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ABSTRACT

The functional measure for the Feynman path integral is investigated, and it
is argued that non-trivial measure factors should not be automatically discarded
as is often done. The fundamental hypothesis of path integration is stated in its
Hamiltonian formulation and is used, together with the Faddeev-Popov ansatz,
to derive the general form of the canonical functional measure for all gauged or
ungauged theories of integer spin fields in any number of spacetime dimensions.
This general result is then used to calculate the effective functional measures for
scalar, vector, and gravitational fields in more than two dimensions at energies
low compared to the Planck Mass. It is shown that these results indicate the
self-consistency and plausibility of the canonical functional measure over other
functional measures and suggest an important relationship between bosonic and
fermionic degrees of freedom. The canonical functional measure factors associ-

ated with fields of half-integer spin and with auxiliary fields are also derived.
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1. Introduction

The path integral formulation of quantum field theory, developed by Richard
Feynman, has been responsible for many of the most important developments
in theoretical physics over the past several decades. However, one aspect of the
Feynman path integral which has received relatively little attention is the func-
tional measure. A recent series of elegant papers by Fujikawa [1] have shown
that anomalies can be best understood as arising from the transformation prop-
erties of the functional measure; a number of papers stretching back over the
past decade-and-a-half have disputed the correct form of the functional measure
for gravitation [2-7]; and a few other papers have touched on the subject of the
functional measure in one way or another. Virtually all of the remaining multi-
tude of papers on the subject of quantum field theory and path integration have

ignored the issue entirely.

This state of affairs has been due to two very simple reasons. First, as we shall
see below, the canonical functional measure for most ordinary theories is trivial,
with the measure factor being equal to unity. Second, and more importantly,
any non-trivial measure factors present would be formally set equal to zero under

~ several very popular regularization schemes.

In Sec. 2, I argue that in a wide range of situations, these regularizations—
dimensional regularization and zeta function regularization—are not necessarily
legitimate, and the results which they produce should be viewed with caution.
Any measure factors which are discarded under these schemes but which survive
under other, more intuitively simple regularization schemes should be retained.
Under this line of reasoning, the functional measure factors derived in the re-

maining sections of this paper may be meaningful.

In Sec. 3, I state the fundamental hypothesis of the path integral formulation
of quantum field theory, and use it to derive the canonical functional measures for

theories of bosonic or fermionic integer spin fields in which all degrees of freedom



are physical. I then utilize the Faddeev-Popov ansatz to generalize this result to

gauged theories of integer spin fields as well.

In Sec. 4, I apply these results to calculate the canonical functional measures
for various scalar and vector theories in an arbitrary number of dimensions. In
curved spacetime, the measures of these fields often involve mixings with the
measure for gravitation, but I argue that these terms should be neglected at
energies low compared to the Planck Mass. Hence, some of the results obtained
are valid only in more than two dimensions, where a dimensionful Planck Mass

exists.

In Sec. 5, 1 consider the case of the canonical functional measure for grav-
itation in an arbitrary number of dimensions. The derivation of this measure
is identical in form to those preceding, but is slightly more difficult to actually
carry out, and yields the canonical functional measure for gravitation in more

than two dimensions at energies low compared to the Planck Mass.

In Sec. 6, the results of the previous sections are analyzed and several in-
teresting conclusions drawn. First, it is suggested that fermions should best
be understood as possessing bosonic physical anti-degrees of freedom (and vice
versa). Second, it is noted that although the canonical functional measure for
quantum fields in curved spacetime is usually not manifestly covariant under gen-
eral coordinate transformations, its non-covariance may be required to cancel the
possibly non-covariant point permutation Jacobian produced by a general coor-
dinate transformation; a similar argument may indicate the flaw in the previous
derivation of the gravitation functional measure by Fujikawa [7]. Finally, it is
noted that only the canonical functional measure possesses the correct form to
allow Kaluza-Klein theories to be automatically self-consistent on the quantum
level. This appears to strengthen the likelihood that the canonical functional

measure is indeed the correct functional measure for a quantum field theory.

In Sec. 7, I derive the canonical functional measure for theories of half-integer

spin fields, whose kinetic terms are linear in derivatives. I apply this result to



Dirac, Majorana, and Weyl spinor fields in an arbitrary number of dimensions.

In Sec. 8, I show the proper means of dealing with auxiliary fields, which
possess no dynamics, and use the result to determine the canonical functional

measures for massive vector field theories in an arbitrary number of dimensions.

Throughout this paper, I shall use units in which A = ¢ = k = 1 and
all quantities are measured in GeV. My metric convention will be timelike,
Nuv = diag(+1,—1,—1,...,—1) , and Greek letters will range over spacetime
coordinates, while capital Latin letters will be completely general field indices.
I will adopt usage of the rationalized Newton’s Constant, G = 87G, with the n

dimensional (rationalized) Planck Mass being Mpigncx = (é)"+‘2

Under my terminology, a propagating degree of freedom will be called “gauge”
if the Lagrangian is invariant under a change in its value, and “physical” oth-
erwise. Non-propagating degrees of freedom will be called “constrained” if they
correspond to the first-class constraints always paired with gauge conditions [11],
and “auxiliary” otherwise. Except for this last distinction (which is more se-
mantic than substantive), this nomenclature accords with supersymmetry usage

[12]. These definitions differ slightly from the more common ones in which a field

- must have on-shell states in order to be truly “physical;” but such a definition

breaks down under the Faddeev-Popov procedure, becoming either ambiguous or

leading to the non-conservation of physical degrees of freedom.

2. Why the Functional Measure Matters

Consider a quantum field theory defined on some arbitrary space and based on
canonical fields @4 and a Lagrangian £]|Q4]. In its Lagrangian formulation, the
Feynman path integral defines a generating functional for the Green’s functions

of the theory,
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with

[dQ.] = [ M[Q4ldQ4 (2.2)

being the functional measure which should be used. From this generating func-

tional one may calculate the Green’s functions either by adding a source term to

f[dQA]F[QA]expifd"zﬂlQA]
F =
< [QA]) f[dQA]expif drzL[Qa]

(2.3)

In this procedure, there is no reason for us to assume that the functional mea-
sure factor M[Q 4] is trivial, i.e. that [dQ4] =[], d@4. A non-trivial functional
measure factor corresponds to the presence of additional terms in the effective
action of our field theory, and these in principle could have a significant impact on
the behavior of our theory. Yet this very important aspect of the path integral—
the issue of the correct form of the functional measure and the possible existence
of non-trivial measure factors—has, with some notable exceptions, received very

little attention.

This lack of attention is due to two very simple reasons. First, as we shall
see below in Sec. 5, the canonical functional measures for most ordinary field
theories are trivial “flat” measures, with measure factors equal to unity. Second,
and more importantly, all non-trivial measure factors in the functional measure
may be transferred to the effective Lagrangian by means of fictitious “measure
ghost” fields similar to the better known Faddeev-Popov ghosts of the gauge-
fixing technique [8]. However, all loops involving these measure ghosts will carry

factors of the form

d"“k

G E (2.4)

with n being our spacetime dimensionality. And these, despite being highly



divergent, are formally set equal to zero under dimensional regularization (or
zeta-function regularization). The widespread dominance of dimensional regu-
larization over the past decade has nearly eliminated functional measure factors

from the thoughts of most theoreticians™

a avariad ta
T alpucu w

) o)
O

o
)
<,
4

tion technique only so long as it is unambiguous. This criterion seems roughly
satisfied in situations in which the underlying topology of background spacetime
is trivial. For example, flat Minkowski space in four dimensions, M*, can be
extended in a natural manner to flat Minkowski space in w dimensions, MY,

resulting in a unique regularization of all divergent quantities.

Since ordinary particle physics is usually done on a flat Minkowski back-
ground, dimensional regularization is more or less reasonable, and is widely em-
ployed. But in situations in which the background space has non-trivial topology
(as is often the case with gravity and always the case with Kaluza-Klein theories),

this approach breaks down completely.

For example, suppose that our background space is M* x S1. Extending the

dimensionality of this space can be done in a number of different ways, namely
Mt x S — MY x 81 or M*x §Y or M*x (S1) (2.5)

or any combination of these, and as Hawking has pointed out, the regularized
values of divergent loops are dependent upon which dimensional continuation one
chooses [10]. Dimensional regularization makes little sense under these circum-
stances, even apart from its well-known inapplicability to theories with chiral or

conformal symmetries.

Zeta function regularization is only slightly more respectable in this context.
The regularization technique is unambiguous for a non-trivial spacetime back-

ground topology, hence its widespread use in gravity and Kaluza-Klein theory.

* This view that dimensional regularization legitimately eliminates all non-trivial functional
measure factors is presented most forcefully by 't Hooft [9].



However, as Hawking himself pointed out [10] in the paper which introduced it
to the physics community, the results it produces are identical (up to an unim-
portant constant normalization factor) to those obtained from dimensional regu-

larization if we choose to append only flat extra dimensions to spacetime; hence
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realized that dimensional regularization would also produce unambiguous results
if we adopt the arbitrary rule that all continued dimensions shall be flat regard-
less of the background topology of the original space. Furthermore, zeta function

regularization is self-consistent to only one loop anyway.

For these and similar reasons, one should hesitate to ignore divergent terms
such as (2.4) which are formally equated to zero under certain regularization
schemes (such as dimensional or zeta function regularization), but which retain
their full divergent character under other, somewhat more intuitively simple reg-
ularizations schemes (such as working on a lattice or using a naive cut-off). Given
such a cautious approach, non-trivial factors in the functional measure of a quan-

tum field theory should be retained.

3. The Canonical Functional Measure and How to Derive It

Let us now consider the Hamiltonian formulation of the Feynman path inte-

gral for quantum fields Q4. We have
Z = /[dHAdQA]ezpifd"zn48°q‘_um4’0“] (3.1)

with our canonical momenta being defined by

A_ 6L
=3 (80Qa4) (5:2)
and with
X =T48,Q4 — L[Qa4,30Q4]. (3.3)
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According to the fundamental hypothesis of path integration, our Green’s
functions may be calculated from our generating functional Z by the Hamiltonian

version of (2.3)

_ J[dI4dQ 4] F|ITA, QA]ezpif 4" 2114 80Q~ N {11*,Q4)

A
<F[H ,Q.4]> [|dI14dQ gJezp’ [ a72T1480Q4—¥(114,Qu4]

(3.4)

Furthermore, the hypothesis holds that the correct functional measure in this
Hamiltonian formulation is the canonical functional measure, in which the inte-
gration extends over all physically distinct field configurations, and weights each

by the same trivial factor of unity (3, 4, 8].

[dnAdQA] = H(dHA(z)dQA(x))phwicar (3'5)

z

Under this elegant hypothesis, our generating functional Z represents a quan-
tum partition functional in which each physically distinct unit of classical phase
space is weighted by the exponential of its quantum action. It has been argued
that only this choice of the functional measure ensures the overall unitarity of our
quantum field theory [4-5]. The canonical functional measure for the more com-
monly seen Lagrangian formulation of the path integral is obtained by formally

performing the functional integration over the canonical momenta in (3.1).

The above formulation—in which the canonical coordinates and momenta are
independent, quantum mechanically conjugate variables—applies only in the case
that our Lagrangian is quadratic in (time) derivatives. This is because the second
order differential field equations obtained from such a Lagrangian requires the
values of the fields and their first time derivatives to be specified on each spacelike
hypersurface in order to determine the subsequent evolution of the fields in the
path integral expansion. On the other hand, Lagrangians which contain terms

cubic or higher in derivatives tend to lead to violations of unitarity and can be



ignored for our purposes. Therefore, let us restrict our attention to Lagrangians
which are quadratic in derivatives, and hence are based on fields of integer spin.
Furthermore, let us temporarily impose the simplifying assumptions that (A) our

Lagrangian is non-degenerate (i.¢. has no gauge symmetry or constraints on its

Under these conditions, we can rewrite our Lagrangian as
1
L= EDAB(aoQA)(aoQB) + E4(30Q4) + F, (3.6)
with DAB EA F being functionals of fields Q4 and their spatial derivatives,

and with detDAB +£ 0 (our non-degeneracy condition). This implies that our

canonical momenta are equal to

6L
M4 = —=— = D4B3,Qp + E4. 3.7
F3 ( aOQA) OQB ( )
We can use this result to solve for the Hamiltonian which corresponds to our
Lagrangian
N4, Q4] = %H"(D-l) ApN18 — EA(D™Y) 4pT1A — F. (3.8)

With our Hamiltonian now known, we can directly perform the functional inte-
gration over canonical momenta in our Hamiltonian path integral (3.1), and find

that our generating functional becomes [8]
Z = / H dQ4 [detDAB] %ezpif 4"2£[Q4,30Qu] (3.9)
z

Our path integral has now been put into its Lagrangian form, and we have also

determined the form of the canonical functional measure



a1 =1] [d“(a(aoq,f)zf(aoqs) )] 42 (810)

This functional measure is potentially non-trivial.* It should be noted that this
measure is independent of the particular ordering we choose for our canonical
fields and momenta in the Hamiltonian; all resulting commutators would be at

most linear in canonical momenta, and hence would not contribute to the measure

factor.

If we relax one of our simplifying assumptions, and allow our canonical fields
to be fermionic, it is easy to see that the resulting canonical functional measure

would be

424 = Tl [t sz ity 2@n (3.11)

with the inverse power of the measure factor being due to the special nature of
fermionic integration. We can even consider the situation in which some of our
- fields are bosonic, some are fermionic, and terms in our Hamiltonian possibly
contain mixtures of fermionic and bosonic conjugate momenta. The functional

measure factor in this case is simply

19Q4] = I;I[Sdet(5 (3ij)25£(30QB) ) ] %dQA’ (3.12)

with sdet, the superdeterminant, being defined by [12]

* This same result may be obtained [14] by rotating to Euclidean space, introducing a
new “pseudo-time” coordinate, and treating the theory as being one in classical statistical
mechanics.
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sdet <Mbb be) _ det My, _ det(My, — Myp M} M)
M,y My, det(Myy —beMlElef) detMyy

(3.13)

with My, being the bosonic-bosonic submatrix, M the fermionic-fermionic sub-

matrix, and Mys and M, the mixed bosonic-fermionic submatrices of the super-

matrix.

If we relax the second of our simplifying assumptions, and attempt to calcu-
late the functional measure for a theory based on a degenerate Lagrangian, we
face a somewhat more difficult task. One approach is to determine the physical
portion of the Hamiltonian phase space measure in terms of the total phase space
measure by using the restrictions imposed by the constraints on our canonical
variables [3-5]; equivalently, we can demand that our measure be chosen so as
exactly to cancel all divergences of the form §(*) (0) in our Lagrangian effective
action [4-6]. However, the easiest and most intuitive approach relies on apply-
ing the Faddeev-Popov ansatz to our theory based on a degenerate (i.e. gauge
invariant) Lagrangian. Under this well-known technique, the Lagrangian for our

theory is replaced by

Lo L= Lo+ £gauge—fizing + ﬁghoat' (3-14)

The gauge-fixing piece of our new Lagrangian is chosen so as to remove the
degeneracy of our original Lagrangian, while the ghost piece compensates for this
gauge-fixing piece, and contains additional ghost fields which have commutation
relations opposite to those of our original fields. The extra physical degrees
of freedom produced by our gauge-fixing procedure are exactly compensated for
(and cancelled) by these ghost fields, which (as will be discussed in Sec. 6) should

be understood as possessing physical anti-degrees of freedom.

Now the central hypothesis of the Faddeev-Popov procedure is that the quan-
tum field theory based on our modified Lagrangian L' and fields Q4,7np yields

11



identical physical results (i.e. Green’s functions) to those produced by our orig-
inal Lagrangian Lo and fields Q4. But if this is true, then we can make the
modified form of the Lagrangian the starting point of our analysis, and consider
the corresponding Hamiltonian formulation in order to determine the canonical

functional measure for the Lagrangian formulation of the theory.”

This determination then becomes quite easy. Our modified Lagrangian is non-
degenerate, with all its field configurations being physical, and we can directly
apply the results previously obtained for non-degenerate Lagrangians. However,
we must consider the measure factors being contributed both from the ordinary
fields and from the ghost fields of our modified Lagrangian; our full functional
measure factor includes both of these contributions. The results obtained by this
procedure are formally identical to those derived from the more cumbersome

constraint procedure [4].

4. Simple Cases

Let us apply this powerful formal machinery of the Hamiltonian path inte-
gral analysis to derive the canonical functional measures for various commonly

encountered theories.

Consider a scalar field theory in a flat spacetime. The Lagrangian is

L= %(a,@)(a#.p) _ -12—m2¢2 + Lint]8). (4.1)

Therefore, the canonical functional measure is given by

621: ';' _
=11 [sopyiegy| =% (4.2

* This technique was previously noted by Fradkin and Vilkovisky [4] for the case of gravita-
tion, but applied incorrectly.
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and is trivial. On the other hand, for a non-linear sigma model with Lagrangian

1 .
L= m(au¢a)(a“¢a) + Lint|¢s] with a=1,2,3, (4.3)

the non-trivial functional measure is

[da] = H md%- (4.4)

It should be noted that the canonical formalism thus automatically reproduces
the correct group-invariant measure which should be used for the non-linear sigma
model [14].

Now let us consider the slightly more complicated case of an abelian gauge

theory in flat spacetime. Our initial Lagrangian is
1

Adding the appropriate gauge-fixing and ghost terms of the Faddeev-Popov

ansatz, chosen for Feynman gauge, we obtain the modified effective Lagrangian
1
L' = 3 (04A,)(8"4”) + (8,7) (9*n). (4.6)

The functional measure factor due to our vector field is given by

(ST

2
[det<5(60Aj)6£(60Ay))] = constant, (4.7)

while the functional measure contribution from our ghost fields is

2 ~1
[det ( 5 aor'if)f( Bo7n) )] = constant, (4.8)

where we have defined 7j, = (1,#). Both of these contributions are trivial con-
stants which can be absorbed into our overall normalization factor, so their prod-
uct, the total functional measure factor for an abelian gauge theory in flat space-
time is also trivial. Equivalently, the total functional measure could have been

written more compactly as the superdeterminant

13



1

2 1
[sdet ( 5% Qj) f( 303) )] = constant, (4.9)

with Q4 = (Ay,n,7). Since there are no Hamiltonian terms which contain both

vector field and ghost field canonical momenta, our supermatrix is block diagonal,

and its superdeterminant is indeed simply the product of (4.7) and (4.8).

The case of a non-abelian gauge theory in flat spacetime is just as simple.
After adding gauge-fixing and Faddeev-Popov ghost terms (again chosen in Feyn-

man gauge) our effective Lagrangian is

K
=% _%(a,,Az)(a“A"") + (8,7°)(8%n°) (4.10)

+ terms linear or lower in derivatives.

The only portion of the Lagrangian which contributes to the functional measure
is the portion quadratic in derivatives, and this portion is exactly the same as for
an abelian gauge theory. The total measure factor is once again given by (4.9),
where this time Q4 = (Az, n®,7%). The resulting expression is the result for the
abelian case raised to the power of K, the number of gauge fields in the theory,

and is once again trivial.

We have shown that the canonical functional measure factors for free scalar
fields and free vector gauge fields are completely trivial in flat spacetime. It will
be shown below (in Secs. 7 and 8) that the canonical functional measure factors
for free spinor and free massive vector fields in flat spacetime are also trivial. Now
any interactions involving these various scalar, vector, and spinor fields will be
at most linear in derivatives; therefore such interactions cannot contribute to our
functional measure factors. This implies that virtually all familiar quantum field
theories formulated in flat spacetime have trivial functional measures (the non-
linear sigma models, mentioned above, are about the only significant exceptions).
This is the only reason that these familiar quantum field theories—formulated

by naively ignoring functional measure factors—are nonetheless correct.
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If we extend our analysis to curved spacetime (i.e. theories in which gravita-
tion is quantized), the functional measure factors for all of these theories become

highly non-trivial. For a minimally-coupled scalar field, our Lagrangian is

= %\/:59“ Y040, ¢ — %\/'—_ymzd’2 + L[, g)- (4.11)

The functional measure factor for this scalar field theory is given by

[det (6_(6—02)_51:(6_0?))] ? (4.12)

and the canonical functional measure for ¢ is thus

[dg] = [](6™)/2g"/4dg. (4.13)

Moving to the case of an abelian gauge theory in curved spacetime, the

situation is slightly more complex. Our initial Lagrangian is

1
F“y = V“Ay - VVA“ = a“Ay - ayA“-

(4.14)

Applying the curved space form of the Faddeev-Popov ansatz [4,20] and choosing

Feynman gauge, we obtain the modified Lagrangian

1 1
£' = — 51 /—gg“VgAU(V#AA _ V,\AI‘)VVAO- - 5\/ —gg’wg'\aV“AyVAAa

(4.15)
+ 8u(fi(—9) " *)g* v=4d,1.

Obtaining the functional measure factor for such a Lagrangian is slightly more

difficult than it might seem. This is because the theory actually contains terms

15



involving the time derivatives of our metric field as well as the time derivatives

of our vector and ghost fields, most obviously since
1
V“AV - a“Ay - I‘ZVAG' = a”Ay - EAU(—g“y’g' + g‘w’y + gyg’p)- (4.16)

rm1 | o a1 h & g *1. . . . B - T a_°* £ _ e T ___ 1Y __a_
Therefore, the Hamiltonian which we obtain from our Lagrangian will contain
terms which mix the canonical momenta of our vector and ghost fields with those
of the gravitational field, and the supermatrix whose superdeterminant produces

our functional measure factor

6L
with = ,A , ’-,.” 4.17
(5(60QA)6(30QB)) Q4 = (guvs Aus 1575 - - ) (4.17)
will not be block diagonal in its gravitational and vector/ghost sectors, and, in

general, will be quite difficult to evaluate.

Fortunately, there is a means of resolving this serious difficulty. If we are
working in more than two dimensions the graviton-graviton diagonal block el-
ement of our measure supermatrix which derives from the purely gravitational

portion of our Lagrangian

1
Lorav = —5=V—9R, (4.18)

is proportional to a power of the Planck Mass (the square of the Planck Mass
in four dimensions), while the graviton-graviton and graviton-vector/ghost block
elements obtained from (4.15) are merely proportional to the appropriate powers
of the values of the vector/ghost fields. Therefore, at ordinary energies, these
latter entries contribute negligibly to the superdeterminant, and may be ignored
in a computation of the total functional measure. Our supermatrix becomes
effectively block diagonal in its vector/ghost and gravitational sectors, and the

low energy effective functional measure for the vector/ghost sector is given by

16



/2

= (¢®)5¢"T  (4.19)

62L 3 [det(—g)l/zgooga\a]1
[ d t(6(aOQA)6(aOQB))] ) [[(—9)1/4goo]2]1/2

with Q4 = (A,,7,n) and with n being the dimensionality of our spacetime.

This approximation based on neglecting terms involving the ratios of our
various quantum fields to the Planck Mass is completely justified if we are reg-
ulating our theory by using a naive cut-off (or inverse lattice spacing) which is
small compared to the Planck Mass. Such a procedure may seem questionable,
but is our only option given the lack of an acceptable full theory of quantum
gravitation. In fact, the terms being neglected would have to be neglected under
any circumstances. This is because the low energy effective Lagrangian for the
true theory of quantum gravitation presumably contains higher mass-dimension
interactions which are suppressed by appropriate inverse powers of the Planck
Mass, and these (completely unknown) terms would produce contributions to our
functional measure factors of exactly the same magnitude as the above mixing
terms. Since we have no choice but to neglect the contributions of the unknown

residue terms of quantum gravity, we must neglect the mixing terms as well.

Thus, the canonical functional measure for an abelian vector field theory in

n dimensional curved spacetime is given by

[dA,)™ = H(gm)%g#dApdﬁdn. (4.20)

This analysis is repeated exactly for the case of a non-abelian gauge theory:
since the non-abelian character of the theory only manifests itself in Lagrangian
terms containing fewer than two derivatives, it has no effect on the form of the
functional measure (just as it did not in the flat spacetime case). If our theory
has K vector fields (i.e. if the adjoint representation of our symmetry group is

K dimensional, our canonical functional measure is

17



n—

[dA2)™ = T ((¢™)*7*¢""*)  dALdr®dn°. (4.21)

for Quantum Gravitation

Now that these simple hors d’oeuvres have been served and eaten (and per-
haps even digested), we are properly prepared to begin the main course: deriving
the canonical functional measure for gravitation itself. The techniques to be used

are no different; but the calculation is much more involved.

The Einstein-Hilbert Lagrangian for pure gravitation may be written as [15]

1
=——/=aR
Len 25V 9
\4 g( vaA a‘rgpp

TR — g"Pg T + 2g"# g T g%f — 297FgP 6"X) 01 0 Gup,r-

+ total divergence.

(5.1)
Let us choose our gauge-fixing interaction to be
Lor = ponapF°FP = nog(S=hf ()40, (v=a0™) . (52
2 [+ ] [+ ] \/— »

Note that this term in the action has the proper negative-definite form only after
we have Wick-rotated to Euclidean space. The Faddeev-Popov ghost interactions
designed to compensate for this new gauge-fixing interaction are given by the

formal expression
JFﬂ
Lohost = fip 575 wn Y = 756 FP|euye, (5.3)
where 77,7 are our Faddeev-Popov ghost fields and ¢” represents our infinitesi-
mal gauge transformation parameter, corresponding in this case to an infinitesi-

mal general coordinate transformation. The Lagrangian in (5.3) is evaluated by
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noting the behavior of our various metric objects under such a transformation,

namely
Sk = ¢H
69us = gua8u€> + g2, 8,6
59" = g"05¢” + g ax¢* (5.4)

§(—9)% = 2K (-g)*a,¢"
6hf = hfa,ev.

Using these relations and relabelling a few of our indices for purposes of conve-

nience, we obtain

1 - 1
5FF = —=(~0) /4 [h00,60,(v/=30%) — 50,800, (v/=5")
+h,f0,(v=98,€"9"*) + h,F8,(v=48,¢ ¢*) (5.5)
+ hL0,(v/=50,¢"g")).

From this expression, we can obtain the ghost interactions of our Lagrangian by

applying (5.3).

Half of our ghost fields transform like the components of a world vector, n¥,
while the other half transform like world scalars, fjg. This is inconvenient, so we
should use a change of variables and redefine 7, = ﬁphf ¥ Also, we should use
integration by parts to put our Lagrangian into a form in which no field has
more than one time derivative acting upon it (the proper form for making the

transition to the Hamiltonian formalism). After these two modifications, our

* Actually, such a naive change of variables in our path integral is not quite correct (contrary
to the claims of Coleman [8] and ’t Hooft [16]). But in a paper which has received insuffi-
cient notice, Gervais and Jervicki [17] have worked out the correct procedure for changing
functional variables of integration, and described the additional terms in the effective action
which must be added at two loops and higher. For our purposes, the important point is
that these additional terms do not involve the canonical momenta, hence do not contribute
to the functional measure.
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ghost Lagrangian assumes its final form

1 1
Lohost = Te [(—g)'l/ 47,01 3,(vV/—9g9"*) — 5(—9)“’ 471u,0u1" 8,(v—99"")

= 8,((~9)*au)V=99"3un” — 3, (~9)"/*7,) v=0¢" 8,1
= 3:((-9)™*n)v=ga"*8,n"].

(5.6)
Therefore, our complete modified Lagrangian for gravitation is
L'=Lga + LeF + Lohosts (5.7)
and our gravitational functional measure factor is given by
62! }
sdet , 5.8
[ (5(30QA)5(30QB) )] (58)

with Q4 = (g;w, Tus ’7”)-

Evaluating the superdeterminant of such a supermatrix, containing graviton-
graviton, graviton-ghost, and ghost-ghost sectors, would be a very formidable
computation. However, just as in the case of vector fields, we may fortunately use
energy scaling arguments to simplify our task considerably. First, note that the
nature of the Faddeev-Popov ansatz has ensured that the dimensional constant
in front of our ghost action is 715, while the constant in front of our Einstein-
Hilbert and gauge-fixing action terms is 'cl-',' Now in n dimensions, G has units
of (mass)~("~2). Therefore, our ghost fields have units of [in] = (mass)"3.
Choosing how to distribute these units between a ghost and its conjugate ghost
is arbitrary since they enter our Lagrangian only in pairs (and the choice will
not affect the argument which follows); therefore, let us choose a symmetric

n—-32

distribution, with [j] = [n] = (mass) < .
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Let us rewrite the matrix appearing in (5.8) in slightly more detailed form as
62£EH 52£GF 62£qhoat 52£ahoat
6da6Gp  69ab9p  6dabgp 61ad¢B

52£ghoat 52£ghoct ’
69467B 61460p
with n4 = (u,n”) and g4 = guv, s > v. These different blocks represent the

(5.9)

bosonic-bosonic, fermionic-fermionic, and mixed bosonic-fermionic sectors of our
supermatrix. Note that the bare and gauge-fixing portions of our total La-

grangian contribute only to the bosonic sector since they contain no fermionic
(ghost) fields.

Now the bare and gauge-fixing contributions to our bosonic-bosonic subma-

trix have the approximate magnitude

8*LEn 62Lcr
6gabdp  6946dB

while the ghost Lagrangian contribution to this submatrix has the form

~ (l\f{Planck)”_2 ’ (5-10)

% ~ (Mpianck) T (771). (5.11)
. Therefore, just as in the earlier vector field case, the contribution from (5.11) may
be neglected compared with the contribution from (5.10) when evaluating the su-
perdeterminant of (5.9) (so long as the submatrix in (5.10) is non-singular, which

it is, since that requirement determined our choice of gauge-fixing interaction).

Next, let us consider the scaling behavior of the remaining contributions to

the supermatrix (5.9). These scale as

M= (5.12)

(MPlauck) "_;2'7 (I‘JPlanck)”—2

(The fact that the different blocks of our supermatrix possess different mass-

( (Mpianek)™ 2 (MPlanck)l;_g'I)

dimensions is not at all alarming, and indeed should be expected since our various
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fields have different mass-dimensions; we are only interested in the superdeter-
minant of this supermatrix, which ss homogenous in mass-dimensions.) If we are
working at energies low compared to the Planck Mass, the dominant contribution
to this superdeterminant comes from the block-diagonal determinants (so long as
these are non-singular). All off-block-diagonal contributions are suppressed by

at least

n :
S A— 5.13
(I‘ftPlanck)-—53 ( )

If we neglect these Planck Mass suppressed off-block-diagonal contributions (us-
ing the same reasoning as in the vector field case), our gravitational canonical

functional measure assumes the simple form

Jdee (2L Lor) )Mo Bl Y]y

6(8094)6(30gB) 6(3on.4)6(8onB)

We can begin to evaluate the first of these two determinants by putting our

gauge-fixing Lagrangian into a more convenient form. First, let us use the relation
1
30 (V=96"*) = ~(~9)' /20" T}, = ~5(=0)"/*0" 0" (~ 020,y + 2030)  (5.15)

to rewrite our gauge-fixing interaction (5.2) as

1
Ler = ‘é‘;&\/ _gg'\agﬂg‘w(_gl\a,p + 29;»\,0)("9111’,1/ + 2gup,'r)- (5-16)
Using the symmetries of the indices, two of the terms can be combined, and the

entire expression put into its penultimate form

1

Lor = g—=v/=9(6"70" 9" — 49" gMg" + 499" ") DroGprp-  (5:17)

Relabelling our indices, and combining this expression with (5.1), we obtain the
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complete graviton self-interaction (in Feynman gauge, a = 1)

Len+ Lop=-Y2 (49"”9“" g"7 — 4g"7gPg"* + 2g¥A g7 gor

8G (5.18)
— 2gTAgP7gvH — g""y“"g"")gw,ag,\p,r-
We are interested in computing the determinant of the matrix
6 )
Len + Ler 5.19
5 Botar) 5B075) ) (5.19)

with 8 > a,6 > «v. Proceeding carefully, we should note that our variational
derivatives m act only on the terms which appear at the extreme right of
(5.18), and that

6 6 00
— 5a B 5 B Tgé ’166
5(B0dag) 5(Bogys) P 920m =0l e + aafy(es]+ 576 (5.20)
+ (6268 + 6380) (8765 + 67+7)).
~ Therefore, (5.19) can be computed to be
V915,00 B0 76 060 0 6
Y JJg 2] 247 aff _ 0,70 B6 _ a0 60 B~y
o5 (29709797 +29709°0g%F — g0g10gP% — g%0gg (5.21)

_gﬂog'yoga6_gﬂ0 60 avy __ 00 a~y, B6 00 af ﬁ'y].

g9 999 —999

This "("; D by "(“; Dmatrix determinant (with n being the dimensionality of
our spacetime) is extremely difficult to evaluate in general. However, the overall
functional factor of /=g contributes a determinantal factor of gﬂ_":r . ; and, in

keeping with our previous approximations, if we assume that we are working at
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energies low compared with the Planck Mass, our metric field can be expanded

out in the linearized tensor field approximation to gravitation, namely
g =" + " with n* =diag(+1,-1,...,—1) and A* < 1. (5.22)
Inserting this into (5.21), a lengthy computation shows that the square-root of

the determinant of our graviton-graviton measure matrix is (to lowest order in

h* and dropping an unimportant constant factor) given by

ES"_“l n+1 n+2 n+1 n(n41) n3—8n—4q

‘ 8 5.23
1 g (5.23)
a
as might have been guessed from naive index-counting arguments. (Actually, the
determinant is singular in two spacetime dimensions, but this need not concern

us since most of our previous approximations were invalid in two dimensions as
well.)

Finally, there remains only the computation of the determinant of our ghost-

ghost measure matrix from (5.6). This is given by

62L hos 62L ghos
det[&(aon,,)?(a;m)] = de t[( 6(Bof1u) "6"(6277 ))2]

(5.24)
- det[((—g)l/ (2970626 + g®6L6] ))2]’

and the measure factor contributed by the inverse of the square-root of this

determinant is

g4 (¢®)™. (5.25)

Thus, the total canonical functional measure for gravitation in n spacetime di-

mensions is
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"!"‘3! nd—sn—4¢ -
[dg“,,](n) = H(QOO) ¢t g ¢ dg;wdﬂpd'lu- (5'26)
z

This expression differs by a factor of gl/ ? from the four dimensional special
case worked out by Leutwyler [2], Fradkin and Vilkovisky [4], and others [6].
This is because under my choice of canonical variablies, both of the ghost fields
transform as world vectors, while under theirs, one would transform as a world
vector and the other as a tangent space vector and set of world scalars. The extra
factor of g!/2 merely represents the determinant of the Jacobian between these
two arbitrary choices of functional integration variables. Although all of these
authors wrongly ignore the effects which correspond to the graviton-graviton
and graviton-ghost blocks in our measure supermatrix deriving from the ghost
Lagrangian, they are fortunate enough to obtain the correct answer (for four di-
mensions) anyway: as we have seen, these additional contributions are negligible

at energies far below the Planck Mass.

The particular functional measure factor in (5.26) was first suggested (for the
four dimensional case) by Leutwyler [2], and first derived in detail by Fradkin
and Vilkovisky [4], who used the constraint-elimination procedure previously
~ suggested by Faddeev and Popov [3]. Faddeev and Popov’s own derivation had
contained an error and resulted in a different answer, which they have since

retracted.”

* I am grateful to Richard Woodard for informing me of this last fact.

25



6. What These Results Mean

To summarize our results, the canonical functional measures for scalar, vec-
tor, and gravitational fields in n dimensional curved spacetime and at low energies

compared to the Planck Mass are given by

(dg]™) = T () gV *dg = T] Mg ag
z z
@A™ = [[(¢%)*F ¢ dAdidn = [| MY dA,dndy 6.1)
x z

n3—5n—4

n(n-3) n%-5n-—¢ _ _
[dgu]™ = [J(6®) 5" g™ 3" dgdiudn® = [| ML dgudiudn®.
z

These results contain several interesting features. First, the exponent of the
g% piece of the measure is always equal to the number of physical degrees of
freedom divided by two. It is easy to see why this result is true in general
for theories of the form which we have been discussing. In theories in which
all degrees of freedom are physical, bosonic degrees of freedom each contribute
a factor of (¢°°)!/2 and fermionic degrees of freedom each contribute a factor
of (g°°)1/2. Now if we consider a theory with some non-physical degrees of
freedom, s.e. some gauged and constrained variables, the number of first class
 constrained variables will always be equal to the number of gauge degrees of
freedom [11]. After applying the Faddeev-Popov ansatz, all of the previously
unphysical degrees of freedom become physical, but we have added an additional
set of ghost fields having opposite commutation relations to those of our original
fields. The number of ghost fields added is twice the number of gauge degrees
of freedom, hence equal to the sum of the number of gauge degrees of freedom
and the number of constrained variables. Therefore, the extra factors of (g°)1/2
coming from our newly added physical field degrees of freedom is exactly cancelled
by the extra factors of (g°°)_1/ % coming from our newly added ghosts, leaving
00)1/2

a factor of (g to the power of the number of original physical degrees of

freedom.
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As an example, let us consider the case of gravitation in four dimensions.
Before applying the Faddeev-Popov ansatz, there are two physical degrees of
freedom (ten total degrees of freedom minus four gauge degrees of freedom minus

four constrained degrees of freedom). After applying the Faddeev-Popov ansatz,

ava nema dam hacanlia Laratan 1 Aamamnne ~AF fonadoon aed alolid foernlnnl. bt
IICLIT a4l LI DUSUILLIC PllySsiltal UCEITES Ul LICCUULLL allU CIElly 1L UOLLIIC pilydlCal

degrees of freedom; cancelling measure factors, there remains the same factor as

that for a theory of two (bosonic) physical degrees of freedom.!

As we shall see below in Sec. 8, this result relating the number of physical
degrees of freedom in the theory to the form of the canonical functional measure
holds equally well in the case of massive theories, and appears to be true in general
for all field theories of integer spin (a similar relationship holds for theories of
half-integer spin as well, as we shall see below in Sec. 7). This conjecture is
strongly supported by a naive analysis of the transformation properties of the
functional measure in its Hamiltonian formulation (i.e. counting the number of

physical canonical momenta in the theory, each of which transforms like (g°°)1/ 2).

Besides providing an excellent means of specifying the number of physical
degrees of freedom in any field theory, this result emphasizes a very important
point. Bosons and fermions are best thought of as having “oppositely signed”
. physical degrees of freedom; bosonic fields have positive physical degrees of freedom
and fermionic fields have negative physical degrees of freedom (or vice versa).
There are a number of other ways of seeing why this is the natural way of counting

physical degrees of freedom, but the above is one of the clearest.

t If we choose to follow the slightly more conventional but less elegant nomenclature in which
degrees of freedom must exist on shell to be considered truly “physical,” we are faced with
difficulties. First, Faddeev-Popov ghost fields violate the spin-statistics theorem; hence they
cannot exist as states and would not be considered “physical.” But now we must either
arbitrarily define certain of our A, (or g,,) components to be “unphysical” as well (which
makes little sense, since after applying the Faddeev-Popov procedure all the components are
on an equal footing) or allow the Faddeev-Popov procedure to lead to the non-conservation
of “physical® degrees of freedom. Furthermore, we must severely modify our statement
of the fundamental hypothesis of path integration for it to produce the correct canonical
functional measure. For both of these reasons, the nomenclature used in this paper seems
much preferable.
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This notion of “oppositely signed” physical degrees of freedom for bosons and
fermions is not merely a useless abstraction. Consider the case of gravitation in
two dimensions. It is well-known that this theory has negative one physical
degrees of freedom [18] (this is because there are more gauge conditions and
constraints in our theory than there are independent variables). A theory with
negative one physical degrees of freedom sounds like a peculiar and pathological
curiosity, until we realize that it simply means that there is one more fermionic
field than bosonic field in the theory. And this is indeed the correct interpretation:
after applying the Faddeev-Popov ansatz, our theory would contain three bosonic
fields goo, go1, 911 and four fermionic ghost fields 7o, 71,17°, n!. Nothing in the least

mysterious or pathological is involved.

A second interesting point is simply the mere presence of the factor (gOO)K in
the canonical functional measure. The measure is not at all manifestly covariant
under general coordinate transformations (the factors of detg,,, which naively
transform like tensor densities rather than as scalars, can be shown by a trivial
calculation [3] to actually be invariant under an infinitesimal general coordinate
transformation). However, such a naive covariance analysis assumes that the

point permutation Jacobian for a general coordinate transformation is unity, 1.e.
that

[1d¢(z) = [[ d¢(z) where z' = z+ ¢(2), (6.2)

and this is not at all certain. In fact, Fradkin and others [4-5] have repeatedly
argued that this Jacobian should not be unity, and that the non-covariance of
the g% factor in the canonical measure is required in order to cancel this other
non-covariance, and render the entire measure invariant. Their argument demon-

strates the self-consistency of these assumptions.

Fujikawa has also derived an expression for the functional measure for grav-
itation, and has generalized it to n dimensional spacetime [7]. His procedure
assumes that the BRST extension of general covariance is unbroken by anoma-

lies arising from the non-invariance of the functional measure. The measure
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factors which he derives agree with those above, except for the absence of all g%
factors. However, Fujikawa’s analysis tacitly assumes that the point permutation
Jacobian for a BRST transformation is unity; this is not at all clear, and perhaps
accounts for the discrepancy between Fujikawa’s results and those of this paper,

which are based on the canonical formalism.

Finally, de Witt’s brief sketches presenting a plausible functional measure
for gravitation [19] neglect those terms corresponding to the ghost-ghost and
graviton-ghost blocks of the measure supermatrix, as well as the factors of ¢%.

In fact, his result is identical to (5.2), except for the absence of the g% factors.

A final interesting feature of the canonical functional measures derived above
and summarized in (6.1) is that they factorize in an enlightening manner. Specif-
ically, the measure factor for a vector field theory in n 4+ 1 dimensions is equal to
the product of the measure factor for a vector field theory in n dimensions and

the measure factor for a scalar field theory in n dimensions, namely

(n+1) _ pr(n) 5 r(n)
MO = M M. (6.3)
Similarly, the measure for gravitation in n+1 dimensions factorizes into the prod-

- uct of the measures for gravitation, vector field, and scalar field in n dimensions

M = MM M. (64)

This is not merely a curiosity; it is an absolute requirement needed for
a toroidally compactified Kaluza-Klein theory to make sense on the quantum
level, and if it were not satisfied, such Kaluza-Klein theories would be quantum-
mechanically inconsistent. Therefore, it is indeed fortunate that the canonical
functional measure satisfies this condition. Furthermore, although this factor-
ization is necessary, it is not sufficient, and as I have shown elsewhere [21], the

somewhat stronger true consistency condition is also (and automatically) satisfied
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by the canonical functional measure . None of the other functional measures sug-
gested in the literature (including Fujikawa’s) satisfy this consistency condition,
and each would lead to the complete inconsistency of Kaluza-Klein theory. This
fact significantly strengthens the likelihood that the canonical functional mea-
sure, besides being the simplest and most elegant, is also the correct functional

measure for a quantum field theory.

7. Theories Linear in Derivatives

Now that we have determined the canonical functional measures for theories
quadratic in time derivatives, let us turn to the case of theories which are linear in
time derivatives. The former involved particles of integer spin; these will involve

particles of half-integer spin.

The central feature of theories linear in time derivatives is that in their usual
form their Feynman path integral representation cannot be put into Hamilto-
nian formulation. This is because the field equations of these theories are first
order in time derivatives, implying that only the values of the fields themselves
(and not also the first time derivatives of the fields) need be specified on each
spacelike hypersurface. In fact, any conjugate momenta which we might care to
define in the usual manner (such as 4 = 6—(3%—;5) are merely proportional to
combinations of the fields themselves and carry no independent information. For
this reason, the formal machinery developed in Sec. 2 is initially inappropriate
for this situation. The canonical functional measure must be obtained through a

similar but slightly different procedure.

The basic idea of the approach which we shall use is intuitively simple. Ac-
cording to the fundamental hypothesis of path integration, the functional measure
factor should be unity in the Hamiltonian formulation, in which our functional
integration variables are independent, canonically conjugate fields and momenta.
Therefore, we shall redefine the variables of our theory so that half of our origi-

nal fields retain the properties of fields and the other half assume the properties

30



of canonical momenta, conjugate to those fields., becoming what one might call
“canonical pseudo-momenta.” Since the nature of such a theory of canonically
conjugate fields and pseudo-momenta is formally distinguishable from the usual
case of a theory based on fields and momenta, one may invoke the fundamental
hypothesis of path integration to argue that the canonical functional measure fac-
tor should be unity in the “pseudo-Hamiltonian formulation” of the theory. From
this assumption, it is easy to derive the non-trivial functional measure factors
which would be present in other, more commonplace formulations of the theory.
A non-trivial functional measure factor may be easily understood as being the
product of the various factors by which we must multiply some of our fields to

give them the characteristics of canonical momenta.

Let us consider then a Lagrangian based on fields Q4. which is linear in
the derivatives of these fields, and with a kinetic term at most quadratic in the
fields themselves (this last restriction follows automatically by counting mass-
dimensions). For the moment, let us also assume that these fields Q4 are all

bosonic. Under these conditions, our Lagrangian can be written as
L =E"3Q4 - F, (7.1)

with E4 and F being functions of the Q4 (as well as possibly some other fields

in our complete theory).

Now this expression can be rewritten as

6L 2L
=2 5 Qu-F=— 9%t
£ 0Q4 5(000)5@5

5(30Q2) @B%Q4 — F, (7.2)

where we have used the fact that the kinetic term of £ is at most quadratic
in Q4. Next, if we use integration by parts to shift the time derivative which

appears in the first portion of (7.2), we obtain
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6L

£= " 5(00Q4)6QB

e (sros (0Qm)Qs—F. (1.3

—(s55)Ra—F=
dt\é (80 Q A) )

Therefore, if we require our theory to be consistently defined under integration

by parts (any theory linear in derivatives can be put into a form which meets

this requirement), we obtain the condition

82L §2L

—_— = = =NA4B 4).
5(30Q4)6Qs  6(80QB)6QaA (7.4)

Note that N4Z is not a function of the Q4 (though it might be a function of
other fields appearing in our complete theory) and that

L= NABQBaoQA — F. (7.5)

We can now place a useful restriction on the form of N4Z by considering the
nature of our fields. Since the Q4 have half-integer spin, we can choose to work
" in a basis of chiral eigenstates, s.e. a basis in which our fields are labelled by a
chirality index. We can separate our fields into two categories, Q4 = (QrL, @Rr),
with L being a new index ranging over the “left-handed” fields and R a new
index ranging over the “right-handed” fields. For our purposes, we will define a
field to be “left-handed” if it either creates left-handed particles or annihilates
right-handed particles; “right-handed” fields satisfy the opposite requirement.
(Whether or not particles of different chirality are connected by the presence of a
mass term in our Lagrangian is immaterial, and the left-right symmetry or lack

thereof in our entire tileory is equally irrelevant.)

Since the kinetic term of our Lagrangian should preserve chirality, each kinetic

piece must contain one right-handed and one left-handed field, implying that the
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matrix N4P has the block-off-diagonal form

0 NRL
AB __
N _(NLR . ) (7.6)

This allows us to rewrite our Lagrangian as
L= NPQLaoQr + N*FQrdoQL — F = 2N*Q180Qr - F, (7.7)

where we have used integration by parts to shift the time derivative, and absorbed
any extra terms produced into a redefinition of F. Finally, let us redefine our
left-handed field variables by

PE = 2oNELQ,. (7.8)
Our Lagrangian now assumes its final form
L = PR3,Qr — F[PE,QR]. (7.9)

But now our newly defined left-handed fields P appear in this theory exactly
as if they were the canonical momenta conjugate to our right-handed fields Qpg;
they are in fact our canonical pseudo-momenta. Therefore, by our fundamental

hypothesis, the functional measure for this theory is given by
[dPRdQg] = [[ dPRdQr. (7.10)
z

(Note that in deriving this result we have tacitly assumed that our Lagrangian
is non-degenerate, i.e. that det N4B =£ 0; in fact, if there had been gauged and
constrained variables in our theory, it would have been necessary to apply a form

of the Faddeev-Popov ansatz before following the above procedure.)
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This form of the functional measure differs by a Jacobian factor from the more
usual form in which all the functional variables of integration are our original

fields. The canonical functional measure in the more common form is therefore

§PE 6 PE
dQ4] = [dPRdQp] = [ det=——dQrdQr = [ | det——dQ., 7.11
[4Q4] = [aP"dQz] = [ | det 55— d@rdan [ldetzg a0 (1)
with the canonical functional measure factor being”™
6§ PR 62L 820 1/2
det—— = detN*L = det(———" ) = |det (——0 = , (7.12
6QL (5(3OQR)5QL> [ (5(3OQA)5QB)] (7.12)

This result has been derived under the assumption that all of our fields Q4
are bosonic. However, we have carefully chosen our derivation in such a way that
all the steps leading to (7.12) are equally correct for fermionic Q4. Hence, the
canonical functional measure factor for the case in which some of our Q4 are
bosonic and others are fermionic is simply the appropriate generalization of the

Jacobian determinant appearing in (7.12), namely

[4Q4] = [ [sdet(zwo—gfm)]l/ *40.4. (7.13)

Actually, in practice, all the half-integer spin fields with which we will concern

ourselves shall be fermionic.

Let us now apply these general results to compute the canonical functional
measure factors for spinor fields. The form of the measure matrix in (7.13)

ensures that only the kinetic portion of the spinor interaction is relevant to this

* It is also possible to derive this same result by adding a pseudo-time coordinate and utilizing
a statistical mechanics approach [14].
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computation. For a Dirac spinor field in n dimensional flat spacetime, the kinetic

Lagrangian term is
t, . -
= -2—(¢’7“8,,¢ - (au¢)7”¢)a (7'14)

with each of our n dimensional Dirac spinor fields ¥, having 2[*/2]-1 compo-
nents and Q4 = (¥, v) having 2[*/?| components. For this choice of functional
integration variables, our functional measure factor is given by (sdetM)l/ 2, with

M being a 2["/2] x 2[n/2] block-diagonal matrix, each of whose 2 x 2 blocks is given

by
0 $4°
CoTh). (7.15)
-3 0

The determinant is a constant, hence the canonical functional measure is trivial.
The functional measure factors for Majorana or Weyl spinor fields would be given

by the square-root of this Dirac field measure factor, and would be equally trivial.

Next, let us consider the more interesting case of a Dirac spinor field acting
in curved spacetime (i.e. coupled to a quantized gravitational field). The kinetic

portion of the Lagrangian is [20]

£ = SVTTRLTV(Tu8) — b (TP (7.10)

As in earlier cases, our covariant derivatives contain terms in which time deriva-
tives act on the metric field. However, these terms do not contribute to the
graviton measure matrix since all such contributing terms must be quadratic
in time derivatives. On the other hand, the spinor measure matrix derived from
(7.16) is non-trivial, and has a block-diagonal form, with each of the 2[*/21-1 2 x 2

blocks being given by

(7.17)

( 0 %Hv"h?)
—%\/“_9’7phpo 0 .

Dropping all unimportant constant factors, the determinant of the block in (7.17)
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is
1 1
07 hhg = So{7* P YhRG = Za2n*Phlhg = gg®. (7.18)

Therefore, the canonical functional measure—containing the square-root of the

superdeterminant of the entire measure matrix—is

[dgdy]™ = [](gg®) 2" dpay. (7.19)

Once again, the functional measure factors for Weyl or Majorana spinors in n

dimensional curved spacetime would simply be the square-root of this quantity.

It should be noted that the exponent of the g% piece appearing in the measure
is equal to one-fourth the number of physical degrees of freedom, with fermionic
degrees of freedom being once again counted with a minus sign. This appears to

be true in general for theories of half-integer spin.

8. Measure Factors for Auxiliary
Fields and Massive Vectors

Now that we have determined the canonical functional measures for fields
whose kinetic term contains two derivatives (integer spin fields) and fields whose
kinetic term contains one derivative (half-integer spin fields), we should also
consider the proper means of treating fields whose “kinetic” (i.e. quadratic) terms
contain no derivatives. Such fields are usually called “auxiliary,” and are most
often discussed in the context of supersymmetric theories, in which they play a
crucial role by closing the symmetry algebra [12,13]. However, they enter into

even as simple a theory as massive electro-magnetism.

First, it should be noted that since they are non-propagating, auxiliary fields
are by definition non-physical and so should not be integrated over under the
fundamental path integral hypothesis (see Sec. 3). This may be best understood

by realizing that auxiliary fields do not have canonical commutation relations,
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and are purely classical objects. Being classical fields, they are not true functional
variables of integration, do not enter into the functional measure, and should be
treated as classical constant factors. However, if for reasons of convenience or
elegance we wish to treat our auxiliary fields as functional variables of integration
appearing in the path integral, we must multiply our functional measure by a

compensating factor to cancel the result of this additional integration.

For example, suppose that the functional measure for a theory based on

physical fields F4 is given by
[dF4) = [[ M|Fa)dFa. (8.1)
x

Now further suppose that the Lagrangian for this theory also contains a non-
physical auxiliary field Q, which appears at most quadratically in £ and whose

quadratic term has the form
1 2
L= —ED[FA]Q . (8.2)

By our fundamental hypothesis, the canonical functional measure for our theory
containing both F4 and Q is still just given by (8.1), since Q is not a physical
field. Functionally integrating over @ would correspond to inserting the value of
Q determined by our classical field equations into the Lagrangian, and would thus
remove @ from our theory while possibly adding new terms to the effective La-
grangian produced; such a procedure is perfectly legitimate for a non-propagating
field. However, this Gaussian functional integration over Q would also produce

an additional functional measure factor, namely

[ T14@ exp'® = [1(DIFA) ™ eapiss, (8.3)

if we assume that Q is bosonic. Generalizing this result to the case of functionally
integrating over an arbitrary number of bosonic and fermionic auxiliary fields is

simple and yields the result

37



/ H dQ4 exp*S = H [sdet (5Q5:fQB )] —1/2ezp"s‘”. (8.4)

Therefore, the canonical functional measure for our physical fields F4 and aux-

iliary fields @p, although still just given by (8.1), can also be written as

52

[dFadQ4] = [[ M(FaldF4 = H[Sd‘t(mso

)] M(F4)dQadFa. (8.5)

Often this latter form is preferable.

Let us apply these results concerning auxiliary fields to the specific case of a

massive vector field in n dimensional curved spacetime. Our Lagrangian is
1 1
Of the polarizations of A, which appear in this Lagrangian, A is auxiliary and

the remainder are physical. No gauge degrees of freedom are present. In the

Hamiltonian formulation, our canonical functional measure is given by
[dA,) = [ 1™ Am. (8.7)

Integrating over the canonical momenta (see Sec. 4) produces the functional

measure factor for our physical fields A,, in their Lagrangian formulation

[det(é(aoA:;f(aoAn))]l/ [det(\/_—gmo n0 - vV=99%g mn)]

00)"—;—2 o8

=(g gl.

This result applies for energies low compared to the Planck Mass.
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Meanwhile, if we choose to functionally integrate over our auxiliary field Ay as
well, we must include the compensating functional measure factor of (g%)!/2g1/4
(the mass term factor of m is simply a constant and can be neglected). Therefore,
the canonical functional measure for a massive vector field in n dimensional

curved spacetime is given by

[d4,) = [](6™)F 6T dA,. (8.9)

It should be noted that the exponent of the g% piece in the measure once
again equals one-half the number of physical degrees of freedom in this integer
spin theory. It should also be noted that the functional measure for this n
dimensional massive vector field is equal to the product of the measures for an n
dimensional massless vector field and an n dimensional scalar field. This equality
is necessary for the conventional analysis of the Higgs mechanism to be correct
on the quantum level. As I show elsewhere [21], this consistency as well as the
quantum consistency of Kaluza-Klein theories mentioned previously are both
special cases of the automatic consistency of the canonical functional measure

under field redefinitions.
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