua = (eAeB/4nr)(l - aA · aB), 

UB = (eAeB/4nr)(l - (1/2)[aA. aB + aA. foA. r]) (47) 

The computation of Vzy for the case when either one or both particles 
have spin-1/2 is a major undertaking, especially in the latter case. If one 
uses V1~01 to compute Mb the spin-independent part (more precisely, the 
Dirac-matrix independent part) of Uzy is the same as that found for two 
spin-0 particles. For the mixed case of, say, A with spin-0 and B with 
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spin-1/2, the computation of the spin- dependent part has already been car
ried out [17]. One finds a correction V2s,-a to the spin-orbit potential 
Vi',-o coming from V1Y' which for large r is proportional to cr·e!r4. If A 
has structure, V2s,-o also contains a spin-orbit polarizability potential fall
ing of as cr·e!r6 for large r. These terms will also be present in the case of 
two spin-112 particles but in addition there will be a correction V2s,- s to 
the spin-spin potential V1s,,-s coming from V1y, which remains to be calcu
lated. There are a number of physical situations in which it may be possi
ble to detect the effects of V2s,-o. Typically these involve measurements 
of bound state energies in exotic atoms, where one particle has ~pin 1/2 
and another has spin 0. Examples include anti-protonic atoms with a 
spin-0 nucleus, such as p - He4 , pionic atoms with a spin-1/2 nucleus, 
such as pionic hydrogen, and the pi-muon bound state known as pi-muo
nium. Certain aspects of V2s,-o may be observable in Rydberg states of 
helium-like ions whose nuclei have spin-1/2 [8]. 

7 CONCLUDING REMARKS 

We have seen that the concept of a potential in RQFT is rather subtle. Once 
one departs from the static approximation the demands of relativity inevi
tably lead to velocity dependence in the classical limit and, correspond
ingly, to energy dependence and/or nonlocality of any potential designed 
to reproduce or facilitate the calculations of the predictions of QFT. Such 
dependence may be handled in a variety of ways. Some of the ambiguity 
in the potential is reduced by the requirement that it reproduce the 
field-theoretic scattering amplitude not only in the physical region of the 
scattering, but outside this region where the amplitude is defined by ana
lytic continuation. The use of analyticity, when combined with generalized 
unitarity, turns out to be also a powerful tool in computing the potential, 
especially for large separations. We have seen how this method can be 
used to obtain and generalize old results, such as that of Casimir and Pol
der on the retarded van der Waals potential between atoms, in a way which 
makes it clear why the result is universal, depending only on general fea
tures of field theory such as locality and gauge invariance. 

Extension to the case of a neutral particle and a charged particle leads to 
an effective potential which has proved to be useful in the analysis of Ryd-
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berg levels of the helium atom. Extension to the case of two charged parti
cles reveals a new feature in the concept of potential. Different choices of 
the one-photon exchange potential V1y may lead to different results for the 
leading term in expansion in powers of r- 1 of the two-photon exchange 
potential V2y; this feature has a counterpart in classical electrodynamics 
[ 13]. Extension of the method to spin-1/2 particles, either composite or 
elementary, has led to formulas for the e4 corrections to the spin-orbit 
interaction; when work on similar corrections to the spin-spin interaction 
is completed one will be able to reanalyze the spin-dependent level struc
ture of a number of two-body physical systems and perhaps gain new 
insight into some aspects of bound-state QED, especially for states of large 
orbital angular momentum and relatively large separation between the 
constituents. 

In conclusion, let me return to the quote from CP. With regard to the 
physical background of (1), we have seen that in the S-matrix approach the 
(generalized) form of this result emerges as naturally from two-photon 
exchange as, say, the Yukawa potential arises from one-meson exchange. 
One sees at once that the potential is a quadratic functional of the tensor 
amplitudes for two-photon emission for each of the particles. Gauge invar
iance forces these amplitudes to be quadratic in the four-momenta k and k' 
of the photons and unitarity forces their components to be proportional to 
t 112. Thus the spectral function p2Y, is proportional to (t112)4 = t2 for small 
momentum transfer t. Since p oc r:v implies V oc 11?N+3, the l/r7 behavior 
is manifest. Because only the low-energy values of the invariant ampli
tudes F x enter for large r and these are proportional to the static polariza
bilities, the coefficient of 1/r7 must be a quadratic polynomial in these 
polmizabilities. It remains an elusive goal to obtain a simple physical 
undestanding of the appearance of the primes 23 and 7 in the final result. 
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