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Abstract

With the Hamilton-Jacobi equation, we obtain the energy-momentum relation of a charged particle as 
it is absorbed by the Gauss-Bonnet AdS black hole. On the basis of the energy-momentum relation at the 
event horizon, we investigate the first law, second law, and weak cosmic censorship conjecture in both the 
normal phase space and extended phase space. Our results show that the first law, second law as well as the 
weak cosmic censorship conjecture are valid in the normal phase space for all the initial states are black 
holes. However, in the extended phase space, the second law is violated for the extremal and near-extremal 
black holes, and the weak cosmic censorship conjecture is violable for the near-extremal black hole, though 
the first law is still valid. In addition, in both the normal and extended phase spaces, we find the absorbed 
particle changes the configuration of the near-extremal black hole, while don’t change that of the extremal 
black hole.
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1. Introduction

According to the singularity theorems developed by Penrose and Hawking [1], we know that 
the formation of a singularity with infinite matter density is inevitable during the gravitational 
collapse. The existence of a singularity will destroy the deterministic nature of general relativity. 
To circumvent this problem, Penrose thus claimed that the singularity produced in the gravita-
tional collapse must be hidden within a black hole so that a distant observer cannot perceive it 
[2], which is the so-called weak cosmic censorship conjecture. In this case, the expected pre-
dictability and deterministic nature of general relativity is reassured.

There is not a concrete proof of the weak cosmic censorship conjecture, we thus should check 
its validity in different spacetimes. Wald proposed firstly a gedanken experiment to check this 
conjecture by examining whether the black hole horizon can be destroyed by injecting a point 
particle [3]. For an extremal Kerr-Newman black hole, he found that a particle which violates 
the weak cosmic censorship conjecture will not be absorbed by the black hole. Until now, there 
are some debates on the test particle model. In the near-extremal Reissner-Nordstöm black hole 
and Kerr black hole, the cosmic censorship conjecture was found to be violated in [4] and [5]
respectively. As the higher order terms in the energy, angular momentum, and charge of the 
test particle are taken into account, the weak cosmic censorship conjecture was found to be 
violated too even for an extremal Kerr-Newman black hole [6]. Later, it was claimed that in all of 
these situations, the test particle assumption was not perfect since they did not take into account 
the self force and back reaction effects [7]. As these effects were considered, the weak cosmic 
censorship conjecture was found to be valid for both the extremal and near-extremal black holes 
[8]. Especially, by applying the Wald formalism rather than matter, a new version of gedanken 
experiment has been designed recently [9,10]. The weak cosmic censorship conjecture was found 
to be valid for the non-extremal black holes [9–12]. In this framework, the second order variation 
of the mass of the black hole emerges, which somehow incorporates both the self force and back 
reaction effects.

With different methods, there have been some counter examples to the weak cosmic censor-
ship conjecture, especially in spacetimes with more than four dimensions [13–16]. Even in the 
four dimensional AdS black holes, there are also some counter examples recently. In the Einstein-
Maxwell theory [17], the weak cosmic censorship conjecture was found to be violated since the 
curvature grows without bound in the future to the infinite boundary observers. In the Einstein-
Maxwell-dilaton theory, it was found that there was not a horizon covering the singularity and 
the singularity are connected by the traversable wormholes [18]. The weak cosmic censorship 
was found to be related with the weak gravity. It was suggested that the above counterexamples 
might be removed if the weak gravity conjecture holds [19–22].

Besides the weak cosmic censorship conjecture, the test particle model also can be used to dis-
cuss the first law and second law of thermodynamics of black holes. With the relation between 
the energy and momentum of the test particle, the first law and second law of a three dimensional 
black hole have been investigated [23]. The merit of the test particle model is that it also can be 
used to study the thermodynamics and weak cosmic censorship conjecture in the extended phase 
space, where the cosmological parameter and its conjugate quantity are regarded as the pressure 
and volume respectively [24,25]. In the extended phase space, the first law of thermodynamics 
and Van der Waals-like phase transition have been investigated extensively [24–31]. However, 
there is little work to discuss the second law as well as the weak cosmic censorship conjecture. 
The validity of the first law does not imply that the second law and the weak cosmic censorship 
conjecture are valid. Therefore, it is of great importance and necessity to study the second law 
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and the weak cosmic censorship in the extended phase space. The laws of thermodynamics and 
weak cosmic censorship conjecture with pressure and volume in the high dimensional Reissner 
Nordström-AdS black hole have been investigated recently [32]. It was found that the first law 
and the weak cosmic censorship conjecture were valid, while the second law was violated for 
the extremal and near-extremal black holes, which is different from the case without pressure 
and volume. Now, the idea in [32] has been extended to the Born-Infeld-anti-de Sitter black hole 
[33–35], torus-like AdS black hole [36], and three dimensional BTZ black holes [37,38]. Espe-
cially, thermodynamics and weak cosmic censorship conjecture in the Kerr-AdS black hole have 
also been investigated [39]. Different from the spherically symmetric black holes, the validity or 
violation of the second law in the extended phase space was found to be dependent of the spin 
parameter, radius of the AdS spacetime, and their variations.

In this paper, we intend to investigate the thermodynamics and weak cosmic censorship con-
jecture with pressure and volume in the Gauss-Bonnet AdS black hole. In the extended phase 
space, it has been found that the Gauss-Bonnet coefficient should be treated as a dynamical vari-
able besides the cosmological parameter in order to satisfy the Smarr relation [40]. Thus in the 
Gauss-Bonnet gravity, the thermodynamic phase space is more extensive than that in [32]. In this 
paper, we want to explore how the Gauss-Bonnet coefficient affects the laws of thermodynamics 
and weak cosmic censorship conjecture besides the pressure and volume. In addition, in [32], 
the weak cosmic censorship conjecture was fond to be valid in the extended phase space for the 
near-extremal Reissner Nordström-AdS black hole. However, we found that there were some ap-
proximations. In our paper, we want to explore whether the weak cosmic censorship conjecture is 
valid in the extended phase space without approximations. As a result, we find the weak cosmic 
censorship conjecture for the near-extremal Gauss-Bonnet AdS black hole is violable, depending 
on the values of α, l, rmin and their variations.

The remainder of this article is organized as follows. In section 2, we will briefly review 
the thermodynamics of the Gauss-Bonnet AdS black hole. In section 3, we are going to get 
the relation between the energy and momentum of the absorbed particle near the horizon. The 
laws of thermodynamics and weak cosmic censorship conjecture will be discussed in the normal 
and extended phase space in section 4 and section 5, respectively. We employ the variation of 
entropy to check the second law of thermodynamics. We adopt the variation of the minimum 
value of the function which determine the locations of the horizons to check the weak cosmic 
censorship conjecture. Section 6 is devoted to our conclusions. Throughout this paper, we will 
set Gd = h̄ = c = k = 1.

2. Review of the Gauss-Bonnet AdS black hole

The action admitting the d-dimensional Einstein-Maxwell theory with a Gauss-Bonnet term 
and a cosmological constant term is [41–44]

S = 1

16π

∫
ddx

√−g
[
R − 2� + αGB

(
Rμνγ δR

μνγ δ − 4RμνR
μν + R2

)
− 4πFμνF

μν
]
,

(1)

where αGB is the Gauss-Bonnet coefficient, � is the cosmological constant that relates to the 
AdS radius l with the relation � = − (d−1)(d−2)

2l2
, R is the Ricci scalar, g is determinant of the 

metric tensor, and Fμν is the Maxwell field strength with the definition Fμν = ∂μAν − ∂νAμ, 
where Aμ is the vector potential. The Gauss-Bonnet coefficient is set to be positive for it is 
proportional to the inverse string tension with positive coefficient in the low energy effective 
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action of heterotic string theory [41,42]. The dimension of the spacetime is supposed to be larger 
than four since the Gauss-Bonnet term has no dynamics in four dimensions. From the action in 
Eq. (1), we can obtain the following solution [41–44]

dS2 = −f (r)dt2 + f −1(r)dr2 + r2hij dxidxj , (2)

with

f (r) = κ + r2

2α
− r2

2α

√
1 + 64παM

(d − 2)
κrd−1 − 2αQ2

(d − 2)(d − 3) r2d−4 − 4α

l2 , (3)

where α = (d − 3)(d − 4)αGB is the redefined Gauss-Bonnet coefficient, M and Q are the 
mass and charge of the black hole respectively, and r2hij dxidxj is the line element of a (d −
2)-dimensional Einstein space with constant curvature (d − 2)(d − 3)κ and volume 
κ . The 
value of κ can be 1, 0, -1, corresponding to spherical, flat and hyperbolic topology of black hole 
horizon. In this paper, we are interested in the case κ = 1, and the corresponded volume of the 
(d − 2)-dimensional space is labeled as 
.

The non-vanishing component of the vector potential is

At = − Qr3−d


16(d − 3)π
. (4)

From the equation f (r) = 0, we can obtain two solutions, which correspond to the inner horizon 
and outer horizon. The outer horizon is the event horizon, labeled as rh thereafter. At the event 
horizon, the mass M can be calculated as

M =

r−d−5

h

(
l2

(
2
(
d2 − 5d + 6

)
r2d
h

(
a + r2

h

) + Q2r8
h

) + 2
(
d2 − 5d + 6

)
r2d+4
h

)
32π(d − 3)l2 . (5)

According to the definition of the surface gravity, the Hawking temperature can be written as

T = −l2πQ2r8 + 2(d − 2)πrh
2d

(
α(d − 5)2l2 + (d − 3)l2rh

2 + (d − 1)rh
4
)

8rh2d+1(d − 2)l2
(
2α + rh2

) . (6)

The Bekenstein-Hawking entropy, and electric potential can be obtained by [42]

Sh =
rh∫

0

T −1
(

∂M

∂rh

)
Q

drh = rh
d−4

(
2α(d − 2) + (d − 4)rh

2
)



4(d − 4)π2 , (7)

� =
(

∂M

∂Q

)
Sh

= At(∞) − At(rh) = Qr3−d
h 


16(d − 3)π
, (8)

in which we have employed the first law of black hole thermodynamics in the normal phase 
space, namely the cosmological parameter is fixed. Recent investigations have shown that the 
cosmological parameter can be a dynamical quantity, the thermodynamic phase space thus is 
extended. In the extended phase space, we also can construct the first law of thermodynamics 
by treating the cosmological constant as a dynamical pressure and its conjugate quantity as the 
thermodynamic volume. In this case, the black hole mass M is explained as enthalpy H rather 
than internal energy U of the system. In addition, as the cosmological constant is regarded as 
thermodynamic pressure in the first law, the Smarr relation for black hole thermodynamics can 
be obtained by scaling argument. In the Gauss-Bonnet gravity, to satisfy the Smarr relation, the 
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Gauss-Bonnet coefficient also should be treated as a dynamical quantity. The first law in the 
extended phase space thus takes the form as [40,45]

dH = T dSh + �dQ + V dP +Adα, (9)

in which P is the pressure, V is its conjugate quantity interpreted as volume, and A is the 
conjugate quantity of Gauss-Bonnet coefficient α, which are defined respectively as

P = − �

8π
= (d − 1)(d − 2)

16π l2
, (10)

V =
(

∂H

∂P

)
Sh,Q,α

= rd−1
h 


d − 1
, (11)

A =
(

∂H

∂a

)
Sh,Q,P

= (d − 2)2rh
d−5


16π
. (12)

One can check that the following Smarr relation is also satisfied

(d − 3)H = (d − 2)T Sh − 2PV + 2Aα + (d − 3)Q�. (13)

In the Born-Infeld AdS black hole, the conjugate quantity of Born-Infeld parameter is interpreted 
as Born-Infeld vacuum polarization [46]. While in the Gauss-Bonnet AdS black hole, the physi-
cal meanings of the conjugate quantity A is still not known, we only know it has the dimension 
[length]−3 [40].

3. Energy-momentum relation of the absorbed particle

In this section, we intend to obtain the energy-momentum relation of a charged particle near 
the event horizon as it is absorbed by the Gauss-Bonnet AdS black hole. We are interested in the 
scalar particle, so we will employ the following Hamilton-Jacobi equation to study the dynamical 
of the absorbed particle

gμν
(
pμ − eAμ

)
(pν − eAν) + μ2 = 0, (14)

where pμ = ∂μI is the momentum, e is the charge, μ is the mass, and I is the Hamilton action of 
the particle. In the spherically symmetric spacetimes, the Hamilton action of the moving particle 
can be separated into

I = −Et + W(r) + d−3


i=1

Iθi
(θi) + Lψ, (15)

in which E and L are the energy and angular momentum of the particle respectively, and the 
(d − 2)-dimensional sphere has been expressed as

hij dxidxj = d−2
�
i=1

(
i

�
j=1

sin2 θj−1

)
dθi

2, θd−2 ≡ ψ. (16)

To solve the Hamilton-Jacobi equation, we will use the inverse metric of the black hole in Eq. (2)

gμν∂μ∂ν = −f (r)−1 (∂t )
2 + f (r) (∂r )

2 + r−2
d−2
�
i=1

(
i

�
j=1

sin−2 θj−1

)(
∂θi

)2
. (17)

Substituting Eqs. (15) and (17) into Eq. (14), we can obtain



6 X.-X. Zeng et al. / Nuclear Physics B 949 (2019) 114823
− 1

f (r)
(−E − eAt )

2 + f (r) (∂rW(r))2 + r−2
d−3
�
i=1

(
i

�
j=1

sin−2 θj−1

)(
∂θi

I (θi)
)2

+ r−2
(

d−2
�

j=1
sin−2 θj−1

)
L2 + u2 = 0. (18)

With a variable K to separate this equation, we can get the radial equation and angular equation

− r2

f (r)
(−E − eAt )

2 + r2f (r) (∂rW(r))2 + r2μ2 = −K, (19)

d−3
�
i=1

(
i

�
j=1

sin−2 θj−1

)(
∂θi

I (θi)
)2 +

(
d−2
�

j=1
sin−2 θj−1

)
L2 =K. (20)

Lastly, we obtain the radial momentum

pr ≡ grr∂rW(r) = f (r)

√
−μ2r2 +K

r2f (r)
+ 1

f (r)2 (−E − eAt )
2. (21)

As a particle drops into the black hole, we will pay attention to the thermodynamics of the black 
hole. Therefore, we are interested only the near horizon behavior of the particle, where f (rh) = 0. 
Near the event horizon, Eq. (21) will be simplified as

E = −A(rh)e + ∣∣pr
h

∣∣ , (22)

in which pr
h = pr(rh). For the |pr

h| term, we will choose the positive sign thereafter as done 
in [47–49] in order to assure the particle drops into the black hole in a positive flow of time 
direction.

4. Thermodynamics and weak cosmic censorship conjecture in the normal phase space

In this section, we will investigate the thermodynamics and weak cosmic censorship con-
jecture in the normal phase space on the basis of Eq. (22). We want to explore whether the 
energy-momentum relation can check the validity of the second law of thermodynamics and 
weak cosmic censorship conjecture besides produce the first law of thermodynamics.

4.1. The first law of thermodynamics in the normal phase space

In the normal phase space, the cosmological parameter is fixed, and the black hole is char-
acterized by the mass M and charge Q. The mass M is interpreted as the internal energy of 
the thermodynamic system. As a particle is absorbed by the black hole, we suppose the energy 
and charge are conserved, that is, the change of the internal energy and charge of the black hole 
satisfy

E = dM,e = dQ. (23)

In this case, Eq. (22) changes into

dM = Qr3−d
h 


16(d − 3)π
dQ + pr

h. (24)

The absorbed charged particle will also change the location of the event horizon. We label the 
final state of the event horizon as rh + drh, which satisfies f (rh + drh) = 0 too. According to 
f (rh + drh) = f (rh) = 0, there is always a relation
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dfh = ∂fh

∂M
dM + ∂fh

∂Q
dQ + ∂fh

∂rh
drh = 0. (25)

Inserting Eq. (24) into Eq. (25), we find both dM and dQ are eliminated. The solution of drh
thus can be expressed as

drh = 32l2π
−1pr
hr

6+d
h

2
(
2 − 3d + d2

)
r4+2d
h + l2

(−Q2r8
h + 2(d − 2)r2d

h

(
α(d − 5) + (d − 3)r2

h

)) . (26)

In addition, based on Eq. (7), the variation of the entropy can be expressed as

dSh = (d − 2)rh
d−5

(
2α + rh

2
)



4π2 drh. (27)

Substituting Eq. (26) into Eq. (27), we have

dSh = 8π−1(d − 2)l2pr
hr

1+2d
h

(
2α + r2

h

)
2
(
2 − 3d + d2

)
r4+2d
h + l2

(−Q2r8
h + 2(d − 2)r2d

h

(
α(d − 5) + (d − 3)r2

h

)) . (28)

From Eqs. (6) and (28), we get

T dSh = pr+. (29)

Combining Eqs. (24) and (29), we find

dM = T dSh + �dQ, (30)

which is nothing but the first law of thermodynamics in the normal phase space. That is, the first 
law is valid in the normal phase space as a charged particle is absorbed by the Gauss-Bonnet 
AdS black hole.

4.2. The second law of thermodynamics in the normal phase space

The second law of black hole thermodynamics states that the entropy of the black holes never 
decrease in the clockwise direction. As a particle is absorbed by the Gauss-Bonnet AdS black 
hole, the entropy of the black hole also should increase if the second law is valid, namely the 
variation of the entropy should satisfy dSh > 0. In this section, we will employ Eq. (28) to check 
whether this is true.

For an extremal black hole, its temperature vanishes. From Eq. (29), we know that the 
variation of entropy is divergent, which is meaningless. Thus we mainly concentrate on the 
near-extremal black hole thereafter. We will obtain dSh by numeric method. During the nu-
meric calculation, we focus on studying how α and d affect the value of dSh by fixing Q = 7, 
l = pr = 
 = 1. For a given values of α and d , we can obtain the mass of the extremal black hole 
by solving equation f (rh) = 0. For the case that the two roots are the same, the corresponded 
mass is that of the extremal black hole. For example, when d = 5, the masses of the extremal 
black holes are 0.478672011, 0.41898843, 0.36527364 for α = 2, 1, 0.1 respectively, which is 
shown in Table 1. The mass of the non-extremal black holes should be larger than that of the 
extremal black hole. For different d and α, the values of dSh are given in Table 1, Table 2, and 
Table 3. From these tables, we can see clearly that the variation of the entropy is positive always 
for the extremal and non-extremal black holes. For the extremal black holes, though the values 
seem finite, there are much larger than the near extremal black hole, which can be regarded as 
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Table 1
The relation between dSh , M and rh for d = 5 in the normal phase space.

α = 2 α = 1 α = 0.1

M rh dSh M rh dSh M rh dSh

0.478672011 1.059899 275.84 0.41898843 1.05925 4004.7 0.36527364 1.05928 825.02

0.4787 1.064454 35.889 0.4190 1.06256 34.250 0.3653 1.06426 9.6753

0.48 1.095201 5.3898 0.42 1.09059 3.7818 0.370 1.12751 0.8177

0.5 1.206054 1.4548 0.5 1.34925 0.5288 0.5 1.43458 0.2413

0.6 1.415228 0.6771 0.6 1.49469 0.3878 0.6 1.55497 0.2086

0.7 1.540696 0.5243 0.7 1.60113 0.3296 0.7 1.64970 0.1914

0.8 1.638024 0.4479 0.8 1.68814 0.2951 0.8 1.72953 0.1799

0.9 1.719498 0.3996 0.9 1.76288 0.2715 0.9 1.79928 0.1717

Table 2
The relation between dSh , M and rh for d = 6 in the normal phase space.

α = 2 α = 1 α = 0.1

M rh dSh M rh dSh M rh dSh

0.469357085 0.927431 12640.4 0.39485042 0.94529 1587.9 0.32655982 0.961894 1084.7

0.4694 0.931772 23.3241 0.3949 0.95002 13.440 0.3266 0.96623 6.0210

0.47 0.944334 6.19426 0.40 0.99447 1.4585 0.33 1.00257 0.7310

0.5 1.047712 1.09073 0.5 1.17392 0.4427 0.5 1.25735 0.1915

0.6 1.180504 0.63647 0.6 1.26516 0.3576 0.6 1.33130 0.1744

0.7 1.264667 0.52439 0.7 1.33420 0.3171 0.7 1.39099 0.1645

0.8 1.330526 0.46491 0.8 1.39119 0.2917 0.8 1.44180 0.1577

0.9 1.385745 0.42571 0.9 1.44030 0.2735 0.9 1.48639 0.1526

Table 3
The relation between dSh , M and rh for d = 7 in the normal phase space.

α = 2 α = 1 α = 0.1

M rh dSh M rh dSh M rh dSh

0.463091855 0.878523 1642.9 0.38442131 0.90054 1129.2 0.31006521 0.92257 294.88

0.4631 0.879883 40.076 0.3845 0.90504 8.4265 0.3101 0.92564 5.1496

0.47 0.919834 1.5810 0.40 0.96557 0.7360 0.32 0.97599 0.3784

0.5 0.975948 0.8116 0.5 1.08097 0.3697 0.5 1.15811 0.1586

0.6 1.069715 0.5323 0.6 1.14703 0.3125 0.6 1.21152 0.1475

0.7 1.131048 0.4581 0.7 1.19760 0.2843 0.7 1.25492 0.1409

0.8 1.179453 0.4183 0.8 1.23951 0.2663 0.8 1.29194 0.1364

0.9 1.220202 0.3917 0.9 1.27567 0.2533 0.9 1.32443 0.1330

divergent. So, the second law of thermodynamics is valid for all the black holes in the normal 
phase space.

In addition, from Table 1, Table 2, and Table 3, we also can observe how d and α affect the 
values of dSh. For fixed values of d and α, we find the values of dSh decrease as the black holes 
move far away from the extremal black hole. As the value of d is fixed, the value of the mass of 
the extremal black hole decreases as the value of α reduces. As the mass of a black hole is fixed, 
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the value of dSh decreases while the value of rh increases as α reduces. When the value of α is 
fixed, we also can see how d affect the value of dSh and rh. As the value of d increases, the value 
of the mass of extremal black hole decreases, while dSh and rh increases.

4.3. Weak cosmic censorship conjecture in the normal phase space

The weak cosmic censorship conjecture states that an observer located at future null infinity 
can not observe the singularity of a spacetime for the singularity is hidden by the horizon. In this 
section, we want to check whether this is true as a particle drops into the Gauss-Bonnet black 
hole. We will explore whether there is a horizon after the particle is absorbed.

The event horizon of the black hole is determined by the function f (r), so we concentrate on 
studying how f (r) changes. The function f (r) has a minimum value at radial coordinate rmin. 
For the case f (rmin ) < 0, there are two roots, for the case f (rmin ) = 0, the two roots coincide, 
and the black hole becomes into an extremal black hole, for the case f (rmin ) > 0, the function 
has no real root so that there is not an event horizon. Our motivation is to explore how f (rmin)

moves as a charged particle is absorbed by the Gauss-Bonnet AdS black hole. For the initial state 
is a black hole, f (rmin ) satisfies the following conditions [50–55]

f (M,Q,α, l, r)|r=rmin ≡ fmin = δ ≤ 0, (31)

∂rf (M,Q,α, l, r)|r=rmin ≡ f ′
min = 0, (32)

(∂r )
2f (M,Q,α, l, r)|r=rmin ≡ f ′′

min > 0. (33)

For the extremal black hole, δ = 0, rh and rmin are coincident. For the near-extremal black hole, 
δ is a small quantity, rmin locates at the middle of the two horizons.

In the normal phase space, the state parameters of the black hole are the mass M and charge 
Q. As a charged particle is absorbed, the mass and charge of the black hole will change into 
M + dM and Q + dQ. Correspondingly, the horizon rh and radial coordinate rmin will change 
into rh + drh and rmin + drmin . Note that Eq. (32) is satisfied at both rmin and rmin + drmin , 
which implies

df ′
min = ∂f ′

min

∂M
dM + ∂f ′

min

∂Q
dQ + ∂f ′

min

∂rmin
drmin = 0. (34)

In addition, at rmin + drmin , the function f (rmin + drmin ) can be expressed as

f (rmin + drmin ) = fmin + dfmin = δ + ∂fmin

∂M
dM + ∂fmin

∂Q
dQ. (35)

Firstly, we are interested in the extremal black hole, where fmin = δ = 0 and Eq. (24) is applica-
ble. Inserting Eq. (24) into Eq. (35), we can get finally

dfmin = − 16πpr
hr

−(d−5)
min

(d − 2)
(
2α + r2

min

)



, (36)

which seems to be negative always. However, note that the black hole is an extremal black 
hole here, from Eq. (29), we know that pr

h = 0, so dfmin = 0, implying that the extremal 
Gauss-Bonnet AdS black hole is stable. In other words, as a particle drops into the extremal 
Gauss-Bonnet AdS black hole, the final state of the black hole is still an extremal black hole. The 
weak cosmic censorship conjecture thus is valid in this case.
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Fig. 1. The value of df min for different dQ and rh for pr = α = 
 = 1, ε = 0.0001, d = 5.

For a near-extremal black hole, Eq. (24) is not applicable since rm and rh are not coincident. 
With the condition rh = rmin + ε, we can expand Eq. (24) at rmin, which leads to

dM =
(

pr
h + Qr3−d

min 
dQ

16(d − 3)π

)
−

(
Qr2−d

min 
dQ
)

ε

16π
+ O(ε)2. (37)

Combining Eq. (35) and Eq. (37), we have

df min = −
16

(
πpr

hr
5−d
min

)
(d − 2)

(
2α + r2

min

)



+ Qr7−2d
min εdQ

(d − 2)
(
2α + r2

min

) + O(ε)2. (38)

In the Eq. (38), ε is a very small quantity, so the third terms can be neglected approximately. In 
addition, comparing with the first term, the second term is smaller than it always. In this case, 
Eq. (38) is negative too, please refer to Fig. 1. Therefore, for the near-extremal black hole, the 
weak cosmic censorship conjecture is also valid under a charged particle absorption in the normal 
phase space.

In fact, the high order corrections are important to discuss the weak cosmic censorship con-
jecture [9]. However, in our paper, we find it has little effect, which is shown in Fig. 1. From 
this figure, we know that for different dQ and rh, the value of df min is negative always. As the 
values of pr, α, 
, ε, d change, it is still negative too though the values of df min changes, which 
is not shown here.

5. Thermodynamics and weak cosmic censorship conjecture in the extended phase space

In the normal phase space, we have derived the first law of thermodynamics and found that the 
second law as well as the weak cosmic censorship conjecture are valid. In this section, we intend 
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to discuss the thermodynamics and weak cosmic censorship conjecture in the extended phase 
space, where the pressure and volume emerge. We will explore whether the first law, second law, 
as well as the weak cosmic censorship conjecture are valid in this framework.

5.1. The first law of thermodynamics in the extended phase space

In the extended phase space, the mass M is not the internal energy U but the enthalpy H of 
the thermodynamic system. The relation between the internal energy and enthalpy is [40]

M = U + PV + αA. (39)

In this case, the variation of the energy and charge takes the form as

E = dU = d(M − PV − αA), e = dQ. (40)

Correspondingly, the relation between the energy and momentum in Eq. (22) should be rewritten 
as

dU = d(M − PV − αA) = Qr3−d
h 


16(d − 3)π
dQ + pr

h. (41)

In addition, in order to obtain the first law of thermodynamics in the extended phase space, 
besides dS, we also should find dV and dA. From Eq. (11) and Eq. (12), we have

dV = 
rd−2
h drh, (42)

dA= (d − 5)(d − 2)
rd−6
h

16π
drh. (43)

To get the final results of dV and dA, we should find drh.
In the extended phase space, the state parameters of the Gauss-Bonnet AdS black hole are 

M, Q, l, α, as a particle drops into the black hole, the state parameters change into M +dM, Q +
dQ, l + dl, α + dα. Correspondingly, the event horizon will change into rh + drh. Based on the 
fact that f (rh + drh) = f (rh) = 0, we find

dfh = ∂fh

∂M
dM + ∂fh

∂Q
dQ + ∂fh

∂l
dl + ∂fh

∂rh
drh + ∂fh

∂α
dα = 0. (44)

Combining Eqs (44) and (41), we find all the variables are eliminated except for drh and pr
h, so 

we get

drh = − 32πpr
hr

4+d
h(

Q2r6
h − 12r2d

h + 10dr2d
h − 2d2r2d

h

)



. (45)

Inserting Eq. (45) into Eqs. (27), (42), and (43), we get

dSh = 8(d − 2)pr
h

(
2α + r2

h

)
πrh

(
2
(
6 − 5d + d2

) − Q2r6−2d
h

) , (46)

dV = 32πpr
hr

2+2d
h

−Q2r6
h + 2

(
6 − 5d + d2

)
r2d
h

, (47)

dA= 2(d − 5)(d − 2)pr
h

r2
(

2
(
d2 − 5d + 6

) − Q2r6−2d
) . (48)
h h
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Combining Eqs (6), (10), (46), (47), (48), we find

T dSh − PdV − αdA= pr
h. (49)

Substituting Eq (49) into Eq (41), we get

dU = �dQ + T dSh − PdV − αdA. (50)

The relation between the internal energy and enthalpy in Eq (39) also can be written as

dM = dU + PdV + V dP + αdA+Adα. (51)

Substituting Eq (51) into Eq (50), we can obtain lastly

dM = T dSh + �dQ + V dP +Adα, (52)

which is the first law of thermodynamics in the extended phase space. That is, the first law of 
the Gauss-Bonnet AdS black hole in the extended phase space can be obtained under a charged 
particle absorption.

5.2. The second law of thermodynamics in the extended phase space

In the extended phase space, we have proved that the first law of thermodynamics is valid. 
However, the validity of the first law does not mean the second law is valid [32]. So we should 
check the second law in the extended phase space. The second law of thermodynamics states that 
the entropy of the black hole never decreases. As the particle is absorbed, the entropy of the final 
state thus should be larger than the initial state according to the second law of thermodynamics. 
Next, we will check whether this is true with Eq. (46).

We first study the case of the extremal black hole, for which the temperature vanishes. On the 
basis of Eq. (6), we can obtain a critical charge

Qc =
√

2
√

d − 2rd−4
h

√
αdl2 − 5αl2 + dl2r2

h + dr4
h − 3l2r2

h − r4
h

l
. (53)

Substituting Eq. (53) into Eq. (46), we get finally

dSh = − 4l2pr
hrh

(
2α + r2

h

)
π

(
α(d − 5)2l2 + (d − 1)r4

h

) , (54)

which is negative, implying that the second law is invalid for the extremal Gauss-Bonnet AdS 
black hole.

Next, we focus on investigating the non-extremal black hole. We will adopt the same numer-
ical method as that in the normal phase space. The difference is that we will employ Eq. (46) to 
obtain the variance of entropy. We also set 
 = l = pr = 1, and Q = 7. For given values of d and 
α, we can obtain the masses of the extremal black holes. For example, for d = 6, the masses of 
extremal black holes are 0.469357085, 0.39485042, 0.32655982 for α = 2, 1, 0.1 respectively. 
For any non-extremal black holes with different d and α, we can calculate the values of rh and 
dSh, which are listed in Table 4, Table 5, and Table 6. From these tables, we find that as the mass 
of the black hole increases, the event horizon of the black hole increases. While for dSh, there 
is a divergent point, which divides the variation of entropy into positive region and negative re-
gion. The variation of entropy is negative for the near-extremal black holes while positive for the 
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Table 4
The relation between dSh , M and rh for d = 5 in the extended phase space.

α = 2 α = 1 α = 0.1

M rh dSh M rh dSh M rh dSh

0.478672011 1.059899 −1.377 0.41898843 1.05925 −0.8363 0.36527364 1.05928 −0.3542

0.4787 1.064454 −1.408 0.4190 1.06256 −0.8509 0.3653 1.06426 −0.3652

0.48 1.095201 −1.644 0.42 1.09059 −0.9869 0.37 1.12751 −0.5442

0.50 1.206054 −3.096 0.5 1.34925 −7.7667 0.45 1.35594 −4.6024

0.60 1.415228 −150.8 0.5315 1.40189 −31.478 0.4865 1.41508 −54.04

0.60125 1.417078 −214.2 0.5485 1.42717 114.439 0.4925 1.42388 150.74

0.605 1.422573 913.54 0.55 1.42932 83.1982 0.5 1.43458 27.901

0.65 1.482854 17.119 0.6 1.49470 9.9134 0.6 1.55497 3.5542

0.70 1.540696 9.5658 0.7 1.60113 4.79158 0.7 1.64970 2.5127

0.80 1.638024 6.0014 0.8 1.68814 3.67834 0.8 1.72953 2.1607

0.90 1.719498 4.8332 0.9 1.76288 3.19564 0.9 1.79928 1.9925

Table 5
The relation between dSh , M and rh for d = 6 in the extended phase space.

α = 2 α = 1 α = 0.1

M rh dSh M rh dSh M rh dSh

0.469357085 0.927431 −1.007 0.39485042 0.945294 −0.698 0.32655982 0.96189 −0.315

0.4694 0.931772 −1.046 0.3949 0.950017 −0.729 0.3266 0.96623 −0.331

0.47 0.944334 −1.170 0.40 0.994473 −1.149 0.35 1.06945 −1.463

0.50 1.047712 −3.799 0.450 1.10992 −13.43 0.38 1.12536 −107.1

0.5475 1.122003 −85.22 0.4515 1.12219 −55.23 0.381 1.12691 178.29

0.5525 1.128293 190.46 0.4615 1.12662 787.30 0.395 1.14719 5.3786

0.56 1.137380 34.707 0.5 1.17392 5.5541 0.50 1.25735 1.2439

0.60 1.180504 7.8941 0.60 1.26516 2.4055 0.60 1.33130 0.9929

0.70 1.264667 3.7510 0.70 1.33420 1.8846 0.70 1.39099 0.9070

0.80 1.330526 2.9123 0.80 1.39119 1.6712 0.80 1.44180 0.8681

0.90 1.385746 2.5478 0.90 1.44030 1.5566 0.90 1.48639 0.8486

far-extremal black holes. That is, the second law of thermodynamics is violated for the extremal 
Gauss-Bonnet AdS black hole in extended phase space. This conclusion is independent of the 
values of d and α.

We also can investigate how d and α affect the values of dSh. From Table 4, Table 5, and 
Table 6, we find that as the values of α decrease, the values of the critical horizon where dSh

is divergent become smaller. And as the values of d decrease, the values of the divergent point 
become smaller too.

In fact, the relation between dSh and rh also can be plotted on the basis of Eq. (46). In Fig. 2, 
Fig. 3, and Fig. 4, we fix the dimension d to investigate the effect of α on dSh. Obviously, there 
is a phase transition point which divides dSh into two branches. Interestedly, the phase transition 
point is independent of the values of α. Taking the case d = 6 as an example, which is shown 
in Table 5. From Table 5, we know that the radius of the extremal black holes are 0.927431, 
0.945294, 0.96189. While from Fig. 3, we know that the phase transition point is about 1.12. 
Thus, for the near-extremal black holes, dSh is negative always, which is independent of α. From 
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Table 6
The relation between dSh , M and rh for d = 7 in the extended phase space.

α = 2 α = 1 α = 0.1

M rh dSh M rh dSh M rh dSh

0.463091855 0.878523 −0.705 0.38442131 0.900537 −0.542 0.31006521 0.922567 −0.272

0.4631 0.879883 −0.717 0.3845 0.905037 −0.576 0.3101 0.925639 −0.286

0.47 0.919834 −1.206 0.39 0.939131 −0.953 0.34 1.01595 −4.866

0.50 0.975948 −3.307 0.40 0.965567 −1.556 0.3515 1.03265 7.4142

0.545 1.025403 −694.5 0.435 1.01910 −17.93 0.3715 1.05687 1.8621

0.548 1.028150 82.552 0.44 1.02494 −160.9 0.4 1.08520 1.1128

0.55 1.029951 47.969 0.441 1.02607 321.84 0.5 1.15810 0.6817

0.60 1.069715 5.3613 0.6 1.14703 1.5564 0.6 1.21152 0.5953

0.70 1.131048 2.7381 0.7 1.19760 1.2847 0.7 1.25492 0.5621

0.80 1.1794532 2.1622 0.8 1.23951 1.1641 0.8 1.29194 0.5468

0.90 1.220203 1.9073 0.9 1.27567 1.0967 0.9 1.32443 0.5395

Fig. 2. The relation between dS and rh for different α with d = 5.

Fig. 3, we can conclude that the second law is violated for the near-extremal black holes, which 
is consistent with that obtained in Table 4. For the case d = 7, the phase transition point is about 
1.02, which is larger than the radius of the extremal black holes listed in Table 6. Therefore, 
we also can conclude that the second law is violated for the near-extremal black holes. This 
conclusion will not be changed for d = 5, which is shown in Fig. 2. The invalidity of the second 
law for the near-extremal Gauss-Bonnet AdS black holes thus is universal, independent of the
values of α and d .

5.3. Weak cosmic censorship conjecture in the extended phase space

In the extended phase space, the second law of thermodynamics was found to be invalid for the 
extremal and near-extremal black holes, which is different from that in the normal phase space. 
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Fig. 3. The relation between dS and rh for different α with d = 6.

Fig. 4. The relation between dS and rh for different α with d = 7.

Therefore, it is necessary to check whether the weak cosmic censorship conjecture is valid in 
these cases.

Similar to that in the normal phase space, we will also investigate how f (r) changes as 
a charged particle is absorbed. The difference is that in this case, the state parameters are 
M, Q, α, l. The final state of the black hole thus should be the function of M +dM, Q +dQ, α+
dα, l + dl. Correspondingly, the horizon and minimum point of the final state are rh + drh, 
rmin + drmin. At rmin + drmin, we find there is always a relation

∂rf (r)|r=rmin+drmin = f ′
min + df ′

min = 0. (55)

Using the condition f ′ = 0 in Eq. (32), we obtain df ′ = 0. Expanding it further, we get
min min
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df ′
min = ∂f ′

min

∂M
dM + ∂f ′

min

∂Q
dQ + ∂f ′

min

∂l
dl + ∂f ′

min

∂rmin
drmin + ∂f ′

min

∂α
dα = 0. (56)

At rmin + drmin, the function f (r) takes the form as

f |r=rmin+drmin = fmin + df min

= δ +
(

∂fmin

∂M
dM + ∂fmin

∂Q
dQ + ∂fmin

∂l
dl + ∂fmin

∂α
dα

)
. (57)

For the extremal black holes, we know f ′
min = 0 and fmin = δ = 0. Substituting dM in (41) into 

Eq. (57), we get

df min = − r3−d
min

(
16αdAl2πr2

min + 16l2πpr
hr

2
min + (

2 − 3d + d2
)
drminr

d
min


)
(−2 + d)l2

(
2α + r2

min

)



. (58)

Inserting pr
h in Eq. (49) into Eq. (58), we find

df min

= − l2
(
2(d − 2)r2d

min

(
α(d − 5) + (d − 3)r2

min

) − Q2r8
min

) + 2
(
d2 − 3d + 2

)
r2d+4

min

2(d − 2)l2
(
2α + r2

min

)
r2d+1

min

drmin.

(59)

For the extremal black holes, the extremal charge in Eq. (53) is also applicable. Substituting 
Eq. (53) into Eq. (59), we gat lastly

dfmin = 0, (60)

which means that f (rmin) does not change as a charged particle drops into the extremal Gauss-
Bonnet AdS black hole. The extremal black hole thus is still an extremal black hole. The weak 
cosmic censorship conjecture thus is valid for there is always a horizon to hidden the singularity.

For the near-extremal black hole, Eq. (41) is not applicable. But we can expand it near the 
minimum point with the relation rh = rmin + ε. To the first order, we find

dM = rmin
(
l3Qr8

mindQ + (
6 − 5d + d2

)
r2d

min

(
dα2l3 − 2dlr4

min

))



16(d − 3)l3πr6+d
min

+ (d − 3)
(
2 − 3d + d2

)
r4+2d

min drmin


16(d − 3)lπ

+ (d − 3)
(−Q2r8

min + 2(d − 2)r2d
min

(
α(d − 5) + (d − 3)r2

min

))



32(d − 3) π

− rmin
(
l3Qr8

mindQ − (d − 2)r2d
min

(
(d − 5)dα2l3 − 2(d − 1)dlr4

min

))

ε

16l3πrd+7
min

+
(d − 2)

(
2
(
2 − 3d + d2

)
r4+2d

min drmin

)

ε

32l2πrd+7
min

+ (d − 2)
(
Q2r8

min + 2r2d
min

((
30 − 11d + d2

)
a + (

12 − 7d + d2
)
r2

min

))

ε

32πrd+7
min

+ O(ε)2. (61)



X.-X. Zeng et al. / Nuclear Physics B 949 (2019) 114823 17
Substituting Eq. (61) into Eq. (57), we have

df min = − 2
(
2 − 3d + d2

)
r4+2d

min drmin

2
(
(d − 2)l2

(
2a + r2

min

))
r2d+1

min

− l2
(−Q2r8

min + 2(d − 2)r2d
min

(
α(d − 5) + (d − 3)r2

min

))
drmin

2
(
(d − 2)l2

(
2α + r2

min

))
r2d+1

min

− −2rmin
(
l3Qr8

mindQ − (d − 2)r2d
min

(
(d − 5)dα2l3 − 2(d − 1)dlr4

min

))
ε

2
(
(d − 2)l3

(
2a + r2

min

))
r2d+2

min

− (d − 2)l
(
2 − 3d + d2

)
r4+2d

min drminε(
(d − 2)l3

(
2α + r2

min

))
r2d+1

min

− l2
(
Q2r8

min + 2r2d
min

(
α

(
30 − 11d + d2

) + (
12 − 7d + d2

)
r2

min

))
ε

2
(
(d − 2)l3

(
2α + r2

min

))
r2d+1

min

+ O(ε)2. (62)

For the equation f (rh) = 0, we also can expand and solve it, which leads to lastly

l =
√

2
√

2 − 3d + d2r
(d+2)
min√

Q2r8
min − α2

(
20r2d

min − 14dr2d
min + 2d2r2d

min

) − r2+2d
min

(
12 − 10d + 2d2

) . (63)

In addition, based on Eq. (56), we can get

dl = −√
2
√

2 − 3d + d2r2+d
min

(
Qr8

mindQ − (
10 − 7d + d2

)
dα2r2d

min

)
(
Q2r8

min − 2(d − 2)r2d
min

(
α(d − 5) + (d − 3)r2

min

))3/2

−
√

2
√

2 − 3d + d2
(
(d − 2)drmin

(−Q2r8
min + 2r2d

min

(
2α(d − 5) + (d − 3)r2

min

)))
r−1−d

min

(
Q2r8

min − 2(d − 2)r2d
min

(
a(d − 5) + (d − 3)r2

min

))3/2 .

(64)

Substituting Eq. (63) and Eq. (64) into Eq. (62), we find

dfmin = O(ε)2. (65)

In [23], it was claimed that dfmin can be neglected for it is the high order terms of ε. In fact, 
δ is a small quantity, we can not neglect the contribution of O(ε)2 to f (rmin + drmin) for both 
of them are small. We can find that δ is also a function of ε. As we expand f (rh) at rmin to the 
second order, we find

f (rh) = f (rmin) + f ′(rmin)ε + 1

2
f ′′(rmin)ε

2 + O(ε)3 = 0. (66)

For f ′′(rmin) �= 0, O(ε)3 thus can be omitted since the dominant term is that of ε2. In this case, 
we have

δ = −1

2
f ′′(rmin)ε

2

= −α
(
d2 − 9d + 20

)
l2 + r2

min

((
d2 − 3d + 2

)
r2
min + (d − 3)2l2

)
l2r2

(
2α + r2

) ε2. (67)

min min
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Fig. 5. The relation between F(rmin + drmin) and rmin for Q = l = α = 1, d = 5, da = dl = dr = 0.08.

In addition, to the second order, dfmin can be simplified as

dfmin = X

l3r3
min

(
2α + r2

min

)ε2 + O(ε)3, (68)

in which

X = α
(

16d2 − d3 − 83d + 140
)

drminl
3 −

(
d2 − 9d + 20

)
dαl3rmin

+ 2
(
d2 − 3d + 2

)
dlr5

min + (3 − d)
(
d2 − 8d + 15

)
drminl

3r2
min

+ (3 − d)
(
d2 − 3d + 2

)
drminlr

4
min. (69)

In this case, we can obtain the value of the final state of function f . For simplicity, we will 
discuss F(rmin + drmin) ≡ f (rmin + drmin)/ε

2, that is

F(rmin + drmin) = X

l3r3
min

(
2α + r2

min

)
− α

(
d2 − 9d + 20

)
l2 + r2

min

((
d2 − 3d + 2

)
r2
min + (d − 3)2l2

)
l2r2

min

(
2α + r2

min

) . (70)

For different values of the parameters α, l, rmin, d, dα, dl, drmin, the configurations of F(rmin +
drmin) are different. In this paper, we find dα, dl, drmin affect the configuration drastically. For 
the case dα = dl = drmin = 0.08, the configuration of F(rmin + drmin) is plotted in Fig. 5. 
We can see that F(rmin + drmin) is negative, implying that there are horizons always. And for 
the case dα = dl = drmin = 0.8, the configuration of F(rmin + drmin) is plotted in Fig. 6. We 
can see that F(rmin + drmin) may be positive. In this case, there is not a horizon to cover the 
singularity and the weak cosmic censorship conjecture is violated. As we change the values of 
the parameters α, l, rmin, d, dα, dl, drmin, the configurations of F(rmin +drmin) will change too. 
However, we can find that F(rmin + drmin) is positive always for some values of the parameters. 
So, in the extended phase space, the weak cosmic censorship conjecture is violable, depending 
on the values of α, l, rmin and their variations.
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Fig. 6. The relation between F(rmin + drmin) and rmin for Q = l = α = 1, d = 5, da = dl = dr = 0.8.

6. Discussion and conclusions

As a charged particle drops into the Gauss-Bonnet AdS black hole, we obtained the energy-
momentum relation near the horizon via the Hamilton-Jacobi equation. We found that there was 
a relation between the energy, momentum, and chemical potential, which is conjectured to be 
the first law of black hole thermodynamics. To confirm this conjecture, we investigated the vari-
ation of the event horizon with the help of energy conservation as well as charge conservation 
and found that the energy-momentum relation was noting but the first law of thermodynamics in 
both the normal phase space and extended phase space.

With the variation of the event horizon, we also checked the second law of thermodynamics 
by investigating the variation of entropy. In the normal phase space, we found that the second law 
was valid for the variation of entropy was positive always. This conclusion is independent of the 
Gauss-Bonnet coefficient. In the extended phase space, the variation of the entropy is more so-
phisticated. We found that there was always a phase transition point, which divides the variation 
of entropy into positive and negative region. The variation of entropy is negative for the extremal 
and near-extremal black holes, while positive for the far-extremal black holes. In addition, we 
found that the phase transition point is independent of the Gauss-Bonnet coefficient though the 
value of the variation of entropy depends. Therefore, we concluded that in the extended phase 
space, the second law was violated for the extremal and near-extremal black holes.

In the normal and extended phase space, we also investigated the weak cosmic censorship 
conjecture. We mainly concentrated on studying how the minimum value of the function that 
determine the locations of the horizons move. In the normal phase space, we found that the func-
tion are stable and move downward respectively for the extremal and near-extremal black holes 
as a charged particle is absorbed, which implies that there are horizons always so that the weak 
cosmic censorship conjecture is valid. In the extended phase space, the validity or violation of the 
weak cosmic censorship conjecture is more subtle. We found that for the extremal Gauss-Bonnet 
AdS black hole, the weak cosmic censorship conjecture is valid always since the final state of the 
black hole is also an extremal black hole. While for the near-extremal Gauss-Bonnet AdS black 
hole, the weak cosmic censorship conjecture was found to be violable, depending on the values 
of α, l, rmin and their variations. Our result is different from that in [23], where the weak cosmic 
censorship conjecture for the near extremal black hole was found to be valid. The reason arises 



20 X.-X. Zeng et al. / Nuclear Physics B 949 (2019) 114823
from that they neglected the contribution of the second order term of ε to dfmin. As we shown, 
the second order term of ε can not be neglected for the initial state is also a function of ε2. Our 
result is thus more reasonable.
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