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[TocTpoeHna camocoriacoBaHitas nonHas §-MaTpHlA C© HAOTOMHYECKOH CuM-—
metpiel O(N) B apymepuom npoctpaHcTee-npemeHu, S -maTpuua paxropusopa-
Ha w ynomieTBOpfer rpeGoBaHHsiM BHATMTHYHOCTH M yHuTapHocTd. [lpusenenn
lprymenTs B MONh3y TOro, 4ro 3Ta S-maTpuua olluchipaeT paccesHie uacTil
B asymepHoll kupannuol OIN) monenu.
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Relativistic Factorized S -Matrix in Two
Dimensions hkaving ON) Isotopic Symmetry

The factorized total S-matrix in two space-time dimend
sions with the isotopic ON) symmetry is constructed.The ar-

guments are presented that this § -matrix is the exact one
of the O(N)-chiral field.
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1. IRTRODUCTIOR

The recent progress in the study of two-dimensional quantum
field theory has led to the extensive development of some
models which have a remarkeble property: an infinite seti of
congervation laws, leading to the absence of the multiple produc-
tion and conservation of the set of individual momenta of par-
ticles in the acattering /1,2/. The factorization of the total
S-matrix also seems to be the effeot of these conservation laws
/3/. The clessical analog of all these models is connected with
nonlinesr equations completely integrable by the inverse scatter-
ing method.

The example of this type ies the massive Thirring model
(MTH), or, equivalently, the quantum sine-Gordon model. It turns
out that, due to the simplified Bcattering propertiee of this
model, all the elements of the total S-matrix /4,5,6/ and some
off-shell matrix elements /7/ cen be found explicitly.

In the recent paper Karowski, Thun, Truong and Weisz /8/
showed that the enslyticity, unitarity and factorization equa-
tions /5,6/ of this model cen be solved uniquely giving & one-
paremeter set of solutions, the paremeter cen be connected with
the MTM coupling conatent.

Being the model of charged fermions, MTM has the phase
eymetry U(1)=0(2). In the present paper the factorized S-matrix
with isotopic O(N) symmetry is conatructed for any N 2 3. We
adopt the existence of an isovector N-plet of particles of the
mase M and require the O(N)-isosymmetr: of the S-matrix ele-
ments. It turns out that under these requirements the S-metrix
can be determined uniquely'), without parameters, except the
overall maes Bcale. The latter is shown in Secs.2 and 3, where
we derive the explicit form of the S-matrix.

Up to the time we cennot definitely answer what two-dimen-
sional field theory (if any) leads to this S-metrix. We have some
arguments, however, that such a theory is a O(R) (N>3) chiral
field model described by the Lagrangian density:

*) In this case, as well ae in the MTM, the unitarity, enalyti-
city and factorization conditions admit, of course, the arbitra-
ryness of the CDD -type, so here we mean the uniqueness of the
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This model is O(N) symmetric, renormalisable and asymptotically
free /10,11/. Infrared charge singularity in this model seems to
lead to the desintegration of the goldstone vacuum and to the
mase transmutation of particles /12/, which should form the O(N)
multiplets in this case.

In the asymptotically free theories with the spontaneous
mass transmutation the obaservable characteristics do not depend
on the coupling constant (due to the renormalizability) /13/.

We should like to mention in this comnection that the S-matrix
obtained in Sec.3 does not depend on free parameters.

The S-matrix obtzined depends analytically on § and can be
expanded in powers of 1/N. Thus,our hypothesis concerning ite
connection with the model (1.1) is based on the comparison of
this S-matrix with the 1/N - perturbation theory results of (1.1).
In Sec.4 we show that in 1/N - perturbations of (1,1) there ia
no particie production and the S-matrix ieally factorises in the
order of "//w‘. The two-particle matrix elements, calculated in the
order 1/N do coincide with the corresponding term of the 1/K
expansion of the S-matrix obtained in Bec.3.

The comparison of the ultraviolet asymptotics of the 8 -~
matrix of Sec.3 with the results of .the ordinary 4 - perturba-
tions of the model (1.1) is another poseible check. Although in
such perturbation theory one deals with B-1 - component multiplet
of goldstone particles instead of the N -~ component multiplet of
the massive particles and,hence, faces the infrared divergencies,
one may suppose that the contribution of ultraviolet logarithms

"minimum® solution, i.e., the solution with the miniwvm met of
singularitiss (see Soc.B’.




of the perturbation theory into the scattering amplitudes gives
the correct esymptotice of this emplitudes (at least up to §%).
The comparison with the perturbation theory ie performed till g"
in Sec.4. The result also confirms our hypothesis.

2. AFALYPISITY, UNITARITY AED FACTORIZATIORN EQUATIONS POR
THE O(N) - SYMMETRIC S-HATRIX

Consider the O(N) imovector K-plet of pariticles of the mass
M . The S-matrix element of the 22 scattering can be taken in
the form P ¢ ; 4

e

J Pi
oSy = Q = 8(pu-pi)B(p-pi)[8:eie Si(5) +
Pa_x Ep 2.1)

-+ Sijsl(! o;_(s) + SE: SJK 6:"! (5)] '

2
where S=¢( P;_-rPa) « Purther it will be convenient to use the
rapidities OG. instead of the momenta ﬁf t

P; = mcé-ga N F: = MSLQG_. (2.2)

Then 6; , O; 8nd O3 will be the functions of the rapidity
differences of the initial particles @=/§;-8,/ , which is
simply connected with S

S=2m*(1+CL6) . (2.28)

Note that under the traneformation (2.2a) the threshold
points S= O and S=4m? of the functions &(5) (which are the
square-root branching points due to the two-particle unitarity)
become the monbranching points of S(6) . S0 5; , ©; and O,
are the meromorphic functions & .

The two-particle unitarity conditions eand the crosaing-
symmetiry relations of the two-partiole S-matrixz (2.1) can be
represented as the functional equations

6:(0) 6,(-0) + G3(0)5;(-6) = 4 (2.3a)
G;(8)63(-6) + 63(-0)5;(0)= 0 (2.3b)



[ N6.(6)+ 6,(6)+63(O)] [ V61 (-8)+ 5;1-6)+63(-6)] = 1 (2.3c)

and

6; (6)
G; ()

6)_ (1'7-"" 0) (2. 4m)

Gy (im- 8) , . (2.4b)

The equations (2.4) and (2.3) do not determine the functions
6(6). In addition to uniterity and enalyticity let us require
the factorization of the multiparticle S-matrix.

The factorigzation mesns the special structure of the multi-
particle S-matrix: the multiparticle S-matrix elements are the
pume of terms, each being the product of the two-particle S-
matrix elements, as if the multiparticle scattering would be the
consequence of two-particle collisions /14,15,5,6/.

The factorized S-matrix can be repressnted by the simple
algebraic construction /5/, which in our oape consists of N types
of special noncommutative symbole A;(0); ¢ = 1,2,.e..-...N, each
symbol corresponding to certain component of the isovector multi-
plet. The asymptotic states of the scattering theory should be
identified with the products of this symbols, each eymbol 14; ( 91)
corresponding to the particle with rapidity f. in the state.

We identify the in(out)-states with the producte in which all
symbols are arranged in the order of decreasing (increassing) € .

Any in-state can be reordered in terms of out-states by meana of
the commutation rules

4
'4(.(91)4(91) = 5;/01(9“) .‘Z.,. A (Q)Ak(@) + (2.5)

+ 6:»_(901) /4j(91)A£(91)"'03(6:)/4;(94)4,'{91) > 9,,_=91-9‘

which correspord to the two-particle S-metrix (2.1). The algebra
(2.5) represents the factorized total S-matrix.
The Jacoby identities of algebra (2.5) give us the funectio-




nal equations for &; , Q'z and 63 . The factorization property
forces these identities necessarily, so we shall refer to them
as the factorization equations.

The factorigzation equations have the simple meaning. Consi-
der, for example, the collision of three particles with rapidi-
ties &,>6,> 65 . In the infinite past they have apatial
coordinates X; < X;< X3 ,The particles collide with each other
subsequently in the interaction region, the succeasion of the
collisions depending on the initial positions of particles, as
is shown in Fig. 1a),b).

in quantum mechanice both these poseibilities give two
parts of the same outgoing wave. The coneervation of the set
of momenta implies the monochromacy of this wave, hence, the

6, outgoing wavea of

o 6, 6 & processes in Fig.1 a),
b) should be coherent.
The Jacoby identitiea
of the algebra (2.5)
ensure this coherency.

One obtains the

factorization equa-
8) v) tions rearrenging the

Fig.1. product of three
symbole A; (6,)A;(6:)Ax(6:) in two poseible successions end re-

quiring the repults to be equal. The number and the form of
identities turns out to be different for the cases N=2 gnd X = 3,
Por N=2 the factorization equations are given in /5,6,8/ and
their solutlon 18 the aine-Gordon S-matrix. For the case N >3
they acquire the form:

6;6563 + G;6; G, = G;6,G; | (2-6a
(520"61 +636,_0—4 =630162 (2.6b)

NGi0,004 GiGi6,+ 06,6+ 616,61+ 56,6, + (260

+6,6,6; + 6,646, = 6,65, ,

where the fu‘-’at. seefmd and third & in each term are functione
of 8 , @+6 and 6, respectively.



3. SOLUTION OF THE UNITARITY, ANALYTICITY AND FACTORIZATION
EQUATIONS

. In terms of the ratio A (6)= 6a(6) equation (2.6a)

takes the form: =11 (6
h(8)+h(9)=h(0+8), 3.1
i.e.,
-cA
6, (9) = —g~ S, (6) (3.2)

where A\ is & ceriain parameter. Orossing equations (2.4)
lead to '
.,\

01 (6) = =5 52(0) . (3.3)

Note that (3.2) and (3.3) satisfy equations (2.3b) and
(2.6b) identically.. It is notable also that after substitution
(3.2) and (3.3) equations (2.3¢) and (2.6c) lead to the sams
algebraic equation for the parameter A\ , which has, except
trivial A = 0, the unique solution

27 (3.4)
A= N-2 .
The rest equation (2.3a) acquires the form:
92
6 - = em———————— (3-5)
2(6)6,(-6) - e

Eqs. (3.5) and (2.4a) form the system for &,(6).

It is clear that theses equations permit <, to he multi-
plied by any 27W( - periodic meromorphic function which is real
on the imaginary axis and satisfies identiiies

£(8) §(-6) =
£(8) = f(ir-6) .

Therefors, the genersl solution having singularities on the
imaginery axic only has the form:

(3.6)



Ae-d-l.s of, o)
S;(B)=[ ﬂ gllg-,s':d: 5. (o) , (3.7

where ox &re real numbers and O;“ is the "minimum" solution

of (3.5) and (2.4a), i.e., the solution with the minimum set of
singularities in the & plane:

5% 6) = QO Q(ix-6) , (3.8)
where
T'(A-t—)r( - 2) (3.9)
Q) =
F(*l")[’ Y% +a- L—ﬁ_)
and
_ A 4
A = o - -2 " (3.1{0)

In principle, all the molutions (3.7) are permitted.
Howsver, the aolution G = 0‘2“” i the only one, which does
not lead to the isospin degeneracy of the apectrum . This
solution does not display any poles on the physical sheet of
the S-plane, i.,e., 1lsovectur particles cemnot produce any bound
atates.

Note that in the case ¥=3, i.e.,, A =1 expression (3.8) 18
reduced to

(o) Q- 8) (3.11)
= /V=' 3 . °
% (6) (27C-8)(ixv+8) °

*} fhe other renarkable solution contains mingle CDD pole ol4=274a
Contrary to &;”, this Bolution corresponds to the attraotive
interection snd seems to bs ths sxact S-matrix of the fundamen-
ta)l fermions of tiae Gross-Nesveu model /13,16/. The arguments
will be published elsewhere.



4, THE COMPARISON OF THE PACTORIZED S-MATRIX WITH THE 1/N -
EXPANSIOR OF THE MODEL (1.1)

It is convenient to develop the 1/N expansion of the model
(1.1) in the following way /17/. The generating functional for
the Green functions of the 1;(x) field car: be written in the form:

ZI%1=1[31/1lc],

I RAL S U dw l;lJn; exp {éjJ’x [ ,,[’[m,w]+ J';(n)m(uﬂ} 54'1)

where

a(l[l’l:,w] = 2?% [(?/,,Yl:)z—w Vlf'] + ‘:;’() . (4.2)

The K ~ integration in (4.1) can be performed explicitly and

leade to Z [%]=1T51/ITe]
ITz1- f”clw e-XP{ e{f[“’] + (4.3)
+ ¢ [ TOOT(x)G(x, x1w) dxd ' f

where

Sq‘ [w] - ty‘ &(a w(x)) J w(n) Jz (4.4)

end G(¥ x'|w) - the Green function of the operator 2, -w).
The perturbative calculation of the integral (4.3) leads to the
1/8 expansion of the model (1 1). The stationary phease point of
the integral (4.3) w(x) =m?=A exp(-,v-)ahould be teken into
account. so functionals 5, n and G (x, x‘lw)echould be expended
in w’=cw-m? prather than in ) .
It is convenient to use in calculetions the following

disgram teciinique which contains:
1) the w’ field propagator

D(ﬁ’-‘) - K - t

Nptkd) '

(4.5)

10



2) the N; propagator

G.(k) = © oo _t8u . (3.6)
Y

Kkt . KiemZalE

‘-—j——’ = (4.7

}‘&= NHA\;...; »%f =Nl‘b’f
h "' h

In thie technique the clomed loops om MN¢ = field lines
should ncs be drawn (they are already taken into account in
(4-7))- In ("05)

3) and vertices

~

5-:_,‘ 5

da. A e (4.8)
TICE (zrr)‘J (P*-m‘:.cr:)((P-m)‘-m‘*iE) .

The calculation of loops in (4.7) can be made expiicitly by
means of the fallowing "cutting rule"™ /18/"l « The arbitrary loop
is the pum of terms, each correspcnding to any diviaion of the
loop through two lines.

i Sej=( Kaﬂ‘j)z

The momenta X end K; are determined by the condition
K,;‘= I<J-1= m?* . The contribution of each diviaicn is equal to
the production of two trees in both sidee of dashed line in (4.9)
by the function ¢ (b( S;) « At Sy fixed the equations Ké‘a@-‘:»ﬂ"
have two solutions ( k; <+ k; ), both should be taken into
account in (4.9).

Consider the 2 =>4 amplitude (Pig.2) in the order of 1/W°.

(4'9)

x)
4An analogous result for the arbitr fermion loop has
obtained in /19/. id P been




For the sake of simplicity we shall
concenirate on the case ¢#/#k ,This
amplitude ia given by the pum of dia=-
grams in Pig.3. Using (4.9) one can

™a
x~ = ©

J J replace the diagram in Pig, 35) by the
Fig.2 sum of the loop divisions.
Ps
P 2 A
P p R B P P
Ps j Fs
o e p n B [ ’;‘
Pu "\«< Fr 4
a) é) Q b d)
Py P _—é—_—"* . —f
4 Ps r__— Pe ps
— pe " P
P‘- P" P P“
P
) ) 3
€,
f )
Pig.3.
Pu Ps Consider, for example, the
© ddivision in Fig.4. Two solutions
- H Ps of Kf= K;'= m? are Ky=Ps; K= Ps
and K=ps o K, =Ps - The
: Pe  factor (P(S;s) Zn this division
K is the reciprocal wavy line with
P P+ an opposite mign. Therefore the
division in Fig.4 cencells ocut
diagrams in Pig.3 e),f). It is
Fig.4.

essy to check up that other
posgible divisions of the triangle in Pig.4 cancell out diagrems
in Fig.3 a),b),e),d).
The cases (= , /=K and so on contein more diagrams,

however, one can check up that the same cancellation takes place
in all these cases too.

12



HMg.5.

s

¢

Now let us turn to the process
33 (P1g.5) and consider sgain
the case ¥ /# k . In the ordsr
of 1/% the matrix element contains
disconnected diagrams only, the
gkinematics ensuring the conserva-
tion of the momenta set. In the
order of 1/112 we have 7 connected
diagrams listed in Fig. 6.

P2

I
AN

Ps

]
|

e)

)

Fig.6.

It can be easily checked up, that if all the intermediate
propagators in diagrems in Pigs. 6 a-f) are nonsingular, different
divieions of the diagrem in Pig.6g) cancell the other diagrams in
the same manner, @8 in the previous example. Mamsg-shell singula-
rities of diagrams in Pig.6 a-f) require more detailed analyses.
For example, 1f p(»py; p/+py s Pi-* P2 diagraua in Pigs.6c), 6d)
and 6f) get into wass-shell poles. It can be shown, however,
that the principal parts of these three diagrams cancell ersh
other, and one remains with some regular function and terms with
masp-shell & - functiona. The disgram 6g) cannot cancell the
latter, being nonsingular in this region (all the momenta trans-
fered are space-like), Finally we are left with & - function
terms only, the & - functions ensuring the factorised structure
of the S-matrix element in Pig.5.

Using the technique (4.5),(4.6),(4.7) one can caloulats two

13



particle S-matrix elements.In the order 1/N they are

Ps Ps Pt Ps . ” 10‘ ;
X § _ _ «10a
6;(9) = P P)_+ P2 P - 1 A/S"le ,

ane (4.10b)

0, () = § ,
aw (4.10c)

61 (0) = >< /v(nr 6)

Expressions (4.10a-c) do ¢oincide with the first terms in
1/N expansion of (3.8),(3.2) and (3.3).

Another poesible expansion check of the S-matrix obtained
ie worth mentioning. Adopting the S-matrix (3.8), (3.2) end (3.3)
to correapond to some renormslizable and esymptotically free
field theory, one can expand matrix elements which are the
functions of

bgi = bk

in the asymptotic series in powers of g(’u) . Taking the firet
term /10/ of the Gell-Mann-Low function of the model (1.1}

P =~ 9"+ 0(g)

(1)
J?ﬂ dg
p(g)

(4.11)

(4.12)
one gets up to gz( q .=_g(/¢))
G, (s)= 4 - c 9 + 0(g*)
(4.13)

‘ N-2
()= =i B +i G Fhaga v Olg)

14



o M-
Gis) = ¢ &~ L gt b - Rt 0G5,

In Eqe.(4.13) the seymptotice S-»o< is written down and
the power terms in S are dropped.

The usual g - perturbations of (1.1) ere based on the gold-
stone vacuum and therefore lead in two-dimensions to infrared
divergencies. However, one can obtain the asymptotice of the
scattering amplitudes, calculating the ultraviolet logarithms
of the scattering amplitudes of goldastone particles (to circumvent
the infrared difficulties one can impure formally the mass of the
goldstone particle), Calculations are straightforward and the
result coincides with (4.13).
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