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Abstract

String theory offers, through the gauge-gravity dualities, powerful methods to study strongly

coupled field theories. In this dissertation, we will be concerned with applying these methods

to topics related to condensed matter physics.

The Abelian Higgs model coupled to gravity with a negative cosmological constant

provides a gravitational dual to a strongly coupled field theory that has superconducting or

superfluid phases. We construct zero-temperature solutions of this model that interpolate

between two copies of anti-de Sitter space and which we identify with gravitational duals

of quantum critical points. We will do this both for an ad hoc Abelian Higgs model and for

closely related gravitational Lagrangians arising as consistent truncations of string theory

and M-theory. We also compute their frequency-dependent conductivities and find power

law behavior at low frequencies.

We will introduce spin-1
2 fermions in these domain wall geometries and find continuous

bands of fermionic normal modes. These bands can be either partially filled or totally

empty and gapped. We will consider fermionic normal modes and correlators in other

gravitational backgrounds and find other interesting features. For certain dilatonic black

holes in AdS5 and AdS4 in the extremal limit, we find isolated fermionic normal modes at

zero frequency and finite momentum. We will also find that these dilatonic black holes have

linear specific heat at low temperatures, which combined with the previous property makes

them an interesting candidate for a gravitational dual of a Fermi liquid.

Finally, we will consider fermion correlators in non-abelian holographic superconductors

and find that their spectral function exhibits several interesting features such as support in
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displaced Dirac cones and an asymmetric distribution of normal modes. We compare these

features to similar ones observed in angle resolved photoemission experiments on high Tc

superconductors.
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Chapter 1

Introduction

The discovery of the gauge-gravity duality [1, 2, 3] was one of the most influential develop-

ments to come out of the study of string theory. It continues to have a profound impact on

the understanding of both gauge theories and quantum gravity. One of the ramifications

of this discovery was that it provides powerful new tools to study quantum field theories

in regimes where traditional perturbative methods fail (i.e., in the strong coupling regime).

This opens up the exciting possibility of applying these string theoretic methods to the

study of real physical systems where strong coupling plays a role. In this dissertation, we

will focus on applications of the gauge-gravity duality to condensed matter topics. This is a

subject that has already attracted substantial attention (for reviews see [4, 5, 6, 7]). In the

remainder of this introductory chapter we will review some relevant aspects of the duality.

1.1 Overview of the gauge-gravity duality

The gauge-gravity duality, also referred to as the gauge-string duality or the AdS/CFT

correspondence, in its most general form is the statement that

Some quantum field theories (QFTs) are dual to quantum theories of gravity
defined in a higher number of dimensions.

Here by dual we mean that the theories are in some sense exactly equivalent and that each

of them can, in principle, be used as an alternative formulation of the other, enabling us

1
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to compute any physical quantity of interest from the second theory. Since it constitutes

a correspondence between theories in defined in different numbers of dimensions, this is

often called an holographic duality. To those unfamiliar with it, this claim, will seem very

surprising. However, although it has not yet been rigorously proven, the duality has passed

a wide array of qualitative and quantitive tests and is widely believed to be true. A vast

swathe of literature has been devoted to studying implications of the duality from many

different points of view.

The claim above is, as it stands, rather vague. To make things more concrete, consider

the more specific version of this claim

N = 4 supersymmetric SU(Nc) Yang-Mills (SYM) is dual to Type IIB string
theory on an AdS5 × S5 background.

This is the most studied gauge/gravity duality and hence also the best established. Before

describing how the duality works out in practice, let us say something about the two theories

that participate in it.

The QFT in this case is N = 4 Super-Yang Mills. This is the unique 4-dimensional

maximally supersymmetric1 field theory. The field content of this theory is one gauge field

Aµ, 4 spin-1
2 fermions λa and 6 real scalars Xi, each in the adjoint representation of the

SU(Nc) group. The Lagrangian is given by

LSYM =
1

g2
YM

tr

(
− 1

4
F 2 − 1

2
DµX

iDµXi − i

2
λ̄a /Dλa +

1
2

∑
i<j

[
Xi, Xj

]2 +
1
2

Γiabλ̄
a
[
Xi, λb

])
(1.1)

In addition to the SU(Nc) gauge symmetry the theory has a SU(4) global symmetry under

which the λa and Xi transform (with the Γiab an intertwiner of the respective representa-

tions). Furthermore, SYM is a conformal field theory (CFT) and therefore has an SO(4, 2)

group of symmetries that contains the (3+1)-dimensional the Poincaré group and also in-

cludes dilations and special conformal transformations. Note that there are two dimension-

less parameters in the theory, the number of colors Nc and the Yang-Mills coupling gYM.
1Note that N refers to the number of supersymmetries the theory has. For four-dimensional theories

that do not contain gravity 4 is the maximum amount of supersymmetries.
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We are going to be interested in taking the large-Nc limit, and for that purpose it is useful

to introduce the ’t Hooft coupling λ ≡ g2
YMNc which should be kept fixed as Nc is taken to

infinity to obtain a sensible limit.

Type IIB string theory is a supersymmetric chiral string theory defined in 10 spacetime

dimensions. The fundamental objects of the theory are strings, one-dimensional objects that

propagate in spacetime and whose action principle dictates the minimization of the area they

sweep out in spacetime. In addition to the fundamental strings, the theory also contains

Dp-branes, objects which extend in p space dimensions, and exist for p equal to 1, 3, 5, 7,

or 9. The strings can be closed or open, in which case their endpoints are constrained to

move on the Dp-branes that are present. The spectrum of excitations of the strings can be

organized into an infinite set of fields transforming in representations of the 10-dimensional

Lorentz group with masses and spins that grow arbitrarily large. Particularly important

is the massless part of this spectrum, which, in the absence of Dp-branes, consists of a

graviton gµν , a gravitino ψµ, two scalar fields φ and C, a dilatino χ, two 2-form fields B2

and C2 and a 4-form C4 with a self dual field strength F5. In the low energy limit, the

massive fields decouple and Type IIB string theory reduces to a theory that only involves

these massless fields: Type IIB 10d supergravity. The AdS5 × S5 geometry is a classical

solution of this low energy theory. The nonzero fields in this background are the metric and

the self-dual 5-form, and are given by

ds2 =

[
r2

L2

(
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+
L2

r2
dr2

]
+ L2dΩ5

F5 = F5 + ∗F5 F5 =
4r3

L4
dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr ,

(1.2)

where dΩ2
5 is the metric on a unit radius 5-sphere and L is a constant with dimensions of

length, the radius of curvature of both factors of the geometry. The term in the square

brackets in the first line of (1.2) is the metric of AdS5 or 5-dimensional Anti de Sitter

space. This is a maximally symmetric geometry, with constant negative curvature which

is a solution of Einstein’s equations with a negative cosmological constant. Its group of

isometries is SO(4, 2). Since the group of isometries of the S5 factor is SO(6) (which is
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isomorphic to SU(4)) we see that the 10-dimensional geometry has a SO(4, 2) ⊗ SU(4)

isometry group, precisely matching the continuous global symmetries of N = 4 SYM.

In addition to the length scale L that appears in (1.2), there are is one more dimensionful

parameter in the theory: the Regge slope α′ which determines the string tension and hence

the mass of the massive part of the string spectrum. These parameters are related to the

gauge-theory parameter λ by
L4

α′2
= λ . (1.3)

The duality between SYM and Type IIB string theory is a statement of the equality of

the partition function of the two theories,

ZSYM = Zstring . (1.4)

This equality holds not only for the vacuum partition functions but also in the presence

of sources for all the operators in the theory and therefore encapsulates the fact that all

the physics of one theory can be expressed in terms of that of the other. Of course, the

two theories have distinct field contents and some care must be taken in interpreting this

statement, and to this purpose a dictionary relating fields of SYM to those of string theory

has been developed.

If one takes the large-Nc limit something remarkable happens on the the string side of the

duality: the theory becomes classical, i.e., the string partition function can be approximated

by its saddle point:

ZSYM = Zstring ≈ eiSon−shell (Nc →∞) . (1.5)

This a tremendous simplification, and a further one happens if one also takes λ → ∞

simultaneously. From (1.3), this means that α′ will be very small relatively to L, which

allows us to ignore the effects of massive string states (their mass is ∝ 1/
√
α′). Therefore,

in the Nc → ∞, λ → +∞ string theory reduces to classical supergravity. Computational

methods for classical supergravity are much more developed than those for strongly coupled

gauge-theory, and therefore the gauge-gravity duality provides us with powerful new tools

to study the latter.
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N = 4 is SYM is not the only theory with a known gravity dual - the correspondence

has been generalized in many different ways. A simple generalization is that duality ac-

commodates a simple way of deforming N = 4 by appropriate gauge-invariant operators

contained in the theory itself (a procedure we will outline in section 1.2). In a different

direction, there are many known dualities between field theories and string theory on ge-

ometries of the type AdSp×M10−p, where M10−p is an appropriate compact manifold (with

isometry group equal to the group of global symmetries of the dual field theory) and AdSp

is p-dimensional Anti de Sitter space. Its metric is a simple generalization of the first factor

of (1.2):

ds2 =
r2

L2

(
−dt2 +

p−2∑
i=1

dx2
i

)
+
L2

r2
dr2 . (1.6)

This metric has SO(p− 1, 2) isometry group, which is the same as the conformal group in

p− 1 dimensions. The field theory dual to the AdSp ×M10−p will therefore be a conformal

field theory in p− 1 dimensions, that for heuristic purposes can be thought of living in the

boundary of the AdSp space at r = +∞.

A further possibility is gravity duals where the geometry of the product type AdSp ×

M11−p. In this case the full geometry is 11-dimensional and the quantum gravity theory

that one should have in mind in this background is M-theory rather than string theory. The

low energy theory on the gravity side will be given by 11-dimensional supergravity. The

canonical example corresponds to p = 4, M7 = S7 and in this case the dual gauge theory is

a supersymmetric Chern-Simons (2 + 1)-dimensional conformal field theory, often referred

to as ABJM theory [8].

In practice, we do not even need to consider a the full 10-dimensional (or 11-dimensional)

gravity theory. We can exploit the product form of the full metric to Kaluza-Klein reduce

onto the AdSp factor, i.e., write an arbitrary 10-dimensional (11-dimensional) field as an in-

finite sum over p-dimensional fields on AdSp times harmonics of the M10−p (M11−p). Having

done this, we will obtain a p-dimensional theory that is completely equivalent to its higher

dimensional uplift. Of course, the lower dimensional theory will have an infinite number of

fields (corresponding to the infinite number of harmonics of the M10−p manifold). However,
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we will be often interested in describing situations where only a finite number of these lower

dimensional fields are nonzero and can for this purpose use effective p-dimensional actions

with a finite number of fields. Through the course of this dissertation we will be concerned

with studying gravity side actions of the type

S =
1

2κ2

∫
dpx
√
−g (R− 2Λ + Lmatter) , (1.7)

where R is the Ricci scalar and Λ is the cosmological constant2 and Lmatter is a lagrangian

that can involve different types of matter fields but always a finite number of them. In the

course of this dissertation we will have occasion to consider Lmatter involving abelian gauge

fields and scalar fields (Chapters 2,3,4, and 5), non-Abelian gauge fields (Chapter 6) and

spin-1
2 fermions (Chapters 4,5, and 6). We will be mostly focusing on p = 4, and therefore

on gravity duals to (2 + 1)-dimensional field theories (in Chapter 4 we will also consider a

p = 5 geometry).

Note that actions of the type (1.7) can, as we have just argued, be derived rigorously from

dimensionally reducing an higher-dimensional gravity action that has a known gauge-theory

dual. If this is is done, the p-dimensional classical solutions of the lower dimensional action

can always be uplifted to solutions of the higher dimensional theory. However, an alternative

useful approach is to simply postulate an ad hoc action of the type in (1.7) and study its

properties (this is the approach we will take in Chapters 2, 5, and 6 and in part in Chapter 4).

This allows us to study simpler gravity Langrangians and impose whatever features are

necessary to obtain interesting physics. The price of this simplicity and flexibility is however

that in these ad hoc phenomenological models, much less information about the gauge-

theory dual is available.

1.2 Field theory correlators from gravity duals

Let us now be more concrete and sketch a simple calculation using a gravity dual. Let us

take p = 4 and assume the background geometry is given by AdS4. Consider the action
2We should take Λ = −(p− 1)(p− 2)/(2L2) to obtain an asymptotically AdSp geometry with radius L.
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(1.7) with Lmatter given by

Lmatter = −1
2
∂µφ∂

µφ− 1
2
m2φ2 , (1.8)

i.e., that for a simple real scalar φ with mass m. In the context of the gauge-gravity

duality, φ is a gravity side field that will be dual to some gauge-theory side operator O.

Without some embedding of the action corresponding to (1.8) in higher dimensional action

with a known gravity dual, there is no way of knowing precisely what this is operator is.

Nevertheless, (1.8) provides us with enough information to compute correlation functions

of O. To this end, let us be a little more explicit on the meaning of (1.5). If we are only

turning on a source for operator O then (1.5) can be written as

ZQFT
φ0

≡
〈
ei

R
d3xφ0(xm)O(xm)

〉
QFT

= eiSgravity
∣∣
limr→+∞ φ(xm,r)=φ0(xm)

. (1.9)

Here Sgravity should be understood as (1.7) with Lmatter given by (1.8) and evaluated on shell

with the boundary condition on φ given above. Note that φ0 is 3-dimensional classical field

(it does not have an r dependence) that acts as a source for the operator O(xm). According

to the AdS/CFT dictionary, we should identify it with the limit of the 4-dimensional φ field

as r becomes large. From (1.9) it is clear how to compute correlators: we should simply

evaluate the on-shell action and take functional derivatives with respect to φ0:

GO(xm1 , x
m
2 ) ≡ 〈O(xm1 )O(xm2 )〉 =

δSgravity

δφ0(xm1 )δφ0(xm2 )

∣∣∣∣
φ0=0

. (1.10)

Let us now see how this works in more detail. In practice, it is useful to exploit the

translation symmetry in the xm and working in Fourier space. This can be done by setting

φ(xm, r) = e−iwt+ik1x1+ik2x2
φ̃(r) . (1.11)

and taking functional derivatives with respect to φ̃ to obtain the correlator in Fourier space

G(km).

In order to extremize (1.8), φ(r) must be a solution of the Klein-Gordon equation

(�−m2)φ = 0. This leads to the following equation for φ̃(r)

r2φ̃′′ + 4rφ̃′ −
(
m2L2 +

L4k2

r2

)
φ̃ = 0 k2 ≡ −ω2 + k2

1 + k2 , (1.12)
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where the prime denotes the derivative with respect to r. The generic solution to (1.12) is

given by

φ̃(r) = Ur−
3
2K∆− 3

2

(
L2k

r

)
+ V r−

3
2 I∆− 3

2

(
L2k

r

)
(1.13)

where U and V are arbitrary constants, K and I are modified Bessel functions of the second

and first kinds respectively, and we have defined

∆ ≡ 3
2

+

√
9
4

+m2L2 . (1.14)

If we expand (1.13) for large r, we obtain

φ̃ ≈ Ar∆−3 +Br−∆ , (1.15)

where A and B are constants that can easily be written in terms of U and V . From (1.14),

we see that if m2 ≥ 0 then ∆ ≥ 3. Lower values of ∆ are possible even though this implies

that the scalar must be tachyonic, as in AdS spaces the negative curvature can stabilize

tachyons, provided the squared mass is not too negative. The condition for no instability is

the Breitenlohner-Freedman bound [9, 10] and corresponds to demanding that ∆ in (1.14)

be real, i.e, to imposing m2L2 > −9/4. Provided this Breitenlohner-Freedman bound is

satisfied, we see that ∆ ≥ 3
2 and that the A term in (1.15) dominates for sufficiently large

r0. This term, and therefore φ̃(r), does not in general approach a constant as r → +∞ so

it is not clear how to identify φ̃0(km) (by which we mean the Fourier transform of φ0(xm)).

The correct procedure is to identify φ̃0 with r3−∆
0 φ̃(r0) for some large but finite r0, take

functional derivatives and at the end of the calculation send r0 →∞ (or, in other words, to

identify φ̃0 with A). When doing this we should also restrict the range of integration when

computing the on-shell action, i.e.,

Sgravity = − 1
2κ2

∫ r0

0
dr

∫
d3x
√
−g
(
∂µφ∂

µφ+m2φ2
)
, (1.16)

where we have only included the contribution from Lmatter because to the order we will

be working with the scalar field φ does not back react on the geometry and therefore the

Einstein-Hilbert term does not depend on φ0.
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Let us compute the first functional derivative. After integrating by parts, the variation

of the action (1.16) can be written

δSgravity =
1

2κ2

[∫ r0

0
dr

∫
d3x
√
−g δφ

(
�−m2

)
φ+

∫
d3x δφΠφ(xm, r0)

]
, (1.17)

with Πφ the momentum conjugate to φ with respect to the r coordinate, i.e.,

Πφ =
δLmatter

δ∂rφ
=
√
−ggrr∂rφ =

r4

L4
∂rφ . (1.18)

Now, since we are only interested in evaluating (1.17) on-shell, the first term will vanish

identically since it is proportional to the equations of motion. We conclude that

δSgravity

δφ0
= r∆−3

0

δSgravity

δφ
=

1
2κ2

r∆−3
0 Πφ(r0) . (1.19)

To obtain the correlator, we just need to take a further functional derivative, obtaining the

final expression

G(km) = lim
r0→+∞

1
2κ2

r∆−3
0

δΠφ

δφ0
. (1.20)

If we now extract the finite part of the right hand side we obtain

G(km) =
1

2κ2
(2∆− 3)

δB(km)
δA(km)

. (1.21)

Note that in writing (1.21) we droped terms in (1.20) that diverge in the limit r0 → +∞

and kept only the finite part. This can be justified more rigorously by a procedure termed

holographic renormalization in which counterterms localized at r = r0 are added to the

gravity action in order to cancel these divergences.

Until now we have not imposed any relationship between A and B - they are simply

the two independent integration constants of a second order differential equation - and the

meaning of (1.21) is not clear. To see where the relationship between A and B originates,

consider first the case k2 > 0 (i.e., we are outside the light-cone). It is easily seen that the

I∆−3/2 term in (1.13) diverges exponentially as r → 0 and we must therefore set V = 0

to obtain well behaved φ̃. It is then a simple exercise to use the large r expansion of

K∆−3/2(L2k/r) to write B in terms of A and obtain

G(km) ∝ B

A
∝ k2∆−3 . (1.22)
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By Fourier transforming (1.22), we obtain the real space correlator. A simple variable

change will show that this will scale as

G(xm) = 〈O(xm)O(0)〉 ∝ 1
x2∆

, (1.23)

i.e., O is an operator with conformal dimension ∆, justifying our notation.

Consider now the case k2 < 0. In this case, the generic solution (1.13) is oscillatory as

r → 0, and φ̃ will always be well behaved, seeming to imply an ambiguity for the correlator.

This is related to the fact the we are computing correlators for a theory with Lorentzian

signature and there are therefore different useful definitions of the correlator: Feynman,

retarded and advanced. Formula (1.21) can reproduce each of these different correlators,

depending on the boundary conditions imposed as r → 0. For instance, to obtain the

retarded correlator we should impose that φ̃ is a purely infalling wave as r → 0 [11, 12].

Equivalently, we could use the usual iε prescription for the retarded correlator, i.e., do the

calculation with the replacement ω → ω+ iε with ε a small positive number. By demanding

regularity for nonzero ε and taking ε to zero at the end of the calculation, we will obtain

the same results as from the purely infalling prescription. The other correlators can be

obtained by the appropriate usual iε prescriptions.

We have described a method to compute correlators of scalar operators using gravity

duals for a simple AdS4 background. This method generalizes straightforwardly for fields

of higher spin and also to different background geometries provided that they are asymp-

totically AdS. The general strategy is the same in all cases:

1. Solve the classical equations of motion for the field, imposing appropriate boundary

conditions in the interior of the manifold (i.e., regularity or purely infalling b.c.).

Numerical methods might be necessary for this step in general.

2. Regulate the on-shell action by introducing a large r cut off r0 and evaluate it with

the result from the previous step.

3. Take functional derivatives and extract the finite part as r0 is taken to infinity.
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1.3 Gravity duals at finite temperature and chemical poten-

tial

To have any hope of applying the gauge-gravity duality to condensed matter topics it is

essential to be able to study gravity duals in canonical and macro-canonical ensemble.

Happily, this is something the duality accommodates in a straightforward way. To turn on

a finite temperature, we should consider geometries that are asymptotically AdS4 but that

have an event horizon in the interior. More explicitly, let us consider geometries of the form

ds2 = e2A(r)
(
−h(r)dt2 + dx2

1 + dx2
2

)
+ e−2A(r) dr

2

h(r)
. (1.24)

The condition that this geometry is asymptotically AdS4 means that for large r it should

approach the AdS4 metric, i.e, A ≈ log(r/L), h ≈ 1. We also demand that the metric is an

extremum of an action of the type (1.7), i.e., it must be a solution of Einstein’s equations

Gµν + Λgµν =
1
2
Tµν Gµν = Rµν −

1
2
Rgµν , (1.25)

where Tµν = −2δLmatter/δg
µν + gµνLmatter is the bulk stress-energy tensor. Additionally,

we must impose the equations of motion resulting from varying the action with respect to

each matter field.

If we take Lmatter = 0 then there is a unique asymptotically AdS family of solutions,

AdS-Schwarzschild, which corresponds to choice of metric coefficients

A = log
r

L
, h = 1−

r3
H

r3
. (1.26)

Note that this geometry has an event horizon at the zero of h, r = rH . This horizon has an

associated Bekenstein-Hawking entropy and temperature, which will equal the temperature

and entropy of the quantum field theory dual. The entropy is simply proportional to the

area of the event horizon. Since this is infinite, it is more useful to consider the entropy

density s per unit field theory area, and the result is

s =
2π
κ2

Ah
V2

=
2π
κ2
e2A(rH) =

2π
L2κ2

r2
H , (1.27)



12

where the last expression only applies to AdS-Schwarzschild. To compute the temperature

of the background, we can Wick rotate to Euclidean time (i.e., send t → iτ) and impose

periodicity in the Euclidean time, with period equal to the inverse temperature. When this

procedure is applied to the metric (1.24), one finds that the resulting geometry will have

a conical singularity at r = rH , except for a special value of this period. This sets the

temperature to be

T =
1

4π
e2A(rH)|h′(rH)| = 3

4π
rH
L
. (1.28)

Comparing (1.28) and (1.27), one sees that s ∝ T 2, which is precisely what is expected for

a conformal field theory in (2 + 1) dimensions.

To introduce a chemical potential in relativistic field theory, the theory must posses a

global symmetry and an associated conserved current Jm. Turning on a chemical potential

µ is then equivalent to deforming the Lagrangian of the QFT by the time component of the

conserved current J t, i.e., sending

LQFT → LQFT − µJ t . (1.29)

The gravity dual of a conserved current Jm is a gauge field Aµ. The gauge symmetry of

Aµ is the expression on the gravity side of the global symmetry associated to Jm on the

field theory side. The minimal gravity side action that incorporates a gauge field is given

by (1.7) with

Lmatter = −1
4
FµνF

µν , Fµν = ∂µAν − ∂νAµ . (1.30)

As before, one can consider more general Lmatter that contain other fields but his minimal

case has the virtual of leading to analytical solutions and illustrating all the relevant features.

The background must obey Einstein’s equations (1.25) with

Tµν = FµαF
α
ν −

1
4
F 2gµν , (1.31)

and must also solve Maxwell’s equation ∇µFµν = 0. If we take the ansatz (1.24) for the

metric and take the gauge field to be a of the form Aµdx
µ = Φ(r)dt, the asymptotically

AdS solutions are of the form:

A = log
( r
L

)
h = 1−m/r3 +

1
4
q2L2

r4
Φ =

q

r
− q

rH
(1.32)
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where m and q are parameters that set the mass and charge of the black hole and rH

is the largest zero of h(r) (we can easily solve for rH explicitly but the expression is

not particularly illuminating). This blackhole is the asymptotically AdS generalization

of the Reissner-Nördstrom blackhole and is often referred to as the Reissner-Nördstrom-

AdS (RNAdS) metric. It would seem that we can add an arbitrary constant to Φ since this

a gauge transformation that does not affect the equations of motion. However, since h(r)

has a zero at r = rH , Φ(r)dt is not a well defined 1-form at r = rH unless Φ(rH) = 0, fixing

the constant in (1.32). Applying the formulae (1.28) and (1.27) we obtain

TRN =
12r4

H − q2L2

16πr3
H

sRN =
2πr2

H

L2κ2
, (1.33)

where we have eliminated m in favor of rH by using the condition h(rH) = 0.

To identify the chemical potential µ and its thermodynamical conjugate the charge

density ρ, we need to examine the behavior of At = Φ(r) for large r. The situation is

entirely analogous to the case of the scalar operators discussed in section 1.2: by turning

on Φ(r) we are deforming the dual field theory with respect to the operator dual to it (i.e,

Jt) with the coefficient of the deformation (i.e., µ) being equal to the limiting value of Φ(r)

near the boundary,3 i.e., µ = limr→+∞Φ(r)/L. To obtain the charge density ρ = 〈Jt〉 we

should evaluate the on-shell action and take a µ derivative. If we do this for the RNAdS

background (1.32), we obtain

µRN = − q

LrH
ρRN = − Q

2Lκ2
. (1.34)

We can combine (1.33) and (1.34) to write an equation of state for RNAdS that does not

involve q or rH :

4LπTs
3
2 = 3s2 − 4π2ρ2 . (1.35)

From this equation of state we immediately see that if we set the temperature to zero, then

s = 2πρ/
√

3, i.e., RNAdS has finite entropy density at zero temperature. We shall have

more to say about this in Chapter 4, but for now note that this zero temperature geometry
3Note that we have introduced a factor of 1/L in the formula for µ. This is purely conventional as long

as it is done consistently and was done so µ has the dimensions of energy.
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corresponds to setting m = 4r3
H , q =

√
6r2
H/L and that for these value of the parameters

the near horizon geometry is AdS2 ×R2, i.e.,

ds2
nearhorizon ≈ −

r̃2

L̃2
dt2 +

L̃2

r̃2
dr̃2 +

r2
H

L2

(
dx2

1 + dx2
2

)
L̃ ≡ L√

6
, (1.36)

where r̃ ≡ r − rH . For large r, it of course asymptotically AdS4 and this zero temperature

geometry can therefore be thought of as an AdS4 to AdS2 × R2 domain wall. Through

the course of this dissertation we will find other types of domain wall arising as interesting

zero-temperature limits of gravitational backgrounds.

1.4 Holographic superconductors

We are now ready to introduce what has so far been one of the main topics of interest in

condensed matter applications of the gauge-gravity dualities: holographic models of super-

conductivity. Superconductivity can be thought of as arising from a spontaneously broken

gauge symmetry [13]. The gauge symmetry in question is, of course, the U(1) electromag-

netic gauge symmetry and it is broken by charged operator gaining an expectation value

(in conventional superconductors this operator is a Cooper pair, a bilinear in the electron

creation operator). This results in an effective mass for the photon, explaining much of the

phenomenology of superconductors.

The simplest gravity dual that captures similar physics is the holographic Abelian Higgs

model [14, 15]. This corresponds to taking the action (1.7) with

Lmatter = −1
4
F 2
µν − |Dµψ|2 − V (|ψ|) Dµψ = ∂µψ − iqAµψ (1.37)

where ψ is a complex scalar with so far arbitrary potential V (|ψ|). Note that (1.37) is

essentially a relativistic version of the Landau-Ginzburg free energy, and it is therefore not

surprising that will encode some version of superconductivity. There are however, important

differences. Firstly, in this context we are allowing a (asymptotically AdS) curved geometry

that is back-reacted upon by the gauge field and complex scalar. Secondly, we are interpret-

ing extrema of (1.37) in the context of the dual field theory. This in particular means that
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the U(1) gauge symmetry manifest in (1.37) leads only to a global U(1) symmetry in the

field theory dual. Therefore, (1.37) can be more properly thought of as holographic model of

superfluidity rather than superconductivity. However nothing prevents us from a posteriori

gauging the U(1) global symmetry of the field theory. In fact, even in conventional theories

of superconductivity, such as BCS theory, there are no dynamical photons (i.e., a global

rather than gauge U(1) symmetry is studied).

As we have reviewed, Lagrangians like (1.37) allow asymptotically AdS charged black-

hole solutions that are dual to field theory configurations at finite temperature and chemical

potential. In particular, and provided V ′(0), (1.37) always has RNAdS extrema that cor-

respond simply to setting ψ = 0. Additionally, (1.37) can have blackhole solutions that

can be described as superconducting. These are solutions for which the gauge symmetry is

broken, which will happen if ψ(r) is nonzero, i.e., if the blackhole has charged scalar hair.

The dual field theory interpretation of this is that the charged operator dual to ψ has gained

an expectation value and broken the global symmetry of the theory.

Let us review how these superconducting blackhole solutions can be found in a little

more detail. The equations of motion following from (1.7) and (1.37), are, once more,

Einstein’s equations (1.25) with

Tµν = FµαF
α
ν + 2Dµψ

∗Dνψ + gµνLmatter (1.38)

and the Maxwell and scalar equations

∇µFµν = iq (ψ∂νψ∗ − ψ∗∂νψ)

DµDµψ = V ′(|ψ|) .
(1.39)

We again take the metric ansatz (1.24) and the gauge field to be of the form Aµdx
µ = Φ(r)dt

a take ψ = ψ(r). The equations of motion (1.39) then imply that the phase of the complex

scalar ψ is constant, and by a gauge transformation we can take therefore take ψ to be

real. Given this ansatz, the equations of motion become a set of coupled nonlinear ordinary
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differential equations which can be reduced to

A′′ −A′2 +
1
2
ψ′2 +

q2Φ2ψ2

2h2
= 0

A′h′ +
1
2
e2AV (ψ)− q2Φ2ψ2

2h
+

1
4
e−2Aφ′2 +

1
2
h
(
6A′2 − ψ′2

)
= 0

ψ′′ +
(

2A′ +
h′

h

)
ψ′ +

q2φ2ψ

h2
− e2AV ′(ψ)

2h
= 0

φ′′ − 2q2e2AΦψ2

h
= 0 .

(1.40)

These equations do not generically have analytical solutions and recourse recourse to nu-

merical methods is necessary in order to solve them.

Let us now discuss the boundary conditions. For large r, we wish the geometry to be

asymptotically AdS, i.e., that A→ log r
L and h→ 1. This fixes the large r behavior of Φ(r)

to be Φ ≈ C1 + C2/r and we place no restrictions on C1 (which we recall is related to the

chemical potential) or C2 (which will proportional to the charge density). The generic large

r behavior of ψ will be, as discussed in section 1.2,

ψ ≈ Ar∆−3 +Br−∆ ∆ =
3
2

+

√
9
4

+ L2V ′′(0) . (1.41)

We remind the reader that allowing A to be nonzero would correspond to turning on a

deformation with respect the charged operator dual to ψ. This would mean that we would

be breaking the U(1) symmetry explicitly by this deformation. Since we are interested

in studying spontaneously broken symmetry we will demand that A = 0 and allow only

nonzero B.

We also wish the geometry to exhibit an event horizon, i.e., a value rH of r such that

h(rH) = 0. To have a well defined gauge field we will also demand that Φ(rH) = 0. As for

A and ψ we merely demand that they not diverge as r → rH .

We thus have boundary conditions both at r = rH and r = +∞ and are therefore led

to a boundary value problem. This can be solved numerically using a shooting method,

and superconducting blackhole solutions can in this way be found, at least for appropriate

choices of V (ψ) and q.

Let us now focus on a particularly simple potential, the quadratic V (|ψ|) = m2|ψ|2.

Even with this simple potential which lacks secondary extrema, the Abelian Higgs model
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(1.37) will have a preferred superconducting phase at low temperatures for appropriate

value of m and q. Furthermore, the RNAdS solution of (1.37) will be unstable and want

to become superconducting. To see this consider the zero temperature limit of the RNAdS

blackhole, which has we have reviewed at the end of section 1.3, is domain wall interpolating

between AdS4 and an AdS2 ×R2 near horizon region. The scalar ψ leads to no instability

in the AdS4 large r region provided m2 obeys the AdS4 Breitenlohner-Freedman bound,

i.e, m2L2 > −9/4, which we will assume to be the case. However, in the AdS2 region, the

scalar has an effective mass to which the gauge field contributes given by

m2
near = lim

r→rH
m2 + q2gtt(r)Φ(r)2 = m2 − 2q2 . (1.42)

This leads to violation of the AdS2 Breitenlohner-Freedman bound, and hence an instability,

whenever

m2
nearL̃

2 < −1
4
, (1.43)

where L̃ is given by (1.36). This can be rewritten purely in terms of quantities in the

Lagrangian as

m2L2 − 2q2L2 < −3
2
, (1.44)

which gives a sufficient condition for RNAdS to be unstable. Note that large enough charges

q lead to a superconducting instability.

1.5 Outline of dissertation

The rest of this dissertation is organized as follows. In Chapter 2, which is based on [16], we

will describe a zero temperature gravitational background that is an extremum of the holo-

graphic Abelian Higgs model. This background has properties that will lead us to identify

it with the gravitational dual of a quantum critical point. It is also a zero temperature limit

of the finite temperature holographic superconductor solutions of the same model. In Chap-

ter 3, which is based on [17], we will discuss zero temperature gravitational backgrounds

similar to the ones discussed in Chapter 2 but this time arising as extrema of gravitational
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actions derived from string theory and M-theory constructions, rather than from and ad

hoc phenomenological action. Afterwards, in Chapter 4, which was based on [18], we will

discuss some interesting black holes with uncharged scalar hair, arising from string theory

and M-theory constructions. We will be particularly interested in their thermodynamical

properties and in the spectrum of fermionic fields in these backgrounds. In Chapter 5,

which was based on [19], we will again consider the spectrum of fermionic fields but this

time in the zero temperature limit of holographic superconductors discussed in Chapters 2

and 3. In Chapter 6, which is based on [20], we will be concerned with some properties of

p-wave holographic superconductors including, once more, the spectrum of fermionic fields

in these backgrounds. We will find some interesting points of contact with non-conventional

superconductors. Finally, in Chapter 7 we present some concluding remarks.



Chapter 2

The gravity dual to a quantum

critical point with spontaneous

symmetry breaking

In [21, 22, 23], it was proposed that AdS4 black holes could be compared to the pseudogap

state of high Tc materials, along the lines of the gauge-string duality [1, 2, 3]. This proposal

hinges on the hypothesis that the properties of the pseudogap are largely controlled by a

quantum critical point. A quantum critical point is a phase transition that occurs at zero

temperature and is driven by quantum rather than thermal fluctuations. An example is

the Bose-Hubbard model in 2 + 1 dimensions, where there are quantum critical points with

relativistic conformal symmetry in the plane parametrized by the hopping matrix element

and the chemical potential (with the on-site repulsion held fixed) [24].

It is clearly desirable to understand better the general proposal that an AdS4 vacuum

could describe a quantum critical point. For a system to exhibit quantum critical behavior,

it must have massless excitations. That usually means a linear dispersion relation, with

some characteristic speed v less than the speed of light, and an associated Lorentz group.

Quantum criticality is often (though not necessarily) characterized by relativistic conformal

symmetry, which is an enlargement of the Lorentz group: for example, from SO(2, 1) to

19
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SO(3, 2) for theories in two plus one dimensions. And SO(3, 2) is the isometry group

of AdS4. Symmetries of a quantum critical point are emergent in the sense that they

characterize the infrared (IR) physics of a medium.

Consider the line element

ds2 = e2A(−hdt2 + dx2 + dy2) +
dr2

h
, (2.1)

where A and h are functions of r, which encodes energy scale in the dual field theory.1

The effective speed of transmission of signals in the field theory depends on scale: it is the

coordinate speed dx/dt corresponding to a null vector vµ = (1,
√
h(r), 0, 0). That is,

veff(r) =
√
h(r) . (2.2)

Although the value of veff(r) can be changed by scaling t and/or x, ratios of veff(r) at

different values of r are diffeomorphism-invariant.

In order to have SO(2, 1) Lorentz symmetry emerge in the infrared, one needs h to

approach a constant in the region where A→ −∞. (This region is generally understood to

correspond to infrared physics in a gravity dual.) In order for SO(3, 2) conformal symmetry

to emerge, one must also have A approach a linear function of r in the infrared region,

so that the geometry is asymptotically AdS4. Likewise, in the ultraviolet (UV) region,

where A → +∞, Lorentz symmetry arises if h → constant, and conformal symmetry

arises if h → constant and A is asymptotically linear. Thus we may envision domain

wall geometries, where an ultraviolet and infrared geometry, each possessing Lorentzian

or conformal symmetry, are separated by a finite region possessing neither. The UV and

IR Lorentz groups (or conformal groups) differ because they are characterized by different

values of veff . Using the null energy condition, we will show that veff is never greater in the

infrared than it is in the ultraviolet.

For definiteness, we will focus on an example where there is conformal invariance both

in the ultraviolet and in the infrared. The action we are going to study is the one proposed
1Note that this metric is equivalent to the metric (1.24) by a redefinition of the r coordinate. In the

present Chapter we prefer to use (2.1) as it will prove more convenient for numerical purposes.
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in [14] for describing black holes that superconduct at finite temperature:

S =
∫
d4x
√
g

[
R− 1

4
F 2
µν − |∂µψ − iqAµψ|2 − V (ψ)

]
(2.3)

where V (ψ) depends only on |ψ|. Crucially, we assume that V (ψ) has a negative local

maximum at ψ = 0 and a gauge-equivalent family of minima at some value |ψ| = ψIR. The

simplest example of a suitable potential is

V (ψ) = − 6
L2

+m2|ψ|2 +
u

2
|ψ|4 , (2.4)

where m2 < 0 and u > 0. Then

ψIR =

√
−m2

u
. (2.5)

We can choose coordinates such that the infrared limit of the metric is, call it AdSIR, is

ds2
IR = e2r/LIR(−dt2 + dx2 + dy2) + dr2 , (2.6)

where LIR is defined through the equation

− 6
L2

IR

= V (ψIR) . (2.7)

We need to deform AdSIR at large r in order to get it to match onto the ultraviolet geometry,

call it AdSUV. This could be done just with an r dependent profile ψ(r), but then the

SO(2, 1) symmetry acting on (t, x, y) would remain unbroken. To break it without breaking

the SO(2) subgroup acting on (x, y), we have to turn on the t component of the gauge field.

The dual statement is that a quantum critical point whose characteristic velocity is less

than the speed of light requires the presence of matter. We set Aµdxµ = Φdt for some Φ(r),

which must vanish as r → −∞ because there is a degenerate Killing horizon there where

the norm of dt diverges.

The infrared asymptotics of the scalar and the gauge field are easily found to be

ψ(r) = ψIR + aψe
(∆IR−3)r/LIR + . . .

Φ(r) = φ0e
(∆Φ−1)r/LIR + . . . ,

(2.8)
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where aψ and φ0 are undetermined coefficients, and ∆IR and ∆Φ are the larger roots of

∆IR(∆IR − 3) =
1
2
V ′′(ψIR)L2

IR

∆Φ(∆Φ − 1) = 2q2ψ2
IRL

2
IR .

(2.9)

Terms omitted in (2.8) vanish faster than the ones shown as r → −∞. We assume φ0 > 0,

but there is a Z2 symmetry between configurations with positive and negative φ0.

The equations of motion following from the action (2.3) are

A′′ = −1
2
ψ′2 − q2

2h2e2A
Φ2ψ2 (2.10)

h′′ + 3A′h′ = e−2AΦ′2 +
2q2

he2A
Φ2ψ2 (2.11)

Φ′′ +A′Φ′ =
2q2

h
Φψ2 (2.12)

ψ′′ +
(

3A′ +
h′

h

)
ψ′ =

1
2h
V ′(ψ)− q2

h2e2A
Φ2ψ , (2.13)

and there is a first order constraint, which if satisfied at one value of r must hold everywhere,

provided the equations of motion (2.10-2.13) are also satisfied:

h2ψ′2 + e−2Aq2Φ2ψ2 − 1
2
he−2AΦ′2 − 2hh′A′

− 6h2A′2 − hV (ψ) = 0 .
(2.14)

The left hand side of (2.10) is proportional to Gtt−Grr, where Gµν is the Einstein tensor. So

the right hand side of (2.10) is proportional to T tt −T rr . This quantity is evidently negative

for the theory (2.3). If one considers a more general matter theory coupled to gravity, T tt−T rr

must still be non-positive provided the null energy condition is obeyed: Tµνξµξν ≥ 0 for null

ξν . This shows that the argument of [25] demonstrating the holographic c-theorem extends

to this case. Similarly, the left hand side of (2.11) is proportional to Gxx −Gtt, so the right

hand side—call it s(r)—must be non-negative of the null energy condition is obeyed. We

can formally solve (2.11) in terms of s(r):

h(r) = 1 +
∫ r

−∞
dr1 e

−3A(r1)

∫ r1

−∞
dr2 e

3A(r2)s(r2) . (2.15)

There are no free integration constants in (2.15) because we assume h→ 1 in the infrared,

which implies e3A(r)h′(r) → 0 there as well. We learn from (2.15) that h(r), and hence
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veff(r), are monotonically increasing functions of r. We do not need to assume that there

is conformal invariance in the UV or the IR to obtain (2.15).

Before exhibiting an explicit, numerical solution to (2.10)-(2.14), let’s count the scaling

symmetries and parameters that characterize a solution. The upshot of the discussion will

be that, given a definite potential, an extremal solution of the form (2.1), with suitable

asymptotic behaviors prescribed for the various fields involved, is essentially unique.

Equations (2.10-2.14) have two scaling symmetries that are summarized in Table 2.1,

in which assigning a charge α to a quantity X means that X → λαX. Of the eight

dr eA h Φ ψ ω a
(0)
x a

(1)
x

I 1 0 2 1 0 1 0 0
II 0 1 0 1 0 1 0 1

Table 2.1: Charges under scaling symmetries of quantities in (2.10-2.14) and (2.22).

integration constants in the equations (2.10-2.13), one is used up by (2.14). Two are used

up by insisting ψ → ψIR and Φ→ 0 as r → −∞. One is used up by insisting that h is finite

as r → −∞ (meaning that the horizon is degenerate, or zero-temperature). Using scaling

symmetries I and II, we can ensure that h → 1 and that A(r) − r/LIR → 0 as r → −∞,

which uses up two more integration constants and guarantees that the metric in the far

infrared takes the form (2.6). The last two integration constants are the parameters aψ

and φ0 in (2.8). But by rescaling xm → λxm and shifting r/LIR → r/LIR − log λ (which

preserves that metric ansatz (2.1) and the property A − r/LIR → 0 as r → −∞), we can

choose any prescribed value for φ0. It appears then that there is a one-parameter family

of solutions to (2.10-2.14), parametrized by aψ. However, the asymptotic behavior of ψ

near the conformal boundary is constrained once one chooses a lagrangian for the UV field

theory. For the sake of definiteness, we will assume that the appropriate boundary condition

on ψ near the conformal boundary is

ψ ∝ e−∆ψA , (2.16)
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Figure 2.1: An example of a solution connecting two AdS vacua with different effective
velocities of signal transmission.

where ∆ψ is the larger root of

∆ψ(∆ψ − 3) = m2L2 . (2.17)

After this constraint is imposed, there can only be discretely many solutions. There may

be none. If there is a stable solution, it represents a quantum critical point.

To give an explicit example, we used the potential (2.4) and made the following choice

of parameters:

L = 1 q = 2 m2 = −2 u = 3 φ0 = 1 . (2.18)

A simple shooting algorithm suffices to find a solution satisfying both the infrared and

ultraviolet asymptotic properties discussed in the previous paragraphs. We show the result

in figure 2.1. The solution has aψ = 0.312, and the ratio of its characteristic velocity in

the infrared to the speed of light in the ultraviolet is v/c =
√
hIR/hUV = 0.615.

It is reasonable to expect the transport coefficients of a quantum critical point to have

power-law dependence on frequency. The example that is readiest to hand in our setup is
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the conductivity. Consider a complexified perturbation of the gauge field:

Ax = e−iωtax(r) . (2.19)

Following [26], if the leading behavior near the conformal boundary is

ax(r) = a(0)
x + a(1)

x e−A(r) + . . . , (2.20)

and if Ax is constrained to have purely infalling behavior as one approaches the degenerate

Killing horizon of AdSIR, then

σ ∝ σ̃ ≡ −i
ω

a
(1)
x

a
(0)
x

√
hUV . (2.21)

The constant of proportionality in (2.21) is ω-independent. To relate σ to the resistance

entering Ohm’s Law, one must include factors of the electric charge relating to a weak

gauging of the U(1) symmetry of the boundary theory by a boundary gauge field. We

will only be interested in the frequency dependence, so we will not try to track down the

constant of proportionality and instead simply compute σ̃. The factor of
√
hUV ensures

that this expression is invariant under the scaling symmetries of Table 2.1. In other words,

if we chose to perturb Ay instead of Ax, we would get the same answer for the conductivity.

The equation of motion obeyed by ax is

a′′x +
(
A′ +

h′

h

)
a′x

+
1
h

(
ω2

he2A
− 2q2ψ2 − e2AΦ′2

)
ax = 0 .

(2.22)

To derive (2.22), one must also consider a complexified metric perturbation δgtx. This metric

perturbation mixes with ax in the linearized equations, but thanks to a constraint from the

xr Einstein equation, δgtx can be eliminated altogether from the Maxwell equations, and

(2.22) follows more or less immediately.

Modulo three technical assumptions, it is easy to extract the scaling of σ̃ in the limit

of small but non-zero ω. First, Im σ̃ ∼ 1/ω, because this is what Kramers-Kronig requires

based on the existence of a delta function in Re σ̃ at ω = 0 2 . In other words, the 1/ω scaling
2Our first technical assumption is that the continuous part of Re σ̃ is integrable at ω = 0. This can be

checked a posteriori.
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of Im σ̃ is a consequence of the infinite DC conductivity associated with the spontaneous

breaking of the U(1) symmetry. Next, Re σ̃ is related to a conserved flux: if we define

F = −he
A

2i
a∗x
←→
∂ rax (2.23)

then ∂rF = 0 follows from (2.22), and

Re σ̃ =
L

ω
√
hUV

F
|a(0)
x |2

(2.24)

by direct computation. Deep in the AdSIR region, where we can ignore deviations from

ψ = ψIR and Φ = 0 3 , (2.22) can be solved explicitly:

ax = e−r/2LIRH
(1)
∆Φ−1/2

(
ωLIRe

−r/LIR

)
, (2.25)

where H(1)
∆Φ−1/2 is a Hankel function. Passing (2.25) through (2.23) gives an ω-independent

flux, so to determine the scaling of Re σ̃ we need only find a
(0)
x . The trick that makes this

possible is that a solution, call it ax(r) = Zx(r), to the ω → 0 limit of (2.22), can be

combined with (2.25) using the method of matched asymptotic expansions, provided ω is

small. Zx should be chosen so that e−(∆φ−1)r/LIRZx → 1 as r → −∞. Assume that ω is

small enough so that the radius r∗ ≡ L logωL is much less than the radius rIR at which

AdSIR is significantly deformed. In the matching window r∗ � r � rIR, one finds by

expanding the Hankel function that4

ax(r) ≈ i secπ∆φ

(
ωL

2

)−∆Φ+1/2

Zx(r) . (2.26)

In fact, the approximate equality (2.26) must hold for all r � r∗, because the ω2 term in

(2.22) is negligible in this region. So we conclude

a(0)
x = lim

r→∞
ax(r) ∝ ω−∆Φ+1/2 , (2.27)

3Our second technical assumption is that not only Φ → 0 as r → −∞, but also e2AΦ′ → 0, so that the
Φ′2 term in (2.22) can be neglected in comparison with the ω2 term. This can be checked given values of
the parameters as in (2.18).

4Our third technical assumption is that ∆ is not half an integer. If it is, then the expansion of H
(1)

∆Φ−1/2

involves a logarithm, and logarithmic scaling violations may result.
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where the constant of proportionality involves limr→∞ Zx(r), which encodes all the physics

at high scales. Plugging (2.27) into (2.24), one obtains Re σ̃ ∼ ωδ for small ω, with

δ = 2(∆Φ − 1) . (2.28)

For the parameters indicated in (2.18), ∆Φ = 1
2 +

√
101
20 , resulting in δ ≈ 3.5.

In the high-ω limit, σ̃ should asymptote to its value in the ultraviolet AdS4 geometry,

which is constant [21]: σ̃AdS4 = 1 in our conventions. Figure 2.2 shows that the behavior of

Re σ̃ is a smooth interpolation between its low- and high-frequency limits.

1.00.5 2.00.2 5.00.1
ΩL

10-4

0.001
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0.1

1

Re@Σ� D

Figure 2.2: The real part of σ̃ as function of ωL for the solution displayed in figure 2.1. The
dots show the result of numerical computation while the solid line is the small ω power-law
behavior Re σ̃ ∼ ωδ with the overall constant chosen so the line passes through the first
point. The dashed line shows the high ω limit σ̃ = 1. Note that there is an ambiguity in
the scale of ω, as the scaling symmetries affect it. In this plot the scale is fixed by using
the scaling symmetries to ensure that h→ 1 and A(r)− r/L→ 0 as r → +∞.

In conclusion: The Abelian Higgs model in AdS4, described by the action (2.3), pro-

vides the simplest known holographic description of superconductivity or superfluidity. It
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is striking that this model also exhibits a zero-temperature state with relativistic confor-

mal invariance and a critical exponent that depend continuously on the parameters of the

model. Non-trivial scaling laws in the infrared probably arise for other Green’s functions,

for example the ones associated with the operator dual to ψ. A natural question to ask

is whether these solutions are zero-temperature limits of regular black hole solutions (in

the same sense that empty AdS is the limit of AdS-Schwarzschild) which are stable and

thermodynamically favored over all other finite-temperature configurations. In [27], strong

numerical evidence was provided that Lorentzian symmetries do emerge on the thermo-

dynamically favored branch of superconducting black hole solutions to simple theories in

AdS4. It is not hard to produce similar numerical evidence in favor of emergent conformal

symmetry when there is a symmetry-breaking minimum in the scalar potential, plausibly

leading to the domain wall solutions of the previous chapter as the zero-temperature limits

of the thermodynamically favored superconducting black holes.



Chapter 3

Quantum critical superconductors

in string theory and M-theory

In [28, 29], explicit examples of superconducting black holes were exhibited in type IIB

supergravity and M-theory, respectively. These works follow the general scheme described

in section 1.4 for constructing superconducting black holes: a complex scalar charged under

an abelian gauged field condenses outside the horizon when the charge of the black hole is

big enough. The constructions of [28, 29] draw upon advances including [30, 31, 32, 33] in

the understanding of how to embed solutions of gauged supergravity into ten- and eleven-

dimensional supergravity.

To summarize the the previous chapter, we suggested that emergent conformal symmetry

should emerge in the zero-temperature limit of superconducting black holes, provided the

scalar potential has a symmetry-breaking minimum. We further suggested that if there was

no such minimum, the zero-temperature limit should involve emergent Lorentz symmetry.

In this chapter, we apply the techniques of the previous one to the theories discussed in

[28, 29] to construct domain wall geometries which are candidate ground states for finite-

density matter in the gauge theories dual to the AdS5 and AdS4 geometries we consider.

While we would like to go further and claim that the geometries we construct are the genuine

ground states of the theories under consideration at finite density, such claims are difficult

29
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to establish without knowing the full spectrum of supergravity deformations.

We start in section 3.1 with the AdS5 example, and continue in section 3.2 with the

AdS4 example. We finish in section 3.3 with a brief discussion and a conjecture about the

relation between renormalization group flows and emergent conformal symmetry in finite-

density systems.

The authors of [29] anticipated the quantum critical nature of the zero-temperature

limit of the superconducting black holes they studied.

3.1 A string theory example

Consider the action

S =
1

2κ2

∫
d5x
√
−gL (3.1)

with

L = R− 1
4
F 2
µν −

1
2

(∂µη)2 + sinh2 η

(
∂µθ −

√
3
L
Aµ

)2


+
3
L2

cosh2 η

2
(5− cosh η) + (Chern-Simons) ,

(3.2)

where η is the magnitude of the complex scalar and θ is its phase. The kinetic terms come

from the non-linear sigma-model over the Poincaré disk, parametrized by z = eiθ tanh η
2 .

The lift of this lagrangian to a class of solutions of type IIB supergravity, based on D3-branes

at the tip of a Calabi-Yau cone, was described in [28].

As before, the domain wall geometry takes the form

ds2 = e2A(r)
[
−h(r)dt2 + d~x2

]
+

dr2

h(r)
, (3.3)

and has non-zero gauge field Aµdxµ = Φ(r)dt and η. As we argued in the previous chapter

for the four dimensional case, any such domain wall supported by matter obeying the

null energy condition must have A concave down; and it also follows from the null energy

condition that if h is constant in both the infrared (r → −∞) and the ultraviolet (r → +∞),

then hIR < hUV.
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The scalar potential in (3.2) has two extrema, η = 0 and η = ηIR ≡ log(2 +
√

3), and

to each of these corresponds an AdS5 extremum of (3.2) with radius of curvature L and

LIR ≡ 2
3
2L/3, respectively. The domain wall solution interpolates between these two AdS5

geometries, similar to the one found in [34]. It differs in that we insist that as r → +∞

(the ultraviolet),

η ∝ e−∆ηA = e−3A , (3.4)

corresponding to an expectation value for the dimension 3 operator dual to η, but no

deformation of the CFT lagrangian by it. Instead, denoting the conserved current dual to

Aµ in the ultraviolet CFT by Jµ, we consider states with finite 〈J0〉 and finite chemical

potential µ. In other words, we add µJ0 to the CFT lagrangian, which does not by itself

break the U(1) symmetry associated with Jµ. Non-zero η does break this symmetry.

We can choose coordinates such that as r → −∞

A ∼ r

LIR
, h ∼ 1, η ∼ ηIR, Φ ∼ 0 , (3.5)

with exponentially suppressed corrections, which can be obtained from the equations of

motion linearized around (3.5). Of particular interest are the first corrections to the scalar

and gauge field,

η ≈ ηIR + aηe
(∆IR−4)r/LIR , Φ ≈ aΦe

(∆Φ−3)r/LIR , (3.6)

where ∆IR = 6 −
√

6 and ∆Φ = 5. A formal series solution for A, h, η, and Φ may be

developed in the infrared, in powers of er/LIR , with all coefficients determined in terms of

aη and aΦ.

By shifting r, we can set aΦ to 1 without loss of generality. Such a shift adds a constant

to A, but this constant can be absorbed by rescaling t and ~x by a common factor. To fix

aη, one must impose the ultraviolet boundary condition (3.4). There can be several values

of aη that satisfy this condition. We will consider the solution for which η has the least

number of nodes, since this is the solution most likely to be stable.

By numerically integrating the equations of motion with the boundary conditions de-

scribed above we find a nodeless domain wall solution for aη ≈ 2.134 (see figure 3.1). The
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relative speed of propagation of lightlike signals in the ultraviolet and the infrared is given

by the “index of refraction” n ≡
√
hUV/hIR, and for this solution we have n ≈ 2.674.
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Figure 3.1: A domain wall from a string theory action.

One can define a “normalized” order parameter through the diffeomorphism invariant

formula

〈Ôη〉 ≡ lim
r→∞

η(r)e3A(r)h(r)3/2

Φ(r)3
. (3.7)

In terms of field theory quantities, 〈Ôη〉 is proportional to 〈Oη〉/µ3, where Oη is the operator

dual to η and µ is the chemical potential. The proportionality constant depends on the

precise normalization one chooses for Oη and µ. For our domain wall solution, we find

〈Ôη〉 ≈ 0.322.

It is interesting to note that the ten-dimensional geometry in the far ultraviolet is AdS5

times a Sasaki-Einstein five-manifold (SE5), supported by five-form flux only, whereas in

the far-infrared it is of the form first studied in [35], where a U(1) fiber of the SE5 has

been stretched and a combination of the Neveu-Schwarz and Ramond-Ramond two-form
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gauge potentials have been turned on. These are not supersymmetric compactifications, so

demonstrating stability is non-trivial.

Having obtained the domain wall solution, we can compute its frequency-dependent

conductivity. To this end, we add a time-dependent perturbation to the gauge field, Ax =

e−iωtax(r) and linearize its equation of motion, obtaining

a′′x +
(

2A′ +
h′

h

)
a′x +

(
ω2 − hΦ′2

e2Ah2
− 3 sinh2 η

h

)
ax = 0 , (3.8)

with primes denoting d/dr. If we solve (3.8), with infalling boundary conditions in the

infrared, the conductivity can then be computed from the ultraviolet behavior of the per-

turbation. For large r,

ax ≈ a(0)
x + a(2)

x e−2A + a(L)
x A(r)e−2A . (3.9)

The Ae2A term introduces some ambiguity in this computation: it gives a logarithmically

divergent contribution to the conductivity [36]. However, since a(L)
x /a

(2)
x can be shown to

be a real number, this issue only affects the imaginary part of the conductivity, and the real

part is unambiguously given by

Reσ =
1

2κ2L

2a(2)
x

iωa
(0)
x

hUV

ΦUV
. (3.10)

Here, the factor of hUV/ΦUV, where ΦUV = Φ(+∞), was introduced to render the conduc-

tivity invariant under diffeomorphisms that preserve the form of the metric (3.3). Numerical

results for the real part of the conductivity are shown in figure 3.2. At large frequencies,

we recover the AdS5 behavior, Reσ = Lπω/4κ2. At low frequencies, we can also obtain the

scaling analytically, using the method of matched asymptotic expansions, as in Chapter 2.

The first step is to note that when r � −LIR, the corrections to (3.5) are suppressed.

When they are ignored, (3.8) can be solved analytically. The infalling solution is

aIR
x = e−r/LIRH

(1)
∆Φ−2

(
ωLIRe

− r
LIR

)
, (3.11)

where H(1) is a Hankel function. The next step is to note that when r � LIR logωLIR,

one may drop ω from (3.8) altogether. The resulting equation probably can’t be solved
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analytically, but the point is that the solutions to (3.8) which determine the conductivity

don’t depend on ω in the region r � LIR logωLIR, except for an overall multiplicative factor:

they are given simply by the zero frequency solution. Provided ωLIR � 1, there exists a

window LIR logωLIR � r � −LIR where (3.11) may be matched onto the zero-frequency

solution. The result of this matching is that a(0)
x ∼ ω−∆Φ+2. To extract the real part of the

conductivity, first define

F =
he2A

2i
ax
←→
∂ ra

∗
x

(3.12)

and note that F is independent of r. Inserting (3.9) into (3.12) it follows that F =

σΦUVω
∣∣a(0)
x

∣∣2. On the other hand, inserting (3.11) into (3.12) shows that F is ω-independent.

So we find that

Reσ ∝ ω2∆Φ−5 = ω5 , (3.13)

where in the last step we used ∆Φ = 5. The result Reσ ∝ ω2∆Φ−5 is clearly more general:

it basically depends on having good control over the series expansion of the background in

the infrared.

As figure 3.2 shows, numerical evaluations of the conductivity interpolate quite smoothly

between the infrared and ultraviolet limits just discussed.

3.2 An M-theory example

The four-dimensional theory

L = R− 1
4
F 2
µν −

1
2

[
(∂µη)2 + sinh2 η

(
∂µθ −

1
L
Aµ

)2
]

+
1
L2

cosh2 η

2
(7− cosh η)

(3.14)

derived as a consistent truncation of M-theory in [29, 32], clearly is nearly identical to (3.2).1

As mentioned in [29], this truncation is consistent only when F ∧ F = 0.

This theory also admits a domain wall solution. The asymptotically AdS4 geometry

is of the same form as (3.3), and now the two extrema of the potential are at η = 0

1The notation of [29, 32] is related to ours by Â1 = A and χ̂ =
√

2eiθ tanh η
2
.
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Figure 3.2: The real part of the conductivity for string theory domain wall. The dots are
numerical results, the dashed line is a ω5 power law with the coefficient chosen such that
the line goes through the first dot in the plot and the solid line is the AdS5 conductivity
Reσ = πLω/4κ2.

and ηIR = log(3 + 23/2), corresponding to AdS4 solutions with radii of curvature L and

LIR ≡
√

3L/2, respectively. If we assume the scalar goes to the second fixed point in the

infrared, then as r → −∞,

η ≈ ηIR + aηe
(∆IR−3)r/LIR , Φ ≈ e(∆Φ−2)r/LIR , (3.15)

with ∆IR = (3 +
√

33)/2 and ∆Φ = 4. Imposing no symmetry-breaking deformation of the

UV CFT means demanding that

η ∝ e−∆ηA = e−2A . (3.16)

We numerically found a solution for aη ≈ 1.256 with index of refraction n ≈ 3.775. The

normalized order parameter analogous to (3.7) is in this case given by the diffeomorphism
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invariant formula

〈Ôη〉 ≡ lim
r→∞

η(r)e2A(r)h(r)
Φ(r)2

, (3.17)

and is proportional to 〈Oη〉/µ2. Our domain wall solution has 〈Ôη〉 ≈ 0.201.

As already noted in [29], the infrared geometry in eleven dimensions is an AdS4 com-

pactification of the form studied in [37, 38]. The whole geometry is non-supersymmetric,

so it is difficult to definitely establish stability.

The computation of the conductivity is similar to before, so we will be brief. The main

difference is that the behavior of the solutions as r → +∞ is

ax ≈ a(0)
x + a(1)

x e−A , (3.18)

and this time there is no ambiguity in the imaginary part, the conductivity being given by

σ =
1

2κ2L

a
(1)
x

iωa
(0)
x

√
hUV . (3.19)

Numerical results are shown in 3.3. For high frequencies, the conductivity asymptotes to

the AdS4 value σ = 1/2κ2 [21] and for low frequencies the behavior can be determined

analytically with an argument similar to the one described in the previous section. As we

showed in Chapter 2, in AdS4 the scaling is Reσ ∝ ω2∆Φ−4 = ω4, and this agrees with the

numerical results.

3.3 Discussion

The domain walls we have constructed can be fairly described as superconductors because

they spontaneously break the U(1) gauge symmetry associated with the field strength Fµν

in (3.1) and (3.14). According to the arguments of [13], much of the basic phenomenol-

ogy of superconductors, including infinite DC conductivity, follows from this spontaneous

symmetry breaking. The domain walls can fairly be characterized as quantum critical be-

cause relativistic conformal symmetry emerges in the infrared, and observables, in particular

Reσ(ω), have power-law scaling in the infrared with non-trivial exponents.
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Figure 3.3: The real part of the conductivity for M-theory domain wall. The dots are
numerical results, the dashed line is a ω4 power law with the coefficient chosen such that
the line goes through the first dot in the plot and the solid line is the AdS4 conductivity
σ = 1/2κ2.

Clearly, the domain walls we have constructed are close relatives to holographic renor-

malization group flows from one conformal field theory to another. The main qualitative

difference is that the breaking of the U(1) symmetry was soft in the RG flows, whereas it is

spontaneous in our domain walls. More explicitly: the RG flows are triggered by adding a

relevant operator, dual to the scalar η in both cases, which breaks the U(1) symmetry; our

domain walls, on the other hand, have by design no such relevant deformation, but instead

a spontaneously generated expectation value of the symmetry breaking operator.

It is natural to ask how general the relation between renormalization group flows and

emergent conformal symmetry of finite-density matter might be. Here is a conjecture which

makes sense to us:

• Assume that a field theory is well-defined in the ultraviolet and possesses a continuous
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symmetry. This ultraviolet theory need not be conformal.

• Assume also that if the ultraviolet theory is appropriately deformed, a renormalization

group flow results whose infrared limit is a fixed point which breaks the continuous

symmetry.

Then the conclusion is:

• The ultraviolet theory, or some deformation of it by operators which do not break

the continuous symmetry, has a finite density, zero temperature state whose infrared

behavior is governed by the same infrared fixed point. Finite density means that the

time component(s) of the Noether current(s) associated with the continuous symmetry

have finite expectation values.

We are aware of one way to break this conjecture [27]: it can happen that the conserved

current of the ultraviolet theory flows to a relevant operator at the infrared fixed point.

When that happens, it’s impossible (or at least fine-tuned) for the dynamics of finite-density

matter to flow to the fixed point. What we suggest as a real possibility is that relevance of

current operators with expectation values in the finite-density state is the only obstacle to

the conjecture as we have phrased it. Since the idea is to systematically pair an RG flow

to an infrared critical point with quantum critical behavior of a finite-density state, let us

refer to our suggestion as the “Criticality Pairing Conjecture,” or CPC.

When applied to the gauge-string duality, the CPC implies the existence of a number of

domain wall solutions interpolating among critical points of the scalar potential of gauged

supergravity theories. The CPC might also be tested in situations where some non-string-

theoretic approximation scheme can be found, like a large N expansion with perturbative

control; or, perhaps, it could be investigated in the context of rational conformal field

theories in 1 + 1 dimensions.



Chapter 4

Interesting features of some

asymptotically AdS dilatonic black

holes

As we have seen in previous chapters, the AdS/CFT correspondence allows us to better

understand some aspects of strongly coupled field theories by studying simple gravitational

models and significant work has gone into applying this approach to the study of strongly

coupled systems at finite temperature and density (see [21] for early work). The RNAdS

black hole, which we describe in section 1.3, was one of the first gravity models to be

considered in this context [22, 23, 39]. This black hole background is simple because it in-

volves only the metric and a gauge field, and it is reliable in the supergravity approximation

because it has curvatures that can be made everywhere small. As we have seen, the ex-

tremal RNAdS is a charged domain wall interpolating between AdS4 in the ultraviolet and

AdS2×R2 near the horizon. The domain wall structure has been particularly important in

the study [40, 41, 42] of two-point functions of an operator Oψ dual to a charged fermion ψ

in the bulk. These calculations (all of them relying to some degree on numerics) point to the

existence of an isolated fermion normal mode at finite wave-number, call it kF . The authors

of [40, 41, 42] have argued that this normal mode signals a Fermi surface. The argument

39
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runs roughly as follows. RNAdS carries a charge under a U(1) symmetry which is gauged

in the bulk and global on the boundary. Fermions in the boundary theory can plausibly be

assumed to be charged under this U(1). The zero-temperature state at finite charge density

which is dual to RNAdS is supposed to be a Fermi liquid. Oψ is assumed to have some

overlap with the operator which creates one fermion in the boundary field theory. If this

fermion is created very near the Fermi surface, then it should have a long lifetime. So the

spectral measure should have a spike at energy equal to the Fermi energy and momentum

equal to the Fermi momentum. Now, the Fermi energy can reasonably be identified as the

charge of the bulk fermion times the potential difference between the boundary of AdS4

and the black hole horizon, because this is the amount of energy it takes to add one bulk

fermion’s worth of charge to the black hole.1 In the conventions of [40, 42], which we also

adopt, energy equal to the Fermi energy corresponds to frequency equal to zero. The spike

found in the spectral measure through explicit calculations on the gravity side is indeed at

zero frequency. Furthermore, it had previously been pointed out in [43, 44] that some of

the thermodynamical and transport properties of near extremal RNAdS are also suggestive

of a Fermi surface. So everything makes sense.

Or does it? The elephant in the room is the macroscopic zero-temperature entropy of

RNAdS, which seems at odds with a description of the zero-temperature dual as a degenerate

Fermi liquid. For the sake of a simple discussion, let’s focus on the AdS5 case. The dual

is then a gauge theory (at least in all known constructions) for which the ranks of the

gauge groups are large. Let the rank of one gauge group be N . Then the total entropy

density is N2k3
F up to factors of order unity. More conventionally, one could express entropy

density as N2Ω3 times factors of order unity, where Ω is the chemical potential for the U(1)

symmetry; but kF /Ω is O(1). One way out is to suppose that the zero-point entropy owes

to some unspecified dynamics of the colored degrees of freedom, while the Fermi liquid

dynamics is a subleading effect in N . This seems in line with the calculations of one-loop
1Implicit in the argument at this step is that the boundary field theory fermion has the same U(1) charge

as the bulk fermion. This would be true, for example, if Oψ = trXλ where X is a neutral scalar and λ is
the boundary field theory fermion.
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bulk effects in [45]. The picture that seems to emerge is that the number of fermions in the

Fermi liquid (or at least, the number of fermions near the edge of the Fermi sea) is O(1)

rather than O(N2). Perhaps they should be thought of as color singlet bound states of an

adjoint scalar and an adjoint fermion, created by an operator of the form trXλ, where X

is the scalar and λ is the fermion. It is remarkable that there should be such a bound state

when the entropy indicates that the theory as a whole is in a deconfined state. What seems

really odd, if one subscribes to this picture, is that the spectral measure of the two-point

function of Oψ scales naturally as N2. To see this without committing oneself to a definite

form of Oψ, consider that the two-point function of the stress-tensor of the boundary field

theory certainly scales as N2, as does the two-point function of the operator dual to the

dilaton: indeed, this scaling, and the agreement of the overall coefficient in certain cases,

provided early hints of AdS/CFT [46, 47, 48]. Likewise the supercurrent, dual to the bulk

gravitino, has two-point functions that scale as N2, and so do all single-trace, color-singlet

operators dual to bulk supergravity fields, simply because the on-shell action that defines

the two-point functions naturally includes a prefactor of 1/G5, which is proportional to

N2. It is hard to see how this scaling squares with the picture of the spike in the spectral

measure owing to quasi-particle dynamics of a color-singlet bound state: the magnitude

of the spike itself scales as N2. In summary, the picture of O(1) Fermi liquid phenomena

resting on top of deconfined O(N2) dynamics of colored degrees of freedom presents some

serious puzzles, and pending a resolution of them—including a microscopic account of the

zero-point entropy with coefficients that agree or almost agree between field theory and

gravity—one should feel entitled to some doubt about the whole picture.

Matters would be simpler if the zero-point entropy weren’t there. Better yet would be

if the O(N2) thermodynamics also exhibited linear specific heat, as one expects for a Fermi

liquid. If such a setup could be found, with a normal mode similar to the one that exists for

RNAdS, then one could plausibly advance the interpretation that adjoint fermions in the

field theory are in a Fermi liquid state at zero temperature; that the normal mode (with

magnitude scaling as N2) signals the existence of O(N2) quasi-particle excitations (adjoint
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or bifundamentally charged fermions in quiver theories) at the edge of the Fermi surface;

and that the specific heat at low temperatures (also scaling as N2) is the specific heat of

the Fermi liquid.

So, can a suitable black hole be constructed in an asymptotically AdS5 geometry? The

answer is “Yes.” In fact one can even concoct a theory where the black hole solution is

analytically known. The simplest such theory (at least, the simplest one we know) is

L =
1

2κ2

[
R− 1

4
e4αF 2

µν − 12(∂µα)2 +
1
L2

(8e2α + 4e−4α)
]
, (4.1)

and the spatially uniform, electrically charged solution is

ds2 = e2A(−h dt2 + d~x2) +
e2B

h
dr2 Aµdx

µ = Φdt

A = log
r

L
+

1
3

log
(

1 +
Q2

r2

)
B = − log

r

L
− 2

3
log
(

1 +
Q2

r2

)
h = 1− µL2

(r2 +Q2)2
Φ =

Q
√

2µ
r2 +Q2

− Q
√

2µ
r2
H +Q2

α =
1
6

log
(

1 +
Q2

r2

)
.

(4.2)

This black hole is extremal if rH = 0, which implies µL2 = Q4. The extremal solution has a

naked singularity at r = 0, which we will say more about in section 4.3. The neutral scalar

α plays the role of a dilaton because it controls the physical gauge coupling.

The thermodynamics of the charged dilatonic black hole (4.2) is most easily expressed

in the microcanonical ensemble in terms of a rescaled energy density, entropy density, and

charge density:

ε̂ ≡ κ2

4π2L3
ε =

3µ
8π2L6

ŝ ≡ κ2

4π2L3
s =

rH
√
µ

2πL5
ρ̂ ≡ κ2

4π2L3
ρ =

Q
√

2µ
4π2L5

. (4.3)

From (4.3) together with the condition h(rH) = 0, one may straightforwardly verify the

micro-canonical equation of state:

ε̂ =
3

25/3π2/3

(
ŝ2 + 2π2ρ̂2

)2/3
. (4.4)

The temperature and chemical potential can be found by differentiation:

T =
(
∂ε̂

∂ŝ

)
ρ̂

Ω =
(
∂ε̂

∂ρ̂

)
ŝ

. (4.5)
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One easily finds

ŝ = π

√
2ε̂
3
T ≈ (π2ρ̂)2/3 T ≈ Ω2

4
T , (4.6)

where the approximate equalities hold in the low-temperature limit. The rescaled specific

heats at constant charge density and constant chemical potential,

Ĉρ̂ = T

(
∂ŝ

∂T

)
ρ̂

ĈΩ = T

(
∂ŝ

∂T

)
Ω

(4.7)

coincide with each other and with the rescaled entropy density ŝ in this limit.

With a black hole in hand whose low-temperature thermodynamics lends itself to the

claim that the dual is a Fermi liquid, the next obvious question is whether it supports

isolated fermionic normal modes similar to the ones found in RNAdS. We will show by

example in section 4.1 that it does. Next one might inquire whether one can embed this

black hole in string theory. Indeed one can. In fact, (4.1) is a consistent truncation of

maximal gauged supergravity in five dimensions [49], and the solution (4.2) is the black

hole solution in this theory where two of the three commuting U(1) gauge groups carry

equal charge, and the third carries no charge. Thus it can be immediately lifted to a ten-

dimensional geometry, asymptotic to AdS5 × S5, which describes the near-horizon limit

of D3-branes which have equal spin in two of the three orthogonal transverse planes, and

zero spin in the third plane [50]. By way of comparison, RNAdS5 can be lifted to the

near-horizon limit of D3-branes with equal spin in all three orthogonal transverse planes.

When (4.2) is lifted to an asymptotically AdS5×S5 solution to type IIB supergravity, its

field theory dual must be N = 4 super-Yang-Mills theory (hereafter N = 4 SYM), which has

massless scalars charged under the U(1) symmetry dual to Aµ, as well as massless charged

fermions. It is hard to see how these charged scalars would fail to take over the dynamics at

low temperatures and finite chemical potential: in particular, one would expect that they

condense, spontaneously breaking the U(1) symmetry that is gauged in the bulk theory

(4.1). This indeed happens, as can be seen from studying the dynamics of bulk scalars

in the 20 of SO(6) in the background (4.2) [51]. In section 4.2 we note another, simpler

instability: There is a negative thermodynamic susceptibility below a critical temperature
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which leads to the spontaneous breaking of an SU(2) symmetry as well as translational

invariance. This negative susceptibility is a well studied [52, 53] example of the Gregory-

Laflamme instability [54, 55], although its interpretation here in terms of breaking an SU(2)

symmetry is new as far as we know.

While the lift to an asymptotically AdS5×S5 geometry does not particularly encourage

the view that the dual physics is a Fermi liquid, it does provide an interesting explanation

of the linear specific heat: there is an AdS3 factor in the near horizon geometry, which

takes two of its dimensions from the AdS5 factor and one from the S5. In section 4.3, we

explain the appearance of this AdS3 factor heuristically in terms of an effective string built

from intersecting giant gravitons, along the lines of [56]. It is tempting to speculate that

the non-chiral conformal invariance associated with the AdS3 geometry is a more general

feature of embeddings of black holes with linear specific heat in string theory and M-theory.

The question naturally arises: Could there be an embedding where there is a Fermi liquid in

the dual field theory which somehow explicitly realizes the non-chiral conformal symmetry?

The spinning D3-branes construction has a well-known M-theory analogue. In sec-

tion 4.4, we find that it can reproduce many of the features we found appealing in the

string theory construction. Namely, it has a four-dimensional reduction consisting of a

charged dilatonic black hole that supports an isolated fermion normal mode at finite k at

zero temperature and has linear specific heat at low temperatures.

Once one has achieved a detailed understanding of a charged dilatonic black hole with

linear specific heat at low temperature, a natural follow-up question is whether the theory

(4.1) can be modified in a simple way to accommodate other behaviors for the specific heat.

We explore this question in section 4.5, exhibiting some further exactly solvable examples

and summarizing their thermodynamic properties.

We end with a summary of our findings in section 4.6.
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4.1 Fermion normal modes

Let us now consider fermions in the zero temperature limit of the charged dilatonic black

hole (4.2). We will take the fermionic action to be

Sf = i

∫
d5x ψ̄(ΓµDµ −m)ψ + Sbdy (4.8)

where Dµψ =
(
∂µ + 1

4ωµ
ρσΓρσ − iqAµ

)
ψ and ωµρσ is the spin connection. Sbdy is a bound-

ary term necessary to have well defined variational problem [57] and does not affect the

equations of motion. We will specify it below. We denote curved space indices by µ and

tangent space indices by µ. It is convenient to chose a basis for the Γ matrices where Γr is

diagonal, and we choose

Γ0 = i

σ2 0

0 σ2

 , Γ1 =

 0 σ1

σ1 0

 , Γ2 =

 0 σ3

σ3 0

 ,

Γ3 = i

0 −1

1 0

 , Γr =

1 0

0 −1

 ,

(4.9)

where σ1, σ2, and σ3 are the Pauli matrices. The matrices Γ0, . . . ,Γ3 are then four-

dimensional Γ matrices with Γ5 = Γr.

The action (4.8) is ad hoc in the sense that we do not derive it from supergravity or

from an embedding of the black hole solution (4.2) in string theory. We will explain such

an embedding in sections 4.2 and 4.3, and in principle we could replace Sf by the quadratic

fermion action of maximally supersymmetric gauged supergravity in five dimensions. How-

ever, this action is complicated, involving mixing between spin-3/2 fields and spin-1/2 field

through the super-Higgs mechanism, Yukawa couplings, and also couplings between the

gauge field strength Fµν and bulk fermion bilinears. So it seems to be quite a challenge

to diagonalize the action. Also, we do not want to commit ourselves to the embedding of

(4.1) into maximal gauged supergravity as the only potentially interesting one. Altogether

it seems worthwhile to start with the fermionic action (4.8).

We will only consider m ≥ 0. Noting the translation symmetry in the t, xi directions,
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we take the fermion wave-function to be of the form

ψ(t, xi, r) = e−iωt+ikx
1
u(r) = e−iωt+ikx

1



u+
1 (r)

u+
2 (r)

u−1 (r)

u−2 (r)


. (4.10)

Because of rotational invariance in the ~x direction, we can assume that the momentum is

in the +x1 direction: that is, k > 0. With this ansatz, Dirac’s equation can be written as[
e−B
√
hΓr∂r + ie−A

(
kΓ1 − ω + qΦ√

h
Γ0

)
+

8hA′ + h′

4
√
heB

Γr −m
]
u = 0 . (4.11)

To find fermion normal modes we need to solve (4.11) with the appropriate boundary

conditions at r = 0 and look for values of the parameters for which u grows more slowly as

r → +∞ than the generic solution.

To decide on the boundary conditions at r = 0, we can solve (4.11) near r = 0 using

series expansions. The form of the expansion depends crucially on whether ω is zero or

non-zero. We expect normal modes only at ω = 0, since for ω 6= 0 the solutions exhibit

a non-zero flux in the r direction, so let us consider the zero frequency case. The series

expansion are then of the form

u = Ur
− 7

6
+
|k|
|Ω|

(
1 +O

(
r1/3

))
+ V r

− 7
6
− |k||Ω|

(
1 +O

(
r1/3

))
(ω = 0) , (4.12)

where Ω =
√

2Q/L2 is the chemical potential at zero temperature. The subleading terms

have series expansions in integer powers of r1/3 that can easily be found. The equation

of motion also allows us to write the 3, 4 components of the constant spinors U and V

algebraically in terms of their 1, 2 components, but the exact form of that relationship

won’t be important. The boundary condition that we will impose is to set V , the coefficient

of the most divergent solution, to zero. This amounts to requiring that
√
−gψ̄ψ be finite at

r = 0, a property shared by the purely infalling solutions for ω 6= 0. We found numerically

that purely infalling solutions for ω 6= 0 approach the zero frequency solutions with V = 0

as you take ω → 0.
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Let us now consider the behavior of the solutions near the boundary, i.e., as r → +∞.

In this limit, the geometry is AdS5 with radius of curvature L and the gauge field Φ is a

constant, so we can solve (4.11) , obtaining

u±a = C±a e
− 5

2
AX∓ 1

2
−mL

(
κe−A

)
+D±a e

− 5
2
AX± 1

2
+mL

(
κe−A

)
(4.13)

where

κ2 ≡ L
√
k2 − (qΦ + ω)2 , (4.14)

and Xν is an appropriate Bessel function. If κ2 > 0, we should take for κ the positive

square root and set Xν = Iν , the modified Bessel function. If κ2 < 0, we can either take

κ = i
√

(qΦ + ω)2 − k2 or, equivalently, replace κ by |κ| in (4.13) and set Xν = Jν .2

Similarly to what happened for r = 0, we can use the equation motion to write C−a and

D−a algebraically in terms of C+
a and D+

a , and are left with 4 independent constants of

integration.

Expanding (4.13) at large r, we see that u+
a ∝ C+

a r
−2+mL, and we therefore identify

normal modes with solutions of (4.11) with V = 0 for which C+
1 = C+

2 = 0, i.e., for which

the coefficient of the most divergent solution near the boundary is zero. Note that the

structure of (4.11) means that u+
1 only couples to u−2 and u+

2 only to u−1 , so it is consistent

to set u+
2 = u−1 = 0 (or u+

1 = u−2 = 0) and look simply for zeros of C+
1 (or, resp. C+

2 ).

These normal modes correspond to poles of the retarded Green’s function [57], with normal

modes with nonzero u+
1 (or nonzero u+

2 ) corresponding to poles of G11 (or poles of G22,

resp.). More concretely, if we choose the boundary term in the action (4.8) to be

Sbdy = −i
∫

r=1/ε

d4x
√
−ggrrψ̄+ψ− , ψ± ≡

1
2

(1± Γr)ψ , (4.15)

where ε is a positive quantity to be taken to zero after functional derivatives are taken, then
2We are assuming that ν /∈ Z, so that Jν and J−ν are linearly independent. For ν ∈ Z, the Xν should be

built out of Jν and Yν .
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ψ is dual to a positive chirality Weyl spinor3 and the retarded Green’s function is given by

GR =
(κ

2

)2mL Γ
(

1
2 −mL

)
Γ
(

1
2 +mL

)
−iD

−
2

C+
1

0

0 i
D−1
C+

2

 . (4.16)

Before giving a concrete example of a normal mode, let’s consider two heuristic con-

straints on suitable values of k. First, we expect that κ2 < 0, which for ω = 0 reduces

to

|k| < kmax ≡ L|qΩ| . (4.17)

We arrive at this condition by noting that if κ2 > 0, then for a normal mode at large r,

u+
a ∝ e−

5
2
AI 1

2
+mL

(
κe−A

)
, and so u+

a increases monotonically (and eventually exponentially

in e−A) as one goes down into AdS5. It is hard to see how this asymptotic behavior would

match onto a solution that is normalizable at r = 0. On the other hand, if κ2 < 0, u+
a ∝

e−
5
2
AJ 1

2
+mL

(
|κ|e−A

)
at large r, which is oscillatory and there is no apparent obstruction

to the matching. Because the asymptotic behaviors we described are only approximations

to u, one cannot take the bound (4.17) as rigorous.

Second, we prefer to investigate wave-numbers k such that the leading power in (4.12)

is positive, i.e. obeying

|k| > kmin ≡
7
6
|Ω| . (4.18)

This condition simply ensures that ψ does not diverge at r = 0. While this is not strictly

necessary, it is convenient numerically and helps ensure the absence of back-reaction. Con-

ditions (4.18) and (4.17) have nonzero intersection only if q > qmin ≡ 7
6L . So, as a specific

example, we consider the following choice of parameters:

L = 1 m = 0 Q = 1 q = 2 . (4.19)

L = 1 is a choice of units. Q = 1 corresponds to Ω =
√

2, and q = 2 satisfies the bound

q > qmin.
3We could have made a different choice for Sbdy, with ψ+ ↔ ψ−. With this choice, ψ is dual to a negative

chirality Weyl spinor, and the formula for the Green’s function is slightly different.
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Figure 4.1: A normal mode with u+
2 nonzero (corresponding to a pole in G22) for m = 0,

Q/L = 1, q/L = 2 and k/Ω = 3/2. The solid line corresponds to u+
2 , which is purely real.

For this normal mode u+
1 and u−2 are exactly zero and u−1 is purely imaginary (the analytical

forms are given in (4.20)). The dashed lines show the real (Red) and imaginary (Green)
parts of the purely infalling solution for Lω = 10−3. Note that they match away from r = 0
and differ for small r, where the terms proportional to ω in (4.11) become dominant.

To find a normal mode with this choice of parameters, our approach was to numerically

integrate (4.11) with initial conditions given by the r = 0 series expansion (with first term

given by (4.12) with V = 0) at some small but finite r. The near boundary coefficients

C+
a where then extracted by evaluating the Wronskian of the numerical solution with the

boundary solution (4.13) and k was varied until a zero was found. The range allowed by

(4.17) and (4.18) is 7
6 ≤

k
Ω ≤ 2. We found a normal mode with u+

2 nonzero in this range

and were even able to write it down in closed form! The normal mode occurs for k/Ω = 3/2
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(see Fig. 4.1), and is given by

u+
2 =

2r
1
3

(1 + r2)
1
6 (2 + r2)

5
4

(√
2 + r2 − r

) 1
2

u−1 =
√

2i
2r

1
3

(1 + r2)
1
6 (2 + r2)

5
4

(√
2 + r2 − r

)− 1
2
,

(4.20)

and u+
1 = u−2 = 0. It is easy to verify this is a solution of (4.11), and expanding it at small

r we obtain u+
2 = r

1
3 + O(r

4
3 ), which shows that V = 0 (cf. (4.12)). If we expand it at

large r, we find u+
2 = 2r−3 +O(r−4), and this shows that C+

2 = 0 (if it were nonzero, there

would be a term proportional to r−2) and so that (4.20) is in fact a normal mode.

One can understand the simple analytic form of the charged dilatonic black hole solution

(4.2) as a consequence of its relation to spinning D3-branes. The analytic form of the normal

mode (4.20) is more mysterious, since neither the action (4.8) nor the choice of parameters

(4.19) was drawn from string theory.

4.2 A thermodynamic instability

Now let us turn to the question of embedding (4.1) and the solution (4.2) into string theory.

We will treat this embedding in two steps. First, in this section, we will discuss embedding

of (4.1) in maximal gauged supergravity. From this embedding, one can already see the

thermodynamic instability mentioned in the beginning of this chapter. Then in section 4.3

we will consider the lift to ten dimensions. We note in advance that only a small fraction of

this section and the next is original. The rest is a compilation of results from the literature,

in particular [58, 59, 53, 50, 56].

The SO(6)R symmetry of N = 4 SYM corresponds to the rotation group in directions

transverse to the D3-branes: that is, rotations of the S5 factor in AdS5 × S5. The Cartan

subalgebra of SO(6) is U(1)3. Translationally-invariant states of N = 4 SYM can have

three independent commuting R-charge densities corresponding to these three U(1)’s. Let’s

denote these R-charge densities in the field theory as ρi. As before, let ε and s be the energy
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and entropy densities in the field theory, and let us define rescaled quantities

ε̂ ≡ ε

N2
ŝ ≡ s

N2
ρ̂i =

ρi
N2

. (4.21)

Because of the relation
L3

κ2
=
N2

4π2
(4.22)

for SU(N) N = 4 SYM, the definitions of ε̂ and ŝ agree with the ones given in (4.3).

The SO(6)R symmetry of N = 4 SYM is the gauge group of maximal gauged super-

gravity in five dimensions. The lagrangian of this theory is quite complicated, but a simple

truncation of it that includes the U(1)3 Cartan subalgebra is the STU model [58],

L =
1

2κ2

[
R− 1

2
GijF

i
µνF

µνj −Gij∂µXi∂µXj − V (X) + Chern-Simons
]
. (4.23)

The Chern-Simons term will not matter for the calculations of this paper. The index i runs

from 1 to 3, and the scalars Xi are constrained to satisfy X1X2X3 = 1. The target space

metric and potential are given by

Gij =
1
2

diag
{

1
(X1)2

,
1

(X2)2
,

1
(X3)2

}
V = − 4

L2

3∑
i=1

1
Xi

. (4.24)

The general translationally invariant black brane solution with unequal electric charges is

ds2 = − f

H2/3
dt2 +

H1/3

f
dr2 +H1/3 r

2

L2
d~x2

Φi =
Qi
√
µ

r2 +Q2
i

−
Qi
√
µ

r2
H +Q2

i

Xi =
H1/3

Hi

f = − µ
r2

+
r2

L2
H H = H1H2H3 Hi = 1 +

Q2
i

r2

(4.25)

The horizon radius rH is determined as the largest root of f . One straightforwardly finds

ε̂ =
3µ

8π2L6
ŝ =

rH
√
µ

2πL5
ρ̂i =

Qi
√
µ

4π2L5
. (4.26)

To recover (4.1) from (4.23), we set

A3
µ = 0 A1

µ = A2
µ = Aµ/

√
2 X1 = X2 = e−2α X3 = e4α . (4.27)
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It is now easy to check that the solution (4.2) and its thermodynamics (4.3) are recovered

from (4.25) and (4.26) by setting

Q3 = 0 Q1 = Q2 = Q ρ̂3 = 0 ρ̂1 = ρ̂2 =
ρ̂√
2
. (4.28)

It may seem odd that there is no factor of
√

2 between Q1 and Q. This can be understood

as a convention on the normalization of the Qi. Q and the Qi are really length scales in the

five-dimensional geometries, not charge densities per se, so their normalization is essentially

arbitrary.

The relations (4.26) parametrize the equation of state. Following [53], one may make

this parameterization more efficient by defining

y =
r

4
√
µL2

yH =
rH

4
√
µL2

=
33/4

25/4
√
π

ŝ

ε̂3/4
yi =

Qi
4
√
µL2

=
33/4√π

21/4

ρ̂i

ε̂3/4
. (4.29)

Then the condition that f = 0 at r = rH becomes

(y2
1 + y2

H)(y2
2 + y2

H)(y2
3 + y2

H)− y2
H = 0 . (4.30)

The equation (4.30) is a relation among the dimensionless ratios ŝ/ε̂3/4 and ρ̂i/ε̂
3/4, and

as such it is all the scale-invariant information available about the equation of state. One

can solve it explicitly for yH , and from that solution extract an expression for ŝ in terms

of ε̂ and ρ̂i. This expression is quite complicated because it involves solving a general cubic

equation. A considerably easier procedure is to define new variables

xi ≡
yi
yH

= 2π
ρ̂i
ŝ

(4.31)

and note that (4.30) becomes

1
y4
H

= (1 + x2
1)(1 + x2

2)(1 + x2
3) . (4.32)

This can be converted immediately into a simple expression for ε̂ in terms of ŝ and ρ̂i. For

the two charge case, this expression is

ε̂ =
3

25/3π2/3
3

√
(ŝ2 + 4π2ρ̂2

1)(ŝ2 + 4π2ρ̂2
2)

≈ 3π2/3

21/3
(ρ̂1ρ̂2)2/3

[
1 +

(
1
ρ̂2

1

+
1
ρ̂2

2

)
ŝ2

12π2
+O(s4)

]
,

(4.33)
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where in the second line we have passed to the near-extremal limit, where the entropy density

is much smaller than the charge densities. From the fact that the leading dependence of ε̂

on ŝ near extremality is quadratic, it follows immediately that the entropy density is linear

in the temperature close to extremality. More explicitly, one can solve T = ∂ε̂/∂ŝ for ŝ to

find

ŝ ≈ (2π)4/3 (ρ̂1ρ̂2)4/3

ρ̂2
1 + ρ̂2

2

T for low T . (4.34)

(4.34) generalizes (4.6) to the case of unequal charges.

The equation of state (4.33) encodes a thermodynamic instability, which is a special

case of the Gregory-Laflamme type instabilities found in [53]. To see it in a simple way, let

us rewrite (4.33) as

ε̂ =
3

25/3π2/3
3
√

(ŝ2 + 2π2(ρ̂− ρ̂z)2)(ŝ2 + 2π2(ρ̂+ ρ̂z)2) , (4.35)

where we have defined  ρ̂

ρ̂z

 =
1√
2

 1 1

−1 1

ρ̂1

ρ̂2

 . (4.36)

Local thermodynamic stability is the condition that ε̂ is concave up as a function of the

extensive thermodynamic variables ŝ and ρ̂i. One therefore calculates the Hessian matrix

∂2ε̂

∂(ŝ, ρ̂, ρ̂z)2
≡


∂2ε̂
∂ŝ2

∂2ε̂
∂ŝ∂ρ̂

∂2ε̂
∂ŝ∂ρ̂z

∂2ε̂
∂ρ̂∂ŝ

∂2ε̂
∂ρ̂2

∂2ε̂
∂ρ̂∂ρ̂z

∂2ε̂
∂ρ̂z∂ŝ

∂2ε̂
∂ρ̂z∂ρ̂

∂2ε̂
∂ρ̂2
z

 =
3
8

(
ŝ

ε̂

)2


2+3x2

ρ

2π2 −2xρ
π 0

−2xρ
π 6 + x2

ρ 0

0 0 6− 3x2
ρ

 , (4.37)

where the last expression is valid only for ρ̂z = 0, and we have defined

xρ ≡ 2π
ρ̂

ŝ
. (4.38)

The (ŝ, ρ̂) block of the Hessian matrix is positive definite for all values of xρ, but evidently

∂2ε̂/∂ρ̂2
z goes smoothly from positive to negative values as xρ increases through the value

√
2. Thus xρ =

√
2 is the boundary of thermodynamic stability, and the instability arises

on the low temperature, high charge density side of it. Correspondingly, if one defines

conjugate variables Ω and Ωz dual to ρ̂ and ρ̂z, and also a rescaled free energy density

f̂ = ε̂− T ŝ− Ωρ̂− Ωzρ̂z , (4.39)
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then the matrix of susceptibilities ∂2f̂/∂(T,Ω,Ωz)2 is minus the inverse of ∂2ε̂/∂(ŝ, ρ̂, ρ̂z)2.

In particular, the ρ̂z susceptibility is

χ̂z ≡ −
∂2f̂

∂Ω2
z

=
1

∂2ε̂/∂ρ̂2
z

=
8
9

(
ε̂

ŝ

)2 1
2− x2

ρ

=
4
9

ε̂2

ŝ2 − 2π2ρ̂2
≈
√

2 ρ̂/3π
T − Tc

, (4.40)

where

Tc =
Ω√
2π

. (4.41)

The approximate equality in (4.40) is accurate near Tc. The behavior of χ̂z is reminiscent

of mean-field ferromagnetism.

It is worth remarking that the off-diagonal charge ρ̂z is actually one component of an

SU(2) triplet of charges, call them (ρ̂x, ρ̂y, ρ̂z). To see this, recall first that that U(1)3

charges (ρ̂1, ρ̂2, ρ̂3) are embedded in SU(4)R ≈ SO(6)R as the Cartan subalgebra. When all

of them are non-zero and equal (i.e. for RNAdS5), a symmetry U(3) ⊂ SU(4)R is preserved.

This U(3) is the one which acts on the three complex scalars of N = 4 SYM as a triplet.

When one sets ρ̂3 = 0, this U(3) is broken to U(2)× U(1). The U(1) inside U(2) (that is,

its center) corresponds to the charge ρ̂, while the Jz generator of SU(2) (in a conventional

Pauli basis) corresponds to ρ̂z. The other generators of SU(2) correspond to ρ̂x and ρ̂y.

Note that the SU(2) under discussion is a global flavor symmetry in the boundary theory,

making it more similar to isospin than to intrinsic angular momentum of particles. The

susceptibilities χ̂x and χ̂y are identical to χ̂z when ρ̂x = ρ̂y = ρ̂z = 0. So the instability

(4.40) involves a spontaneous breaking of the SU(2) symmetry. One should expect the

typical state to involve non-zero (ρ̂x, ρ̂y, ρ̂z) pointing in different directions in different parts

of space. Topological defects may even be possible. The main difficulty is that there is little

to no understanding about the endpoint of evolution of the thermodynamic instability. At

linear order, in a region where only ρ̂z becomes non-zero, what is happening is that ρ̂1 and

ρ̂2 become slightly unequal without otherwise changing the thermodynamics.

As explained in [60, 61], thermodynamic instabilities correspond to dynamical instabil-

ities in the real-time geometry. In the present case, where the instability relates (at linear

order) only to the development of an SU(2) charge and not to a spatial modulation of the
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entropy density, the dynamical instability should involve only matter fields in the bulk, not

the metric. The pertinent matter fields should be the SU(2) gauge field and certain scalars

that couple to it through its kinetic term. In the case of the instability toward developing

non-zero ρ̂z, the only gauge field involved is A1
µ−A2

µ, and the only scalar involved is X1/X2.

Because the instability relates to thermodynamics, it should be present at arbitrarily small

wave-number. Presumably it ceases to exist at a critical wave-number, kGL, comparable to

the chemical potential Ω.

4.3 A ten-dimensional lift

As we have already remarked, the charged dilatonic black hole has a naked singularity at

r = 0. We should study the ten-dimensional lift via maximal gauged supergravity to find

out if this singularity has an obvious resolution. This lift is well known [50]: for the general

three-charge black hole (4.25), it is

ds2
10 =

√
∆
[
− f
H
dt2 +

dr2

f
+
r2

L2
d~x2

]
+

1√
∆

3∑
i=1

Hi

(
L2dµ2

i + µ2
i

[
Ldφi +

√
µ

Qi

(
1
Hi
− 1
)
dt

]2
)

F5 = G5 + ∗G5 G5 = dB4 B4 = − r
4

L4
∆dt ∧ d3x−

3∑
i=1

Qi
√
µ

L
µ2
i dφi ∧ d3x .

(4.42)

In addition to the functions f , H, and Hi appearing in (4.25), we have defined

∆ = H

3∑
i=1

µ2
i

Hi
µ1 = cos θ1 cos θ2 µ2 = cos θ1 sin θ2 µ3 = sin θ1 . (4.43)

Evidently, µ2
1 + µ2

2 + µ2
3 = 1, so (θ1, θ2) are coordinates on S2. The S5, parametrized by

(θ1, θ2, φ1, φ2, φ3), is thus regarded as a T 3 fibration over S2. If we set Q1 = Q2 = Q,

Q3 = 0, and µ = Q4/L2 (the last corresponding to the extremal limit) and approach the
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horizon at r = 0, the solution takes the following form:

ds2
10,near = |µ3|

(
−2r2

L2
dt2 +

L2

2r2
dr2 +

r2L2

Q2
dφ2

3

)
+ |µ3|

Q2

L2
d~x2

+
1
|µ3|

[
L2dµ2

1 + L2dµ2
2 + µ2

1

(
Ldφ1 −

Q

L
dt

)2

+ µ2
2

(
Ldφ2 −

Q

L
dt

)2
]

B4,near = −Q
3

L3

[
µ2

1

(
Ldφ1 −

Q

L
dt

)
+ µ2

2

(
Ldφ2 −

Q

L
dt

)]
∧ d3x .

(4.44)

Intriguingly, the metric has an AdS3 factor, suggesting that the infrared dynamics is

controlled by a 1+1-dimensional conformal field theory. The rest of the metric, on any

given time slice, is a sum of two conformally flat pieces, where the conformal factors,

|µ3| =
√

1− µ2
1 − µ2

2 or its reciprocal, are finite and non-zero only on the interior of the unit

disk in the µ1-µ2 plane. The locus of points where µ3 = 0, and where the metric (4.44) is

ill-defined, corresponds to the equator of S2, and to an equatorial S3 of S5. The geometry

(4.44) in fact splits into two identical pieces, joined along this S3. Each is a warped product

of AdS3, R3, and the unit ball in R4, where the unit ball spins rigidly and equally in the

two independent planes of R4.

It is not entirely surprising to find an AdS3 factor in the near-horizon geometry. Follow-

ing [62], we note that angular momentum in the S5 directions can be carried by D3-branes

wrapped on various three-spheres in that S5. These wrapped D3-branes, called “giant gravi-

tons,” have as their field theory dual operators which are determinants or sub-determinants

of one of the three complex adjoint scalar fields of N = 4 SYM [63], which we will denote

Z1, Z2, and Z3. More specifically: detZi corresponds to a D3-brane wrapped on the equa-

torial S3 of S5 found by intersecting the hyperplane zi = 0 with the sphere
∑3

j=1 |zj |2 = L2

in C3. It was suggested in [64] that a large enough number of giant gravitons of one type

(say, the type associated with Z1) could be described by an AdS5 × S5 geometry that they

create around themselves. Now consider a configuration with both detZ1 and detZ2 giant

gravitons. They intersect along an equatorial S1 of S5, defined by intersecting z1 = z2 = 0

with
∑3

i=1 |zi|2 = L2. The low-energy dynamics at the intersection is plausibly a 1+1-

dimensional CFT whose central charge is proportional to the product of the number of

giant gravitons of each type, in analogy to how D3-branes on orthogonal cycles of T 4 in-
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tersect over the “effective string” of [65, 66]. This CFT, we presume, is dual to the AdS3

factor in (4.44).

The full story is presumably somewhat more complicated than the intersecting equatorial

D3-branes described in the previous paragraph. In particular, it is known [67] that a

singular, supersymmetric relative of the solutions (4.42) can be understood in terms of three

orthogonal sets of giant gravitons with a distribution of sizes. Moreover, in the treatment of

[67], black holes with horizons have finite µ, and so are finitely far from the supersymmetric

case, where µ = 0.

The presence of an AdS3 factor fits nicely with the linear specific heat, since all 1 + 1-

dimensional CFT’s have linear specific heat: that’s simply on account of the fact that

entropy density, as a dimension one object, must scale linearly with the only available

energy scale, namely temperature. On the gravity side, the near-extremal generalization of

(4.44) involves the AdS3-Schwarzschild geometry:

ds2
10,near = |µ3|

(
−

2(r2 − r2
H)

L2
dt2 +

L2

2(r2 − r2
H)
dr2 +

r2L2

Q2
dφ2

3

)
+ |µ3|

Q2

L2
d~x2

+
1
|µ3|

[
L2dµ2

1 + L2dµ2
2 + µ2

1

(
Ldφ1 −

Q

L
dt

)2

+ µ2
2

(
Ldφ2 −

Q

L
dt

)2
]
,

(4.45)

with B4 unchanged from (4.44). Like (4.44), (4.45) is not only a limiting form of a solution of

the equations of motion of type IIB supergravity; it is by itself a solution of those equations,

away from µ3 = 0.

From the 1 + 1-dimensional CFT perspective, the ground state entropy of the three-

charge black hole in AdS5 arises from partitioning a specified amount of momentum along

the effective string into excitations of one chiral half of the theory, while leaving the other

chiral half in its vacuum state. The Virasoro algebra acting on the AdS2 factor of the

near-horizon RNAdS5 geometry is probably the same as the one from the chiral half of the

effective string CFT that remained in its ground state.

In our discussion of ten-dimensional lifts, we seem to have committed ourselves to the

maximally supersymmetric case, which seems unlikely to have much to do with Fermi
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liquids given that there are massless charged scalars in the gauge theory. Other lifts to ten

dimensions may be possible, with reduced supersymmetry, as in [28]; and some of these

lifts could be dual to a CFT with no charged scalars, or no gauge-invariant operators built

from charged scalars that can condense. However, a fermionic field theory description may

be closer to hand than it appears in the maximally supersymmetric case: at least in the

case of a single charge, one can show [68] that BPS solutions are classified in terms of free

fermions. Our limiting solution (4.44) is fairly similar to the ansatz of [68]. It is tempting

to think it preserves some fraction of supersymmetry, and that there might be an analogous

fermionic description. If there is such a description, the fermions probably emerge from the

dynamics of eigenvalues of large N matrices, as in the c = 1 matrix model.

4.4 An AdS4 example

An obvious extension of the ideas discussed in the previous section to the case of AdS4×S7

is to consider three mutually orthogonal groups of M5-brane giant gravitons, each on an

equatorial S5 in S7. The triple intersection of M5-branes from each group is an equatorial

S1 in S7. This intersection is similar to the effective string of [69], and plausibly the low-

energy dynamics is a 1+1-dimensional CFT. So one expects in the eleven-dimensional lift

of the extremal three-charge AdS4 black hole to find an AdS3 factor similar to the form

(4.44). One also expects linear specific heat at low temperature. This last expectation is

easy to check using just the thermodynamic formulas of [53]—and it is true. Let us consider

the general eleven-dimensional geometry, given by [50]

ds2
11 = ∆̃

2
3

[
− f̃√

H̃
dt2 +

r̃2

4L2

√
H̃

f
dr̃2 +

r4

4L4

√
H̃d~x2

]

+
4

∆̃
1
3 H̃

1
4

4∑
i=1

H̃i

(
L2dµ2

i + µ2
i

[
Ldφi −

√
µ

4Qi

(
1
Hi
− 1
)
dt

]2
)

F4 = dA3 A3 = − r6

(2L)6
H̃

3
4 ∆̃dt ∧ d2x+

4∑
i=1

2
√
µQi µ

2
i dφi ∧ d2x .

(4.46)

Here, the µi parametrize an S3, i.e., µ2
1 + µ2

2 + µ2
3 + µ2

4 = 1, while the φi parametrize a T 4.

Together, these coordinates cover an S7, regarded as a T 4 fibration over S3. We introduced
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the functions

H̃i = 1 +
4LQi
r̃2

H̃ = H̃1H̃2H̃3H̃4 ∆̃ = H̃1/4
4∑
i=1

1
H̃i

f̃ = − µ̃
r̃

+
r̃2

L2
H̃ . (4.47)

Note that (4.46) approaches AdS4 × S7 for large r̃, and this is most easily seen by using

the radial coordinate r = r̃2

2L . We are most interested in the three-equal-charge case Q1 =

Q2 = Q3 = Q and Q = 0. The extremal limit then corresponds to taking µ̃ = Q6

2L5 , and near

horizon limit of the resulting geometry is given by

ds2
11,near = |µ4|4/3

(
−3Qr̃2

4L3
dt2 +

4L2

3r2
dr2 +

Lr2

Q
dφ2

4

)
+ |µ4|4/3

Q2

L2
d~x2

+
4

|µ4|2/3

[
3∑
i=1

L2dµ2
i + µ2

i

(
Ldφi +

Q

2L
dt

)2
]

A3,near =
Q3

L3s

3∑
i=1

µ2
i

[
dt+

2L2

Q
dφi

]
∧ d2x ,

(4.48)

where we emphasize that the sums extend to i = 3 only. As expected, we find an AdS3

factor.

When reduced to four dimensions, the geometry (4.46) gives rise to multiply charged

black holes. The minimal four dimensional lagrangian that has the three-equal-charge black

hole we are interested in as a solution is [61]

L =
1

2κ2

[
R− 1

4
eαF 2

µν −
3
2

(∂µα)2 +
6
L2

coshα
]
, (4.49)

and the four dimensional geometry is given by

ds2 = e2A(−hdt2 + d~x2) +
e2B

h
dr2 F = dA Aµdx

µ = Φdt

A = log
r

L
+

3
4

log
(

1 +
Q

r

)
B = −A h = 1− µL2

(Q+ r)3

α =
1
2

log
(

1 +
Q

r

)
Φ =

√
3Qµ

Q+ r
−
√

3Qµ
1
6

L
2
3

.

(4.50)

The extremal limit of (4.50) now corresponds to taking µ = Q3/L2. If we consider a four

dimensional Dirac fermion in the extremal limit of(4.50), and with action given by the four

dimensional analogue of (4.8), we again find an isolated normal mode. With the conventions
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of [57] for the Γ matrices and the ansatz (4.10) for ψ, Dirac’s equation can be written[
e−B
√
hΓr∂r + ie−A

(
kΓ1 − ω + qΦ√

h
Γ0

)
+

6hA′ + h′

4
√
heB

Γr −m
]
u = 0 . (4.51)

It is useful to define the chemical potential Ω̃ ≡
√

3Q/L2 = −Φ(+∞)/L. For ω = 0, the

solutions of (4.51) are approximated near r = 0 by

u = Ur
− 5

8
+
|k|
|Ω̃|

(
1 +O

(
r1/4

))
+ V r

− 5
8
− |k|
|Ω̃|

(
1 +O

(
r1/4

))
(ω = 0) , (4.52)

and as before, we impose the boundary condition V = 0. Near the boundary, we now have

u±a = C±a e
−2AX∓ 1

2
−mL

(
κe−A

)
+D±a e

−2AX± 1
2

+mL

(
κe−A

)
, (4.53)

with κ and Xν the same as in the five dimensional case. Normal modes are then solutions

of (4.51) with V = 0 and C+
a = 0, and correspond to poles of the Green’s function. They

can easily be found numerically, for example, in units where L = 1, we take m = 0,

Q = 1 (corresponding to Ω̃ =
√

3) and q = 2 and find a normal mode with u+
2 nonzero for

k/Ω̃ ≈ 1.26746.

4.5 Scaling solutions

Truncations of supergravity actions to abelian gauge fields plus neutral scalars often take

the form

L =
1

2κ2

[
R− 1

4

∑
a

fa(~φ)(F aµν)2 − 1
2
∂µ~φ · ∂µ~φ− V (~φ)

]
, (4.54)

where the functions fa(~φ) and V (~φ) are linear combinations of exponentials of the form

e
~β·~φ, where ~β is a vector of constants. Examples involving only scalars were explored in

some depth in [70]. There it was argued that in typical near-extremal solutions, the scalars

run away in a definite direction where one term in V (~φ) dominates, or where several terms

dominate over all others and stand in fixed ratio with themselves. In other words, to

understand typical near-extremal dynamics, it is enough to consider a single canonically

normalized real scalar, call it φ, with a potential

V (φ) = V0e
ηφ , (4.55)
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where η is a positive constant and V0 is negative, and φ is assumed to diverge to +∞ in the

extremal solution. It was argued there that the entropy density scales at low temperature

as Tχ, where χ = 6/(2− 3η2) when the bulk geometry is five-dimensional. In this section,

we will study charged black holes solutions to the lagrangian

L =
1

2κ2

[
R− f(φ)

4
F 2
µν −

1
2

(∂φ)2 − V (φ)
]
, (4.56)

where V (φ) is chosen as in (4.55), and

f(φ) = eγφ (4.57)

for some constant γ. We again assume that the bulk is five-dimensional. The large α

behavior of the theory (4.1) that we started with corresponds to η = 1/
√

6 and γ =
√

2/3.

Because η and γ are defined in reference to a canonically normalized scalar, their values

would change if the scalar kinetic term changes. Renormalization of scalar kinetic terms

is commonplace in theories without a high degree of supersymmetry. So it makes sense to

work out what happens for arbitrary η and γ.

We start with an ansatz closely related to (4.2):

ds2 = L2

[
e2A

(
−h dt2 + d~x2

)
+
dr2

h

]
Aµdx

µ = LΦ dt , (4.58)

where it is assumed that A, h, Φ, and φ depend only on r. L is, at this stage, an arbitrary

length scale, present in order to render the coordinates (t, ~x, r) dimensionless. Following

[71], one can construct a Noether charge

Q ≡ e2A
(
e2Ah′ − f(φ)ΦΦ′

)
. (4.59)

Q is independent of r when the equations of motion are obeyed. Moreover, evaluating Q

at the horizon, where Φ is required to vanish, shows that Q = 2κ2Ts. So Q = 0 is an

extremality condition.

The Maxwell equation can be solved directly, leading to

Φ′ =
ρ

e2Af(φ)
, (4.60)
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where ρ is a dimensionless version of charge density. The result (4.60) holds for any choice

of f(φ). When we make the simple choices (4.55) and (4.57), the following solutions to the

equations of motion can be found by inspection:

A =
1
6

(γ + η)2 log r

φ = −(γ + η) log r

Φ =
ρ

ζ
(rζ − rζH)

h = − 2L2V0

ζ(2 + γ2 + γη)
r1−2(γ+η)2/3(rζ − rζH) ,

(4.61)

where we impose the relations

ζ = 1 +
2γ2 + γη − η2

3
ρ =

√
−2V0L2

2− γη − η2

2 + γ2 + γη
. (4.62)

It is easy to check that the solution (4.61) is extremal, in the sense of having Q = 0, precisely

when rH = 0. When it is non-extremal, one can obtain the following expressions for the

horizon entropy density (measured with respect to the dimensionless coordinates ~x) and the

temperature (measured with respect to the dimensionless time t):

s =
2πL3

κ2
r

(γ+η)2/2
H T = −L

2V0

2π
r

1+(γ−5η)(γ+η)/6
H

2 + γ2 + γη
. (4.63)

Evidently, we have the scaling behavior

s ∝ Tχ where χ =
(γ + η)2

2 + (γ − 5η)(γ + η)/3
. (4.64)

It is easy to check that plugging in η = 1/
√

6 and γ =
√

2/3 gives χ = 1. It should be

possible to get a wide range of dependences of s on T by choosing more general V (φ) and

f(φ). For example, one can probably get log-corrected power-law scaling of s on T by

altering V (φ) and/or f(φ) by powers of φ.

The solutions (4.61) are not asymptotically AdS5. In fact, their asymptotics for large

r can be rather peculiar, with h growing faster than e2A. But if a term is added to V (φ)

which makes φ = 0 its global maximum, we expect that asymptotically AdS5 charged

dilatonic black hole solutions will exist whose entropy scales as we have found in (4.64)
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near extremality. Probably a wide range of such black holes support fermion normal modes

similar to the one described in sections 4.1 and 4.4, and so are candidates for holographic

duals of generalized Fermi liquids.

4.6 Summary

Let’s summarize the properties of the charged dilatonic black hole in AdS5, given explicitly

by (4.2):

• It has linear specific heat at low temperature, like a Fermi gas does.

• It supports a fermion normal mode of the type previously argued to be associated

with a Fermi surface. For the choice of parameters we made at the end of section 4.1,

the wave-function for the normal mode has a simple closed form.

• Its embedding in d = 5 maximal gauged supergravity has a thermodynamic instability

toward the development of an SU(2) charge, with a susceptibility that has a singularity

like the Curie-Weiss law at finite temperature. This instability is of the Gregory-

Laflamme type, and the endpoint of its evolution is unknown.

• The five-dimensional solution has a naked singularity.

• The lift to ten dimensions based on d = 5 maximal supergravity describes spinning

D3-branes with two of the independent spins equal and the third zero.

• The ten-dimensional geometry near extremality has an AdS3-Schwarzschild factor

which accounts for the linear specific heat and suggests invariance of the infrared

dynamics under a non-chiral Virasoro algebra.

• There is an obvious generalization to AdS4 which realizes most of the same properties.

• An analysis of scaling solutions indicates that power-law behaviors s ∝ Tχ with

continuously variable χ can be arranged through simple modifications of the theory

on which our original example was based.
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The solution (4.2) is non-supersymmetric, except when µ = 0, which is finitely below the

extremal limit. The simple form of the near-horizon limit of the 10-dimensional lift suggests

that some supersymmetry (perhaps a quarter) may be recovered in this limit. If so, the

infrared dynamics would be controlled by a 1 + 1-dimensional superconformal field theory.

We hope that a better understanding of the dual field theory in the asymptotically AdS5×S5

case can be achieved by studying states with two large commuting R-charges. In a more

general setting, the hope is that an explicit construction could be found where the U(1)

charge of the black hole is carried only by fermions in the field theory dual. It would

be particularly interesting if the exact expression (4.20) we found for the normal mode

generalizes to an exact two-point function, because then one would have some analytic

control over excitations of a strongly interacting degenerate Fermi liquid in four spacetime

dimensions.



Chapter 5

Normalizable fermion modes in a

holographic superconductor

As we have discussed in Chapter 3, the Abelian Higgs model in anti-de Sitter space is the

most straightforward way to realize superconducting black holes in string theory. Already

in [14] it was suggested that the complex scalar should be the dual of an operator which

destroys a Cooper pair. However, the dual field theory typically involves both fermions and

bosons. For example, in the construction of [28], the dual of the complex scalar is a sum of

a fermion bilinear and a scalar trilinear. One might imagine a case where the field theory

has no scalars (or, at least, none charged under the global symmetry dual to the U(1) gauge

symmetry of the bulk that gets spontaneously broken). Although no such example has been

exhibited explicitly, there also isn’t any argument we know of that there can’t be one.

With fermions in the field theory, one can certainly consider color singlet operators

dual to fermions in the bulk: for example, operators schematically of the form trXnλ with

n ≥ 1 could be dual to spin-1/2 fermions, and trXnλλλ with n ≥ 0 could be dual to either

spin-1/2 or spin-3/2 fermions, depending on how indices are contracted. (More properly,

one must anticipate that bulk fermions are dual to a linear combination of operators with

an odd number of field theory fermions.) It’s difficult to have a bulk fermion dual to an

operator with one field theory fermion and nothing else, because it’s individual fermions

65
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in the field theory aren’t gauge singlets. Calculations with fermions [40, 41, 42, 72] have

focused on an properties of the two-point function of fermionic operators in the background

of a RNAdS black hole, in particular a singularity at finite momentum which has been

argued to be evidence of non-Fermi liquid behavior. In the previous Chapter, we extended

these studies to different non-superconducting black hole backgrounds.

In this chapter, we wish to study the behavior of spin-1/2 bulk fermions in response to

the superconducting AdS4 domain wall solution discussed in Chapter 3, a zero-temperature

geometry whose finite- and low-temperature limits were previously studied in [29]. This

domain wall solution has two advantages over the four-dimensional RNAdS solution: 1)

RNAdS is unstable toward superconducting instabilities, and the domain wall solution is

plausibly the endpoint of the evolution of one such instability; 2) RNAdS has macroscopic

entropy at zero temperature which has not found a satisfactory explanation, but the domain

wall solution has no entropy at all, at least in the classical supergravity approximation. A

technical disadvantage of the domain wall solution is that it is known only numerically, so

to study fermions we will have to solve differential equations whose coefficients are known

only numerically. According to Chapters 2 and 3 and also based on studies including

[27, 71, 73], we expect that domain wall solutions with at least Lorentz invariance in the

infrared are fairly generic ground states of the Abelian Higgs model, although Lifshitz scaling

in the infrared is another possibility. Domain walls with conformal invariance in both the

ultraviolet (UV) and infrared (IR) are under the best theoretical control, since curvatures

can be made small everywhere. But we anticipate that arguments presented here could be

extended to more general domain wall solutions, and the conclusions might be fairly similar

when there is emergent Lorentz symmetry in the infrared.

Ideally, the fermions we should study in the AdS4 domain wall should be the ones

present in maximal d = 4 supergravity (or some consistent truncation thereof). There are

two reasons we do not do this. The first is simplicity: The quadratic actions for fermions

in these theories are complicated, and there appears to be significant mixing between the

gravitini and spin-1/2 fermions. The second is flexibility: We will consider different values
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of the charge and mass of the fermion, and we will see that the final results significantly

depend on the choice of these parameters.

The remainder of this chapter is structured as follows. In section 5.1 we briefly review

the domain wall background. In section 5.2 we present a semi-classical argument which

focuses attention on a compact region of phase space and suggests that the normal modes

will lie approximately along segments of hyperbolas. In section 5.3 we numerically solve

the Dirac equation for a charged fermion in the AdS4 domain wall solution, finding one or

more bands of fermion normal modes. We conclude with a discussion in section 5.4.

5.1 The bosonic background

The bosonic lagrangian that is the basis for the domain wall background is the four dimen-

sional case discussed in Chapter 3, which we reproduce here for the reader’s convenience

L = R− 1
4
F 2
µν −

1
2

[
(∂µη)2 + sinh2 η

(
∂µθ −

1
L
Aµ

)2
]

+
1
L2

cosh2 η

2
(7− cosh η)

(5.1)

where η is a real scalar, θ is a real pseudoscalar, and we use mostly plus metric conventions.

We remind the reader that the domain wall geometry takes the form

ds2 = e2A(r)
[
−h(r)dt2 + d~x2

]
+
e2B(r)dr2

h(r)
, (5.2)

and has non-zero η(r) and gauge field Aµdx
µ = Φ(r)dt. We can always choose coordinates

where B = 0, and will make this choice in numerical computations but will keep B general in

formulae. The scalar potential in (5.1) has two extrema, at η = 0 and ηIR ≡ log(3+23/2), and

associated to these are AdS4 solutions with radii of curvature LUV = L and LIR =
√

3L/2,

respectively. The domain wall interpolates between these two AdS geometries. We can

choose coordinates such that as r → −∞

A ∼ r

LIR
h ∼ 1 η ∼ ηIR Φ ∼ 0 , (5.3)

while as r → +∞,

A ∼ r√
hUVLUV

h ∼ hUV η ∼ 0 Φ ∼ ΦUV , (5.4)
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where hUV and ΦUV can only be determined numerically and are given by hUV ≈ 14.249

and ΦUV = 9.328. The solution is shown in Fig. 5.1. At a constant r slice the metric

is, up to a constant rescaling, the Minkowski metric with an effective “speed of light”

given by v(r) =
√
h(r). The value of v(r) can be changed by a redefinition of the t and x

coordinates, but ratios of v at different values of r are invariant. In our choice of coordinates,

vIR ≡ v(−∞) = 1 and vUV ≡ v(+∞) = 3.775.
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Figure 5.1: The metric, gauge field and scalar field for the domain wall solution in M-theory.

5.2 A semi-classical argument

The fermionic lagrangian that we will consider is

Lf = iψ̄(ΓµDµ −m)ψ , (5.5)

where Dµψ =
(
∂µ + 1

4ωµ
ρσΓρσ − iqAµ

)
ψ and ωµ

ρσ is the spin connection. We employ the

same conventions on fermions in AdS4 as in [40], except that we use µ for a curved space

index and µ for a tangent space index. We always assume m ≥ 0.
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Much can be learned from the asymptotics of solutions to the Dirac equation following

from (5.5) in the UV and IR asymptotic regions. These asymptotics are simple because

all one is describing is a free fermion propagating in empty anti-de Sitter space with a

constant electrostatic potential Φ. Our discussion here will be somewhat heuristic, relying

on replacing the Dirac equation by an on-shell relation which is only justified in a geometric

optics limit. We will give a more precise treatment in section 5.3.

The on-shell constraint implied by the Dirac equation is

gµν(kµ − qAµ)(kν − qAν) +m2
eff = 0 . (5.6)

Here Aµ = (Φ, 0, 0, 0) and kµ = (−ω, k1, k2, kr). Without loss of generality one can use the

rotational symmetry in the x1-x2 directions to set k2 = 0 and k1 = k ≥ 0. The frequency ω

and the momentum k are definite real numbers when we choose the wave-function to take

the form e−iωt+ikx
1

times some function of r. The radial momentum varies as a function

of r. The effective mass m2
eff is the bare mass m2 plus some contributions from the spin

connection and curvatures. In components, (5.6) becomes

−(ω + qΦ)2

h
+ k2 + e2(A−B)k2

r + e2Am2
eff = 0 . (5.7)

We next observe that the last term is suppressed in the infrared compared to that first two,

unless m2
eff increases quickly in the infrared. This is impossible if the infrared geometry is

anti-de Sitter space: indeed, in that case, m2
eff is constant in the infrared. In geometries

where only Lorentz symmetry is recovered in the infrared, it is possible that m2
eff does

increase very quickly, either because of the contributions from the spin connection and

curvatures, or from a dependence of m on some scalar field which diverges as one passes to

the extreme infrared. Barring such a circumstance, we see that the sign of k2
r is the same

in the infrared as the sign of (ω+ qΦ)2/hIR− k2. Limiting ourselves now to the case where

Φ→ 0, we see that k2
r is non-positive when

|ω|
vIR
≤ k where vIR =

√
hIR . (5.8)

Now, if kr were real an non-zero, then its value would be essentially the radial momentum

of the fermion. As an extension of standard boundary conditions at a black hole horizon,
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one may reasonably require this momentum to be infalling (that is, toward the infrared).

But it makes no sense for the fermion to be falling down ever further into the infrared when

its state is a normal mode. Instead, kr should be either 0 or imaginary, so that the wave-

function of the fermion can decay as one passes further into the infrared. If the infrared

geometry is anti-de Sitter, then the decay is very rapid: exponential in |kr|e−A, or power-

like in e−A if kr = 0. In a more general setting, the right requirement is for the fermion

wave-function to be normalizable in the infrared, which presumably rules out oscillatory

and singular behavior while allowing a more regular solution similar to the exponentially

damped solution in anti-de Sitter space. The upshot of this discussion is that (5.8) is one

requirement that a normal mode must satisfy.

The requirement that ω = 0 for a fermionic normal mode in RNAdS comes from rea-

soning rather similar to what we just went through: only for this value of ω can one avoid

oscillatory behavior in the infrared indicating that the fermion is falling into the black hole.

In fact, since h → 0 at the horizon of the RNAdS geometry, one has vIR = 0, so one can

still use ω ≤ vIR|k| as the condition that restricts the possible values of ω and k based on

the infrared dynamics.

In the extreme ultraviolet, the last term of (5.7) dominates over the first two, so one

can conclude that k2
r has the sign opposite m2

eff , namely negative. So oscillatory behavior

is impossible. Though our reasoning here is non-rigorous, the conclusion that solutions are

non-oscillatory is correct: all components of the fermion wave-function must have power-law

behavior in e−A, no matter what ω and k are. Now, it is hard to see how one would find

a normal mode if k2
r were always negative, because then either the wave-function of the

fermion would tend to increase monotonically toward the ultraviolet or else monotonically

toward the infrared, neither of which would be consistent with normalizable behavior. So,

as a necessary condition beyond (5.8), it is reasonable to expect that

sup
r
k2
r = sup

r

{
(ω + qΦ)2

h
− k2 − e2Am2

eff

}
> 0 . (5.9)

In principle, knowing a bosonic background, one can use (5.9) to obtain an upper bound on

values of k where normal modes can exist, as a function of ω. In practice this is laborious.
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We prefer to use instead the related condition:

|ω + qΦUV|
vUV

> k , (5.10)

where vUV =
√
hUV. (5.9) and (5.10) are equivalent in the limit where ω/vUV and k are

large compared to meff . So (5.10), which is simple to apply, is really the large frequency,

large wave-number limit of the better justified condition (5.9).

To summarize: A heuristic and inexact treatment of asymptotics in the UV and IR

regions of a domain wall geometry leads to the expectations that normal modes will be

confined to what we will term the “preferred wedge,” namely

|ω|
vIR
≤ k < |ω + qΦ|

vUV
. (5.11)

In other words, the projection of the gauge-invariant momentum kµ − qAµ onto boundary

directions should be timelike in the ultraviolet, in order to produce non-monotonic depen-

dence on r, and spacelike in the infrared, in order to ensure that the fermions aren’t falling

into the far infrared. The first inequality in (5.11) (from the infrared constraint) can be

expected to be more reliable than the second inequality (from the ultraviolet behavior).

The preferred wedge is compact, as figure 5.2 shows.

Having established our expectations for the region of the ω-k plane where normal modes

may appear, the next obvious question is what the pattern of normal modes will be in this

region. First, if there are normal modes at all, it is reasonable to think that they form

one-dimensional families. The reason is that individual components of the Dirac spinor

satisfy a second-order differential equation, so there are two linearly independent solutions.

Demanding that the one that is normalizable in the infrared is also normalizable in the

ultraviolet amounts to a single real condition on the two real parameters ω and k. So

indeed one expects one-dimensional families.

A Bohr-Sommerfeld estimate of the location of normal modes takes the schematic form

rUV(ω,k)∫
rIR(ω,k)

dr kr = π(n+ ν) . (5.12)
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Figure 5.2: The green wedge is where (5.11) holds. This is the region where our heuristic
geometric optics arguments indicate that one might find fermion normal modes. The grey
and black curves are an approximate depiction of the hyperbolas (5.13), representing an
approximate WKB treatment of where normal modes lie. Only the black parts of the curve
correspond to actual normal modes; the grey parts are where normal modes might have
been if the green wedge had been larger.

Here rUV and rIR are the radii where kr = 0 is a solution to (5.7); kr is the positive root

of (5.7) for rIR < r < rUV; n is a non-positive integer; and a standard expectation for ν

(the Keller-Maslov index) is 1/2. Passing to a further approximation, one can consider the

case where the integral (5.12) is dominated by radii where the geometry is approximately
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AdSUV and the gauge potential is approximately ΦUV. Then the integral (5.12) should be

roughly proportional to
√

(ω+qΦ)2

h − k2, with a constant of proportionality that depends on

details of the bosonic background and so cannot readily be computed. Using (5.12), we are

led to an approximate condition

(ω + qΦUV)2

v2
UV

− k2 = (Y1n+ Y2)2 (5.13)

for the position of the nth band of normal modes. Y1 and Y2 are constants and n is again a

non-positive integer, which is the number of nodes in the fermion wave-function. (Different

components of the Dirac spinor could have bands of normal modes described by (5.13) with

different Y2 but the same Y1. Associating n with the number of nodes can only be expected

to work when one is focusing on the normal modes involving a particular component.) Evi-

dently, we should expect only finitely many bands of normal modes, because the hyperbola

(5.13) doesn’t intersect the region |ω| < vIRk when n is large.

Since the hyperbolas (5.13) do not intersect the UV boundary |ω − qΦUV| = vUVk of

the preferred wedge region for normal modes, the topological prediction we get out is that

the bands begin and end on the IR boundary, |ω| = vIRk. It is possible for a band to both

begin and end on the upper branch of the IR boundary, i.e. the one with ω > 0. Herein lies

an interesting possibility: for such a band, there would be a minimum energy required to

add a fermion belonging to it (unless the band dipped below the ω = 0 axis and then rose

back up). This is obviously an attractive feature if one is to make contact between these

holographic models of superconductors and real-world superconductors. However, we are

obliged to add that it is equally possible for bands of normal modes to cross the ω = 0 axis

one or more times. Then the natural configuration to consider is the one where the ω < 0

normal modes are populated, while the ω > 0 modes aren’t. This results in a Fermi surface

in the bulk, and apparently a gapless state for the fermions. Two considerations might

change this state of affairs: 1) The fermions interact gravitationally and so presumably

have an attractive channel that causes them to superconduct in the bulk through the usual

mechanism of forming Cooper pairs; and 2) The gas of fermions back-reacts on the bulk, as

in [74].
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In the next section, we will exhibit a case where most bands cross the ω = 0 surface at

least once, and another case where there is a single band that does not cross the ω = 0 axis

and therefore has a gap in the sense explained in the previous paragraph. It is interesting

indeed to inquire what behavior the fermions of maximal gauged supergravity exhibit in

the domain wall geometry summarized in section 5.1: gapped or ungapped?

As a final aside, it is easy to imagine cases where there are no normal modes: the condi-

tion (5.7) could be impossible to satisfy, or it could be that Y2 in (5.13) is too large for any

of the would-be normal modes to intersect with permitted infrared boundary conditions.

This doesn’t seem quite to be a situation meriting the term “gapped behavior,” because

there isn’t a definite energy that one can add to the system to obtain a long-lived fermionic

quasi-particle. But perhaps it is reasonable to expect that in a strongly interacting su-

perconductor at zero temperature, unpaired fermions can never be stable. Normal modes

could be altogether absent in ground states with emergent conformal or Lorentz symmetry,

where the preferred wedge is (modulo caveats already discussed) really a triangular wedge

as shown in figure 5.2; or they could be altogether absent in ground states with Lifshitz

symmetry, where vIR = 0 and the preferred wedge shrinks to a line segment along the ω = 0

axis; or, indeed, they could be altogether absent in an RNAdS vacuum: this happens if q is

too small. It would be interesting to study the spectral measure of the fermion two-point

function in situations where there are no normal modes. It could be that a ridge simi-

lar to the one found, for example, in [40], would remain, suggestive of unstable fermionic

quasi-particles.

5.3 Bands of fermion normal modes in AdS4

Let us now describe the numerical computation of the normal modes in more detail. We

use the conventions of the previous chapter, which we reproduce here for convenience. It is

convenient to choose a basis of Γ matrices such that Γr is diagonal, such as

Γr =

1 0

0 −1

 , Γi =

 0 γi

γi 0

 i = 0, 1, 2 , (5.14)
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where γi are gamma matrices in three dimensions given by γ0 = iσ2, γ1 = σ1, and γ2 = σ3.

As argued above, symmetry allows us to take the spinor to be of the following form:

ψ(t, ~x, r) = e−iωt+ikx
1
u(r) = e−iωt+ikx

1



u+
1 (r)

u+
2 (r)

u−1 (r)

u−2 (r)


. (5.15)

The Dirac equation can then be written as[√
hΓr∂r + ie−A

(
kΓ1 − ω + qΦ√

h
Γ0

)
+

6hA′ + h′

4
√
h

Γr −m
]
u = 0 . (5.16)

Let us now consider the asymptotic behavior of solutions to (5.16). We are interested

in regular and purely infalling solutions, which implies that in the infrared (corresponding

to r → −∞),

u±a (r) ≈ U±a e−2AK 1
2
±mLIR

(
κIRe

−A
)

κIR ≡ LIR

√
k2

1 − ω2 . (5.17)

Here a = 1, 2, Kν is a modified Bessel function, and the U±a are constants that satisfy

U−2
U+

1

= −U
+
2

U−1
= i

√
k1 + ω

k1 − ω
(5.18)

and are otherwise arbitrary. In what follows, we will set U+
1 = U+

2 = 1.

In the ultraviolet, corresponding to r → +∞, the most general solution is of the form

u±a = C±a e
−2AI∓ 1

2
−mLUV

(
κUVe

−A
)

+D±a e
−2AI± 1

2
+mLUV

(
κUVe

−A
)
, (5.19)

where κ2
UV ≡ k2

1 −
(ω+qΦUV)2

hUV
and Iν is a modified Bessel function. As before, (5.16) allows

you to solve for C−a , D
−
a algebraically in terms of C+

a , D
+
a , but the exact form of this relation

will not be important.

Expanding (5.19) at large r, we see that

u+
a ≈ C+

a

(κUV

2

)− 1
2
−mLUV e(−

3
2

+mLUV)A

Γ
(

1
2 −mLUV

) +D+
a

(κUV

2

) 1
2

+mLUV e(−
5
2
−mLUV)A

Γ
(

3
2 −mLUV

) . (5.20)
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According to the standard AdS/CFT prescription, we identify C+
a with the source and

D+
a with the response of a boundary fermionic operator with conformal dimension ∆ =

3
2 +mLUV.1

Normal modes are then solutions of (5.16) that in the infrared satisfy (5.17) and have

C+
a = 0. They correspond to poles of the retarded Green’s function. To make this connec-

tion more explicit, consider the full fermionic action

Sf = i

∫
d5x ψ̄(ΓµDµ −m)ψ + Sbdy (5.21)

where Sbdy, which we neglected up to now, is a boundary term that does not contribute to

the equations of motion. It is necessary to have a well posed variational problem and gives

the only nonzero contribution to the onshell action. We choose

Sbdy = −i
∫

r=1/ε

d4x
√
−ggrr ψ̄+ψ− , ψ± ≡

1
2

(1± Γr)ψ , (5.22)

where ε is a positive quantity to be taken to zero after functional derivatives are taken.

By taking the appropriate functional derivatives of (5.21), we obtain the retarded Green’s

function [57]

GR =
(κUV

2

)mLUV Γ
(

1
2 −mLUV

)
Γ
(

1
2 +mLUV

)
−iD

−
1

C+
2

0

0 i
D−2
C+

1

 , (5.23)

and we see that zeros of C+
2 are poles of G11 while zeros of C+

1 are poles of G22. From (5.16)

and the form of the Γ matrices (5.14) it is clear that the four components of the spinor u

couple to each other only in pairs: u+
1 and u−2 mix, and so do u+

2 and u−1 . This means we

are free to consider only u+
1 and u−2 nonzero and look for zeros of C+

1 or consider only u+
2

and u−1 nonzero and look for zeros of C+
2 .

Before discussing our numerical results let us comment on the meaning of the “preferred

wedge” (5.11). It is clear that (5.8) translates2 to κ2
IR > 0 which implies that u is not

oscillatory in the IR. Condition (5.10) on the other hand, translates to κ2
UV < 0 which

1For 0 ≤ m < 1/2, it is also legitimate to identify D+
a with the source and C+

a with the response, but we
will in this paper stick with the identification valid for all m.

2Remember we are using units where vIR = 1.
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implies that u is oscillatory in the UV. This is in agreement with the geometrical optics

arguments that led us to formulate these conditions in section 5.2.

We now have the necessary ingredients to find normal modes numerically: we can solve

(5.16) with initial conditions given by (5.17) for some large negative r. We can then deter-

mine the C+
a coefficients by fitting the numerical results to (5.19) for large positive r and

vary the parameters until we find zeros of the C+
a . As expected, we find a continuous set

of normal modes inside the “preferred wedge”. As you increase q, the “preferred wedge”

grows and accommodates more bands.

As a specific example consider m = 0 and qLUV = 10, for which the bands are shown

in Fig. 5.3. We find an abundance of normal modes, with poles of G22 alternating with

poles of G11. The number of nodes in the wave functions (some of which are shown in

Fig. 5.4) is greater for bands that are closer to the origin. The bands are well approximated

by hyperbola, although (5.13) does not seem to capture their shape very well. Generalizing

(5.13), we can fit the bands to

(ω + qΦ)2

v2
− k2 = m2

eff , (5.24)

where we treat meff as an arbitrary fitting parameter. We can either use the extreme UV

values of Φ and v and do one-parameter fits (shown as gray dot-dashed lines in Fig 5.3) or

treat Φ and v as arbitrary fitting parameters also and do three-parameter fits (shown as

black dashed lines in Fig 5.3). In the former case, we find that meff increases as a small

power of the band number. In the latter case (unsurprisingly) we obtain better fits, and we

note that the best fit values of Φ and v approach the expected UV values when you consider

bands farther from the origin.

In Fig. 5.3, all the bands cross the ω = 0 line and are therefore ungapped. As you

decrease q, the “preferred wedge” shrinks and fewer bands are present, but for m = 0 at

least one of them always seems to intersect the ω = 0 line. We can argue that this is always

the case if we note that for small enough ω and k, the Green’s function should approach its
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Figure 5.3: Fermion normal modes in the AdS4 domain wall for m = 0 and qLUV = 10. The
black lines mark the boundary of the “preferred wedge” (5.11). The red lines correspond to
normal modes where u+

1 and u−2 are nonzero (poles in G22) while the blue lines correspond
to normal modes where the u+

2 and u−1 are nonzero (poles in G11). The gray dot-dashed
lines are one parameter fits and the black dashed lines are three parameter fits to hyperbola.
The red and blue dots mark the location of the normal modes shown in Fig. 5.4.

AdS value [57]

GR = f (mLIR)κ2mLIR−1γ · k ∝ κ2mLIR

−
√

k−ω
k+ω 0

0
√

k+ω
k−ω

 , (5.25)
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Figure 5.4: The wave functions for two fermion normal modes of the AdS4 domain wall for
m = 0 and qLUV = 10. We note that in the κIR > 0 region, we can always choose the u+

a to
be purely real, in which case it follows that the u−a are purely imaginary. The plot on the
left shows the real part of u+

1 (blue) and the imaginary part of u−2 (green) corresponding
to the blue dot in Fig. 5.3. The plot on the right shows the real part of u+

2 (red) and the
imaginary part of u−1 (cyan) corresponding to the red dot in Fig. 5.3.

where κ2 = k2 − ω2 and f(mLIR) is some unimportant constant. Thus, for m = 0, there

is always a divergence at the origin that signals a normal mode with (ω, k) = 0 and at

least one of the bands is ungapped. For positive m however, this divergence is gone and we

expect the possibility of gapped bands. In fact, for qLUV = 3/2 and mLIR = 1, we find a

single gapped band (see Fig. 5.5).

Finally, we note that it is also possible to choose the parameters in such a way that

there are no normal modes at all. If qLUV is small enough, this seems to be the generic

behavior. For instance, taking m = 0 and qLUV = 1/8, we find no normal modes.

5.4 Discussion

We studied charged Dirac fermions in an AdS4 domain wall solution and found that gener-

ically they exhibit continuous bands of normal modes. This is in stark contrast to fermions

in RNAdS, which exhibit one or more isolated normal modes at ω = 0 and finite k

[40, 41, 42, 72]. However, we note that the same semiclassical argument that led us to

expect continuous bands in the domain wall geometry can be used to argue for isolated nor-



80

0 1 2 3 4 5

-2

0

2

4

k LUV

Ω
L

U
V

qLUV=3�2, mLIR=1

Figure 5.5: Fermion normal modes of the AdS4 domain wall for mLIR = 1 and qLUV =
3/2. The black lines mark the boundary of the “preferred wedge” (5.11). The blue line
corresponds to normal modes where the u+

2 and u−1 are nonzero (poles in G11). Notice it
never intersects the ω = 0 line (red). So this is a gapped band.

mal modes in RNAdS. In fact, since RNAdS has an horizon at which the metric function h

vanishes, it can in some sense be thought of as degenerate domain wall for which vIR = 0.

The condition on the location of the normal modes given by(5.8) then degenerates to ω = 0



81

and, choosing units where vUV = 1, the remaining condition (5.10) becomes |qΦUV| > k.

The “preferred wedge” thus becomes a “preferred segment” and the same parameter count-

ing that led us to expect continuous bands for the domain wall geometry tells us that we

should find a discrete set of normal modes at ω = 0, which is precisely what happens for

RNAdS.

Since in our conventions, energy equal to the Fermi energy is equivalent to frequency

equal to zero, the natural zero temperature configuration is one where the normal modes

with ω ≤ 0 are occupied and those with ω > 0 are unoccupied. Therefore, a particularly

important feature of the bands is whether they cross the ω = 0 axis. We found this feature

depends on the choice of the charge and mass of the fermion. For zero mass fermions,

the bands seem to always cross the ω = 0 axis and the resulting configuration would seem

to have a Fermi surface. However, to better understand this Fermi surface it would be

necessary to consider the back-reaction of the fermions on the bulk geometry, which might

conceivably destroy the Fermi surface. For positive mass fermions, with a suitable choice

of the charge, we found an example of a single band that does not touch the ω = 0 axis,

i.e., the band is gapped. Such a feature is desirable in making comparisons with real-world

superconductors at zero temperature, and it may be fairly generally achievable when there

is at least emergent Lorentz symmetry in the infrared.

Because our bosonic background is embeddable in M-theory [29, 28], it would be in-

teresting to redo our calculations using the quadratic fermion action of maximal gauged

d = 4 supergravity. It appears to be non-trivial to diagonalize this quadratic action, but

the advantage is that one should in principle be able to understand the operators dual to

the fermions. It would also be interesting to redo our calculations in AdS5, where we ex-

pect qualitatively similar results, simply because the semi-classical arguments of section 5.2

don’t depend on dimension. Preliminary numerical studies yielded results in agreement

with these expectations.



Chapter 6

Fermion correlators in non-abelian

holographic superconductors

In Chapter 1 we introduced a simple class of holographic superconductors in which the

symmetry breaking order parameter was a charged scalar. These are therefore s-wave holo-

graphic superconductors. In this chapter we will be concerned with some properties of

holographic superconductors with a vector order parameter, the so called p-wave supercon-

ductors. Early studies of these non-Abelian superconductors include [75, 76, 77].

Consider as an example a dual field theory which is four-dimensional and includes chiral

fermions λα and κ̄α̇, both transforming in the complexified adjoint of an SU(N) gauge

group, and both carrying charge −e under the U(1) symmetry that gets spontaneously

broken. Then the symmetry breaking order parameter could be 〈trλαλα〉 in the case of an

s-wave holographic superconductor, or 〈trλασ1
αβ̇
κ̄β̇〉 in the case of a p-wave superconductor,

where σ1 is the first Pauli matrix. There is no lattice structure in the dual field theory;

thus the breaking of rotational invariance by the p-wave condensate is spontaneous. The

holographic treatment of both the s-wave and p-wave cases is typically at the level of mean

field theory in that one solves classical equations of motion in the bulk without inquiring

about the role of fluctuations. This is justified on the field theory side if one is restricting

attention to leading order effects in a large N expansion, where N is the rank of the gauge

82
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group.1

One useful probe of the electronic structure of high-Tc superconductors is the angle

resolved photoemission experiments (ARPES) which essentially rely on the photoelectric

effect and measure the energy of the electrons emitted from the sample. ARPES experi-

ments demonstrate some interesting properties of high Tc superconductors. These properties

include a gap with dx2−y2 symmetry, deformed Dirac cones whose apexes are the nodes of

the superconducting gap, Fermi arcs whose zero temperature limits are the nodes in the

gap, and a peak-dip-hump structure of the emission intensity as a function of frequency at

fixed wave-number. A review of ARPES measurements can be found in [81].

Holographic superconductors differ from high-Tc superconductors in several respects:

Most notably, they are symmetry-breaking states of large N gauge theories, and they have

no underlying lattice structure. Nevertheless, it is interesting to ask whether or not the

properties of the fermionic spectral function in high Tc superconductors are shared by their

holographic counterparts. In both [82, 83] and also as we discussed in Chapter 5, following

[84, 41, 40], an analysis of fermion correlation functions was carried out for the holographic

s-wave superconductors introduced in [14, 26]. In this work, after elucidating some details

of the phase diagram of the holographic p-wave superconductors in AdS4, we discuss some

properties of its fermionic correlation functions. Along the way we introduce a variant of

the holographic p-wave construction, based on an SO(4) gauge group.

This work is organized as follows. In section 6.1 we review the construction of a p-

wave superconductor in AdS4 and study its phase diagram. An interesting property of

the p-wave superconductor, first observed in [85], is that the bulk geometry is a domain

wall interpolating between infrared and ultraviolet limits which are each AdS4 with an

asymptotically flat gauge connection.2 In section 6.2 we discuss in detail scalar, fermion,

and vector correlation functions in the asymptotic regions of such backgrounds, starting
1In [78, 79, 80] non mean field theory behavior was exhibited by arranging for a particular bulk lagrangian

for the scalar field.
2To be precise, the gauge connection has a field strength whose stress tensor becomes insignificant near the

boundary compared to the negative cosmological constant. It is in this sense that the ultraviolet geometry
can be approximated by AdS4 with a flat gauge connection.
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from a general gauge group. In section 6.3 we explain how to compute the fermion spectral

function in the full, zero-temperature, domain-wall, p-wave background and described some

of its properties. The numerical results of the computation can be found in section 6.4.

In section 6.5 we discuss the results in the context of ARPES experiments on high Tc

superconductors.

6.1 The p-wave holographic superconductor

The simplest example of a non-abelian holographic superconductor is the p-wave supercon-

ductor first introduced in [76] (following earlier work [75]) and further studied in [77, 85]

and [86, 87, 88, 89]. The bulk action for the p-wave superconductor is given by

S =
∫
M
d4x
√
−g

(
R+

6
L2
− 1

2
trF 2

µν

)
. (6.1)

In what follows we will set L = 1. Here Fµν is the field strength of an SU(2) gauge potential:

Fµν = ∂µAν − ∂νAµ − igYM[Aµ, Aν ] , (6.2)

and

Aµ = Aaµτ
a , (6.3)

and τa = 1
2σ

a, where σa are the Pauli matrices. Consider a configuration in which the

gauge field takes the form:

A = Φ(r)τ3dt+W (r)τ1dx. (6.4)

Based on the general arguments in [75, 76], one expects that apart from the Reissner-

Nordstrom solution for which W = 0, there exist other solutions where W 6= 0, correspond-

ing to a non-zero expectation value of the boundary current J1
x . This expectation value

spontaneously breaks both the SU(2) gauge symmetry and rotational invariance. Symme-

try breaking solutions of this type have been studied in the limit where gYM →∞ in [76] and

in a conjectured zero temperature configuration in [85]. In [88], five dimensional, non-zero

temperature and finite gauge coupling geometries were studied. The purpose of this section

is to fill a gap in the literature by studying the AdS4 p-wave superconductor geometry for
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finite temperature and coupling. Through this numerical study we will confirm that the

domain wall geometries of [85] are indeed the zero-temperature limits of symmetry-breaking

black holes.

Parametrizing the line element by

ds2 = −r2γ(r)e−χ(r)dt2 +
dr2

r2γ(r)
+ r2(c(r)2dx2 + dy2) , (6.5)

we find that the equations of motion for the gauge field and the metric are

1
2
rW ′

(
2rγ′ − 2rc′γ

c
− rχ′γ + 4γ

)
+
g2

YMWΦ2eχ

r2γ
+ r2γW ′′ = 0

1
2
r2γΦ′

(
2c′

c
+ χ′ +

4
r

)
−
g2

YMW
2Φ

r2c2
+ r2γΦ′′ = 0

c′

c

(
γ′

γ
− χ′ + 2

r

)
−
g2

YMW
2Φ2eχ

r6c2γ2
− χ′

r
= 0

−r
2γc′′

c
− rc′ (rγ′ + 8γ)

2c
−
g2

YMW
2Φ2eχ

4r4c2γ
+ γ

(
−W

′2

4c2
− 3

)
− rγ′ − 1

4
eχΦ′2 + 3 = 0

cc′′ + c′c

(
γ′

γ
+

4
r
− 1

2
χ′
)
−
g2

YMW
2Φ2eχ

2r6γ2
+
W ′2

2r2
= 0 .

(6.6)

We have omitted an additional equation of motion which is automatically satisfied once

the gauge fields and metric components solve (6.6). In the limit where gYM → ∞, the

matter content of the theory decouples from gravity and the equations of motion reduce to

gauge fields in an AdS4-Schwarzschild or AdS4 background. This is the probe limit, initially

studied in [76], following earlier work [26] on a similar limit of the holographic Abelian Higgs

model. In the following subsection we will solve the equations of motion numerically and

discuss some of the features of the solution. We will revisit the probe limit in section 6.1.2.

6.1.1 Numerics and phase diagram

The equations for W , Φ and c are second order while the equations for γ and χ are first

order. Thus, to obtain a solution, we need to specify eight integration constants. In the deep

infrared (IR), located at r = 0, we set Φ −→
IR

0, W −→
IR

finite, γ −→
IR

finite and c −→
IR

finite.

(If we are looking for finite temperature solutions then we should require that γ vanishes

at the horizon r = rH, and if we are looking for zero temperature solutions we should
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require that γ is finite in the deep IR). Near the boundary, located at r → ∞, we require

that W −−→
UV

0 and that Φ −−→
UV

µ, µ being the chemical potential of the boundary theory.

The remaining two integration constants can be thought of as the values of χ and c at

the boundary, and these can be gauged to 0 and 1, respectively, by rescaling the t and x

coordinates. In practice, we’ve looked for solutions by using a standard shooting algorithm

from the horizon to the boundary.

To analyze the stability of the solutions with W 6= 0 we compute the boundary theory

grand canonical potential Ω (per unit volume) of these configurations and compare it to

the grand canonical potential of the Reissner-Nordstrom black hole. The computation of

Ω is carried out by computing the on-shell Euclidean action Ω = −TSE/V . We refer the

reader to [88] for the details of a similar computation in AdS5. We find that solutions

with a non-vanishing condensate, W 6= 0, are stable only below a critical temperature Tc,

which varies with the charge gYM. Above Tc the canonical potential for the AdS Reissner-

Nordstrom black hole is lower, and it is the preferred solution (see figure 6.1). We find

that the phase transition from the RN solution to the condensed solution is second order if

gYM > 1.14± 0.01, and is first order if gYM < 1.14± 0.01. When gYM < 0.710± 0.001 the

condensed solution no longer exists.3

In [85] it was conjectured that the zero temperature limit of the condensed phase is a

domain wall geometry similar to the one described in Chapter 2: The infrared and ultraviolet

geometries are both asymptotically AdS but with different speeds of light. The condensate

W , the gauge field Φ and the metric components χ and c interpolate between their infrared

values WIR > 0, cIR > 1, χIR 6= 0 and ΦIR = 0 in the infrared to their UV values WUV = 0,

cUV = 1, χUV = 1 and ΦUV = µ > 0. γ approaches 1 both in the UV and in the IR.

Note that since c differs in the UV and IR, the appropriate speeds of light differ in the x

and y directions. This anisotropy is a new and distinctive feature of the domain wall of

[85]. Another interesting feature is that the AdS radius is the same in the ultraviolet and

infrared: indeed, both limits are just empty AdS4 with a flat SU(2) gauge connection.
3With 20 digits of working precision, the lowest value of q for which Mathematica’s NDSolve algorithm

could obtain a solution was q = 0.7103.
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Figure 6.1: The difference between the grand canonical potential for the condensed phase
and the uncondensed phase, ∆Ω. The red dots show the location of the critical temperature,
and the black dots the location of the spinodal points. The left plot corresponds to gYM =
0.79 and the right one to gYM = 3.
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Figure 6.2: The phase diagram for the p-wave superconductor. The blue curve indicates a
second order transition and the red line a first order phase transition. The dashed black
lines are spinodal curves and the red dot marks a tricritical point.
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Figure 6.3: Plots of the metric components γ and c at zero temperature as a function
of the the charge. As the charge approaches its critical value, the black hole hair gets
pushed further into the IR, conforming to an extremal Reissner-Nordstrom black hole in
the UV. The dashed black line corresponds to the extremal Reissner-Nordstrom solution.
The dashed vertical red line on the right plot signifies the location of the extremal RN
horizon where γ = 0.
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Figure 6.4: Plots of γ as a function of the temperature for q = 0.8. The curves are color
coded according to the temperature of the solution. The dashed line shows the domain wall
solution and the dotted lines correspond to superheated or supercooled solutions.

By following the branch of symmetry-breaking solutions from the region where W is

perturbatively small to the region where it is larger, we were able to verify that the domain

wall geometries described in the previous paragraph are indeed the zero temperature limits

of solutions with regular, finite-temperature horizons. See figure 6.4. From the phase

diagram of the SU(2) superconductor, depicted in figure 6.3, and by comparing the domain

wall geometry of the condensed phase with subsequently small gYM to that of the extremal

RN solution (figure 6.3), it appears that crossing gYM = 0.710 ± 0.001 at T = 0 results in

a phase transition from the condensed solution to the extremal RN solution.
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6.1.2 The probe limit

As discussed earlier, in the probe limit the matter content of the theory decouples from

the metric and the equations of motion (6.6) reduce to the Yang-Mills equation in a fixed

background geometry. For convenience we rescale the gauge field to get rid of all the factors

of gYM in the equations of motion: that is, Φ → Φ/gYM and W → W/gYM. This has the

same effect as setting gYM = 1 in the Yang-Mills equations—but we should bear in mind

that the probe approximation is justified precisely by taking gYM large. An additional

simplification is possible at zero temperature: we recall that AdS4 is conformally flat,

and that the classical Yang-Mills equations in four dimensions are conformally invariant.

Explicitly, if the metric is expressed as

ds2 =
L2

z2
(−dt2 + dx2 + dy2 + dz2) , (6.7)

then systematically dropping the overall prefactor L2/z2 has no effect on the Yang-Mills

equations. With the ansatz (6.4), they take the form

Φ′′ = W 2Φ W ′′ = −Φ2W , (6.8)

where primes denote d/dz. The boundary conditions appropriate for describing the type of

domain wall solution we are interested in are

Φ→ 0 and W →WIR at z = 0

Φ→ µ and W → 0 as z → +∞ ,
(6.9)

where WIR and µ are finite. Even though one can find one conserved charge for this system

[90] (namely the Hamiltonian associated with radial translations), the equations of (6.8) do

not appear to be integrable. A closely related system studied in [91] is known to exhibit

strongly chaotic behavior.

We find it convenient to change variables and make the field redefinitions as follows:

Φ(z) = WIRΦ̃(ζ) W (z) = WIRW̃ (ζ) , (6.10)

where

ζ = e−WIRzζ0 , (6.11)
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and ζ0 is a constant yet to be determined. Large z now corresponds to ζ = 0, and we can

reformulate the boundary value problem by requiring that at ζ = 0,

W̃ (0) = 1 Φ̃(0) = 0 Φ̃′(0) = 1 W̃ ′(0) = 0 . (6.12)

The UV is located at ζ = ζ0 and ζ0 is the smallest ζ for which

W̃ (ζ) = 0. (6.13)

The equation for X = W̃ + iΦ̃ is

ζ2∂2
ζX + ζ∂ζX +

1
4
X((X∗)2 −X2) = 0 (6.14)

which we can solve by Taylor expanding around ζ = 0. Defining

X =
∞∑
n=0

inαnζ
n , (6.15)

we find that the αn’s satisfy:

n2αn =
[n−1

2 ]∑
k=0

k∑
p=0

αn−(2k+1)α2k+1−pαp (6.16)

where [(n− 1)/2] means the largest integer that is smaller or equal to (n− 1)/2. Equation

(6.16) can be solved recursively once we are given α0 = 1 and α1 = 1. The first few terms

in the expansion are

W̃ (ζ) + iΦ̃(ζ) = 1 + iζ − 1
4
ζ2 − i

16
ζ3 +

3
128

ζ4 +
3i

512
ζ5 − 1

512
ζ6 − . . . (6.17)

and we note that the quantities 4n n!n!!αn are positive integers at least to n = 100. Once

again, by considering the first 100 terms of the series, we approximate the radius of conver-

gence of the Taylor series expansions for X to be 3.38. Between 0 and 3.38, W̃ has a zero

(meaning the phase of X is iπ/2) that appears to be unique. It is at

ζ0 ≈ 2.5918 . (6.18)

See Fig. 6.5.
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with the positive root of W̃ shown.
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One may now extract µ = Φ̃(ζ0)WIR ≈ 1.9285WIR. Note that the range of ζ corre-

sponding to 0 < z < ∞ is ζ0 > ζ > 0. It is convenient that the radius of convergence of

the Taylor series (6.17) is significantly larger than ζ0: because of this, we can get uniformly

good accuracy for Φ̃ and W̃ on the interval of interest from the Taylor series expansion. In

practice we terminated the series (6.17) at n = 100. In section 6.4 we will approximate this

T = 0 background with a sharp domain wall solution depicted in figure 6.5.

6.2 Two-point functions from conformally flat backgrounds

With zero-temperature and finite-temperature backgrounds in hand, an obvious next step

is to compute Green’s functions associated with interesting physical phenomena, such as

conductivity and photoemission. Such computations typically rely heavily on numerics,

because even the coefficients in the differential equations to be solved are known only nu-

merically. It turns out, however, that some of the features of the final answer can be

understood qualitatively in terms of the Green’s functions one would get for the ultraviolet

and infrared AdS4 geometries alone. These asymptotic forms can be obtained analytically.

This section is devoted to a general study of such Green’s functions for more general gauge

groups and even for slightly more general gravitational backgrounds than AdS4. The back-

grounds we study are conformally flat, and we require that the gauge connection is also flat:

that is, there is no Yang-Mills field strength. In the context of AdS/CFT, the flat Yang-

Mills connection in the bulk implies that the field theory lagrangian on the boundary has

been explicitly deformed by components of conserved currents associated with continuous

symmetries, and that all the deformations commute both with each other and the original

Hamiltonian. As explained earlier, our motivation for carrying out this analysis is to get a

better understanding of the infrared and ultraviolet behavior of the domain wall geometries

of the non-abelian holographic superconductors described in the previous subsection. Our

analysis is, however, more general. We will see that we can understand not only the fermion

correlators, but also the UV and IR limits of scalar and vector correlation functions for a

generic non-abelian gauge group.
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The calculations in this section, though slightly abstract when expressed in terms of

an arbitrary semi-simple Lie algebra and arbitrary unitary representations thereof, are in

essence formal elaborations of the simplest calculations possible in AdS/CFT. We have even

avoided the use of curved geometries by restricting attention to the conformally coupled

scalar, the massless Dirac fermion, and non-abelian gauge fields with a Yang-Mills action.

The equations we solve can be understood as describing the free propagation of massless

fields in flat space—with a few mild modifications dictated by the bulk gauge symmetries.

Thus, this section is relatively self-contained and may serve as a useful introduction to

holographic Green’s functions for formally inclined readers.

Readers wishing to pass over the technical details but understand the qualitative features

may wish to skip straight to section 6.2.5.

6.2.1 The action

Consider the following action for gravity, a Yang-Mills field of a simple gauge group with

Lie algebra g, a complex scalar field Σ in the unitary representation rΣ of g, a Dirac fermion

Ψ in the unitary representation rΨ of g and a real singlet scalar φ:

S =
∫
M
d4x
√
−g

[(
1− 1

6
|Σ|2

)
R− 1

2
trF 2

µν − iΨ̄ΓµDµΨ− 1
2

(∂φ)2 − |DµΣ|2 − V (φ)

]
+ Sbdy .

(6.19)

Ordinarily there is a prefactor 1/2κ2 = 1/16πGN multiplying S, but we drop this factor.

We normalize the trace tr in (6.19) so that tr tatb = 1
2δ
ab, where the ta are generators of g.

Since the gauge group is simple, the field strength is given by

Fµν = ∂µAν − ∂νAµ − igYM[Aµ, Aν ] , (6.20)

and we have defined

DµΣ = (∂µ − igYMA
atarΣ

)Σ

DµΨ =
(
∂µ +

1
4
ωµ

ρσΓρσ − igYMA
a
µt
a
rΨ

)
Ψ .

(6.21)

Here tar are the generators of g in the representation r, ωµρσ is the spin connection, and

underlined Greek indices are tangent space indices. When there is no risk of confusion, we
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will omit the subscript on representation matrices like tarΣ
: so, for example, taΣ = tarΣ

Σ.

We define gamma matrices so that Γ0 is anti-hermitian, while the other Γµ are hermitian,

and so that {Γµ,Γν} = 2ηµν where ηµν = diag{−1, 1, . . . , 1}. Also, we define Ψ̄ = Ψ†Γt.

The terms in the action Sbdy includes boundary terms which do not affect the equations of

motion but render the on-shell action finite.

There are several simple ways in which we could generalize (6.19)—but typically will

not for the purposes of this section. First, we could generalize to gauge group that are semi-

simple or that contain abelian factors. The main difference is that then one has multiple

independent gauge couplings. Second, we could introduce an explicit mass term for Σ,

and/or other Σ dependence in V . Third, we could introduce a Dirac mass for Ψ, and in the

case of a real representation for fermions, also a Majorana mass. And fourth, depending on

the choice of representations rΣ and rΨ, we could introduce some Yukawa interactions.

The action (6.19) is similar to what one typically finds for the gauged supergravity

truncations of the near-horizon dynamics of D- and M-brane constructions. It was chosen

for purposes of producing simple illustrations of the Green’s function computations that

we want to do. The biggest difference between (6.19) and supergravity actions is that in

supergravity, there are spin-3/2 fields (the gravitini) in addition to gµν , Aµ, Ψ, Σ, and φ.

Further differences are that in gauged supergravity, one would typically redefine the metric

through a scalar-dependent Weyl transformation so that the Einstein-Hilbert term has no

prefactor; and that in supergravity, the kinetic terms of the other fields would typically

involve interesting functions of the scalars.

6.2.2 Conformally flat backgrounds

The simplest class of solutions to (6.19) is

ds2 = e0(z)2(−dt2 + dx2 + dy2 + dz2) φ = φ(z) , (6.22)

with all other fields set to 0. For example, if V (φ) = −6/L2, then

e0(z) = L/z φ(z) = 0 (6.23)
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provide a solution to the equations of motion. An solution (6.23) is the Poincaré patch

of AdS4, dual to a conformal field theory (CFT) in 2 + 1 dimensions. In the coordinate

system used in (6.22) and (6.23), z runs from 0, which is the boundary of AdS4, to infinity.

Typically the CFT is a large N gauge theory, and the large N approximation justifies the

classical treatment of the bulk dynamics. The large N gauge groups of the boundary theory

have nothing to do with the bulk gauge group g. Rather, g is the algebra of continuous

global symmetries of the boundary theory. We will denote the Noether currents associated

with these symmetries by Jam, where a is an index for the adjoint of g and m runs over the

three boundary directions.

There are more general solutions to the equations of motion following from (6.19). In

what follows we will be interested in solutions of the form (6.19) where e0 and φ are defined

for z > 0, and where e0 is a monotonically decreasing function of z which diverges at z = 0.

Such solutions can frequently be related to vacua of conformal field theories deformed by an

operator Oφ dual to φ. When such a relation exists, the solutions are termed holographic

renormalization group (RG) flows. True to this name, these geometries break conformal

invariance. However, they manifestly preserve the Lorentz invariance of R2,1. They also

preserve the full gauge invariance under g, because φ is (by assumption) a gauge singlet.

What we want particularly to note is that the solution (6.22) (even when it’s not AdS4)

is unaltered upon the introduction of non-zero gauge field Aµ, provided the field strength

Fµν vanishes. More particularly, we are interested in configurations where Az = 0 and Am

is constant for m = 0, 1, 2. In order to be a flat connection, Am must take values in a Cartan

subalgebra h of g:

Am = Aamt
a ∈ h . (6.24)

Through an appropriate choice of basis, we can insist that all the ta occurring in the sum

(6.24) belong to h. We will refer to the flat gauge connection (6.24) as a Wilson line. This

would be more strictly appropriate if we compactified the x and y directions into a torus

and formed the integrals
∫
γ A over closed curves γ wrapping the torus.

The gauge fields (6.24) explicitly break some or all of the gauge and Lorentz invariance,
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while preserving translation invariance. In the context of AdS/CFT, if the lagrangian of

the field theory dual to the holographic RG flow (6.22) is L0, then the lagrangian with the

gauge fields (6.24) turned on is

L = L0 +AamJ
ma . (6.25)

Two-point functions of operators which are singlets under g, such as Oφ and the stress

tensor Tmn, respect the Lorentz invariance of the background (6.22), at least to leading

order in N , because the free propagation of singlet fields, such as perturbations of φ and

gµν , do not respond to the Wilson lines (6.24). On the other hand, correlation functions

of the operators OΣ and OΨ dual to Σ and Ψ, and also of the Noether currents Jam, must

be sensitive to the Wilson line. The main goal of this whole section is to describe that

dependence.

The key to making the calculation of the two-point functions of OΣ, OΨ, and Jam

tractable is that the action simplifies greatly upon the conformal transformations

Σ =
σ

e0
Ψ =

ψ

e3/2
0

. (6.26)

The parts of the action (6.19) involving Aµ, Σ, and Ψ can now be expressed as

Sflat =
∫
M
d4x

[
−1

2
trF 2

µν − iψ̄ΓµDµψ − |Dµσ|2
]
−
∫
∂M

d3x iψ̄Γ−ψ , (6.27)

where we have now written Sbdy for the fermions explicitly in terms of the projection matrix

Γ−, and we have defined

Γ± =
1∓ Γz

2
. (6.28)

M is now the z > 0 part of R3,1, and ∂M denotes the surface z = 0, which is just R2,1.

In (6.28), and in the rest of this section, we use the flat metric ηµν = diag{−1, 1, 1, 1} in

all formulas: thus, for example, trF 2
µν = ηµ1µ2ην1ν2 trFµ1ν1Fµ2ν2 . Because there is now no

distinction between “curved space” indices µ and tangent space indices µ, we simply use µ.

Because the metric is flat, the spin connection vanishes. So

Dµσ = (∂µ − igYMA
a
µt
a)σ

Dµψ =
(
∂µ − igYMA

a
µt
a
)
ψ .

(6.29)
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6.2.3 Scalar two-point functions

We define

GRΣ(x) = −iθ(t)〈[OΣ(t, ~x),O†Σ(0, 0)]〉 =
∫

d3k

(2π)3
eik·xGRΣ(k)

GFΣ(x) = −i〈TOΣ(t, ~x)O†Σ(0, 0)〉 =
∫

d3k

(2π)3
eik·xGFΣ(k) .

(6.30)

Here T denotes time-ordering, x = (t, ~x), k = (ω,~k), and k · x = −ωt + ~k · ~x. We use

〈A〉 = tr ρA where ρ is the density matrix of the state under consideration. When the

temperature and chemical potentials are zero this reduces to the vacuum expectation value

〈0|A|0〉. The Green’s functions (6.30) can be extracted from solutions to the wave equation

for σ, as we now explain in some detail.

The scalar equation of motion is

DµD
µσ = 0 . (6.31)

Because of the translation invariance in the (t, ~x) directions, we can cast solutions in the

form

σ(t, ~x, z) = eik·xσ̂(z) . (6.32)

A straightforward calculation shows that

Dµσ = eik·xD̂µσ̂ (6.33)

where

D̂m = iKm D̂z = ∂z (6.34)

and

Km = km − gYMA
a
mt

a . (6.35)

(6.31) can be recast as

(∂2
z −KmK

m)σ̂ = 0 , (6.36)

so the solution is σ̂ = e±Kzv, where K =
√
KmKm and v is an arbitrary vector in rΣ. Recall

that ta is in the Cartan subalgebra h of g and we are working in a basis where all the ta are

diagonal. Thus, the Km are diagonal, and one can define non-polynomial functions of the
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Km. Indeed, let vλ be the weight space associated with weight vector λa, i.e., tavλ = λavλ

for all ta ∈ h. Then Kmvλ = (km − km,λ)vλ where

km,λ = gYMA
a
mλ

a . (6.37)

When defining K =
√
KmKm we need to specify which branch of the square root to pick.

To start, let the spatial part ~k of k be large enough so that km − km,λ is spacelike for

all weights λ. Then the action of K on vectors in the λ eigenspace is simply Kvλ =√
(km − km,λ)(km − kmλ )vλ ≡

√
(k − kλ)2 vλ, where we pick the plus sign on the square

root. Thus, in this purely spacelike case, where K2 is a positive definite matrix acting on

rΣ, we choose K also to be positive definite. Then the solutions to (6.36) which decay far

from the boundary take the form

σ̂ = e−Kzv . (6.38)

Still assuming that K2 is positive definite, one may extract the Green’s function in the

following manner. The on-shell action for the scalar is

Son−shell = −
∫
M
d4x |Dµσ|2 = −

∫
M
d4x

[
∂µ(σ†Dµσ)− σ†DµD

µσ
]

=
∫
∂M

d3xσ†∂zσ ,

(6.39)

where in the second step we used the equations of motion, and in the third step we used

Stokes’ Theorem and remembered that Dz = ∂z. The basic premise of AdS/CFT is that the

on-shell action is the generating functional for Green’s functions of the boundary theory.

In the current instance, this means that

Son−shell = W2[σbdy, σ
†
bdy] ≡ −

∫
∂M

d3x1d
3x2 σ

†
bdy(x1)GΣ(x1 − x2)σbdy(x2) , (6.40)

where GΣ is a two-point function of OΣ, and σbdy is simply σ evaluated at the boundary

z = 0. The alert reader will note that we have not specified whether (6.44) is a retarded or

time-ordered Green’s function. At the moment we do not need to because the Hermitian

parts of GRΣ and GFΣ coincide, and we are doing the computation for km such that K2 is

positive definite. To recover the full Green’s function we will use an appropriate pole passing

prescription to go to more general K2.
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Now consider the following linear combination of solutions to the equation of motion for

σ:

σ = ξ1e
ik·xe−Kzv1 + ξ2e

iq·xe−Qzv2 , (6.41)

where ξ1 and ξ2 are complex numbers, and Q is defined from the momentum qm as K is

from km. The on-shell action is now sesquilinear in ξ1 and ξ2. Plugging the boundary limit

of the specific form (6.41) into the last expression in (6.40), one obtains immediately

∂2W2

∂ξ1∂ξ∗2
= −(2π)3δ3(q − k)v†2GΣ(k)v1 . (6.42)

On the other hand, plugging (6.41) into the last expression in (6.39) leads to

∂2Son−shell

∂ξ1∂ξ∗2
=
∫
∂M

d3x v†2e
−iq·x(−K)eik·xv1 . (6.43)

Equating (6.42) and (6.43) leads to

GΣ(k) = K . (6.44)

This is almost our final result. The full retarded or Feynman Green’s function can be

obtained from (6.44) by an appropriate pole passing prescription:

ω → ω + iε to obtain GR

ω → ω(1 + iε) to obtain GF .
(6.45)

The subtleties of recovering the imaginary part of Green’s functions from a supergravity

action which is real have received significant attention [11, 12, 92, 57]. Here let us simply

make the well-known observation that with the prescription (6.45) for retarded Green’s

functions, the scalar wave-functions are infalling: on eigenspaces whereKm acts as a timelike

vector, K is a negative imaginary number, meaning that e−Kzv = eipzv with p > 0. In

other words, the number flux of scalar quanta is away from the boundary, falling into the

bulk.

Already from the simple expression (6.44) we can reach one of the main conclusions

of this section: The spectral measure is supported in the timelike regions of light-cones in
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k-space, one through km,λ for each weight λ in the representation rΣ. To see this explicitly,

we can simply note that GΣ(k) acts as

GΣ,λ(k) =
√

(k − kλ)2 (6.46)

on the weight space associated with λ. This part of the Green’s function has an imaginary

part precisely when k−kλ is timelike, i.e. in the light-cone passing through kλ. The spectral

measure is essentially this imaginary part.

We have not concerned ourselves with the overall normalization of the action. If we

had, we would have found an overall prefactor on GΣ which scales as N3/2 in constructions

based on N coincident M2-branes.

Giving the scalar Σ an explicit mass term m, instead of the conformal coupling −1
6 |Σ|

2

implies that the dual operator OΣ has dimension ∆ where ∆(∆− 3) = m2L2 and L is the

radius of curvature of AdS4. The calculation of the two-point functions proceeds almost

identically to what we laid out above, except that it has to be done in AdS4 rather than

flat space, because the mass term is not conformally invariant. The radial parts of the

wave-functions (without any conformal rescaling) come out proportional to z3/2K∆−3/2(Kz)

instead of ze−Kz as in (6.38). The pole passing prescription (6.45) will convert the modified

Bessel function K∆−3/2 into an appropriate Hankel function when Km acts as a timelike

vector. When ∆ 6= n + 3/2 with n an integer, the result for the two-point function is

GΣ(k) = c∆K
2∆−3, where c∆ is a k-independent factor. Evidently, (6.44) corresponds to

the case ∆ = 2. When ∆ = n + 3/2 the Green’s function takes the form c̃∆K
2∆−3 logK.

The limit 2∆− 3→ n coincides with this form of the Green’s function since c∆ diverges in

this limit.

6.2.4 Spinor and vector two-point functions

Our results for the scalar Green’s functions GΣ can be summarized in the following simple

terms. With no gauge field present in the bulk, conformal invariance dictates GΣ(k) =

c∆k
2∆−3. For ∆ = 2, the same expression can be deduced more generally for conformally
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flat backgrounds. The effects of the gauge field are simply to replace k with K, where

Km = km − gYMA
a
mt

a as in (6.35).

In light of these results, it is reasonable to guess that Green’s functions for spinor

operators and conserved currents in the presence of a flat connection follow from similar

replacements km → Km. More explicitly, the Green’s functions we have in mind are defined

as follows:

GRΨ(x) ≡ −iθ(t)〈{OΨ(t, ~x),O†Ψ(0, 0)}〉 =
∫

d3k

(2π)3
eik·xGRΨ(k)

GR,abmn (x) ≡ −iθ(t)〈[Jam(t, ~x), Jbn(0, 0)]〉 =
∫

d3k

(2π)3
eik·xGR,abmn (k) .

(6.47)

Time-ordered Green’s functions would be defined similarly. We usually omit the adjoint

indices a, b. OΨ may have any dimension ∆, but because Jam is conserved, its dimension

must be 2. Our expectation is that

GΨ(k) = −f∆
γmKm

K4−2∆
γt Gabmn(k) = s∞

(
K2ηmn −KmKn

K

)ab
, (6.48)

where f∆ and s∞ are constants that we do not propose to track at this stage, and the iε

prescription (6.45) is implied. Our notation, essentially following [57], is to represent the

four-dimensional gamma matrices as

Γm =

 0 γm

γm 0

 Γz =

−1 0

0 1

 , (6.49)

where

γt = iσ2 γ1 = σ1 γ2 = σ3 (6.50)

and σa denotes the Paul matrices. We decompose the Dirac spinor ψ as

ψ =

ψ+

ψ−

 . (6.51)

The operator OΨ transforms as a two-component spinor, like ψ−. We sometimes consider

the Dirac conjugate of a two component spinor: ψ̄± ≡ ψ†±γ
t. The Green’s function GΨ(k)

has the same spinor structure and group representation content as the bilinear ψ−ψ
†
−.
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Just as in the case of scalar Green’s functions, if u− is a two-component spinor which

belongs to a weight space of rΨ with weight vector λ then the action of GΨ on u− is of the

form GΨ(k)u− = GΨ,λ(k)u−, where

GΨ,λ(k) = −f∆
γm(km − km,λ)
(k − kλ)4−2∆

γt , (6.52)

and kλ is defined as in (6.37), only using weights of rΨ not rΣ. Likewise, if εn is a

polarization vector which also belongs to a root space of g with root vector α, then

Gmn(k)εn = Gmn,α(k)εn where

Gmn,α(k) = s∞
(k − kα)2ηmn − (km − km,α)(kn − kn,α)√

(k − kα)2
, (6.53)

and km,α = gYMA
a
mα

a. Evidently, the spectral measures of GΨ and Gmn are supported

inside light cones, just as for GΣ, but each light cone has its apex at the the momentum kλ

or kα associated with a weight vector λ or a root vector α, as appropriate.

Let’s sketch a derivation of the expression in (6.48) for GΨ in the case ∆ = 3/2, corre-

sponding to a massless fermion, again focusing first on the situation where K2 is positive

definite. This is the case where we can do all the calculations in flat space, where the

equation of motion is

ΓµDµψ = 0 . (6.54)

This equation implies DµD
µψ = 0, which is identical to (6.31). So the allowed solutions

are of the same form:

ψ = eik·xe−Kzu . (6.55)

Here u is a four-component spinor transforming in the representation rΨ. Plugging (6.55)

into (6.54) provides a constraint on u:

(iΓmKm − ΓzK)u = 0 . (6.56)

Decomposing u as in (6.49), one can rewrite (6.56) as

u− = i
γmKm

K
u+ . (6.57)
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To compute the fermionic Green’s function we plug a linear combination of solutions to

the Dirac equation,

ψ = ξ1e
ik·xe−Kzu1 + ξ2e

iq·xe−Qzu2 , (6.58)

into the on-shell action, which is simply the boundary term in (6.27):

Son−shell = −
∫
∂M

d3x iψ̄Γ−ψ = −iξ∗2ξ1(2π)3δ3(q − k)ū2+u1− + . . . . (6.59)

In (6.59) we omitted terms involving different combinations of the ξi and their conjugates.

Using (6.57) we find

∂2Son−shell

∂ξ1∂ξ∗2
= (2π)3δ3(q − k)ū2+

γmKm

K
u1+ . (6.60)

On the other hand, essentially by definition,

∂2W2

∂ξ1∂ξ∗2
= −(2π)3δ3(q − k)ū2+GΨ(k)γtu1+ . (6.61)

Comparing (6.60) and (6.61) leads immediately to

GΨ(k) = −γ
mKm

K
γt . (6.62)

Continuing to momenta where K2 < 0 can be done using (6.45).

For the gauge field, the story is essentially the same. We start by perturbing the gauge

field:

A = Aflat + a . (6.63)

The field strength is F = i
g (d− igA)2 = f +O(a2), where

fµν = Dµaν −Dνaµ , (6.64)

where by convention D = d− igAflat. The linearized equation of motion is

Dµfµν = 0 . (6.65)

It is most straightforward to proceed in a gauge where az = 0. Then one can show directly

from (6.65), assuming as usual that K2 is positive definite, that am = eikmx
m
e−Kzεm if
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Kmεm = 0, and that am = eikmx
m
εm if KnKm

K2 εm = εn. Here εn is a constant polarization

vector. The transverse modes, where Kmεm = 0, are physical and the others are pure

gauge. If we define

Pn
m = δn

m − KnK
m

K2
, (6.66)

then we may compactly write the allowed solutions as

a = eik·xe−KPzε , (6.67)

where Lorentz indices for the boundary directions are now implied. Plugging (6.67) into

the quadratic on-shell action

Son−shell =
∫
d3x tr amfzm , (6.68)

one finds more or less immediately that

Gmn(k) = KPmn , (6.69)

which indeed has the form indicated in (6.48).

We will not delve deeply into conductivity calculations in this paper, but it is worth

noting that (6.69) contains a geometrical explanation of the hard-gap phenomenon remarked

on in [85]. To understand this connection, first recall that the gauge potential in the infrared

copy of AdS4 is (in the notation of [85]) A = B0 τ
1 dx. So the Cartan subalgebra h is the

one generated by τ1. The conductivity studied in [85] is the one related to a perturbation

δA = e−iωta(z) τ3 dy. Now, GRmn(k) acts in the adjoint representation, so it can be denoted

GR ab
mn (k). The conductivity of interest is

σyy,τ3(ω) =
i

ω
vavbG

R ab
yy (ω, 0, 0) , (6.70)

where va is the unit vector corresponding to the generator τ3. Now we need to find a

convenient basis in which to work out the right-hand-side of (6.70). The obvious basis for

the adjoint representation, for our purposes, is the one in which τ1 acts diagonally. The

eigenvalues of its adjoint action are α = ±1 and 0: these are the roots α of the adjoint

representation of SU(2), and they correspond to the c-number Green’s functions GRmn,α
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defined in (6.53). In the basis for the adjoint representation where (1, 0, 0) corresponds to

α = 1, (0, 1, 0) corresponds to α = −1, and (0, 0, 1) corresponds to α = 0, the unit vector

corresponding to the generator τ3 is v = (1, 1, 0)/
√

2. Plugging this expression for v into

(6.70), we have

σyy,τ3(ω) =
i

2ω
[
GRyy,+(ω, 0, 0) +GRyy,−(ω, 0, 0)

]
. (6.71)

Now we can explain the geometric origin of the gap. From the explicit expression (6.53)

we see that GRyy,+ is real except inside the light cone whose apex is at km,+ = gYMB0δ
x
m.

The distance along the ω axis one must go in order to cross into this light cone is gYMB0.

Likewise, GRyy,− is real except inside a lightcone which one crosses into along the ω axis at

the same value of ω. GRyy,0 has no gap, but it is not involved in σyy,τ3(ω). So the gap is

∆ = gYMB0.

What we are neglecting is that there is asymmetric warping of time and space in the

domain wall geometry of [85]. The t coordinate picks up a warp factor e−χ0/2 in the

infrared AdS4 geometry relative to the ultraviolet, while the x coordinate picks up a factor

c0. Correspondingly, the wave-vector km+ at the apex of the light cone gets scaled by

1/c0 because it points in the x direction, and frequency gets scaled by eχ0/2. Altogether,

introducing these rescalings into the expression ∆ = gYMB0 for the gap leads to

∆̃ =
e−χ0/2gYMB0

c0
. (6.72)

∆̃ should match the gap found in [85], and it does. (Recall that their q is our gYM.) What

we learn in addition is that if conductivity could be measured at finite wave-number, the

gap would decrease as one goes toward the apex of one of the lightcones, and can be reduced

to zero if the wave-number is chosen to lie at the apex. Similar analysis seems possible for

σxx,τ3 , but we have not fully considered the consequences of mixing with the graviton and

with timelike components of the gauge potential in this case.

It may seem striking that we are able to evaluate the gap by considering only the infrared

limit of the geometry. This actually makes sense because there is a continuum contribution

to the spectral measure of GR ab
mn only when the corresponding gauge-boson wave-function
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has some infalling component in the infrared geometry; otherwise the Green’s function is

purely real, with no dissipative part, except for δ-function localized contributions to the

spectral measure like the one that signals infinite DC conductivity. The same reasoning,

essentially, is behind the evaluation of the gap in [85]: the Schrodinger potential plateaus

in the infrared at an energy that determines the gap.

6.2.5 Summary and an example

The upshot of the calculations in this section is that the Green’s functions of operators dual

to the conformally coupled scalar Σ, the massless Dirac fermion Ψ, and the non-abelian

gauge fields Aµ in (6.19), are simple functions of modified momenta

Km = km − gYMA
a
mt

a . (6.73)

In particular, they all involve fractional powers of K2 = ηmnKmKn. K2 is always hermitian,

but positive definite only for k outside all the shifted light-cones (km−km,λ)(km−kmλ ) = 0.

As explained earlier, km,λ is given by

km,λ = gYMA
a
mλ

a , (6.74)

where λ is a weight vector for the representation in which the operator whose Green’s

function we are considering transforms. The spectral measure of these Green’s functions

comes entirely from the region where K2 fails to be positive definite, i.e. the region where

k − kλ is timelike for some weight λ.

It is interesting that the Green’s functions have a pure power law form not only for an

AdS4 bulk, but for any conformally flat bulk geometry which is asymptotically AdS4. This is

a consequence of the invariance of the relevant part of the classical supergravity action under

conformal transformations. Thus, power-law correlators, like those one sees in conformal

theories, arise at leading order in a large N limit for special operators in backgrounds that

are dual to non-conformal theories. At subleading orders in N , loop corrections in the

bulk enter in, and one cannot expect the exact power-law behavior of the boundary theory

correlators to persist unless there is conformal symmetry. All the backgrounds treatable by
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the methods of this section have exact boost invariance, SO(2, 1), as well as translational

invariance. These symmetries would be preserved at all loop orders in the bulk, meaning

all orders in N in the boundary theory.

As an example, consider g = so(4) = su(2)A⊕ su(2)B, where the generators for the two

su(2) factors are labeled τaA and τaB. The standard Cartan subalgebra is generated by τ3
A

and τ3
B. Let the fermions Ψ transform in the 4 = 2A × 2B of so(4). Consider now the flat

connection

A = W (dx τ1
A + dy τ2

B) , (6.75)

where W is a constant. Assuming that for X = A,B the eigenvalues of each τaX acting

on the doublet of su(2)X are ±1/2, the images (6.74) of the weight vectors of the vector

representation of so(4) are

ks1s2 =
gYMW

2
(s1k̂1 + s2k̂2) (6.76)

where si = ±1 and k̂i are unit vectors in momentum space. Thus the apexes of the Dirac

cones pass through points at the corner of a square whose sides are aligned with the kx and

ky axes.

The spectral measure of the retarded version of the Green’s function (6.62) is

ρ(ω,~k) ≡ − Im trGRΨ(k) = 2|ω|
∑
si=±1

θ(ω2 − |~k − ~ks1s2 |2)√
ω2 − |~k − ~ks1s2 |2

, (6.77)

where we have used (6.62) and (6.76). The most conspicuous feature of (6.77) is that ρ(ω,~k)

is supported in the union of four Dirac cones, whose apexes are the vectors ~ks1s2 . Plots

of the Dirac cone and of ρ(ω,~k) as a function of ω for fixed ~k are shown in figure 6.6. By

adding a mass to the fermion, we can adjust the power in the denominator of (6.77) from a

square root to 2−∆, where ∆ is the dimension of the dual fermionic operator in the field

theory: see (6.52).
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Figure 6.6: Features of the spectral function for the operator dual to a massless Dirac
fermion in the 4 of so(4), in a conformally flat background with the flat so(4) connection
(6.75). This is distinct from the spectral function in the p-wave superconductor to be
discussed in the next section. Top: The Dirac cones inside which the spectral measure is
supported. Bottom: Two representative plots of ρ(ω,~k) as a function of ω for fixed values
of ~k.
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6.3 Properties of the spectral function

We are interested in studying the Fourier space retarded Green’s function GR(km) for

fermions in the doublet of SU(2) for the zero temperature p-wave superconductors discussed

in section 6.1; Our conventions for GR can be found in (6.47). Note that GR has both

spinor and gauge indices and a total of 16 a priori independent components. Here we will

be interested in the spectral measure, ρ, defined by ρ = − Im trGR, where the trace is over

both the gauge indices and the spinor indices. This quantity is gauge invariant, and it is

interesting to consider because it gives a measure of the number of eigenstates of the theory

that couple to the fermionic operator, with long lived excitations manifesting themselves as

δ-functions peaks. In what follows we explain in some detail how to compute the spectral

function (section 6.3.1), how it relates to normal modes of bulk fermions (section 6.3.2)

and how positivity of ρ is guaranteed from a bulk point of view (section 6.3.3). The reader

interested in the final numerical results for ρ may skip directly to section 6.4.

6.3.1 Green’s functions from a gravity dual

In section 6.2 we computed the retarded Green’s function for a configuration with a flat

connection. In this section we consider the fermion Green’s function for the zero temperature

p-wave superconductor discussed in section 6.1 where the connection is flat only in the IR

and UV. The action for the background is given by (6.1) and we use the notation in (6.4-6.5)

to describe the metric and SU(2) gauge fields. We introduce the spin-1/2 field Ψ which

transforms in the doublet of SU(2), whose action is given by

Sfermion = −i
∫
M
d4x
√
−g Ψ̄ΓµDµΨ− i

∫
∂M

d3x
√
−ggrr Ψ̄Γ−Ψ , (6.78)

whereDµ is given in (6.21). Our conventions for the Γ matrices are largely as in section 6.2.4,

but because we now work in curved spacetime, we must be careful to distinguish between

curved and flat indices. Because the matrices γm are needed to describe the physics of the

boundary theory, which is defined on a flat background, we persist in defining them as in
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(6.50). In place of (6.49) we employ

Γm =

 0 γm

γm 0

 Γr = −Γz =

1 0

0 −1

 . (6.79)

The second term in (6.78) is a boundary term that does not affect the equations of motion

but gives the only nonzero contribution to the on-shell action. We treat Ψ in the probe

approximation and do not allow it to back-react on the geometry. The equation of motion

for Ψ is DµΨ = 0. To write it explicitly, it is convenient to exploit translation invariance in

the xm directions and write Ψ in the form

Ψ(xm, r) = (−ggrr)−
1
4 e−iωt+ikxx+ikyyψ(r) . (6.80)

Note that (6.80) reduces to (6.26) for a conformally flat metric. As in section 6.2, it is useful

to split ψ into two chiral spinors

ψ =

ψ+

ψ−

 . (6.81)

The equations of motion for ψ± take the form:

ψ′+ +
i
√
γr2

[
e
χ
2

√
γ

(
−ω − gYMΦ τ3

)
γt +

1
c

(
kx − gYMW τ1

)
γx + kyγ

y

]
ψ− = 0

−ψ′− +
i
√
γr2

[
e
χ
2

√
γ

(
−ω − gYMΦ τ3

)
γt +

1
c

(
kx − gYMWτ1

)
γx + kyγ

y

]
ψ+ = 0 ,

(6.82)

where the prime denotes a derivative with respect to r and γµ are 2+1 dimensional boundary

theory γ matrices related to the bulk Γ matrices through (6.49). Note that ψ± have both a

boundary spinor index and an SU(2) doublet index. We suppressed both types of indices

in (6.82) but it should be clear how they are contracted. For instance
(
γtτ1ψ+

)(i) (b) =

γt (ij)τ1 (ab)ψ(j) (b), where (i), (j), . . . = 1, 2 are spinor indices and (a), (b), . . . = 1, 2 are

SU(2) doublet indices.

The asymptotic solution to (6.82) in the infrared is

ψIR = V1e
−κ+/r + V2e

−κ−/r + V3e
κ+/r + V4e

κ−/r

κ± ≡

(
−eχIRω2 +

(
2kx ± gYMWIR

2cIR

)2

+ k2
y

) 1
2

,

(6.83)
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Here c −→
IR

cIR and similarly W −→
IR

WIR and χ −→
IR

χIR. The spinor integration constants

V1 and V2 satisfy τ1Vi = ±1
2Vi with the minus sign for i = 1, 3 and the plus sign for i = 2, 4.

They must also satisfy a linear constraint that follows from (6.56). The equations κ± = 0

define the two IR Dirac cones that we expect for SU(2) doublet fermions. As discussed in

section 6.2 if we are outside one of the Dirac cones, i.e, if for instance κ2
+ > 0, then the

corresponding term in (6.83) should be regular provided we pick the positive sign for the

square root in the definition of κ+. If we are inside one of the Dirac cones, the correct

boundary conditions for computing the retarded Green’s function are obtained by making

the substitution ω → ω+iε and demanding regularity. In practice, this prescription amounts

to keeping ω real and picking the sign of the square root such that the imaginary part has

the same sign as ω. This is equivalent to requiring that the solutions are infalling in the

IR. Thus, we set

V3 = V4 = 0 . (6.84)

The asymptotic behavior of the fermions in the UV takes the form

ψUV = Q1e
−λ+/r +Q2e

λ+/r +Q3e
−λ−/r +Q4e

λ−/r

λ± ≡

(
−eχUV

(
ω ± 1

2
gYMΦUV

)2

+
k2
x

c2
UV

+ k2
y

) 1
2

,

(6.85)

where c −−→
UV

cUV and a similar definition for χUV and ΦUV. The Qi are constant spinors

such that τ3Qi = ±1
2Qi with the plus sign for i = 3, 4 and the minus for i = 1, 2. Like V1

and V2, each Qi satisfies a linear constraint that follows from (6.56). As opposed to the IR

asymptotics (6.83), in the UV there is no restriction on the choice of the sign of the square

root in the definition of λ±. The equations λ± = 0 define two UV Dirac cones, different

from the IR Dirac cones κ± = 0. The IR Dirac cones are shifted in the kx direction because

in the IR only Ax is nonzero. The UV Dirac cones are shifted in the ω direction since in the

UV only At is nonzero. Furthermore, since c and χ go to different constants in the UV and

IR, the UV and IR Dirac cones are stretched by different factors in the ω and kx directions:

that is, they are characterized by different, anisotropic speeds of light.

The Green’s function for the operator dual to Ψ can be found from the UV behavior of
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the fermions following the prescription given in [93, 94] and more recently in [57]. For the

purpose of computing the Green’s function we rewrite the UV asymptotics in the form

ψUV
+ = A+B

1
r

+O
(

1
r2

)
ψUV
− = D + C

1
r

+O
(

1
r2

)
,

(6.86)

where A, B, C and D are arbitrary chiral spinors with an SU(2) doublet index which are

linearly related to the Qi. The linear constraints that follow from (6.56) can be used to

solve for B and C in terms of D and A. Since the equations of motion are linear, requiring

that the solutions are regular in the IR, (6.84), imposes a linear relation between A and D,

D(i)(a) =M(ij)(ab)A(j)(b) . (6.87)

As explained in section 6.2, to obtain GR we take the functional derivative of the on-shell

action. The result is

GR = −iMγt , (6.88)

where we suppressed the spinor and SU(2) indices. The derivation is very similar to the

one for uncharged fermions, and we refer the reader to [57] for details.

6.3.2 Normal modes

We are particularly interested in the regions in which ρ 6= 0. Consider the IR asymptotics

for the fermions, (6.83). If κ2
+ > 0 or κ2

− > 0 (i.e., we are inside the IR light-cone) then

ψ+ can be chosen to be everywhere real and consequently, ρ = 0 except perhaps for poles

of Re tr(GR) which, together with the iε prescription corresponds to ρ having δ-function

support. In what follows, we argue that a divergence of GR corresponds to a solution to

(6.82) which is a normal mode.

We define a normal mode to be a solution of (6.82) which is regular in the IR and its

near boundary expansion takes the form (6.86) with A = 0. This is a natural definition of

a normal mode since A is the leading term in the UV asymptotic expansion of ψ. We can

not require D to vanish as well since we are not free to choose D once we fix A. Normal
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modes will only occur for special values of km and Vi (i.e., the values of km for which there

are normal modes will form a codimension one surface). The coefficients A and D in the

UV expansion of ψ and V1 and V2 in the IR expansion of ψ are both integration constants

of the same solution to a linear differential equation. Hence,

A = U V D = V V , (6.89)

where V should be understood as a four component object that contains the four indepen-

dent integration constants in the Vi. Using (6.87) the four by four matrices U and V are

related to M through

M = V U−1 , (6.90)

where some care must be taken in interpreting the index structure. Since V , A and D are

finite the entries of U and V can not diverge. From here it follows that if GR has diverging

entries then det U = 0; the only way that M (and hence GR) can diverge is if U is not

invertible, i.e., the solution is a normal mode.

By the same reasons as argued in Chapter 5, we expect normal modes only outside the

IR Dirac cones. Let us briefly repeat this reasoning. If κ2
± > 0 then, as discussed earlier, ψ+

can be chosen to be everywhere real and the condition det U = 0 is a real equation for which

we can expect to find solutions for appropriate ω, kx and ky. On the other hand, if κ2
± < 0,

ψ+ cannot be chosen real and det U = 0 will be a complex equation whose solutions are

expected to involve complex ω. Such a solution would correspond to a quasinormal mode

rather than a normal mode.

There is also a somewhat weaker argument for expecting the normal modes to be inside

at least one of the UV Dirac cones, (λ2
+ < 0 or λ2

− < 0). According to (6.85), if λ2
+ > 0 and

λ2
− > 0 then the generic UV solution will grow exponentially and matching such a solution

to the IR asymptotics seems improbable. If at least one of λ2
+ and λ2

− is negative, then

there is at least a two dimensional subspace of oscillatory solutions and there is no such

obstruction. Our numerics indicate that the outermost UV light cone is indeed where the

surface of normal modes ends. We conclude that the normal modes exist in a “preferred
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region”

κ2
+ > 0 and κ2

− > 0 and
(
λ2

+ < 0 or λ2
− < 0

)
. (6.91)

This preferred region is bounded provided the UV Dirac cones have a narrower opening

angle in both the kx and ky directions than the IR Dirac cones. This is certainly true of

the SU(2) backgrounds we have constructed. It may be possible to demonstrate in general

that the region (6.91) is compact starting from an appropriate positive energy condition.

6.3.3 Positivity of the spectral measure

Unitarity requires that the spectral measure ρ = − Im trGR is nonnegative for all real km

in any field theory, as can be shown using a spectral decomposition. Instead of explaining

the spectral decomposition argument (which is standard) we will show in this section how

the positivity of the spectral measure follows from a computation in the gravity dual.

Consider the current

Jµ ≡ −Ψ̄ΓµΨ . (6.92)

which is conserved in the sense that ∇µJµ = 0 provided the equations of motion that follow

from (6.78) are obeyed. Not surprisingly, this conserved current is associated to the gauge

invariance of the action (6.78). Here ∇ is a covariant derivative. From (6.80), we can write

∇µJµ = 0 as Q′(r) = 0, where

Q(r) ≡
√
−gJr = −ψ̄Γrψ = −ψ̄+ψ− + ψ̄−ψ+ = −2 Re

(
ψ̄+ψ−

)
. (6.93)

where in the last line we used
(
ψ̄−ψ+

)† = −ψ̄+ψ−. Using (6.86) we see that

Q = −2 Re
(
Aa†γtDa

)
. (6.94)

Combining (6.94) with (6.88), it follows that

Q = 2 Im
(
A†(b)γ

tG
(a)

R (b)γ
tA(b)

)
. (6.95)

Since, A is an arbitrary spinor and γt is invertible, Q < 0 implies that 1
2i

(
G−G†

)
is a

nonpositive definite matrix and therefore, ρ = − Im trG is everywhere nonnegative.



116

It remains to show that with our IR asymptotics (6.83), Q < 0. To this end we work

out the constraint on the Vi that follows from (6.57). If we split the Vi into chiral spinors,

denoted by V ±i , the constraint can be written as

V −1 = i
α+

κ+
V +

1 V −2 = i
α−
κ−

V +
2 (6.96)

where

α± ≡ −e
χIR

2 ω γt +
2kx ± gYMWIR

2cIR
γx + kyγ

y . (6.97)

There are now several different case we must consider. Suppose first that we are outside

both IR Dirac cones. If we take the V +
i to be real and choose the Majorana basis for the γ

matrices (making them real matrices) it follows from (6.96) that the V −i are pure imaginary.

Therefore, ψ̄+ψ− is also pure imaginary and Q is identically zero leading us to conclude

that ρ = 0 (up to, perhaps, a codimension one surface of normal modes.) Next, suppose

that κ2
+ < 0 and take V2 = 0 for simplicity. If we choose V +

1 real then V −1 will also be real

and Q is no longer zero. It is given by

Q = −2 sgnω
|κ+|

Re
(
V +†

1 γtα+V
+

1

)
. (6.98)

It is now a simple exercise to compute the eigenvalues of the matrix γtα+ and show that it

is positive (negative) definite for ω > 0 (ω < 0). Therefore, Q is always negative for κ2
+ < 0

and V2 = 0. We can show in the same way that Q is negative for κ2
− < 0 and V1 = 0. Since

Q is given by a quadratic form, it follows that Q ≥ 0.

6.4 Evaluating the spectral function

6.4.1 Numerical results

To obtain the spectral function ρ = − Im trGR we solved (6.82) numerically with the initial

conditions given in (6.83) for some small but nonzero ri. We then extracted A and D from

the behavior of the numerical solution at large r. This procedure was repeated for the four

linearly independent choices of the Vi in (6.83). We then used (6.87) to obtain M and

(6.88) to obtain GR. To find the normal modes we looked for zeros of det U .
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Figure 6.7: The normal mode surface for gYM = 3. The IR and UV Dirac cones are always
drawn red and purple respectively. The normal mode surface is contained in the preferred
region (6.91) and is shown as black dots.

Let us now discuss our numerical results. The spectral measure ρ(km) is symmetric

separately under the sign flips ω → −ω, kx → −kx, and ky → −ky. Since we are restricting

our attention to massless fermions the only free parameter is gYM, the Yang-Mills coupling

constant. Most of the features discussed in this section seem to be generic and independent

of gYM, with the obvious restriction that gYM is at least large enough so that the T = 0

background we are considering exists. It seems possible that if we take gYM large enough

there could be several disconnected surfaces of normal mode, as we found in Chapter 5 for

the s-wave background, but we were unable to check whether this happens as our numerics

are not reliable for all of the “preferred region” for large gYM. For gYM as large as 10, there

is only one distinct surface.

The surface of normal modes we obtained numerically can be roughly described as a

truncated deformed version of the IR Dirac cones, as can be seen in Fig. 6.7. This surface

does not extend indefinitely and is contained in the preferred region (6.91). It is perhaps

more interesting to consider the shape of the normal mode surface near ω = 0. The reason

for this is that, in our conventions where Φ(0) = 0, a fermion with ω = 0 has energy equal
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to the chemical potential.4 For the p-wave superconductor, Fig. 6.7 clearly shows as ω → 0

the surface of normal modes approaches the IR Dirac cones and that therefore the Fermi

surface is given by two isolated points: the apexes of the IR Dirac cones.

To understand the behavior of ρ inside the IR Dirac cones it is useful to plot ρ(km) as

a function of ω for fixed kx, ky. Some of these plots are shown in Fig. 6.8. Outside the

IR Dirac cones (the boundaries of which are shown as dashed red lines), ρ vanishes except

for, perhaps, a δ-function peak that indicates the presence of a normal mode. Inside the IR

Dirac cones, ρ is positive and smooth except for the intersection of two Dirac cones where

there is a kink.

For km close to the apex of a Dirac cone, it is natural to expect that we will recover

the behavior extracted from the infrared asymptotics. This behavior was discussion in

section 6.2.5 for the SO(4) case, and it is essentially the same in the SU(2) case except in

that there are only two Dirac cones rather than four. It is clear from plot (3) in Fig. 6.8

that ρ goes to a constant as ω → 0 when ~k is at the apex of the Dirac cone. Plot (1) in

Fig. 6.8 reveals that there is almost a power-law singularity as soon as one crosses into the

Dirac cone close to its apex. One does not see this dramatic near-singularity when crossing

into a Dirac cone far from its apex.

To gain a better understanding of the spectral measure we provide some plots of constant

ω slices in figure 6.9. At small ω we find that the normal modes surround each of the

IR light cones. For the particular case of gYM = 3 depicted in the top left corner of figure

6.9 the normal modes terminate on the light-cone leaving a “scar” in its interior. This is

also seen more clearly in figure 6.10. This ridge inside the IR light-cone suggests that the

normal mode has turned into a relatively long-lived quasinormal mode, or resonance.

Going back to figure 6.9, we observe that as ω is increased the shape of the surface

of normal modes becomes more asymmetric until, eventually, the surface of normal modes
4If we wanted to treat Ψ beyond the probe approximation, the natural construction is to fill all the

excitations with energy below the chemical potential, i.e, all the normal modes with ω < 0. Once this is
done, the Fermi surface will be given by the intersection of the normal mode surface with the ω = 0 plane.
But we don’t understand how to systematically treat the back-reaction of the fermions on the geometry and
the gauge field.



119

-12 -10 -8 -6 -4 -2 0
Ω�Μ

1

2

3

4

5
Ρ

H2L

-4 -2 0 2 4
-4

-2

0

2

4

kx�Μ

k y
�Μ

Ω=0

1

2

3

-5 -4 -3 -2 -1 0
Ω�Μ

5

10

15

20

25
Ρ

H1L

-6 -5 -4 -3 -2 -1 0
Ω�Μ

1

2

3

4

Ρ
H3L

Figure 6.8: The preferred region and the spectral measure ρ as a function of ω for fixed
kx, ky. The IR Dirac cones are shown in red, and UV Dirac cones in purple in the top figure.
The blue lines are constant kx and ky lines and are the axes of the plots on the bottom.
The limits of the IR and UV Dirac cones are marked in these plots as vertical dashed lines
that are red and purple respectively. All the plots are for gYM = 8.
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Figure 6.9: The spectral measure ρ for ω/µ = 0.45, 0.52, 0.53, 0.58 and gYM = 3. The UV
and IR Dirac cones are shown in the top figure as red and purple surfaces respectively. The
blue planes are the constant ω planes for which ρ is plotted in the bottom figure. In these
plots, outside the the IR Dirac cones the surface of normal modes is shown as a black curve.
This is overlaid with a density plot of the spectral measure ρ where black corresponds to
large values of ρ.
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Figure 6.10: A contour plot of the spectral function ρ on a constant ω/µ = 0.93 slice for
gYM = 8. The red and purple curves mark the location of the UV and IR cones respectively.
The black line outside the IR light cone shows the location of the normal modes. The
spectral function ρ develops a ridge between the points where the normal modes terminate
on the light-cone.

around each of the light cones intersect (figure 6.9 (3)). At large ω the normal modes arrange

themselves into an inner an outer closed surface. This inner surface disappears once the IR

Dirac cones start overlapping. The outer surface will also disappear, eventually, and this

happens as soon as the outermost UV Dirac cone is inside the IR Dirac cones.

6.4.2 Fermion correlators in the sudden approximation

The numerical work reported so far in this section turned up some interesting features in

fermionic Green’s functions: multiple thresholds associated with overlapping Dirac cones,

normal modes in a preferred region, long-lived quasi-normal modes, and some signs of recov-

ering the infrared approximations near the apex of a Dirac cone. We would like, if possible,

some analytic approximation that exposes these features more clearly, so that we are not so

dependent upon numerical integration of classical equations of motion. The obvious place

to start is the probe approximation discussed in section 6.1.2. This approximation relies on

having gYM big so that the gauge field doesn’t back-react appreciably on the AdS4 geometry.

Recall that in section 6.1.2 we rescaled fields as needed to eliminate explicit dependence



122

of the equations of motion on gYM, and that at T = 0 we were able to replace the AdS4

geometry by the z > 0 half of R3,1. For the sake of simplicity we will continue to restrict

to a massless Dirac fermion, which (after a suitable rescaling) we denote ψ. It is dual to a

spinorial operator OΨ. We do not restrict ψ at this stage to be a doublet of SU(2): it will

become apparent that most of our discussion can be carried through straightforwardly for

a domain wall configuration based on any semi-simple gauge group, with ψ transforming in

any representation of it.

The two-point functions of OΨ are controlled by solutions to the linear equation of

motion for ψ:

Γµ(∂µ − iAµ)ψ = 0 . (6.99)

Because we are working in the z > 0 half of R3,1, we do not need to distinguish between

Γµ and Γµ. Aµ is a domain wall solution to the flat-space Yang-Mills equations, so for the

SU(2) case it is takes the form

SU(2) : Amdx
m = Φ(z) dt τ3 +W (z) dx1 τ1 , (6.100)

where Φ and W satisfy the equations (6.8). For SO(4), an interesting solution generalizing

(6.75) is

SO(4) : Amdx
m = Φ(z) dt (τ3

A + τ3
B) +W (z) (dx1 τ1

A + dx2 τ2
B) , (6.101)

with the same functions Φ(z) and W (z) as in the SO(4) case. Backgrounds based on more

complicated gauge groups could also be constructed. All we require for the discussion of

the next few paragraphs is that Am depends only on z, and Az = 0 (a gauge choice).

Solutions to (6.99) can be cast in the form

ψ(x, z) = eik·xψ̂(z) , (6.102)

where, as usual, km = (−ω,~k) and xm = (t, ~x). If we define

Km(z) = km −Am(z) , (6.103)
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Figure 6.11: The functions Φ and W , with WIR = 1, together with the sudden approxima-
tions Φsudden and Wsudden discussed in the main text.

then (6.99) becomes

(∂z + iΓzΓmKm)ψ̂ = 0 , (6.104)

whose solutions can be formally expressed as

ψ̂(z) = P

{
exp

[
−i
∫ z

0
dz′ ΓzΓmKm(z′)

]}
ψ̂(0) , (6.105)

where P denotes ordering non-commuting matrices so that those coming from larger values

of z go to the left. The allowed solutions satisfy boundary conditions in the infrared (large

z) which can be compactly expressed as

ψ̂ ∝ e−KIRzu , (6.106)

where restrictions on u come only from solving (6.104), and we define

KIR
m = lim

z→∞
Km(z) KIR =

√
Km

IRK
IR
m

KUV
m = lim

z→∞
Km(z) KUV =

√
Km

UVK
UV
m ,

(6.107)

and the iε prescription (6.45) is implied.

It is hard to go further than (6.105) without some additional approximation because

the path-ordered exponential is hard to compute. The domain wall structure suggests an

obvious approximation, illustrated in figure 6.11: Let’s replace Am → Asudden
m , where Asudden

m
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is piecewise constant and piecewise flat, going straight from the UV flat connection to the

IR flat connection at a special value z∗ of z such that∫ z∗

0
dz Asudden

t =
∫ ∞

0
dz At . (6.108)

A straightforward calculation based on the function Φ̃(ζ) introduced in section 6.1.2 shows

that in the SU(2) and SO(4) cases described by (6.100) and (6.101),

WIRz∗ ≈ 1.2058 . (6.109)

From now on we will set WIR = 1 for simplicity. It is easy to solve (6.99) with Am replaced

by Asudden
m : the solution is

ψ̂sudden(z) =


e−izΓ

zΓmKUV
m ψ̂sudden(0) for 0 < z < z∗

e−i(z−z∗)Γ
zΓmKIR

m e−iz∗Γ
zΓmKUV

m ψ̂sudden(0) for z∗ < z .

(6.110)

Now let’s see how to implement the boundary condition (6.106). Because ψ̂sudden satisfies

the Dirac equation (with the replacement Am → Asudden
m ), we have

∂zψ̂sudden(z) = −iΓzΓmKIR
m ψ̂sudden(z) for all z > z∗. (6.111)

On the other hand, ∂zψ̂sudden(z) = −KIRψ̂sudden(z) for large z because of (6.106). Since the

KIR
m commute with one another, it must be that

∂zψ̂sudden(z) = −KIRψ̂sudden(z) for all z > z∗ . (6.112)

Comparing (6.111) and (6.112), we arrive at

Pψ̂sudden(0) = 0 (6.113)

where

P ≡ (KIR − iΓzΓmKIR
m )e−iz∗Γ

zΓnKUV
n . (6.114)

It will be useful to express

P = q + ΓzΓmqm + ΓmΓnqmn (6.115)
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where
q = KIR cosh(z∗KUV)

qm = −i
[
KIR
m cosh(z∗KUV) +KIRK

UV
m

sinh(z∗KUV)
KUV

]
qmn = KIR

m KUV
n

sinh(z∗KUV)
KUV

.

(6.116)

Note that q, qm, and qmn have no spinor structure: they are purely gauge-theoretic quan-

tities. In (6.115), the first term on the right hand side is implicitly multiplied by the unit

matrix in spinor space.

The equation (6.113) determines the fermionic Green’s function in the sudden approx-

imation, as we now explain. If we use our usual basis for gamma matrices, (6.49), and

express

ψ̂sudden(0) =

u+

u−

 , (6.117)

then (6.113) can be recast as P++ P+−

P−+ P−−

u+

u−

 = 0 , (6.118)

where P++ P+−

P−+ P−−

 =

q + γmγnqmn −γmqm

γmqm q + γmγnqmn

 . (6.119)

Comparing to (6.86) and using (6.87), we arrive at

Gsudden(k) = iP−1
+−P++γ

t = iP−1
−−P−+γ

t . (6.120)

A more explicit form, based on the middle expression in (6.120), is

Gsudden(k) = −i(γmqm)−1(q + γmγnqmn)γt . (6.121)

We further define ρsudden(k) ≡ − Im trGRsudden(k). We note that trGRsudden(k) and hence

ρsudden(k) can in principle be found in closed form as functions of km, µ, WIR, and z∗. In

practice, the closed-form expressions for q, qm, and qmn in terms of km, µ, WIR, and z∗

are already quite complicated, and we were unable to find a closed-form expression for the

inverse matrix (γmqm)−1 that was sufficiently compact to be useful.
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Although we did not succeed in finding a simple enough closed form expression for the

spectral measure to record here, the expression (6.121) is simple enough to expose most of

the qualitative features of the analytic structure of Gsudden(k). First we claim that branch

cuts in q and qm, as functions of km, arise only when KIR has a branch cut, while qmn

has no branch cuts at all. To demonstrate this claim, we observe that cosh(z∗KUV) and
sinh(z∗KUV)

KUV
are analytic functions of K2

UV, which in turn is a quadratic expression in the

momenta km; so cosh(z∗KUV) and sinh(z∗KUV)
KUV

have no branch cuts at all as functions of the

km. More trivially, KIR
m and KUV

m also have no branch cuts. Our first claim now follows by

inspection of the formulas (6.116) for q, qm, and qmn.

It follows from our first claim that the continuum part of ρsudden(k) is supported pre-

cisely where KIR has a branch cut, which is to say inside the Dirac cones. This feature

of the spectral function has been discussed extensively in section 6.3 and is essentially as

expected on intuitive grounds: The retarded Green’s function can have a dissipative part

iff some component of the fermion wave-function is infalling in the infrared, rather than

exponentially decaying there.

Our second claim is that, at least for ψ in a real representations of g and for generic

values of ~k = (kx, ky), δ-function singularities in ρsudden(ω, kx, ky) as a function of ω can only

occur outside the IR Dirac cones. Recall that a δ-function in ρsudden(ω, kx, ky) is associated

with a pole in Re trGRsudden(ω, kx, ky) for real ω. Thus our claim is that any such pole must

arise outside the Dirac cones. To demonstrate the claim, first note that q, qm, and qmn

never diverge. So the only way to get a pole is if γmqm is non-invertible, which is to say

det iγmqm vanishes. The γm may be chosen in a Majorana basis, where all entries are real:

indeed, (6.50) is such a basis. In a real representation of the gauge group, all the KIR
m and

KUV
m are real symmetric matrices, as are cosh(z∗KUV) and sinh(z∗KUV)

KUV
. KIR is also real and

symmetric provided we are outside the Dirac cones. Thus the iqm are real matrices, and

we see that det iγmqm must indeed be real. More precisely, for real kx and ky, det iγmqm

is a real function of the variable ω outside the Dirac cones. Inside the Dirac cones, KIR

has an imaginary part, and det iγmqm is not a real function of ω. All that we need to note
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now in order to complete our argument is that real analytic functions of a single variable

generically can have zeros on the real axis, but general complex analytic functions do not.

It is tempting to speculate that this argument could be extended to fermions in complex

representations. Certainly there is intuitive reason to think that when a delta-function

contribution to the spectral measure crosses into a continuum, it will spread out into a

finite-width resonance—as we saw numerically in Fig. 6.10.

We caution the reader that the sudden approximation is not controlled in the sense of

becoming good when some parameter is taken large or small. Usually, sudden approxima-

tions are justified when wave-functions are slowly varying as compared to the features of

the underlying background that one is approximating. Optimistically, one might expect our

sudden approximation to be good near the infrared light-cone, because then the fermion

wave-functions are slowly varying in the region z > z∗. But these wave-functions are not

necessarily slowly varying for z < z∗. Thus we regard (6.121) as useful in the sense of

providing an in-principle closed-form expression that captures some of the relevant physics:

namely a continuous part of the spectral measure inside the Dirac cones, with the possibility

(at least on genericity grounds) of normal modes only outside the cones.

6.5 Discussion

The starting point of our analysis is the classical action

S =
∫
M
d4x
√
−g
(
R+

6
L2
− 1

2
trF 2

µν − iΨ̄ΓµDµΨ
)

+ boundary terms , (6.122)

which is essentially the lagrangian of QCD coupled to gravity with a negative cosmological

constant, except that we choose the gauge group to be SU(2) or SO(4), while the fermion

transforms either as the doublet of SU(2) or the fundamental 4 of SO(4). The lagrangian

(6.122) describes the bulk dynamics dual to a field theory in 2+1 dimensions whose contin-

uous symmetries form the same group as the gauge group in (6.122). We treat the dynamics

of (6.122) classically, which is understood to be dual to a large N approximation in the field

theory.
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One output of our analysis is the phase diagram of superconducting black holes based

on the SU(2) gauge group. This phase diagram is shown in Fig. 6.2. We demonstrated,

largely through a numerical study, that black holes charged under the τ3 generator of

SU(2) spontaneously break that symmetry through a p-wave condensate similar to the

one originally studied in [76]. A conspicuous feature of the phase diagram is a tricritical

point separating second order and first order behavior at the symmetry breaking phase

transition. We also showed that at low temperatures, the symmetry-breaking solutions

approach the AdS4-to-AdS4 domain wall geometries of [85], similar to domain walls found

in the Abelian Higgs model in Chapter 2 except for anisotropic alteration of the coordinate

speed of light in the infrared. Our analysis is not complete in that we did not systematically

study the stability of the symmetry-breaking solutions, and it is possible that there are other

symmetry-breaking configurations that we missed. Thus we cannot rule out the existence of

a more complicated phase diagram than we plotted in Fig. 6.2, with (for example) symmetry-

breaking phases present below gYM = 0.710.

A second output of our analysis is two-point functions of the fermionic operators dual

to Ψ. These two-point functions show some intriguing parallels with ARPES data on high-

temperature superconductors. Relationships between holographic fermionic correlators and

ARPES data were emphasized early in [41] in the context of the non-superconducting phase,

following earlier work [84, 57, 40]. Studies in the superconducting phase include [83, 82] and

our work in Chapter 5. These works all focused on rotationally symmetric backgrounds. By

contrast, our Fermi surface at T = 0 consists of isolated points: two in the SU(2) example,

and four in the SO(4) example. Above each isolated point, a Dirac cone rises, as can be

seen in Fig. 6.8 for the SU(2) case and in Fig. 6.6 for the SO(4) case. In the SO(4) case,

the nodes are positioned at 45◦ degrees relative to the axes along which the gauge potentials

are aligned, reminding us of the positioning of nodes in the gap in dx2−y2 superconductors.

The structure of normal modes is also favorable to the comparison with ARPES data.

As shown in Fig. 6.7, there is a normal mode slightly outside each Dirac cone. And as shown

in Fig. 6.8 (plot (2) especially), the spectral measure significantly away from the tip of the
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Dirac cone exhibits a peak-dip-hump structure. The peak comes from the normal mode,

which shows up in the spectral measure at T = 0 as a δ-function, like an infinitely sharp

quasi-particle. The hump comes from the continuum part of the spectral measure, which is

entirely inside the Dirac lightcone. At the tip of the light cone (plot (2) of Fig. 6.8) or just

slightly away from it (plot (1)), there is less structure: the peak goes away or merges into

the hump. Again we see a point of comparison with ARPES: the classic peak-dip-hump

structure arises away from the node in the gap.

There is a twist in our discussion of Dirac cones, normal modes, and continuum struc-

tures relative to the usual story based on quasi-particles, where continuum structures arise

because of two- or three-particle states, where each particle by itself is on-shell when its

momentum lies on the Dirac cone. In our case, the Dirac cone characterizes the edge of

the continuum rather than the dispersion relation for the quasi-particle. We see already

from formulas like (6.62) that if only the infrared dynamics are accounted for, a continuum

supported inside each Dirac cone is the only feature of the spectral measure. There are no

quasi-particles in sight in this infrared limit. The quasi-particles (or, at least, the normal

modes of the bulk fermions) come from the more intricate domain wall structure of the full

bulk geometry, as discussed in section 6.3.2. The dispersion relation of these quasi-particles

is not perfectly linear. This is striking because, even in the full domain wall geometry, the

continuum part of the spectral measure is supported in Dirac cones which are perfectly

linear. In fact, close inspection of Fig. 6.7 shows that the normal modes cross into the Dirac

cones in certain regions. This behavior is brought out better in Figs. 6.9 and 6.10. More-

over, the normal modes disappear altogether once one passes outside the preferred region

described in (6.91). So for large enough ω and ~k there are no normal modes, and therefore

no well-defined quasi-particle δ-functions in the spectral measure. But one still finds that

the edge of the continuous part of the spectral measure defines a perfect Dirac cone. In

short, the continuum part of the spectral measure is the fundamental feature, while the

quasi-particle δ-function appears only under the right circumstances.

We were able to produce an explicit formula (6.121) which captures the main features of
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the fermionic Green’s function, including the perfect Dirac cones enclosing the continuous

part of the spectral measure and the normal mode outside the Dirac cones. Previous works,

notably [42], have provided analytic approximations to interesting fermionic correlators;

moreover, the ones in [42] are based on a controlled approximation, whereas ours is not.

The analytic forms found in [42] for the non-superconducting state rely upon the existence

of an AdS2 near-horizon region. This feature of the geometry is double-edged: While it

does provide tractable asymptotics, it also forces the existence of non-zero entropy density

at zero temperature, which remains unexplained and seems to us peculiar in a theory whose

underlying formulation is a continuum field theory rather than a lattice. Limited analytic

information about fermionic two-point functions is available in the backgrounds studied

in Chapter 4, where also entropy vanishes linearly with temperature. A more powerful

understanding might be forthcoming if one better exploited the AdS3 near-horizon region

of the ten-dimensional embedding of these backgrounds.

There are some good reasons to be suspicious of the relevance of our setup to real high-Tc

materials with a d-wave gap:

• As already remarked in the introduction, the field theory dual to the AdS4 bulk is a

large N field theory formulated in the continuum rather than on the lattice.

• The condensate in the SO(4) case is not described in terms of a spin-2 bulk field,

as one might expect, but rather in terms of gauge potentials involving off-diagonal

generators of SO(4). It’s not at all clear that the classic phase-sensitive features of

the d-wave gap would show up in our system.

• Off-diagonal gauge potentials are dual to persistent currents of global symmetries

in the boundary theory. This seems rather different from the usual language for

discussing d-wave superconductivity. It would be interesting to see if the notion of

persistent currents as an order parameter might be translated into lattice language,

and how it might interact with constraints such as those discussed in [95].

• In addition to the SO(4) gauge symmetry, the field theory dual to (6.122) has SO(2, 1)
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Lorentz symmetry and also relativistic conformal invariance. These symmetries are

largely broken by the condensates, but the fermion operator OΨ transforms as a

doublet under SO(2, 1). This has no immediate analog in spin systems relevant to

high-Tc materials, where the spins are doublets under the SU(2)spin and have no

further structure under the Lorentz group in 2 + 1 dimensions.

• The SO(4) symmetry of the Hubbard model is composed of SU(2)spin and SU(2)pseudospin.

The definition of the latter seems to require the lattice. Doping amounts to adding a

chemical potential for the τ3 component of pseudospin, whereas in (6.101) we added

equal chemical potentials for the τ3 components of both SU(2)’s in SO(4).

Nevertheless, the resemblance of our results for the spectral measure of fermionic Green’s

functions to the spectral properties revealed in real materials by ARPES are striking enough

that we should inquire what underlying physics is driving it. At one level there is no

puzzle: as soon as we note that the infrared Green’s functions depend on Lorentz-invariant

combinations of Km = km−gYMAm, where km = (−ω,~k) and Am is a flat connection in the

gauge group of (6.122), we see that the displaced Dirac cones are just a consequence of the

Lorentz invariance plus the eigenvalues of the non-zero components of Am. At another level,

it may seem strangely suggestive that SO(4) is the symmetry group of the Hubbard model

on a bipartite lattice, and the fermion creation and annihilation operators transform as the

4 of SO(4).5 Precisely this choice of gauge group and fermion representation gave us the

Dirac cone structure reminiscent of dx2−y2 pairing. Did we get approximately right answers

for ARPES-like spectra because we have captured some correct features of the Hubbard

model? A positive answer to this question would be fairly exciting.

5A theory of phase competition between anti-ferromagnetic order and superconductivity has been ad-
vanced based on an approximate SO(5) symmetry [96]; for a review see [97].



Chapter 7

Conclusions

The gauge-gravity dualities provide a new paradigm to understand strongly coupled quan-

tum field theories. Through the dualities, these strongly interacting systems are mapped to

classical gravitational problems for which both the general conceptual framework and com-

putational methods are significantly more developed. In light of this, significant interest has

attached to the idea of bringing this new paradigm to bear on problems from other areas of

physics in which strong interactions play a role. In this dissertation, we have pursued this

idea in the direction of applications to condensed matter physics. The interest of applying

methods based on the dualities to condensed matter topics stems from the fact that more

traditional approaches based on a weakly-coupled quasi-particle paradigm have met with

difficulties when applied to some heavily studied materials such as non-conventional super-

conductors. Of course, some caution is necessary since the quantum field theories with well

understood gravity duals are large-Nc supersymmetric gauge theories, which do not seem

likely to have direct connections to the underlying physics of materials of current interest in

condensed matter research. However, by studying gravitational duals that capture phenom-

ena such as superconductivity in a strongly coupled setting, it seems eminently reasonable

to expect to gain insights and abstract principles that will be useful in more general settings

than the specific gravitational duals being considered.

In this spirit, in this dissertation we have considered gravitational duals that exhibit

132
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features such as superconductivity, quantum criticality and Fermi surfaces. We began by

introducing a class of zero temperature geometries that arise has extrema of the holographic

Abelian Higgs model for some scalar potentials. These geometries have a domain wall struc-

ture with two asymptotic Anti de Sitter regions. Their dual field theory interpretation is

as zero temperature but finite density states. Even though this density breaks scale and

Lorentz invariance, these states have an emergent conformal symmetry at low energies. An-

other important feature is the global symmetry associated to the current with a nonzero

density is spontaneously broken. We identified these geometries, that can arise as zero tem-

perature limits of holographic superconductors, as gravitational duals of quantum critical

points in light of this emergent symmetry and also of the low-frequency power-law behavior

of the conductivity they exhibit. The relationship between these domain wall geometries

and the better known holographic renormalization group flow geometries led us to formu-

late the Criticality Pairing Conjecture, relating symmetry breaking renormalization group

flows to finite-density states with quantum critical behavior. An interesting direction for

future research would be to test this conjecture in more general situations, including both

more intricate gravitational duals and in frameworks that do not rely on the AdS/CFT

correspondence.

A topic that has been the subject of a lot of attention recently is the study of the

properties of spin-1
2 fields in gravity duals. One of the most interesting findings [41, 40] was

that extremal RNAdS blackholes admit stable fermionic excitations with finite momentum

and zero frequency. This has been interpreted as signaling a presence of a Fermi surface in

the dual field theory. Furthermore, the features of the correlators of these fermionic fields

deviate from those in Landau Fermi liquid theory in interesting ways. In this dissertation, we

considered spin-1
2 fields in different gravitational backgrounds and studied their properties.

One of the puzzling features of extremal RNAdS is that it possesses finite entropy density

even at zero temperature. We considered analytic dilatonic blackhole backgrounds whose

entropy density goes to zero in the zero temperature limit and in fact have T -linear specific

heat at low temperatures, much like Fermi liquids. Moreover, they can (like extremal



134

RNAdS) exhibit isolated stable fermionic excitations at finite momentum and therefore

are interesting candidates for gravitational duals of Fermi liquids. These backgrounds can

be embedded in larger string theory constructions, although in this setting they display

thermodynamical instabilities. The fermionic sector we studied was, however, an ad hoc

addition and it would be interesting to repeat this study with a fermionic sector that can

also be embedded in string theory.

We also introduced spin-1
2 fields into holographic superconductor backgrounds. We first

considered s-wave holographic superconductors, more specifically in the zero temperature

domain wall geometry from Chapter 3. We found that the Dirac cones associated to the

infrared and ultraviolet conformal symmetries were key in determining the properties of

fermionic correlators and normal modes. More specifically, the stable fermionic excitations

were constrained to lie in a region in Fourier space, the “preferred wedge”, with bound-

aries given by these Dirac cones (in [83], similar results were found for zero temperature

geometries with emergent Poincaré symmetry). According to the choice of parameters these

bands can be either partially filled (and therefore exhibit a Fermi surface) or totally empty

and gapped. In future research, it would interesting to generalize these studies to finite

temperature.

The other gravitational backgrounds for which we studied fermionic fields were p-wave

holographic superconductors or, more specifically, their zero temperature limit, which has

somewhat similar structure to the domain wall geometries of Chapters 2 and 3 as first found

in [85]. These geometries are extrema of gravitational Lagrangians containing a non-Abelian

gauge field and we were led to consider bulk fermions with non-Abelian charge. As happened

for the s-wave holographic superconductors, we found continuous surfaces of normal modes

constrained to lie in regions delimited by Dirac cones. Due to the non-Abelian nature of the

fermions, the structure of light cones was more complex and we found that surface of normal

modes was consistent with a Fermi surface for the dual field theory that consisted of isolated

points. This lead us to speculate on possible connections with results from angle resolved

photoemission spectroscopy experiments for the cuprate high-Tc superconductors. We did
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detailed numerical studies for SU(2) non-Abelian gauge field and fermions in its doublet

representation and argued how our results should generalize for arbitrary gauge group and

fermion representation. Of particular phenomenological interest is the SO(4) case with the

fermions in the 4 representation, since this would seem to be the closest approach to the

d-wave symmetry of the cuprates. Repeating our numerical analysis for this case is an

appealing future avenue of research, as would be generalizing it to finite temperature.

The study of gravitational duals with fermionic sectors has far from been exhausted. We

have already outlined some possible future direction connected to the research in this dis-

sertation. A further promising direction is developing methods to treat the fermions beyond

the probe approximation and allow them to back-react on the geometry. This necessarily

involves going beyond the strictly classical approximation and has already been found to

lead to some interesting effects such as de Haas-van Alphen oscillations [45], emergent Lif-

shitz symmetries [98], T -linear contributions to the resistivity [99] and Cooper pairing on

the gravity side [100]. In different direction, much could be learned from considering grav-

itational actions with fermionic sectors that can be embedded in string theory or M-theory

as a more complete picture of the dual field theory would result. In [101], an example

of such a construction was already given and it would be interesting to find more general

examples.

In conclusion, the program of applying the gauge-gravity duality to condensed matter

topics is still at its beginning. Although the prospect of finding an exact gravity dual

to a real world condensed matter system seems unlikely at the present time, what the

gauge-gravity duality does is provide a new framework to conceptualize systems at strong

coupling. Continued study of holographic realizations of features such as Fermi surfaces

and superconductivity will lead to a more general understanding of these phenomena that

does not rely on a quasi-particle description. Expecting these developments to shed light

on condensed matter topics does not seem far-fetched.
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