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Weak vector boson scattering (VBS) is a sensitive probe of new physics effects in the electroweak
symmetry breaking. Currently, experimental results at the LHC are interpreted in the effective field theory
approach,where possible deviations from the StandardModel in the quartic-gauge-boson couplings are often
described by 18 dimension-eight operators. By assuming that anUVcompletion exists,we derive a new set of
theoretical constraints on the coefficients of these operators; i.e., certain combinations of coefficientsmust be
positive. These constraints imply that the current effective approach to VBS has a large redundancy: only
about 2% of the full parameter space leads to an UV completion. By excluding the remaining unphysical
region of the parameter space, these constraints provide guidance for future VBS studies and measurements.
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I. INTRODUCTION

After the discovery of the Higgs boson [1,2], the focus of
particle physics has turned to the mechanism of electroweak
symmetry breaking and beyond. At the Large Hadron
Collider (LHC), vector boson scattering (VBS) is among
the processesmost sensitive to the electroweak and theHiggs
sectors. In the Standard Model (SM), Feynman amplitudes
for longitudinally polarized weak bosons individually grow
with energy, but cancellations among diagrams involving
quartic-gauge-boson couplings (QGCs), trilinear gauge
boson couplings (TGCs), and Higgs exchange occur, and
lead to a total amplitude that does not grow at large energies.
If modifications from physics beyond the Standard Model
(BSM) exist, they are likely to spoil these cancellations and
lead to sizable cross section increases.
VBS processes at the LHC can be embedded in partonic

processes qq → VVqq, where q is a light quark. Both
ATLAS and CMS experiments have extensively studied
these kinds of signatures, and the effort will continue with
future runs of LHC. Absent clear hints for BSM theories,
these studies are based on a bottom-up effective field theory
(EFT) approach—the SMEFT [3–5]. In this approach,

deviations in QGC independent of TGC are captured by
18 dimension-eight effective operators, assuming that TGC
and Higgs couplings are constrained by other processes
with better experimental accuracies, such as diboson and
Higgs on-shell measurements. With this assumption, VBS
measurements at the LHC have been conveniently inter-
preted as constraints on these operator coefficients; see, for
example, [6–10] for some recent results, and [11] for a
compilation of existing experimental limits on QGC
coefficients. These constraints in turn can be matched to
a variety of BSM theories. (See, for instance, [12–20] and
references therein.) The recent high-luminosity and high-
energy LHC projection has shown that future sensitivity on
dimension-eight QGC operators at the LHC can go beyond
the TeV scale [21].
However, in order to admit an ultraviolet (UV) com-

pletion, QGC operator coefficients cannot take arbitrary
values. Recently, a novel approach has been developed to
set theoretical bounds on the Wilson coefficients of a
generic EFT that can be UV completed. Going under the
name of positivity bounds, this approach only requires a
minimum set of assumptions, which are nothing but the
cherished fundamental principles of quantum field theory
such as unitarity, Lorentz invariance, locality, and causality/
analyticity of scattering amplitudes. Using the dispersion
relation of the amplitude and the optical theorem, Ref. [22]
established a positivity bound in the forward scattering
limit of 2-to-2 scattering (see also [23–27] for earlier
discussions and applications in QCD). The bound can be
computed completely within the low energy EFT and
implies that a certain combination of Wilson coefficients
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must be positive. Moreover, thanks to the properties of the
partial-wave expansion, an infinite series of nonforward t
derivative positivity bounds are derived (t being the
Mandelstam variable) [28,29] (see also [30–33] for earlier
discussions on non-forward positivity bounds and [34] for
earlier discussions on the forward positivity bound for
particles with spin). These positivity bounds have been
used to fruitfully constrain various gravity and particle
physics theories (see, e.g., [34–46]).
In this work, we apply this approach to the SMEFT

formalism for VBS processes, and derive a whole new set
of theoretical constraints on the VBS operators. While no
bounds can be derived atOðΛ−2Þ,1 we show that atOðΛ−4Þ
certain sums of a linear combination of the dimension-eight
QGC coefficients and a quadratic form of the dimension-
six coefficients must be positive. Because the latter is
always negative definite, a number of positivity constraints
can be inferred solely on QGC operators.
These constraints have several features. First, based only

on the most fundamental principles of quantum field
theory, they are general and model independent. In addi-
tion, they have strong impacts: the currently allowed
parameter space spanned by 18 dimension-eight coeffi-
cients will be drastically reduced, by almost 2 orders of
magnitude in volume. Finally, they constrain the possible
directions in which SM deviations could occur, comple-
mentary to the experimental limits. By revealing the
physically viable region in the 18-dimensional QGC
parameter space, these constraints provide important guid-
ance for future VBS studies. On the other hand, if the
experiments observed a parameter region that violates the
positivity bounds, it would be a very clear sign of violation
of the cherished fundamental principles of modern physics.

II. EFFECTIVE OPERATORS

Before deriving the positivity constraints, let us briefly
describe the model-independent SMEFT approach to VBS
processes. The approach is based on the following expan-
sion of the Lagrangian:

LEFT ¼ LSM þ
X
d>4

X
i

fðdÞi

Λd−4 O
ðdÞ
i ; ð1Þ

where Λ is the typical scale of new physics. fðdÞ are the
dimensionless coefficients of the dimension-d effective
operators. If the underlying theory is known and weakly
coupled, they can be determined by a matching calculation.
It can be shown that only even-dimensional operators
conserve both baryon and lepton numbers [49], so we
focus on dimension-six and dimension-eight operators.
VBS processes can be affected by TGC, Higgs couplings,
and QGC couplings. At dimension-six, modifications to
TGC and Higgs-Vector-Vector (HVV) Higgs couplings

could arise [50]. QGC couplings are also generated, but
they are fully determined by dimension-six TGC couplings.
At dimension-eight, QGC couplings could arise indepen-
dent of TGC couplings. They are parameterized by 18
dimension-eight operators [51–53].
The unique feature of VBS processes is that they are

sensitive to BSM effects that manifest as anomalous QGC
couplings. One may worry that this sensitivity is masked by
possible contamination from anomalous TGC and/or Higgs
couplings. However, if these couplings are present, we may
expect to first probe them elsewhere, e.g., in diboson
production, vector boson fusion, or Higgs production
and decay measurements, which are in general measured
with a much better accuracy than VBS. For example, TGC
couplings are constrained by W boson pair (WW) produc-
tion at LEP2, which has been measured at the percent level
accuracy [54]. These constraints are further improved by
the LHC data [55–59]. Higgs coupling measurements at the
LHC have reached Oð10%Þ level precision, and will
continue to improve with the high-luminosity upgrade
[21]. While there might still be non-negligible dimen-
sion-six effects in VBS [60], the projected sensitivity to
dimension-eight QGC couplings at high-luminosity and
high-energy LHC beyond the TeV scale [21] suggests that
VBS will continue to be an important channel to look for
possible BSM deviations in QGC. While a global SMEFT
approach including both dimension-six and dimension-
eight operators would be the most reliable, given the
current accuracy level one could assume that dimension-
six effects are well-constrained by other channels, and
focus on dimension-eight QGC couplings as a first step.
This is the assumption that is used by the experimental
collaborations to set limits on QGC couplings. Given that
the goal of this work is to provide theory guidance to
experimental analysis, we will adopt the same assumption.
We nevertheless emphasize that our main conclusion, i.e.,
positivity bounds on QGC couplings are independent of the
presence of dimension-six operators, as we will explain
later. Therefore, they will continue to be useful for future
global fits including dimension-six effects.
Dimension-eight QGC couplings are described by 18

operators. Conventionally, they are divided into three
categories: S-type operators involving only covariant
derivatives of the Higgs, M-type operators including a
mix of field strengths and covariant derivatives of the
Higgs, and T-type operators including only field strengths.
We use the convention of [52] that has become standard in
this community. The definition of these operators can be
found in Eqs. (13)–(31) of [52] (OM;6 is redundant [61]),
and we also list them in the Appendix. The 18 operator
coefficients are denoted as

fS;0; fS;1; fS;2; fM;0; fM;1;

fM;2; fM;3; fM;4; fM;5;

fM;7; fT;0; fT;1; fT;2; fT;5;

fT;6; fT;7; fT;8; fT;9:

1Under certain model-dependent assumptions, this approach
can have implications on Higgs operators at dimension-six; see
Refs. [33,47,48].
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A summary of existing experimental constraints on these
coefficients can be found in [11]. See also Ref. [62] for a
review of QGC measurements at the LHC and their
interpretation in the SMEFT.

III. POSITIVITY BOUNDS

The simplest positivity bound can be obtained by
considering an elastic scattering amplitude in the forward
limit AðsÞ ¼ Aðs; t ¼ 0Þ [22]. Thanks to the dispersion
relations, optical theorem, and Froissart bound [63], it can
be shown that the second derivative of AðsÞ with respect to
s is positive, after subtracting contributions from the low
energy poles. In the following we shall briefly review the
forward limit positivity bound, adapted to the context of
VBS. We assume that the contributions from the higher-
dimensional operators are well approximated by the tree
level, which is a reasonable assumption given that pertur-
bativity in EFT is always needed for a valid analysis.
If the UV completion is weakly coupled, the BSM

amplitude is usually well approximated by its leading tree
level contribution Atr, which is analytic and satisfies the
Froissart bound. Its BSM part simply comes from one
particle exchange between SM currents. We can derive a
dispersion relation for Atr:

ftrðspÞ≡ 1

2πi

I
C
ds

AtrðsÞ
ðs−spÞ3

ð2Þ

¼
Z

∞

Λ2
thþM2

ds
π

ImAtrðsÞ
ðsþsp−M2Þ3þ

Z
∞

Λ2
th

ds
π

ImAtrðsÞ
ðs−spÞ3

; ð3Þ

where M2 ≡ 2m2
1 þ 2m2

2, m1 and m2 being the masses of
the interacting particles, and Λthð≫ MÞ is the mass of the
lightest heavy state. C is a contour that encircles all the
poles in the low energy EFT and, by analyticity of the s
complex plane, can be deformed to run around the s > Λ2

th
and s < −Λ2

th parts of the real axis and along the infinite
semicircles; the infinite semicircle contributions vanish due
to the Froissart bound, and the discontinuities along the real
axis give rise to ImAtrðs; 0Þ which is nonzero due to the
heavy particle poles. Also we have restricted to crossing
symmetric amplitudes for simplicity, and to obtain the first
term of Eq. (2) we have made a variable change s→M2−s
and used the crossing symmetry ImAtrðM2−sÞ¼ImAtrðsÞ.
By the cutting rules, ImAtrðsÞ can be written as a sum
of complete squares of 2-to-1 amplitudes, and thus
ImAtrðsÞ>0. Therefore, we infer that ftrðspÞ>0 for
−Λ2

th<sp<Λ2
th. Because of the analyticity of the amplitude

in the complex s plane, ftrðspÞ can be calculated within
the SMEFT as the second derivative of the effective
amplitude AtrðsÞ with the poles subtracted. Since the SM
at tree level makes no contribution to the rhs of Eq. (2),
ftrðsÞ > 0 directly gives positivity constraints on the
Wilson coefficients.
The above argument can be easily generalized to cases

where the leading EFT amplitude is matched to the loop

amplitude in the full theory, and one can derive positivity
for the lowest order n-loop BSM contribution to VBS, with
the SM contribution removed. In this case, the discontinuity
above Λth must come from unitarity cuts that only cut the
BSM particles, otherwise this amplitude would match to
both tree and loop diagrams in EFT with similar sizes,
violating the perturbativity assumption. Using the cutting
rules, the discontinuity can be written as a sum of complete
squares, thus proving positivity.
For a generic UV completion, consider the full amplitude

including the SM contribution. The latter could give a
constant contribution to the dispersion relation at one loop.
To minimize its impact, we subtract out the branch cuts
within jsj < ðϵΛÞ2 (ϵ≲ 1), where the dominant SM con-
tribution resides. This is done by following the improved
positivity [34,40,64] and defining

BϵΛðspÞ ¼ AðspÞ −
Z þðϵΛÞ2

−ðϵΛÞ2
ds
2πi

DiscAðsÞ
s − sp

; ð4Þ

with M� < ϵΛ < Λ, M� ≡m1 �m2. This subtracted
amplitude has the same discontinuity as AðsÞ above
ðϵΛÞ2 and also satisfies the Froissart bound.2 It is free of
branch cuts for jsj < ðϵΛÞ2, and thus one can analogously
obtain a dispersion relation:

fϵΛðspÞ≡ d2BϵΛðspÞ
2ds2

¼
�Z

−ðϵΛÞ2

−∞
þ
Z

∞

ðϵΛÞ2

�
ds
2πi

DiscAðsÞ
ðs − spÞ3

¼
Z

∞

ðϵΛÞ2þM2

ds
π

ImAðsÞ
ðsþ sp −M2Þ3

þ
Z

∞

ðϵΛÞ2
ds
π

ImAðsÞ
ðs − spÞ3

: ð5Þ

Making use of the optical theorem, ImAðsÞ¼
½ðs−M2

−Þðs−M2þÞ�1=2σt>0 for s>M2þ, where σt is the
total cross section. So we have fϵΛðspÞ>0 for −ðϵΛÞ2<
sp<ðϵΛÞ2. Again, by contour deformation, fϵΛðspÞ can be
evaluated within the EFT with the subtraction term in
Eq. (4) taken into account. This term does not contain any
tree level contribution from the higher-dimensional oper-
ators, but it removes the dominant impact from the SM loop
contribution. The remaining contribution from the SM is
then suppressed by ðϵΛÞ−2, and can be computed explicitly.
The reason behind is that the SM contribution mostly
comes from the discontinuity below ϵΛ, while the BSM
contribution is from above this scale, so one can choose a

2Strictly speaking, the Froissart bound applies to scatterings
where the external states are massive. Here we assume that this
bound also applies to cases where external states are all massless
such as the photon scattering. One may take the view that the
photon has a very small mass. Since the extra degree of freedom
associated with the mass can smoothly decouple as we take the
massless limit, this procedure does not actually affect the γγ
positivity bounds.
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ϵΛ to subtract the dominant SM contribution without losing
positivity. In the Appendix we compute the remaining SM
contribution in the γγ channel and show that it is negligible
even comparing with the best experimental sensitivity
currently available.

IV. APPLICATIONS

Let us first focus on dimension-eight operators.
Applying this approach to the scattering amplitudes of
VBS in the forward limit yields a set of positivity con-
straints on QGC coefficients. As an example, we present
here the constraint from ZZ → ZZ scattering:

8a23b
2
3t

4
WðFS;0 þ FS;1 þ FS;2Þ þ ½a23ðb21 þ b22Þ

þða21 þ a22Þb23�t2Wð−t4WFM;3 þ t2WFM;5 − 2FM;1 þ FM;7Þ
þ ½ða1b1 þ a2b2Þ2 þ ða21 þ a22Þðb21 þ b22Þ�ð2t8WFT;9

þ4t4WFT;7 þ 8FT;2Þ þ 8ða1b1 þ a2b2Þ2½t4Wðt4WFT;8

þ2FT;5 þ 2FT;6Þ þ 4FT;0 þ 4FT;1� ≥ 0; ð6Þ

where tW ≡ tan θW is the tangent of the weak angle. We
have rewritten the coefficients as

FS;i ≡ fS;i; FM;i ≡ e2fM;i; FT;i ≡ e4fT;i: ð7Þ

ai and bi parametrize the polarization vectors of the two Z
bosons, respectively,

ϵμ1 ¼ ða3p1=mZ; a1; a2; a3E1=mZÞ ð8Þ

ϵμ2 ¼ ðb3p2=mZ; b1; b2; b3E2=mZÞ; ð9Þ

where real polarizations are used for simplicity. Equation (6)
must hold for all real values of ai and bi. Other VBS
processes yield similar but independent constraints. The full
set of results are given in the Appendix.
Interestingly, including dimension-six operators does not

change our conclusion. If one follows the same approach
and considers dimension-six contributions, it turns out that
nontrivial constraints on them can be obtained only at the
ðfð6Þ=Λ2Þ2 level, i.e., from diagrams involving two inser-
tions of operators. They always take the following form:

X
i

ð−xiÞ
�X

j
yjf

ð6Þ
j

�
2

≥ 0; xi > 0; ð10Þ

i.e., the sum of a set of complete square terms needs to be
negative. We have checked this for all relevant dimension-
six operators in the Warsaw basis [65]. Explicit results are
given in the Appendix. Of course, these conditions cannot
be satisfied with dimension-six operators alone. Instead, it
tells us that at OðΛ−4Þ the dimension-eight contribution
has to come in, with a positive value large enough to flip
the sign of the dimension-six contribution. Therefore, the
presence of dimension-six contributions will only make
the dimension-eight positivity constraints stronger. Our

conclusion thus holds regardless of the presence of dimen-
sion-six operators.
It is worth mentioning that these constraints are different

from bounds derived from partial-wave unitarity [66,67], in
that they require unitarity of the UV theory, not the low
energy effective theory, and additionally require other
fundamental principles such as analyticity of the amplitude.
In VBS, partial-wave unitarity leads to bounds on the sizes
of fð6Þ=Λ2 or fð8Þ=Λ4, while the positivity bounds are on
the dimensionless coefficients, and lead to constraints on
possible directions of SM deviations. These constraints are
always complementary to the unitarity bounds and exper-
imental limits.

V. PHYSICS IMPLICATION

We now describe the physics implications of our
positivity constraints on VBS processes.
First, let us turn on one operator at a time. Most

experimental results are presented as limits on individual
operators, assuming all others vanish. As shown in [11],
these limits are symmetric or nearly symmetric. In Table I
we list our positivity constraints on individual operators.
We can see that, while fM;2 and fM;4 are free of such con-
straints, all other coefficients are bounded at least from one
side. This implies that half of the experimentally allowed
regions do not lead to an UV completion. In addition, fM;0,
fM;5, fT;5, and fT;7 cannot individually take any nonzero
values. fM;0 is forbidden because the same-sign and
opposite-sign WW scattering amplitudes give inconsistent
constraints, while fM;5 is forbidden because WW and WZ
scattering amplitudes give inconsistent constraints. Similar
situations occur for fT;5 and fT;7. This implies that no UV
theory could generate any of the four coefficients alone. We
will show that these conditions can be relaxed once other
coefficients are allowed to take nonzero values. However,
the one-operator-at-a-time scenario already illustrates that
the positivity constraints have drastic impacts on the
presentation and interpretation of experimental results.
Now let us turn on two operators simultaneously. Two-

operator constraints have been presented by CMS, on
coefficients FS;0 ≡ fS;0 and FS;1 ≡ fS;0 [see Eq. (7) for
relations between the F and f coefficients], and by ATLAS

TABLE I. Positivity constraints on individual VBS operator
coefficients. þ=− means the coefficient must be non-negative or
nonpositive. X means only f ¼ 0 is allowed, and O means no
constraints.

fS;0 fS;1 fS;2 fM;0 fM;1 fM;2 fM;3 fM;4 fM;5

þ þ þ × − O − O ×

fM;7 fT;0 fT;1 fT;2 fT;5 fT;6 fT;7 fT;8 fT;9

þ þ þ þ × þ × þ þ
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on α4 and α5. The latter parameters are defined in the
nonlinear formulation, but the conversion to the linear case
is straightforward [50]:

α4 ¼
v4

16

fS;0 þ fS;2
Λ4

; α5 ¼
v4

16

fS;1
Λ4

; ð11Þ

with fS;0 ¼ fS;2: ð12Þ

In Figs. 1 and 2, we overlay our corresponding positivity
constraints on top of the two-dimensional contour plots
obtained by both experimental groups. We can see that
most of the currently allowed areas are excluded. In other
words, only a very small fraction of the allowed parameter
space could lead to an UV completion.
We are not aware of any constraints assuming three

operators are present simultaneously. Nevertheless, for
illustration, in Fig. 3 we present our constraints on three
coefficients, fM;0, fM;1, and fM;5. We can see that the
allowed region has the shape of a pyramid. Manifestly, fM;0

and fM;5 cannot take nonzero values alone, but this is
relaxed once fM;1 takes a negative value. This is consistent
with our previous observation.
Finally, a model-independent SMEFT should always

take into account all operators. An interesting question to
ask in this case is the following. Suppose future experi-
ments at the LHC and even future colliders will collect
sufficient data to derive the global constraints on 18

operators. How large is the impact of the positivity
constraints?
To simplify the problem, assume that all 18 operators are

constrained in the interval −δ < fi < δ without any corre-
lations. The allowed region in the 18-dimensional param-
eter space will be approximately an 18-ball with radius δ.
The fraction of its volume that satisfies all positivity
constraints is independent of δ, because all the positivity
constraints are linear inequalities [see Eqs. (A7)–(A13)].
As we showed previously, once the dimension-six con-
tributions are included, they merely provide stronger
bounds, as those additional terms are all negative on the
left-hand side of the inequalities.
Using a Monte Carlo integration, we find that this

fraction is ∼2.3%. In practice, this specific number will
depend on the relative precision achieved on each operator,
but we do not expect changes of order of magnitude.

FIG. 1. Positivity constraints on FS;0 ≡ fS;0 and FS;1 ≡ fS;0,
compared with the CMS results [68]. The green shaded area is
allowed by positivity. A specific combination of FS;0 and FS;1

roughly rescales the Standard Model distribution, and so the
measurement is insensitive to this direction.

FIG. 2. Positivity constraints on α4 and α5, compared with the
ATLAS results [69–71]. The green shaded area is allowed by
positivity. The difference between the expected limits and the
observed ones are due to fluctuations in the observed events.

�1.0 �0.5 0.0 0.5 1.0fM,0

�2

�1

0

fM,1

�5

0

5

fM,5

FIG. 3. Positivity constraints on fM;0, fM;1, and fM;5.
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Therefore, we conclude that our positivity constraints
reduce the allowed parameter space by almost 2 orders
of magnitude.

VI. SUMMARY

VBS processes at the LHC and future colliders are
among the most important measurements that probe the
mechanism of electroweak symmetry breaking. We have
derived a new set of constraints on the 18 QGC coefficients
in the SMEFT approach to VBS processes, by requiring
that the EFT has an UV completion. These constraints
show that the current SMEFT formalism for the VBS
processes have a huge redundancy: ∼98% of the entire
parameter space spanned by 18 coefficients are unphysical
and do not lead to an UV completion.
This observation provides guidance to future VBS

studies. Theoretical studies, in particular, those which
employ a bottom-up approach, are advised to keep the
positivity constraints satisfied and avoid choosing unphys-
ical benchmark parameters. Experimental strategies can be
further optimized towards the remaining ∼2% of the QGC
parameter space. According to the positivity constraints,
most existing limits that are symmetric can really be
presented as one-sided limits; also, individual limits on

fM;0, fM;5, fT;5, and fT;7 do not have a clear physical
meaning. It is worthwhile for future VBS measurements to
take into account the positivity constraints, as they signifi-
cantly modify the prior probability densities of the QGC
coefficients by excluding unphysical values, and therefore
could also affect the resulting limits.
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APPENDIX

1. QGC operators and positivity bounds

The 18 dimension-eight QGC operators discussed in this
work are defined as follows:

OS;0 ¼ ½ðDμΦÞ†DνΦ� × ½ðDμΦÞ†DνΦ�
OS;1 ¼ ½ðDμΦÞ†DμΦ� × ½ðDνΦÞ†DνΦ� OT;0 ¼ Tr½ŴμνŴ

μν� × Tr½ŴαβŴ
αβ�

OS;2 ¼ ½ðDμΦÞ†DνΦ� × ½ðDνΦÞ†DμΦ� OT;1 ¼ Tr½ŴανŴ
μβ� × Tr½ŴμβŴ

αν�
OM;0 ¼ Tr½ŴμνŴ

μν� × ½ðDβΦÞ†DβΦ� OT;2 ¼ Tr½ŴαμŴ
μβ� × Tr½ŴβνŴ

να�
OM;1 ¼ Tr½ŴμνŴ

νβ� × ½ðDβΦÞ†DμΦ� OT;5 ¼ Tr½ŴμνŴ
μν� × B̂αβB̂

αβ

OM;2 ¼ ½B̂μνB̂
μν� × ½ðDβΦÞ†DβΦ� OT;6 ¼ Tr½ŴανŴ

μβ� × B̂μβB̂
αν

OM;3 ¼ ½B̂μνB̂
νβ� × ½ðDβΦÞ†DμΦ� OT;7 ¼ Tr½ŴαμŴ

μβ� × B̂βνB̂
να

OM;4 ¼ ½ðDμΦÞ†ŴβνDμΦ� × B̂βν OT;8 ¼ B̂μνB̂
μν × B̂αβB̂

αβ

OM;5 ¼ ½ðDμΦÞ†ŴβνDνΦ� × B̂βμ OT;9 ¼ B̂αμB̂
μβ × B̂βνB̂

να;

OM;7 ¼ ½ðDμΦÞ†ŴβνŴ
βμDνΦ�

ðA1Þ

where

Ŵμν ≡ ig
σI

2
WI;μν; B̂μν ≡ ig0

1

2
Bμν: ðA2Þ

The Lagrangian is

LEFT ¼ LSM þ
X fiOi

Λ4
ðA3Þ

and we redefine the coefficients:

FS;i ≡ fS;i; FM;i ≡ e2fM;i; FT;i ≡ e4fT;i: ðA4Þ
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The positivity constraints are derived from the crossing
symmetric, forward scattering amplitude V1V2 → V1V2,
where Vi ¼ Z;W�; γ, with real polarization vectors:

ϵμðV1Þ ¼
�
a3

p1

mV1

; a1; a2; a3
E1

mV1

�
; ðA5Þ

ϵμðV2Þ ¼
�
b3

p2

mV2

; b1; b2; b3
E2

mV2

�
; ðA6Þ

where ai, bi are arbitrary real numbers (a3, b3 only for
massive vectors). We list below the positivity bounds from
each scattering amplitude.

ZZ∶ 8At4WðFS;0 þ FS;1 þ FS;2Þ þDt2Wð−t4WFM;3 þ t2WFM;5 − 2FM;1 þ FM;7Þ
þ ðBþ CÞð2t8WFT;9 þ 4t4WFT;7 þ 8FT;2Þ þ 8B½t4Wðt4WFT;8 þ 2FT;5 þ 2FT;6Þ þ 4FT;0 þ 4FT;1� ≥ 0 ðA7Þ

W�W�∶ 4As4Wð2FS;0 þ FS;1 þ FS;2Þ − 8Es2WFM;0 − 2ðEþ FÞs2WFM;1 þ Fs2WFM;7

þ ð4Bþ 6CÞFT;2 þ 16BFT;0 þ 24BFT;1 ≥ 0 ðA8Þ

W�W∓∶ 4As4Wð2FS;0 þ FS;1 þ FS;2Þ − 2ðG − EÞs2WFM;1 þ 8Es2WFM;0 þGs2WFM;7

þ ð4Bþ 6CÞFT;2 þ 16BFT;0 þ 24BFT;1 ≥ 0 ðA9Þ

W�Z∶ 4Ac2Wt
4
WðFS;0 þ FS;2Þ þ t2WðD −Hs2WÞðFM;7 − 2FM;1Þ −Hc2Wt

4
Wðt2WFM;3 þ FM;5Þ

þ 4Bðt4WFT;6 þ 4FT;1Þ þ Cðt4WFT;7 þ 4FT;2Þ ≥ 0 ðA10Þ

Zγ∶ B½32c4WðFT;0 þ FT;1Þ − 16c2Ws
2
WFT;5 þ 4ðc2W − s2WÞ2FT;6 − FT;7 þ 8s4WFT;8�

þ ðBþ CÞ½ðc2W − s2WÞ2FT;7 þ 8c4WFT;2 þ 2s4WFT;9� −Hc2Ws
2
Wð2FM;1 þ FM;3 þ FM;5 − FM;7Þ ≥ 0 ðA11Þ

W�γ∶ 4Bð4FT;1 þ FT;6Þ þ Cð4FT;2 þ FT;7Þ −Hs2Wð2FM;1 þ FM;3 − FM;5 − FM;7Þ ≥ 0 ðA12Þ

γγ∶ ðBþ CÞð4FT;2 þ 2FT;7 þ FT;9Þ þ 4Bð4FT;0 þ 4FT;1 þ 2FT;5 þ 2FT;6 þ FT;8Þ ≥ 0; ðA13Þ

where

sW ≡ sin θW; cW ≡ cos θW; tW ≡ tan θW; ðA14Þ

θW being the weak angle and we have defined

A≡ a23b
2
3; E≡ a3b3ða1b1 þ a2b2Þ;

B≡ ða1b1 þ a2b2Þ2; F≡ ða1b3 − a3b1Þ2 þ ða2b3 − a3b2Þ2;
C≡ ða21 þ a22Þðb21 þ b22Þ; G≡ ða3b1 þ a1b3Þ2 þ ða3b2 þ a2b3Þ2;
D≡ a23ðb21 þ b22Þ þ ða21 þ a22Þb23; H ≡ a23ðb21 þ b22Þ:

ðA15Þ

The above constraints must hold for arbitrary real values of ai and bi.
For completeness, we also give the dimension-six contributions to the positivity inequalities in the Warsaw basis:

WZ∶ − a23b
2
3s

4
Wc

2
WðcWCφD þ 4sWCφWBÞ2 − 36ða1b1 þ a2b2Þ2e2s2Wc2WC2

W þ dim-8 terms ≥ 0 ðA16Þ

WW∶ − a23b
2
3s

2
Wc

4
WC

2
φD − e2c2W36s

2
Wða1b1 þ a2b2Þ2C2

W þ dim-8 terms ≥ 0 ðA17Þ

Wγ∶ − ða1b1 þ a2b2Þ2C2
W þ dim-8 terms ≥ 0: ðA18Þ

Other channels do not lead to dimension-six contributions in the results. As we can see, the dimension-six contributions to
the left-hand side of the positivity conditions are negative definite.
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2. SM loop contribution

Here, we compute explicitly the SM loop contribution
in the γγ channel as an example, and show that it is
negligible once the low energy discontinuities are sub-
tracted out, as in the rhs of the dispersion relation in Eq. (4).
This is most easily done using Eq. (5), where one can see
that the remaining contribution of the SM loops comes
from the discontinuities at energies scales higher than ϵΛ,
where the integrand of the dispersion relation decays as
either 1=s2 or 1=s3. More explicitly, the one loop SM
contribution to fϵΛ can be computed via the optical theorem
using the tree level total cross section γγ → X:

fsm;γγ
ab;ϵΛð0Þ ¼

Z
∞

ðϵΛÞ2
2ds
π

ImAsm;γγ
ab ðsÞ
s3

¼
Z

∞

ðϵΛÞ2
2ds
πs3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs −M2þÞðs −M2

−Þ
q

×
X
X

σsmabðγγ → XÞðsÞ; ðA19Þ

where we have restricted to the crossing symmetric
amplitudes with a ¼ ða1; a2; a3Þ and b ¼ ðb1; b2; b3Þ
denoting the polarizations. X stands for possible final
states in the SM, which at the tree level includes γγ →
ff̄ (fermion and anti-fermion) and γγ → WþW−. To
leading order in ðϵΛÞ−2 they are given, respectively, by

fWW;γγ
ab;ϵΛ ð0Þ ¼ 16α2

ðϵΛÞ2m2
W
½ða21 þ a22Þðb21 þ b22Þ� þO½ðϵΛÞ−4�

ðA20Þ

and

fff;γγab;ϵΛð0Þ ¼ NcQ4
2α2

ðϵΛÞ4
�
2ða21 þ a22Þðb21 þ b22Þ log

ðϵΛÞ2
m2

f

þ ða21 þ a22Þðb21 þ b22Þ − 4ða1b1 − a2b2Þ2
�

þO½ðϵΛÞ−6�: ðA21Þ

The energy scales that are probed at the LHC for the most
constraining high mass VV pairs are around 1.5–2 TeV
[8,72], so we expect the EFT to be valid up to this scale and
take ϵΛ ¼ 2 TeV. Therefore, the dominant contribution
comes from the γγ → WþW− scattering, which gives
fWW;γγ
ab;ϵΛ ð0Þ ¼ 0.038 TeV−4 with jaj and jbj normalized to 1.
In comparison, the typical contributions to fϵΛ from the

dimension-eight EFT operators are much larger. In the
convention of [51,53] which is often used in experimental
analyses, their typical contributions are of order fi=Λ4.
The current limits on fi span a few orders of magnitude, but
even themost constraining ones are aroundOð1ÞðΛ=TeVÞ4.
So the EFT contribution from each operator is expected

to be around Oð1Þ TeV−4, which means the SM contri-
bution to fγγab;ϵΛ is negligible. For example, in the γγðakbÞ
channel the largest contribution is from fT;8, which gives
9.7 TeV−4, and the smallest one comes from fT;2, which
gives 0.10 TeV−4. All other contributions vary within
this range.

3. t-channel poles

In the derivation of the improved positivity bounds, the
photon t-channel poles, which blow up in the forward limit,
are subtracted along with other low energy poles. Here we
explain why this is justified despite the forward limit
blowups.
Consider BϵΛðspÞ defined in Eq. (4). The WW → WW

channels (and only the WW → WW channels) contain a
tree level t-channel photon exchange diagram, which leads
to a t-channel pole in the forward limit. However, extended
analyticity and other arguments allow one to derive the
positivity bound away from the forward limit for t ¼ δ and
we can take δ to be small, as a regulator. (Technically
speaking, the nonforward positivity bounds will generically
have additional terms away from definite transversity
scatterings; however, these terms are suppressed by at least
δ1=2 as δ → 0.) In the SMEFT, the residue of the t-channel
pole has up to linear s dependence. Thus, the tree level t-
channel pole will vanish after twice subtractions, i.e., after
taking d2BϵΛðspÞ=ds2, and would not affect the positivity
bounds as we take the δ → 0 limit.
The remaining t-pole contribution may show up in loop

diagrams and can also be subtracted via the cutting rules,
again not affecting the positivity bounds. Consider the
optical theorem for the WW → WW channels

ImAðsÞ ¼ ½ðs −M2
−Þðs −M2þÞ�1=2σtðsÞ > 0: ðA22Þ

The rhs can hit a t-channel pole only when σtðsÞ contains
the elastic scattering σWW→WWðsÞ channels, which receives
contribution from one or more t-channel photons. If the
BSM theory is weakly coupled, according to the Cutkosky
rules, these channels correspond to the sum of all diagrams
with aWW cut on the lhs, which we denote by AWWðsÞ and
σWWðsÞ, that is,

ImAWWðsÞ ¼ ½ðs −M2
−Þðs −M2þÞ�1=2σWWðsÞ > 0: ðA23Þ

AWWðsÞ corresponds to at least one-loop diagrams, so away
from the forward limit it is a higher-order effect. Wewant to
make sure that AWWðsÞ does not spoil the analyticity or
become larger than the tree level, as t → 0. To this end, we
subtract the WW → WW channels from both sides of the
optical theorem:

ImðAðsÞ− AWWðsÞÞ ¼ ½ðs−M2
−Þðs−M2þÞ�1=2σWWðsÞ > 0;

ðA24Þ
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where σWWðsÞ is the sum of cross sections of all channels
but WW → WW. Note that AWWðsÞ also generates addi-
tional contributions to the lhs from a non-WW cut in
addition to theWW cut, which need to be removed from the
lhs, but this does not affect the final result as these
contributions are higher-order effects without a t pole.
We can then define BϵΛðsÞ using AðsÞ − AWWðsÞ instead of
AðsÞ, and arrive at formally the same positivity bound. With
the t-channel poles canceled out, the calculation of
d2BϵΛðspÞ=ds2 at the tree level is not affected, because
the nonsingular parts of AWWðsÞ are at least one loop
suppressed. Therefore, the t-channel poles can all be
canceled out and our results are unchanged to leading order.
In fact, for a weakly coupled UV completion, effec-

tive operators are matched on to the leading-order
BSM amplitude. This is because this leading-order BSM

amplitude can only involve heavy particle exchanges or
heavy particle loops, and therefore cannot have a t-channel
pole. One can derive a dispersion relation for this leading
order BSM amplitude directly via the cutting rules. For
example, if the leading order BSM amplitude is at the tree
level, given that it satisfies the Froissart bound, we can run
the dispersion relation argument with it and use the cutting
rules to infer that the imaginary part of it is positive. The
same argument applies if the leading order is at a certain
loop level.
If the BSM theory is strongly coupled, one can circum-

vent the t-channel pole by taking the g0 → 0 limit, where g0
is the SM hypercharge coupling. Since g0 is much smaller
than the BSM strong coupling, it is expected that the
Wilson coefficients, which encode the effects of BSM
heavy states, are not significantly altered by this scaling.
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