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We derive an action whose equations of motion contain the Poisson equation of Newtonian gravity. The
construction requires a new notion of Newton-Cartan geometry based on an underlying symmetry algebra
that differs from the usual Bargmann algebra. This geometry naturally arises in a covariant 1/c expansion
of general relativity, with ¢ being the speed of light. By truncating this expansion at subleading order, we
obtain the field content and transformation rules of the fields that appear in the action of Newtonian gravity.
The equations of motion generalize Newtonian gravity by allowing for the effect of gravitational time

dilation due to strong gravitational fields.
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The idea that gravity is geometry was pioneered by
Einstein in his celebrated theory of general relativity
(GR). In GR, due to Einstein’s equivalence principle, the
underlying geometry is (pseudo-)Riemannian, which
ensures that one has local Lorentz symmetry and hence
the laws of physics locally reduce to those of special
relativity. However, spacetime covariance is a property of
any physical theory, which led Cartan [1,2] (see also, e.g.,
[3,4]) to geometrize Newtonian gravity using what is known
as Newton-Cartan (NC) geometry. The latter results from
applying an equivalence principle that requires freely falling
observers to see Galilean laws of physics, giving rise to a
geometry with local Galilean invariance.

However, while the Poisson equation of Newtonian
gravity can be geometrized using NC geometry, an out-
standing question has been to find an action principle for
Newtonian gravity, paralleling the Einstein-Hilbert action in
GR. In this Letter we present such an action and show that
it requires a novel type of geometry. This geometry does
encapsulate NC geometry in its original form when time is
absolute (as is the case in Newtonian gravity), but is based on
an underlying symmetry structure and corresponding set
of geometric fields, which goes beyond the Bargmann
algebra—the centrally extended Galilean algebra.

NC geometry and its recently discovered version, torsional
Newton-Cartan (TNC) geometry [5,6] (referred to as type I
TNC geometry below), has been very useful for studying
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aspects of field theories with Galilean symmetries.
Furthermore, gravity theories for type I TNC geometry (with
broken particle number gauge symmetry) have been recently
studied as well and shown to correspond to Hotava-Lifshitz
gravity (see, e.g., [7,8]). It has proven difficult to write down
actions for type I TNC geometry that preserve U(1) particle
number, though exceptions existin 2 4 1 dimensions [9,10],
but these require an additional field.

By taking a critical look at Newtonian gravity, we will
show that an action involving type I TNC geometry is
incompatible with the way in which the mass source appears
in the Poisson equation. This is because in type I TNC
geometry mass sources torsion, which is not compatible
with the notion of absolute time (and hence zero torsion)
of Newtonian gravity. The key to identifying the correct
geometry lies in carefully considering the properties of a
large speed of light limit of GR, as was recently revisited in
[11] following earlier work [12,13].

We present in this Letter a novel type of NC geometry,
dubbed type II TNC geometry, which for zero torsion
includes the standard (type I) NC geometry used to geom-
etrize Newtonian gravity, and which allows us to formulate
an action, in any spacetime dimension D = d + 1. To this
end, it is crucial to allow for more general time (lapse)
functions than the absolute time of Newtonian gravity. We
will show that, while type I TNC geometry follows from
gauging the Bargmann algebra [7,14] (see also [15,16]),
type I TNC geometry follows from a novel nonrelativistic
symmetry, which turns out to be a nontrivial contraction of
the direct sum of the Poincaré and Euclidean algebras in
D = d + 1 dimensions.

The action given in this Letter describes the dynamics
of a well-defined truncation of the nonrelativistic limit of
GR and has direct physical relevance in a post-Newtonian
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regime, including the effects of strong gravitational fields,
e.g., via gravitational time dilation. More generally, it can
be regarded as providing an off shell definition of the
nonrelativistic gravity corner of the GcA Bronstein cube of
physical theories and, as such, presents a principle towards
constructing a nonrelativistic quantum gravity theory. The
latter could open up a third road towards (relativistic)
quantum gravity, in contradistinction to the usually traveled
paths approaching it via relativistic quantum field theory or
general relativity.

Newton-Cartan geometry.—Torsional Newton-Cartan
geometry consists of a clock form 7,, a rank-d symmetric
tensor /,, with signature (0,1,...,1), and a U(1) con-
nection m,. These describe a manifold with a Galilean
tangent space structure, geometrizing the Galilean equiv-
alence principle. In Galilean invariant theories, the total
mass is conserved with the mass current coupling to a U(1)
gauge connection m,. The TNC fields transform as tensors
under diffeomorphisms (£#) and exhibit furthermore a set of
local symmetries corresponding to Galilean (or Milne)
boosts (4,) and a U(1) gauge transformation (o) associated
with mass conservation,

ot, = Lt ohy, = L:hy,, + 4,7, + 4,7,
om, = Lem, + 4, + 0,0, (1)

where L, denotes the Lie derivative along &“. The geometric
tensors v and A" are defined by inverting —7,7, + h,, to
—vkv¥ + h*, with the property that 7,/ =0 and
v#t, = —1. The Galilean boost parameters satisfy
v#4, = 0. The analog of the absolute value of the determi-
nant of the pseudo-Riemannian metric, which for TNC we
denote by €2, is given by minus the determinant of the matrix
—1,7, + h,,. Three useful tensors that are invariant under
local Galilean boosts (and rotations) are ?* = v* — h"**m,,
}_z,w = h,, —2ty,m,), and d= —vkm, + %h/‘”mﬂmv. We
also record the completeness relation —i#z, + h**h,, = &,.

We will choose the following affine connection to
perform covariant differentiation [17-20]:

_ 1 _ -
4 =001, + 5/1’“’(8,/11,(r + 0y — Ophy).  (2)

o'ty

This is a metric compatible connection, i.e., vﬂry =0=
vﬂ h*?. Note that this connection is not invariant under the
local U(1) transformation with parameter o. In TNC
geometry we cannot make the local Galilean boost
and local U(l) symmetries manifest at the same time.
We also note that this connection has torsion because
f“ﬁw] = —9*9),7,). When the clock 1-form 1z, obeys
*h (0,7, — d,t,) =0, we call the torsion twistless
and the resulting geometry is called twistless torsional
Newton-Cartan (TTNC) geometry [5—7]. In this Letter we

will assume throughout that 7, is twistless, implying that z,,
obeys the Frobenius integrability condition 7,0,7,) = 0 so
that 7, is hypersurface orthogonal. Thus, in this case, the
spacetime allows a foliation in terms of equal-time slices.

A useful property of the connection (2) is I%, =
e‘laye —ay,, where we defined the torsion vector a, =
Lyr, and e has been defined above. This implies

(V,+a,)X* =e'0,(eX*). We define the associated
Riemann tensor as usual via

Vi ViIX, = RiuoX, =27V, X, (3)

Further, we define the Ricci tensor as R, = Ry,,,. Because
of the presence of torsion, one can show using the Bianchi
identity for I_?[,M]/’ that the antisymmetric part of the Ricci
tensor is nonzero and equal to

21_3[,”,] = (r,a, — T,,aﬂ)vp@” + (¢, Vya, —7,V,a,). (4)

The above reviewed standard TNC geometry is referred to
as type I TNC geometry below.

Finally, we note that a convenient way to think of type I
TNC geometry is via the process of null uplift [21], which
will be instrumental below in showing that this geometry
cannot correctly describe Newtonian gravity. Any TNC
geometry can be written as a Lorentzian geometry with a
null isometry in one dimension higher. Parametrizing the
null isometry with u we can write the Lorentzian metric

Jun as
gundxMdxN = 2z,dx* (du — m,dx") + h,dx'dx*,  (5)

where x” = (u,x*). The null Killing vector is d,. The
inverse metric is §** = 20, g = —7oH, and " = W, At
the level of symmetries, the null reduction means that the
Bargmann algebra is a subalgebra of Poincaré in one
dimension higher. Alternatively, it can be obtained by an
Inonii-Wigner contraction of the product of the Poincaré
algebra (in the same dimension) times a U(1).

A critical look at Newton-Cartan gravity.—Type 1
Newton-Cartan geometry was initially invented to describe
Newtonian gravity in a coordinate independent manner.
The equations of motion that covariantize the Poisson
equation of Newtonian gravity are

R, =81G—p1,1,,

71 d,t,— 0,7, =0, (6)

where p is the mass density. On flat spacetime in Cartesian
coordinates 7 = dt and h,,dx*dx’ = dx'dx' with m =
®ddt, this simply reduces to

d-2
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Both sides of (6) are formulated in terms of NC objects and
are invariant under all type I NC gauge symmetries for
dr = 0. Yet, the coupling of mass to the geometry is not
what one would expect from a theory with local Bargmann
U(l) invariance. The gauge field m, couples to the
conserved mass current J¥, so any type I invariant action
leads to an equation of the form R* = J¥, where the left-
hand side is a geometrical object formed from the type I
TNC fields obeying the Bianchi identity d,(eR*) = 0.

Using null uplift (5), the equation R¥ = J# reads
Gh = 8zGT", where G and T% are the higher dimen-
sional Einstein and energy-momentum tensors. From the
Bianchi identity for G%’ , it follows that G% is identically
conserved. Contracting with 7, we see that mass sources
tAdr#0 since G,, = 82GT,, =82Gp with G, =
rn°h (9,7, — 8,7,)(0,7, — 0,7,)]*. This conflicts with
Newtonian gravity since in that case the notion of mass is
compatible with dr = 0; i.e., p in Newton’s law is not a
Bargmann mass.

Newtonian gravity is obtained from a nonrelativistic
limit of GR, but we have just shown that this limit cannot be
type I TNC geometry. This begs the question what kind of
geometry one should employ. The answer comes from
studying the large speed of light limit of GR, i.e., the 1/c
expansion of [11,12]. We will show that this leads to a
different notion of Newton-Cartan geometry, which we call
type Il Newton-Cartan geometry, and that this allows for an
off shell formulation of Newtonian gravity.

1/c expansion and type I TNC geometry—In a 1/c
expansion the pseudo-Riemannian metric and its inverse
are expanded as [11]

- 1 A s
Guw = _6271471/ + Ty + 2 (ZT(MBV) = Myptuoh °)+ O(C_4)’
(8)

1 1.
= =S O, (9)

where we note that the 1-form Bﬂ will play no role in what
follows. It is convenient to define ®,, via the relation
B =hned,,.

Using the corresponding 1/c¢ expansion for the vielbeins
[22], it follows that the fields 7, and h,, appearing above
transform as in type I TNC geometry [see (1)]. In addition,
the fields m, and ®,, transform as

om, = Lemy, + 4, + (0, — a,)A + t,h""a,C,
5@, = LD, — 22K, +V,(, + V.0, (10)

where we defined A and {, through the equation {* =
—0HA+ e, I_(W = —%E@hm/ is the extrinsic curvature
tensor, and we recall that a, = Ei.r” is the torsion vector.

These important extra symmetries follow from expanding
relativistic diffeomorphism Z¥¢ = & + (1/c¢*)¢# + - -+, so
that &# parametrizes nonrelativistic diffeomorphisms and {#
the extra symmetries above.

We will refer to the A transformation in (10) as a torsional
U(1) transformation due to the presence of the torsion
vector a,. One notices that for dr = 0 the transformation
of m, above reduces to the one in (1), since the ¢, part
vanishes in that case while the torsional U(1) takes the same
form as the U(1) transformation in (1). However, the gauge
field m, in type Il TNC geometry is quite different from
its type I cousin. In particular, we will show in [22] that in
type I TNC geometry m,, couples to the energy current as
opposed to type I where it couples to the mass current.

Deferring details to [22] we remark that the trans-
formations of the type II TNC geometry introduced above
can be obtained by gauging a novel nonrelativistic algebra
of dimension (d + 1)(d + 2), spanned by the generators
{H,P,,G,,J,,} of the (massless) Galilean algebra
augmented with the set {N,T,,B,,S,,}, with nonzero
commutators

[H,G,]=P,, [Py.Gy]=Néy. [N.G|=T,,
[H,B)]=Tq,  [Sap-Pc]=20(aTy, [GarGpl=—Sap,
[Saps Gl =26caBy)s JapsJ cal = 40(ajad o)
aps Xel =20c1aXp)s  [TapsSeal = 40(afaSepp)» (11)

where X, € {P,,T,,G,, B,}. The first line differs from the
Bargmann algebra because N is not central. Interestingly,
this algebra can be obtained from a contraction of the direct
sum of the Poincaré and Euclidean algebras in d+ 1
dimensions and underlies Newtonian gravity in the same
way that the Poincaré algebra underlies GR.

Off shell Newtonian gravity.—We now construct a
Lagrangian depending on 7, h,,, m,, ®,, that is invariant
under the above gauge transformations. The unique two-
derivative result is

g el R ~ PR,

~ @, 1h*(R,, —a

V. a

s — V) O')

P

1 _
+ 3Pl W R,y = 2e7' 9, (eh7a,)]]. (12)

where e is the integration measure and we have omitted a
possible cosmological constant term eA. The Lagrangian
is obtained by starting with the (necessary) kinetic term
o+ @”Rﬂ,, and subsequently adding terms such that the entire
expression is invariant under the torsional U(1) trans-
formation as well the ¢, transformation (10). This invari-
ance follows from the Bianchi identities
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- 1 -
0=e"9, <e {h/’”@l‘Rﬂy -3 @/’h/‘”RM} >

- 1 -
+ KR, — 2 WK psh Ry, (13)

(14)

- 1 S
0= W*W7V,R,, ~5 WHV,R,,.

which can be derived from V[,II_?;D]G =0.

Since we work with off shell TTNC geometries, we need
to add the Lagrange multiplier term Ly = el* (9,7, —
d,t,) to the Lagrangian, where (" = —(" obeying
7,6 =0, so that it only imposes 7z A dz =0 but not
dz = 0 [23]. If we were to drop the condition 7,(* = 0 so
that £; \; enforces dz = 0, the field {* would not decouple
from the equations of motion. This is what happens in the
3D Chern-Simons actions for extended Bargmann algebras
[9,10], where {* =7, with {, associated with the
central extension of the 3D Bargmann algebra.

We are going to compute the equations of motion by
varying @, ¥, and h*. Let us define

Hv
|

e

oL = —
8rG

- o] .
<E¢56D — E, 50" + EE,’j,,(Sh” B 5q>ﬂu),
(15)

where Eg = —1m*R,, and

L0, =V ,a,)

EW = —h* 1o (R ,

po — 4

1 -
+5 W [h°R,, —2¢7'0,(eha,)].  (16)

The variations with respect to P59 with Pl the spatial
projector P} = &, + 7, gives

WHE, = —hP" 3R, (17)

The remaining variations are 7,69 and PZPféh/“’. Defining
EY = wen’EL,, we find

“2VME, = —2BEg — @, B — B ®,,e7'd, (el a,) + W1 ®,,(V,a, + a,a,) + (K ,,)?
- hﬂ”hdkﬂxkaﬂ + vﬂ [h#/’h”"(?pq)yo_ - vuq)/m')]’ (18)

1 1
EY = (hﬂ”hvﬂqn,w -3 ha/’hwq)w> (710, (el a,) + Eg| = hV @, B + WD, B + WD, Er"

1 = 1 % 7 vA aup AP 0P U T
= S B BE — Jh (WK, = 0ho R, K )+ V[ WP R, = WK

+ W*hPV,0,® + hh*’(a,0,® + a,0,®) — h’ WV ,0,® — 2h’h*a,0,®

1 _ _ _ - 1=
-5 e (N, +a,)(V, + a,)®,, + P h°(V, + a,) <V(M(I)D>0 - EVGCI)W>

1 = = 1 = =
+ S KW (Y, 4 0,0,y = S Y, 0, (19)

We only need to consider the variation Pij,/f(Sh"” because we are only interested in the spatial projection of ®,,. By

taking the trace of EZﬂ and using ?"E,, we find

A NI v 1 1 9 U J,p0
WYEDL, = —(d — 2)D"E,, + @, E" — (d - 1){1;#1; Ry,—-(V,+a,) {hﬂ a, (q> 3 h <I>M> — W apq)m} } (20)

where we used the identity

'R, = (WK,,)? — W hK, K

Koo +31a,0,® + V(" h’K,, + W0,®) + 20e™1 0, (eh a,). (21)

Note that for dz = 0 the field ®,, decouples.

It can be shown that these equations agree with [11],
where they were obtained by expanding the Einstein
equations in 1/c?. However, [11] did not determine the
equations of motion for h“/‘hﬁ”@ﬂw which we obtain by
varying 9" and h**. These equations are essential in order to
obtain a closed system of equations for the general case

dr # 0. Importantly, we note that our action allows for
geometries with strong gravitational fields and, in particu-
lar, those with 7 not closed allow for nonrelativistic
gravitational time dilation.

Given the gravity action with type II TNC gauge
invariance, we need to understand how matter couples to
such a geometry. This will be discussed in [22], but as

061106-4



PHYSICAL REVIEW LETTERS 122, 061106 (2019)

remarked before this coupling will be markedly different
than the known couplings of matter to type I TNC geometry
[18,24-28]. One of the reasons is that, while in type I TNC
geometry m, couples to the mass current, in type II it
couples to the energy current. This will be further discussed
in [22] by carefully studying the 1/¢ limit of the worldline
action of a relativistic particle as well as the known
couplings of Poincaré invariant field theories to pseudo-
Riemannian geometry.

Here we will consider only the very special case of a
static particle in order to obtain the Poisson equation from
an action principle. A static point mass with mass density p
has a Lagrangian that is simply £, = aep with a =
—[(d-2)/2]. Taking the trace of E* gives h,,E"+
(d—2)Eg = —(d—1)e7'0,(eha,). Varying L+ L,
tells us that the left-hand side vanishes and hence
that 0,(eh*”a,) = 0. Since 7 Adr=0 we have that
h**h*°(0,a, — 0,a,) =0, so that h*a, = h*0,F for
some function F. Hence d,(eha,) = O states that F is
a harmonic function on the d-dimensional Riemannian
geometry of the hypersurface to which z is orthogonal.
Regularity requires F to be constant and hence that
dr = 0, as desired in Newtonian gravity which has abso-
Iute time. What survives from (20) is then the equation
(d—=1)2*?R,, = —(d —2)?*E, — h*E},. Then, taking into
account the matter contribution to £, and Efjp in this equ-
ation, for which we use the variation 6£,, = aep(z,60"—

%hﬂ,,éh“”), it follows that the equations of motion of
L + L, with dv = 0 are nothing else but Newton’s law (6).

Discussion.—Among the numerous avenues that one
may pursue following our action and corresponding novel
geometry, we mention a few. It would be interesting to
(i) examine if there exists a geometric construction that
gives type Il TNC geometry from some Lorentzian starting
point, just like type I follows from null reduction of a
Lorentzian metric, (ii) perform a Hamiltonian analysis
along with determining the asymptotic symmetries and
examining the solution space of the theory, and (iii) work
out how particles, strings, and branes probe type II TNC
geometry and see if the equations of motion of the non-
relativistic gravity action can be related to consistency
conditions of some type of string theory (see [29-31] for
nonrelativistic strings in the context of type I TNC
geometry). Finally, there are undoubtedly also exciting
applications in the realm of the AdS/CFT correspondence
and generalizations thereof.
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