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We study the instability of the Higgs vacuum caused by a cloud of strings. By catalysis, the decay rate 
of the vacuum is highly enhanced and, when the energy density of the cloud is larger than the critical 
value, a semi-classical vacuum decay occurs. We also discuss the relation between the string cloud and 
observational constraints on the cosmic strings from the viewpoint of the catalysis, which are converted 
into bounds on the parameters of the Higgs potential.
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1. Introduction

The discovery of the Higgs particle and the precise measure-
ments of the top quark mass seems to reveal that our vacuum, in 
which the electroweak symmetry breaks down (we call the Higgs 
vacuum for short), is metastable [1]. This fact has been boosting 
studies on the Higgs vacuum from various point of views [2]. These 
decay processes are known as the homogeneous vacuum decay. On 
the other hand, the inhomogeneous vacuum decay, initiated by [3], 
can occur in nature. The idea was later applied to phenomenologi-
cal model building [4] and the vacuum decay in string theories [5]
and gravity theories [6–10]. Among them, the black hole catalysis 
discussed in [6,7] is interesting because it is generally applicable to 
various settings; The catalysis seeded by a topological soliton [3,4]
highly depends on the structure of the potential. Typically, the soli-
ton is stabilized by the topological charge related to the symmetry 
breaking. For the catalysis to work in this case, the true vacuum 
has to be connected to the symmetry restoring point of the poten-
tial as emphasized in [4].

The catalytic effects caused by the string cloud [11] was re-
cently discussed in the context of the creation of the bubble Uni-
verse in five dimensions proposed in [12]. The catalysis provided 
a kind of the selection rule to the cosmological constant [13]. In 
this paper, with the aim of getting interesting phenomenology, we 
apply the method to the decay of the Higgs particle in the stan-
dard model, basically along the lines of [8]. We then study the 
relation between the cloud of string and cosmological observa-
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tions by showing how to connect the Higgs potential with the 
cosmic string tension. If the cloud of strings exists in nature, it 
can leave signatures in the cosmic microwave background (CMB) 
and gravitational wave probes by pulsar timing arrays and laser 
interferometers. Assuming that the string cloud network behaves 
as the standard scaling cosmic string network, we apply cosmo-
logical bounds on the tension to obtain constraints on parameters 
of the Higgs potential. We also consider how future gravitational 
wave observations can help to test the scenario of Higgs vacuum 
decay through the catalytic effect of the string cloud. On the con-
trary, if the Higgs potential parameters are determined by future 
collider experiments, one can infer the string tension, which can 
be used mutually with cosmological observations.

The organization of this paper is as follows. In section 2, we 
briefly review the method discussed in [14,15,6,7] and apply to 
the decay of de Sitter to anti-de Sitter (AdS) vacua catalyzed by a 
cloud of strings [11] in the aim of application to the Higgs vacuum 
decay. We show that there exists the critical value above which 
semi-classical decay occurs rather than quantum tunneling. In sec-
tion 3, we discuss the instability of the Higgs vacuum. In section 4, 
we investigate a connection between a string cloud and cosmolog-
ical constraints on cosmic strings. From this, we study constraints 
for the parameters of Higgs potential. The section 5 is devoted to 
conclusions.

2. The catalytic decay of de Sitter vacua

In this section, first we review the general study on the catalytic 
decay of vacua discussed in [15,6,9], and then we apply it to the 
cloud of strings. We compute the bounce action for the decay of 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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a de Sitter vacuum to the Minkowski vacuum and compare with 
that of Coleman-de Luccia [15].

Consider a cloud of strings in a four-dimensional spacetime 
with a cosmological constant �. It is constructed of the relativis-
tic strings and by smearing the energy density, one can get the 
cloud of strings. We consider a node emanating several legs, giv-
ing rise to spherically symmetric cloud of strings. The solution for 
the Einstein equation of the spacetime is given by [11]

ds2 = − f (r)dt2 + dr2

f (r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (2.1)

where

f (r) = 1 − �

3
r2 − a . (2.2)

Here, a is essentially the tension of the cloud of strings.
Now, we study a junction of two solutions with different cos-

mological constants and parameters. By using the subscript + (−)

for quantities outside (inside) the wall, the junction conditions, 
known as the Israel’s conditions [16], are described by

1

R
( f+τ̇+ − f−τ̇−) = −4πGσ , (2.3)

f±τ̇ 2± + Ṙ2

f±
= 1 , (2.4)

where we introduced the Euclidean time τ by the Wick rotation, 
t = −iτ . R corresponds to the wall trajectory and the metric on 
the wall has the following form,

ds2 = −dλ2 + R2(λ)
(

dθ2 + sin2 θdφ2
)

. (2.5)

From (2.3), the equation for the wall trajectory is given by

Ṙ2 = −σ̄ 2 R2 + f̄ − (	 f )2

16σ̄ 2 R2
, (2.6)

where we defined

f̄ = 1

2
( f+ + f−) , 	 f = f+ − f− . (2.7)

Adopting the same notation as [7,8], we introduce η = σ̄ l, σ̄ =
2πGσ and

l2 = 3

	�
, γ = 4σ̄ l2

1 + 4σ̄ 2l2
, α2 = 1 + �−γ 2

3
. (2.8)

Also, we define the dimensionless parameters by

R̃ = αR

γ
, λ̃ = αλ

γ
τ̃ = ατ

γ
. (2.9)

From the explicit metric of the cloud (2.1), the equation of the wall 
reduces to(

dR̃

dλ̃

)2

= 1 −
(

R̃ + k′

R̃

)2

− k , (2.10)

where we defined

k =
(

a− + 	a(1 − α)

2σ̄ γ

)
, k′ = 	a

4σ̄

(
α

γ

)
, (2.11)

and 	a = a+ − a− .
Now we are ready to study the decay process of de Sitter space-

time with �+ > 0 to the anti de Sitter spacetime �− < 0. For 
convenience, we introduce
l± =
√

3

±�±
, δ = l−

l+
. (2.12)

By following the method1 used by Coleman and de Luccia, we 
compute the bounce action B to estimate the decay rate. The 
method to compute the bounce action for inhomogeneous decay 
was recently developed by Gregory, Moss and Withers [7]. We will 
proceed the analysis basically along the lines of the paper. The ac-
tion is divided into two parts, one is the contribution coming from 
the singularities of the bounce solution, while the other is from 
the regular part of the solution.

By doing the same way as [7] (see the appendix for an review), 
the first one is given by the area of the horizon Ai

IB = − 1

4G

∑
i

Ai . (2.13)

On the other hand, the second one is

I = − 1

2G

(γ

α

)2

×
λ̃max∫

λ̃min

dλ̃R̃2
[(

df+
dR̃

− 2 f+
R̃

)
˙̃τ+ −

(
df−
dR̃

− 2 f−
R̃

)
˙̃τ−

]
,

(2.14)

where λmin and λmax are obtained by the condition Ṙ = 0 as fol-
lows,
√

2R̃max = √
2R̃(λ̃max)

=
(

1 − k − 2k′ + √
(k − 1)(k − 1 + 4k′)

) 1
2

, (2.15)
√

2R̃min = √
2R̃(λ̃min)

=
(

1 − k − 2k′ − √
(k − 1)(k − 1 + 4k′)

) 1
2

. (2.16)

In computing the bounce action, we subtract the action cor-
responding to the initial state. The contribution from the cosmo-
logical horizon rc = √

3(1 − a+)/�+ , which is the only singularity 
existing in the bounce solution in our setting, cancels out

B = − A
4G

+ I −
(

− A
4G

)
= I . (2.17)

Hence the total is given by I . Below, we numerically compute this 
action with several choices of parameters. Remarkably, from Fig. 1, 
we find that there is a critical value above which the bounce action 
vanishes. This is in contrast to the catalysis by the black hole dis-
cussed in [7]. When the initial value of a+ is larger than the critical 
value, the semi-classical vacuum decay happens where quantum 
tunneling is not required for the decay. From the right panel of 
Fig. 1, we see that the decay without remnants is dominant con-
tribution for fixed η and a+ . In Fig. 2, we show the bounce action 
for various choices of δ = l−/l+ . From this we find that δ does not 
affect the bounce action much compared to those of a+ and η.

To estimate the critical value, let us discuss the condition 
Rmax = Rmin, which yields (k − 1)(k − 1 + 4k′) = 0. From this,2 we 
find that the critical value is given by

1 First, we solve the equation of motion for R , then substitute it in the action. 
By subtracting the action corresponding to the initial state, we obtain the bounce 
action B .

2 We obtain two solutions, a+ = 8η2/(1 + 4η2)(1 ± α). The smaller one gives 
stronger condition.
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Fig. 1. Left panel: The catalytic decay of de Sitter vacuum to anti-de Sitter vacuum. The bounce action for δ = l−/l+ = 1/104, a− = 0 and various choices of η. From the 
bottom to the top, we choose η = 1/8, 1/5, 1/4 and 1/3. Right panel: The bounce action for the fixed a+ = 1/10 and δ = 1/10. We choose η = 1/8, 1/5, 1/4 and 1/3 from 
the bottom.

Fig. 2. Left panel: The bounce action for η = 1/10, a− = 0 and several choices of δ. The blue curve corresponds to that for 1/104, green for 1, and gray for 104. The difference 
of δ does not affect much. Right panel: We show differences between two curves. The top curve corresponds to the difference of the bounce actions for δ = 1/104 and 1. 
The second and third curves correspond to those for δ = 1/104 and 104 and δ = 1 and 104. Clearly, compared to the values of bounce actions shown in the left panel, the 
differences are very small.
a(c)
+ = 8η2

1 + 4η2
(1 + α)−1 . (2.18)

The decay with a+ > a(c)
+ induces the semi-classical decay.

3. The catalytic decay of Higgs vacuum

It is believed that the electroweak vacuum is metastable after 
recent measurements of the top quark mass and the discovery of 
the Higgs particle. In this section, we apply the method developed 
in the previous section to the decay of Higgs vacuum [1]. In prin-
ciple, we can use the precise two-loop order of the Higgs potential 
for this analysis, however it is quite involved. Thus, we here use a 
toy model of the potential that almost recover the Higgs potential. 
According to [17,7], we adopt the following potential,

V (φ) = 1

4
λeff(φ)φ4 + 1

4
(δλ)bsmφ4 + λ6

6

φ6

M2
new

+ · · · , (3.1)

where

λeff(φ) � λ∗ + b

(
ln

φ

φ∗

)2

, (3.2)

with b being a constant of order 10−4–10−5. The first term is the 
contribution within the standard model while the second and third 
contributions come from the beyond standard model. As the scale 
of the new physics we naively assume Mnew = ζ Mpl with ζ ≤ 1. 
The computations in the previous section rely on the thin-wall ap-
proximation. So we constrain the parameters in the potential to 
the range where thin-wall approximation is valid. Roughly speak-
ing, when the peak of the potential is large enough compared to 
the depth of the true vacuum. As an illustration, in Fig. 3 we show 
the parameter ranges for several choices of λ∗ where the thin-wall 
approximation is reliable. For each choice of λ∗, the allowed range 
is quite narrow, but adjusting it appropriately, we can cover a large 
region of λ6–φ∗ plane.

In this case, the tension can be described by

σ =
φtv∫

φfv

dφ
√

2 [V (φ) − V tv] . (3.3)

The initial value of φ is the weak-scale which is much smaller 
than the Planck scale. So, we simply take φfv = 0. Also, the cos-
mological constant at the present age is much smaller than the 
absolute value of that of the true vacuum, hence we set �+ = 0
hereafter. In this case, since the parameter δ vanishes, namely 
α = (1 −4η2)/(1 +4η2), the critical value shown in (2.18) becomes

a(c)
+ = 4η2 = 6πG

−V tv

⎛⎜⎝ φtv∫
φ

dφ
√

2[V (φ) − V tv]
⎞⎟⎠

2

, (3.4)
fv
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Fig. 3. Left panel: Allowed parameter ranges for several choices of λ∗ in which the thin-wall approximation is valid. From the bottom, we took λ∗ = −0.003, −0.004, −0.005, 
−0.007 and −0.008. For each choice of λ∗ , the allowed range is quite narrow, but by changing it, we can cover a large region of λ6–φ∗ plane. We assumed b = 10−4 and 
(δλ)bsm = λ8 = 0. Right panel: To emphasize the narrowness of the allowed region, we show the enlarged figure for λ∗ = −0.005.

Fig. 4. η for each choice of parameters of Higgs potential. We assumed b = 10−4 and (δλ)bsm = λ8 = 0. As for λ6/ζ 2, we used values in the allowed region of Fig. 3. Each 
color corresponds to that of Fig. 3.
where we used l− = √−3/8πG V tv. Hence, when the initial impu-
rity is larger than 4η2, the semi-classical vacuum decay occurs. 
To estimate the order of the critical value, in Fig. 4 we show 
η = 2πGσ l for each choice of parameters of Higgs potential by 
assuming b = 10−4 and (δλ)bsm = λ8 = 0.

4. Cosmological constraints on the cloud of strings

In this section we study the relation between the cloud of 
strings and cosmological observations of cosmic strings. Since con-
straints on cosmic strings are typically provided in terms of the 
tension of strings, let us begin by relating the parameter a+ intro-
duced in the previous sections and the tension of strings. To do 
that, we compute the (0, 0)-component of the Einstein equation 
by putting � = 0 to extract a contribution of the string alone. By 
plugging the explicit metric (2.1) into the Einstein equations, one 
obtains the total energy density

ρcl(r) = c2

8πG

a

r2
. (4.1)

Integrating it over a distance L from the origin, we get the total 
energy E stored in a sphere with radius L,

E =
L∫

0

ρcl 4πr2 = c2a

2G
L . (4.2)

The tension of the cloud of strings is obtained by dividing the en-
ergy E by L,

μ ≡ E
2

= a
. (4.3)
c L 2G
Thus, the parameter a+ of the string cloud solution is nothing but 
2Gμ. This is interesting because we can apply the cosmological 
constraints on cosmic strings to the catalytic vacuum decay, as we 
will see below.

Consider the evolution of the cloud of strings without specify-
ing the generation mechanism. In the standard scenario of cosmic 
strings (see [18] for a review), from numerical simulations of the 
string evolution, it is believed that the string network reaches the 
scaling regime where the ratio γ = ξ/t becomes asymptotically 
constant. ξ is the typical scale of strings. When the initial den-
sity of strings is large, the interaction between strings enhances 
and the strings decay efficiently, which reduces the initial density. 
On the other hand, when the initial density is small, the interac-
tion between them becomes rare. Also, by the expansion of the 
Universe, more strings come in from outside of the horizon, which 
eventually increases the string density. Hence, the details of the 
initial distribution do not matter, as long as there are some infi-
nite strings. The energy density of cosmic strings is given by

ρst = μ

ξ2
. (4.4)

In the scaling regime, it goes as ρst ∼ 1/t2 just like the total energy 
density ρtot = 3H2/(8πG), so that their ratio is constant and does 
not dominate the energy density of the Universe,

ρst

ρtot
= 8πGμγ 2

3ν2
	 1 , (4.5)

where we have used that the Hubble expansion rate is given by 
H = νt with ν = 1/2 or 2/3 for the radiation and matter era, re-
spectively.
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Although the string cloud is slightly different from the stan-
dard cosmic string since it has a junction point of strings, one can 
naively expect that the network of the string cloud also reaches 
the scaling regime: In [19,20], the network of cosmic necklaces 
or cosmic lattices, which has junction points on strings where 
monopoles are attached to two or more strings, were studied 
and it was concluded that the string network reaches the scal-
ing regime. It may be also similar to the network evolution of the 
cosmic strings attached to primordial black holes, which was dis-
cussed in [21]. Naively speaking, when the mass of the junction 
point m and the distance between junctions d satisfy m/μd 	 1, 
the contribution from the junction points to the network evolu-
tion is negligible. Since we assume that the junction point of the 
string cloud is massless, the condition is satisfied. Also, in [22], the 
cosmic string network with Y-junctions, which is a slightly differ-
ent setup but shares some features with our model, was discussed 
and the conclusion was that the network reaches the scaling be-
haviors as well. Hence, we simply assume that the network of the 
string cloud behaves like standard cosmic strings, and apply the 
constraint for the standard comic strings to our cloud. Note that 
even in the case junctions interrupt the string network to form 
loops and prevent the scaling regime, one may expect that strings 
intersect more often after the string density increases while the 
Hubble horizon grows and it eventually enhances the loop pro-
duction and leads to the scaling solution. In this case, the number 
density of strings in the Universe becomes larger and cosmologi-
cal constraints on the string tension get stronger. In this sense, our 
assumption gives conservative constraints.

From the recent CMB observations by Planck [23], cosmic 
strings with high scale tensions were ruled out, allowing us to as-
sume strings with Gμ < O(10−7). Pulsar timing arrays probe grav-
itational waves at the nano-Hertz frequencies 10−9–10−8 Hz and 
have placed the strongest constraint so far, Gμ ≤ O(10−10) [24]. 
Note that the constraint by pulsar timing arrays changes depending 
on the assumed loop size distribution, and the conservative limit is 
Gμ < O(10−7) [25]. Advanced-LIGO observes gravitational waves 
at high frequency ∼ 102 Hz and has given bounds on the string 
tension using results from both burst search [26] and stochastic 
background search [27]. The upper limit on Gμ again depends on 
the assumed model of loop size distribution, but the conservative 
limit is Gμ <O(10−6). Hence we naively assume that the allowed 
range of the string is as follows:

Gμ < 10−7 . (4.6)

Now we are ready to apply this constraint to our analysis of 
Higgs vacuum decay by the catalysis. Since a+ corresponds to 2Gμ, 
the constraint (4.6) immediately translates into that of the seed for 
the catalysis. As an illustration, let us take sample values for the 
Higgs potential and compute the numerical values of the critical 
point from (3.4). Table 1 is a list of the critical values a(c)

+ for some 
sample parameter choices of the Higgs potential, which shows that 
a(c)
+ is of order O(10−7–10−6). Comparing the constraint (4.6), we 

find that in the parameter region where the thin-wall approxima-
tion is valid, large initial values of the seed, a+ ≥ a(c)

+ , are almost 
excluded. Remarkably, this is consistent with the long life-time of 
our Universe. If the semi-classical decay had happened because of 
the large value of a+ , then the Universe could have ended in the 
early stage.

It is fascinating that future gravitational-wave experiments will 
reach the detectable sensitivity of lower scale tension. For example, 
the ground-based detector network, consisting of Advanced-LIGO, 
Advanced-VIRGO, and KAGRA, will improve the sensitivity to gravi-
tational waves at ∼ 102 Hz and will get access to Gμ ∼ 10−11 [28]. 
Table 1
Sample parameter choices of the Higgs potential and the corresponding critical val-
ues.

λ∗ φ∗/Mpl λ6 η = 2πGσ l a(c)
+

−0.005 1 5 × 102 9.8 × 10−4 3.8 × 10−6

−0.007 0.52 3 × 104 1.6 × 10−4 1.0 × 10−7

−0.008 1.16 2 × 104 7.6 × 10−5 1.1 × 10−7

The Square Kilometer Array will enhance the sensitivity pulsar tim-
ing array and be able to reach Gμ ∼ 10−12 [29]. Furthermore, 
space-borne gravitational wave detectors such as LISA and DE-
CIGO will probe gravitational waves at ∼ 10−3 Hz and ∼ 10−1 Hz 
with unprecedented sensitivity, which will enable us to go down 
to Gμ ∼ 10−17 [30] and Gμ ∼ 10−21 [31], respectively. If these 
experiments could detect a signal of cosmic strings, we would ex-
tract information on the Higgs potential through the catalysis by 
attributing the signal to the string cloud. Since the inhomogeneous 
vacuum decay is still dominant in this range, the Higgs vacuum 
may decay faster than we expect.

5. Conclusions

In this paper, we discussed the catalytic decay of the Higgs 
vacuum seeded by the cloud of strings. As an illustration, we com-
puted the bounce action for the decay for the fixed δ and η and 
found that, for sufficiently large energy scale of the cloud, the 
vacuum decay does not require the quantum tunneling and the 
semi-classical decay occurs instead. Even though the vacuum itself 
is long-lived, the short-time decay is enforced by the string cloud. 
We found that the critical value crucially depends on the parame-
ters of Higgs potential. This is interesting because the existence of 
our Universe until the present age suggests that some choices of 
the Higgs parameters are not allowed if one assume the network 
of the string cloud exists. We also showed that the Higgs parame-
ters can be related to the tension of cosmic strings and the current 
upper bound on the string tension is consistent with the fact that 
the semi-classical decay has not happened in our Universe. In fu-
ture, if we can observe the signal of cosmic strings and naively 
identify it with the string cloud, we can obtain unique constraints 
for the Higgs potential.
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Appendix A. Contributions from singular parts of the bounce 
solution

In this appendix, we briefly review how to treat singular parts 
of the bounce solution and compute the bounce action along the 
lines of [7]. Roughly, the bounce solution corresponds to a motion 
stating from an unstable point of the Euclideanized potential and 
bounce back by the potential barrier and come to the original po-
sition. Hence, it has the period of the motion which we denote T . 
On the other hand, the solution has a horizon where f (rh) = 0. 
Near the horizon, it is convenient to introduce the coordinate ρ
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defined by dρ = dr/
√

f , in which the horizon places at the origin. 
The metric (2.1) can be written as follows;

ds2 = f (r(ρ))dτ 2 + dρ2 + r(ρ)2
(

dθ2 + sin2 θdφ2
)

. (A.1)

The period T of the bounce solution is not 2π , in general. Thus, 
we introduce new time variable χ having 2π periodicity. By rep-
resenting the τ in terms of the new variable, the metric reduces 
to

ds2 = F (ρ)2dχ2 + dρ2 + r(ρ)2
(

dθ2 + sin2 θdφ2
)

, (A.2)

where we defined

F (ρ)2 ≡ f
(
r(ρ)

)(
T

2π

)2

. (A.3)

Consider the behavior of the function near the horizon ρ � 0. Since 
F is proportional to f (r) with a positive power, it vanishes in the 
limit ρ → 0. So, the leading contribution in ρ is O(ρ). On the 
other hand, the function r(ρ) goes to rh in the limit. From the 
definition of ρ , we find that the derivative of r with respect to ρ
vanishes,

dr

dρ
= √

f → 0 , (r → rh) . (A.4)

In all, near the origin the functions behave as follows;

F � ρ F ′(0) , r(ρ) � rh + 1

2
r′′(0)ρ2 . (A.5)

Substituting these expressions for (A.2), we obtain

ds2 = dρ2 + ρ2d
(

F ′(0)χ
)2 + · · · . (A.6)

If F ′(0)χ has 2π periodicity, there is no deficit angle. However, 
since F ′(0) �= 1 in general, the deficit angle δ defined by the fol-
lowing expression exists,

δ = 1 − F (ρ)

ρ

∣∣∣
ρ→0

= 1 − F ′(0) . (A.7)

Now, let us review the computation of the bounce action from 
the singularities. We denote the vicinity of the singularities B =∑

i Bi and decompose the action into two parts, I = IM−B + IB . 
Each term include a boundary, hence we add the Gibbons-Hawking 
terms,

IM−B = − 1

16πG D

∫
M−B

R −
∫

M−B

Lm

+ 1

8πG D

∫
∂(M−B)

K , (A.8)

IB = − 1

16πG D

∫
B

R −
∫
B

Lm + 1

8πG D

∫
∂B

K . (A.9)

To estimate the contributions from the singularities, we have 
to regularize them by replacing the vicinity B with an manifold 
without singularities. However we preserve the behavior near the 
cut the same. Suppose a singular part is cut at ρ = ε and manifold 
without deficit angle at the origin is glued. In this case, the metric 
near the singularity is slightly modified and the function F should 
be different in the region ρ < ε . So we introduce new function
F̃ (ρ). Since the singularity is removed, it should behave as F̃ ′(ρ =
0) = 1 at the origin. Also, at the cut ρ = ε , it has to have the same 
behavior as before, the function satisfies

1 − δ = F̃ (ε)

ε
. (A.10)

Hence, we obtain F̃ ′(ε) = 1 − δ. With this regularized metric,

ds2 = F̃ (ρ)2dχ2 + dρ2 + r(ρ)2d�2 , (A.11)

let us compute the action. The nontrivial contributions come from 
the first and third terms in (A.9). The scalar curvature is given by

R = −2 F̃ ′′

F̃
− 4r(ρ)′′

r(ρ)
− F̃ ′r(ρ)′

F̃ r(ρ)
− 2

r(ρ)′2

r(ρ)2
. (A.12)

In the limit ε → 0, only the first diverges as O(1/ε2), which gives 
us the dominant contribution. One can easily check the divergence 
by using the following relations,

F̃ ′′ = O
(

F̃ ′(ε) − F̃ ′(0)

ε

)
= − δ

ε
, F̃ � ε F̃ ′(0) = ε , (A.13)

where we used F̃ ′(ε) = 1 − δ and F̃ ′(0) = 1. With these relations, 
consider the Einstein-Hilbert action,

S E H = − 1

16πG

∫
dρdχdθdφ

√
g R

= − 1

16πG

∫
dρdχdθdφ F̃ (ρ)r(ρ)2 sin θ

(
−2 F̃ ′′

F̃

)
� πr2

h

G

∫
dρ F̃ ′′ = πr2

h

G
( F̃ ′(ε) − F̃ ′(0)) = −4πr2

h

4G
δ

= −Ah

4G
δ , (A.14)

where we used r(0) � rh and the area of the horizon Ah = 4πr2
h .

The boundary contribution is given by the Gibbons-Hawking 
term. Doing the same way as before, we can compute the extrinsic 
curvature and get the dominant contribution in the limit ε → 0,

K � − F̃ ′

F̃
+ · · · (A.15)

Substituting for the Gibbons-Hawking term, we obtain

SG H =
∫

ρ=ε

d3x
√

h
K

8πG

= 1

8πG

∫
dχdθdφ F̃ r(ρ)2 sin θ

(
− F̃ ′

F̃

)
� −4πr2

h

4G
F̃ ′(ε) = − A

4G
(1 − δ) . (A.16)

Combining the two results, we obtain the final expression for the 
bounce action,

S E H + SG H = − A
4G

. (A.17)

For the case with more than one singularity, one can easily extend 
to

S E H + SG H = −
∑

i

Ai

4G
. (A.18)
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