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1. INTRODUCTION 

The recent progress in the study of two-dimensional quantum 
field theory has led to the extensive development of some 
models which have a remarkable propertyc an infinite set of 
conaervation lan, lead1:1g to the absence of the multiple produc­
tion and conservation of the set of individual momenta of par­
ticles in the scattering /1,2/. The factorization of the total 
S-matrix also seems to be the effeot of these conservation laws 
/)/. The classical analog of all these models is connected with 
nonlinear equations completely integrable by Lhe inveree ecetter­
ing method. 

The example of thie type is the maeeive Thirring model 
(14T11), or, equivalently, the quant\!lll eine-Gordon model. It turne 
out that, due to the simplified scattering propertiee of thie 
model, all the elements of the total S-matrix /4,5,6/ and eome 
off-shell matrix elements /7/ cen be f'ound explicitly. 

In the recent paper Karoweki, Thun, Truong and Weisz /B/ 
showed that the analyticity, unitarity end factorization equa­
tions /5,6/ of thie model cen be solved uniquely giving a one­
parameter eet of solutions, the parameter cen be connected with 
the MTM coupling constant. 

Being the model of charged fe:nniona, M'rM has the phaee 
symmetry UC1):Q{.Z). In the preeent paper the factorized S-matrix 
wiLh isotopic O(N) Sym1Detry is constructed for any B q J. We 
adopt the existence of an isovector N-plet of particles of the 
meas 11'1. and require.the O(B)-iaoaymmetr~ of the S-matrix ele­
ments. It turns out that under thees requirements the S-matrix 
can be dete:nnined uniquely•>, without parameters, except the 
overall maes scale. The latter is shown in Secs.2 and J, where 
we derive the explicit form of the S-matrix. 

Up to the time we cannot definitely answer whet two-dimen­
sional field theory (if any) lesda to this S-mstrix. We have some 
arguments, however, that such a theory is a O(B) (B ~3) chiral 
field model described by the Lagrangian density: 

*) In this case, as well ae in the llTK, the un:l.tarity, analyti­
city and factorization conditions admit, of course, the arbitra­
ryneaa of the <:DD -t;rpe, so here we mean the uniqueneaa of the 
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(1.1) 

and the constraint 

2 
11; = i 

(1.2) 

!hia model ia O(J) a;ymmetrio 1 renormali1able and aa1111ptotioall7 
free /10 1 11/, Infrared charge aingularit1 in this model ae ... to 
lead to the desintegration of the goldstone vaouWI and to the 
maaa transmutation of particles /12/, which should form the O(J) 
multiplets in this case. 

In the aaymptotically tree thaoriea with the spontaneous 
maaa transmutation the observable characteristics do not depend 
on the coupling constant (due to the renormali1abilit7) /1)/, 
We should.like to mention in thia connection that the 8-matrix 
obtained in Sec.) does not depend on tree parametel'll. 

!he B-matri.% obtained depends analytically on J and can be 
ezpanded in powers of 1/1. Thus,our hypothesis oonoerning ita 
connection with the model (1,1) is baaed on the comparison of 
this S-matrix with the 1/B - perturbation theo?'J' result& of (1,1). 
In Sec.4 we show that in 1/B - perturbation11 of (1.1) there ia 
no partic~e production and the S-matrix raall7 factorises in the 
order of ~/N:!.• The two-particle matrix elemen~a, calculated in th! 

order 1/B do coincide with the correap.onding tel'lll of the 1/Jf 
ezpaneion of the S-matriX obtained in Sac.). 

The compariaon of the ultraviolet a~1111ptotica of the S -
matriz of Bao.) with the reaulta of .. the ordinl.1'7 'iJ - perturba­
tions ct the model (1.1) ia another poaaible check. Although in 
~uch perturbation th•o?'J' one deals with I-1 - component multiplet 
ot goldlltona particle• instead of the J - component multiplet of 
the massive particleg and,hance,tacaa the infrared diverganciea, 
one lllBJ' suppose that the contribution of ultraviolet logarithma 

nminimumn solution, i,e. 1 the aolution with the minS..U. aet of 
aingularitiaa (aee Sec.)J, 

4 



of the perturbation theory into the scattering amplitudes gives 
the correct asymptotica of thi• amplitudes (at least up to 92 ). 
The comparison with the perturbation theory is performed till 9~ 
iD Sec.4. The result also collf'il'lllB our hypothesis. 

2. ANALYTISITY, tmITARITY AND PACTORIZATIOl'l BQUATIO!fS POR 

'fHE 0(1') - SlMJIHRIC S-liATRIX 

Consider the 0(1') isoveotor N-plet of particles of the mass 
hi.. 'fhe S-matri% element of the 2 ... 2 scattering can be taken in 
the form p1. j p; 

C) =o(pt-ptJ8(ft-p;)[8•"~·l o_t(s)+ 
1et p; (2.1) 

2. 
where S = (ft+ fl.a) • Purther it Will be convenient to uee the 
rapidities 6>.,_ instead of the momenta {'.i I 

(2.2) 

'fhen <'.rt , (5i and 0'"3 will be the functions of the rapidity 
differences of the initial parUclea (}=I 01 - (la_ / , which is 
simpl,J connected with S 1 

(2.2a) 

Iota that under the trBDsformation (2.2a) the threshold 
points S z o and S ='I ml. of the functions 6( S) (which are the 
square-root branching points due to the two-particle unitarity) 
become the llonbr11nching points of 6"{ B) • So O'"t , Oi, and Oj 
are the 11111ro11orphic funct:l.ons (} • 

The two-particle unitarity conditions and the crossing­
symmetry relations of the two-particle S-matrix (2.1) can be 
represented as the functional equations 

oZ(6) 6i.C-9) + Oj(8)6j(-6) = i 

~(9)63 (-9)-+ 6J.(-B)Ol(8) = 0 

5 
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encl 

<S;_(BJ = 62.(t"r.-G) 

0'3 (6) = 6d i'IT"- 6) • 

(2.)c) 

(2.4a) 

'fbe equations (2.4) ancl (2.)) clo not 4etermine the tunctiona 
6(6). In aclclit1on to uniterity encl analyticity let ua require 
the factorization of the multiperticle s-matriz. 

The factorization means the special atructure of the multi­
particle s-matriz: the multiparticle s-metriz elements are the 
sums of terml!I, each being the procluct of the two-particle S­
matr:lx elements, as if the multiparticle scattering woulcl be the 
consequence of two-particle collisions /14,15,5,6/. 

The factorizecl S-matriz can be repreaentecl by the simple 
algebraic construction /5/, which in our case consists of B types 
cf special noncommutative symbols A;lB); i .. 1,2, •••••••• B, each 
symbol corresponcling to certain component of the iaovector multi­
plet. The asymptotic states of the scattering theory should be 
identified with the products of this symbols, each e;'llllbol A.: { 011) 

corresponding to the particle with rapidity e~ in the state. 
le id6ntify the in(out)-states with the products in which ell 
symbols ere errangecl in the order of decreasing (increasing) B , 
AIJ;J in-state can be reordered in terms of out-states by means of 
the commutation rules 

IV 

A;<ei)l/j(Bl) = 5i:;01f6!u) L 4" {~)A,.{lJ.t) + 
... l 

which correspocd to the two-particle S-metriz (2.1), !he algebra 
(2.5) represents the factorized total S-metriz. 

The Jecob1 identities of algebra (2.5) give us the f\1nctio-
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:aal equatioJlll for <5".t , 62 and 03 . The factorization property 
forcea theae identitiea neceaaarily, ao we ahall refer to them 
aa the factorization equatioJlll. 

The factorization equationa have the aimple meaning. Conai­
der, for example, the collision of three particles with rapidi­
ties 6!t > 6Ji > 93 • ID the infinite paat they have spatial 
coordinates X.t < X"' < X3 .The particles collide with each other 
su~sequently in the interaction region, the succession of the 
collisions depending on the initial positions of particles, as 
is ahown in Pig. 1a),b). 

in quantum mechanic• both these possibilities give two 
parts of the same outgoing wave. The conaervation of the set 
of momenta implies the monochromacy of this wave, hence, the 

a) b) 

outgoing waves of 
processes in Pig.1 a), 
b) should be coherent. 
The Jacoby identities 
of the algebra (2.5) 
ensure this coherency. 

One obtains the 
factorization equa-
tions rearranging the 

Pig.1. product of three 
symbols A;{B,i)A./~Jf/,.(&J) in two poaaible successions and re­
quiring the results to be equal. The number and the form of 
identities turns out to be different for the cases N•2 and N::;::. 3, 
Por B•2 the factorization equation11 are given in /5,6,8/ and 
their solution is the sine-Gordon S-matrix. For the case N ::i::-3 
they acquire the form: 

~~6'3 + 636'3~ = ~6i6a 

6'.z 6J 61 + 63 ~ 6":1, = 63 6:1, 6.z, 

N~~~·~~~·~~~+~~~+~~~+ 
+ 63 63 C5"1. + 6:1, 6t <l"t = Oj <5i 6'3 • 

(2.6a) 

(2.6b) 

(2.6c) 

where the first, second and third 6 in each term are functions 
of f) , (}+ 9 1 

and 9' , respectively, 

7 



). SOLUTIOH OP fHE UllTARITY'1 AJIALYTICITY AHD P.lC'!ORIZAUOB 

EQUATIOHS 

~UJ) 
. In terms of the ratio h {{}) = ~ equation (2.6a) 

takes the fo:rm.1 3 

/.,. ( 0) -t h {ti) = /.,. ( 0 -+ B) (3.1) 

i.e., 

-«A 
~(9) = e ~(B) (3.2) 

where A is e. cer'i:ain parame\er. Croa11ing equatio11.11 (2. 4) 
lead to 

(3.3) 

Note that ().2) and (3.3) satisfy equa'tion11 (2.)b) and 
(2.6b) identically •. It ia notable also that afte~ s~batitution 
(J.2) and (3.3) equations (2.3c) and (2.6c) lead to the SBliiu 

algebraic equation for the parameter A , which haa, except 
trivial A "' o, the unique solution 

A= N~ 
(3.4) 

The rast equation (2.Ja) acquires the forms 

f).l. 
<J2.(6l)6;(-eJ... i. 12. e .... 11_ 

().5) 

Eqs. (3.5) and (2.4a) form the ayatem for ~(6). 
It is clear that thHe equations permit O".z. to be multi­

plied by any 2.trl - periodic meromorphic function which is real 
on the imaginary axia and 11atiafies identities 

.JaJ)j(-BJ = i 

J(B) = j(i11·-()) 
(3.6) 

'lherefore, the g9n1ral aolution having singularitie• on th~ 
:!.magii:iary uia only hu th1 form 1 
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[ nL Sh()+; Si11. cl1c. 1 Co) 

~CG)= ,..i sk.e-.:s;,,..cl ... O".z. <eJ' (3.7) 

where ..c,.. B1"e real numbers· and r:f.zco> ii the "minimum" aolution 
of (3.5) and (2.4a), i.e., the aolution with the minimum set of 
singularities in the e plane1 

where 

and 

Q(B) = 
r{A -'-fir_) r( ~ -i 1{,.) 

r(-• t) N ~ +l1-i ~) 

A = i 
/11-2. 

(3.B) 

(3.9) 

(3.10) 

In principle, all the aolutiona (3.7) are permitted. 
However, the aolution O".z. = c;

2
co> is the only one, which does 

not lead to the isospin degeneracy of the spectrum•>. !his 
solution does not display any poles on the physical sheet of 
the S-plane, i.e., isovectQr particles cannot produce~ bound 
atatea. 

Rote that in the caae ~-3, i.e., A •1 expression (3.S) is 
reduced to 

Bf i:r- OJ 
, N=3· (3.11) 

( 2'1ri - (l) ( itr .+ (}) 

*) !he other remarkable aolution containa aingle CDD pole o(i=2rA 
Cont-raey to tS,,.l•I, thia aolution correapondll to the attractive 
in.t•raotion Iliad aaema to be the 9Zact S-matrix of th• fundamen­
tal termtona ot t~• Oroaa-laTeu model /13,16/. !ha argument• 
will be publiahad elaewhere. 
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4, THE COllPARISON OP THE PACTORIZED S-14ATRIX WITH fHE 1/X -

EIP.ANSIOB OP THE •ODEL (1, 1) 

It ia convenient to develop the 1/H ezpanaion of the modal 
(1.1) in the following way /17/. The generating functional for 
the Graen functions of the n;cx> field cm. be written in the form: 
z [ J. J = I [ J;] I I [ 0] , 

l[J.:] = ~ Q dw ~d"• e.xp {iJJ2
x [ .['[n,,w]+J;(,.)l'ltlll~1 <

4
•
1

> 

where 

I 1. [ 2. 2.J W(l<) J. [rz;,w] = 2.g., ((}tn~)-wvz, + 
230 

• C4.2) 

The n., - integration in (4.1) can be performed ezplicitly and 
leads to Z [J.:] = J'[J.]/([o] , 

It:O =Jn Jw exp { r. SeufwJ -+ <4.3> 
~ 

where 

N t D ( .2. J W(>e) J.z 
S"H[w]= i.Z. !"Gt!. ~-w(x>)+ 2.~o x 

(4.4) 

end G(x, x'/w) - the Green function of the operator dj-W(•). 
'fhe perturbative calculation of the integral (4,3} laada to the 
1/JI ezpanaion of the model (1.1). The atationar,y phaae point of 
the integral (4, 3) W(x) = m 1 =!12e~p{· i;.) should be teltan into 
account, ao functionals Stff and G-(1<,x'lw)ehould be ezpandad 
in w'=w-ml rather than in w • 

It ia convenient to uae in calculatiollll the following 
diagram technique which contains: 
1) the w' field propagator 

(4.5) 
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2) the Yl; propagator 

. ____ J 
= 

0.6) 

3) lllld verticea 
l _ _.}...__j = l Otj 

A= NA; ... ; ;r.-=NX! 
• • h. •• ~ 

J .. - • 

In tbia te~hnique the oloaed loops on 11.< - field lines 
should no5 be di•awn (the7 are alread,y taken into aooount in 
(4.7)). In (4.5) 

(4,8) 

The calculation of loops in (4.7) can be lllBdB ~~plicitly by 

meana of the following "cutting rule" /18/•>, The arbitrary loop 
is the e•.;in of terms, each corresponding to a~ diviaion of the 
loop through two linea. 

(4.9) , 
S,j = ( 1<,+i.:j)1° 

'fhe momenta .i-:: and l<.j are determined by the condition 
.z. 1 a. 1'; = Kj = m • The contribution of' each division is equal to 

the production of two trees in both aides of dashed line in (4.9) 
by the function (. t/J(SL_J·) • At Si./ f'ixed the equations l</=1<./=1+1z. 

have two solutions ( I<.· .- ICj ) , both should be taken into 
account in (4,9), 

Consider the 2 -+4 amplitude (Pig.~) in t~'' order of 1/N2• 

•) An analogous result for the erbitr817 fermion loop has been 
obtained in /19/. 
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J 
C}d 

J 

Fig.2. 

Por the sake of simplicity we shall 
concentrate on the case i" j ~ I< •This 
amplitude is given by the sum of dia­
grams in Pig.). Using (4.9) one can 
replace the diagrBlll in Pig.lg)by the 
sum of the loop divisions. 

--------P3 Pt 
p.r 

f) 
"""P_a._--1.c...--- p" 

Pig.J. 

f's 

Consider, for example, the 
division in Pig.4. Two solutions 
of 1<t =: K: = m• are kt" f~ i l<.;z = p, 
and kt c pc. , l<.z. = p.r • The 

p.z;,---'------- p., 

factor ,· p(SH) ~n this division 
is the reciprocal wavy line with 
Bii opposite sign. Therefore the 
division in Pig.4 cancells out 
diagrBm111 in Pig.) e),f). It is 

Pig.4. easy to check up that other 
possible divisions of the triBDgle in Pig.4 cancell out diagrama 
in Pig.3 a),b),o),d). 

The cases < "'j , J:: /f. Biid so on contain more diagrams, 
however, one uan chac~ up that the same cancellation takes place 
in all these oases too. 
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Pig. 5. 

Iow let ua turn to the process 
3 ~ 3 (Pig. 5) and consider again 
the cue <-; j ft. " • In the orli!r 
ot 1/1 the 11&tr~ element contain• 
disconnected diagram11 only, the 
tine...,tic• en1Uring the con11erva­
tion ot the momenta aet. In the 
ord•r ot 1112 we have 7 connected 
diagra•• listed in Fig. 6. 

Pt-:;E_P: 
P~ f;i. 

p3 • r3 
~) 

Pig.6. 

It can be easily checked up, that it all the intermediate 
propagator& in diagrams in Pigs. 6 a-t) are nonsingular, different 
divisiona ot the diagraa in Pig.6g) cancell the other diagrama in 
the same manner, aa in the previous a%ample. llasa-shell singula­
rities ot diagrama in Pig.6 a-t) require more detailed analyses. 

I ' I Por example, it ft..,. f3 ; fl.• fi ; fl ,.. f.z. diagrams in Pigs. 6c) , 6d) 
and 6t) get into 14888-ehell poles. It can be shown, however, 
that the principal parts ot theae three diagrams cancell SF.sh 
other, and one ramail'1s with 11ome regular function and terms with 
maa11-•h•ll S - functions. The diagrBlll 6g) cannot cancell the 
latter, being nonsingular in this region (all the momenta trans­
fered are space-like). Pinally we are left with 5 - function 
ter1111 onl7, the 5 - tunctiona enauring the factorised structure 
ot the s-.... triz element in Pig.5. 

Using the technique (4.5),(4.6),(4.7) one can calculate two 
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particle S-matrix elements.In the order 1/N they are 

p1 Pt Pt P1 
2.'1f'i 

o;<e) = + ~ = 1 - A/site p .. p.2. p, p, 
(4.10a) 

P1 p~ 

~ 
27it 

03 (0); ; - ---p ... Pt NB 
C4.10b) 

(4.10c) 

Expreeeione (4.10a-c) do c~incide with the firet terme in 
1/N expansion of (J.B),(J,2) and (J.J). 

Another poeeible expansion check of the S-matrix obtained 
ie worth mentioning. Adopting the S-matrix (J.B), (J.2) and (J,J) 
to correapond to eome renormalizable and aeyinptotically free 
field theory, one can expand matrix elements whicb·are the 
functions of 

'J<rl d 
I.? 5 - t'.£+j _9_ 
~ml - Mt)'' r(~) 

(4.11) 

in the asymptotic series in powers of 9(/'") • Taking the first 
term /10/ of the Gell-F.ann-Low function of the model (1.1~ 

N-2. i 13c3) = - ~<J + 0(~3) 

one gete up to gz ( ~ 5 ~(jt)) 

02_(S)::: 1.. - i 11/g + 0(~ 3) , 

(4.1)) 

g • Al-2. 2. ~ s 0( ~) 
6'3(S)=-•%_+LµIJ r._+ IJ 
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In Bq111. (4.13) the asymptotics s-. oa is written down and 
the power terms in S are dropped. 

The uaual 8 - perturbations of (1.1) are based on the gold­
stone vacuum and therefore lesd in two-dimensions to infrared 
divergencies. However, one can obtain the asymptotics of the 
scattering amplitudes, calculating the ultraviolet logarithms 
of the acattering amplitudes of goldatone particles (to circumvent 
the infrared difficulties one can impure formally the maas of tbe 
goldstone particle). Calculations are straightforward and the 
result coincides with (4.13). 
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