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"There is nothing so annoying as to be fairly rich, of a fairly good family, pleas-

ing presence, average education, to be "not stupid," kindhearted, and yet to have no

talent at all, no originality, not a single idea of one's own-to be, in fact, "just like

everyone else." Of such people there are countless numbers in this world-far more

even than appear. They can be divided into two classes as all men can-that is, those

of limited intellect, and those who are much cleverer. The former of these classes

is the happier. To a commonplace man of limited intellect, for instance, nothing

is simpler than to imagine himself an original character, and to revel in that belief

without the slightest misgiving. Many of our young women have thought �t to cut

their hair short, put on blue spectacles, and call themselves Nihilists. By doing this

they have been able to persuade themselves, without further trouble, that they have

acquired new convictions of their own. Some men have but felt some little qualm of

kindness towards their fellow-men, and the fact has been quite enough to persuade

them that they stand alone in the van of enlightenment and that no one has such

humanitarian feelings as they. Others have but to read an idea of somebody else's,

and they can immediately assimilate it and believe that it was a child of their own

brain. The "impudence of ignorance," if I may use the expression, is developed to a

wonderful extent in such cases;-unlikely as it appears, it is met with at every turn. ...

those belonged to the other class-to the "much cleverer" persons, though from head

to foot permeated and saturated with the longing to be original. This class, as I have

said above, is far less happy. For the "clever commonplace" person, though he may

possibly imagine himself a man of genius and originality, nonetheless has within his

heart the deathless worm of suspicion and doubt; and this doubt sometimes brings a

clever man to despair. (As a rule, however, nothing tragic happens;-his liver becomes

a little damaged in the course of time, nothing more serious. Such men do not give

up their aspirations after originality without a severe struggle,-and there have been

men who, though good fellows in themselves, and even benefactors to humanity, have

sunk to the level of base criminals for the sake of originality)."

-Fyodor Dostoyevsky, The Idiot
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Resumo

No contexto de teorias de Einstein-Maxwell-dilaton, estudamos buracos negros, bu-
racos de minhoca e aplicações à correspondência anti-de Sitter/Teoria de Matéria
Condensada. Apresentamos a solução de buracos negro dyonica para a teoria de
Einstein-Maxwell-dilaton escrita completamente em termos de constantes de inte-
gração, e então investigamos como de�nir parâmetros físicos dependentes e indepen-
dentes. Escolhendo condições de contorno apropriadas para o dilaton no in�nito,
construímos buracos negros sem massa e uma ponte de Einstein-Rosen que satisfaz
a condição de energia nula. Construímos uma solução carregada analítica de buraco
de minhoca atravessável para a teoria de Einstein-Maxwell-phantom-dilaton que é
livre de singularidades e conecta dois espaços de Minkowski. Usando o teorema de
Gauss-Bonnet calculamos o ângulo de de�exão de um raio de luz que passa próx-
imo à este buraco de minhoca. Apresentamos o formalismo da função entropia de
Sen e o aplicamos para o cálculo analítico da entropia do buraco negro extremo de
uma teoria de supergravidade com N = 8 em quatro dimensões. No contexto de
hologra�a, calculamos coe�cientes de transporte na presença de campos magnéticos
para teorias com um termo topológico na ação. De�nimos quantidades radialmente
independentes subtraindo as correntes de magnetização, e então estudamos pertur-
bações lineares em torno do horizonte a �m de expressar as condutividades elétrica,
termoelétrica e térmica em termos de somente propriedades do horizonte. Com-
binamos as fórmulas para as condutividades com os dados do horizonte calculados
usando o formalismo de Sen, e expressamos analiticamente as condutividades à tem-
peratura zero para várias teorias cujas soluções de buraco negro não são conhecidas
analiticamente.

Palavras Chaves: Buracos negros; buracos de minhoca; AdS/CMT.

Áreas do conhecimento: Relatividade Geral; Buracos negros; Hologra�a.
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Abstract

In the context of Einstein-Maxwell-dilaton theory, we study black holes, wormholes
and applications to the anti-de Sitter/Condensed Matter Theory correspondence.
We present the dyonic black hole solution to the Einstein-Maxwell-dilaton theory
written fully in terms of integration constants, and then investigate how to de-
�ne dependent and independent physical parameters. Choosing appropriate bound-
ary conditions for the dilaton at in�nity, we construct massless black holes and
an Einstein-Rosen bridge that satis�es the null energy condition. We construct an
analytical charged traversable wormhole solution to the Einstein-Maxwell-phantom-
dilaton theory which is free of singularities and connects two Minkowski spacetimes.
Using the Gauss-Bonnet theorem we compute the de�ection angle of a light ray
passing close to this wormhole. We present the Sen's entropy function method and
apply it to compute analytically the entropy of the extremal black hole of a gauged
N = 8 supergravity theory in four dimensions. In the holographic context, we com-
pute the transport coe�cients in the presence of magnetic �elds for theories with a
topological term in the action. We de�ne radially independent quantities by sub-
tracting o� the magnetization currents, and then study linear perturbations around
the horizon in order to express the electric, thermoelectric and heat conductivities
in terms of horizon properties only. We combine the formulae for the conductivities
with the horizon data computed using Sen's entropy function method, and express
analytically the conductivities at zero temperature for several theories whose the
full black hole solutions are not known analytically.

Keywords: Black holes; Wormholes; AdS/CMT.

Areas: General Relativity; Black Holes; Holography.
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Chapter 1

Introduction

It is undeniable that a new era in Physics has just started. At the moment of the
writing of this thesis, both the Advanced Laser Interferometer Gravitational-Wave
Observatory, abbreviated as LIGO, and the Advanced Virgo Interferometer have
anounced a joint detection of gravitational waves emmitted by the merger of two
black holes [1]. This was the fourth detection done by LIGO, and the �rst done
by Virgo. The detection of gravitational waves has just rendered the 2017 Nobel
Prize in Physics to Barry Barish, Kip Thorne and Rainer Weiss, the idealizers of
the LIGO experiment. This certainly left no space for questioning the existence of
gravitational waves and black holes, both predicted theoretically as solutions to �eld
equations of General Relativity.

Black holes are objects that arise from the collapse of stars with large masses
compared to the mass of the Sun. Their mass is concentrated entirely on a pointlike
region of space, called singularity, and they are covered by a surface from which
nothing can escape classically, called event horizon. This is why we use the term
"black hole" to designate these objects that do not even emit light. When two black
holes are in a binary system that is about to merger, they emit a strong signal
of gravitational waves. The mass of the big black hole formed after the merger
is smaller than the sum of the masses of the two black holes before the merger:
gravitational waves carry the rest of the energy. The hope is that the experiments
become precise enough so that we can extract more information about the sources
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using this "new light". Perhaps fundamental �elds inside the black holes, like scalars
or vector �elds, leave imprints on these gravitational waves. This means that we
would be able to probe their constituents and learn whether or not they are charged
under such scalars and vector �elds. If this is the case, then we would be able to say,
for instance, if a black hole has the features of a string theory black hole: it would
be a very strong indication that string theory is a fundamental theory of nature if
a charged black hole contains scalar �elds coupling in speci�c ways to the vector
�elds!

In this thesis we will deal with the so-called Einstein-Maxwell-dilaton theory.
This is the simplest low-energy e�ective theory that arises in string theory. The
presence of a scalar background �eld called dilaton, which couples to the gauge
�elds, is a feature these theories. This generalizes the Einstein-Maxwell theory by
adding the dilaton with its respective kinetic term and also by coupling it to the
Maxwell term in the action. In general, this coupling is an exponential function of
the dilaton. The presence of the dilaton enriches a lot the physics of the solutions
to the �eld equations compared to the Reissner-Nordström solution, which is the
charged black hole solution of the Einstein-Maxwell theory. In the case of black
holes with electric and magnetic charges, called dyonic black holes, the dilaton �eld
is attracted to a �xed point on the horizon. This phenomenon is called "attractor
mechanism", and we will also deal with this topic here.

The Einstein-Maxwell-dilaton theory has its origins in the so-called Kaluza-Klein
compacti�cation scheme [2], [3]. At that time, the electromagnetic and gravitational
�elds were thought to be the components of a �ve dimensional gravitational �eld.
The four dimensional gauge invariance arose as a consequence of the invariance of
the �ve dimensional theory under coordinate transformations. The �fth dimension
must be compact, and with very small radius of compacti�cation. When the �ve
dimensional gravity theory has one spatial dimension compacti�ed on a torus, the
resulting theory is the four dimensional Einstein gravity coupled to a U(1) gauge
theory and to a single massless scalar. In other words, the Maxwell's theory of
electromagnetism arises naturally from a higher dimensional theory. The extra
scalar �eld is called dilaton. One of the problems of this scheme is that the dilaton
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is associated to the radius of compacti�cation, but the four dimensional theory has
no dilaton potential. This means that the radius of the compact dimension could
not be �xed. Due to the problems of the scheme, the subject remained dormant for
quite a long time.

The dream of uni�cation of the forces was revived with the advent of string
theory. In order to avoid anomalies, string theory requires the existence of several
spacetime dimensions. The bosonic string theory, for instance, requires that there
exists twenty six spacetime dimensions, whereas supersymmetric string theory, called
superstring theory, requires ten. Since we live in four spacetime dimensions, the
other dimensions of the theory must be compact. The problem with the dilaton
can be �xed in this context, since in superstring theory there is a mechanism that
generates a dilaton potential. Consequently, these compacti�cation schemes can
be used in string theory, and consequently, the Einstein-Maxwell-dilaton became
interesting again. The natural way to follow would then be to �nd the solutions
to the theory, and study their physics. The investigation of the solutions to the
Einstein-Maxwell-dilaton theory and their applications are the main topics of this
thesis. In order to be more speci�c, we will study the black hole and wormhole
solutions to the theory, the computation of the entropy of such black holes, and how
black holes can be applied in AdS/CFT.

The history of the black hole solutions of the Einstein-Maxwell-dilaton theory
(6.1) is actually very interesting. The solution was �rst presented in 1982 by Gary
Gibbons, as can be seen in reference [4], and it was clari�ed in reference [5] by
Gibbons himself together with Kengo Maeda. The solution they presented had
electric and magnetic charges, which is called dyonic, and of course one can easily
obtain the magnetically charged one just by setting the electric charge to zero.
The magnetically charged solution was "rediscovered" by Gar�nkle, Horowitz and
Strominger in [6]. It is fair to mention that the solution they presented had already
been given by Gibbons [4], so, at that time, it was not new anymore. But they
discussed important points in their paper, such as the problems related to the dilaton
�eld on the horizon of the black hole in the string and Einstein frame, and also
that the electrically charged solution could be obtained via S-duality rotation of the

3



solution. The dyonic solution of reference [4] was found for the case when the dilaton
�eld at in�nity, refered to as φ0 in this thesis, was set to zero. This was included in
the paper by Kallosh, Linde, Ortín, Peet and van Proeyen, in reference [7], and some
authors call it the most general dyonic black hole solution of the Einstein-Maxwell-
dilaton theory, although the only di�erence of the solution in [7] compared to the
one in [4] is the inclusion of such parameter. The original solutions of reference [7]
are actually the multicenter ones.

There are many motivations for considering black hole solutions besides the ones
related to astrophysics. In theoretical physics, black holes are believed to be the
perfect object to address the quantum aspects of gravity. The quantum processes
taking place near the horizon lead the black hole to evaporate [8]. We also know
that the horizon area surrounding the singularity has a large entropy. Although
we will not present this in this thesis, it was shown by Strominger and Vafa that
this matches the counting of their inner microstates in the �ve dimensional string
theory context [9]. The idea that the entropy counts the microstates of black holes
in string theory motivated Sen to develop a whole formalism to compute the entropy
of extremal black holes [10]. This is the Sen's entropy function: an e�cient method
to compute the entropy of extremal black holes even without knowing the full black
hole solution. Once there are more e�cient methods to count the microstates of a
black hole, we can compare to its entropy in order to check if they match.

There are also other kinds of solutions that we will consider in this thesis. They
are the Einstein-Rosen bridges and the traversable wormholes. Both are referred to
as just wormholes nowadays. The traversable wormholes are tunnels in spacetime
that would allow rapid insterstellar travel, and the Einstein-Rosen bridges also has
the same features of such tunnels, but they are constructed out from deforming black
hole solutions. The problems with both solutions is that they require the existence
of exotic kinds of matter to exist, and this will be explained later. But still, they
are very interesting objects and we will investigate them here as well.

The fact that the physics of black holes is encoded in the properties of the
horizon is one example of holography: the properties of a (d+1)-dimensional theory
is encoded in its d-dimensional boundary surface. Another example of holography
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is the anti-de Sitter/Conformal Field Theory correspondence, or just AdS/CFT for
short. Maldacena proposed in 1997 that there exists a duality between a (d+1)-
dimensional gravity theory in anti-de Sitter space and a d-dimensional conformal
�eld theory [11]. So, di�cult problems to be handled in conformal �eld theories
might become simpler to be handled using its gravitational dual. Nowadays, the
AdS/CFT correspondence is used as an attempt to handle strongly coupled systems
in Condensed Matter Theory, and such approach is called AdS/CMT for short. As
black holes have temperature, they are the thermodynamical objects used in gravity
in order to describe, or at least to predict something, in condensed matter theory.
We will also apply the black hole solutions of the Einstein-Maxwell-dilaton theory
in this context, and compute transport coe�cients holographically.

By no means we intend to be mathematically formal. As this thesis is about
solutions to the Einstein-Maxwell-dilaton theory and also about their applications
in holography, one might say that it would be necessary to have an introduction to
both topics. Of course this would turn the reading more tedious and would occupy
more space. We judged more important to introduce more carefully only the topic
of solutions, which is done in the next chapter. This will be of great relevance, since
we will present the language used in the context of black holes and wormholes. The
topics related to the AdS/CFT applied to condensed matter theory will be done in
chapter 7. In order to have a more detailed discussion about string theory we refer
to the books by Polchinski [12] and [13]. For AdS/CFT we refer to the book by
Nastase [14].

In chapter 2 we review the simplest black holes and wormhole solutions, and
discuss the properties that will be relevant for the thesis.

In chapter 3 we present the dyonic black hole solution to the Einstein-Maxwell-
dilaton theory. We will explain its features, how to de�ne physical parameters, how
to recover other known solutions, and how this theory presents the phenomenon
called attractor mechanism. Then, we discuss that it is possible to obtain massless
black holes under certain boundary conditions, and from it, to construct Einstein-
Rosen bridges that satisfy the null energy condition. This whole chapter is based in
references [15] and [16].
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In chapter 4, we construct traversable wormholes for the Einstein-Maxwell-
phantom-dilaton theory. A phantom dilaton is the same as the dilaton �eld, but its
kinetic term in the action appears with �ipped sign, so that it has negative kinetic
energy. The wormhole is electrically charged and contains no singularities. We plot
the embedding diagram for this wormhole, as well as the �elds of the theory. The
wormhole also deviates light, since it is a gravitational object just like a black hole.
We then use the Gauss-Bonnet theorem and compute the de�ection angle for a light
ray passing close to it. All the results of this chapter are based in reference [17].

In chapter 5 we present the entropy function formalism developed by Sen. This
is a review based on references [10] and [18]. We show how to construct the entropy
function from �rst principles and also how to obtain the attractor equations.

In chapter 6 we apply the entropy function method to compute the entropy for
a very complicated theory, the U(1)4 supergravity theory, which is the bosonic part
of a gauged N = 8 supergravity theory. First, we obtain the solutions to simpler
Einstein-Maxwell-dialton theories in the presence of a potential. Then, we show
how we can infer the solution to the attractor equations for the U(1)4 supergravity
theory. The entropy of the black hole is computed analytically, and expressed in
two di�erent ways. This chapter is based on reference [19].

In chapter 7, we review the AdS/CFT and AdS/CMT correspondences, and show
how to calculate holographic conductivities in the presence of magnetic �elds. The
main references for this chapter are [20] and [21]. The computation we present is
more general than the one in [21], since it includes a topological term in the action.
This generalization is the topic of ongoing research that will be published soon, in
collaboration with Luis Alejo. Basically, we show how to de�ne radially independent
currents in the presence of perturbations around the black hole. This requires to
subtract o� the contributions from the magnetization currents to the total currents.
The resulting current is then independent of the radial coordinate in the presence
of perturbations, which allows us to compute the conductivities analytically, and
express them in terms on the properties of the horizon only.

Finally, in chapter 8, we apply the Sen's entropy function formalism in the con-
text of AdS/CMT correspondence. We adapt the entropy function method to the
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case of black holes with planar horizons, and obtain the horizon data for Einstein-
Maxwell-dilaton theories with speci�c scalar potentials. We insert the horizon data
into the expressions for the electric, thermoelectric and heat conductivities derived
in chapter 7. The results are expressed in terms of the charges of the black hole and
coupling constants of the theory. We show that all conductivities scale as ∼ N3/2

for a constant potential. We also show that the ratio between the heat conductivity
and the temperature is �nite in our approach. We study how the attractor equa-
tions and the conductivities for the constant potential case change under S-duality
transformations. All the results of this chapter are based on reference [22].

In chapter 9 we conclude.
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Chapter 2

Basic concepts about black holes and

wormholes

This is an introductory chapter about black holes and wormholes. It is our
intention to introduce both subjects and establish the language that will be used
in the whole thesis. Along the thesis, we will use words like horizon, singularity,
throat, and all of them are de�ned here by reviewing the simplest known black holes
and wormhole solutions.

2.1 Weak-�eld limit

The weak-�eld limit in General Relativity corresponds to considering the metric
of the spacetime as being the Minkowski metric ηµν corrected with a linear pertur-
bation hµν , i.e.

gµν ≈ ηµν + hµν . (2.1)

The Einstein's �eld equations reduce to the following system

∇2h00 = 8πGNρ, ∇2hij = 8πGNρδij, (2.2)

and
∇2h0i = 0, (2.3)
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where the operator ∇2 is the Laplacian operator. In this derivation, one has to
assume that the metric is independent of time, and that energy-momentum tensor
is dominated by the energy density T 00 = ρ(~r). The solutions can be written in
terms of the Newton's gravitational potential UN = −GNM

r
using

h00 = −2UN , hij = −2δijUN , hoi = 0. (2.4)

In the weak �eld limit, the metric is given by

ds2 = −(1 + 2UN)dt2 + (1− 2UN)(dr2 + r2dΩ2
2). (2.5)

The weak-�eld limit has many applications in Celestial Mechanics, but here, we will
only use it to associate the integration constants of a black hole solution to the mass
parameter M , which, of course, will be interpreted as the mass of the black hole.

2.2 Schwarzschild solution

In this subsection we will study the so-called Schwarzschild black hole. This is a
solution to Einstein's �eld equations in vacuum, i.e. Tµν = 0. As this is one of the
simplest solutions in General Relativity in four dimensions, we will give a special
treatment to it, since this allows us to introduce important concepts that will be
used in the entire thesis, such as the de�nition of event horizon, singularity, and
the relation between physical quantities and boundary conditions. These concepts
will be used in following subsection in the study of charged black holes, and also in
chapter 3 in the context of black holes with dilaton �elds.

The Einstein's equations can be derived from the Einstein-Hilbert action, which
is just

I =
1

16πGN

∫
d4x
√
−gR, (2.6)

where R is the Ricci scalar, sometimes called curvature scalar. Varying the action
with respect to gµν gives the Einstein's �eld equations

Rµν −
1

2
gµνR = 0. (2.7)
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Now, we introduce the concept of static and spherically symmetric solutions to
the equations of motion in curved spacetimes. For the purpose of this section, we
write a spherically symmetric metric as

ds2 = −eνdt2 + eλdr2 + r2dΩ2
2, (2.8)

where dΩ2 = dθ2 + sin2 θdφ2. A spacetime is said to be stationary if the metric
elements are time-independent, i.e. ∂tgµν = 0. We can perform a coordinate trans-
formation in the time direction and obtain a metric that is now time dependent,
containing crossed terms of the kind grtdrdt. A spacetime is said to be static if
it has a time-like Killing vector �eld orthogonal to the family of surfaces de�ned
by t = constant. If we adapt a metric to be stationary and impose that it con-
tains a time-like Killing vectror �eld orthogonal to the family of surfaces de�ned by
t = constant, then the metric will not contain crossed terms of the kind g0i. In other
words, a spacetime is said to be static if the metric elements are time-independent
and g0i = 0.

The Schwarzschild solution is a static and spherically symmetric solution to the
Einstein's equations in vacuum. After taking the trace of (7.30) and eliminating the
Ricci scalar, we have

Rµν = 0. (2.9)

The Einstein's equations in vacuum for the ansatz (2.8) reduce to the system of two
equations

e−λ
(
ν ′

r
+

1

r2

)
− 1

r2
= 0, (2.10)

e−λ
(
λ′

r
− 1

r2

)
+

1

r2
= 0. (2.11)

Adding (2.10) and (2.11) we have

λ′ + ν ′ = 0, (2.12)

and after integrating it
λ+ ν = const. (2.13)
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One can rescale the time coordinate to choose a coordinate system in which const =

0, so that ν = −λ. Then, integrating the remaining equation we obtain

e−λ = 1− r0

r
, (2.14)

where r0 is another integration constant. We have to impose boundary conditions
in order to give an interpretation to this constant. Notice that we can de�ne a new
radial coordinate de�ned by the equation

r =
(

1 +
r0

4r̄

)2

r̄. (2.15)

This gives

1− r0

r
=

(
1− r0/(4r̄)

1 + r0/(4r̄)

)2

, dr = dr̄
[
1−

( r0

4r̄

)]
, (2.16)

and the line element will be

ds2 = −
(

1− r0/(4r̄)

1 + r0/(4r̄)

)2

dt2 +
(

1 +
r0

4r̄

)4

(dr̄2 + r̄2dΩ2
2). (2.17)

Expanding the metric until �rst order in (r̄/r) we obtain

ds2 = −
(

1− r0

r

)
dt2 +

(
1 +

r0

r

)
(dr̄2 + r̄2dΩ2

2). (2.18)

Comparing (2.18) to (4.24), we see that

r0 = 2GNM. (2.19)

The vacuum solution to the Einstein's equations is then written as

ds2 = −
(

1− 2GNM

r

)
dt2 +

(
1− 2GNM

r

)−1

dr2 + r2dΩ2
2. (2.20)

This is the Schwarzschild black hole solution. There are two special "hyper-
surfaces" that seem to make the metric divergent, i.e. r = 0 and r = 2GNM . The
time spent for the light emitted by an infalling object to reach an observer far away
from the the hypersurface r = 2GNM is de�ned by the equation

ds2 = 0. (2.21)
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Assuming for simplicity that the motion occurs in the radial direction, the time is
given by

∆t =

∫ r2

r1

√
grr
gtt
dr, (2.22)

where r1 is the position of the infalling object and r2 is the position of the observer.
For the Schwarzschild solution (2.20) this gives

∆t = [r + 2GNM ln(r − 2GNM)]r2r1 . (2.23)

When the infalling object achieves the hypersurface r = 2GNM , this variation of
time diverges. In other words, after crossing the hypersurface r = 2GNM the
infalling object will not be seen anymore since the light it emits takes an in�nite
amount of time to achieve an observer at position r2. Everything that is inside
the sphere de�ned by the hypersurface r = 2GNM is unnaccessible for an observer
outside of it. The hypersurface r = 2GNM de�nes the event horizon of the black
hole, and we will denote it by rH . In principle, one is led to think that the infalling
object may feel something special while crossing the surface. We will show that this
is not exactly the case. In fact, the Schwarzschild black hole (2.20) was written in
a coordinate system that is valid only in the region r > rH . In order to make the
solution be valid in the region r < rH we need to change the coordinate system in
such a way that our spacetime includes the internal region of the black hole. In
order to do that, we �rst introduce the tortoise coordinates r∗

dr

1− 2GNM
r

= dr∗ → r∗ = r + 2GNM ln(
r

2GNM
− 1), (2.24)

which gives the metric

ds2 =

(
1− 2GNM

r

)
(−dt2 + dr2

∗) + r2dΩ2
2. (2.25)

Then, we introduce the null coordinates

u = t− r∗, v = t+ r∗, (2.26)
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in such a way that light rays travel with u = constant or v = constant. This will
give the metric written in Kruskal coordinates,

ds2 =

(
1− 2GNM

r

)
dudv + r2dΩ2

2. (2.27)

This is what we call the Kruskal spacetime. The extension to the region inside the
horizon can be done by introducing the Kruskal-Szekeres coordinates,

U = −4GNMe
− u

4GNM , V = 4GNMe
v

4GNM . (2.28)

The metric in this coordinate system is given by

ds2 = −2GNM

r
e
− r

2GNM dUdV + r2dΩ2
2, (2.29)

where r = r(U, V ). This is the Schwarzschild solution in null-Kruskal coordinates.
This coordinate sysem is valid everywhere, except at the point r = 0. We say that
the hypersurface r = 2GNM is a singularity of the metric, and this, as we saw, can
be removed by introducing appropriate coordinate systems. The singularity rS can
not be removed by changing the coordinate system, being the singularity of the

spacetime. All the mass of the black hole is concentrated in this small region of
the spacetime. If any scalar constructed out of curvature tensors is singular in one
point, this is the point where the singularity of the spacetime is located.

2.3 Reissner-Nordström solution

Suppose the spacetime now contains a non-trivial massless gauge �eld Aµ. This
theory is described by the Einstein-Maxwell action, written as

I =

∫
d4x
√
−g
(

R

16πGN

− 1

4
FµνF

µν

)
, (2.30)

where the �eld strength Fµν has the usual de�nition

Fµν = ∂µAν − ∂νAµ. (2.31)
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The equations of motion with respect to the metric are

Rµν −
1

2
gµνR = 2GN

(
FµγFν

γ − 1

4
gµνFαβF

αβ

)
. (2.32)

Varying the action with respect to the gauge �eld gives the Maxwell's equations in
curved spacetimes, written as

∇µF
µν = 0. (2.33)

The �eld strength must satisfy the Bianchi identities

∇[µFν ρ] = 0. (2.34)

The Bianchi identities can also be written as

∇µF̃
µν = 0, (2.35)

where the dual �eld strength F̃ µν is given by

F̃ µν =
1

2
√
−g

ε̃µνρσFρσ. (2.36)

In this expression, ε̃µνρσ is the totally antisymmetric Levi-Civita symbol, for which
ε̃trθφ = 1. The solution to the gauge �eld equations, consistent with the Bianchi
identities, are

Frt =
Q

r2
, Fθφ = P sin θ, (2.37)

where Q and P have the interpretation of electric and magnetic charges respectively.
The Einstein's equations are the same as in the Schwarzschild case, supplemented
by the terms dependent on the charges. After integrating the resulting equation we
obtain

e−λ = 1 +
r0

r
+
GN(Q2 + P 2)

r2
. (2.38)

We can follow the same procedure done in the previous section and use the weak-
�eld limit in order to de�ne the integration constant r0 in terms of the mass of the
black hole M . After this, the charged black hole solution can be written as

ds2 = −e−λdt2 + eλdr2 + r2dΩ2
2,
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e−λ =

(
1− 2GNM

r
+
GN(Q2 + P 2)

r2

)
, (2.39)

This is the so-called Reissner-Nordström solution.
For the discussion that follows we will take GN = 1. In order to �nd the event

horizons, we solve gtt = 0, and obtain

r± = M ±
√
M2 − (Q2 + P 2). (2.40)

There are three situations:

• M >
√
Q2 + P 2

This corresponds to the situation in which the black hole has one inner and
one outer horizon, respectively given by r− and r+;

• M <
√
Q2 + P 2

In this case, the black hole has no horizon. The singularity is still present,
and we call this solution a naked singularity. By analyzing the motion
of an infalling particle following a timelike geodesics, one concludes that the
gravitational force produced by the naked singularity is repulsive. Then, one
can argue that this situation is not physically acceptable, since the naked sin-
gularity will destroy itself with its own gravitational �eld. There also exists
the so-called cosmic censorship conjecture, which states that the gravi-
tational collapse of matter satisfying physical energy conditions forbids the
formation of naked singularities. In other words, if the gravitational collapse
forms singularities, it will always be covered by a horizon;

• M =
√
Q2 + P 2

In this case the two horizons coincide, and we have a solution with one degen-
erate horizon. The metric becomes

ds2 = −
(

1− M

r

)2

dt2 +

(
1− M

r

)−2

dr2 + r2dΩ2
2. (2.41)

We will see that the temperature of this solution is zero, and this is called
extremal solution. Because this solution saturates the Bogolmony, Prasad,

15



and Sommer�eld bound, which states that the mass is "equal" to the charge,
we sometimes call it a BPS black hole.

By computing scalars formed witht the curvature tensor for the Reissner-Nordström
solution, we can check that the singularity is located at rS = 0. If we set the charges
to zero, we recover the Schwarzschild solution (2.20).

2.4 Black hole thermodynamics

In 1973, Bardeen, Carter and Hawking published a seminal work [23] entitled
"The four laws of black hole mechanics". Once the concepts of event horizon and
singularity of black holes were well de�ned, the natural direction would be to study
how the black hole evolve when a particle of very small mass falls into it. In fact, this
is what they did in that paper. It was known at the time that Killing vectors could be
used to create conserved currents, which could be integrated to give rise to conserved
quantities. The integrals of such currents are all compressed in the so-called "Smarr
formula", times called "Smarr integrals". The conserved quantities used in the
original paper were the mass of the black hole and the angular momentum. At that
time, the authors did not really give the correct interpretation to the laws they had
just derived, and did not relate the laws to usual laws of thermodynamics. Jacob
Bekenstein then suggested [24] that there is a similarity between black holes and
thermodynamics, arguing that the entropy of a black hole must be proportional to
its area. At �rst, Hawking refused to accept this idea based on the fact that black
holes do not emit any radiation, so they must not have an entropy. But then, in
1974, Hawking itself published a paper corroborating Bekenstein's idea [8]. The
fact that black holes do not emit radiation is correct, but only classically. Taking
into account the quantum process of creation of pairs happening very near the
horizon of a black hole, Hawking proved that black holes do emmit particles quantum
mechanically. This changed the interpretation of the laws of black hole mechanics,
which since then started being called "the laws of black hole thermodynamics". In
other words, Hawking proved that black holes emit particles, and consequently are
thermodynamical objects with an associated entropy SH and temperature TH , given
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by

SH =
AH
4GN

, TH =
κ

4π
, (2.42)

where AH is the area of the horizon, and κ is the surface gravity of the black hole,
which, for the non-rotating solutions of this thesis, is just given by

κ =
(gtt)

′

2
. (2.43)

The original derivation of the laws is very complicated, and we will not present it
here. Instead, we will only list them. They are:

• Zeroth law

If the energy-momentum tensor satis�es the dominant energy condition, then
the surface gravity is constant on the horizon of the black hole.

• First law
If a stationary black hole of mass M , charge Q and angular momentum J , is
taken into a new black hole with parameters M + dM , Q+ dQ and J + dJ by
a quasi-static process, then

dM =
κ

8π
dA+ ΩHdJ + ΦHdQ, (2.44)

with surface gravity κ, angular velocity ΩH and electric potential ΦH on the
horizon.

• Second law

If the energy momentum tensor satis�es the weak energy condition, then the
area of the event horizon is a non-decreasing function of time

dA ≥ 0. (2.45)

Some comments are in order. First, the �rst law of thermodynamics gets modi�ed
in the presence of a scalar �eld called dilaton, which couples to the electromagnetic
�eld strength. The dilaton has a charge, and we will see that this charge also gives
a contribution to the �rst law. Second, the area law is not true when the black hole
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emits Hawking particles. This means that black holes can evaporate and disappear
completely. This does not contradict the laws of thermodynamics though, since it
can be shown that the sum of the entropy of the black hole with the entropy of
the emitted particles are always greater or equal than zero. Third and last, unlike
usual thermodynamical systems that has entropy proportional to its volume, the
entropy of black holes is proportional to the area of its event horizon. This is a
remarkable observation, and it is a strong indication of the holographic principle:
all the information of the black holes are encoded on its event horizon surface! In
conclusion, black holes really behave as thermodynamical objects, and respect a set
of laws which are analogues to the laws of thermodynamics.

2.5 Einstein-Rosen bridges

In the previous sections we discussed the di�erence between a singularity of the
spacetime and the event horizon of a black hole. This notion was not so well-
understood even during Einstein's time. As we said, a singularity of the spacetime
can not be removed by coordinate transformations, whereas the singularities that
can be removed in general de�ne the event horizon of a black hole. In this section
we will introduce and discuss in a simple way the concept of a "bridge", which is a
region that connects two slices of the spacetime.

The concept of a bridge was made mathematically consistent by Einstein and
Rosen [25], although they did not have a complete understanding of their mathe-
matical construction at the time. An idea that always intrigued scientists of the
old and new generation is that neutral and charged black holes resemble very much
elementary particles, at least classically speaking. Black holes are pointlike objects,
and they can be described completely by a small set of parameters. They are the
mass, the angular momentum, and the charges associated to the elementary �elds
that characterize the black hole, which can be the electric and magnetic charges as-
sociated to a gauge �eld, and also the dilaton charge which is the charge associated
to the a scalar �eld called dilaton. Particles are also characterized by a very small
set of parameters, i.e. the mass, spin, and charge. The angular momentum is a
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classical quantity, and it di�ers from the spin in the sense that the spin is quantized.
But still, the notion of spin is that it is a sort of intrinsic angular momentum, which
carries some resemblance with the classical angular momentum. The most remark-
able di�erence is perhaps that black holes have an event horizon, and elementrary
particles do not. The lack of a precise de�nition of event horizon led the scientists
of the old generation to consider it as if it were real singularities of the spacetime.
We will see that this confusion was the reason why Einstein and Rosen introduced
the concept of a bridge [25].

In order to describe elementary particles as solutions to General Relativity, one
of the �rst requirements is that the space must be smooth outside the region where
the particle mass is concentrated. In other words, the event horizon must not be
present. The current techniques to remove the apparent singularity causing the
event horizon surface in the metric are based on choosing an appropriate coordinate
system that covers the spacetime outside and inside the black hole. In the original
work [25], Einstein and Rosen called the event horizon surface a "special kind of
singularity", and showed how to remove this kind of singularity for the Schwarzschild
and Reissner-Nordström solution. We will show how they did this for both cases.

Consider the Schwarzschild solution (2.20), with GN = 1. The horizon (or
"special kind of singularity" in Einstein and Rosen sense) is at r = 2M . Let us
introduce the new coordinate

u2 = r − 2M, (2.46)

so that the metric is written as

ds2 = −
(

u2

u2 + 2M

)
dt2 + 4(u2 + 2M)du2 + (u2 + 2M)2dΩ2

2. (2.47)

In this coordinate system, the surface r = 2M is located at u = 0, and so the space
is free of singularities. Notice that this coordinate system excludes the region inside
the black hole, which contains the real singularity of the metric at r = 0. Notice also
that the new coordinate system is valid for positive and negative values of u, i.e. it is
valid from −∞ < u < +∞. The hypersurface u = 0 has area A = 16πM2, which is
the minimum surface area allowed in this spacetime. This hypersurface connects the
"positive slice" with the "negative slice" of the spacetime, and it is called throat.
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This is just one example of a general method to construct spacetimes containing two
slices connected by a throat from black hole solutions (see reference [26]). This kind
of spacetime is called an Einstein-Rosen bridge. Because (2.47) was constructed
out of a black hole without charge, some authors refer to it as neutral bridge. This
construction fails for M < 0 because it requires the existence of a horizon.

Consider now the Reissner-Nordström solution (2.39). In order to have the same
bridge construction, Einstein and Rosen �rst set the mass M to zero, which turned
the solution into a naked singularity, i.e. it has no horizon. But the existence of a
horizon is a necessary condition for the bridge construction, so, Einstein and Rosen
turned the charges charges to imaginary values, i.e. (Q2 +P 2) ≡ −ε2, for a constant
ε. The resulting solution now has a horizon, so the bridge construction is possible.
In order to see this, they introduced the coordinate

u2 = r2 − ε2, (2.48)

and this brings the metric into the bridge form

ds2 = − u2

u2 + ε2
dt2 + du2 + (u2 + ε2)dΩ2

2. (2.49)

The throat is located at u = 0, and the minimum area is A = 4πε2. In reference [26]
the solution (2.49) is called quasi-charged bridge. Although the object described
by (2.49) is massless, Einstein and Rosen wanted to interpret it as the electron,
of course for P = 0. This attempt failed badly because the bridge construction
was only possible for M = 0 and for imaginary charges. But the electron has a
non-zero mass, and real charges. If we allow for non-zero mass and real charges,
and adjust them so that the mass and charge of the Reissner-Nordström solution
are exactly the mass and the charge of the electron, then this would be a naked
singularity because me ≈ 10−22Qe in units for which c = GN = 1. In conclusion,
the quasi-charged bridge can not describe the electron because the electric charge
is much greater than its mass in such units. Of course we could also try to use the
Kerr-Newmann solution but this does not work either, as was discussed in [26].

The natural question at this point is whether some object coming from the
asymptotic regions at u = −∞ could cross the throat and arrive at the other
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asymptotic region at u = +∞. It was shown that the neutral bridge is dynami-
cal [27], and it pinches o� so fast that not even light can cross the throat separating
the two sheets. The quasi-charged bridge clearly violates the null energy condition
everywhere in the spacetime, since we had to consider imaginary charges. So, by
its own, it represents a rather unphysical situation. The neutral and quasi-charged
bridges are just black holes disguised in di�erent coordinate systems, and this does
not exclude their true singularities, as we can change back to the old coordinate
system. An observer crossing and Einstein-Rosen bridge will actually fall into a
black hole!

2.6 Traversable wormholes

The Einstein-Rosen bridges discussed in the previous sections are thought as
tunnels in spacetime. They can connect two di�erent regions, which can be of the
same spacetime, or which can be of di�erent spacetimes. In this section we will
discuss a di�erent kind of solution to General Relativity. This corresponds to what
we call nowadays as wormholes, which allow an object to cross it without having
any problem such as those we encountered for Einstein-Rosen bridges. The term
wormhole was introduced for the �rst time by John Archibald Wheeler in 1957, and
it corresponds to solutions connected by a throat, but that were not constructed from
black hole solutions. This implies that the wormhole spacetime is totally free of true
singularities (singularities of the spacetime). It is worth pointing out that the terms
Einstein-Rosen bridges and wormholes have been constantly used in the literature
as de�ning the same object. Some authors make a di�erentiation in tems of what we
call the traversability of a wormhole. So, the neutral bridge of the previous section,
for instance, is what they call a non-traversable wormhole, since nothing crosses
from one slice of the spacetime to the other. Of course, a traversable wormhole

is an object of the same kind but that would allow objects to cross its throat. From
now on, we will use this classi�cation in terms of the traversability of the solutions,
which we will call indistinguably as wormhole. So, this section is dedicated to the
discussion of traversable wormholes.
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The interest in wormhole solutions in General Relativity was revived after the
work of Morris and Thorne [28], where they de�ned the basic properties of a
traversable wormhole. The paper was written for pedagogical reasons, but it was
the �rst time somebody de�ned the properties of a basic traversable wormhole. As
an example, they studied the properties of one solution, known as Bronikov-Ellis
wormhole, which will be reviewed here.

Consider the following metric

ds2 = −dt2 + dr2 + (r2 + l2)dΩ2
2, (2.50)

where l is a real non-zero constant. This metric is free of singularities, and it is
de�ned for positive and negative values of the radial coordinate r. Notice that
the area of the two-dimensional surface is A = 4π(r2 + l2), which is obtained by
integrating the angular part of the metric, has a minimum at r = 0. In other
words, the position r = 0 is the location of the throat. This structure, as we
saw before, de�nes a wormhole. The two asymptotic regions at r = ±∞ are two
Minkowski spacetimes. The metric (2.50) de�nes the Bronikov-Ellis wormhole [29,
30]. Any scalar quantity computed out of the curvature tensor is �nite everywhere,
so the spacetime has no singularities. This is the simplest example of a traversable
wormhole. This is a spherically symmetric solution of the following theory

S =

∫ √
−g (R + 2∂µφ∂

µφ) , (2.51)

where the scalar �eld that solves the equations of motion is also free of singularities,
and is written as

φ(r) = φ0 + arctan
(r
l

)
, (2.52)

for a constant φ0. The factor of 2 in front of the kinetic term was inserted only for
future convenience. Notice that the kinetic term of the scalar �eld has positive sign,
and for our metric convention (−,+,+,+), this implies that the kinetic energy of
the scalar �eld is negative. This type of scalar �eld will be called in this thesis as
phantom scalar∗. The most problematic aspect of this kind of matter is that its

∗Some authors refer to it as ghost scalars as well.
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energy-momentum tensor does not satisfy the null energy condition, i.e. Tµνkµkν < 0

for a null vector kµ. Matter of this kind is called exotic matter. This is the main
reason why traversable wormholes are so underappreciated in theoretical physics.

Now, we construct the so-called embedding diagram for the wormhole. With-
out loss of generality, we set t = const and θ = π/2. The metric for this slice is then
written as

ds2 = dr2 + (r2 + l2)dφ2. (2.53)

We rede�ne our radial coordinate such that

(r∗)2 ≡ r2 + l2. (2.54)

We can take derivatives to show that

dr =
r∗√

(r∗)2 − l2
dr∗. (2.55)

Then, (2.53) is written as

ds2 =
(r∗)2

(r∗)2 − l2
dr∗2 + r∗2dφ2. (2.56)

The Euclidean metric of the embedding space is the same as the one used in [28]

ds2 = dz2 + dr∗2 + r∗2dφ2 =

[
1 +

(
dz

dr∗

)2
]
dr∗2 + r∗2dφ2. (2.57)

Comparing (2.56) with (2.57) we obtain

dz

dr∗
= ±

(
(r∗)2

(r∗)2 − l2
− 1

)1/2

. (2.58)

This equation can be easily integrated and gives

z(r∗) = ±l ln

[
r∗

l
+

√
(r∗)2

l2
− 1

]
. (2.59)

This de�nes the embedded surface, and it is shown in �gure 2.1. Notice that the
throat of the Bronikov-Ellis wormhole is located at r∗ = l, which implies that
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z(r∗) = 0. As we mentioned, this is the simplest example of a traversable wormhole,
supported by exotic matter. In chapter 4, we will present a novel wormhole solution
of this kind, but in the presence also of electric charges. In order to do so, we will
use the Einstein-Maxwell-dilaton theory, but we will make the dilaton �eld to be
the phantom scalar. We end this section mentioning that there are other interesting
issues related to traversable wormholes. Perhaps the most intriguing one is the
fact that wormhole spacetimes present closed timelike curves, which raises several
paradoxes, but this is de�nitely out of the scope of this thesis and we will not discuss
this topic here. We again refer to [26] for a complete discussion.

Figure 2.1: Embedding diagram for the Bronikov-Ellis wormhole: l = 1
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Chapter 3

Dyonic black holes in string theory

In this chapter we will present the most important theory for this thesis: The
Einstein-Maxwell-dilaton theory. We will �rst see how the theory arises in string
theory, and also the duality transformation of the equations of motion. Then, we will
study the black holes of theory. We will also show how to construct Einstein-Rosen
bridges, which we will call just wormholes for convenience.

3.1 The Einstein-Maxwell-dilaton theory

In this section we review the low-energy e�ective action of four-dimensional het-
erotic string theory, i.e. the Einstein-Maxwell-axion-dilaton theory. We follow the
de�nitions and normalizations of reference [31]. Since we will be interested in the
gravitating solutions and duality transformations of the theory, we will restrict our
attention only to the bosonic �elds, composed by the metric gSµν , the antisymmetric
tensor Bµν , the dilaton φ, and a U(1) gauge �eld Aµ. The action is∗

SS =

∫
d4x
√
−gSe−2φ(RS + 4gµµ

′

S ∂µφ∂µ′φ−
1

12
gµµ

′

S gνν
′

S gττ
′

S HµντHµ′ν′τ ′

−1

8
gµµ

′

S gνν
′

S FµνFµ′ν′). (3.1)

∗The dilaton �eld φ in this action is related to the dilaton �eld Φ of reference [31] as Φ = 2φ.
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The �eld strength and the three-form �eld have the following de�nitions

Fµν = ∂µAν − ∂νAµ, (3.2)

Hµνρ = (∂µBνρ + ∂νBρµ + ∂ρBµν)−
1

4
(AµFνρ + AνFρµ + AρFµν). (3.3)

The index S indicates that we are in the string frame, where gSµν is the σ-model
metric. The conformal transformation of the metric can be used in order to bring
the theory to the Einstein frame. In fact, this transformation is written as

gSµν = e2φgµν . (3.4)

This induces a transformation on the D-dimensional Ricci scalar, and the relation
between the Ricci scalar in the string frame and in the Einstein frame is given by

RS = e−2φ
[
R− 2(D − 1)∇2φ− (D − 2)(D − 1)∂µφ∂

µφ
]
. (3.5)

Replacing (3.4) and (3.5) in the action (3.1), we can write it in the Einstein frame,
i.e.

S =

∫
d4x
√
−g(R− 2∂µφ∂

µφ− 1

12
e−4φHµντH

µντ − 1

8
e−2φFµνF

µν). (3.6)

Notice that the conformal transformation (3.4) �ips the sign of the kinetic term for
the dilaton �eld. The equations of motion for (3.6) are†

Rµν = 2∇µφ∇νφ−
1

12
gµνe

−4φH2 − 1

16
gµνF

2 +
1

4
e−4φHµρτHν

ρτ +
1

4
e−2φFµρFν

ρ,

(3.7)

∇ρ(e
−4φHµνρ) = 0, (3.8)

∇µ(e−2φF µν) +
1

2
e−4φHρµνFρµ = 0, (3.9)

∇µ∇µφ+
1

6
e−4φHµνρH

µνρ +
1

8
e−2φFµνF

µν = 0. (3.10)

†Notice that the equation for the metric in reference [31] is combined with the equation for the

dilaton.
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The Bianchi identity for Hµνρ is

1√
−g

ε̃µνρσ∂µHνρσ = −3

4
FµνF̃

µν , (3.11)

with
F̃ µν =

1

2

1√
−g

ε̃µνρσFρσ, (3.12)

where ε̃µνρσ is the totally antisymmetric Levi-Civita symbol, with ε̃0123 = 1. Using
the equation of motion for Bµν , given by (3.8), we can de�ne a scalar �eld a, called
axion, such that

Hµνρ = − 1√
−g

e4φε̃µνρσ∂σa. (3.13)

This is consistent with the equation of motion (3.8) because

∇ρ

(
− 1√
−g

ε̃µνρσ∂σa

)
= − 1√

−g
ε̃µνρσ(∂ρ∂σa− Γαρσ∂αa)

= 0. (3.14)

With lower indices the equation (3.13) is written as

Hµνρ = −
√
−ge4φε̃µνρσ∂

σa. (3.15)

Notice that, using ε̃µνρσ ε̃νρσδ = −3!δµδ , the Bianchi identity (3.11) becomes

∇µ(e4φ∂µa) =
1

8
FµνF̃

µν . (3.16)

For the discussion that follows, it is convenient to de�ne a complex �eld λ and the
�eld strengths F+ and F− as

λ = a+ ie−2φ ≡ λ1 + iλ2, (3.17)

F± = F ± iF̃ . (3.18)

We aim to rewrite all the equations of motion in terms of these new complex �elds.
We rewrite the following terms as

2∇µφ∇νφ = − 1

2(λ2)2
∂µa∂νa+

1

4(λ2)2
(∂µλ∂νλ+ ∂νλ∂µλ), (3.19)
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1

4
gνγe

−4φHµρτH
γρτ = − 1

2(λ2)2
gµν∂δa∂

δa+
1

2(λ2)2
∂µa∂νa, (3.20)

1

12
gµνe

−4φHαβρH
αβρ = − 1

2(λ2)2
gµν∂δa∂

δa. (3.21)

Using these expressions, equation (3.7) becomes

Rµν =
∂µλ∂νλ+ ∂νλ∂µλ

4(λ2)2
+

1

4
λ2FµρFν

ρ − 1

16
λ2gµνFρσF

ρσ. (3.22)

Also, computing the terms of (3.10) separately, we have

∇µ∇µφ = − 1

2iλ2

(∇µ∇µλ−∇µ∇µλ)− 1

4(λ2)2
(∇µλ∇µλ+∇µλ∇µλ− 2∇µλ∇µλ),

(3.23)

e−2φ

6
HµνρH

µνρ = − 1

4(λ2)2
(∇µλ∇µλ+∇µλ∇µλ+ 2∇µλ∇µλ). (3.24)

Then equation (3.10) is rewritten as

− 1

2i(λ2)2
(∇µ∇µλ−∇µ∇µλ)− 1

2(λ2)3
(∇µλ∇µλ+∇µλ∇µλ)+

1

8
FµνF

µν = 0. (3.25)

Using the de�nition (3.13), we can also rewrite the equation (3.16) as

− 1

2i(λ2)2
(∇µ∇µλ+∇µ∇µλ)− 1

2(λ2)3
(∇µλ∇µλ−∇µλ∇µλ)+

1

8i
FµνF̃

µν = 0. (3.26)

Adding equations (3.25) e (3.26), and using F+µνF
µν
− = 0, the equations of motion

take a more elegant form, i.e.

∇µ∇µλ

(λ2)2
+ i
∇µλ∇µλ

(λ2)3
− i

16
F−µνF−

µν = 0. (3.27)

Using the de�nition (3.18), the gauge �eld equation is easily rewritten as

∇µ(λF+
µν − λF−µν) = 0. (3.28)

Finally, we also rewrite the Bianchi identity in terms of the complex �elds as

∇µ(F+
µν − F−µν) = 0. (3.29)
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The equations of motion written in terms of the complex �elds (3.17) and (3.18)
allow us to see explicitly one very special kind of invariance. First, notice we can
shift the �eld λ by a constant c, i.e.

λ→ λ+ c, (3.30)

and the equations of motion and the Bianchi identities are invariant. Under the
transformations

λ→ −1

λ
, F+ → −λF+, F− → −λF−, (3.31)

the �eld λ2 transforms as λ2/λλ. We can verify that equation (3.27) is invariant,
and that the equations (3.28) and (3.29) gets rotated. Equation (3.22) transforms
into itself plus an extra term, given by

− λ1(λ2)2

|λ|2
(2FµρF̃

ρ
ν + 2FνρF̃

ρ
µ − gµνFρτ F̃ ρτ ). (3.32)

This term is identically zero in four dimensions. What we have just shown is that
transformations (3.30) and (3.31) are a symmetry transformation of the equations of
motion. The two transformations together generate the group SL(2,R) under which

λ→ ãλ+ b

cλ+ d
, F+ → −(cλ+ d)F+, (3.33)

where ãd − bc = 1, and we used a tilde on the parameter ã to di�erentiate it from
the axion �eld. It is important to stress that SL(2,R) is the invariance group of the
equations of motion, but not of the action. This can be seen explicitly if we rewrite
the action (3.1) in terms of the complexi�ed �elds, and then, after applying (3.32),
the Maxwell's term transforms into itself with a minus sign, i.e. this term does not
allow the action to be invariant.

It is interesting to notice that we can obtain the same equations of motion derived
above from the following action

I =

∫
d4x
√
−g
(
R− 2∂µφ∂

µφ− 1

8
e4φ∂µa∂

µa− 1

8
e−2φFµνF

µν − 1

16
aFµνF̃

µν

)
.

(3.34)
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The action needs to be written necessarilly in this way, including these numerical
factors, so that the equations of motion be invariant under the duality transforma-
tions (3.33). In order to be consistent with the de�nitions used by most authors in
the literature, we will rescale the �elds in this theory as‡

a→ a

2
, Aµ → Aµ√

8
, (3.35)

so that the action (3.34) is rewritten as

I =

∫
d4x
√
−g
(
R− 2∂µφ∂

µφ− 1

2
e4φ∂µa∂

µa− e−2φFµνF
µν − aFµνF̃ µν

)
. (3.36)

This action describes the Einstein-Maxwell-axion-dilaton theory. Of course,
this is a simpli�ed version of a low-energy e�ective action in string theory in four
dimensions. In this thesis we will be mostly concerned about the simpli�ed version
of this theory, in which the axion �eld is consistently set to zero, i.e. we will be
concerned about the following theory

S =

∫
d4x
√
−g (R− 2∂µφ∂

µφ−W (φ)FµνF
µν) . (3.37)

We remind that (16πGN) ≡ 1. From now on, we will refer to this action as the
Einstein-Maxwell-dilaton theory. In the next chapters we will also have po-
tential term for the dilaton in the action. The function W (φ) accounts for all the
kinds of coupling to the gauge �elds, and will be �xed later. In order to �x the
notation, we rewrite the equations of motion for the metric, dilaton and gauge �eld,
and Bianchi identities, which are respectively

Rµν = 2∂µφ∂νφ−
1

2
gµνW (φ)FρσF

ρσ + 2W (φ)FµρFν
ρ, (3.38)

∇µ(∂µφ)− 1

4

∂W (φ)

∂φ
FµνF

µν = 0, (3.39)

∇µ (W (φ)F µν) = 0, (3.40)

∇[µFρσ] = 0. (3.41)

‡Rescaling �elds does not break invariance under SL(2,R) invariance.
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In supergravity theories it is common to have more than one dilaton �eld, and also
more gauge �elds, but all the equations of motion obtained here are easily generalized
for these cases. When W (φ) = e−2φ, (3.37) is the bosonic sector of SU(4) version of
N = 4 supergravity theory [32], for zero axion �eld, which is the low-energy e�ective
theory for heterotic strings, as we just saw.

3.2 General metric and electric-magnetic duality

The most general form for a static and spherically symmetric solution is written
as

ds2 = −e−λdt2 + eλdr2 + C2(r)dΩ2
2, (3.42)

where all the metric elements depend on the radial coordinate r. In this chapter we
will study only the case for which

W (φ) = e−2φ. (3.43)

Equation (3.38) are non-trivial for the R00, R11, and R22 components (the R33

component is the same as the R22 component). Adding R00 with R11

− 2C ′′

C
= 2(φ′)2, (3.44)

where the primes denote derivative with respect to the radial coordinate. Now,
computing R11 minus R22 we have

(e−λC2)′′ = 2. (3.45)

We can rewrite R00 as

d

dr

(
C2 d

dr
(e−λ)

)
= −2C2e−2φ(FrtF

rt − FθφF θφ). (3.46)

The dilaton equation of motion can be put in the form

d

dr

(
e−λC2φ′

)
= −C2e−2φ

(
FrtF

rt + FθφF
θφ
)
. (3.47)
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By adding and subtracting (3.46) and (3.47) we can form the following equations

d

dr

(
C2

2

d

dr
(e−λ) + e−λC2φ′

)
= −2C2e−2φFrtF

rt, (3.48)

d

dr

(
C2

2

d

dr
(e−λ)− e−λC2φ′

)
= 2C2e−2φFθφF

θφ. (3.49)

In section 3.1, we saw that the equations of motion of the Einstein-Maxwell-axion-
dilaton theory are invariant under SL(2,R) transformations, given by (3.33). In the
present case, the axion �eld was set to zero, so the set of transformations (3.33) gets
simpli�ed. This smaller invariance of the equations of motion is called S-duality,
and it relates the old and new �elds through

F µν → 1

2
√
−g

e−2φε̃µνρσFρσ, φ→ −φ, (3.50)

where ε̃µνρσ is the totally antisymmetric Levi-Civita symbol. The importance of
having the equations (3.48) and (3.49) written in such a way resides in the fact
that we can see explicitly the invariance under S-duality duality transformation
(3.50). The analysis of the duality transformations of section (3.1) was for a general
background. Here, after �xing the background to be given by (3.42), we see explicitly
that the Maxwell's equations and Bianchi identities rotate into each other. In the
same way, the same happens to equations (3.48) and (3.49), showing explicitly that
the duality transformation is not only an invariance of the gauge �eld equations but
also of the Einstein's and dilaton equations combined.

3.3 Full dyonic black hole solution

In order to �nd the dyonic black hole solution, we must solve the system of
equations given by (4.5), (3.44), (3.45), (3.46) and (3.47). Of course, there will be
some integration constants that will appear in the solution and that must be �xed
in terms of the physical charges of the black hole. The solutions presented in [4],
[5], [6] and [7] are all written in terms of the physical charges. We �rst present
a solution written in terms of only the integration constants, and will show how
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they are related to the physical charges. The dyonic black hole solution to the
Einstein-Maxwell-dilaton theory is given by

e−λ =
(r − r1)(r − r2)

(r + d0)(r + d1)
, C2(r) = (r + d0)(r + d1), (3.51)

e2φ = e2φ0
r + d1

r + d0

, (3.52)

Frt =
e2φ0Q

(r + d0)2
, Fθφ = P sin θ. (3.53)

Here, Q is the electric charge, P is the magnetic charge, φ0 is the value of the dilaton
at in�nity, and r1, r2, d0, and d1 are integration constants. The dilaton equation
of motion (3.39) implies that all the parameters of the solution must satisfy the
following relations

(d0 − d1)[(r1 + r2) + (d0 + d1)] = 2(e2φ0Q2 − e−2φ0P 2), (3.54)

(d0 − d1)(d0d1 − r1r2) = 2(d1e
2φ0Q2 − d0e

−2φ0P 2), (3.55)

(d0 − d1)[−(r1 + r2)d0d1 − (d0 + d1)r1r2] = 2(d2
1e

2φ0Q2 − d2
0e
−2φ0P 2). (3.56)

Notice that we can isolate (r1 + r2) in (3.54) and r1r2 in (3.55) to obtain

(r1 + r2) = 2
(e2φ0Q2 − e−2φ0P 2)

(d0 − d1)
− (d0 + d1), (3.57)

r1r2 = d0d1 − 2
(d1e

2φ0Q2 − d0e
−2φ0P 2)

(d0 − d1)
. (3.58)

Replacing (3.57) and (3.58) in (3.56), we see that this equation is satis�ed trivially.
In other words, this system of three equations reduces to a system of just two linearly
independent equations. Notice that we can combine the equations (3.54) and (3.55)
to obtain

d2
0 + (r1 + r2)d0 + r1r2 = 2e2φ0Q2, (3.59)

d2
1 + (r1 + r2)d1 + r1r2 = 2e−2φ0P 2. (3.60)

For future convenience, we solve these equations for d0 and d1 in terms of the other
parameters, and obtain

d0 =
−(r1 + r2)±

√
(r1 − r2)2 + 8e2φ0Q2

2
, (3.61)
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d1 =
−(r1 + r2)±

√
(r1 − r2)2 + 8e−2φ0P 2

2
. (3.62)

The same procedure can be repeated for equation (3.46), and the same system of
two linearly independente equations can be obtained.

In order to have general expressions, we compute two quantities of interest in
terms of the integration constants, which are the temperature of the black hole,
given by the last equation of (2.42),

T =
1

4π

(r2 − r1)

(r2 + d0)(r2 + d1)
, (3.63)

and the dilaton charge, de�ned as

Σ =
1

4π

∫
dΣµ∇µφ =

(d0 − d1)

2
. (3.64)

Of course, depending on the values of d0 and d1 the dilaton charge can be positive
or negative. The constants r2 and r1 will be identi�ed with the outer and inner
horizon respectively. As we mentioned, no boundary condition was imposed on the
solution. In order to de�ne the mass of the black hole, we expand gtt for large values
of r. So, in the asymptotic region, gtt is written as

gtt = −
(

1− (d0 + d1 + r1 + r2)

r

)
+O

(
1

r2

)
. (3.65)

In the same way as we did for the solutions of chapter 2, we identify the parameter
M with the mass of the black hole, consistent with the weak-�eld limit metric (4.24),
i.e.

2M = (d0 + d1 + r1 + r2). (3.66)

The Ricci scalar written in terms of the integration constants is given by

R =
(d0 − d1)2(r − r1)(r − r2)

2(r + d0)3(r + d1)3
. (3.67)

In order to avoid problems with causality, the solution must be restricted to the
domain C2(r) ≥ 0. Therefore, the singularity is at rS = −d0 when d0 > d1, or at
rS = −d1 when d1 > d0.
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3.4 Relation to known solutions

In this section we show how to recover the known non-extremal and extremal
black hole solutions discussed before. In order to do so, we must write the solution
in terms of the mass, electric charge, magnetic charge and dilaton charge. We make
this comparison using the notation of reference [7].

• Non-extremal dyonic black hole:

In order to obtain this solution, we solve (3.57) and (3.58) for r1 and r2, by making
the rede�nitions r1 ≡ r− and r2 ≡ r+ . The result is

r± = −(d0 + d1)

2
+

(e2φ0Q2 − e−2φ0P 2)

(d0 − d1)
±
(

∆

4

)1/2

, (3.68)

with

∆

4
=

(
d0 − d1

2

)2

+
(e2φ0Q2 − e−2φ0P 2)2

(d0 − d1)2
− (e2φ0Q2 + e−2φ0P 2). (3.69)

The de�nition of mass (3.66) gives

M =
(e2φ0Q2 − e−2φ0P 2)

(d0 − d1)
. (3.70)

Using also the de�nition of the dilaton charge, we write this expression as

M · Σ =
(eφ0Q+ e−φ0P )√

2

(eφ0Q− e−φ0P )√
2

. (3.71)

We will comment on this expression later. Notice that the parameter (d0+d1)
2

can be
removed by shifting the coordinates, i.e. r ≡ ρ− (d0+d1)

2
. Then the full solution will

be written as

e−λ =
(ρ− ρ+)(ρ− ρ−)

(ρ+ Σ)(ρ− Σ)
, C2(ρ) = (ρ+ Σ)(ρ− Σ), (3.72)

e2φ = e2φ0
ρ− Σ

ρ+ Σ
, (3.73)

Fρt =
e2φ0Q

(ρ+ Σ)2
, Fθφ = P sin θ, (3.74)
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with the outer and inner horizons given by

ρ± = M ±
√

Σ2 +M2 − (e2φ0Q2 + e−2φ0P 2). (3.75)

This is exactly the solution given in reference [7]. Notice that the dilaton charge
given in the same reference is the negative of the one used here. This solution con-
tains four independent parameters: the massM , the electric charge Q, the magnetic
charge P , and the dilaton at in�nity φ0. The magnetically charged solutions of [5]
and [6] are obtained from it by setting Q = 0. By setting further that P = 0 we
recover the Schwarzschild solution (2.20).

• Extremal black holes:

Just like in the case of the Reissner-Nordström solution, when the inner and outer
horizon in (3.68) coincide, i.e. r+ = r− ≡ rH , we have an extremal (T = 0) black
hole. The horizon is now located at rH , and, from (3.61) and (3.62) for instance, it
is related to the other parameters as

rH + d0 = ±
√

2eφ0Q, rH + d1 = ±
√

2e−φ0P. (3.76)

The fact that there is more than one possibility of choosing signs will be of relevance
for the analysis of next section. In order to identify this case with the one found in
the literature, we make the change of coordinates ρ = r − rH and then the horizon
of the extremal black hole is located at ρ = 0. The extremal black hole solution is
therefore

ds2 = −e−2Udt2 + e2U(dρ2 + ρ2dΩ2
2),

e2U =

(
1±
√

2eφ0Q

ρ

)(
1±
√

2e−φ0P

ρ

)
, (3.77)

e2φ = e2φ0
(ρ±

√
2e−φ0P )

(ρ±
√

2eφ0Q)
, (3.78)

Frt =
e2φ0Q

(ρ±
√

2eφ0Q)2
, Fθφ = P sin θ. (3.79)
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Notice that we have used isotropic coordinates, i.e. ρ2 = x2
1 + x2

2 + x2
3, and conse-

quently dρ2 + ρ2dΩ2
2 = d~x2. The parameter M given in (3.66) can be positive, zero,

or negative, depending on the choice of signs and charges in (3.61) and (3.62). We
keep dependency on this arbitrary choice of signs. Using (3.64) and (3.66) we have
the following possible con�gurations

M =
eφ0Q± e−φ0P√

2
, Σ =

eφ0Q∓ e−φ0P√
2

, (3.80)

M =
e−φ0P ± eφ0Q√

2
, Σ =

e−φ0P ∓ eφ0Q√
2

. (3.81)

When we take the upper sign in (3.80) we recover exactly the extremal dyonic
solution found in [7]. But this is just one possibility, since (3.80) and (3.81) show
that there are three more. Notice that any con�guration of signs respects the product
between the mass and the dilaton charge given by equation (3.71). It is important
to notice that we wrote the explicit dependence of the dilaton �eld (3.78) in terms
of the electric charge Q, magnetic charge P and dilaton at in�nity φ0.

3.5 Dependent and independent parameters

In order to recover the solution found by Kallosh et al. [7], given by (3.72),
(3.73), and (3.74), we had to de�ne the mass M using (3.70). One could argue that
this identi�cation makes it clear that the mass M is a dependent parameter, of the
kind M(Q,P, φ0,Σ), and the dilaton charge Σ is an independent parameter. This
argument could be supported by the fact that the horizons (3.68) blow up in the
limit when d0 → d1, i.e. when Σ→ 0, resulting in a divergent metric. Moreover, it
seems that the zero mass limit is well-de�ned in (3.70). But one could for instance,
take the dilaton charge as an independent parameter, and say that (3.70) is instead
written as

Σ =
(d0 − d1)

2
=

(e2φ0Q2 − e−2φ0P 2)

2M
. (3.82)

In this picture, the mass now becomes an independent parameter, and the dilaton
charge has a dependency on the other parameters of the form Σ(Q,P, φ0,M). More-
over, in this picture, the limit when the dilaton charge is zero, i.e. d0 → d1, is well

37



de�ned, although the mass M now can not be zero, since this will lead to a diver-
gent metric. This is exactly the case presented by the authors of [7]. In fact, we see
clearly that claiming that the dilaton charge is the dependent parameter and the
mass is independent is just one possibility, since the equations of motion allow us to
choose also the other case. In other words, the only restriction we �nd is that the
product between the mass and the dilaton charge must be given by (3.71), which is
respected also in the extremal case, as we can see from (3.80) and (3.81). Notice also
that the extremal solution of [7] has mass and dilaton charge written as (3.80) with
only upper sign. Another possibility would be to take both the mass and dilaton
charge as dependent parameters in the non-extremal solution. For this case, one is
forced by (3.71) to choose one of the possibilities represented by equations (3.80)
and (3.81). But for this picture, when both are dependent parameters, one can not
escape from the extremal limit, which can be easily seen by inserting M and Σ in
(3.68). So, in order to write a non-extremal solution in terms of the physical charges
of the black hole, one is forced to choose whether the dilaton charge or the mass is
a dependent parameter.

The advantage of writing the solution in terms of integration constants, instead
of physical charges, is beyond the discussion on which parameters are dependent or
independent. We will see that without de�ning the integration constants in terms of
the mass or dilaton charge, we solve some puzzles related to the dilaton �eld in the
extremal limit, as was stated in the introduction. Moreover, in the picture adopted
by Kallosh et al. [7], we have a description of black holes whose dilaton charge is the
dependent parameter, with a well-de�ned limit when the dilaton charge is zero. In
the other picture we take the mass of the black hole as a dependent parameter, with
a well-de�ned zero mass limit. The zero mass limit can not be taken directly from
(3.82), which raises the question of whether this limit really exists or is ill-de�ned.
In fact, it is easy to satisfy equations (3.54), (3.55), and (3.56) at the same time
in such a way to construct a massless solution. This massless black hole solution
and its physical signi�cance will be discussed in section 3.8. Moreover, this solution
can be used to construct charged Einstein-Rosen bridges satisfying the null energy
condition.
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3.6 The attractor mechanism

The no hair theorem stablishes that black holes are entirely described by a
very little set of parameters. This means that if a black hole has an a scalar �eld
as one of its �elds, then the scalar �eld charge is written in terms of the other
black hole parameters, which are the mass, the electric and magnetic charges, and
the angular momentum. The most important feature concerning a black hole with
scalar �elds is that this scalar radiated away from the black hole. In the end of the
process the black hole will no longer have this �eld, which justi�es why we say "a
black hole has no hair". In this case, it is assumed that the scalars have no coupling
to the gauge �elds. This assumption is not valid for the theories we are interested
in, since, as we saw, the dilaton �eld couples to the gauge �elds. We also saw in
the previous section that we have the freedom to choose the dilaton charge or the
mass of the black hole as independent parameters. In the literature it is always
assumed without justi�cation that the dilaton charge is the dependent parameter,
so that for the black holes of the Einstein-Maxwell-dilaton theory the dilaton charge
is written in terms of the mass, electric and magnetic charge, and the value of the
dilaton at in�nity. In this sense, we say that the scalar �eld that is radiated away
has a primary hair, and in the case of the dilaton, which is not radiated away, we
say that it has secondary hair: its charge is still a dependent parameter but the
dilaton is not radiated from the black hole.

In the case of an extremal black hole, the mass and the dilaton charge depends on
the value of the dilaton at in�nity and on the electric and magnetic charges. A very
important phenomenon happens for the extremal black holes given by (3.77), (3.78)
and (3.79). Notice that the dilaton �eld written in isotropic coordinates, given by
equation (3.78), is well de�ned on the horizon ρ = 0. In fact, if we evaluate it on
the horizon we obtain

e2φH =
P

Q
. (3.83)

Notice that the value of the dilaton at in�nity, φ0 does not appear explicitly in this
result. This is what de�nes the attractor mechanism for extremal black holes:
no matter what the conditions imposed on φ0 are, the value of the dilaton on the
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horizon is always the same, and it depends only on the electric and magnetic charges
of the black hole.

The attractor mechanism was discovered in the context of N = 2 and N = 4

supergravity [33], [34]. Later, it was discovered that supersymmetry does not play
an important role in the attractor phenomenon [35]: this is a consequence of the
near-horizon geometry of extremal black holes which is always AdS2 ×M2, where
M2 is the space that de�nes the geometry of the horizon�. This is understood as the
following. Consider any supergravity theory. One then sets the fermions to zero and
�nd the solution for the metric and bosonic �elds. Then, one replaces the solution
into the supersymmetric variation, δξ, of the gravitiny ψαµ . If the solution satis�es

δξψ
α
µ = 0, (3.84)

then the solution represents a supersymmetric black hole, or equivalently, aBPS
black hole. If the black hole preserves none of the supersymmetries, then we have
a non-supersymmetric black hole, or equivalently, a non-BPS black hole. All
non-extremal black holes are non-supersymmetric. The attractor mechanism can
happen for supersymmetric or non-supersymmetric extremal black holes, since all
extremal black holes have AdS2 ×M2 near-horizon geometry.

3.7 Thermal properties

The thermodynamical properties follow easily. The general black hole tempera-
ture and entropy are given by equation (2.42), and written explicitly as

T =
1

4π

(r+ − r−)

(r+ + d0)(r+ + d1)
, S = π(r+ + d0)(r+ + d1). (3.85)

Notice that the temperature and entropy are written in terms of the integration
constants. In the extremal limit, r+ = r− ≡ rH , the temperature is naturally zero
and the entropy is completely independent on the choice of sign con�gurations in
(3.80) and (3.81), i.e.

T = 0, S = 2πQP. (3.86)

�In this thesis we will consider the cases in whichM2 is S2 or R2.
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This also shows that the entropy for extremal black holes is insensitive to boundary
conditions i.e. it does not depend on φ0. This is in agreement with the attractor
mechanism [33], [34]. The entropy was �rst computed in [7], and con�rmed in several
papers dealing also with the attractor mechanism. The value of the dilaton �eld on
the horizon is given by (3.83).

The �rst law of black hole thermodynamics (2.44) needs a modi�cation to include
the dependence upon the moduli φ0. This was done in [36] and we write it here.
Although we dealt with static solutions, we also include angular momentum for
completeness. For �xed mass, (r1 + r2) = 2M , this is

dM =
κ

8π
dA+ ΩdJ + ψΛdqΛ + χΛdp

Λ − Σadφa, (3.87)

where M is the mass, κ is the surface gravity, A is the area of the horizon, Ω is
the angular velocity, J is the angular momentum, ψΛ and χΛ are the electrostatic
and magnetostatic potentials, qΛ and pΛ are the electric and magnetic charges,
Λ = 1, ..., n is an index labelling all the charges, Σa is the dilaton charge, φa is the
dilaton at in�nity, and a = 1, ...,m is an index labelling the dilatons evaluated at
in�nity.

Also in [36], the authors raised two questions concerning the value of the dilaton
on the horizon for extremal black holes:

(i) Why is φH,extreme independent of φ0?
(ii) Why is φH,extreme given by(

∂Mextreme

∂φ

)
((p,q),φ=φextreme)

= 0? (3.88)

The second question was answered by the authors in the same refence. It turns out
that equation (3.88) is equivalent to

Σ(φ�x, (p, q)) = 0. (3.89)

But black holes with vanishing scalar charge must have spatially constant moduli
�elds: φ(r) = φH,extreme = φ0. So, for equation (3.89) to be satis�ed, we must choose
φ0 to be φH,extreme. Here, surprisingly, the answers to both questions arise naturally
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from the solution describing the dilaton �eld (3.52). Because the extremal solution
is independent of boundary conditions or any de�nition of dilaton charge and mass,
we can compute φH,extreme from (3.78) without really worrying about how to de�ne
mass and dilaton charge. This is achieved just by choosing ρ = 0, which is the
position of the horizon, and this gives

e2φH,extreme =
P

Q
. (3.90)

We see that the factors of φ0 cancel out of (3.78), which gives an answer to the �rst
question. This miraculous cancellation of φ0 in the solution for the dilaton (3.78)
is the root of the attractor mechanism for extremal black holes, and it could only
be seen here because we wrote d0 and d1 in terms of the other parameters. For the
second question, we have

Σ(φ�x, (p, q)) = 0⇒ d0 = d1. (3.91)

Using the expressions for d0 and d1, given by (3.61) and (3.62), this is achieved if
the value of the dilaton at in�nity is given by

e2φ0 =
P

Q
. (3.92)

This is the same as (3.90), which implies φH,extreme = φ0. We see that it is mathe-
matically trivial to answer these questions once the dilaton �eld is written as (3.78).
In other words, we have just written the constants d0 and d1 appearing in (3.52)
using (3.61) and (3.62) in the extremal limit.

3.8 Massless pointlike dyonic solutions

In this section we describe the results of reference [16]. Basically, we show that it
is possible to construct massless black holes for the Einstein-Maxwell-dilaton theory,
whose solution is described by equations (3.51), (3.52) and (3.53). The important
point is the observation that this solution is totally free of boundary conditions,
which must be imposed on r1 and r2 for the present discussion. In the asymptotic
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region, the gtt component of the metric has an expansion given by equation (3.65).
Notice that (3.54) has the de�nition of mass (3.65) in it. In order to obtain M = 0,
we set d1 = −d0 = −Σ and r1 = −r2 ≡ rH at the same time, and this implies
directly that

e2φ0 = ±P
Q
. (3.93)

We will discuss the situations corresponding to each sign. Equation (3.55) �xes the
event horizons as

r2
H = Σ2 ∓ 2QP. (3.94)

Notice that the positive sign in (3.93) implies that we must take the minus sign in
(3.94). This also respects (3.56), which shows consistency with all the equations
motion.

• e2φ0 = −P
Q

We choose the minus sign in (3.93), and discuss the physical relevance of this choice
later. The non-extremal solution is written as

ds2 = −e−λdt2 + eλdr2 + C2(r)dΩ2
2,

e−λ =
(r − r+)(r − r−)

(r2 − Σ2)
, C2(r) = (r2 − Σ2), (3.95)

e2φ = −P
Q

(r − Σ)

(r + Σ)
, (3.96)

Frt = − P

(r + Σ)2
, Fθφ = P sin θ. (3.97)

The horizon and singularity are located at

r+ = +
√

Σ2 + 2QP, rS = |Σ|. (3.98)

Notice that the area of the two-sphere shrinks to zero at rS. This excludes r− =

−
√

Σ2 + 2QP as an inner horizon, since the angular part of the metric will �ip sign
when an observer approaches this region, leading to problems with causality. The
temperature T and entropy S associated to this object are given by

T =
1

4π

√
Σ2 + 2QP

2QP
, S = 2πQP. (3.99)
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The temperature and the entropy are positive quantities. Notice also that the dyonic
massless black hole can not become extremal, since this implies that we have an
imaginary dilaton charge. The entropy depends only on the electric and magnetic
charges, and has the same value as the entropy of extremal black holes of Einstein-
Maxwell-dilaton theory with arbitrary dilaton charge and non-zero mass, given by
(3.86). When the dilaton charge is zero, we still have a non-extremal black hole, with
horizon at r+ = +

√
2QP . This shows that, at the critical point of the moduli space,

i.e. Σ = 0, we indeed have a massless black hole solution, which is non-extremal
and have temperature and entropy given by (3.99).

We see that it is indeed possible to construct a massless dyonic black hole solution
for the Einstein-Maxwell-dilaton theory. In order to do that, we had to �x the dilaton
�eld at in�nity to be imaginary. The minus sign in (3.93) seems to spoil this solution,
although all the physical quantities are real. Zero mass electrically charged solutions
of Einstein-Maxwell-dilaton theory were discussed by Gibbons and Rasheed in [37].
These authors obtained massless solutions for such a theory by �ipping the sign of
the kinetic term of the dilaton or the gauge �eld, or of both terms at the same time,
introducing the term "anti" to express which kinetic term has a �ipped sign. The
Einstein-Maxwell-anti-dilaton theory for instance, has a positive kinetic term in the
action for the dilaton, and so on. The motivation for doing so was based on Dyson's
argument [37]: The properties of the theory

− 1

4e2
FµνF

µν (3.100)

do not depend analytically on the coupling constant e2. If this was not the case, then
perturbation theory around the origin would be convergent in powers of e2, and also
in powers of −e2. For the negative sign, the particles would attract, destabilizing the
vacuum. As extremal charged black holes behave as charged particles, the authors
of [37] used Dyson's argument [38] to study what happens to black holes in theories
with positive kinetic terms. In fact, they construct massless electrically charged
black holes and wormholes for such theories. Here, studying the dyonic case, we did
not �ip the sign of any kinetic term, but the massless solution introduced, as stated
above, an imaginary dilaton �eld at in�nity. One can check that it is possible to
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obtain the same massless solution with a real dilaton �eld if we �ip the sign of the
kinetic term for the gauge �eld, which was the same situation studied in [37] for the
electrically charged case. So, by trying to avoid problems with the dilaton �eld we
end up transfering the problem to the gauge �eld, making it have negative kinetic
energy. This does not come as a surprise. As we will use this massless solution to
build wormholes in the next section, it is worth pointing out that there are other
examples in the literature in which wormholes exist when the �elds have negative
kinetic energy, or imaginary electromagnetic charges. Euclidean wormholes were
shown to exist as solutions to low-energy e�ective actions in string theory, whether
when the charges are imaginary [39], or when one of the �elds have negative kinetic
energy [40]. Notice also that non-Abelian gauge �elds with negative kinetic energies
have zero mass monopoles, as was pointed out in reference [41]. Our analysis shows
that, even with an imaginary dilaton �eld at in�nity, this masless solution seems
physically acceptable, since the charges, which are the physical observables, are real.
Our intention is not to prove whether or not this is the case, but instead, to show
that this solution can be used to construct Einstein-Rosen bridges. As the scalar
�eld does not seem to be physical, one would expect that the null energy condition
be violated. We will also show that this is not the case: the null energy condition is
satis�ed.

• e2φ0 = +P
Q

This other massless solution is written as

ds2 = −e−λdt2 + eλdr2 + C2(r)dΩ2
2,

e−λ =
(r − r+)(r − r−)

(r2 − Σ2)
, C2(r) = (r2 − Σ2), (3.101)

e2φ =
P

Q

(r − Σ)

(r + Σ)
, (3.102)

Frt =
P

(r + Σ)2
, Fθφ = P sin θ. (3.103)

The singularity is located at
rS = |Σ|. (3.104)
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The quantities r± = ±
√

Σ2 − 2QP are always smaller than rS, so this solution
represents a naked singularity. The problems related to the previous case are absent
here, since the value of the dilaton �eld at in�nity is a real quantity. But still, this
massless solution does not have a horizon. As we saw in section 2.5, the existence
of a horizon is a requirement for the construction of Einstein-Rosen bridges, so this
solution can not be used for this purpose.

3.9 Bridge construction

In this section we construct Einstein-Rosen bridges using the massless solu-
tion (3.95), (3.96) and (3.97). The procedure is the same as was done for the
Schwarzschild and Reissner-Nordström solutions in section 2.5. Again, we will use
the term "wormhole" to name this Einstein-Rosen bridge until the end of the chap-
ter. We �rst consider the more general case and �x r1 = −r2 ≡ r0 in the solution
(3.51), (3.52) and (3.53). Notice that, by switching to the coordinates u2 = r2 − r2

0,
the metric (3.51) is written as

ds2 = − u2

(u2 + r2
0)

dt2

f(u)
+ f(u)du2 + (u2 + r2

0)f(u)dΩ2
2,

f(u) =

(
1 +

d0√
u2 + r2

0

)(
1 +

d1√
u2 + r2

0

)
. (3.105)

This is a genuine charged wormhole solution: It connects one Minkowski space at
u = −∞ to another at u = +∞. The throat of the wormhole is located at u = 0,
and it has radius

Rthroat =
√

(r0 + d0)(r0 + d1), (3.106)

where d0 and d1 will be determined by equations (3.54), (3.55), and (3.56). The term
inside the square root is positive when we take the minus sign in (3.93), and the
throat of the wormhole will always be greater than zero for |Q|, |P | > 0. Notice that
this solution is valid only outside the horizon, r > +r0. So, for the full massless non-
extremal solution (3.95), we must take the minus sign in (3.93), and d1 = −d0 ≡ −Σ.
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The solution is

ds2 = − u2

(u2 + 2QP )
dt2 +

u2 + 2QP

u2 + Σ2 + 2QP
du2 + (u2 + 2QP )dΩ2

2. (3.107)

At the critical point of the moduli space, Σ = 0, this bridge is exactly the Einstein-
Rosen bridge (2.49), with ε2 = 2QP . This is due to the fact that Q ∝ −P , which
ful�lls ε2 ∝ −Q2. The radius of the throat is

Rthroat =
√

2QP. (3.108)

We see that the charged wormholes in the Einstein-Maxwell-dilaton theory may
come from the non-extremal massless dyonic solutions.

3.10 Null Energy condition

In the construction of the charged wormhole arising from the Reissner-Nordström
solution, given by (2.49), we needed to consider imaginary charges. Notice that this
is not the situation with the charged wormhole of the Einstein-Maxwell-dilaton
theory, given by (3.105). As stated before, exotic matter violates the null energy
condition, and we now check whether this is the case for the present solution or
not. In order to simplify the analysis, we will use the coordinate system for which
the radial coordinate is r, but the same analysis can be done using the coordinate
system for which the radial coordinate is u. This does not change the conclusions,
since the null energy condition does not depend on the choice of coordinate system.
Everything we do in this section is to follow the same analysis as in [28], but, of
course, using the non-extremal massless solution (3.95). Again, taking r1 = −r2 ≡
r0, the Ricci tensors for the metric (3.51) are given by

Rtt =
(r2 − r2

0)

2(d0 + r)4(d1 + r)4

[
d2

0

(
2d2

1 + 2d1r + r2 − r2
0

)
+ 2d0r

(
d2

1 − r2
0

)
+ d2

1

(
r2 − r2

0

)
−2d1rr

2
0 − 2r2r2

0

]
, (3.109)

Rrr =
r2

0 − d0d1

(d0 + r)(d1 + r) (r2 − r2
0)
, (3.110)
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Rθθ =
1

2(d0 + r)2(d1 + r)2

[
d2

0

(
2d2

1 + 2d1r + r2 − r2
0

)
+ 2d0r

(
d2

1 − r2
0

)
+ d2

1

(
r2 − r2

0

)
−2d1rr

2
0 − 2r2r2

0

]
, (3.111)

Rφφ = Rθθ sin2 θ. (3.112)

The curvature tensor is

R =
(d0 − d1)2 (r2 − r2

0)

2(d0 + r)3(d1 + r)3
. (3.113)

We choose orthonormal basis vectors [28]:

et̂ =

(
(r + d0)(r + d1)

(r2 − r2
0)

)1/2

et, (3.114)

er̂ =

(
(r2 − r2

0)

(r + d0)(r + d1)

)1/2

er, (3.115)

eθ̂ =

(
1

(r + d0)(r + d1)

)1/2

eθ, (3.116)

eφ̂ =

(
1

(r + d0)(r + d1)

)1/2
1

sin θ
eφ. (3.117)

In this basis the metric coe�cients take the form gα̂β̂ = eα̂·eβ̂ = ηα̂β̂ = diag(−1, 1, 1, 1).
Einstein's equations take the form

Gµ̂ν̂ = 8πGNTµ̂ν̂ . (3.118)

We remind the reader that in our units (16πGN) = 1. The components of the energy
momentum tensor are Tt̂t̂ = ρ(r), Tr̂r̂ = −τ(r), Tθ̂θ̂ = Tφ̂φ̂ = p(r), where ρ(r) is the
energy density measured by the static observer, τ(r) is the tension per unit area
measured in the radial direction, and p(r) is the pressure that is measured in the
directions orthogonal to the radial direction. They are given by

ρ(r) =
1

2(d0 + r)3(d1 + r)3

[
4d0r

(
d2

1 − r2
0

)
2d2

0

(
2d2

1 + 2d1r + r2 − r2
0

)
+2d2

1

(
r2 − r2

0

)
− 4d1rr

2
0 − 4r2r2

0 + (d0 − d1)2
(
r2 − r2

0

)]
, (3.119)

−τ(r) =
1

2(d0 + r)3(d1 + r)3

[
(4r2

0 − 4d0d1)(d0 + r)(d1 + r)
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−2(d0 − d1)2(r2 − r2
0)
]
. (3.120)

The null energy condition in the hatted coordinate system states that

Tµ̂ν̂k
µ̂kν̂ ≥ 0. (3.121)

In the same coordinate system, the null vector is given by kµ̂ = (1, 1, 0, 0), and the
null energy condition results in

ρ(r)− τ(r) =
(d0 − d1)2(r2 − r2

0)

2(d0 + r)3(d1 + r)3
. (3.122)

Evaluating this for the metric (3.95), in which e2φ0 = −P/Q, and d1 = −d0 ≡ −Σ,
we have

ρ(r0)− τ(r0) =
2Σ2(r2 − (Σ2 + 2QP ))

(r2 − Σ2)3
≥ 0. (3.123)

This is a proof that the null energy condition is satis�ed, and the massless charged
wormhole solution of the Einstein-Maxwell-dilaton theory in equation (3.95) does
not require exotic matter to exist. The coordinate system is valid only outside the
horizon, and the only way to saturate the bound is at the critical point of the moduli
space, i.e.

Σ = 0⇒ ρ(r0)− τ(r0) = 0. (3.124)

This is a very intriguing fact. It states that, as long as the dilaton exists, the
energy density of the spacetime is always greater than the tension per unit area.
The massless pointlike objects presented here are entirely new, and, of course, the
charged wormholes may be understood as a generalization of the charged Einstein-
Rosen bridge, for the case when we include the dilaton in the theory.

There are some topics concerning the massless solution which might be the sub-
ject of future research. It is necessary to check the stability of the massless solution
(3.95), (3.96) and (3.97). It is known that negative mass is in general a sign of
instability, but a full analysis is necessary to prove that our massless solutions are
stable under small perturbations of the metric. We hope to analyze whether or not
the same argument concerning the traversability of the neutral bridges applies here.
This does not necessarily mean that one can cross this wormhole, unless there is a
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mechanism that avoids the objects to hit the singularity. It is intriguing though that
the massless black holes solution, with an imaginary dilaton �eld at in�nity, allowed
us to construct a wormhole that satis�es the null energy condition. As stated in
the text, an imaginary dilaton �eld at in�nity can be avoided by allowing the gauge
�elds to have negative kinetic energy. Quantum mechanically, energy is allowed to
admit negative values (at least locally), but we are dealing with a classical theory. In
general, a classical theory admiting �elds whose kinetic energy is negative violates
the null energy condition, but here we just saw a counterexample of such claim.
The physical observables computed here are the temperature, entropy, mass, elec-
tric charge, and magnetic charge, and all of them are real quantities. The dilaton
charge does not depend on φ0, and this is also a real quantity. The electric charge
appears in Frt as e2φ0Q, and this is real, although φ0 is imaginary. These facts are
strong indications that the solution (3.95), (3.96), and (3.97) is indeed physically
acceptable, but a more careful analysis is necessary in order to make such a claim.
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Chapter 4

Traversable wormholes of

Einstein-Maxwell-phantom-dilaton

theory

In the last chapter we investigated the bridge construction for the Einstein-
Maxwell-dilaton theory. We �rst solved the �eld equations and then imposed ap-
propriate boundary conditions on the solution in order to obtain the desired pro�le
of a wormhole. In other words, these wormholes were constructed from a black hole
solution with "unusual" boundary conditions. As we saw in section 2.6, it is possible
to construct a genuine traversable wormhole in general relativity if we start with a
theory containing one phantom scalar �eld. The price we pay for such a construction
is that the null energy condition is violated since the beginning, and this makes the
theory become classically unacceptable, although there is some hope that it can be
acceptable quantum mechanically. In this chapter we will follow the same philos-
ophy, and start with a theory that contains one phantom �eld: we will turn only
the dilaton �eld into a phantom �eld in the Einstein-Maxwell-dilaton theory. We
will present an analytical traversable wormhole solution for the Einstein-Maxwell-
phantom-dilaton theory∗. The solution exists in the presence of electric charge, and

∗For a numerical study about the role of phantom scalar �elds in the gravitational collapse, see

reference [42].
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can be understood as a charged generalization of the Bronikov-Ellis wormhole, since
we can recover it by setting the electric charge to zero. We will present the theory,
the solution, and then present the embedding diagram. But we will also do some-
thing else in this chapter: We will compute the de�ection of light passing close to
the wormhole using the Gauss-Bonnet theorem. We also discuss that the magneti-
cally charged solution can be obtained via S-duality, as the equations of motion are
invariant under such transformation.

4.1 Motivation for considering phantom �elds

As we saw in section 2.6, phantom �elds are de�ned as the �elds whose kinetic
term appears in the action with �ipped sign†, resulting in a negative kinetic energy
for such �elds. There are cosmological observations [43][44] suggesting that the ex-
istence of a �uid with negative pressure could be a phantom �eld, which serves as
models for dark energy. From a theoretical point of view, for a nontrivial kinetic
term P (−1

2
(∂φ)2), ghost �elds give a ghost condensate in a consistent infrared mod-

i�cation of gravity [45]. We will not investigate the stability of the solution, but,
although negative energies are in general a sign of instabilities, there are arguments
that if there are instabilities, they can be cured [46]. In string theory, phantom �elds
appear in the study of "negative branes" [47][48] (called also as "topological anti-
branes" or "ghost branes"). In the same way as ordinary branes, negative branes
are extended objects which give rise to a gauge group SU(M), for a stack of M
negative branes on top of each other, where M is a negative Chan-Pathon factor
associated to the endpoint of the string. They cancel the e�ects of ordinary branes.
Then, SU(N |M) symmetry can be realized for a stack of N ordinary D-branes, and
M negative D-branes. It was argued in [49][50] that, if N = 4 SU(N |M) gauge
theories exist, they must be holographically dual to AdS5 × S5 because they are
indistinguishable from SU(N −M) theory to all order in 1/(N −M) (for N > M).
Also the relation among string dualities, the signature of spacetime, and phantom
�elds, was carefully studied in [51].

†Remember that the metric signature used in this thesis is (−,+,+,+)
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An interesting direction of research is to �nd and classify the charged solutions
in the presence of phantom �elds. Some results were obtained previously for the
Einstein-Maxwell-dilaton theory. We can, for instance, �ip the sign of the kinetic
term of the gauge �eld or the dilaton �eld for this theory. In fact, Gibbons and
Rasheed showed [37] that it is possible to construct massless black holes and worm-
holes solutions for the new theories with �ipped signs. As we saw in section 3.8, it is
possible to set the value of the dilaton at in�nity to a speci�c imaginary value, and
construct massless black holes for the Einstein-Maxwell-dilaton theory, whose ob-
servables are all real. Moreover, the same massless solutions were used to construct
Einstein-Rosen bridges which satisfy the Null Energy Condition. There are also
black hole solutions found for the case when only the dilaton �eld of the phantom
type [52]. In this chapter we consider only phantom dilaton �eld, so that the gauge
�elds have positive kinetic energy. For convenience, we follow [37] and call such a
theory as Einstein-Maxwell-anti-dilaton, due to the fact that the only �eld whose
kinetic term has �ipped sign is the dilaton.

Of course the wormhole solution we present does not satisfy the null energy con-
dition. This means that the phantom dilaton serves as the matter with negative
energy necessary to keep the throat of the wormhole open, which is classically unac-
ceptable. We know nowadays that violations of the null energy condition happen in
quantum mechanics‡, which, together with the cosmological observations discussed
in the previous paragraphs, is another motivation for the study of wormholes in the
presence of phantom �elds.

4.2 Einstein-Maxwell-anti-dilaton theory

The �elds of the Einstein-Maxwell-anti-dilaton theory are the metric gµν , a gauge
�eld Aµ, and a phantom scalar φ. This is just the Einstein-Maxwell-dilaton theory

‡The violations happen only locally. The integrated version of the null energy condition is still

valid.

53



with a positive kinetic term for the dilaton, whose action is written as

S =

∫
d4x
√
−g
(
R + 2∂µφ∂

µφ− e−2φFµνF
µν
)
. (4.1)

In this chapter, we take units in which (16πGN) ≡ 1. The �eld strength has the
usual form

Fµν = ∂µAν − ∂νAµ. (4.2)

The equations of motion for the metric, anti-dilaton, gauge �eld, and the Bianchi
identities are respectively:

Rµν + 2∂µφ∂νφ+
1

2
gµνe

−2φFρσF
ρσ − 2e−2φFµρFν

ρ = 0, (4.3)

∇µ(∂µφ)− 1

2
e−2φFµνF

µν = 0, (4.4)

∇µ

(
e−2φF µν

)
= 0, (4.5)

∇[µFρσ] = 0. (4.6)

4.3 Electrically charged wormholes

We want to study electrically charged wormholes in a space with spherical sym-
metry, so the ansatz for the metric is the same as the one in equation (3.42). The
equations of motion are slightly modi�ed compared to the ones of chapter 3. They
are written as

C ′′

C
= (φ′)2, (4.7)

(e−λC2)′′ = 2, (4.8)

d

dr

(
C2 d

dr
(e−λ)

)
= −2C2e−2φFrtF

rt, (4.9)

d

dr

(
e−λC2φ′

)
= C2e−2φFrtF

rt. (4.10)

We solve �rt the gauge �eld equation (4.5), whose solution is

Frt =
Q

e−2φC2
. (4.11)
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Replacing this in the previous equations, we �nd an analytical wormhole solution
given by

e−λ = exp

[
Q2

2c2
1

ec2+
2c1
l

arctan( rl ) − 2(b1 − c1)

l
arctan

(r
l

)
− (2b2 − c2)

]
, (4.12)

C2 = (r2 + l2) exp

[
−Q

2

2c2
1

ec2+
2c1
l

arctan( rl ) +
2(b1 − c1)

l
arctan

(r
l

)
+ (2b2 − c2)

]
,

(4.13)

φ = −Q
2

4c2
1

ec2+
2c1
l

arctan( rl ) +
b1

l
arctan

(r
l

)
+ b2, (4.14)

Frt =
Q

(r2 + l2)
ec2+

2c1
l

arctan( rl ), (4.15)

with the condition
c1 = b1 ±

√
b2

1 − l2. (4.16)

The process for obtaining this solution is based on guess work, and is very tedious
and de�nitely not very enlightening. That is why we do not describe it here. This is a
real solution valid in the whole spacetime. Apart from the term (r2+l2) in (4.13) and
(4.15), the solution depends only on exponentials of the inverse of tangent function of
the radial coordinate. Clearly, it contains no singularity, as a traversable wormhole
must be. The wormhole connects one Minkowski spacetime located at r = +∞ with
another one at r = −∞. As we mentioned in the introduction of the chapter, for
Q = 0, we recover the anti-Fisher solution [53][54], which is a generalization of the
Bronikov-Ellis solution presented in section 2.6. The anti-Fisher solution is written
as

ds2 = −e−λdt2 + eλdr2 + C2(r)(dθ2 + sin2 θdφ2)

e−λ = exp

[
−2(b1 − c1)

l
arctan

(r
l

)
− (2b2 − c2)

]
, (4.17)

C2(r) = (r2 + l2) exp

[
2(b1 − c1)

l
arctan

(r
l

)
+ (2b2 − c2)

]
, (4.18)

φ(r) =
b1

l
arctan

(r
l

)
+ b2, (4.19)
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also with the condition (4.16). We recover the Bronikov-Ellis wormhole [29][30],
given by equations (2.50) and (2.52), if we set b1 = l (which implies b1 = c1),
and also 2b2 = c2. For other solutions involving di�erent interacting theories with
Lagrangian L ∼ R − 2(∇φ)2 − Z(φ)F 2, where Z(φ) are di�erent functions of the
scalar �eld, see references [55], [56].

For reasons that will be explained below, it is more convenient to express our
solution (4.12), (4.13), (4.14) and (4.15) in terms of the constants Q, l, b1, b2, c1 and
c2. In general, static black hole and wormhole solutions are expressed in terms of
the asymptotic charges such as the mass M , the electric charge q, and the dilaton
Σ. For a traversable wormhole we have two asymptotic regions, so we can compute
the charges for each asymptotic region and write them in terms of these constants.
Using equation (B.8) derived in appendix B, the wormhole metric can be expressed
in the positive asymptotic region, i.e. r → +∞, as

ds2 ≈ −e−m1

(
1− m2

r

)
dt2 + em1

(
1− m2

r

)−1

[dr2 + r2(dθ2 + sin2 θdφ2)], (4.20)

where m1 and m2 are given by equation (B.6) also in appendix A. Making the
following scale rede�nitions

t→ em1/2τ, r → e−m1/2u, (4.21)

the metric becomes

ds2 ≈ −
(

1− m2e
m1/2

u

)
dτ 2 +

(
1− m2e

m1/2

u

)−1

[du2 +u2(dθ2 +sin2 θdφ2)]. (4.22)

The term multiplying the spatial part of the metric can be expanded, and we �nally
obtain

ds2 ≈ −
(

1− m2e
m1/2

u

)
dτ 2 +

(
1 +

m2e
m1/2

u

)
[du2 + u2(dθ2 + sin2 θdφ2)]. (4.23)

In the weak-�eld limit the static metric is expressed as

ds2 = −(1 + 2UN)dτ 2 + (1− 2UN)[du2 + u2(dθ2 + sin2 θdφ2)], (4.24)
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where UN = −M
r
is the Newtonian potential, and M is the mass parameter of the

gravitational object. Comparing equations (4.23) and (4.24) we identify the mass
parameter in the positive asymptotic region as

M+ =
m2e

m1/2

2
. (4.25)

Writing this explicitly we obtain

M+ =

(
−b1 + c1 +

Q2ec2+
c1π
l

2c1

)
exp

[
−Q

2ec2+
c1π
l

4c2
1

+
(b1 − c1)π

2l
+

(2b2 − c2)

2

]
.

(4.26)
This approximation is valid only for the positive asymptotic region, i.e. r → +∞.
The result for the negative asymptotic region, i.e. r → −∞, is obtained by �ipping
the signs of the terms containing factors of π, since limr→−∞ arctan(r/l) = −π/2.
So, the mass parameter for the negative asymptotic region is written as

M− =

(
−b1 + c1 +

Q2ec2−
c1π
l

2c1

)
exp

[
−Q

2ec2−
c1π
l

4c2
1

− (b1 − c1)π

2l
+

(2b2 − c2)

2

]
.

(4.27)
The electric charge in the positive asymptotic region q+ and in the negative asymp-
totic region q− are de�ned through the integral

q± =
1

4π

∫
r→±∞

Fµνn
µmν√gθθgφφdθdφ, (4.28)

where mµ = (1, 0, 0, 0) and nµ = (0, 1, 0, 0). This gives

q± =
1

4π

∫
r→±∞

dθdφ
Q

(r2 + l2)
ec2+

2c1
l

arctan( rl )(r2 + l2)eλ

= Qec2+
2c1
l

arctan( rl )eλ
∣∣∣
r→±∞

. (4.29)

This implies that

q± = Q exp

[
−Q

2

2c2
1

ec2±
c1π
l ± b1π

l
+ 2b2

]
. (4.30)

The dilaton charges at each region, Σ±, are de�ned through

φ ≈ φ± −
Σ±
r

+ ... , (4.31)
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where φ± is the value of the dilaton at the positive region for plus sign and negative
asymptotic region for minus sign. Using the approximations given in appendix A,
this gives

φ ≈ −Q
2ec2±

c1π
l

4c2
1

± b1π

2l
+ b2 −

1

r

[
Q2ec2±

c1π
l

2c1

+ b1

]
. (4.32)

Then we can extract

φ+ = −Q
2

4c2
1

ec2+
c1π
l + b2 +

b1π

2l
, (4.33)

φ− = −Q
2

4c2
1

ec2−
c1π
l + b2 −

b1π

2l
, (4.34)

Σ+ =
Q2ec2+

c1π
l

2c1

+ b1, (4.35)

Σ− =
Q2ec2−

c1π
l

2c1

+ b1. (4.36)

This allows us to rewrite the mass parameters M± and the charges q± as

M+ = (Σ+ − 2b1 + c1)eφ+−
c1π
2l
− c2

2 , (4.37)

M− = (Σ− − 2b1 + c1)eφ−+
c1π
2l

+
c2
2 , (4.38)

q+ = Qe2φ+ , (4.39)

q− = Qe2φ− . (4.40)

Notice that we can not express the constants Q, b1, b2 and c2 solely in terms of the
charges at each asymptotic region�. This is the reason why it is more convenient
to express all our results in terms of these integration constants instead of the
asymptotic charges. We will use these results in the end section 7.

For the analysis that follows, we will need the Ricci tensors and the Ricci scalar
for our wormhole solution (4.12), (4.13), (4.14) and (4.15). Using equations (4.12)
and (4.13), we compute the Ricci tensors, which are given by

Rtt =
Q2

(r2 + l2)2 exp

[
Q2

c2
1

e
2c1
l

arctan( rl )+c2 − 2(2b1 − 3c1)

l
arctan

(r
l

)
�Remind that c1 depends on b1 and l by (4.16)
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−4b2 + 3c2] , (4.41)

Rrr =
−1

2c2
1 (l2 + r2)2

[
4c2

1

(
(b1 − c1)2 + l2

)
+Q4e

4c1
l

arctan( rl )+2c2

+2c1Q
2(c1 − 2b1)e

2c1
l

arctan( rl )+c2
]
, (4.42)

Rθθ =
Q2

(r2 + l2)
e

2c1
l

arctan( rl )+c2 , (4.43)

Rφφ = Rθθ sin2 θ. (4.44)

From these results we can easily obtain the Ricci scalar, an it is written as

R =
−1

2c2
1 (l2 + r2)2

(
Q2e

2c1
l

arctan( rl )+c2 − 2b1c1

)2

× exp

(
2(c1 − b1)

l
arctan

(r
l

)
− 2b2 +

Q2

2c2
1

e
2c1
l

arctan( rl )+c2 + c2

)
. (4.45)

Notice that the Ricci scalar (8.4) is �nite everywhere in the spacetime, i.e. it does not
contain any singularity in the range −∞ < r < +∞. This means that the solution
is neither a black hole nor a naked singularity. One can check that other scalar
invariants constructed out from the Riemann tensors are also �nite everywhere.
Also, due to the smoothness of the spacetime, all geodesics are complete. In order
to check the energy conditions, we choose orthonormal basis vectors [28]:

et̂ = eλ/2
∂

∂t
, er̂ = e−λ/2

∂

∂r
, eθ̂ =

1

C

∂

∂θ
, eφ̂ =

1

C sin θ

∂

∂φ
. (4.46)

In the hatted coordinated system, the components of the energy momentum tensor
are Tt̂t̂ = ρ(r), Tr̂r̂ = −τ(r), Tθ̂θ̂ = Tφ̂φ̂ = p(r), where ρ(r) is the energy density
measured by the static observer, τ(r) is the tension per unit area measured in the
radial direction, and p(r) is the pressure that is measured in the directions orthogonal
to the radial direction. The null energy condition is written as

Tµ̂ν̂k
µ̂kν̂ ≥ 0, (4.47)

where the null vector is given by kµ̂ = (1, 1, 0, 0). As we are using units in which
(16πGN) = 1, we can use Einstein's equations and the fact that kµ̂kµ̂ = 0 in order to
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show that Tµ̂ν̂kµ̂kν̂ = 2Rµ̂ν̂k
µ̂kν̂ . The term Rµ̂ν̂k

µ̂kν̂ is just twice the curvature scalar
given by (8.4). So, for the wormhole solution (4.12), (4.13), (4.14) and (4.15), the
null energy condition (4.47) is not satis�ed, since (8.4) is a stricly negative function
of the radial coordinate. It is important to emphasize that this fact does not depend
on any choice of integration constants. The curvature is negative everywhere in the
spacetime, and it is �nite at the throat.

An interesting fact about the theory (4.1), is that, although the dilaton now is a
phantom �eld, the equations of motion for the theory (4.1) have the same S-duality
invariance of the Einstein-Maxwell-dilaton theory, i.e. the equations of motion are
invariant under

φ→ −φ, F µν → ε̃µνρσ

2
√
−g

Fρσ. (4.48)

We can transform our electrically charged solution to a magnetically charged solution
simply by applying the S-duality transformation (4.48). Unfortunately, we could not
obtain a traversable wormhole solution for the Einstein-Maxwell-anti-dilaton theory
with both electric and magnetic charges, i.e. a dyonic traversable wormhole solution.

4.4 The throat of the wormhole

As was saw in sections 2.5 and 2.6, the throat of the wormhole corresponds to
the surface of minimal area. Notice that the wormhole metric can be cast in the
form

ds2 = −e−λdt2 + eλ
[
dr2 + (r2 + l2)dΩ2

2

]
. (4.49)

The spatial part of the metric would be the same as the Bronikov-Ellis wormhole
case, given by (2.1), if the factor e−λ were set to unity. In (2.1) the minimal surface
happens when the radial coordinate is r = 0, but this is not the case here. The
function C2(r) = eλ(r2 + l2) has a minimum when

(C2)′(rmin) = 0, (C2)′′(rmin) > 0. (4.50)

These two conditions imply that, at the minimum radius

2CC ′ = 0, 2(C ′)2 + 2CC ′′ > 0. (4.51)
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The function C is non-zero everywhere, so the position of the minimum, rmin, can
be found solving

C ′(rmin) = 0. (4.52)

The second condition implies that the signs of C(rmin) and C ′′(rmin) must be the
same. Of course, if 2(C ′)2 + 2CC ′′ = 0, then we must analyse the behavior of the
�rst derivative around the in�ection point to check that it is indeed a minimum.
The �rst condition implies that the position of the throat rmin is found solving the
equation

rmin −
Q2

2c1

ec2+
2c1
l

arctan( rmin
l ) + b1 − c1 = 0. (4.53)

The constant rmin that solves this equation can have di�erent values because the
inverse tangent is a multi-valued function, i.e. it has di�erent branches. In our
analysis, we consider only the principal value of the inverse tangent, i.e.

r

l
= tan y → −π

2
< y <

π

2
. (4.54)

As we are interested only in principal values, equation (4.53) gives one single value
for rmin for any integration constants. An easy way to see this is to plot the function
C2(r), and then check that this value is unique and is indeed a minimum.

4.5 Topological charge and plots

A topological charge is a conserved quantity, also obtained by integrating a
current, that is not associated to any Noether symmetry. The phantom dilaton
φ, given by equation (4.14), is of topological nature, so it must have a topological
charge associated to it. In fact, we can de�ne the following current

jµ ∼ ε̃µν∂νφ, (4.55)

such that

N = β

∫ +∞

−∞
drε̃tr∂rφ = β[φ(+∞)− φ(−∞)], (4.56)
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for a constant β, which we will �x as β = 1. We have assumed that the �eld φ

depends only on the radial coordinate. Here, ε̃µν is the antisymmetric Levi-Civita
symbol, and ε̃tr = 1. For l > 0 we have

lim
r→±∞

arctan
(r
l

)
= ±π

2
(1 + 4n), n = 0, 1, 2, .... (4.57)

We choose the principal branch in order to be consistent with the choice of interval
in equation (4.54), i.e. n = 0. At the two asymptotic regions, (4.14) gives

φ(±∞) = −Q
2

4c2
1

ec2±
c1π
l + b2 ±

b1π

2l
. (4.58)

So, for our choices, the topological charge is

N = φ(+∞)− φ(−∞) = −Q
2

2c2
1

ec2 sinh
(c1π

l

)
+
b1π

l
. (4.59)

The factor c2 is very important in our discussion: it shapes the pro�le of the scalar
�eld. Depending on the choice of integration constants, the dilaton can be connected
to two di�erent vacua, i.e. it is a kink, or it can be connected to the same vacuum,
i.e. it is a lump. The topological charge must be zero in order to obtain a lump.
This implies

φ(∞) = φ(−∞)⇒ ec2 =
2c2

1b1π

Q2l

1

sinh
(
c1π
l

) . (4.60)

Now, we show plots of the �elds of the theory. The dilaton �eld shown in �gure
4.1 represents the case when it is a lump. We also plot the coupling e2φ for the
same values of constants in �gure 4.2. Notice that it also has a lump pro�le. The
electric �eld for the same values of constants is also plotted in �gure 4.3. For values
of c2 other than those in (4.60), the dilaton has a kink or anti-kink pro�le. We plot
only the case when c2 = 0 for the dilaton, shown in �gure 4.4, for the exponential
coupling, shown in �gure 4.5. The electric �eld for c2 = 0 is also plotted in �gure
4.6.

4.6 Embedding diagram

In this section we follow the same procedure as was done in section 2.6, and
construct the embedding diagram for the wormhole. Again, we set t = const and
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Figure 4.1: Dilaton �eld. Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.

θ = π/2. The metric is then written as

ds2 = eλ(dr2 + (r2 + l2)dφ2). (4.61)

Comparing (2.53) and (4.61), we see that the present case di�ers from the Bronikov-
Ellis case only by a "conformal factor" eλ. We de�ne a new radial coordinate such
that

(r∗)2 ≡ eλ(r2 + l2). (4.62)

The technical problem now is that, unlike the Bronikov-Ellis wormhole, we can not
invert this equation in order to write r(r?). But we will still be able to draw the
embedding diagram. Notice that

dr∗ =

(
r − Q2

2c1

ec2+
2c1
l

arctan( rl ) + b1 − c1

)
eλ/2√
r2 + l2

dr. (4.63)

We rede�ne the term inside the parenthesis as

g(r∗) ≡ r − Q2

2c1

ec2+
2c1
l

arctan( rl ) + b1 − c1, (4.64)

where it is implicit the relation r(r?). Then, (4.61) is rewritten as

ds2 =
r2 + l2

g2
dr∗2 + r∗2dφ2. (4.65)
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Figure 4.2: Exponential coupling e2φ. Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.

The Euclidean metric of the embedding space is the same as the one used in section
2.6, and it is given by equation (2.57). This implies that

dz

dr∗
= ±

(
r2 + l2

g2
− 1

)1/2

. (4.66)

The function z(r?) has two parts, one for the positive sign, z+(r?), and another one
for the negative sign, z−(r?). So we have two di�erential equations written as

dz+

dr∗
= +

(
r2 + l2

g2
− 1

)1/2

,
dz−
dr∗

= −
(
r2 + l2

g2
− 1

)1/2

. (4.67)

We integrate these equations numerically. The embedding diagram is shown in
�gure 4.7. The boundary condition we imposed in order to plot the embedding
diagram is just z+(rmin) = z−(rmin) = 0. Just like the embedding diagram of �gure
2.1 represents the Bronikov-Ellis wormhole, the embedding diagram of �gure 4.7
represents the embedding diagram for the wormhole of the Einstein-Maxwell-anti-
dilaton theory. It connects the upper region z+(r?) with the lower region z−(r?) by
a minimal surface, the throat, with area greater than zero.
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Figure 4.3: Electric �eld. Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.

4.7 De�ection angle via Gauss-Bonnet theorem

A wormhole is a gravitational object just like black holes are. So, its gravitational
�eld also curves the spacetime around it. A light ray can pass close to a wormhole
and have its trajectory changed, or it can cross the wormhole from one side to the
other and have also its trajectory changed. In this section, we will study only the
�rst situation for our wormhole spacetime. When the bending of the trajectory
is small, the observer sees the source in the space at small angle compared to the
source's original position. We call this e�ect lensing, or gravitational lense, and
this section is devoted to the computation of the angle of deviation as seen by the
observer, called de�ection angle.

In a novel geometrical approach to gravitational lensing theory, Gibbons and
Werner showed how the Gauss-Bonnet theorem can be applied to the computation
of the light de�ection angle in the weak de�ection limit for static and spherically
symmetric spacetimes [57]. This can be applied for black holes, topological defects,
and also for wormholes. The application of this method for wormhole cases was
done in references [58][59].

Consider the following oriented surface domain D, with boundary CR = γR ∪ γḡ,
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Figure 4.4: Dilaton �eld. c2 = 0, Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.

as described by �gure 4.8. The Gauss-Bonnet theorem states that∫ ∫
D
KdS +

∫
∂D
κdt+

∑
i

αi = 2πχ(D), (4.68)

where K is the Gaussian curvature associated to the Riemannian metric ḡ, κ is the
geodesic curvature for CR : {t} → D, and αi is the extrerior angle with ith vertex.
χ(D) is the Euler characteristic, which is χ(D) = 1 for a non-singular domain, and
χ(D) = 0 for a singular domain [57]. As we know, the wormhole spacetime is non-
singular, so we must use χ(D) = 1. In order to �nd the Gaussian curvature, we
consider without loss of generality only null geodesics ds2 = 0 on the equatorial
plane θ = π/2. Then, the wormhole metric reduces to

dt2 = ḡijdx
idxj = e2λdr2 + e2λ(r2 + l2)dϕ2. (4.69)

This is called optical metric. The Christo�el connections for this metric are given
by

Γ̄rϕϕ = −r +
Q2

c1

ec2+
2c1
l

arctan( rl ) − 2(b1 − c1), (4.70)

Γ̄rrϕ =
1

(r2 + l2)

[
r − Q2

c1

ec2+
2c1
l

arctan( rl ) + 2(b1 − c1)

]
. (4.71)
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Figure 4.5: Exponential coupling e2φ. c2 = 0, Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.

We will use these connections only later. We introduce Regge-Wheeler tortoise
coordinate r?, such that

dr? = eλdr, f 2(r?) = e2λ(r2 + l2), (4.72)

where r = r(r?). The optical metric (4.69) then takes the form

dt2 = dr?2 + f 2(r?)dϕ2. (4.73)

The Gaussian curvature K is related to the Riemann tensor through the relation

Rrϕrϕ = K(ḡrϕḡϕr − ḡrrḡϕϕ) = −Kdetḡ. (4.74)

The Gaussian curvature is expressed as [57]

K = −Rrϕrϕ

detḡ
= − 1

f(r?)

d2f(r?)

dr?2
. (4.75)

Notice that we can return to the original radial coordinate r writing this expression
as

K = − 1

f(r?)

[
dr

dr?
d

dr

(
dr

dr?

)
df

dr
+

(
dr

dr?

)2
d2f

dr2

]
. (4.76)
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Figure 4.6: Electric �eld. c2 = 0, Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3.

Using the de�nitions (4.72) we obtain

K = − 1

e2λ(r2 + l2)

[
λ′r +

l2

(r2 + l2)
+ (r2 + l2)λ′′

]
= − 1

e2λ(r2 + l2)2

[
Q2

c1

rec2+
2c1
l

arctan( rl ) − 2Q2ec2+
2c1
l

arctan( rl ) − 2r(b1 − c1) + l2
]
.

(4.77)

For the metric (4.69), we have
√
ḡ = e2λ

√
r2 + l2. We will compute the �rst integral

in (4.68) only to leading order for large values of r, i.e.∫ ∫
D

KdS =

∫ π

0

∫ ∞
b

sinϕ

drdϕ
√
detḡK

=

∫ π

0

∫ ∞
b

sinϕ

drdϕe2λ
√
r2 + l2K

≈ −
∫ π

0

∫ ∞
b

sinϕ

drdϕ
1

r2

[
Q2

c1

ec2+
c1π
l − 2(b1 − c1)

]
≈ −2

b

[
Q2

c1

ec2+
c1π
l − 2(b1 − c1)

]
. (4.78)

The second integral is a little more involved. In the original paper [57], the examples
presented always had for the second integral the result π + δ, but this is not always
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Figure 4.7: Embedding diagram:

Q = 2, b1 = 5, l = 3, c1 = 1, b2 = 3, ec2 = (3
√

3 + 4)/(2e2π/9).

the case. In fact, the presence of topological defects gives a di�erent contribution
[60], and this is the situation here. In order to compute the second integral, we must
�rst �nd κ. Let us de�ne the velocity and acceleration vectors along the curve γ
respectively as γ̇ and γ̈. The velocity vector is normalized such that ḡ(γ̇, γ̇) = 1. For
very large values of R the sum of the external angles for the source and the observer
is approximatelly π, i.e. αS + αO → π. The geodesic curvature is computed using
the relation

κ = ḡ(∇γ̇ γ̇, γ̈). (4.79)

Along γḡ, κ(γḡ) = 0 because γḡ is a geodesic. We must then compute

κ(γR) = |∇γ̇R γ̇R|, (4.80)

where γ̇R is the velocity vector along the curve γR. The radial component of this
expression is given by

(∇γ̇R γ̇R)r = γ̇µR∂µγ̇
r
R + γ̇µRΓ̄rµν γ̇

ν
R. (4.81)

Because we con�ne our attention on the countour CR := r(φ) = R = const for large
R, there is no change in the radial distance, so γ̇rR = 0, and ḡϕϕ(γ̇ϕR)2 = 1. So, (4.81)
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Figure 4.8: Gravitational lens: DR is the domain enclosed by the boundary CR, b is the

impact parameter, and δ is the de�ection angle.

is written as
(∇γ̇R γ̇R)r = Γ̄rϕϕ(γ̇φR)2. (4.82)

Using (4.70) we have

(∇γ̇R γ̇R)r =
1

e2λ(r2 + l2)

(
−r +

Q2

c1

ec2+
2c1
l

arctan( rl ) − 2(b1 − c1)

)
. (4.83)

Using the optical metric (4.69), we also obtain

dt = eλ
√
r2 + l2dϕ. (4.84)

Combining the results (4.83) and (4.84), and also using Taylor expansions, we eval-
uate the integral as∫

∂D

κdt =

∫ π+δ

0

(∇γ̇R γ̇R)rdϕ ≈ −e−m1(π + δ). (4.85)
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This is valid for large values of R and for small values of δ. Inserting the results
(4.78) and (4.85) in (4.68), we can �nally evaluate the light de�ection angle, given
by

δ =
2em1

b

[
2(b1 − c1)− Q2

c1

ec2+
c1π
l

]
− π(1 + em1). (4.86)

Of course this must be a small value for the de�ection angle, since we used a lot of
approximations valid in the weak de�ection angle limit to obtain this result. If we
wish to study the bending of light away from this limit, the Gauss-Bonnet theorem
method is not valid anymore, and we must solve analytically the geodesic equation.

This result was derived only for the positive region, but we can easily generalize
it for the negative region as well. In fact, using the asymptotic values of the dilaton
(4.33) and (4.34), and the de�nition of the asymptotic charges (4.35), (4.36), (4.37),
(4.38), (4.39), and (4.40), the de�ection angle in both regions can also be written as

δ+ = −4M+

b
eφ+−

c1π
2l
− c2

2 − π(1 + e2φ+− c1πl −c2), (4.87)

δ− = −4M−
b

eφ−+
c1π
2l

+
c2
2 − π(1 + e2φ−+

c1π
l

+c2). (4.88)
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Chapter 5

Sen's entropy function

In this chapter we introduce an e�cient method to compute the entropy and the
value of �elds on the horizon of an extremal black hole. This is the Sen's entropy
function method. The analysis of this chapter is done for black holes with spherical
symmetry, but it can be generalized for black holes with planar horizons as well. In
fact, we will do this in section 8.1, where black holes with planar horizon are used
to compute conductivities for strongly coupled systems at zero temperature.

5.1 AdS2×S2 near horizon geometry

A general metric describing a charged and non-rotating black hole solution with
spherical horizon can always be cast in the following form

ds2 = −f(r)dt2 +
dr2

f(r)
+ C2(r)dΩ2

2, (5.1)

where f(r) and C(r) are functions of the radial coordinate only. The horizon is
located at the position r = r+, so that in the near horizon region the function f(r)

is Taylor expanded as

f(r) ≈ f(r+) + (r − r+)f ′(r+) +
(r − r+)2

2!
f ′′(r+) + ... , (5.2)

where the primes denote derivatives with respect to the radial coordinate. The �rst
term in the expansion, f(r+), is zero due to the de�nition of the horizon. The
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temperature of the black hole is de�ned as T ∼ f ′(r+), so the second term is also
zero due to the fact that an extremal black hole has T = 0. These facts imply that
the third term is the dominant one, and the metric can be approximated as

ds2 ≈ −(r − r+)2

2
f ′′(r+)dt2 +

2

(r − r+)2

dr2

f ′′(r+)
+ C2(r+)dΩ2

2. (5.3)

We change coordinates to

r − r+ ≡ ρ, t ≡ 2

f ′′(r+)
τ. (5.4)

The metric in this coordinate system is written as

ds2 ≈ 2

f ′′(r+)

(
−ρ2dτ 2 +

dρ2

ρ2

)
+ C2(ρ+ r+)dΩ2

2. (5.5)

The horizon now is located at ρ = 0. The metric is factored out in two parts. The
term inside the parenthesis is the metric of an AdS2 space. The angular part is
the metric of the S2 space. So, we say that the metric of an extremal black hole
has AdS2×S2 geometry. The functions f ′′(r) and C2(r) are shown to give positive
constants on the horizon all extremal black holes considered in this thesis. So, this
space is indeed the product of the two dimensional anti de-Sitter space with the
two-sphere S2. The term multiplying the AdS2 part is called the AdS2 radius, and
the term multiplying the S2 part is called the S2 radius.

5.2 Entropy function and attractor equations

In this section we will derive the Sen's entropy function for extremal black holes.
This was introduced for the �rst time in [10], but in this thesis we follow the more
detailed derivation given in the review [18].

Consider a four-dimensional gravity theory coupled to Abelian massless �elds
A

(i)
µ and neutral scalar �elds φs. The Lagrangian of the theory is generically writ-

ten as
√
−gL, where L depends on the scalars φs, on the �eld strengths F (i)

µν ≡
∂µA

(i)
ν − ∂νA(i)

µ , on the inverse metric gµν , and on the Riemann tensor Rµνρσ. The
Lagrangian may also depend on the covariant derivatives of all these �elds. As we
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saw in the previous section, the near-horizon metric of an extremal black hole can
be conveniently written as

ds2 = v1

(
−r2dt2 +

dr2

r2

)
+ v2(dθ2 + sin2 θdφ2), (5.6)

φs = us, F
(i)
rt = ei, F

(i)
θφ =

pi
4π

sin θ, (5.7)

where v1, v2, us, ei and pi are constants. The Riemann tensor for the metric (5.6) is
written as

Rαβγδ = −v−1
1 (gαγgβδ − gαδgβγ), α, β, γ, δ = r, t

Rmnpq = v−1
2 (gmpgnq − gmqgnp), m, n, p, q = θ, φ. (5.8)

Due to the fact that the �elds are constants near the horizon, all the covariant
derivatives of the scalars φs, of the �eld strength F (i)

µν , and of the Riemann tensor
Rµνρσ appearing in the action vanish. One result that will be used later and that
can be obtained easily from the above is the Ricci scalar, which is given by

R = − 2

v1

+
2

v2

. (5.9)

Let us denote by f(~u,~v,~e, ~p) the Lagrangian density integrated over the angular
variables θ and φ in the near horizon region, i.e.

f(~u,~v,~e, ~p) =

∫
dθdφ

√
−gL. (5.10)

In general supergravity theories we have several gauge �elds, so we have written
for short ~p and ~q to represent the electric and magnetic charges associated to all
gauge �elds. The equations of motion for the scalar and the metric correspond to
extremizing f with respect to ~us and ~v. They are given by

∂f

∂us
= 0,

∂f

∂vi
= 0. (5.11)

The equation of motion and Bianchi identities for the gauge �elds are respectivelly
given by

∂r

(
δS
δF

(i)
rt

)
= 0, ∂rF

(i)
θφ = 0, (5.12)
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where S is the action. These equations are satis�ed for the near horizon metric
(5.6). Integrating over the angular variables we have∫

dθdφ
δS
δF

(i)
rt

= ai,

∫
dθdφF

(i)
θφ = bi (5.13)

where ai, bi are radially independent constants. Using (5.7), we have

δS
δF

(i)
rt

=
√
−gF (i)rt =

∂

∂F
(i)
rt

[√
−gL

]
ai =

∫
dθdφ

δS
δF

(i)
rt

=

∫
dθdφ

∂

∂F
(i)
rt

[√
−gL

]
=

∂

∂ei

[∫
dθdφ

√
−gL

]
=
∂f

∂ei
,

bi =

∫
dθdφ

pi
4π

sin θ = pi.

This implies that ai and bi are

ai =
∂f

∂ei
, bi = pi. (5.14)

The constants ai and bi are integrals of the electric and magnetic �uxes, written as

qi =
∂f

∂ei
, bi = pi. (5.15)

Then, we conclude that qi is associated to the electric charge and pi is associated to
the magnetic charge of the extremal black hole. Then, we end up with a system of
three equations

∂f

∂us
= 0,

∂f

∂vi
= 0,

∂f

∂ei
= qi, (5.16)

and three variables ~u, ~v and ~e. In other words, we end up with a completely
determined system. Let us de�ne now a new function as

E(~u,~v,~e, ~q, ~p) ≡ 2π[eiqi − f(~u,~v,~e, ~p)]. (5.17)

The system of equations (5.16) is reproduced in terms of this new function as

∂E
∂us

= 0,
∂E
∂v1

= 0,
∂E
∂v2

= 0,
∂E
∂ei

= 0. (5.18)
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This means that the near horizon metric and �elds can be determined by extremizing
one single function E .

There is a general formula for computing the entropy of a black hole when the
theory contains terms with higher derivatives in the Riemann tensor. This is called
Wald formula [61]. Its derivation is out of the scope of this thesis, and we will only
present the result here. We refer to [61][62][63][64] for a detailed derivation of this
result. The Wald formula is written as

SBH = −8π

∫
H

dθdφ
√
−gttgrr

δS
δRrtrt

. (5.19)

It is our intention to show that the function E(~u,~v,~e, ~q, ~p) reduces to the Wald
formula after extremization, following the same procedure presented in reference
[18]. In order to compute the quantity δS

δRrtrt
we must do the following:

1. We express S in terms of covariant derivatives of symmetrized �elds replacing the
antisymmetrized covariant derivatives of such �elds in terms of the Riemann tensor;
2. then, we treat Rµνρσ as an ideependent variable.
In our case, the covariant derivatives of all tensors vanish, so

δS
δRrtrt

=
√
−g ∂L

∂Rrtrt

, (5.20)

and we keep only terms that do not involve covariant derivatives in L. Then ∂L
∂Rµνρσ

can be computed from

δL =
∂L

∂Rµνρσ

δRµνρσ. (5.21)

We replace (5.20) in (5.19) and obtain

SBH = −8π

∫
H

dθdφ
√
−gttgrr

√
−gttgrrgθθgφφ

∂L
∂Rrtrt

= 8πgttgrr
∂L

∂Rrtrt

AH

= 8π(−v1r
2)
(v1

r2

) ∂L
∂Rrtrt

AH

= −8πv2
1

∂L
∂Rrtrt

AH . (5.22)
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In order to express this entropy in terms of the function f previouly de�ned we write
fλ(~u,~v,~e, ~p), which is similar to the right hand side of equation (5.10), except by
the fact that we multiply each factor of Rrtrt em L by a factor of λ. This implies
the following equality

∂fλ(~u,~v,~e, ~p)

∂λ

∣∣∣∣
λ=1

=

∫
dθdφ

√
−gRαβγδ

∂L
∂Rαβγδ

, (5.23)

where α, β, γ, δ runs over r and t only. Notice that ∂L
∂Rαβγδ

is proportional to (gαγgβδ−
gαδgβγ), and, with the correct normalization factors, it is written as

∂L
∂Rαβγδ

= −v2
1(gαγgβδ − gαδgβγ) ∂L

∂Rrtrt

. (5.24)

Using (5.24) and (5.8) we can rewrite (5.23) as

∂fλ(~u,~v,~e, ~p)

∂λ

∣∣∣∣
λ=1

=

∫
dθdφ

√
−g[−v−1

1 (gαγgβδ − gαδgβγ)][−v2
1(gαγgβδ − gαδgβγ)] ∂L

∂Rrtrt

=

∫
dθdφ

√
−g[v2

1(gαγg
αγgβδg

βδ − δγδ δ
δ
γ − δδγδ

γ
δ + gαδg

αδgβγg
βγ)]

∂L
∂Rrtrt

.

(5.25)

We use
√
−g = v1

√
gθθgφφ, and write

∂fλ(~u,~v,~e, ~p)

∂λ

∣∣∣∣
λ=1

= 4v2
1

∫
dθdφ

√
gθθgφφ

∂L
∂Rrtrt

. (5.26)

As ∂L
∂Rrtrt

is independent of θ and φ, we have

∂fλ(~u,~v,~e, ~p)

∂λ

∣∣∣∣
λ=1

= 4v2
1

∂L
∂Rrtrt

AH . (5.27)

Replacing (5.27) em (5.22), The entropy of the black hole can be rewritten as

SBH = −2π
∂fλ(~u,~v,~e, ~p)

∂λ

∣∣∣∣
λ=1

. (5.28)

We must express the right hand side of this expression in terms of derivatives of
f with respect to ~u, ~v, ~e, and ~p. As L is invariant under reparametrization of
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the coordinates r and t, each factor of Rrtrt in fλ must appear in the combination
λgrrgttRrtrt = λ

(
− 1
v1r2

)
(v1) = −λv−1

1 , each factor of F (i)
rt must appear in the

combination
√
−gttgrrF (i)

rt = eiv
−1
1 , each factor of F (i)

θφ = pi
4π

and φs = us must
appear without multiplying v1 or powers of it. As we mentioned, the terms with
covariant derivatives of F (i)

µν , Rµνρσ, and φs vanish. Notice that v1 also appears in
fλ(~u,~v,~e, ~p) due to the term

√
−g ∝ v1. So, the expression

fλ(~u,~v,~e, ~p) = v1g(~u, ~v2, ~p, λv
−1
1 , ~ev−1

1 ) (5.29)

is valid for some function g. With this de�nition, the following identity is true:

λ
∂fλ(~u,~v,~e, ~p)

∂λ
+ v1

∂fλ(~u,~v,~e, ~p)

∂v1

+ ei
∂fλ(~u,~v,~e, ~p)

∂ei
− fλ(~u,~v,~e, ~p) = 0. (5.30)

Now, we impose that λ = 1 in this expression, and use the equation for v1 given in
(5.16), so that the above identity gives as the result

∂fλ(~u,~v,~e, ~p)

∂λ

∣∣∣∣
λ=1

= −ei
∂f(~u,~v,~e, ~p)

∂ei
+ f(~u,~v,~e, ~p). (5.31)

This result allows us to rewrite (5.28) as

SBH = 2π

(
ei
∂f(~u,~v,~e, ~p)

∂ei
− f(~u,~v,~e, ~p)

)
. (5.32)

We use (5.16) and replace the term containing the derivative of f with respect to
ei by qi, so that we can interpret SBH

2π
as a Legendre transform of f(~u,~v,~e, ~p) with

respect to ei after ~u and ~v are eliminated using the equations of motion (5.16).
Finally, using (5.17), we express the quantity SBH as

SBH = E(~u,~v,~e, ~q, ~p), (5.33)

which is the entropy of the extremal black hole at the extremum (5.18). The function
de�ned in (5.17) is the Sen's entropy function, and the set of equations that
extremize this function, given by (5.18), are called attractor equations. The
Sen's entropy function method has become a very powerful tool for the computation
of the entropy of extremal black holes for a huge class of theories arising in string
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theory as their low-energy limit (supergravity). Due to the fact that the formalism
is valid also in the presence of higher derivative terms in the Riemann tensor, the
Sen's entropy function gives also the corrections to the entropy coming from these
higher derivative terms, i.e.

SBH = E =
AH
4GN

+ corrections. (5.34)

These corrections are called "classical corrections" in the worldsheet string theory
sense, since they do not come with powers of the string coupling α′, which are called
"worldsheet quantum corrections". Another reason why Sen's entropy function is
so powerful is that it allows us to investigate the attractor mechanism for extremal
black holes without the need of knowing explicitly the black hole solution. In other
words, the solution to the attractor equations (5.18) gives not only the attractor
values of the scalar �elds on the horizon but also the near horizon metric and gauge
�elds. We will refer to this as horizon data, and we will show that this data can be
used to compute conductivities for extremal black holes in the context of AdS/CMT
in chapter 8. All the analysis made in this section was based in equations of motion,
and did not make use of speci�c forms of the higher derivative terms.

Although we emphasized the power of Sen's entropy function method, it is also
to stress out its limitations, which are:

• The Lagrangian is not allowed to have a mass term for the gauge �elds A(i)
µ ,

since we the entropy function is constructed in order to agree with the Wald
formula for the entropy of a black hole, which is not valid when the gauge �eld
is massive. So, the formalism is valid only when the gauge �elds appears in
the action through their �eld strengths;

• The �elds are only allowed to depend on the radial coordinate for theories of
the EMD type. This implies that the scalars of the theory must not depend
on the time or the horizon coordinates. This happens because the attractor
mechanism is not present when one of the scalars depends on a coordinate
other than the radial one.

79



Of course one can test that the method gives in fact the entropy of the black hole
and near horizon data for the cases when the black hole solution is known explicitly.
This can be asily done for the Reissner-Nordström black hole, for the dyonic black
hole of Einstein-Maxwell-dilaton theory in absence of a scalar potential, and for
some other explicit solutions.
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Chapter 6

AdS4 dyonic black hole entropy and

attractors via entropy function

In this chapter we will present the computation for the dyonic extremal black
hole entropy for the bosonic part of a N = 8 supergravity theory in AdS4 space,
which is sometimes called U(1)4 theory due to the fact that it contains four Abelian
gauge �elds. This result was obtained by the student and can be found in reference
[19]. In essence, we will study Einstein-Maxwell-dilaton theories in the presence of
a potential for the scalar �eld. In the �rst part, we will just show how to apply the
entropy function formalism for these cases, and compute the black hole entropy for
some models which are not necessarily embedded in string theory. This will allow us
to learn important lessons about how to solve the attractor equations for the more
general theory that we just mentioned, i.e. the U(1)4 theory in AdS4 space.

6.1 The general Einstein-Maxwell-dilaton theory

In order to be as general as possible, we write the Einstein-Maxwell-dilaton
action in the presence of a scalar potential as

S =

∫
d4x
√
−g (R− 2∂µφ∂

µφ−W (φ)FµνF
µν − V (φ)) , (6.1)
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for some function of the dilatonW (φ), which is in general an exponential function of
the dilaton, and for some general scalar potential V (φ). In the next section we will
choose speci�c forms for these functions in order to solve the attractor equations.
Here, we de�ne the �eld strength as

Fµν = ∂µAν − ∂νAµ, (6.2)

and we take units in which (16πG) = 1. The U(1)4 gauged supergravity contains
more scalars and gauge �elds, and will be discussed in details later. For now, let us
focus attention only to this simple case. The equations of motion are:

• for the metric:

Rµν = 2∂µφ∂νφ−
1

2
gµνW (φ)FρσF

ρσ + 2W (φ)FµρFν
ρ +

1

2
gµνV (φ); (6.3)

• for the dilaton:

∇µ(∂µφ)− 1

4

∂W (φ)

∂φ
FµνF

µν − 1

4

∂V

∂φ
= 0; (6.4)

• for the gauge �eld:
∇µ (W (φ)F µν) = 0. (6.5)

We also have the Bianchi identities:

∇[µFρσ] = 0. (6.6)

6.2 Entropy function for the Einstein-Maxwell-dilaton

theory with a potential

In this section we compute explicitly the entropy of the extremal black holes
considered in the text. Instead of choosing speci�c models, we try to keep some sort
of generality by not making use of any explicit functional form for the coupling of
the dilaton �eld with the �eld strength, i.e. W (φ). This means that, apart from the
constant potential, the potentials V (φ) we consider are written in terms of W (φ) in
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a speci�c way. Then, we will show that we can make generic assumptions about the
solutions to the attractor equations for the case of U(1)4 theory.

We de�ne the near horizon �eld strength components as Frt = e and Fθφ =

P sin θ. Also, as mentioned in chapter 5, v1 is the AdS2 radius, v2 is the S2 radius,
and here we de�ne the value of the scalar on the horizon as uD, where the subscript
D stands for dilaton. We follow the procedure of chapter 5 for obtaining the entropy
function. We assume that the near horizon metric is given by (5.6), which implies
that the Ricci scalar is written as (5.9), and then, we assume that the near horizon
�elds are written as above. We integrate the Lagrangian over the angular variables
to obtain the function f , written in equation (5.10), for the theory (6.1). This gives

f = 4πv1v2

[
− 2

v1

+
2

v2

+W (uD)

(
−e

2

v2
1

+
P 2

v2
2

)
− V (uD)

]
, (6.7)

and the entropy function is just E = 2π[Qe− f ], which gives

E = 2π

[
Qe− 8π(v1 − v2)− 4πv1v2W (uD)

(
e2

v2
1

− P 2

v2
2

)
+ 4πv1v2V (uD)

]
. (6.8)

The attractor equations (5.18) are

Q− 8πv1v2W (uD)
e

v2
1

= 0, (6.9)

−2 + v2W (uD)

(
e2

v2
1

+
P 2

v2
2

)
+ v2V (uD) = 0, (6.10)

2− v1W (uD)

(
e2

v2
1

+
P 2

v2
2

)
+ v1V (uD) = 0, (6.11)

∂W (uD)

∂uD

(
e2

v2
1

− P 2

v2
2

)
− ∂V (uD)

∂uD
= 0. (6.12)

We now show that the attractor equations allow us to show that the function E is
indeed the entropy of the extremal black hole. Using (6.9) we eliminate Q in (6.8),
which gives

E = 2π

[
−8π(v1 − v2) + 4πv1v2W (uD)

(
e2

v2
1

+
P 2

v2
2

)
+ 4πv1v2V (uD)

]
. (6.13)
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Multiplying (6.10) by v1 and adding to (6.11) multiplied by v2 we obtain the following
expression for the potential

v1v2V (uD) = (v2 − v1). (6.14)

This expression holds for general scalar �elds φI and gauge �elds AIµ, and we will
also use it in the next section. We also eliminate the potential in (6.13) and then
obtain

E = 2π

[
−4π(v1 − v2) + 4πv1v2W (uD)

(
e2

v2
1

+
1

v2
2

p2

(4π)2

)]
. (6.15)

Now, multiplying (6.10) by v1 and subtracting (6.11) multiplied by v2 we have

v1v2W (uD)

(
e2

v2
1

+
P 2

v2
2

)
= (v1 + v2), (6.16)

and we also eliminate this term from (6.15). This implies that the entropy can be
written only in terms of the S2 radius, i.e.

E = 16π2v2. (6.17)

By dimensional analysis, we recover the term 16πG, and conclude that this corre-
sponds to the usual A/4 term of the black hole entropy. Notice that we can solve
(6.9) directly, giving

e

v1

=
Q

8πv2W (uD)
. (6.18)

We will analyze the solutions of the attractor equations for some speci�c potentials.
We make a list for the cases we investigated.

• V (φ) = 0.

This is the simplest case. The solution to the attractor equations and the entropy
are given by

W (uD) =
Q

8πP
, v1 = v2 =

QP

8π
, e = P, (6.19)

E = 2πQP. (6.20)
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Notice that this result is independent of the functional form of W (uD). For the case
when W (φ) = e−2φ, we can use the extremal analytical solution for the Einstein-
Maxwell-dilaton theory without potential, given in reference [7], and see that the
entropy and near horizon data obtained here are the same as there.

• V (φ) = 2Λ.

The solution to the attractor equations for this case is

W (uD) =
Q

8πP
, e = P

v1

v2

, (6.21)

v1 =
1

Λ

1
2Λ

(
1±

√
1 + ΛQP

2π

)
− QP

8π

QP
4π
− 1

2Λ

(
1±

√
1 + ΛQP

2π

) , v2 =
1

2Λ

(
1±

√
1− ΛQP

2π

)
, (6.22)

E =
8π2

Λ

(
1−

√
1− ΛQP

2π

)
. (6.23)

For convenience, we left the value of the electric �eld in an implicit form. We
also took the minus sign in v2 in order to write the entropy. The reason is that,
after Taylor expanding for small values of the cosmological constant, we recover the
previous result for zero potential when Λ→ 0 only with the negative sign, which is
a consistency check of the correctness of the method.

• V (φ) = βW (φ).

For this case, (6.9) and (6.12) give directly

W 2(uD) =
Q2

(8π)2

1

(P 2 + βv2
2)
. (6.24)

Replacing this in (6.11) we �nd v2 and all the rest can be found after some algebraic
manipulation

W (uD) =
Q

8πP

(
1− βQ2

(8π)2

)1/2

e =
P(

1− βQ2

(8π)2

)3/2
(6.25)
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v1 =
QP

8π

1(
1− βQ2

(8π)2

)3/2
, v2 =

QP

8π

1(
1− βQ2

(8π)2

)1/2
, (6.26)

E =
2πQP(

1− βQ2

(8π)2

)1/2
. (6.27)

• V (φ) = β
W (φ)

.

This case is a bit simpler to be obtained. The solutions are

W (uD) =
Q

8πP

1

(1− βP 2)1/2
e =

P

(1− βP 2)1/2
(6.28)

v1 =
QP

8π

1

(1− βP 2)3/2
, v2 =

QP

8π

1

(1− βP 2)1/2
, (6.29)

E =
2πQP

(1− βP 2)1/2
. (6.30)

Notice that we can achieve the zero potential case by setting the constant β to
zero. Notice also that the AdS2 and S2 radii, v1 and v2, are related in equations
(6.26) and (6.29), by the exchange Q/(8π) ↔ P . Of course, these are simpli�ed
cases, and generalizations can be done, for instance, by choosing other potentials
that could be combinations of these two examples.

In these last two examples, we chose the potential to be proportinal of inversely
proportional to the coupling W (φ). Notice that adding a potential of these kinds
change the entropy and near-horizon data of the theory without scalar potential,
given by (6.19) and (6.20), just by a function of the charges. We will see in the next
section that this will allow us to gain insights about the solution to the attractor
equations for a speci�c supergravity theory, whose potential is a combination of the
gauge coulplings of these kinds.
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6.3 U(1)4 gauged supergravity and AdS4 dyonic black

hole entropy

In this section we present a brief review of an AdS4 gauged supergravity theory,
as we mentioned. The theory is the U(1)4 gauged supergravity in four dimensions,
which follows from a truncation of the maximal N = 8 SO(8) supergravity down to
the Cartan subgroup of SO(8). The bosonic action with the same �eld de�nition
and coe�cients given in [65] is

S =

∫
d4x
√
−g
[
R− 1

2

(
(∂φ(12))2 + (∂φ(13))2 + (∂φ(14))2

)
− V

−2
(
e−λ1(F (1)

µν )2 + e−λ2(F (2)
µν )2 + e−λ3(F (3)

µν )2 + e−λ4(F (4)
µν )2

)]
, (6.31)

and
F I
µν = ∂µA

I
ν − ∂νAIµ, (6.32)

and the scalar combinations λ are given by

λ1 = −φ(12) − φ(13) − φ(14),

λ2 = −φ(12) + φ(13) + φ(14),

λ3 = φ(12) − φ(13) + φ(14),

λ4 = φ(12) + φ(13) − φ(14).

(6.33)

The scalar potential is

V = −4g2
(
coshφ(12) + coshφ(13) + coshφ(14)

)
. (6.34)

The scalars are not all independent, and satisfy

λ1 + λ2 + λ3 + λ4 = 0. (6.35)

We can write the scalar φ(ij) in terms of the �elds λ as

φ(12) =
1

4
(−λ1 − λ2 + λ3 + λ4), (6.36)

φ(13) =
1

4
(−λ1 + λ2 − λ3 + λ4), (6.37)
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φ(14) =
1

4
(−λ1 + λ2 + λ3 − λ4). (6.38)

We can rewrite parts of the kinetic terms as

∂µφ
12∂µφ12 =

1

16

[
(∂µλ1)2 + (∂µλ2)2 + (∂µλ3)2 + (∂µλ4)2

+2∂µλ1∂
µλ2 − 2∂µλ1∂

µλ3 − 2∂µλ1∂
µλ4

−2∂µλ2∂
µλ3 − 2∂µλ2∂

µλ4 + 2∂µλ3∂
µλ4] , (6.39)

∂µφ
13∂µφ13 =

1

16

[
(∂µλ1)2 + (∂µλ2)2 + (∂µλ3)2 + (∂µλ4)2

−2∂µλ1∂
µλ2 + 2∂µλ1∂

µλ3 − 2∂µλ1∂
µλ4

−2∂µλ2∂
µλ3 + 2∂µλ2∂

µλ4 − 2∂µλ3∂
µλ4] , (6.40)

∂µφ
14∂µφ14 =

1

16

[
(∂µλ1)2 + (∂µλ2)2 + (∂µλ3)2 + (∂µλ4)2

−2∂µλ1∂
µλ2 − 2∂µλ1∂

µλ3 + 2∂µλ1∂
µλ4

+2∂µλ2∂
µλ3 − 2∂µλ2∂

µλ4 − 2∂µλ3∂
µλ4] . (6.41)

The full kinetic term is

(∂µφ
12)2 + (∂µφ

13)2 + (∂µφ
14)2 =

1

16

[
3(∂µλ1)2 + 3(∂µλ2)2 + 3(∂µλ3)2

+3(∂µλ4)2 − 2∂µλ1∂
µλ2 − 2∂µλ1∂

µλ3 − 2∂µλ1∂
µλ4 − 2∂µλ2∂

µλ3

−2∂µλ2∂
µλ4 − 2∂µλ3∂

µλ4] . (6.42)

The potential term is written as

V = −2g2

(
eφ

12

+ eφ
13

+ eφ
14

+
1

eφ12
+

1

eφ13
+

1

eφ14

)
, (6.43)

and in terms of the �elds λ we have

V = −2g2
[
e

1
2

(λ1+λ2) + e
1
2

(λ1+λ3) + e
1
2

(λ1+λ4) + e
1
2

(λ2+λ3) + e
1
2

(λ2+λ4) + e
1
2

(λ3+λ4)
]
.

(6.44)
In order to have the Maxwell term written with a factor 1/4, we rede�ne the expo-
nential of the �elds as

XI√
8
≡ e−

λI
2 ⇒ ∂µλI = −2

∂µXI

XI

. (6.45)
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The potential is then

V = −g
2

4

∑
I<J

1

XIXJ

. (6.46)

The action is rewritten as

S =

∫
d4x
√
−g

[
R− 1

32

(
3

4∑
I=1

(∂µλI)
2 − 2

∑
I<J

∂µλI∂
µλJ

)
− 1

4

4∑
I=1

X2
I (F I

µν)
2 − V

]
.

(6.47)
But notice that, due to (6.35), we can write

X1X2X3X4 = 1, (6.48)(
4∑
I=1

∂µλI

)2

= 0 =
4∑
I=1

(∂µλI)
2 + 2

∑
I<J

∂µλI∂
µλJ , (6.49)

and this allows us to rewrite the kinetic term in the action, so that we have

S =

∫
d4x
√
−g

[
R− 1

8

4∑
I=1

(∂µλI)
2 − 1

4

4∑
I=1

X2
I (F I

µν)
2 − V (X)

]
. (6.50)

We now apply the the entropy function formalism to the four-dimensional theory
(6.50). This was done for the �rst time in [66] by Morales and Samtleben. They
considered the case when the black hole solution has only electric charges. The
solution found by the authors is written in an implicit form, depending on the
values of a set of parameters rather than the electric charges∗. Here, we consider
both electric and magnetic charges. Notice that we can set the potential to zero by
choosing g = 0, so, after having solved the attractor equations for g 6= 0 we must
be able to recover the result obtained for zero potential by taking the limit g → 0.
The near horizon scalars and gauge �elds are

XI = uI , F
I
rt = eI , F I

θφ = pI sin θ. (6.51)

The kinetic terms for the scalars give zero contribution to the entropy function.
One can easily do some identi�cations and add a summation in the entropy function

∗Notice that the authors of [66] did not really solve the attractor equations.
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(6.15) in order to obtain

E = 2π

[
eIq

I − 4πv1v2

(
− 2

v1

+
2

v2

+
1

2

4∑
I=1

u2
I

(
e2
I

v2
1

− p2
I

v2
2

)
+ 4g2

4∑
I<J

uIuJ

)]
.

(6.52)
The attractor equations (5.18) are

eI
v1

− qI

(4π)u2
Iv2

= 0, (6.53)

2− v2

2

4∑
I=1

u2
I

(
e2
I

v2
1

+
p2
I

v2
2

)
+ v2V (u) = 0, (6.54)

−2 +
v1

2

4∑
I=1

u2
I

(
e2
I

v2
1

+
p2
I

v2
2

)
+ v1V (u) = 0, (6.55)

uI

(
e2
I

v2
1

− p2
I

v2
2

)
− ∂V (u)

∂uI
= 0. (6.56)

• V(X)=0.

We �rst solve for null potential in order to recover the results presented here for
the case when the potential is non-trivial. Notice that, if we also set the magnetic
charges equal to zero, equation (6.56) will give zero dilaton coupling or zero gauge
�eld on the horizon. The gauge �eld coupling is an exponential of the dilaton �elds,
so it can not be zero. But we also know that the electric �eld is also non-zero on
the horizon of a black hole. This means that for zero potential and zero magnetic
charges the attractor equations do not make sense. For the dyonic case, one can
easily �nd the solutions:

eI = pI , u
2
I =

qI

4πpI
, v1 = v2 =

1

2(4π)

4∑
I=1

qIpI , (6.57)

E = 2π
4∑
I=1

qIpI . (6.58)

From the results of the previous section we see that this is expected, as we have
done nothing but add indices to our �elds.
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• V (X) = −g2

4

∑4
I<J

1
XIXJ

.

We will show how to solve the attractor equations step by step for this case. Equation
(6.56) gives

4∑
I=1

u2
I

e2
I

v2
1

=
4∑
I=1

u2
I

p2
I

v2
2

− 2V (u), (6.59)

and replacing this directly in (6.54) we obtain a quadratic equation

v2
2V (u) + v2 −

1

2

4∑
I=1

u2
Ip

2
I = 0, (6.60)

whose solution is

v2 =
−1±

√
1 + 2V (u)

∑4
I=1 u

2
Ip

2
I

V (u)
. (6.61)

In order to check if this result has the correct limit we expand it for V (u) → 0,
giving

v2 =
1

V (u)

(
−1±

(
1 + V (u)

4∑
I=1

u2
Ip

2
I +O(V (u)2)

))
. (6.62)

Taking the plus sign we can recover the previous case setting the potential to zero.
This is again an indication that the case for zero potential should be recovered from
this case by setting the potential to zero, i.e. g2 → 0.

Inserting also (6.59) in (6.55) we �nd directly

v1 =
2v2

2∑4
I=1 u

2
Ip

2
I

. (6.63)

Also, from (6.53) we can obtain

4∑
I=1

u2
I

e2
I

v2
1

=
4∑
I=1

(
qI

4π

)2
1

u2
Iv

2
2

. (6.64)

Inserting this in (6.59) we have the following equation

4∑
I=1

(
qI

4π

)2
1

u2
I

=
4∑
I=1

u2
Ip

2
I − 2v2

2V (u). (6.65)
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We can eliminate the last term containing v2
2 using (6.60), and obtain

v2 =
1

2

4∑
I=1

(
qI

4π

)2
1

u2
I

. (6.66)

In order to have a solution for the attractor equations one should use (6.66) and
replace v2 in (6.60) or in (6.65), and then solve it for uI , i.e. write uI in terms of the
electric and magnetic charges. It turns out that �nding solutions for the resulting
equations is a non-trivial task due to the amount of scalar �elds and all summations
involving them. Here is how we proceed to solve the problem. In the previous
analysis, we saw that the black hole entropy for zero potential is recovered from the
black hole entropy in the presence of a potential, always by taking the limit when
the potential is zero. So, we must recover (6.58) when the potential is set to zero
for the present case. In other words, all other parameters obtained here should also
match the ones obtained before in (6.57) in this limit. By direct observation, the
value of the general couplingW (uD) on the horizon of the black hole obtained in the
cases for non-trivial potential appears as the product of the result for zero potential
case and a function of the charges. We are then led to consider a solution for the
dilaton, given by

u2
I =

qI

4πpI
F (q, p)1/2, (6.67)

where F (q, p) is a generic function of the charges that will be �xed by the attractor
equations. With this solution we obtain for the other constant �elds

v2 =
1

2(4π)

1

F (q, p)1/2

4∑
I=1

qIpI , (6.68)

v1 =
1

2(4π)

1

F (q, p)3/2

4∑
I=1

qIpI , (6.69)

eI =
pI

F (q, p)3/2
. (6.70)

Of course, for now this is just a guess and we need to determine F (q, p) and check
that the solution is consistent. Notice that everything will have the correct limit
if, at zero potential, the function F (q, p) → 1. In order to obtain this function, we
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insert these possible solutions into the attractor equations. The �rst thing to notice
is that that (6.53) gives an identity. Equations (6.54), (6.55), (6.56), all lead to the
same equation. This in fact shows the correctness of our solution (6.67), and is the
consistency check. The resulting equation is quadratic in F (q, p), given by

F (q, p)2 − F (q, p) +
g2

8

(
4∑
I=1

qIpI

)(∑
J<K

√
pJpK
qJqK

)
= 0. (6.71)

The solution is found easily and it is given by

F (q, p) =
1

2

1±

√√√√1− g2

2

(
4∑
I=1

qIpI

)(∑
J<K

√
pJpK
qJqK

) . (6.72)

In the limit g → 0 we must have F (q, p)→ 1, so the positive sign is the correct one.
The dyonic extremal black hole entropy for the U(1)4 theory is then

E = 2π

(
4∑
I=1

qIpI

)1

2

1 +

√√√√1− g2

2

(
4∑
I=1

qIpI

)(∑
J<K

√
pJpK
qJqK

)−1/2

. (6.73)

As the dilaton �elds are not all independent we can combine the constraint for the
scalar �elds (6.48), which is written as u1u2u3u4 = 1 near the horizon, with (6.67).
This allows us to compute the function F (q, p) in a simpler way, which can also be
written as

F (q, p) = (4π)2

√
p1p2p3p4

q1q2q3q4
. (6.74)

Now, the entropy will be

E =
1

2

(
4∑
I=1

qIpI

)(
q1q2q3q4

p1p2p3p4

)1/4

. (6.75)

Notice that, when written in this form, the entropy does not show explicitly the
dependence on the coupling constant g2. One can obtain g2 as a function of the
charges of the black hole by using (6.72) and (6.74), i.e.

g2 =
8(4π)4

(√
p1p2p3p4

q1q2q3q4
− p1p2p3p4

q1q2q3q4

)
(∑4

I=1 q
IpI
) (∑

J<K

√
pJpK
qJqK

) . (6.76)
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This means that, for this geometry, the charges must be chosen in such a way
to satisfy (6.76) on the horizon, since g2 is a parameter de�ning the theory that
one can freely vary. This condition on the charges and couplings of the potential
arose because of the constraint (6.48). Such constraints are present for gauged
supergravities in order to obtain consistent truncations. In other words, (6.76) is a
condition on the charges of the black hole, and not on the coupling constant g2. In
the absence of such constraint the electric and magnetic charges can also vary freely.

Equations (6.73) and (6.75) are equivalent, and they are the most important
results of this section. They represent the entropy of the extremal dyonic black
hole, which is a solution of the U(1)4 supergravity theory (6.50). As we said before,
the advantage of using Sen's entropy function to determine the black hole entropy
is that we do not need to know the full black hole solution of the theory. In fact,
the full dyonic black hole solution of the theory (6.50) is unknown. All we had to do
was to �nd the solution to the attractor equations. Once the full solution is found,
one can check that it must have the near-horizon data and entropy found here.
More importantly is the fact that, once there is a method to count the microstates
of a black hole, one must be able to compute the entropy of the black hole using
S ∼ ln(microstates), and this entropy must match (6.73), or its equivalent (6.75).
This was not done yet and will be the topic of a future investigation.

If the dyonic black hole solution is invariant under duality transformation, uI →
u−1
I and (qI/4π) ↔ pI , then the dilaton �eld is invariant, since F → F−1†. But

notice that the entropy changes to

E = 8π2

(
4∑
I=1

qIpI

)(
p1p2p3p4

q1q2q3q4

)1/4

. (6.77)

If one makes the rescaling qI ≡ ε, then the electric charge disappears from this

†As was pointed out in [65], for the case of purely electric or purely magnetic black holes, there

is a direct correspondence between the supersymmetry properties of the electric and magnetic

solutions in the absence of gauging (g = 0), which apparently does not happen for the gauged

theory. However it is not clear yet if the dyonic solution of this theory preserves the supersymmetry

properties under electric-magnetic duality. Here we just take the dual in order to show that it is

possible to recover the entropy computed for purely magnetic black holes.
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formula, and the result is just

E = 8π2

(
4∑
I=1

pI

)(
p1p2p3p4

)1/4
. (6.78)

In order to obtain the same result from equation (6.73), one should take the limit
of magnetic black holes, i.e. ε → 0. A formula for purely magnetic black hole was
found for an N = 2 supersymmetric theory in reference [67], which is given by

S = 2π2

(
4∏
I=1

pI

gI

)1/4

, (6.79)

where gI = gξI , for some constant ξI . As pointed out in the same reference, such a
model can be embedded in N = 8 gauged supergravity. The gravitino is charged in
gauged supergravity, and so, for topological consistency in a magnetic backgroung
�eld, the charges should satisfy the Dirac quantization condition: for BPS con�g-
urations this is just

∑
gIp

I ∈ κ, where κ is the curvature of the horizon geometry.
In the case of an S2 horizon we have κ = 1. For the U(1)4 theory the Dirac quan-
tization is written as −8π

∑
gIp

I = Z. Using this condition, it is easy to see that
equations (6.78) and (6.79) agree for some choice of constant ξI , which shows that
one can recover the purely electric case from the dyonic one, if the dyonic solution
is invariant under electric-magnetic duality in the presence of gaugings. It should
be emphasized that the Sen's formalism allows us to obtain information about the
�elds in the near horizon for general extremal black holes: they do not necessarily
need to be BPS, and this is the reason why we should use −8π

∑
gIp

I = Z, instead
of the Dirac quantization for BPS black holes.

The question that naturally arises in this work is whether solutions of the kind
(6.67) represent a general feature of the scalar �elds for any theory of the kind (6.1).
All the results obtained here depended strongly on the functional form of the dilaton
potential. Some complications in the equations might arise when the potential is a
complicated function (like logarithmic or exponential)of the couplings to the �eld
strength (W (φ) in (6.1) and u2

I in (6.50)). Potentials having polynomial functional
forms of these couplings are the most common ones in gauged supergravities, and,
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at least in 4 spacetime dimensions, it seems that (6.67) will allow one to solve the
attractor equations for any of these theories. Of course, one should check it case
by case, since the results presented here are only an illustration of why this should
work, but not a complete proof. Also, for more general theories in D-dimensions
containing Chern-Simons terms and higher order derivatives, like RF 2 and R2 for
instance, the attractor equations might present higher powers of v1 and v2, and such
solutions are much more di�cult to be obtained, but of course, in the limit when
the coupling constants of such terms go to zero, we must recover the case for zero
potential. How our results change in such cases may be a subject of future work.
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Chapter 7

Holographic conductivities

In this chapter we describe how to compute the electric, electrothermal and heat
conductivities just using the horizon data. The derivation of the main results of this
chapter is tedious, but even so we will show all the steps of the computation, since
this was not done in details in any of the papers we cite in the text.

7.1 The AdS/CFT correspondence

As we mentioned in the introduction, the AdS/CFT correspondence is an ex-
ample of holography: a (d+1)-dimensional theory is equally described by a d-
dimensional theory. The main idea is related to the concept of duality: if two
di�erent theories describe the same physical system, then we say that they are dual
to each other, and therefore there must exist a map between them.

In string theory we have objects with p spatial dimensions called "Dp branes.
A D0 brane is a point particle, a D1 brane is a string, a D2 brane is a membrane,
etc. They can live on the top of each other, so we can have for instance a stack of
N coincident Dp branes with certain low energy excitations. Dp branes gravitate,
and how strongly they gravitate depends on their tension and the strength of the
gravitational force. In the original example, Maldacena considered a stack of N
coincident D3 branes. The gravitational backreaction is determined by the number
N of coincident D3 branes and the dimensionless string coupling constant gs. The
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tension of the N D3 branes is proportional to N/gs and the strength of gravity is
proportional to g2

s , so the gravitational e�ects of the D3 branes can be neglected
when

λ ≡ 4πgsN � 1. (7.1)

The surviving �elds in this limit are all massless, and they are described a �eld
theory calledN = 4 Super Yang-Mills theory. The Lagrangian density schematically
written as

L ∼ N

λ
tr
(
F 2 + (∇Φ)2 + iΨ̄ /DΨ + iΨ̄[Φ,Ψ]− [Φ,Φ]2

)
, (7.2)

where F is the SU(N) �eld strength, Φ is a scalar �eld and Ψ is a fermionic �eld.
There are six scalars and four fermions in the theory. All these �elds are N × N
matrices. λ is called 't Hooft coupling. When λ is small, the theory (7.2) remains
wealy coupled in the large N limit, and consequently can be treated perturbatively.

Now, we consider the opposite regime, i.e.

λ ≡ 4πgsN � 1. (7.3)

The e�ects of gravity are strong, and the D3 branes collapse and form an object
called black brane. In the near horizon region of the black brane, there is a very
strong gravitational redshift seen by an observer far from the horizon. The low
energy excitations must then live near the horizon. The geometry for this case is
AdS5 × S5, described by the metric

ds2 = L2

(
−dt2 + d~x2 + dr2

r2
+ dΩ2

5

)
, (7.4)

where t and ~x are coordinates along the D3 brane worldvolume, r is orthogonal
to the D3 brane called radial coordinate along the bulk, and dΩ2

5 is the metric of
the �ve-sphere. In this coordinate system, the horizon is located at r → ∞. The
relation between the AdS radius L, the sting length Ls and the Planck length Lp is
given by

L = λ1/4Ls = (4πN)1/4Lp. (7.5)

In the strong 't Hooft coupling regime and large N , the radius of curvature L is very
large compared to both the string length Ls, which controls the e�ects of highly
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excited string states, and the Planck length Lp, which controls the quantum gravity
e�ects. Such e�ects can be neglected, and the excitations of the near horizon region
will be described by classical gravitational perturbations of the background (7.4).

So, the low energy excitations of N D3 branes are described by a weakly inter-
acting large N �eld theory, the N = 4 Super Yang-Mills, at weak 't Hooft coupling,
whereas at strong 't Hooft coupling they are described gravitational perturbations
about AdS5×S5. The AdS/CFT correspondence [11] is the conjecture that this set
of decoupled degrees of freedom interpolates between these weak and strong coupling
descriptions.

Another example of the correspondence deals with a �eld theory in (2 + 1)-
dimensions, called ABJM model due to its discoverers Aharony, Bergman, Ja�eris
and Maldacena [68]. This theory is dual to 11-dimensional supergravity on AdS4 ×
S7/Zk. There are other examples of the duality for di�erent dimensions as well (see
[14]).

In the original formulation, there was an AdS space, dual to a conformal �eld
theory. Moreover, the duality was derived from a system of branes. But later,
a more general formulation was put forward, gauge/gravity duality, where these
assumptions were relaxed.

In quantum �eld theory, the basic observables are the multi-point functions.
A special kind of operators Oi, called single-trace operators, factorize in quantum
�eld theory becoming classical in the large N limit. Multi-point functions can be
obtained from the generating functional

ZQFT[hi(x)] ≡ 〈ei
∑
i

∫
dxhi(x)Oi〉QFT. (7.6)

In AdS space, observables are dynamical �elds in the bulk, but we can consider a
Dirichlet problem in which the �elds are �xed on the boundary. In this case, it is
possible to construct a partition function of the thoory as a function of boundary
values hi(x) of all the bulk �elds φi

ZGravity[hi(x)] ≡
∫ φi→hi

(∏
i

Dφi

)
eiS[φi]. (7.7)
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For a quantum �eld theory with a gravity dual there must be a one-to-one corre-
spondence between single trace operators Oi on the �eld theory side and the bulk
dynamical �elds φi on the gravity side. This observation was formulated by Gubser,
Klebanov, Polyakov and Witten [69] [70], and it is written as

ZQFT[hi(x)] = ZGravity[hi(x)]. (7.8)

This de�nes the AdS/CFT dictionary, which is the statement that the boundary
value hi for a bulk �eld φi is a source for an operator Oi in the dual quantum �eld
theory.

7.2 The AdS/CMT correspondence

The di�cult problems in condensed matter physics are at strong coupling. As
we saw in the previous section, the AdS/CFT correspondence provides a strong/weak
coupling description of the same physical system. In the last few years, the AdS/CFT
duality has been used to handle phenomenologically such problems in condensed
matter theory. The philosophy behind it is that we can extract the desired proper-
ties of some condensed matter systems by using some gravity theory.

The canonical examples of the AdS/CFT duality involve known gravity solutions
of string theory. This is the so-called top-down approach. We can assume that
AdS/CFT is a universal duality between quantum �eld theories and gravity theories.
In this more general scenario, the AdS/CFT is just an example of a gauge/gravity
duality. So, we can, for instance, study the properties of a gravity theory which does
not necessarily come from string theory and assume that this has a quantum �eld
theory dual. In other words, we would be dealing with a bottom-up approach.
The bottom-up approach is widely used in order to handle problems in condensed
matter systems. As the physics of both sides of the duality must match, one can in
principle use gravity to make predictions or explain phenomena for these condensed
matter systems in certain limits when the �eld theory description is untractable or
even unknown. This idea goes by the name of AdS/CMT correspondence.

It turns out that condensed matter systems are at �nite temperature, which
requires the gravity theory to have also a well-de�ned notion of temperature. This
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is achieved by the introduction of a black hole on the gravity side. In this thesis,
we apply the black hole solutions to the Einstein-Maxwell-dilaton theory in the
context of AdS/CMT correspondence. The physical observables we compute are the
transport coe�cients, or just conductivities for short.

In order to introduce a chemical potential, consider a gauge �eld aµ of a conformal
�eld theory, associated to a global symmetry. This �eld is the source of a current Jµ

associated to this symmetry. Consider now a gauge �eld in the bulk, Aµ, associated
to the same, but local, symmetry in AdS space. When Aµ is evaluated at the
boundary of the AdS, it is associated to aµ, which is the source of the current Jµ of
the conformal �eld theory, whose coupling is written as

∫
ddxJµaµ. In other words,

introducing charge J0 in the conformal �eld theory corresponds to having

A = A0(r)dt+ ...→ a0dt, (7.9)

as we approach the boundary at z → 0. In the gravity picture, a0 is associated
to the electric charge Q of a black hole in AdS space. The integral over J0, the
charge density of the conformal �eld theory, gives rise to the electric charge q, so
that

∫
J0a0 is identi�ed with qµ. Here, µ is the chemical potential, so the gauge

�eld in AdS must satisfy the boundary condition

A→ µdt as r → 0. (7.10)

The charge density in the conformal �eld theory case is found by

ρ = 〈J0〉 =
δSSugra
δa0

∣∣∣∣
a0=0

. (7.11)

One of the transport coe�cients we are interested in is the electric conductivity,
σ. Applying an electric �eld ~E(ω) to a system induces a current ~J(ω). The electric
conductivity σ(ω) is computed using Ohm's law, written as

~J(ω) = σ(ω) ~E(ω). (7.12)

Here, ω is the frequency. Suppose we shake the electric �eld at frequency ω. If the
system responds at the same frequency, this means we are in the domain of linear
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response. The quantities that depend on the frequency are called AC. So, σ(ω) is
the electric AC conductivity. In the limit when ω → 0, we have what we call a DC
quantity.

In order to compute AC conductivities in the domain of linear response, one must
use spectral functions, which are based on retarded Green's function. From them,
one can derive Kubo formulae for the transport coe�cients, at �nite frequency. The
derivation of such formulae is out of the scope of the thesis, and we refer to reference
[20] for more details. This will not be important for the present work, since we are
interested in computing only DC conductivities.

The computation of DC transport coe�cients for strongly interacting systems
with a net charge density ρ is a challenging task. In order to obtain �nite results for
the conductivities, a mechanism for breaking translation invariance must be intro-
duced. Otherwise, momentum will not dissipate, and conductivities will blow up.
In AdS/CMT, the breaking of translation invariance is achieved by the introduction
of �elds with speci�c pro�les that do the the job. This was the case, for instance,
of massive gravity theories [71, 72, 73], lattice models [74, 75, 76], and linear axions
[77]. We will not discuss the details here, but these references are a good guide to
understand such mechanism.

7.3 Magnetic �elds and thermoelectric transport

We will show how to compute transport coe�cients in the presence of magnetic
�elds. There are some subtleties that must be taken into account, as will be ex-
plained. The idea is to consider some speci�c theories and see how they respond
when we apply an external electric �eld, ~E, and a thermal gradient, ~∇T . The elec-
tric and heat currents mix, so the transport coe�cients will be associated to the
electric and heat transport. They will be given below.

It was explained in the condensed matter set up [78] that the electric and heat
currents receive additional contributions in the presence of a magnetic �eld. This
was also discussed in the context of holography and dyonic black holes in reference
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[79]. Basically the total electric and heat currents are decomposed as

~J total = ~Jphys + ~Jmag,

~Qtotal = ~Qphys + ~Qmag. (7.13)

We will drop the label "phys" and refer to the physical currents only as ~J and
~Q. So, after subtracting o� the magnetization currents from the total currents, we
obtain the physical currents. These physical currents are related to the transport
coe�cients through

J i = σijE
j − αij(∇T )j, (7.14)

Qi = αijTE
j − κ̄ij(∇T )j. (7.15)

From these expressions we can obtain directly the electrical conductivity, σij, and
the electrothermal conductivity αij. We can also obtain κ̄ij which is related with
the thermal conductivity through

κ̂ = ˆ̄κ− T α̂ · σ̂−1 · α̂ . (7.16)

Then, κij is the true heat conductivity, which is the same as κ̄ij in the absence of
electric �eld. For simplicity, we will also refer to κ̄ij as heat conductivity in the text.
The o�-diagonal conductivities are antisymmetric, i.e. σxy = −σyx, αxy = −αyx and
κ̄xy = −κ̄yx. We do not get into details of how to derive the magnetization currents.
This can be found in [78] and [79]. The most important point for us is the fact
that we can de�ne physical currents in such a way that they do not depend on the
radial coordinate along the bulk. This means that we can evaluate our expression
in any hypersurface along the bulk, and not necessarily only on the AdS boundary.
Moreover, we will obtain analytical expressions for the conductivities that depend
only on the �elds and metric of the theory evaluated on the chosen hypersurface. It
is convenient though to choose this hypersurface as being the horizon of the black
hole, i.e. the conductivities will depend only on the horizon data.
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7.4 The model

The theory we will consider is given by∗

S =

∫
d4x
√
−g
[

1

16πGN

(
R− 1

2
[(∂φ)2 + Φ(φ)

(
(∂χ1)2 + (∂χ2)2

)
]− V (φ)

)
−Z(φ)

4g2
4

F 2 −W (φ)FµνF̃
µν

]
,(7.17)

where φ is the dilaton, a real scalar �eld. Notice that the dilaton �eld was rescaled
by a factor of 2 compared to the one used in the theory (6.1). The couplings Z(φ),
Φ(φ), W (φ) and the potential V (φ) depend only on the dilaton, and Fµν is an
Abelian �eld strength. Under speci�c choices of the couplings and V (φ), the theory
will present S-duality. The �eld strength and dual �eld strength are de�ned as

Fµν = ∂µAν − ∂νAµ, F̃ µν =
1

2

ε̃µνρσ√
−g

Fρσ. (7.18)

In the literature, the �elds χi are called "linear axions" because of the classical
solutions chosen for them. They are not the string theory axion �elds related to the
SL(2,R) invariance of the equations of motion of the Einstein-Maxwell-axion-dilaton
theory (3.36). The name was just inspired in the fact that their kinetic term have
a similar coupling to stringy axion kinetic term. But notice that the stringy axion
also couples to the �eld strength, which is not the case with the linear axions. The
solutions one considers for them are

χ1 = k1x, χ2 = k2y. (7.19)

As we are interested in holographic applications of the model, the potential must
satisfy the conditions

V (0) = − 6

L2
, V ′(0) = 0, (7.20)

which guarantees the existence of and AdS solution, where the prime denotes deriva-
tive with respect to the dilaton. This theory is then dual to a three-dimensional

∗We take the potential in the action with a minus sign, and write the gauge coupling g24 explicitly

for future convenience.
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conformal �eld theory. The background metric takes the form

ds2 = −U dt2 + U−1dr2 + e2V (dx2 + dy2), (7.21)

where U and V are functions of r. We consider the metric in the near-horizon region.
Notice that the function U(r) appearing in (7.21) can be Taylor expanded around
the horizon of the black hole as

U(r) ≈ U(rH) + (r − rH)U′(rH) +O(r2). (7.22)

The �rst term in this expansion vanishes at the horizon by de�nition. Since we
want to consider black holes at �nite temperature, we stop the expansion at the
linear term. Notice that such term vanishes for extremal black holes. So in the
near-horizon region the metric is written as

ds2 ≈ −(r − rH)U′(rH)dt2 +
1

(r − rH)U′(rH)
dr2 + e2V (rH)(dx2 + dy2). (7.23)

The two-dimensional Rindler metric is written as

ds2 = −(κz)2dt2 + dz2. (7.24)

Notice that this metric can be written as a product between a Rindler spacetime
and R2 by making the rede�nition

(r − rH) ≡ U′(rH)

4
z2, κ ≡ U′(rH)

2
, (7.25)

where κ is the surface gravity. We will choose the appropriate sign for it later. The
relation between the surface gravity and temperature is given by (2.42). Notice that
we can �nd directly the following scaling symmetries for the metric :

t→ λt, κ→ λ−1κ, (7.26)

t→ χ−1t, (r − rH)→ χ(r − rH), U′(rH)→ χU′(rH), (7.27)

eV (rH) → ξe2V (rH), x→ ξ−1x, y → ξ−1y. (7.28)
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We can expand the radially dependent background �elds near the horizon r+ as

U ∼ 4πT (r − r+) + ...,

a ∼ a+(r − r+) + ...,

V ∼ V+ + ...,

φ ∼ φ+ + ..., (7.29)

where T is the temperature of the black hole, which is identi�ed with the temperature
of the dual �eld theory. For this chapter, the important equations of motion are the
equations for the metric and gauge �eld, given respectively by

Rµν =
1

2
∂µφ∂νφ+

1

2
gµνV (φ) +

(16πGN)

4g2
4

Z(φ)

(
2FµλFν

λ − 1

2
gµνFρσF

ρσ

)
, (7.30)

1√
−g

∂µ

[√
−g
(
Z(φ)

g2
4

F µν + 4W (φ)F̃ µν

)]
= 0. (7.31)

Another quantity of interest is the gauge current, computed as

〈Jµ〉 =
δSon-shell
δAµ

∣∣∣∣
boundary

=
√
−g
(
Z(φ)

g2
4

F µν + 4W (φ)F̃ µν

)
. (7.32)

When µ is the time index, the gauge current de�nes the charge density of the
boundary theory

ρ = 〈J t〉. (7.33)

7.5 Magnetization and energy magnetization densi-

ties

In this section we review the computation of the energy magnetization, as was
done in appendix A of [21], and apply this for our case, which contains the topological
termW (φ)FF̃ . Applying a magnetic �eld to the boundary via a source A(0)

x = −By,
the magnetization density is given by

M = − 1

V

∂SE
∂B

, (7.34)
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where V is the volume of the boundary, and SE is the Euclidean action. Applying
a source δg(0)

tx = −B1y, allows us to de�ne an analogous quantity for the metric,

ME = − 1

V

∂SE
∂B1

∣∣∣∣
B1=0

. (7.35)

The Euclidean action is obtained from the Lorentzian action by using Wick rotation,
t→ −iτ , and this gives

SE = −
∫
d4x
√
g

[
1

16πGN

(
R− 1

2
(∂φ)2 + V (φ)

)
− Z(φ)

4g2
4

F 2 +W (φ)FµνF̃
µν

]
.

(7.36)
The ansatz for the background �elds in the presence of such source is

At = a(r), Ax = −By + (a(r)− µ)B1y, (7.37)

ds2 = −U(r)(dt+B1ydx)2 +
dr2

U(r)
+ e2V (r)(dx2 + dy2). (7.38)

Notice that the inverse metric is given by

gµν =


B2

1e
−2V y2 − 1

U 0 −B1e
−2V y 0

0 U 0 0

−B1e
−2V y 0 e−2V 0

0 0 0 e−2V

 (7.39)

The non-trivial �eld strengths are written as

Frt = a′(r), Frx = a′(r)B1y, Fxy = −B + (a(r)− µ)B1. (7.40)

We compute each term appearing in SMaxwell
E separately, i.e.

FµνF
µν = 2grrgtt(Frt)

2 + 4grrgtxFrtFrx + 2gyygxx(Fxy)
2 + 2grrgxx(Frx)

2

(7.41)

= 2U
(
−B2

1y
2U + e2V

−Ue2V

)
(a′)2 + 4U(−B1ye

−2V )(a′B1y) (7.42)

+ e−2V e−2V [−B + (a(r)− µ)B1]2 + 2Ue−2V (a′(r)B1y)2 (7.43)
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= −2(a′)2 + 2e−4V [−B + (a(r)− µ)B1]2, (7.44)

ε̃µνρσFµνFρσ = 8ε̃rtxyFrtFxy = −8a′(r)(−B + (a(r)− µ)B1). (7.45)

This gives

SMaxwell
E =

∫
d4x
√
g

[
Z(φ)

4g2
4

(
2(a′)2 + 2e−4V [−B + (a(r)− µ)B1]2

)
−4W (φ)a′(r)(−B + (a(r)− µ)B1)] . (7.46)

Notice that this expression is written in Euclidean metric, so the signs of the terms
containing time components of the metric are reversed. The magnetization density
(7.34) is obtained by making B1 = 0 and then computing

M = − 1

V

∂SE
∂B

= −
∫ ∞
r+

dr

(
e−2VZ(φ)B

g2
4

− 4W (φ)a′(r)

)
. (7.47)

The magnetization density (7.35) is obtained by di�erentiating with respect to B1

and then making B1 = 0. This gives

ME = −
∫ ∞
r+

dr

(
e−2VZ(φ)B

g2
4

− 4W (φ)a′(r)

)
(µ− a(r)). (7.48)

The heat magnetization is given by

MQ = ME − µM =

∫ ∞
r+

dr

(
e−2VZ(φ)B

g2
4

− 4W (φ)a′(r)

)
a(r). (7.49)

7.6 Electric currents

In order to compute the conductivities we study the perturbations of the back-
ground solution. The sources applied to the boundary �elds are linear. The pertur-
bation ansatz used here is the same as in [21][76], given by

Ax = −By + (−E + ξa(r))t+ δAx(r)

Ay = δAy(r)

gtx = −ξtU + e2V δhtx(r)
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gty = e2V δhty(r)

grx = e2V δhrx(r)

gry = e2V δhry(r)

χ1 = kx+ δχ1(r)

χ2 = ky + δχ2(r), (7.50)

where Ei = Eδix is the external electric �eld and (∇T )i = ξδixT is the temperature
gradient. The the in�nitesimal parameters are δhµν , δAi, δχi, E and ξ. In matrix
form, the metric is written as

g =


−U 0 e2V δhtx − tUξ e2V δhty

0 1
U e2V δhrx e2V δhry

e2V δhtx − tUξ e2V δhrx e2V 0

e2V δhty e2V δhry 0 e2V

 . (7.51)

Notice that we also have
√
−g ≈ e2V + O(2), where O(2) represents terms which

are of second order in perturbations. The inverse metric at linear order is given by

g−1 =


− 1

U 0
(
δhtx

U − e
−2V tξ

) δhty
U

0 U −Uδhrx −Uδhry(
δhtx

U − e
−2V tξ

)
−Uδhrx e−2V 0

δhty
U −Uδhry 0 e−2V

 . (7.52)

The �eld strengths with lower indices have the following components

Frt = a′,

Ftx = −E + ξa,

Fxy = B,

Frx = ξa′t+ δA′x,

Fry = δA′y. (7.53)

The gauge �eld equations imply for the x component

0 = ∂t

(√
−gZ(φ)

g2
4

F tx + 4
√
−gW (φ)F̃ tx

)
+ ∂r

(√
−gZ(φ)

g2
4

F rx + 4
√
−gW (φ)F̃ rx

)
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+ ∂y

(√
−gZ(φ)

g2
4

F yx + 4
√
−gW (φ)F̃ yx

)
, (7.54)

and similarly for the y component

0 = ∂t

(√
−gZ(φ)

g2
4

F ty + 4
√
−gW (φ)F̃ ty

)
+ ∂r

(√
−gZ(φ)

g2
4

F ry + 4
√
−gW (φ)F̃ ry

)
+ ∂x

(√
−gZ(φ)

g2
4

F xy + 4
√
−gW (φ)F̃ xy

)
. (7.55)

In order to compute correctly (7.54) and (7.55), we need to compute the various
components of �eld strength with upper indices, which are given by

F tx = gtαgxβFαβ,

= gttgxrFtr + gttgxxFtx + gtxgxtFxt + gtxgxrFxr + gtygxrFyr + gtygxxFyx.

= (− 1

U
)(−Uδhrx)(−a′) + (− 1

U
)e−2V (ξa− E)

+(
δhtx

U
− e−2V tξ)2(E − ξa) + (

δhtx
U
− e−2V tξ)(−Uδhrx)(−ξa′t− δA′x)

+
δhty

U
(−Uδhrx)(−δA′y) + (

δhty
U

)e−2V (−B)

= −
(
a′δhrx +

B

U
e−2V δhty +

ξa

U
e−2V − E

U
e−2V

)
. (7.56)

A similar analysis follows for the other components, and we obtain

F xr = gxαgrβFαβ

= grrgxtFtr + grxgxtFtx + grxgrxFxr + grygxrFry + grrgxxFxr + grygxxFxy

= −(a′δhtx + Ue−2V δA′x + Ue−2VBδhry), (7.57)

F xy = gxmgynFmn,

= gxm(gytFmt + gyrFmr + gyyFxy),

= gxrgytFrt + gxxgytFxt + gxtgyrFtr

+gxxgyrFxr + gxrgyyFry + gxxgyyFxy.

= Ze−4VB (7.58)

F ty = gtαgyβFαβ

110



= gttgyrFtr + gtxgytFxt + gtxgyrFxr + gtxgxrFyr + gtxgyyFxy

= −(a′δhry −
e−2V

U
Bδhtx + e−4VBtξ), (7.59)

F ry = grαgyβFαβ

= grrgytFrt + grrgyyFry + grxgytFxt + grxgyrFxr + grxgyyFxy + grygyrFyr

= (a′δhty + Ue−2V δA′y − Ue−2VBδhrx). (7.60)

Similarly, we can compute the components of the dual �eld strengths with upper
indices, and this gives

√
−gF̃ tx = Fyr = −δA′y, (7.61)
√
−gF̃ ty = Frx = (ξa′t+ δA′x), (7.62)
√
−gF̃ rx = Fty = 0, (7.63)
√
−gF̃ ry = Ftx = −(−E + ξa), (7.64)
√
−gF̃ xy = Ftr = −a′. (7.65)

We now replace all �eld strength components on (7.54) and (7.55). First, notice
that ∂x and ∂y terms vanish, because no component is dependent on the x or y
coordinate. For (7.54) we have

−∂t
[

1

g2
4

(
a′Ze2V δhrx +

ξaZ

U
+
ZB

U
δhty −

EZ

U

)
+ 4WδA′y

]
= 0

= −∂r
(√
−gZ
g2

4

F rx + 4
√
−gWF̃ rx

)
. (7.66)

The left hand side is clearly time independent, and that is why it is zero. No �eld
strength depends on the coordinate x and y, and that is why Maxwell's equations
for this case imply that the term appearing inside the parenthesis the last line is
radially independent. Similarly, for (7.55) we have

∂t

[
− 1

g2
4

(
a′e2VZδhry −

BZ

U
δhtx + ZBe−2V tξ

)
+ 4W (ξa′t+ δA′x)

]
= −Z

g2
4

ξe−2VB + 4ξWa′
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= ∂r

(
Z

g2
4

√
−gF yr + 4

√
−gWF̃ yr

)
. (7.67)

The term on the second line is the result of the action of the partial derivative with
respect to time on the �rst line. This implies that in the presence of the perturbations
(7.50) the term inside the parenthesis on the last line is not radially independent.
The appropriate radially independent currents are constructed by subtracting o�
the magnetization current contributions, i.e.

Jx =
Z(φ)

g2
4

√
−gF xr + 4

√
−gW (φ)F̃ xr,

Jy =
Z(φ)

g2
4

√
−gF yr + 4

√
−gW (φ)F̃ yr − ξM(r), (7.68)

where M(r) is given by (7.47). Using (7.57), the x-component is written explicitly
as

Jx = −Z
g2

4

a′e2V δhtx −
Z

g2
4

UδA′x −
Z

g2
4

UBδhry. (7.69)

There is no contribution from the topological term containing F̃ , since F̃ xr = 0.
Similarly, for y-component

Jy = −Z
g2

4

UδA′y −
Z

g2
4

e2V a′δhty +
Z

g2
4

BUδhrx + 4W (−E + ξa)− ξM(r). (7.70)

The most important observation at this point is that these currents are indepen-
dent of the radial coordinate, so we can evaluate them at any hypersurface

in the bulk. For the purposes of this thesis, it is convenient to choose this hyper-
surface as being the horizon of the black hole. In order to do so, we have to impose
the regularity conditions [21]

δAi = − Ei
4πT

ln(r − r+) +O(r − r+),

δχi = O((r − r+)0),

δhti = Uδhri −
ξiU

4πe2VT
ln(r − r+) +O(r − r+) (7.71)

in the the near horizon region, where r+ is the position of the horizon. We remind
that, for our ansatz, we have Ei = Eδix and ξi = δixξ. Notice that M(r), given by
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(7.47), vanishes on the horizon. Then, we can compute the conductivities explicitly
in terms of the horizon data. Using the regularity conditions (7.71), we evaluate the
currents of the horizon, which gives

Jx =
Z

g2
4

Ex −
Z

g2
4

e2V a′δhtx −
Z

g2
4

Bδhty

∣∣∣∣
r+

,

Jy =
Z

g2
4

Ey − e2VZa′δhty +
Z

g2
4

Bδhtx − 4WE

∣∣∣∣
r+

. (7.72)

Now we need to determine the graviton �uctuations δhti in order to obtain the
conductivities. This is done using the linearized Einstein's equations

U(e4V δh′tx)
′ −

(
2κ2

g2
4

ZB2 + e2V k2Φ

)
δhtx +

2κ2

g2
4

ZBUe2V a′δhty = −2κ2

g2
4

Ze2V a′δa′x,

U(e4V δh′ty)
′ −

(
2κ2

g2
4

ZB2 + e2V k2Φ

)
δhty −

2κ2

g2
4

ZBUe2V a′δhtx = −2κ2

g2
4

Ze2V a′δa′y

+
2κ2

g2
4

ZB(−E + ξa), (7.73)

where we used the notation† 2κ2 = 16πGN . Notice that the there is no contribution
from the FF̃ term, since this is topological, i.e. it does not depend on the metric
of the spacetime. Using the regularity conditions (7.71) we can show that these
equations reduce to(

2κ2

g2
4

ZB2 + e2V k2Φ

)
δhtx −

2κ2

g2
4

ZBe2V a′δhty = −2κ2

g2
4

Ze2V a′E + e2V Uξ,(
2κ2

g2
4

ZB2 + e2V k2Φ

)
δhty −

2κ2

g2
4

ZBe2V a′δhtx =
2κ2

g2
4

ZBE, (7.74)

evaluated at the horizon r+. This is a system of two equations and two variables,
so it is solvable. The result is

δhtx =

2κ2

g24
Ze4V a′k2Φ

(2κ2

g24
ZB2 + e2V k2Φ)2 + (2κ2

g24
Z)2B2e4V a′2

E

†We apologize for using the same letter κ as was used in the de�nition of the surface gravity.

This is just to keep the same notation of reference [22]. Notice that in this whole chapter the only

quantity that appears explicitly in our formulae is the temperature T , and not the surface gravity.
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+
(2κ2

g24
ZB2 + e2V a′k2Φ)e2V U′ξ

(2κ2

g24
ZB2 + e2V k2Φ)2 + (2κ2

g24
Z)2B2e4V a′2

,

δhty =

2κ2

g24
ZB

(2κ2

g24
ZB2 + e2V k2Φ)

E

−
(2κ2

g24
ZBe2V a′)e2V U′ξ

[(2κ2

g24
ZB2 + e2V k2Φ)2 + (2κ2

g24
Z)2B2e4V a′2]

−
2κ2

g24
ZBe2V a′(e4V 2κ2

g24
Za′k2ΦE)

(2κ2

g24
ZB2 + e2V k2Φ)[(2κ2

g24
ZB2 + e2V k2Φ)2 + (2κ2

g24
Z)2B2e4V a′2]

. (7.75)

Now, we can replace the graviton �uctuations (7.75) in the currents (7.72) and
write them in terms of the horizon data. We compare the resulting expressions with
equation (7.14) so that we can extract the conductivities

σxx =
e2V k2Φ(2κ2

4g
4
4ρ

2 + 2κ2
4B

2Z2 + g2
4Ze

2V k2Φ)

4κ4
4g

4
4B

2ρ2 + (2κ2
4B

2Z + g2
4e

2V k2Φ)2

∣∣∣∣
r+

, (7.76)

σxy = 4κ2
4Bρ

κ2
4g

4
4ρ

2 + κ2
4B

2Z2 + g2
4Ze

2V k2Φ

4κ4
4g

4
4B

2ρ2 + (2κ2
4B

2Z + g2
4e

2V k2Φ)2
− 4W

∣∣∣∣
r+

, (7.77)

αxx =
2κ2

4g
4
4sρe

2V k2Φ

4κ4
4g

4
4B

2ρ2 + (2κ2
4B

2Z + g2
4e

2V k2Φ)2

∣∣∣∣
r+

, (7.78)

αxy = 2κ2
4sB

2κ2
4g

4
4ρ

2 + 2κ2
4B

2Z2 + g2
4Ze

2V k2Φ

4κ4
4g

4
4B

2ρ2 + (2κ2
4B

2Z + g2
4e

2V k2Φ)2

∣∣∣∣
r+

. (7.79)

We expressed our results in terms of the charge density ρ. This can be computed
using (7.32) and (7.33), which gives

ρ =
Ze2V a′

g2
4

+ 4WB

∣∣∣∣
r+

. (7.80)

And we also expressed the results in terms of the entropy density, given by

s =
4πe2V

2κ2
4

∣∣∣∣
r+

. (7.81)

Our results di�er from the ones obtained in [21] only by the inclusion of the term
−4W in the o�-diagonal electric conductivity σxy. This is expected, since we are
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adding a topological term to the theory. The thermoelectric conductivities computed
here are the same.

7.7 Heat currents

In the previous section, we con�ned our attention to the electrical currents. Now,
we focus on the heat currents, and show also how to compute heat conductivities
in terms of horizon data. This will con�rm our computation of the electrothermal
conductivities as well. Again, we follow the same procedure as was done in [21], but
including the topological term that appears in the action. The computation of the
conductivities in the presence of topological terms was done in a di�erent way in
[80]. There, the authors claim that the conductivities can be computed analytically
by solving a set of equations, called by them as Stokes equations. We are interested
in the case when the conductivities are deduced completely in terms of horizon
data, and that is why we adopted the approach of reference [21], and we explain out
computation now.

Consider an arbitrary vector that satis�es

∇µk
µ = 0. (7.82)

It is straightforward to construct the following set of relations:

∇[µkν] −∇(µkν) = −∇νkµ

∇µ(∇[µkν]) = ∇µ(∇(µkν))−∇µ∇νkµ

= ∇µ(∇(µkν))− [∇µ,∇ν ]kµ

= ∇µ(∇(µkν))−Rν
µk

µ, (7.83)

where Rν
µ is the Ricci tensor. Now, we de�ne the bulk two-form tensor Gµν as

Gµν = −2∇[µkν] − Zk[µF ν]ρAρ −
1

2
(ψ − 2θ)Hµν , (7.84)

where the functions ψ and θ are also de�ned through

∇ρψ = (LkA)ρ = kµ∂µAρ + Aµ∂ρkµ, (7.85)
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∇ρθ = kµFµρ −
1

2
ξρk

µAµ. (7.86)

Of course these are just de�nitions, but we intend to relate the bulk two-form (7.84)
with the heat currents, and then de�ne our radially independent currents. This is
a construction, and we show that it works for the perturbation (7.50). The idea
in de�ning the bulk two-form (7.84) is to make the following identi�cation at the
linearized level

∂µ(
√
−gGµi) = 0, as r →∞. (7.87)

So, we can identify the following radially independent �uxes as

〈 ~Q(tot)i〉 =
√
−gGri. (7.88)

In absence of perturbations, this would be identi�ed with the heat current, and it
would be a conserved quantity. But similarly to what happened to the electrical
currents, equation (7.87) is no longer satis�ed in the presence of the perturbations
(7.50). We will see this explicitly now.

Taking the covariant derivative of (7.84), and using the equation of motion (7.31),
i.e. ∇µH

µν ≡ ∇µ(Z(φ)F µν + 4g2
4W (φ)F̃ µν) = 0, and (7.82), we obtain

∇µG
µν = −2∇µ(∇[µkν])−∇µ(Zk[µF ν]ρAρ)−

1

2
∇µ(ψ − 2θ)Hµν − 1

2
(ψ − 2θ)∇µH

µν

= −2∇µ(∇[µkν])− 1

2
[kµ∇µZF

νρAρ + Z∇µk
µF νρAρ + Zkµ∇µF

νρAρ

+ ZkµF νρ∇µAρ −∇µZk
νF µρAρ − Z∇µk

νF µρAρ − Zkν∇µF
µρAρ − ZkνF µρ∇µAρ]

− 1

2
∇µ(ψ − 2θ)ZF µν − 1

2
∇µ(ψ − 2θ)4g2

4WF̃ µν . (7.89)

The Lie derivative of F is written as‡

(LkF )νρ = kµ∇µF
νρ −∇µk

νF µρ −∇µk
ρF νµ. (7.90)

For future purposes kµ will only have time component. Notice that Z(φ) depends
only on the radial coordinate, which implies that kµ∇µZ = 0. Then, we can rewrite

‡We emphasize that kµ is not a Killing vector in the presence of perturbations (7.50).
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(7.89) as

∇µG
µν = −2∇µ(∇[µkν])− 1

2
[ZkµF νρ∇µAρ −∇µZk

νF µρAρ − Zkν∇µF
µρAρ

− ZkνF µρ∇µAρ + ZAρ(LkF )νρ + Z∇µk
ρF νµAρ]

− 1

2
∇µ(ψ − 2θ)ZF µν − 1

2
∇µ(ψ − 2θ)4g2

4WF̃ µν . (7.91)

Using (7.85) and (7.86), we replace ∇µ(ψ− 2θ) in the term containing Z in the last
line, and obtain the expression

∇µG
µν = −2∇µ(∇[µkν])− 1

2
[ZkµF νρ∇µAρ −∇µZk

νF µρAρ − Zkν∇µF
µρAρ

− ZkνF µρ∇µAρ + 2Zkρ∇µAρF
µν − Zkρ∇ρAµF

µν ]− ZAρ(LkF )νρ

2

+
1

2
ZF νµsµ −

1

2
∇µ(ψ − 2θ)4g4

2WF̃ µν , (7.92)

where sµ ≡= kνFνµ − ∇µθ. The terms with covariant derivatives in Aµ can be
combined in such a way to obtain

ZkµF νρ∇µAρ + 2Zkρ∇µAρF
µν − Zkρ∇ρAµF

µν = 2kρFµρF
µν . (7.93)

Notice also that
ZkνF µρ∇µAρ =

Z

2
kνF µρFµρ. (7.94)

The expression (7.92) can be simpli�ed using these two last equations, and also
using (7.83), i.e.

∇µG
µν = 2Rµ

νk
ν − 2∇µ(∇(µkν))− 1

2
[−∇µZk

νF µρAρ − Zkν∇µF
µρAρ]

+
1

2
ZF νµsµ −

ZAρ(LkF )νρ

2
+ ZkρFµρF

νµ +
Z

4
kνFµρF

µρ

− 1

2
∇µ(ψ − 2θ)4g4

2WF̃ µν . (7.95)

The curvature term can be replaced in this equation using (7.30). This cancels
out the terms ZkνFµρF µρ and ZkρFρµF

µν appearing in (7.95), and the resulting
expression is just

∇µG
µν = V kν − 2∇µ(∇(µkν))− ZAρ(LkF )νρ

2
− 1

2
ZF µνsµ −

1

2
∇µ(ψ − 2θ)4g2

4WF̃ µν
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+
1

2
[∇µZk

νF µρAρ + Zkν∇µF
µρAρ]. (7.96)

The term inside the square brackets can be expressed as 1
2
kνAρ∇µ(ZF µρ). Using

again the equation of motion (7.31), and the Bianchi identity ∇µF̃
µν = 0, we have

1

2
∇µZF

µρAρk
ν+

1

2
Z∇µF

µρAρk
ν =

1

2
∇µ(ZF µρ)Aρk

ν = −2g2
4∇λWF̃ λρAρk

ν . (7.97)

Finally, the expression takes the form

∇µG
µν = V kν − 2∇µ(∇(µkν)) +

1

2
ZF νµsµ −

Z

2
Aρ(LkF )νρ

− 2g2
4(∂µW )F̃ µρAρk

ν − 2g2
4WF̃ µν∇µ(ψ − 2θ). (7.98)

Notice that, using (7.85) and (7.86), we can compute the following integral∫
dxρ∇ρ(ψ − 2θ) =

∫
dxρkµ∂µAρ +

∫
dxρAµ∇ρk

µ

− 2

∫
dxρkµFµρ +

∫
dxρξρikA. (7.99)

As we mentioned before, we will consider the case for which kµ = (∂t)
µ = δµt , so the

integral reduces to∫
dxρ∇µ(ψ − 2θ) =

∫
dxρkµ∂µAρ +

∫
dxρAµ∂ρk

µ − 2

∫
dxρkµFµρ +

∫
dxρξρk

µAµ

=

∫
dxρ∂tAρ +

∫
dxρAµ∂ρδ

µ
t − 2

∫
dxρFtρ +

∫
dxξAt

=

∫
dxρ∂tAx − 2

∫
dxFtx − 2

∫
drFtr +

∫
dxξa(r)

= −
∫
dx(−E + aξ)− 2

∫
dr(−a′(r)) +

∫
dxξa

= Ex+ 2a (7.100)

This result will allow us to evaluate the respective term (ψ− 2θ) when we calculate
the components of the bulk two-form (7.84) in the presence of the perturbations
(7.50). So, using kµ = (∂t)

µ = δµt , the component Gri is written as

Gri = −∇rki +∇ikr − Zk[rF i]σAσ −
1

2
(2a+ Ex)Hri
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= −grα(∂αk
i + Γiαβk

β) + giα(∂αk
r + Γrαβk

β)− Z(krF iσ − kiF rσ)Aσ

−1

2
(2a+ Ex)Hri

= −grα(∂αδ
i
t + Γiαt) + giα(∂αδ

r
t + Γrαβk

β)− 1

2
(2a+ Ex)Hri

= −grαΓiαt + giαΓrαt −
1

2
(2a+ Ex)Hri. (7.101)

We wrote explicitly all the connexions in the presence of pertubations (7.50) in
appendix A. The linear order contributions to (7.101) come only for the case when
α = r and α = i because all connections are at least of linear order in perturbation.
So, the components of the metric grα and giα must contribute only with their zero
order term in perturbation. Writing this explicitly we obtain

grαΓxαt = grrΓxrt =
U
2

(
δh′tx −

δhtxU′

U
+ 2δhtxV ′

)
=

Ue−2V

2

(
e2V δhtx

U

)′
, (7.102)

grαΓyαt = grrΓyrt =
U
2

(
δh′ty −

δhtyU′

U
+ 2δhtyV ′

)
=

Ue−2V

2

(
e2V δhty

U

)′
, (7.103)

gxxΓrxt =
e−2V

2
U
(
ξtU′ − e2V (δh′tx + 2δhtxV ′)

)
, (7.104)

gyyΓryt = −U
2

(
δh′ty + 2δhtyV ′

)
, (7.105)

gxtΓrtt =

(
δhtx

U
− e−2V tξ

)
1

2
U(r)U′(r), (7.106)

gytΓrtt = δhty
U′

2
. (7.107)

Notice that our quantities are de�ned in the limit when r → ∞, so the term a(r)

dominates over Ex, and the heat current is

〈Qi〉 = U2(
e2V δhti

U
)′ + a(r)

√
−g(Z(φ)F ri + 4g2

4W (φ)F̃ ri). (7.108)

Now we can check that the �ux 〈Qi〉 is not conserved in the presence of perturbations,
just like we did for the electromagnetic current. Notice that we have to compute

∂r(
√
−gGrx) = −∂t(

√
−gGtx)− ∂y(

√
−gGyx),

∂r(
√
−gGry) = −∂t(

√
−gGty)− ∂x(

√
−gGxy). (7.109)
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In the de�nition of the bulk two-form (7.84), the term containing derivatives of k
and the term k[yF x]σAσ in Gyx are zero because ky = kx = 0. So, we obtain

Gyx = −gyαΓxαt + gxαΓyαt −
1

2
(2a+ Ex)Hyx (7.110)

In this expression, the terms involving the connections cancel out because they are
of second order in perturbation. Since Hyx is independent of y, this implies that
∂y(
√
−gGyx) = 0.

The next term we analyze is Gtx, which is written as

Gtx = −∇tkx +∇xkt − Z(ktF xσ − kxF tσ)Aσ −
1

2
(2a+ Ex)H tx

= −gtβ(∂βδ
x
t + Γxβt) + gxβ(∂βδ

t
t + Γtβt)− ZktF xσ − 1

2
(2a+ Ex)H tx

= −gtβΓxβt + gxβΓtβt − ZF xσAσ +
1

2
(2a+ Ex)H tx

= −gttΓxtt − gtrΓxrt − gtxΓxxt − gtyΓxyt + gxtΓttt + gxrΓtrt + gxxΓtxt + gxyΓtyt

− ZF xtAt − ZF xrAr − ZF xyAy +
1

2
(2a+ Ex)(ZF tx + 4g2

4WF̃ tx). (7.111)

Using the fact that gxy = 0, grt = 0, Ar = 0 and that Γttt, Γtxt, Γxxt and Γxyt are of
second order in perturbation, then (7.111) is reduced to

Gtx = −gttΓxtt+gxrΓtrt−ZF xtAt−ZF xyAy+
1

2
(2a+Ex)(ZF tx+4g2

4WFyr). (7.112)

This term does not depend on the t coordinate, so ∂t(
√
−gGtx) = 0.

The next component is

Gxy = −gxαΓyαt + gyαΓxαt +
1

2
(2a+ Ex)(ZF xy + 4g2

4WFtr). (7.113)

Using the same arguments as before, we are left with

Gxy =
1

2
(2a+ Ex)(ZF xy + 4g2

4WFtr)

=
1

2
(2a+ Ex)(Ze−4VB − 4g2

4e
−2V a′). (7.114)
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Now, it is easy to show that

∂x(
√
−gGxy) =

E

2
(Ze−2VB − 4g2

4Wa′). (7.115)

Finally, the component Gty is written explicitly as

Gty = −gtβΓyβt + gyβΓtβt − Z(ktF yσ − kyF tσ)Aσ −
1

2
(2a+ Ex)(ZF ty + 4WFxr)

= −gttΓytt + gyrΓtrt −
1

2
ZF ytAt − ZF yxAx −

1

2
(2a+ Ex)(ZF ty + 4WFxr)

=
U′

U
δhry −

1

2
Z(e−4VBξt+ · · ·)a− 1

2
Z(−e−4VB(−E + ξa)t)

− 1

2
(2a+ Ex)[Z(e−4VBξt+ · · ·)− 4g2

4W (ξa′t+ δA′x)], (7.116)

where "· · ·" represents terms that do not depend on the t coordinate. So,

∂t(
√
−gGty) = −1

2
Ze−2VBξa− 1

2
Ze−2VB(−E + ξa)

−1

2
(2a+ Ex)(Ze−2VBξ + 4g2

4Wa′ξ). (7.117)

Collecting our results we obtain the following

∂r(
√
−gGrx) = −∂t(

√
−gGtx)− ∂y(

√
−gGyx)

= 0,

∂r(
√
−gGry) = −∂t(

√
−gGty)− ∂x(

√
−gGxy)

= (2g2
4Wa′ − e−2VZB)(E − 2ξa(r)). (7.118)

We just showed that the �uxes Qi are no longer conserved in the presence of per-
turbations. So, we rede�ne Qi as

Qx = U2(
e2V δhtx

U
)′ − a(r)

√
−gHrx,

Qy = U2(
e2V δhty

U
)′ − a(r)

√
−gHry −ME − 2MQξ, (7.119)

where M and MQ are given by equations (7.47) and (7.49). In these expressions,
we subtracted o� the magnetization currents and now the �uxes Qi are conserved
quantities in the presence of perturbations, i.e.

∂rQ
i = 0, r →∞. (7.120)
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As these are radially independent quantities, we do the same as we did for the
electric �uxes and evaluate them on the horizon. Notice that M(r) and MQ(r)

vanish on the horizon. Using the near horizon expansions (7.29) it is easy to see
that the term containing a(r) also vanishes because a(r) ∼ a+(r − r+). Finally,
using U ∼ 4πT (r − r+), we obtain

U2(
e2V δhti

U
)′ = U(e2V δhti)

′ − U′e2V δhti. (7.121)

The �rst term is zero on the horizon, and we remain with

Qi = −U′e2V δhti
∣∣
r+
. (7.122)

We already computed the graviton perturbations δhti, which are given by (7.75).
Finally, we extract the conductivities using (7.15). The thermoelectric conductivity
α con�rms the results of the previous section, and are written as

αxx =
2κ2

4g
4
4sρe

2V k2Φ

4κ4
4g

4
4B

2ρ2 + (2κ2
4B

2Z + g2
4e

2V k2Φ)2

∣∣∣∣
r+

, (7.123)

αxy = 2κ2
4sB

2κ2
4g

4
4ρ

2 + 2κ2
4B

2Z2 + g2
4Ze

2V k2Φ

4κ4
4g

4
4B

2ρ2 + (2κ2
4B

2Z + g2
4e

2V k2Φ)2

∣∣∣∣
r+

. (7.124)

We also extract the heat conductivity κ̄

κ̄xx =
2κ4

4g
2
4s

2T (2κ2
4B

2Z + g2
4e

2V k2Φ)

4κ6
4g

4
4B

2ρ2 + κ2
4(2κ2

4B
2Z + g2

4e
2V k2Φ)2

∣∣∣∣
r+

, (7.125)

κ̄xy =
4κ4

4g
4
4s

2TρB

4κ4
4g

4
4B

2ρ2 + (2κ2
4B

2Z + g2
4e

2V k2Φ)2

∣∣∣∣
r+

. (7.126)

The formulae (7.76), (7.77), (7.78), (7.79), (7.125) and (7.126) are the main results
of this chapter. We would like to stress that, in the context of holography, the
physical observables are always computed at the boundary of the AdS spacetime.
Due to the fact that we are obtaining physical observables from radially independent
quantities, we can evaluate our expressions on any hypersurface in the bulk, and we
chose it to be the horizon of the black hole. So, the conductivities can be computed
analytically by knowing the �elds and the metric evaluated on the horizon of the
black hole, i.e. by knowing the horizon data.
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Chapter 8

Conductivities from attractors

As we saw in the previous chapter, holography provides a simple way of comput-
ing conductivities in models for condensed matter systems. Applying electric �elds
and thermal gradients induces linear perturbations about the black hole, and the
matrix of thermoelectric conductivities is obtained by solving the linearized pertur-
bation equations. Although the formalism of the previous chapter involves a large
set of theories one can consider, the most commonly studied case in the literature
deals with electrically charged anti-de Sitter-Reissner-Nordström black holes [81],
where the electric charge is the dual of the chemical potential of the �eld theory.
In the presence of chemical potential and magnetic �eld on the CFT side, the grav-
ity dual contains a dyonic charged black hole, i.e. a black hole with both electric
and magnetic charges. The simplest example is the dyonic anti-de Sitter-Reissner-
Nordström planar black hole, for which the electric (σ), thermoelectric (α, ᾱ) and
heat conductivities (κ̄) are given by

σij =
ρ

B

(
0 1

−1 0

)
,

αij = αij =
s

B

(
0 1

−1 0

)
,

κij =
s2Tg2

4

B(ρ2g4
4 +B2)

(
B ρg2

4

−ρg2
4 B

)
. (8.1)
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Here, ρ is the charge density, B the magnetic �eld, g4 the constant coupling to the
�eld strength and s the entropy density. These conductivities were computed in
[82, 83]. One very important point for this chapter is that these conductivities are
valid for all temperatures.

As the full dyonic anti-de Sitter-Reissner-Nordström solution is known analyt-
ically, the conductivities (8.1) can be written in terms of the charges of the black
hole. In general, the full analytical gravity solutions for more elaborate supergravity
theories are not known, and writing these conductivities explicitly in terms of the
charges of the black hole at �nite temperature is not possible.

We saw that it is possible to obtain the horizon data for extremal black holes
using Sen's entropy function method, discussed in chapter (5). The advantage of
using this method relies on the fact that we do not need to obtain the full extremal
black hole solution in order to obtain such data: All we need to do is to solve
the attractor equations. In this chapter, we give a prescription to compute these
conductivities explicitly at zero temperature via Sen's entropy function method even
for theories whose full dyonic black hole solution is not known. In order to do so, we
combine the horizon data, which is obtained for Einstein-Maxwell-dilaton theories,
with the formulae for the thermoelectric conductivities (7.76), (7.77), (7.78), (7.79),
(7.125) and (7.126). We �rst present the results for which the topological term is
absent, i.e. we makeW (φ) = 0 in (7.17). The results for this case were all presented
in reference [22].

The results that we obtain for the horizon data are written not only in terms
of the charges of the black holes but also in terms of the coupling constants of the
theory. These explicit results allow us to analyze the behavior of the conductivities
in �eld theory dual in terms of the rank of the gauge group N , of the magnetic �eld
applied and of the charge density. The Hall conductivity is universal, and is the same
as the case of AdS-Reissner-Nordström, i.e. it reads σxy = ρ/B. When the potential
is just a cosmological constant, we show that the thermoelectric conductivity at zero
temperature is given by

αxy =
1

3γ

√
Q
3B

N3/2 , (8.2)

with Q ≡ g2
4ρ the normalized charge density of the black hole and γ a dimensionless
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constant which �xes the relation between metric and gauge �eld from supergravity.
g4 is the gauge theory coupling in the gravity action, which is chosen such that
the Einstein-Hilbert and gauge kinetic terms have the same scaling with N . The
constant potential model is used as a prototype for more involved dilaton theories.
In particular, we consider theories with exponential coupling to the �eld strengths
and exponential scalar potentials, and a theory with quadratic dilaton expansion in
both the coupling to the �eld strengths and the potential. We calculate the electric
and thermoelectric conductivities for these theories as well. For all these theories, we
also compute the ratio between the heat conductivities and the temperature under
the assumption that this is a �nite quantity at T = 0. Surprisingly, κxx/T = κxy/T

for the constant scalar potential model. Moreover, the scaling with N is κxx/T =

κxy/T ∼ N3/2, similarly to the other conductivities.
One physical motivation to compute holographic conductivities at T = 0 is

related to the topic of quantum phase transitions in condensed matter. At tem-
peratures close to zero, some condensed matter systems may present di�erent phases
which are accessed by varying parameters that are not related to the temperature,
for instance the pressure, chemical potential, or magnetic �elds. On the gravity side,
by varying parameters such as chemical potential, magnetic �elds, or the value of
the constant coupling to the scalar potential, one might have di�erent black hole
phases, or phases for which the black hole does not even exist, and these are the
di�erent phases that might have a dual conformal �eld theory interpretation. Since
we are dealing with bottom-up models, we do not have a map between the gravity
theory we study and the conformal �eld theory describing a condensed matter sys-
tem. So, how the di�erent phases appearing on the gravity side are related to the
di�erent phases of some materials at temperatures close to zero will be left for future
investigation. The explicit computation of the conductivities done in this section is
just the �rst step towards this direction.
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8.1 Entropy function for black holes with planar

horizons

In this section we adapt the Sen's entropy function method, discussed in chapter
5, for black holes with planar horizons.

The near-horizon geometry of an extremal dyonic black hole in four dimensions
is AdS2 × S2 [84], and in the planar limit this becomes AdS2 ×R2. So, the starting
point of the formalism is to consider that the near-horizon geometry of the planar
black hole is AdS2 × R2, whose general form is written as

ds2 = v

(
−r2dt2 +

dr2

r2

)
+ wd~x2, (8.3)

where the constants∗ v and w are the AdS2 radius and the R2 radius†, respectively.
The curvature associated to the near-horizon metric (8.3) is

R = −2

v
. (8.4)

The scalar and vector �elds are constants for this geometry and are written as

φs = us, F
(A)
rt = eA, F

(A)
θφ = BA, (8.5)

where eA and BA are related to the integrals of the magnetic and electric �uxes,
which are in turn related to the electric and magnetic charges, respectively. The
attractor mechanism states that the value of the scalars on the horizon of the ex-
tremal black hole is independent of any asymptotic condition at in�nity. This value
is completely determined by the electric and magnetic charges of the black hole. The
function f(us, v, w, eA, pA) is de�ned as the Lagrangian density

√
− det gL evaluated

for the near-horizon geometry (8.3) and integrated over the planar horizon variables
[10], [18],

f(us, vi, eA, pA) =

∫
dxdy

√
− det gL. (8.6)

∗In this section we use constants v and w instead of v1 and v2.
†The volume of R2 is in�nite, but we will only deal with �nite densities in the whole paper.
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We extremize this function with respect to us, v, w and eA by

∂f

∂us
= 0,

∂f

∂v
= 0,

∂f

∂w
= 0,

∂f

∂eA
= QA, (8.7)

where the �rst equation is the equation of motion for the scalar, and the second
and third are the equations of motion for the metric. Next, one de�nes the entropy
function

E(~u,~v,~e, ~q, ~p) ≡ 2π[eAQ
A − f(~u,~v,~e, ~p)]. (8.8)

The equations that extremize the entropy function are

∂E
∂us

= 0,
∂E
∂v

= 0,
∂E
∂w

= 0,
∂E
∂eA

= 0 , (8.9)

and are called the attractor equations. At the extremum, this new function equals
the entropy of the black hole

SBH = E(~u,~v,~e, ~q, ~p). (8.10)

In the context of planar black holes the horizon has in�nite area, so we consider the
entropy density, since this is a �nite quantity. The solutions of the equations (8.9)
are the near-horizon data that will be used later to compute the conductivities.

The attractor mechanism is independent of supersymmetry, and relies only on
the near horizon geometry [10], which is AdS2 × R2 in our case. In the study of
spherical black holes with AdS2×S2 near-horizon geometry, the attractor mechanism
is present even after the inclusion of α′ corrections [10][85][86][87][88][89]. It is now
understood that the long throat of AdS2 is the basis of the attractor phenomenon
[10][90][91]. Since the AdS2 ×R2 near-horizon geometry is the starting point of the
construction of Sen's entropy function, �nding solutions to the attractor equations
guarantees that the attractor mechanism exist for the theories analyzed.

8.2 Dyonic anti-de Sitter-Reissner-Nordström pla-

nar black hole

In this section we give one example of application of the entropy function. We
will compute the near horizon data for one known solution, the dyonic anti-de Sitter-
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Reissner-Nordström black hole. Then, we will show that we can obtain the same
results using Sen's method. This is just an illustrative example that the method
works also for planar black holes. We consider the Einstein-Maxwell theory, which
contains the metric and a gauge �eld. Since we want to study solutions in AdS, the
theory must contain a constant potential. The action in the notation of reference
[81] is written as

S =

∫
d4x
√
−g
[

1

2κ2
4

(
R +

6

L2

)
− 1

4g2
4

FµνF
µν

]
. (8.11)

Here, L is the AdS4 radius, and 2κ2
4 = 16πGN . The gauge coupling g4 is assumed

to scale as ∼ N−3/4. Although we will not give an explicit derivation, we point out
that the relation between the gravity coupling κ2, the AdS4 radius, and the rank N
of the gauge group of the �eld theory is given by [82]

2L2

κ2
4

=

√
2N3/2

6π
. (8.12)

The dyonic anti-de Sitter-Reissner-Nordström black hole is the solution to this the-
ory, and it is written as

ds2 =
L2

u2

(
−f(u)dt2 +

du2

f(u)

)
+
L2

u2
(dx2 + dy2), (8.13)

f(u) = 1−
(

1 +
u2

+µ
2 + u4

+B
2

γ2

)(
u

u+

)3

+

(
u2

+µ
2 + u4

+B
2

γ2

)(
u

u+

)4

, (8.14)

F =
µ

u+

du ∧ dt+Bdx ∧ dy. (8.15)

Notice that the horizon of the black hole is located at u+, and the asymptotic region
is achieved when u → ∞. B is the magnetic �eld and µ is the chemical potential.
The temperature and the constant γ2 are given by

T =
1

4πu+

(
3−

u2
+µ

2 + u4
+B

2

γ2

)
, γ2 =

2g2
4L

2

κ2
4

. (8.16)

Notice that, as g4 ∼ N−3/4, γ is independent of N . The black hole becomes extremal
when it achieves zero temperature. This happens when

u2
+µ

2 + u4
+B

2

γ2
= 3. (8.17)
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The charge density ρ can be computed using (7.32) and (7.33), which gives

ρ =

√
−g
g2

4

F tr

∣∣∣∣
bdry

, (8.18)

where the �bdry� subscript denotes that the expression should evaluated at the
boundary. Substituting the �eld strength, we obtain (see [81])

ρ =
2L2

κ2
4

µ

u+γ2
. (8.19)

As we intend to make a comparison between the quantities computed from the full
extremal solution with the ones obtained via the entropy function, we write all of
them in terms of the charge density, since this is the quantity that appears in the
entropy function. So, using (8.17), the value of u+ for the extremal black hole, is
given by the relation

1

u2
+

=

√
1

3γ2
(B2 + g4

4ρ
2). (8.20)

In order to see how the AdS2×R2 near-horizon geometry arises from the full extremal
solution, we Taylor expand the function f(u) around the horizon:

f(u) ≈ f(u+) + (u− u+)f ′(u+) +
(u− u+)2

2
f ′′(u+), (8.21)

where the primes de�ne derivatives with respect to u. The �rst term in the expansion
is zero due to the de�nition of the horizon of the black hole, and the second one is
zero due to the fact that we consider extremal black holes, as can be seen from the
de�nition of temperature (2.42). So, for the extremal black hole

f ′′(u+) =
12

u2
+

. (8.22)

The metric (8.13) becomes

ds2 ≈ L2

u2
+

(
− 6

u2
+

(u− u+)2dt2 +
u2

+

6

du2

(u− u+)2

)
+
L2

u2
+

(dx2 + dy2). (8.23)

De�ning new coordinates as

r ≡ u− u+, τ ≡
6

u2
+

t, (8.24)
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and the metric and gauge �eld will be

ds2 ≈ L2

6

(
−r2dτ 2 +

dr2

r2

)
+
L2

u2
+

(dx2 + dy2), (8.25)

F =
ρg2

4u
2
+

6
dr ∧ dτ +Bdx ∧ dy. (8.26)

This just shows that the anti-de Sitter-Reissner-Nordström planar black hole has
AdS2 × R2 near-horizon geometry.

We now compute the near-horizon data using Sen's entropy function formalism.
We de�ne the near-horizon metric and the gauge �eld as

ds2 = v

(
−r2dτ 2 +

dr2

r2

)
+ w(dx2 + dy2), (8.27)

F = e dr ∧ dτ +Bdx ∧ dy. (8.28)

The Lagrangian for this background reads

√
−gL =

1

κ2
4

(
−w +

3

L2
vw

)
+

w

2g2
4v
e2 − v

2g2
4w
B2, (8.29)

and the entropy function is just

E = 2π[eQ−
∫
dxdy

√
−gL]. (8.30)

Computing derivatives with respect to the �elds we obtain the attractor equations

e = g2
4

v

w
Q̃, (8.31)

w

v2
e2 +

1

w
B2 − 6g2

4

κ2
4L

2
w = 0, (8.32)

2g2
4

κ2
4

− e2

v
− v

w2
B2 − 6g2

4

κ2
4L

2
v = 0, (8.33)

where Q̃ = Q/Vol R2. We can easily solve this system and obtain the solution

e =
g2

4Q̃

2

√
γ2

3(g4
4Q̃

2 +B2)
, v =

L2

6
, w = L2

√
1

3γ2
(g4

4Q̃
2 +B2), (8.34)
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where the de�nition of γ2 is given in (8.16). The constant Q̃ is a parameter in Sen's
entropy function method that is proportional to the charge density ρ. In order to
obtain the same near-horizon we make the identi�cation

ρ ≡ Q̃. (8.35)

Comparing the above results with (8.25) and (8.26), we see that we have obtained
exactly the same near-horizon metric and gauge �elds via the entropy function, as
we wanted to do.

8.3 DC conductivities at T = 0 for Einstein-Maxwell-

Dilaton theories

Now, we apply the Sen's entropy function for the Einstein-Maxwell-dilaton the-
ory with the topological term and general couplings Z(φ) and W (φ), and poten-
tial V (φ). We must take Φ(φ) = 0 in (7.17), since the scalars χi depend on the
horizon coordinates and are not attracted to a �xed point on the horizon. The
four-dimensional Einstein-Maxwell-dilaton theory we consider is then

S =

∫
d4x
√
−g
[

1

16πGN

(
R− 1

2
∂µφ∂

µφ− V (φ)

)
− Z(φ)

4g2
4

FµνF
µν −W (φ)FµνF̃

µν

]
.

(8.36)
Using (8.3), (8.4) and (8.5), we compute the Lagrangian in the near-horizon region,
i.e.

√
−gL =

1

16πGN

(−2w − wvV (uD)) +
Z(uD)

2g2
4

(w
v
e2 − v

w
B2
)

+ 4W (uD)eB, (8.37)

where uD is the value of the dilaton �eld on the horizon. The entropy function (8.8)
is then

E = 2π[eAQ
A − Vol R2

√
−gL]. (8.38)

The attractor equations for this system are

Q

Vol R2
− Z(uD)

g2
4

w

v
e− 4W (uD)B = 0, (8.39)
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Z(uD)

2g2
4

(
w

v2
e2 +

B2

w

)
+

w

16πGN

V (uD) = 0, (8.40)

2

16πGN

− Z(uD)

2g2
4

(
1

v
e2 +

v

w2
B2

)
+

v

16πGN

V (uD) = 0, (8.41)

− 1

2g2
4

∂Z(uD)

∂uD

(w
v
e2 − v

w
B2
)
− 4

∂W (uD)

∂uD
eB +

wv

16πGN

∂V (uD)

∂uD
= 0. (8.42)

Using (8.39) we eliminate Q from (8.38), and obtain

E = 2πVol R2

[
1

(16πGN)
(2w + wvV (uD) +

Z(uD)

2g2
4

(w
v
e2 +

v

w
B2
)]

. (8.43)

We combine equations (8.40) and (8.41) and obtain

V (uD) = −1

v
, (8.44)

Z(uD)

2g2
4

(
e2

v2
+
B2

w2

)
=

1

(16πGN)

1

v
, (8.45)

and replacing these in (8.38), we obtain

E =
4πwVol R2

16πGN

=
wVol R2

4GN

=
A

4GN

. (8.46)

This is the expected Hawking formula for the entropy of the black hole. The attractor
equations (8.39), (8.40), (8.41) and (8.42) are general in the sense that we did not �x
the model yet by choosing speci�c functional forms for the functions Z(φ),W (φ) and
V (φ). After �xing these functions, we solve the system and obtain the near-horizon
data. We wish to insert the near-horizon into the expressions for the conductivities,
given by equations (7.76), (7.77), (7.78), (7.79), (7.125) and (7.126), and then write
the conductivities at zero temperature explicitly in terms of the parameters of the
black hole. But, in order to do so, we must �rst establish a map between the
metric elements and �elds appearing in Sen's formalism with the metric and �elds
appearing in the conductivity formulae, since they appear with di�erent notation in
each case. Take for instance the ratio e/v. Both the electric �eld e and the AdS2

radius v appears in Sen's formalism. We will show that this ratio is related to the
quantity a′(r) appearing in the expressions for the conductivity through equation
(8.57).
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The �eld strength for the theory (8.36) is

F = a′(r)dr ∧ dt+Bdx ∧ dy, (8.47)

which is valid anywhere in the bulk. Consider now the �eld strength and the metric
in the near-horizon region. The function U(r) appearing in (7.21) can be Taylor
expanded around the horizon of the black hole as

U(r) ≈ U(rH) + (r − rH)U′(rH) +
(r − rH)2

2
U′′(rH) +O(r3). (8.48)

Again, the �rst term in this expansion vanishes at the horizon by de�nition, and
the linear term vanishes for extremal black holes. So in the near-horizon region the
metric is written as

ds2 = −(r − rH)2

2
U′′(rH)dt2 +

2

(r − rH)2U′′(rH)
dr2 + e2V (rH)(dx2 + dy2). (8.49)

In order to see how the AdS2 × R2 geometry emerges, we need to choose an appro-
priate coordinate system. For our case this is

r − rH → ρ̃, t→ 2τ

U′′(rH)
, (8.50)

so that

ds2 =
2

U′′(rH)

(
−ρ̃2dτ 2 +

dρ̃2

ρ̃2

)
+ e2V (rH)(dx2 + dy2), (8.51)

The metric has AdS2 × R2 as its near horizon geometry, as expected. A direct
comparison with (8.3) shows that the term multiplying the AdS2 part of this metric
is identi�ed with v, and the term multiplying the R2 part is identi�ed with w. Also,
under the change of coordinates (8.50), the �eld strength changes to

F =
2a′(rH)

U′′(rH)
dρ̃ ∧ dτ +Bdx ∧ dy. (8.52)

We compare with (8.5) and conclude that the (ρ̃τ) component of the �eld strength
is identi�ed with e, and the angular part containing the magnetic �eld is the same.
This provides us with the quantities that map the horizon data obtained via Sen's
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entropy function to the quantities appearing in the expressions (7.76), (7.77), (7.78),
(7.79), (7.125), (7.126). They are written as

v =
2

U′′(rH)
, w = e2V (rH), e =

2a′(rH)

U′′(rH)
= va′(rH). (8.53)

Notice that the gauge current is computed as

〈Jµ〉 =
δSon-shell
δAµ

∣∣∣∣
boundary

=
√
−g
(
Z(φ)

g2
4

F µν + 4W (φ)F̃ µν

)
. (8.54)

This means that the boundary charge density for the theory (8.36) is given by the
horizon expression‡

ρ =
Z(uD)wa′(rH)

g2
4

+ 4W (uD)B

∣∣∣∣
r+

. (8.55)

The entropy density is given by the Hawking formula

s =
4πw

16πGN

∣∣∣∣
r+

. (8.56)

Notice that v and w in these expressions come from the metric elements. Using the
identi�cation (8.53), we see that

e

v
= a′(rH), (8.57)

so, by replacing this in the charge density and using the attractor equation (8.39),
the charge density is related to the quantity Q̃ in Sen's entropy function as

ρ = Q̃. (8.58)

Now that we have a map between the quantities related to the entropy function and
those appearing in the formulae for the conductivities, we can now �x our theory
and compute analytically the conductivities at T = 0 in terms of the charges of
the black hole. In order to do so, we �rst write the formulae for the conductivities
(7.76), (7.77), (7.78), (7.79), (7.125) and (7.126) for the case when Φ(φ) = 0, i.e.

σxx = 0, (8.59)

‡Notice that At = a(r) vanishes at the horizon but a′(r) does not.
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σxy =
ρ

B
, (8.60)

αxx = 0, (8.61)

αxy =
s

B
, (8.62)

κ̄xx
T

=
s2Z

g2
4

(
ρ2 + B2Z2

g44

) , (8.63)

κ̄xy
T

=
ρ

B

s2(
ρ2 + B2Z2

g44

) . (8.64)

Notice that we have written the ratio κ̄/T , which is shown to be a �nite quantity
for our set up. In reference [92], a bound on κ/T was derived�. In that paper, it
was argued that the heat conductivity is always non-zero at �nite temperature, so
long as the dilaton potential is bounded from below. Our approach shows that this
is also the case even for T → 0.

With these results, we are now able to compute conductivities explicitly for
di�erent theories. We will analyse several models separately. First we will write the
solution to the attractor equations and then we combine with the expressions for
the conductivities (8.59), (8.60), (8.61), (8.62), (8.63) and (8.64). At the moment of
the writing of this thesis, we have obtained the results for the attractor equations
only for the cases when the topological term in the action (7.17) is absent, i.e.

W (φ) = 0. (8.65)

The analysis of models in which this term is present is the topic of future work.

8.4 Massless scalar

In this model, we choose the scalar potential to be¶

V (φ) = − 6

L2
. (8.66)

�Their result was derived in absence of topological terms in the action.
¶We wrote V (φ) only to keep notation. The potential is a constant and does not really depend

on the dilaton �eld φ.
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Here, L is the AdS4 scale, and we aim to use equation (8.12) in order to have a
map between the number of colors in the gauge theory N and the constants in the
gravity theory. Notice that the Einstein-Maxwell-dilaton theory with this constant
potential satis�es the requirement given by equations (7.20), so this is dual to a
three-dimensional conformal �eld theory. In this section, we solve the attractor
equations for this theory and then write the conductivities explicitly in terms of the
black hole parameters for the extremal case. This is the simplest potential one can
consider, but, to the best of our knowledge, a full dyonic black hole solution for this
theory is not known, so writing explicitly the conductivities in terms of the black
hole parameters at �nite temperature is not possible. We use equation (8.12) and
write the conductivities in terms of the rank of the gauge group N .

The solution to the attractor equations is

Z(uD) = g2
4

Q̃

B
, e =

√
L2B

6(16πGN)Q̃
, v =

L2

6
, w =

√
L2(16πGN)Q̃B

6
. (8.67)

The solution is independent of the functional form of the coupling Z(uD). The
entropy density is just

s = 4π

√
L2

6

Q̃B

(16πGN)
=

1

3γ

√
QB

3
N3/2 . (8.68)

Here, we de�ned
Q ≡ g2

4ρ (8.69)

as the normalized charge density of the black hole. As we mentioned, we used
equation (8.12) to rewrite s explicitly in terms of the rank N of the gauge group.
Notice that Q is independent of N , indeed we have

ρ = Q̃ =
Q
g2

4

= Q 2L2

γ2κ2
4

=

√
2Q

6πγ2
N3/2 . (8.70)

Replacing these results in (8.59), (8.60), (8.61), (8.62), (8.63) and (8.64) we write
the non-zero conductivities as

σxy =
Q̃

B
=

√
2Q

6πγ2B
N3/2, (8.71)
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αxy = 4π

√
Q̃

6B

L2

16πGN

=
1

3γ

√
Q
3B

N3/2, (8.72)

κ̄xx
T

=
κ̄xy
T

=
(4π)2

12

L2

(16πG)
=

π

9
√

2
N3/2. (8.73)

Notice that the values for the ratios κ̄xx/T and κ̄xy/T coincide at T = 0.
The result (8.71) is a general result for Einstein-Maxwell-dilaton theories. The

thermoelectric conductivity (8.72) and the ratios (8.73) for constant potential and
at zero temperature were obtained for the �rst time in reference [22]. We note
that all conductivities scale as N3/2, as is generically expected for theories in 2+1
dimensions [82]. Unlike the electric and thermoelectric conductivities (8.71) and
(8.72), the ratios (8.73) do not depend on the electric and magnetic charges of the
black hole.

If we set the dilaton to zero in the Einstein-Maxwell-dilaton theory, then these
conductivities should reduce to the ones computed for the AdS-RN black hole (8.1),
since the potential used here is the same potential as in section 8.2. In supergravity
theories, Z(φ) is generally an exponential of the type Z(φ) = eγ̃φ for an arbitrary
constant γ̃, so it reduces to Z(0) = 1 if the dilaton is set to zero. We make the
comparison with section 8.2 in order to have a consistency check of our new results.
Notice that in (8.1) the entropy density is written in terms of the charges, so we �rst
need to express explicitly the conductivities of the extremal AdS-RN case in terms of
the charges too. ForW (φ) = 0, (8.55) and (8.56) give the corresponding expressions
for s and ρ, which can be evaluated for the horizon data of (8.34), leading to the
results

σxy =
Q̃

B
=

√
2Q

6πγ2B
N3/2, (8.74)

αxy =
s

B
=

4π

B

L2

2κ2

√
1

3γ2
(B2 + g4

4ρ
2) =

N3/2

3B
√

2γ

√
1

3
(B2 +Q2). (8.75)

On the other hand, if we set φ = 0, then the �rst equation in (8.67) implies the
constraint

Q = B, (8.76)
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which can be inserted into (8.74) and (8.75) to give

σxy =

√
2

6πγ2
N3/2, αxy =

N3/2

3
√

3γ
. (8.77)

Indeed, the same results are obtained by inserting (8.76) into the results of this
section, i.e. (8.71) and (8.72). In general terms, all the results obtained for the
Einstein-Maxwell-dilaton theory reduces to Einstein-Maxwell theory, whose black
hole solution is the anti-de Sitter-Reissner-Nordström solution, with an extra con-
straint on the charges given by (8.76). Notice that this contraint results from the
dilaton equation of motion in the φ = 0 case. From this analysis, it is natural to
assume that the conductivities of the Einstein-Maxwell-dilaton theory scales with
the same powers of N as in the case of the conductivities of Einstein-Maxwell theory.

8.5 Exponential couplings

This model is de�ned by‖

Z(φ) = eγφ, V (φ) = 2βe−δφ . (8.78)

A potential written as an exponential of the dilaton is called Liouville potential.
Again, we deal with a model whose analytical dyonic black hole solutions are un-
known. There are black hole solutions with cylindrical symmetry for this theory
presented in [93]. This theory was discussed numerically on page 23 in [94] for
electrically charged black holes. But notice that in the same reference, the analy-
sis done so far for black holes with spherical horizons were all numerical. In other
words, there are no analytical computation for the conductivities of these theories.
In the same way as we did in the previous section, we will express the conductivities
analytically for the zero temperature case as well.

As V ′(0) 6= 0, equations (7.20) are not satis�ed, showing that this system does
not admit a conformal �eld theory dual. The motivation for considering these

‖The parameter γ here is an arbitrary constant. This must not be confused with the parameter

γ of equation (8.16), which will not appear in the remaining part of this chapter.
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models comes from interesting examples of top-down theories that are very di�-
cult to treat analytically, even with the present approach. For instance, V (φ) =

− 6
L2 cosh (φ/

√
3), Z(φ) = 1/cosh (φ

√
3) is a string-theory inspired model whose

attractor equations cannot be solved analytically due to the high powers of the vari-
ables in the algebraic equations. The potential (8.78) is used as an approximation
of this potential, provided that the value of scalar �eld on the horizon is large. So
the conductivities we compute here are good approximations once this condition is
satis�ed.

Notice that γ and δ are parameters de�ning the theory, and the constant β must
be related to the AdS4 radius∗∗. As discussed in [93, 94], the case γδ = 1 is of special
interest since the associated models arise within string theory. We �rst write the
formulae which are valid for general values of γ and δ. Using (8.39) and (8.42) we
have

e

v
=

g2
4Q̃

weγuD
, (8.79)

e2

v2
=
B2

w2
− 4βδ

γ

g2
4

(16πGN)
e−(δ+γ)uD . (8.80)

Replacing the last equation in (8.40) we have

B2

w2
= −2β

g2
4

(16πGN)

(
1− δ

γ

)
e−(δ+γ)uD . (8.81)

Combining these three equations, we obtain as solution to the attractor equations

euD =

[
g4

4Q̃
2

B2

(γ − δ)
(γ + δ)

] 1
2γ

, (8.82)

e =
g3

4Q̃

B

√
(γ − δ)

−2β(16πG)γ

[
g4

4Q̃
2

B2

(γ − δ)
(γ + δ)

] δ−3γ
4γ

, (8.83)

v = − 1

2β

[
g4

4Q̃
2

B2

(γ − δ)
(γ + δ)

] δ
2γ

, (8.84)

∗∗This was argued in reference [22]
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w = B

√
(16πG)γ

−2βg2
4 (γ − δ)

[
g4

4Q̃
2

B2

(γ − δ)
(γ + δ)

] δ+γ
4γ

. (8.85)

The entropy density is given by

s = 4πB

√
γ

−2βg2
4(16πG) (γ − δ)

[
g4

4Q̃
2

B2

(γ − δ)
(γ + δ)

] δ+γ
4γ

. (8.86)

As stated before, we are interested in the cases for which δ = 1/γ. So, the non-zero
conductivities are given by

σxy =
Q̃

B
, (8.87)

αxy =
4πγ√

−2βg2
4(16πG) (γ2 − 1)

[
g4

4Q̃
2

B2

(γ2 − 1)

(γ2 + 1)

] γ2+1

4γ2

(8.88)

κ̄xx
T

=
s2

2ρB

(γ2 + 1)

γ2
, (8.89)

κ̄xy
T

=
s2

2ρB

√
(γ2 + 1)(γ2 − 1)

γ2
. (8.90)

Notice that we expressed the results in terms of the entropy density squared, which
is given by

s2 =
(4π)2B2γ2

−2βg2
4(16πG) (γ2 − 1)

[
g4

4Q̃
2

B2

(γ2 − 1)

(γ2 + 1)

] γ2+1

2γ2

, (8.91)

and it is non-zero for γ = 1,
√

3. Unlike the massless scalar of the previous section,
the ratios κ̄xx/T and κ̄xy/T for this model are not the same at T = 0.

The cases γ =
√

3 and γ = 1 are of special interest [94],: γ = 1 arises from string
theory in four dimensions with a vector arising from the Neveu-Schwarz sector, while
γ =

√
3 arises from a Kaluza-Klein reductions. The case for which γ =

√
3 gives

the following conductivities

σxy =
Q̃

B
, (8.92)
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αxy =
2π√

(16πG)

√
− 3

β

1

g
2/3
4 21/3

(
Q̃

B

) 2
3

, (8.93)

κ̄xx
T

=
(4π)2

(−2β)(16πG)

(
g2

4ρ

4B

)1/3

, (8.94)

κ̄xy
T

=

√
2(4π)2

(−2β)(16πG)

(
g2

4ρ

4B

)1/3

. (8.95)

For γ = 1 we have

σxy =
Q̃

B
, (8.96)

αxy = 2π
g4√

(16πGN)

Q̃

B

√
− 1

β
, (8.97)

κ̄xx
T

=
(4π)2

(−2β)(16πG)

g2
4ρ

2B
, (8.98)

κ̄xy
T

= 0. (8.99)

In �gures 8.1 and 8.2 we computed numerically the bulk solution that connects this
solution in the IR to AdS4 in the UV, in order to check that the attractor mechanism
provides the appropriate solution for these special values of γ (and δ). For more
details on the numerical UV completion of the solutions, see Appendix B of reference
[22].

8.6 Quadratic couplings

In this bottom-up model both potential and gauge coupling are second order
polynomials given by

Z(φ) = 1 +
α

2
φ2, V (φ) = − 6

L2
+

β

2L2
φ2. (8.100)

This theory was investigated in [95] and, by the same arguments of the model in
the previous section, it may be viewed as an approximation of more complicated
top-down models in which the scalar is small near the horizon. The constants are
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Figure 8.1: Result of RG �ow for the case γ = −
√

3, δ = −1/
√

3. In this case, the

magnetic �eld needs to be B � Q in order for the coupling Z(φ) to be well-approximated

by an exponential near the horizon. We chose B/Q = 100 for this plot. The horizon is at

r̃ = 1, the boundary at r̃ = 0.

arbitrary, so we expect this model to capture universal features. First notice that
(8.42) reduces to

−
αuD

(
2B2

w2 − 2e2

v2

)
g2

4

− 8βuD
16πGL2

= 0 . (8.101)

Therefore there are two possible solutions. The �rst is uD = 0, in which case the
other three attractor equations are solved by the dyonic anti-de Sitter-Reissner-
Nordström geometry without scalar, as in the example of section 8.2. For the next
solution, we assume uD 6= 0. Equations (8.39) and 8.42 give

e

v
=

g2
4Q̃

wZ(uD)
, (8.102)

1

2g2
4

e2

v2
=

1

2g2
4

B2

w2
+
β

α

1

(16πG)L2
. (8.103)

We use (8.103) to eliminate the term containing e from (8.45) and write

B2

g2
4w

2
Z(uD) =

1

L2(16πG)

(
6− β

α

)
− β

L2(16πG)
u2
D. (8.104)
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Figure 8.2: Result of RG �ow for the case γ ' −1, δ ' −1 and B/Q = 1. In this case, the

magnetic �eld is not required to be large. The horizon is at r̃ = 1, the boundary at r̃ = 0.

We also use (8.102) to eliminate e in (8.103) and write

1

g2
4w

2

(
g4

4Q̃
2

Z(uD)2
−B2

)
=

2β

α

1

L2(16πG)
. (8.105)

Combining equations (8.104) and (8.105) we can write the quadratic equation for
u2
D,

u4
D +

u2
D

α

(
1 +

β

(β − 6α)

g4
4Q̃

2

B2

)
+

1

α2

(
1 +

g4
4Q̃

2

B2

(β − 6α)

(β + 6α)

)
= 0. (8.106)

The solution for this equation is

1+
α

2
u2
D = −g

4
4Q̃

2

B2

β

(3α− 2β)
±

√√√√−3 +
g2

4Q̃
2

B2(β + 6α)

(
(24α− 6β) +

g2
4Q̃

2

B2

β2

(6α + β)

)
.

(8.107)
This is the solution to the attractor equations for uD written in terms of the charges.
The expressions for w, v and e written in terms of the charges as provided by the
attractor equations are rather lengthy, and we don't write them explicitly here.
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Instead, we write them in terms of u2
D, i.e.

e =
v

w

g2
4Q̃

(1 + α
2
u2
D)
, (8.108)

v =
L2

(6− β
2
u2
D)
, (8.109)

w =

√
L2(16πG)B2α

g2
4

(1 + α
2
u2
D)

6α− β(1 + αu2
D)
. (8.110)

The entropy density is found directly and is given by

s = 4πB

√
L2α

g2
4(16πG)

(1 + α
2
u2
D)

6α− β(1 + αu2
D)
. (8.111)

From this result we express the conductivities in terms of the black hole parameters
as

σxy =
Q̃

B
, (8.112)

αxy = 4π

√
L2α

g2
4(16πG)

(1 + α
2
u2
D)

6α− β(1 + αu2
D)
, (8.113)

where again u2
D is obtained from equation (8.107). The ratios involving the heat

conductivities are rather lengthy and we did not write them explicitly here.
It is natural to ask about the stability of these solutions. In order to tackle

this question we perform a simple analysis: It is likely that possible instabilities
are triggered by the scalar sector. We therefore calculate the equation for scalar
�uctuations on the dyonic anti-de Sitter-Reissner-Nordström background, and then
compare the e�ective mass to the Breitenlohner-Freedman (BF) bound. Since the
near-horizon geometry is translationally invariant in t, x, y directions, we investigate
an Ansatz for the scalar of the form

φ(r, t, x, y) = R(r)e−iωt+k1x+k2y (8.114)

subject to

�AdS2×R2φ− αφ− 2κ2

4g2
4

β

L2
FµνF

µνφ = 0. (8.115)
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From this equation, following the logic of [96], we extract the e�ective mass generated
by the scalar potential and interaction with the background electromagnetic �eld,

m2
e� =

B2(6α + β) + g4
4Q̃

2(β − 6α)

6
(
B2 + g4

4Q̃
2
) . (8.116)

The BF bound states that geometry is unstable against scalar perturbations if their
mass satis�es:

m2
e� ≤ −

1

4
. (8.117)

Two consequences follow from this: First, the possible phase transition is driven
by the electric �eld in the bulk, which is dual to the chemical potential of the
boundary theory, while the magnetic �eld tends to stabilize the uncondensed phase
by increasing the e�ective mass. Second, this instability does not occur for all models
(i.e not for all values of α, β): In the limit

lim
Q̃→∞

m2
e� =

1

6
(β − 6α), (8.118)

a violation of the BF bound (8.117) requires that

6α− β > 3

2
. (8.119)

If this is satis�ed, the instability occurs at

Q̃2 =
B2(6α + β + 3

2
)

g2
4(6α− β − 3

2
)
. (8.120)

This super�cial analysis indicates that the model may exhibit a possible quantum
critical phase transition (i.e. a phase transition at T = 0). Instabilities due to
�uctuations in the non-scalar sector are also conceivable. It is also not clear what
happens if the condition (8.119) is not satis�ed. This question would require a more
sophisticated analysis which we leave for future work.
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8.7 S-duality of the attractor equations and conduc-

tivities

In this section we make a rough analysis of the invariance of the attractor equa-
tions and conductivities under S-duality transformations. In [83], the authors derive
conductivities from a set of generalized Stokes equations at the horizon. These
Stokes equations are shown to be invariant under S-duality for a 3+1-dimensional
gravity dual. Here, in order to examine the S-duality transformation properties of
the attractor equations considered in the sections above, we restric our attention to
theories whose potential is even and which satisfy Z(−φ) = Z(φ)−1.

The S-duality transformations are given by

F µν → Z(φ)
ε̃µνρσ

2
√
−g

Fρσ, φ→ −φ, (8.121)

where ε̃µνρσ is the totally antisymmetric Levi-Civita symbol, with ε̃trxy = 1. If we
focus on horizon of the extremal black hole, then the S-duality transformation results
in

− e

v2
→ − 1

vw
Z(uD)B,

B

w2
→ − 1

vw
Z(uD)e, Z(uD)→ 1

Z(uD)
. (8.122)

The S-duality transformation of the charge density ρ is obtained from its de�nition
within Einstein-Maxwell-dilaton theory, from which we obtain

ρ =
√
−gZ(φ)

g2
4

F tr →
√
−g 1

Z(φ)g2
4

Z(φ)
ε̃trxy√
−g

Fxy =
B

g2
4

. (8.123)

Using Q̃ = ρ we see directly that the transformation for the magnetic �eld in (8.122)
is given by B → −g2

4ρ. Applying the transformations (8.122) and (8.123) to the at-
tractor equations, we see that (8.40), (8.41) and (8.42) are invariant, and (8.39)
gives a trivial identity. This shows that the attractor equations are invariant under
S-duality transformations. However note that S-duality is an invariance of the equa-
tions of motion, but not of the action, so we may expect that the entropy function
(8.8) is not invariant under S-duality either. In fact, as was pointed out in reference
[18], applying an S-duality transformation gives rise to a new entropy function in the
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attractor formalism, which might generate new attractor equations. Nevertheless,
the extremization of both the initial and the S-dual entropy functions yields the
same black hole entropy, which shows that the black hole entropy is invariant under
S-duality.

The result (8.68) for the entropy density contains a square root of the prod-
uct of the charges. This comes from the fact that the attractor equations involve
squares. For investigating the S-duality properties of our explicit expressions for
the entropy and for the conductivities, we have to take care of the signs carefully
when taking square roots of quadratic expressions. As an example, the result for
the thermoelectric conductivity of (8.72) should be written as

αxy = sgn(B) 4π

√
L2|Q̃|
6|B|

16πG . (8.124)

Then, the transformed conductivities are given by

σxy → −
B

g4
4Q̃

, αxy → −
4π

g2
4Q̃

√
Q̃B

6

L2

(16πG)
, (8.125)

with Q̃→ ρ. Performing the transformation once more, we see that the conductivi-
ties transform as

σxy → σxy, αxy → −αxy , (8.126)

which is precisely what authors of [83] �nd.
The result for κ/T is independent of the absolute values of charges for the massless
scalar model, but again its sign depends on signs of charges. This implies that after
transforming the charges once we have

κ̄xx → κ̄xx, κ̄xy → −κ̄xy . (8.127)

Transforming the charges again results in

κ̄xx → κ̄xx, κ̄xy → κ̄xy , (8.128)

which again is consistent with general transformation laws of [83].
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8.8 Generalizations and partial conclusions

In this chapter we computed conductivities at zero temperature for Einstein-
Maxwell-dilaton theories. The expressions we obtained are written in terms of the
extremal black hole parameters, and we showed that the o�-diagonal components of
the electric and thermoelectric conductivities scale as

σxy ∼ N3/2, αxy ∼ N3/2 (8.129)

for a constant potential, where N is the rank of the gauge group of the conformal
�eld theory dual to the Einstein-Maxwell-dilaton theory. We argued that this should
also be the case for theories with other kinds of potential. We brie�y discussed that
in the T = 0 limit the Einstein-Maxwell-dilaton presents di�erent phases, which may
be related to quantum phase transitions. All the results were obtained by applying
Sen's entropy function method in the AdS/CMT context. We also computed κxx/T
and κxy/T for Einstein-Maxwell-dilaton theories assuming that these ratios are �nite
at T = 0. For a constant potential, κxx/T is equal to κxy/T , and they also scale as

κxx
T

=
κxy
T
∼ N3/2. (8.130)

Explicit analytical zero-temperature expressions are expected to be very useful
in particular for universality arguments in AdS/CMT, see for instance [97, 98] and
references therein. We expect that the results of this paper may be generalized to
more involved geometries relevant in that context.

Although we investigated the simplest Einstein-Maxwell-dilaton theories, gener-
alizations of this approach are indeed possible. The two most immediate ones are
the following: One direction is to generalize the equations for conductivities (7.76),
(7.77), (7.78), (7.79), (7.125), (7.126) to take into account multiple scalar �elds
and gauge �elds coupled in the non-minimal way. In the context of AdS/CFT it
is useful to consider maximally supersymmetric supergravities, and including more
scalars and �eld strengths will guarantee that we can handle the four-dimensional
N = 8 gauged supergravity. Solving the attractor equations for the planar case, the
conductivities of the three-dimensional CFT can be expressed explicitly in terms of
the black hole parameters and of N , just as we did in the paper for simpler cases.
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Another possibility is to generalize the computation of the conductivities to higher-
dimensional supergravity theories. This means that the gravity theory will have
a Chern-Simons term in odd dimensions, which may complicate the computation.
The entropy function method is valid only for even-dimensional gravity theories, but
it is possible to perform dimensional reduction down to even dimensions, treat the
even dimensional theory as an e�ective theory, and then compute the horizon data,
in the same spirit as [99]. That would allow to use the entropy function method
to obtain the conductivities at zero temperature also for these cases, and in partic-
ular for the case most studied in the literature, which is the supergravity dual of
four-dimensional N = 4 Super Yang-Mills theory.

Yet another possibility is to extend the super�cial analysis of the phase transition
considered in subsection 8.6. It would be interesting to look not only at the scalar
instabilities but also at the full linearized Einstein-Maxwell-dilaton system on both
backgrounds. Moreover, as we saw in 8.6, the scalar instability occurs only for
particular values of parameters α, β, but the coexistence of phases with and without
scalar �elds seems to happen also for other values of those parameters. Exploring this
phase diagram would probably require knowledge of the full solution, and therefore
one would probably be forced to invoke some numerical methods. Apart from this
scalar condensation it seems possible that there may be another phase transition in
the regime of vanishing magnetic �eld, which may lead to a scaling geometry in the
far IR.

Our results imply that the attractor mechanism is a very important ingredient
in the computation of zero temperature conductivities, as well as in the study of
quantum phase transitions.
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Chapter 9

Conclusions

In this thesis we studied several aspects of the black hole and wormhole solutions
to the Einstein-Maxwell-dilaton theory. We studied Sen's entropy function formal-
ism applied to the computation of the entropy of extremal black holes of theories of
interest as well as to the holographic context.

In chapter 3 we presented the analytical dyonic black hole solution of the Einstein-
Maxwell-dilaton theory. This solution was presented in its bare form, i.e. without
imposing boundary conditions to write it in terms of the physical observables. In
this sense, the physical observables of the dyonic black hole solution are the massM ,
the electric charge Q, the magnetic charge P and the dilaton charge Σ. Although
it is widely mentioned in the black hole literature that the dilaton charge is a pa-
rameter that depends on the others (see for instance [7]), we showed that the only
requirement imposed by the equations of motion is that the product of the dilaton
charge Σ and the mass M must be written in terms of the other parameters. We
discussed how to de�ne dependent and independent parameters. We constructed
massless black hole solutions by imposing that the value of the dilaton at in�nity
be an imaginary number. The observables in this case are all physical in the sense
that they are real quantities: they depend only on the exponential of the dilaton
at in�nity and this gives a real number. We used such massless solutions to con-
struct Einstein-Rosen bridges, and proved that these bridges satisf the null energy
condition.

150



In chapter 4 we gave an analytical traversable wormhole solution to the Einstein-
Maxwell-phantom-dilaton theory. This wormhole is electrically charged, and the
magnetically charged one can be easily found by applying S-duality transformations,
since this is an invariance of the equations of motion. As a traversable wormhole
must be, this solution contains no singularities, and develops a throat, which is the
minimum surface that connects the two asymptotic spaces. In the same way as
was done for the dyonic black holes of chapter 3, we showed how to recover other
known wormhole solutions by setting some parameters to zero. We computed the
topological charges and constructed numerically the embedding diagram, just like
was done for the Bronikov-Ellis wormhole. As a physical application, we computed
the de�ection angle of light in the weak �eld limit using the Gauss-Bonnet theorem.

In chapter 5 we reviewed the Sen's entropy function formalism. We constructed
the entropy function using the fact that the near horizon geometry of an extremal
black hole is always AdS2 × S2. From it, we derived the so-called called attractor
equations, whose solutions extremize the entropy function, resulting in the entropy
of the black hole. The formalism can also be used to extract the near horizon data
of extremal black holes, i.e. the near horizon metric and �elds.

In chapter 6 we used the Sen's entropy function formalism to compute the entropy
of Einstein-Maxwell-dilaton theories in the presence of a scalar potential. Speci�-
cally, we computed the horizon data and entropy for models whose potential was
proportional to the couplings to the �eld strength. This investigation was of special
interest, since we wanted to solve the attractor equations for a more complicated
theory, which is the U(1)4 gauged supergravity. This theory has four gauge �elds,
all coupled to exponentials of combinations of the three dilaton �elds. By anal-
ogy with the simplest models, we inferred how the solution to the dilatons on the
horizon must be, and checked that our guess solved analytically all the atrractor
equations. We then expressed the black hole entropy for the U(1)4 gauged super-
gravity in terms of all the electric and magnetic charges, and also in terms of the
coupling to the potential. The scalar �elds of this theory must satisfy a constraint,
and this was used to express the entropy only in terms of the four electric and four
magnetic charges of the black hole. We also discussed that is possible to recover
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the entropy for magnetically charged black holes calculated in the context of N = 2

supergravity.
In chapter 7 we computed transport coe�cients in the presence of a magnetic

�eld in holography. We considered Einstein-Maxwell-dilaton theories in the pres-
ence of linear axions, which breaks translation symmetry, and also in the presence
of a topological term of the kind W (φ)FF̃ . In order to extract the conductivities
by applying linear perturbations around the black hole, we needed to de�ne the
radially independent currents, which are the physical currents. This required to
subtract o� the magnetization currents from the total currents, and showed in de-
tails that the new currents were indeed radially independent. By solving linearized
Einstein's equations for the perturbations, we extracted the electric conductivity,
σij, the thermoelectric conductivity, αij, and the heat conductivity, κ̄ij. There are
two important points in this computation. First, the conductivities are all analyti-
cal. Second, they depend only on the value of the metric and �elds on the horizon of
the black hole, which whe call horizon data. This feature arises from the fact that
they were computed from radially independent currents, so, instead of evaluating
them at the boundary of the AdS spacetime as is usual in holography, we chose to
evaluate them on the horizon of the black hole. This means that, once we know the
black hole horizon data, we can obtain the conductivities analytically and express
them in terms of the parameters of the black hole.

In chapter 8 we introduced a novel approach to compute holographic conduc-
tivities at zero temperature. We combined the horizon data, computed from Sen's
formalism, with the expressions for the conductivities derived in chapter 7. We �rst
adapted the Sen's formalism to the case when the black hole has planar horizon,
and then wrote the attractor equations for the Einstein-Maxwell-dilaton theories.
Three models were considered in that chapter. The massless scalar is the simplest
model, with a constant potential. We solved the attractor equations, e inserted the
horizon data in the formulae for the conductivities. We expressed the conductivi-
ties in terms of the electric and magnetic charges, and also in terms of the Newton
constant GN and AdS scale L. The combination of GN and L allowed us to use
the map given by equation (8.12) and express the results in terms of the rank N of
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the gauge group of the conformal �eld theory. All the conductivities for this model
scale as ∼ N3/2. Our computation gave a �nite result for the ratio κ̄ij/T , and also
showed that κ̄xx/T = κ̄xy/T ∼ N3/2. The other two cases we analyzed were the
exponential coupling and the quadratic coupling models. The conductivities were
also expressed analytically, although there is no known map that would allow us to
express them in terms of the rank N of the gauge group for these cases. We also
studied the invariance of the attractor equations under S-duality transformations,
and showed how the conductivities change for massless case, which is consistent with
the literature.
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Appendix A

Christo�el symbols

Using (7.50), we can obtain non-trivial the Christo�el symbols

Γtrt =
U′(r)
2U(r)

Γtxr =
ε
(
ξtU′(r)− 2ξtU(r)V ′(r)− e2V (r)δh′tx(r)

)
2U(r)

Γtry = −
εe2V (r)δh′ty(r)

2U(r)

Γrtt =
1

2
U(r)U′(r)

Γrrr = − U′(r)
2U(r)

Γrtx =
1

2
εU(r)

(
ξtU ′(r)− e2V (r) (δh′tx(r) + 2δhtx(r)V

′(r))
)

Γrrx = −εe2V (r)δhrx(r)U(r)V ′(r)

Γrxx = −e2V (r)U(r)V ′(r)

Γrty = −1

2
εU(r)e2V (r)

(
δh′ty(r) + 2δhty(r)V ′(r)

)
Γryy = −e2V (r)U(r)V ′(r)

Γxtt = εU(r)

(
−ξe−2V (r) − 1

2
δhrx(r)U′(r)

)
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Γxtr =
1

2
ε

(
δh′tx(r)−

δhtx(r)U′(r)
U(r)

+ 2δhtx(r)V ′(r)
)

Γxrr = ε

(
δh′rx(r) +

δhrx(r)U′(r)
2U(r)

+ 2δhrx(r)V ′(r)
)

Γxxr = V ′(r)

Γxxx = εδhrx(r)U(r)e2V (r)V ′(r)

Γxyy = εδhrx(r)U(r)e2V (r)V ′(r)

Γytt = −1

2
εδhry(r)U(r)U′(r)

Γyrt =
1

2
ε

(
δh′ty(r)−

δhty(r)U′(r)
U(r)

+ 2δhty(r)V ′(r)
)

Γyrr = ε

(
δh′ry(r) +

δhry(r)U′(r)
2U(r)

+ 2δhry(r)V ′(r)
)

Γyxx = εδhry(r)U(r)e2V (r)V ′(r)

Γyyr = V ′(r)

Γyyy = εδhry(r)U(r)e2V (r)V ′(r). (A.1)
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Appendix B

Details of the approximation

In this appendix we present explicitly the detail of the approximation used to
obtain the result (4.85). The series expansion for the inverse tangent is written as

arctan
(x
l

)
=
∞∑
n=0

(−1)n

2n+ 1

(x
l

)2n+1

,
∣∣∣x
l

∣∣∣ < 1. (B.1)

Notice that the limit for when the expansion is valid corresponds to |x| < l. We
are interested in the limit when |r| > l, so we must use the following identity and
corresponding expansion

arctan
(r
l

)
=
π

2
− arctan

(
l

r

)
≈ π

2
− l

r
+

l3

3r3
− l5

5r5
+

l7

7r7
+ ... (B.2)

The exponential of the inverse tangent has then the following expansion

exp

[
2c1

l
arctan

(r
l

)]
≈ exp

[
2c1

l

(
π

2
− l

r

)]
≈ e

c1π
l

(
1− 2c1

r

)
, (B.3)

2(b1 − c1)

l
arctan

(r
l

)
≈ (b1 − c1)π

l
− 2(b1 − c1)

r
. (B.4)

These will be enough to expand the function λ for large r, which results in

λ ≈ −Q
2ec2+

c1π
l

2c2
1

+
(b1 − c1)π

l
+ 2b2 − c2 +

(
−2b1 + 2c1 +

Q2ec2+
c1π
l

c1

)
1

r
. (B.5)
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De�ning

m1 ≡ −
Q2ec2+

c1π
l

2c2
1

+
(b1 − c1)π

l
+ 2b2 − c2, m2 ≡ −2b1 + 2c1 +

Q2ec2+
c1π
l

c1

, (B.6)

we have
λ ≈ m1 +

m2

r
, (B.7)

e−λ ≈ e−m1

(
1− m2

r

)
. (B.8)

In the text, we used only the leading term in this expansion.
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