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Abstract

This thesis covers three subjects, namely the measurement of the CP -even fraction of
the D0→ 2π+2π− decay, the real-time alignment of the LHCb RICH mirror systems
and the estimation of the sensitivity to the CKM angle γ that can be obtained using
B±→ D(→ 2π+2π−)K± events at LHCb.

The CP -even fraction F+
4π of the D0→ 2π+2π− decay is measured using a dataset

corresponding to 818 pb−1 of quantum correlated DD decays produced in electron-
positron collisions at the ψ(3770) resonance collected by the CLEO-c experiment at
Cornell University. In the analysis, one of the correlated D mesons is reconstructed
as D → 2π+2π− while the other D meson is reconstructed as D → K0

S,Lπ
+π−.

Sensitivity to the CP -even fraction of D0→ 2π+2π− is obtained by determining the
variation of yields over the K0

S,Lπ
+π− phase space, specifically the variation of yields

between bins of the K0
S,Lπ

+π− phase space. The CP -even fraction is measured to be
F+

4π = 0.755± 0.050 (stat)± 0.029 (syst).

The LHCb RICH mirror alignment procedure using proton-proton collision data is
implemented in the LHCb online reconstruction framework for Run II of the LHC. In
Run II, all LHCb subdetectors are aligned and calibrated in real-time, that is between
the two high level trigger stages HLT1 and HLT2. This enables the reconstruction in
the high level trigger to be identical to the offline reconstruction and the direct use
of the trigger output for physics measurements. The RICH mirror alignment was
implemented and commissioned throughout 2015 and 2016 and the procedure was
improved at different points. This reduced the time needed to perform an alignment
from several days in Run I to about 20 min in Run II. The information gathered by
the frequent running of the alignment in 2016 is used to further the understanding
of the alignment procedure as well as the understanding of the LHCb detector itself.

The sensitivity to the CKM angle γ that can be achieved at the LHCb experiment
with B± → D(→ 2π+2π−)K± decays, is studied. The study is performed using
the B± → D(→ 2π+2π−)K± event yield in 8 fb−1 of the proton-proton collision
data expected to be recorded by LHCb by the end of Run II of the LHC. The
B±→ D(→ 2π+2π−)K± event yield of the data collected in 2016 is determined and
extrapolated to the expected full luminosity of Run II. A series of pseudo-experiments
is used to simulate the distribution of B±→ D(→ 2π+2π−)K± events over the bins
of the D → 2π+2π− phase space and a fit is performed to extract the resulting
uncertainty on the CKM angle γ. The statistical uncertainty is determined to be
20◦ for the 2016 dataset, 10◦ for the full expected Run II dataset and 9◦ for the
combined Run I and Run II dataset. The current best measurements of γ from single
analyses have a statistical uncertainty of ≈ 15◦ while the combined uncertainty on γ
is ≈ 7◦ [1]. The measurement of the angle γ using binned B±→ D(→ 2π+2π−)K±

decays can thus significantly contribute to the overall constraint on γ.
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Introduction

The Standard Model of particle physics is a very successful theory in that it explains
a vast range of phenomena observed in nature. Its predictive powers exceed those
of any previous theory and its mathematical structure is well defined and organised.
The Standard Model describes the fundamental aspects of matter and energy by ex-
pressing matter particles (fermions) and particles that mediate interactions (bosons)
in a unified theory. The latest achievement of particle physics was the discovery of
the Higgs Boson, whose existence had been predicted over forty years ago as an
inherent part of the Standard Model, by CMS [2] and ATLAS [3].

Despite these achievements there are still questions unanswered by the Standard
Model. One open issue is the inclusion of gravity and the explanation of the hier-
archy of the fundamental interactions. Another unexplained phenomenon is the dis-
crepancy between the amount of matter and anti-matter observed in the universe.
While the Standard Model does implement the mechanism of charge-parity (CP )
violation, the generated effects within the Standard Model are not large enough to
explain today’s observations.

For this reason, many other theories – such as supersymmetry (SUSY) [4] or the
Left-Right Symmetric Model (LRSM) [5] – have been developed as extensions of the
Standard Model. These theories are designed so that their predictions agree with the
Standard Model at low energies but differ at higher energies. Usually new particles
are introduced with heavier masses, changing the physics at high energy scales with
respect to the Standard Model.

All high energy physics experiments aim at performing precision measurements of
Standard Model parameters or at discovering physics beyond the Standard Model.
The LHC has introduced a promising environment with an unprecedented center
of mass energy and luminosity that provides the allocated experiments with a high
amount of statistics. The experiments ATLAS and CMS – the so-called ’general
purpose’ detectors – mainly aim at finding new particles through direct searches.
The LHCb experiment however, performs indirect searches for physics beyond the
Standard Model, for example by identifying deviations from Standard Model pre-
dictions in loop-diagram and box-diagram processes. The LHCb experiment focuses
on rare decays of beauty and charm hadrons.

A precise determination of the CP -violating quantities is one of the primary ob-
jectives of heavy flavour physics. This thesis focuses on the measurement of the
CKM angle γ which is one of the angles of the Unitarity Triangle and the CP -
violating phase between b → u and b → c quark transitions. The CKM angle γ
is the only angle of the Unitarity Triangle that can be measured without signific-
ant contributions from physics beyond the Standard Model, making it a Standard
Model key measurement. The comparison between values of the angle γ obtained
trough Standard Model measurement and measurements where physics beyond the
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Standard Model can contribute is a powerful way to verify the consistency of the
Standard Model and possibly identify sources of physics beyond the Standard Model.
From the three angles of the Unitarity Triangle the angle γ is the least constraint
angle. The best direct measurement of γ has an uncertainty of approximately 15◦ [1],
whereas the combination of measurements reduces the uncertainty to approximately
7◦. To obtain a precise measurement of the CKM angle γ it is important to combine
many different measurements, often involving studies of hadronic B meson decays
with low rates.

To first order, B± → DK± decays are mediated by tree-level processes and offer
a theoretically clean way to measure the CKM angle γ, unlikely to be affected
by physics beyond the Standard Model. Since γ is also the CP -violating phase
between the b → u and b → c quark transitions, it is observable in the interference
between the B±→ D0K± and the B±→ D0K± transition when the D meson is
reconstructed in a final state accessible to both D0 and D0 mesons. The precise
measurement of γ requires the combination of many analyses in each of which the
D meson is reconstructed in a different final state. The content of this thesis is the
work towards the measurement of γ using B±→ D(→ 2π+2π−)K± decays where the
D meson is reconstructed in the self-conjugate multi-body final state D→ 2π+2π−.
Sensitivity to γ can be gained both by integrating over the entire D meson decay
phase space or by evaluating the interference pattern over the D meson decay phase
space.

The parameters that quantify the interference betweenD0 andD0 decays are a source
of systematic uncertainty on γ. To avoid the significant systematic uncertainty
associated with modelling the strong phase of the D decay amplitude across the five-
dimensional phase space of the four body decay, model-independent parameters are
defined. These parameters can be measured at the CLEO-c experiment at Cornell
University which has collected a sample of quantum-correlated ψ(3770) → D0D0

decays. In this thesis, the model-independent CP -even fraction of the D0→ 2π+2π−

decay is determined with CLEO-c data. This measurement has already been used as
input to the measurement of CP observables with B±→ D(→ 2π+2π−)K± decays
at LHCb [6].

An important part of all precision measurements, but especially analyses with many
hadrons in the final state, is very efficient particle identification. For the meas-
urement of the CP -violating phase γ with B± → DK± decays it is particularly
important to distinguish kaons from pions in order to cleanly separate B±→ DK±

events from B±→ Dπ± events. Both decays have almost identical kinematics but
very different CP asymmetries and the B±→ Dπ± decay is Cabibbo favoured com-
pared to the B±→ DK± decay. In LHCb, the main source of particle identification
information for charged kaons and pions are the two ring imaging Cherenkov (RICH)
detectors. Both detectors possess intricate optical systems for detecting Cherenkov
photons. In order for the particle identification to function optimally, the position
of all optical components has to be known to the best precision. This is achieved by
a data-driven alignment procedure. For Run II of the LHC, LHCb has implemented
a novel approach: it is the first ever High Energy Physics detector which is aligned,
calibrated, and fully reconstructed in real-time. The implementation of the RICH
mirror alignment procedure into the real-time alignment framework was essential to
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achieving the full alignment and calibration of the LHCb detector, and a substantial
part of this thesis.

This thesis is organised in seven chapters. The first chapter comprises the theoretical
background needed to model-independently measure the CKM angle γ from B±→
DK± decays. This chapter includes the introduction of the model-independent
parameters of the D decay and their measurement using correlated D0D0 decays.
The second chapter introduces the CLEO-c experiment located at the CESR ac-
celerator. The different subdetectors are presented as well as the trigger and the
reconstruction software. The third chapter contains a detailed documentation of the
measurement of the CP -even fraction F+

4π of the D0→ 2π+2π− decay using quantum
correlated D0D0 meson pairs. The CP -even fraction is measured by reconstructing
one D meson as D0 → 2π+2π− and the other D meson as D→ K0

S,Lπ
+π−. The

fourth chapter presents the LHCb experiment located at the LHC and introduces
the detector as well as the different trigger stages and the LHCb software projects.
The fifth chapter outlines the implementation of the alignment of the LHCb RICH
mirror systems into the real-time alignment framework. The sixth chapter con-
tains the study of the sensitivity to the CKM angle γ that can be obtained using
B±→ D(→ 2π+2π−)K± decays collected by LHCb.
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1. Theory

This chapter introduces the theoretical understanding of direct CP violation in
B± → DK± decays and how the CP -violating phase γ becomes an observable.
In the first section, a brief introduction to the Standard Model of particle physics
is given. In the second section the direct CP violation in the weak interaction is
discussed. In the third section the CKM matrix is presented which facilitates the
direct CP violation in the Standard Model. In the fourth section the method for a
model-independent measurement of the CKM angle γ using B±→ DK± decays is
described. In the sixth section the measurement of the model-independent, hadronic
parameters of the D meson decay is explained. In the seventh section the binning
scheme for the D meson decay phase space is illustrated. The last section provides
a summary of the before mentioned sections.

1.1 The Standard Model of Particle Physics

The Standard Model of particle physics is a comprehensive theory of the microscopic
structure of the universe1. It contains the fundamental particles that build all matter
and describes the interaction between these fundamental particles.

The matter fields described by the Standard Model are spin 1/2 particles (fermi-
ons) grouped into two categories: leptons and quarks. The particles can be organ-
ised in doublets, connected via the SU(2) symmetry of the weak interaction. All
fundamental fermions are listed in Table 1.1. Each fermion has a corresponding
antiparticle which has the same mass but opposite additive quantum numbers.

There are three interactions in the Standard Model which are mediated by force
carriers of spin 1 (bosons). The three interactions and their properties are listed
in Table 1.2. The first interaction is the electromagnetic interaction. It is medi-
ated by chargeless and massless photons. All charges particles participate in the
electromagnetic interaction.

The second interaction is the weak interaction. It is mediated by the neutral Z0 bo-
son and the charged W+ and W− bosons. Unlike the massless photons, the bosons
of the weak interaction have masses of 80 GeV/c2 and 91 GeV/c2, for the W± bosons
and the Z0 bosons, respectively. The mass of the bosons is responsible for the relat-
ively small strength of the weak interaction compared to the other two interactions.
All fermions carry the weak charge and participate in the weak interaction. The
charged weak bosons W± couple exclusively to left-handed chiral states of fermions

1The introduction to the Standard Model is based on References [7–9].
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Fermions

Leptons Quarks

Generation Type Charge Mass Type Charge Mass

1
νe 0 < 2 eV/c2 u +2/3 2.3 MeV/c2

e− –1 511.0 eV/c2 d –1/3 4.8 MeV/c2

2
νµ 0 < 2 eV/c2 c +2/3 1.28 GeV/c2

µ− –1 105.7 MeV/c2 s –1/3 95 MeV/c2

3
ντ 0 < 2 eV/c2 t +2/3 173.5 GeV/c2

τ− –1 1.78 GeV/c2 b –1/3 4.18 GeV/c2

Table 1.1: Fundamental fermions of the Standard Model that build all matter.
There are three generations of doublets for leptons and quarks respectively.

and right-handed chiral states of antifermions. The neutral weak boson Z0 couples
to the chirality left-handed part of fermions and the chirality right-handed part with
different strengths. The weak interaction is discussed in more detail in Section 1.2
in the context of CP violation. The electromagnetic and the weak interaction can be
unified to the electroweak interaction generated by the electroweak symmetry group
SU(2)L ⊗ U(1)Y .

The third interaction is the strong interaction described by quantum chromodynam-
ics. The strong interaction is mediated by eight gluons which couple exclusively to
quarks (and gluons themselves) since only quarks and gluons carry colour charge.
Unlike in the electroweak interaction, the coupling constant of the strong interaction
gets smaller at high energies. This principle is called asymptotic freedom and de-
scribes that quarks are quasi-free at small distances. Additionally, the phenomenon
of colour confinement has the consequence that only colour-neutral objects exist.
This means that colour charged objects such as quarks and gluons are only found
bound together as hadrons. The symmetry group of the strong interaction is the
SU(3)C .

All three interactions together give the symmetry group of the Standard Model

SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

All interactions of the Standard Model have to obey laws of conservation, such as
charge conservation and energy conservation. The electromagnetic and the strong
interactions are also invariant under parity transformation P and charge conjugation
C while the weak interaction maximally violates both parity and charge conjugation.
The parity and charge conjugation violation as well as the composite CP violation
of the weak interaction is explored in detail in the next section.

The latest confirmed particle of the Standard Model is the Higgs boson which was
discovered in 2012 by CMS [2] and ATLAS [3]. The Higgs boson has a spin of 0

6



1.2 CP Violation in the Charged Weak Interaction

and a mass of 125 GeV/c2. The Higgs originates from the spontaneous symmetry
breaking of the electroweak symmetry group which leads to the masses of the weak
bosons Z0, W+ and W−. The Higgs field is also responsible for the masses of the
fermions which are generated by Yukawa interactions between the Higgs field and
the fermions.

interaction
Relative Typical Typical

Source Force Mass
Strength Lifetime Cross Section Carrier

Strong 1 10−23 s 10 mb
colour

8 gluons 0
charge

Electro-
1/137 10−20 s 10µb

electric
photon 0

magnetic charge

Weak 10−6 10−10 s 10 pb
weak W± 80 GeV/c2

charge Z0 91 GeV/c2

Table 1.2: Description of the three fundamental interactions incorporated in the
Standard Model. The typical lifetime denotes the order of the lifetime of particles
that decay through the respective interaction. The typical cross section represents the
order of the cross section for processes that proceed through the respective interaction.

While the Standard Model is widely successful and extensively tested, it cannot be
a complete theory of the universe. The Standard Model leaves a number of ques-
tions unanswered and does not describe the entire universe as it is observed today.
Amongst those questions is the baryon asymmetry of the universe, suggesting a
strong effect of CP -violation while the CP -violation in the Standard Model is com-
parably small. Furthermore, the Standard Model only describes a small part of the
universe, namely the matter. There are no descriptions of dark matter or dark en-
ergy in the Standard Model. Additionally, it does not incorporate the gravitational
force. The Standard Model does also not explain why there are three generations
of leptons and quarks nor does it predict the values for the fermion masses or the
coupling constants.

1.2 CP Violation in the Charged Weak Interac-

tion

The CP transformation is the subsequent application of the parity transformation
P and the charge conjugation C. Both the parity transformation and the charge
conjugation are discrete transformations, making the CP transformation a discrete
transformation as well. While the electromagnetic interaction and the strong inter-
action are invariant under parity transformation and charge conjugation, the charged
weak interaction violates both maximally. Additionally, CP violation is possible in

7
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the charged weak interaction due to a complex phase in the matrix that transforms
the mass eigenstates of quarks into their weak eigenstates.

The following sections introduce the principle of discrete transformation and explore
the parity transformation and the charge conjugation with respect to the charged
weak interaction. Then the CP violation in the weak interaction is explored.

1.2.1 Discrete Transformations and Symmetries

A symmetry is present in a system if the system is invariant under a particular trans-
formation. The Standard Model contains both continuous symmetries and discrete
symmetries. A symmetry is continuous if a macroscopic transformation can be ex-
pressed as a series of infinitesimal transformations. For a discrete symmetry, the sys-
tem can only be in a finite number of configurations which thus cannot be reached by
microscopic transformations. Continuous symmetries give additive quantum num-
bers while discrete symmetries give multiplicative quantum numbers.

Noether’s first theorem states that there is a conservation law for each continuous
(differentiable) symmetry of the action of a physical system [10]. An example is the
symmetry of a system under translations in space which yields the conservation of
momentum. If the physics of a system is invariant under a discrete symmetry g and
g can be represented by a hermitian operator U(g), then U itself is an observable
conserved quantity. This means that if a system is in an eigenstate of U , then trans-
itions of the system can only occur to eigenstates with the same eigenvalue. Two
discrete transformations, namely the parity transformation and the charge conjuga-
tion are discussed in Section 1.2.2 and Section 1.2.3 respectively.

1.2.2 Parity Transformation

The parity transformation, represented by the operator P , corresponds to the inver-
sion of the spacial coordinates of a physical system with respect to the origin, given
by

(x, y, z)
P−→ (−x,−y,−z) . (1.1)

All other quantities such as time or spin are unchanged.

The wave functions Ψ(p, t, s, a) describing fermions with three momentum p, time
coordinate, t, spin, s and additive quantum numbers, a, are eigenvectors to P with
eigenvalue nP

P Ψ(p, t, s, a) = Ψ(−p, t, s, a) = nP Ψ(p, t, s, a) . (1.2)

The twofold application of the parity transformation of a system has to yield the
same system. For a fermion the twofold application of the parity transformation is

P (P Ψ(p, t, s, a)) = P Ψ(−p, t, s, a)

= P nP Ψ(p, t, s, a) (1.3)

= n2
P Ψ(p, t, s, a)

!
= Ψ(p, t, s, a) .

8
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Thus, the possible eigenvalues of the parity transformation are nP = +1 (symmetric
or even) and nP = −1 (antisymmetric or odd). By convention the parity of leptons
and quarks is +1, while that of anti-leptons and anti-quarks is –1.

While the electromagnetic interaction and the strong interaction conserve parity,
parity is observed to be maximally violated by the charged weak interaction. This
is expressed in the V − A structure (vector – axial-vector structure) of the flavour
changing charged currents coupling to W± bosons. An example is illustrated in
Figure 1.1 which shows the the charged weak interaction d → uW−. The charged
weak current jµ for the incoming d quark and the outgoing u quark is given by

jµ ∝ ūγµ
1

2
(1− γ5)d (1.4)

where d represents the spinor for the d quark, ū the adjoint spinor for the u quark
with ū = u†γ0, γµ = {γ0, γ1, γ2, γ3} are the Dirac matrices and γ5 is the product of
all Dirac matrices given by γ5 := iγ0γ1γ2γ3.

The expression PL = 1
2
(1− γ5) is called the chirality left-handed projection operator.

Applied to a particle spinor it projects out the chirality left-handed component while
applied to an anti-particle spinor it gives the chirality right-handed component. This
means that only the chirality left-handed component of fermions and the chirality
right-handed component of anti-fermions participate in the charged weak interaction.

The action of the parity transformation on the spinor of a quark q, can also be
represented by the matrix γ0 as Pq = γ0q. Applying the parity transformation to
the left-handed component of a quark yields

PqL =γ0qL = γ0 1

2
(1− γ5)q (1.5)

=
1

2
(1 + γ5)γ0q = nPPRq (1.6)

where PR = 1
2
(1 + γ5) is the chirality right-handed projection operator. Thus the

parity transformation transforms a left-handed fermion into a right-handed fermion
which means the V − A structure of the weak interaction violates parity.

Figure 1.1: Feynman diagram for the charged weak interaction d → uW− (left)
and its charge conjugate d→ uW+ (right).

1.2.3 Charge Conjugation

The charge conjugation, represented by the operator C, corresponds to the inversion
of the sign of any additive quantum number (such as electric charge and baryon
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number). As for the parity transformation, the twofold application of the charge
conjugation has to yield the same system meaning that the eigenvalues of the charge
conjugation are nC = +1 (symmetric or even) and nC = −1 (antisymmetric or odd).
Only neutral particles can be eigenstates of C.

The electromagnetic interaction and the strong interaction are invariant under charge
conjugation, however the weak interaction is not. Under charge conjugation a chir-
ality left-handed fermion — which participates in the charged weak interaction —
is transformed into a chirality right-handed fermion — which does not participate
in the charged weak interaction.

1.2.4 Direct CP Violation in the Standard Model

The CP transformation is the subsequent application of the parity transformation
P and the charge conjugation C. Since the electromagnetic interaction and the
strong interaction conserve both parity and charge conjugation separately, they also
conserve CP . If the weak current was exactly as given in Equation 1.4, the weak in-
teraction would also be invariant under CP transformation. The CP transformation
transforms a chirality left-handed fermion into a chirality right-handed anti-fermion
and would thus conserve the strength of the charged weak current as given in Equa-
tion 1.4.

The more accurate expression of the charged weak current for a transition of the
down-type quark q to an u-type quark p and a W− boson, given by q → pW−, is

jµ ∝ p̄ γµ
1

2
(1− γ5)q′ (1.7)

where q′ differs from the mass eigenstates q. The transformation between the spinors
q and q′ of the down-type quarks is given in terms of the complex, unitary CKM
matrix (see Section 1.3 for more detail on the CKM matrix) as

d′

s′

b′

 = VCKM


d

s

b

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d

s

b

 (1.8)

while the transformation between the adjoint spinors q̄ and q̄′ of the down-type
quarks is given by (

d̄′ s̄′ b̄′
)

=
(
d̄ s̄ b̄

)
V †CKM . (1.9)

The charged weak current for the d → uW− is thus given in terms of the mass
eigenstates of the quarks, by

jµd′u = ū

[
−i gW√

2
γµ

1

2
(1− γ5)

]
Vud d (1.10)

where gW is the dimensionless weak coupling constant. The current for the d→ uW+

transition is given by

jµ
d
′
u

= jµud′ = d̄ V ∗ud

[
−i gW√

2
γµ

1

2
(1− γ5)

]
u . (1.11)
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If the CKM matrix was real, the vertex factors Vd′u and V
d
′
u

for both transitions
given by

Vd′u =

[
−i gW√

2
γµ

1

2
(1− γ5)

]
Vud (1.12)

and

V
d
′
u

= V ∗ud

[
−i gW√

2
γµ

1

2
(1− γ5)

]
(1.13)

would be identical and the weak interaction would conserve CP . Since the CKM
matrix has one complex phase, the weak interaction can be CP violating2.

1.3 The CKM Matrix and the Unitarity Triangle

The CKM matrix VCKM describes the connection between the flavour contents of a
given initial state and a corresponding final state, whose transition occurs through
a flavour-changing charged current mediated by charged W± bosons.

The CKM matrix is composed of two unitary matrices which represent the trans-
formation of the mass eigenstates of the down-type quarks (d s b) and the up-type
quarks (u c t) into the weak eigenstates (dw sw bw) and (uw cw tw) respectively, via

dw

sw

bw

 = ADwD


d

s

b

 and


uw

cw

tw

 = AUwU


u

c

t

 . (1.14)

In order to persevere the norm and therefore the probability, the transformation
matrices ADwD and AUwU have to be unitary

A†DwD
ADwD = 1 and A†UwU

AUwU = 1 . (1.15)

The CKM matrix is given by

VCKM ≡ A†UwU
ADwD (1.16)

and is therefore also unitary. The general form of the unitary matrix is written as

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (1.17)

denoting that the amplitude of a transition of a quark q to a quark p is proportional
to CKM matrix element Vpq while the transition from antiquark q to antiquark p is
proportional to the complex conjugate matrix element V ∗pq.

As a complex, unitary matrix the CKM matrix has nine real free parameters. Due to
the structure of the theory and how observables are calculated, five complex phases

2As can be seen in Section 1.4, further conditions have to be fulfilled to make CP violation
observable.

11



Chapter 1

of the CKM matrix can be absorbed into the quark fields. The CKM matrix has
therefore four real parameters, three rotation angles in flavour space and one com-
plex phase. The complex phase is the source of direct CP violation in the Standard
Model.

1.3.1 Parametrisations of the CKM Matrix

The parametrisation of the CKM matrix is not unambiguous. A standard paramet-
risation [11] is

VCKM =


c12c13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 (1.18)

where sij ≡ sin (θij), cij ≡ cos (θij) and δ13 is the CP -violating phase. The paramet-
ers θij are called the quark mixing angles.

Another convenient parametrisation is the Wolfenstein parametrisation [12] where
the free parameters of the CKM matrix are chosen to be the four real parameters
A, ρ, η and λ. The elements of the CKM matrix are then expanded in orders of the
parameter λ which expresses the hierarchy of the size of the matrix elements. The
Wolfenstein parametrisation of the CKM matrix up to O(λ4) is given by

VCKM =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) . (1.19)

This parametrisation illustrates that the transitions within the three generations are
favoured while transitions between generations are suppressed. It also shows the CP
violation is greatest in the CKM matrix elements Vub and Vtd since all other matrix
elements are real to order O(λ3).

1.3.2 The Unitarity Triangle

The unitarity requirement of the CKM matrix leads to nine equations. In particular,
the equation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.20)

is of special interest for the CP violation in B±→ DK± decays. Equation 1.20 can
be represented as the Unitarity Triangle in the complex plane, which is depicted in
Figure 1.2. Presuming CPT invariance3, the three angles of the Unitarity Triangle,
α, β and γ, have to add up to 180◦ for three generations of quarks. A deviation
from 180◦ would indicate the existence of physics beyond the Standard Model. It is
therefore important to over constrain the parameters of the Unitarity Triangle.

3Invariance under the subsequent application of time reversal T , parity transformation P and
charge conjugation C.
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Figure 1.2: Schematic illustration of the Unitarity Triangle in the complex plane.
The angle γ corresponds to the complex phase in the CKM matrix in the standard
parametrisation given in Equation 1.18.

Figure 1.3 shows current constraints on the Unitarity Triangle and Figure 1.4 shows
the constraints on all three angles. The PDG [1] cites the average values from the
combination of different measurements as α =

(
87.6+3.5

−3.3

)◦
, β=̂ (21.85± 0.49)◦ and

γ =
(
73.2+6.3

−7.0

)◦
which makes γ the least constrained angle of the CKM matrix.
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Figure 1.3: Current state of the Unitarity Triangle as determined by the CKM fitter
group [13]. The shaded areas correspond to constraints on the different parameters
from a combination of different sources. The red area indicates the 68% confidence
level region of the apex of the triangle.
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Figure 1.4: Current predictions for the three angles of the Unitarity Triangle α
(left), β (center) and γ (right) from the UTfit Collaborations in 2016 [14]. The
constraints are obtained by performing a fit of many different measurements to the
Unitarity Triangle. The effect of potential physics beyond the Standard Model is
allowed in the fit.

1.3.3 Current State of the Measurement of the CKM Angle γ
at LHCb

As discussed in the last section, the PDG [1] published in 2017 lists the value for γ
as
(
73.2+6.3

−7.0

)◦
. This value is the result of the combination of direct measurements

of γ perfromed by the CKM fitter group [13]. The CKM fitter group also lists the
indirectly determined value of γ– obtained by a fit to the Standard Model excluding
the direct measurements – as

(
66.85+0.94

−3.44

)◦
. Thus, in order to identify a discrepancy

between these two values and to probe the Standard Model, the uncertainty from
the direct measurements has to be reduced.

The most current combination of γ measurements by the LHCb collaboration yields
a value of

(
76.8+5.1

−5.7

)
4 [15]. This value comes from a combination of 13 different

analyses of B→ DK decays where the D meson is reconstructed in a number of
final states, such as B± → D(→ h+π−π+π−)K±, B± → D∗0(→ h+h−)K± and
B0
s → D+

s (→ h+h−π±)K±. Figure 1.5 shows the contribution of different decay
modes to the overall constraint on the angle γ.

The best measurement of the CKM angle γ from a single decay channel comes from
the use of the GGSZ method – which will be explained in detail in Section 1.4 – with
decays at LHCb. This analysis used the 3.0 fb−1 collected by LHCb in Run I and
measured γ to be γ =

(
62+15
−14

)◦
[16]. The difference between the uncertainty and

the uncertainty on the full γ combination, in addition to the results illustrated in
Figure 1.5 show that a precise measurement of γ heavily relies on the combination of
many different decay modes. The B±→ D(→ 2π+2π−)K± decay mode used in this
thesis is expected to have a statistical significance comparable to the B±→ D(→
K0

Sπ
+π−)K± decay5 and therefore be able to significantly contribute to the overall

constraint on the CKM angle γ.

4The uncertainty on this value is smaller than the uncertainty on the result listed in the 2017
PDG. This is because the LHCb combination is newer.

5While the branching fraction of the D0→ K0
Sπ

+π− decay is greater than the fraction fraction
of the D0→ 2π+2π−, the reconstruction and selection efficiency for the D→ K0

Sπ
+π− decay is

lower due to the additional complication in the reconstruction and selection of the K0
S candidate.
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B±→ DK± Decays
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Figure 1.5: Left: Profile likelihood contours of γ vs. rB for various sub combin-
ations of decays. Dark and light confidence regions corresond to 68.3% and 95.5%
Confidence Levels (CL), respectively. [15] Right: 1-CL plots of the measurements of
the CKM angle γ split by the initial B meson flavour. [15]

1.4 Model-independent Measurement of the CKM

Angle γ with B±→DK± Decays

The B± → DK± decay offers a theoretically clean way to measure γ since they
are predominately mediated by the tree-level processes shown in Figure 1.6. Phys-
ics beyond the Standard Model is expected to manifest itself as virtual particles in
diagrams with loops. Therefore the value of γ measured with tree-level decays is un-
likely to be affected by physics beyond the Standard Model and the measured value
for γ corresponds to its definition in the Standard Model. The value of γ obtained
using tree-level decays can be compared to alternative measurements of γ using de-
cays that involve loop processes, and a discrepancy between the measurements will
be a strong indication of physics beyond the Standard Model.

1.4.1 Principle of the measurement

This section contains the description of the principle of measuring the CKM angle
γ using B±→ DK± decays. The detailed description including the mathematical
formalism is given in the following sections.

In the standard representation of the CKM matrix in Equation 1.18 the angle γ
corresponds to the complex phase δ13. For an amplitude A = Aeiφ where A is
real and φ is the complex phase, observables – such as the decay width Γ – are
proportional to AA∗ = AA. In order to measure the complex phase of an amplitude
directly, interference between two amplitudes has to occur. If two amplitudes A1 =

15



Chapter 1

A1e
iφ1 and A2 = A2e

iφ2 are possible for the same process, interference between the
amplitudes applies where

Γ ∝ (A1 +A2)(A1 +A2)∗ = A2
1 + A2

2 + 2A1A2 cos(φ1 − φ2) (1.21)

and the complex phases φ1 and φ2 become measurable in the interference term of
the decay width Γ.

The B±→ DK± decays are an ideal way to measure the CKM angle γ since the
B± meson can decay both via B± → D0K± and B± → D0K±. As can be seen in
the Feynman diagrams shown in Figure 1.6, the B− → D0K− decay contains the b
quark to u quark transition – and thus the CKM matrix element Vub = |Vub|e−iγ –
while the B− → D0K− decay contains the b quark to c quark transition.

�B− D0 → [f ]D

K−

u

b

u

c

s

u

�B−

K−

D0 → [f ]D

u

b

u

s

c

u

Figure 1.6: Feynman diagrams for the B± → D0K± decays (left) and B± → D0K±

decays (right). The amplitude for the B± → D0K± decays contains the CKM matrix
element Vub = |Vub|e−iγ.

If the D meson is reconstructed in a final state fp accessible to both D0 mesons
and D0 mesons, interference between the two amplitudes B± → D0(→ fp)K± and
B± → D0(→ fp)K± takes place. The principle of this interference is illustrated in
Figure 1.7.
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D0 K+ 
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Figure 1.7: Schematic illustration of interference in B± → DK± decays. The
B± → DK± decay can proceed via B± → D0K± and B± → D0K±, thus if the
D meson is reconstructed in a final state accessible to both D0 and D0 mesons
interference between the two amplitudes takes place.

The phases of the B+ and B− decay amplitudes can then be determined by com-
paring the observed decay rate with the decay rates expected for the B± → D0K±

transition and the B± → D0K± transition.

In the analysis described in this document, the D meson is reconstructed in an
multi-body final state, in particular as D→ 2π+2π−. The four charged pions span a
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five-dimensional phase space, over which the magnitude and the strong phase of the
D0 meson decay varies6. The interference pattern of the B± → D0K± amplitude
and the B± → D0K± amplitude can then be observed over the phase space of the D
meson decay. Since this means that γ can be observed at all points of the D decay,
the sensitivity to γ is enhanced with respect to two-body D decays and analyses
where the observables are integrated over the entire D meson decay phase space.

In the GGSZ method used in this analysis (see Section 1.4.3), the D meson decay
phase space is divided into bins and the observable decay width is integrated over
these bins. This allows for an enhanced sensitivity to γ by observing γ at different
points of the D meson decay phase space while also allowing for a model-independent
approach where the quantities related to the D meson decay amplitude are expressed
by amplitude-model independent quantities (see Section1.4.3).

1.4.2 The CKM Angle γ as an Observable in B± → DK±

Decays

The amplitudes for the B− meson decay can be defined as

A(B− → D0K−) = AB (1.22)

A(B− → D0K−) = ABrBe
i(δB−γ) (1.23)

where AB is real, rB is the ratio between the amplitudes and δB is the CP invariant
phase difference between the amplitudes, called the the strong phase difference. The
corresponding amplitudes for the B+ meson decay are given by

A(B+ → D0K+) = ABrBe
i(δB+γ) (1.24)

A(B+ → D0K+) = AB (1.25)

where the strong phase δB appears with the same sign as in the CP -conjugated B−

amplitude while the CP -violating phase γ changes sign under the CP conjugation.
The amplitudes of the subsequent D0 and D0 meson decays to a final state fp can
be written as

A(D0 → f(p)) = Afpe
iδfp (1.26)

A(D0 → f(p)) = Āfpe
iδ̄fp (1.27)

where Afp and Āfp are real and δfp and δ̄fp are the CP invariant strong phases. The
parameter p describes a point in the phase space of the D → f decay, and has a
dimensionality that depends on the number of final state particles and their spin. For
two-, three- and four-body pseudo-scalar final states the phase space dimensionality
is 0, 2 and 5, respectively. Since no signs of CP violation has been observed in charm
decays [17], CP conservation is assumed in D0→ 2π+2π− decays and the amplitudes
for the D0 meson and the D0 meson decay can be related via

A(D0 → f(p)) = A(D0 → f(p)) (1.28)

6The assumption of negligible violation in D meson decays is made. The weak phase of the D
mesons decay is thus set to zero.
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where p is the CP conjugate point of p which means that for all final state particles
the charges are reversed (C) and three momenta are reversed (P ).

The observable decay width, Γ, for B− → D (→ fp)K− decays is build from the
amplitudes according to

Γ(B− → DK−, D → fp) ∝ | A(B− → D0K−) · A(D0 → f(p))

+ A(B− → D0K−) · A(D0 → f(p)) |2 (1.29)

and equivalently for B+→ D (→ fp)K+ as

Γ(B+ → DK+, D → fp) ∝ | A(B+ → D0K+) · A(D0 → f(p))

+ A(B+ → D0K+) · A(D0 → f(p)) |2 . (1.30)

The decay widths can be expressed in terms of the amplitudes in Equations 1.22, 1.24
and 1.26 as

Γ(B−→ DK−, D → fp) ∝
∣∣∣Afp eiδfp + rB e

i(δB−γ) Āfp e
iδ̄fp

∣∣∣2
∝ Afp

2 + r2
B Ā

f
p

2 + 2Afp Ā
f
p

[
x− cos(∆δfp) + y− sin(∆δfp)

]
,

(1.31)

and equivalently for the B+→ DK+ decay as

Γ(B+→ DK+, D → fp) ∝
∣∣∣rB ei(δB+γ)Afp e

iδfp + Āfp e
iδ̄fp

∣∣∣2
∝ r2

B A
f
p

2 + Āfp
2 + 2Afp Ā

f
p

[
x+ cos(∆δfp) + y+ sin(∆δfp)

]
,

(1.32)

where ∆δfp = δfp − δ̄fp is the strong phase difference of the D decays and x± =
rB cos(δB ± γ) and y± = rB sin(δB ± γ) contain the CKM angle γ. The angle γ is
thus observable in the difference of the decay widths of B− mesons and B+ mesons
in B±→ DK± decays where the D mesons decays to a final state accessible to both
D0 and D0 mesons.

Equations 1.31 and 1.32 also show that apart from a complex phase in the CKM
matrix, two further conditions need to be fulfilled for CP violation to be observable.
The first condition is the existence of at least two paths from an initial state to a
final state which interfere with each other. The second condition is that the strong
phase difference δB differs from zero.

While measurements of the CKM angle γ with B±→ DK± decays usually determine
γ, δB and rB simultaneously, the real amplitude Afp and the strong phase difference
∆δfp of the D meson decay at the point p in phase space have to be determined
independently. These quantities can either be obtained from a D meson decay amp-
litude model (see Section 1.6.1) or measured in a model-independent way. While
a D meson decay amplitude model has the advantage of describing every infinites-
imal point in phase space, it also introduces a significant systematic uncertainty
associated with modelling the strong phase of the D decay amplitude across the
multi-dimensional phase. To avoid this systematic uncertainty the D meson decay
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phase space can be divided into bins and integrating over each bin. The decay widths
from Equations 1.31 and 1.32 can then be expressed in terms of model-independent
quantities of the D meson decay called the hadronic parameters. This method will
be explained in the next section.

1.4.3 The GGSZ Method for D→ 2π+2π−

The neutral D meson can be reconstructed in a variety of final states. The method
that reconstructs the D meson in a CP eigenstate is called the GLW method [18].
Alternatively, the D meson can be reconstructed in a final state which is Cabibbo
suppressed for either D0 or D0 and Cabibbo favoured for the other D meson. This
method is called the ADS method [19]. The current best single measurement of
the angle γ comes from an analysis using the GGSZ method [20]. In the GGSZ
method the D meson is reconstructed in a self-conjugate multi-body final state and
the measurement for γ is evaluated at different points of the D decay phase space.

By reconstructing the D meson in a multi-body final state the sensitivity to γ is
enhanced through observation of the interference pattern over the phase space of
the D meson decay. The original proposal of the GGSZ method – named after its
proponents A. Giri, Y. Grossman, A. Soffer and J. Zupan – uses D → K0

Sπ
+π−,

D → K0
SK

+K− and D → K0
Sπ

+π−π0 decays. In the analysis described in this
document the D mesons are reconstructed as D→ 2π+2π−.

The GGSZ method is a model-independent approach. This means that the quantities
in Equations 1.31 and 1.32 that are related to the D meson decay amplitudes, namely
Afp, Āfp and ∆δfp, are not determined from a D0 decay amplitude model but rather
replaced with model-independent quantities. The decay amplitude of a multi-body
decay is a phenomenological object and a significant uncertainty is associated with
the modelling of the complex strong phase over the multi-body phase space. This
systematic uncertainty can be avoided by constructing model-independent quantities
called hadronic parameters for the D decay, which are described in the following.

The flavour-tagged yields Kf
i and K̄f

i in bin i of D0 → f and D0 → f respectively,
are defined as

Kf
i =

∫
i

|Afp|2φ(p)dp K̄f
i =

∫
i

|Āfp|2φ(p)dp, (1.33)

where φ(p) gives the density of states at p. The flavour-tagged yields can be norm-
alised to give the flavour-tagged fraction of yields in bin i

T fi =
Kf
i∑

iK
f
i

T̄ fi =
K̄f
i∑

i K̄
f
i

(1.34)

with
∑

i T
f
i = 1 and

∑
i T̄

f
i = 1.
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The amplitude weighted cosine, cfi , and amplitude weighted sine, sfi , averaged over
bin i are defined as

cfi =
1√
Kf
i K̄

f
i

∫
i

|Afp||Āfp| cos
(
∆δfp

)
φ(p)dp, (1.35)

sfi =
1√
Kf
i K̄

f
i

∫
i

|Afp||Āfp| sin
(
∆δfp

)
φ(p)dp . (1.36)

Integrating the decay widths in Equations 1.31 and 1.32 over the phase space of bin
i gives,

Γ(B−→ DK−, D → fi) ∝ T̄ fi r
2
B + T fi + 2

√
T fi T̄

f
i (cfi x− + sfi y−) (1.37)

Γ(B+→ DK+, D → fi) ∝ T fi r
2
B + T̄ fi + 2

√
T fi T̄

f
i (cfi x+ − sfi y+) (1.38)

where the CKM angle γ is found in x± = rB cos(δB ± γ) and y± = rB sin(δB ± γ).

Furthermore, the symmetry of the self-conjugate D meson final state 2π+2π− can
be exploited by defining bins in pairs which map onto each other under CP trans-
formation. The bins are labelled such that bin i maps onto bin −i. For any point p
that falls in bin i the CP conjugate point p falls into bin −i. This choice of binning
and Equation 1.28 leads to the relations between the hadronic parameters of bin i
and −i

Kf
−i = K̄f

i K̄f
−i = Kf

i

T f−i = T̄ fi T̄ f−i = T fi (1.39)

cf−i = cfi sf−i = −sfi .

This choice of binning scheme is adapted throughout the rest of this chapter. More
details on the exact binning scheme used in later analyses is given in Section 1.6.

With the relations in Equation 1.39 the decay widths from Equation 1.31 and Equa-
tion 1.32 can be expressed as

Γ(B−→ DK−, D → fi) ∝ T f−ir
2
B + T fi + 2

√
T fi T

f
−i(c

f
i x− + sfi y−) (1.40)

Γ(B+→ DK+, D → fi) ∝ T fi r
2
B + T f−i + 2

√
T fi T

f
−i(c

f
i x+ − sfi y+) . (1.41)

This shows that the CKM angle γ can be measured with B±→ DK± decays in a way
that is independent of the D meson decay model. Additional sensitivity is gained
by dividing the D meson decay phase space into bins. The comparison between the
distribution of B−→ DK− events over the bins and the distribution of B+→ DK+

events over the bins enables the decoupling of the strong phase δB and the CP -
violating weak phase γ. The measurement of the hadronic parameters is explained
in Section 1.5.
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1.4.4 Sensitivity to the CKM Angle γ with the CP-even
Fraction F+

While an increased sensitivity to the angle γ is obtained by dividing the D meson
decay phase space into bins, γ can also be measured using the simpler approach of
integrating over the entire D meson decay phase space. The B± → DK± decay
widths can then be expressed in terms of the model-independent CP -even fraction
of the D0 decay.

The CP -even fraction F f
+ of a D meson decaying to a final state f is defined as

F f
+ ≡

∫
p
|A(DCP+ → f(p))|2φ(p)dp∫

p
|A(DCP+ → f(p))|2 + |A(DCP− → f(p))|2 φ(p)dp

. (1.42)

where CP eigenstates |DCP+〉 and |DCP−〉 of the neutral D meson can be expressed
in terms of the mass eigenstates |D0〉 and |D0〉 through

|DCP+〉 =
1√
2

(
|D0〉+ |D0〉

)
|DCP−〉 =

1√
2

(
|D0〉 − |D0〉

)
. (1.43)

This relates the decay amplitudes of the CP eigenstates to the amplitudes of the
mass eigenstates via

A(DCP+ → f(p)) =
1√
2

(
A(D0 → f(p)) +A(D0 → f(p))

)
A(DCP− → f(p)) =

1√
2

(
A(D0 → f(p))−A(D0 → f(p))

)
. (1.44)

The CP -even fraction F f
+ is thus given by

F f
+ =

∫
p
Afp

2 + Āfp
2 + AfpĀ

f
p cos

(
∆δfp

)
φ(p)dp∫

p
Afp2 + Āfp2 φ(p)dp

. (1.45)

With the definitions for the D decay amplitudes from Equation 1.26, ∆δfp = δfp− δ̄fp
and a binning scheme for which the relations from Equation 1.39 hold, the CP -even
fraction transforms to

F f
+ =

1

2

∑
i>0

(
T fi + T f−i + 2cfi

√
T fi T

f
−i

)
. (1.46)

Summing the decay width for B−→ DK− decays in Equation 1.40 over all bins
and using

∑
i

T fi = 1, cfi = cf−i and sfi = −sf−i gives

Γ(B−→ DK−, D → f) ∝ r2
B + 1 + 4x−

∑
i>0

(
cfi

√
T fi T

f
−i

)
∝ r2

B + 1 + 2x−

(
2F f

+ − 1
)

(1.47)
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and equivalently for B+→ DK+ decays in Equation 1.41

Γ(B+→ DK+, D → f) ∝ 1 + r2
B + 4x+

∑
i>0

(
cfi

√
T fi T

f
−i

)
∝ r2

B + 1 + 2x+

(
2F f

+ − 1
)
. (1.48)

Thus, a model-independent measurement of the CKM angle γ can be performed
with a multi-body D decay final state even when integrating over the entire D decay
phase space. The comparison between the decay width of B−→ DK− events and
the decay width of B+→ DK+ events enables the decoupling of the strong phase
δB and the CP -violating weak phase γ. The measurement of the CP -even fraction
F+

4π is explained in Section 1.5.4.

1.5 Measurement of the Hadronic Parameters of

the Multi-body D Decay

The hadronic parameters of the D meson decay can be measured using pairs of cor-
related D0 and D0 mesons. A good source for these correlated pairs is the ψ(3770)
resonance which can directly and efficiently be created in e+e− collisions. The
ψ(3770) resonance then decays into the D0D0 meson pair with a branching frac-
tion of 93% [1]. The ψ(3770) resonance has defined parity and charge conjugation
quantum numbers. Since the decay of the ψ(3770) resonance to the D0D0 meson
pair proceeds via the strong interaction which is invariant under parity transforma-
tion and charge conjugation, the D0D0 meson pair has the same, defined quantum
numbers. This also means that the flavour and CP content of the D0D0 meson pair
is known.

1.5.1 Principle of the measurement

This section contains the description of the principle of measuring the hadronic
parameters of a multi-body D meson decay using ψ(3770) → DD events. The
detailed description including the mathematical formalism is given in the following
sections.

The amplitude-model independent hadronic parameters of the multi-body D decay
can be measured using correlated pairs of D0D0 mesons [21]. Correlated D0D0

mesons are created in the strong decays of the ψ(3770) → DD resonance. The
ψ(3770) resonance has a charge conjugation eigenvalue of nC = −1 [1] which results
in an asymmetric wave function for the resulting pair of D0 meson and D0 meson,
given by

|ψ(3770)〉 = |D0D0〉 − |D0D0〉 . (1.49)

The antisymmetry of the ψ(3770) wave function is thus transferred to the DD state
and induces quantum correlations between the two D mesons. In particular, if one D
meson is in a flavour eigenstate such as D0 the other meson has to be in the opposite
flavour eigenstate D0. Equivalently, if one D meson is in a CP eigenstate, the
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other D meson is required to be in a CP eigenstate with opposite eigenvalue. More
generally, due to the specific quantum numbers of the ψ(3770) resonance (nC = −1
and nP = −1), the flavour and CP content of the DD state is fixed.

This means that the flavour or CP content of one D meson can be tagged by re-
constructing the other D meson in a flavour or CP eigenstate. This can directly
be used to determine the flavour-tagged fractions Ti as well as the CP -even fraction
F+ of a decay of interest. The combination of the knowledge of the flavour-tagged
fractions Ti with the analysis of the events where one meson is reconstructed in a
CP eigenstate and the other meson is reconstructed in the decay of interest, gives
access to the amplitude weighted cosine and sine of the strong phase differences ci
and si.

The sensitivity to the CP -even fraction of the D meson decay of interest can be
further enhanced by also reconstructing events where the other D meson is not in
a CP or flavour eigenstate – such as D→ K0

S,Lπ
+π−. The hadronic parameters –

and therefore the CP content – of D→ K0
Sπ

+π− is known and since the CP content
of the D0D0 meson pair is known, the CP content of the decay of interest can be
inferred. Additional sensitivity can be gained by observing the variation of D0D0

events over the D→ K0
S,Lπ

+π− phase space. Different regions of the D→ K0
S,Lπ

+π−

decay phase space have different CP contents and are thus effected in a different way
by being reconstructed against the decay of interest.

1.5.2 Measurement of the Flavour-tagged Fractions Ti

The quantum correlation of the D0D0 meson pair can be used to measure the flavour-
tagged fractions T fi by reconstructing one D meson in the decay of interest – such
as 2π+2π− – and the other D meson in a flavour-eigenstate – such as K±e∓ν. The
flavour-tagged fraction T fi is then the fraction of D→ 2π+2π− events in bin i.

1.5.3 Measurement of the Amplitude-Weighted Cosine and
Sine of the Strong Phase Differences ci and si

If one D meson is reconstructed in a final state f(p) and the other meson in a final
state g(q), the decay amplitude is given by7

A
(
ψ(3770)→ D0D0 → f(p)g(q)

)
∝A(D0 → f(p))A(D0 → g(q))

−A(D0 → g(q))A(D0 → f(p)) . (1.50)

7The effects from D meson mixing are neglected throughout. Since the D0D0 mesons are
correlated and evolve coherently, the effects of mixing only become observable once one D meson
decays. As can be seen in Reference [22] the D meson mixing adds a term to the decay width which
is scaled by 5.6 · 10−5 with respect to the decay width given by Equation 1.52. This is completely
negligible.
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which is expressed with the D decay amplitudes defined in Equation 1.26 as

A
(
ψ(3770)→ D0D0 → f(p)g(q)

)
∝AfpĀgqeiδf eiδ̄g − ĀfpAgqeiδ̄f eiδg

∝Afp2 Āgq
2 + Āfp

2Agq
2

+ 2Afp Ā
f
p cos

(
∆δfp

)
Agq Ā

g
q cos

(
∆δgq

)
+ 2Afp Ā

f
p sin

(
∆δfp

)
Agq Ā

g
q sin

(
∆δgq

)
. (1.51)

The decay width of ψ(3770) → D0D0 → figj integrated over bin8 i of final state f
and bin j of final state g is therefore given by

Γ[ψ(3770)→ D0D0 → figj] ∝ T fi T
g
−j + T f−iT

g
j − 2

√
T fi T

g
−jT

f
−iT

g
j

(
cfi c

g
j + sfi s

g
j

)
.

(1.52)

If state g is a CP eigenstate, then A(p) = A(p̄) and thus T gj = T g−j, s
g
j = 0 and

cgj = nCP . This results in a simplified equation for the decay widths of

Γ[ψ(3770)→ D0D0 → f(p)g(q)] ∝ T fi + T f−i + 2ngCP

√
T fi T

f
−ic

f
i . (1.53)

By reconstructing one D meson in the channel of interest – such as 2π+2π− – and
the other D meson in different CP eigenstates, the values of cfi can be measured.
The values for sfi can subsequently be measured using Equation 1.52 by either re-
constructing both D mesons as the decay of interest or reconstructing one D meson
as the decay of interest and the other D mesons as a decay for which the values of
cfi and sfi are known – such as K0

S,Lπ
+π−.

1.5.4 Measurement of the CP -even Fraction F+

Direct sensitivity to F f
+ can be obtained by summing Equation 1.52 over all bins i

of final state f . This yields the relation for the decay widths in bin j of final state
g of

Γ[ψ(3770)→ D0D0 → fg(q)] ∝T g−j
∑
i

T fi + T gj
∑
i

T f−i

+ 2
√
T g−jT

g
j c

g
j

∑
i

√
T fi T

f
−i c

f
i

+ 2
√
T g−jT

g
j s

g
j

∑
i

√
T fi T

f
−i s

f
i . (1.54)

By using
∑
i

T fi =
∑
i

T f−i = 1, cfi = cf−i and sfi = −sf−i the expression can be

simplified to

Γ[ψ(3770)→ D0D0 → fg(q)] ∝T g−j + T gj

+ 2
√
T g−jT

g
j c

g
j

(
2F f

+ − 1
)
. (1.55)

8The binning scheme introduced in Section 1.4.3 is used in which bins are defined in pairs which
map onto each other under CP transformation.
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Therefore the CP -even fraction can be measured using correlated D0D0 decays by
reconstructing one D meson in the channel of interest – such as 2π+2π− – and the
other D meson in a channel for which the hadronic parameters are known – such
as K0

S,L π
+ π−. The measurement of the CP -even fraction F+

4π of D→ 2π+2π− is
described in Chapter 3.

Since the CP -even fraction is defined as given in Equation 1.42, it can also be meas-
ured reconstructing one D meson in the channel of interest and the other D meson
in a CP eigenstate. Due to the correlation of the D0D0 pair the first D meson has to
be in a CP eigenstate with quantum number opposite to the D meson reconstructed
in the CP eigenstate (neglecting effects from D meson mixing). This measurement
is not part of this thesis.

1.6 The Binning Scheme for the D Meson Decay

Phase Space

Sensitivity to the CKM angle γ is obtained through the interference term

2

√
T fi T̄

f
i

(
cfi x± ∓ s

f
i y±

)
(1.56)

where γ appears in x± = rB cos(δB ± γ) and y± = rB sin(δB ± γ). The factors x±
and y± are enhanced by cfi and sfi respectively.

Since the D0 and D0 decay amplitudes vary over the multi-body phase space, so do
the amplitude weighted cosine cfi and sine cfi of the strong phase difference. To reach
an optimal precision the bins should be chosen in such a way that the integration
over the phase space does not dilute the strength of the amplitude weighted (co)sine
of the strong phase difference. One such binning scheme, the equal ∆δfp, is presented
in Section 1.6.2. In this binning scheme the D decay phase space is divided according
to the strong phase difference ∆δfp.

In order to find the strong phase difference at every point of the phase space a model
of the D decay is used. Although that model is used to define the bins, the measured
values of the hadronic parameters are still model independent. The model influences
only the statistical significance of the measurement.

1.6.1 Amplitude Model

The amplitude modelA0
D(p) for a multi body D decay can be constructed by forming

the coherent sum over all intermediate amplitudesAi(p), each weighted by a complex
coefficient ai such that

A0
D(p) =

∑
i

aiAi(p) . (1.57)

The intermediate amplitudes are constructed using the isobar approach which is
based on the assumption that the decay process can be factorised into subsequent
two-body decay amplitudes. For three body decays the decay chain looks like D0 →
(R→ h1h2)h3. For four body modes two topologies are possible where the first
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topology is the twin resonance decay D0 → (R1 → h1h2) (R2 → h3h4) and the second
topology is that of a cascade decay with D0 → [R1 → (R2 → h1h2)h3]h4. For both
topologies each intermediate amplitude Ai(p) is expressed as

Ai(p) = BLD
(p)
[
BLR1

(p)TR1(p)
] [
BLR2

(p)TR2(p)
]
SiB(p) (1.58)

where the BL are the form factors for each vertex of the decay tree, the TR are the
Breit-Wigner propagators for each resonance and Si is the spin factor representing
the overall angular distribution.

Additional constraints can be applied to the amplitude models to account for the
negligible CP violation in neutral D decays and the two pairs of indistinguishable
pions in the D0→ 2π+2π− decay. The complex coefficients ai in Equation 1.57 are
determined experimentally by fitting the amplitude model to data. More detail on
the D0→ K0

Sπ
+π− amplitude model and the D0→ 2π+2π− amplitude model which

are used in Chapter 3 and Chapter 6 can be found in Reference [23] and Refer-
ence [24], respectively.

1.6.2 Equal ∆δ Binning

The binning scheme used to bin the D→ K0
S,Lπ

+π− decays in the measurement of
the CP -even fraction of D0→ 2π+2π− in Chapter 3 and the D→ 2π+2π− decays in
the preparation of the γ measurement in Chapter 6 is called the equal ∆δ binning.
In this binning scheme the D decay phase space is divided according to the strong
phase difference ∆δ. Using a model for the D decay amplitude, a value for ∆δ is
appointed to each point p of the phase space. A bin number is then assigned using

+i : δi−1 < ∆δ4π
p < δi

−i : −δi−1 > ∆δ4π
p > −δi (1.59)

where δ0 ≡ 0, δN ≡ π and δi < δi+1. This automatically fulfils the requirement men-
tioned in Section 1.4.3 that bin +i maps to bin −i under CP , since ∆δ4π

p ≡ −∆δ4π
p .

The values of δi are chosen according to δi = iπ/N where N is the number of pairs
of bins.

1.7 Summary

The CKM angle γ is the least well measured angle of the Unitarity Triangle. In the
Standard parametrisation of the CKM matrix, γ also represents the CP -violating
complex phase and appears in the weak transition of a b quark to a u quark. Since γ
is a complex phase it can only be measured through interference. B±→ DK± decays
offer a theoretically clean way to measure γ through the interference of B±→ D0K±

and B±→ D0K± when the D meson is reconstructed in a final state accessible to
both D0 and D0 mesons. Since both decays B±→ D0K± and B±→ D0K± are
tree level processes the measured value of γ corresponds to the Standard Model
parameter without any influence of possible physics beyond the Standard Model.
The value of γ obtained through the analysis of B±→ DK± decays can be compared

26



1.7 Summary

to alternative measurements of γ with decays that involve loop processes, and a
discrepancy between the measurements will be a strong indication of physics beyond
the Standard Model.

By reconstructing the D meson in a multi-body, self-conjugate final state – such as
2π+2π− – the sensitivity to γ is increased through observation of the interference
pattern over the five-dimensional phase space of the D meson decay. The significant
systematic uncertainty which is associated with modelling the complex phase of the
D decay amplitude across the five-dimensional phase space of the four body decay can
be avoided by adapting a model-independent approach. This is realised by dividing
the D decay phase space into bins and integrating over each bin. The resulting D
decay related quantities are called hadronic parameters and can be measured model
independently.

The hadronic parameters, namely the flavour-tagged fractions T fi , the amplitude
weighted cosine and sine of the strong phase difference cfi and sfi , can be measured
using quantum correlated D0D0 pairs created in decays of the ψ(3770) resonance.
One D meson is reconstructed in the decay of interest – here D→ 2π+2π−– while
the other D meson is reconstructed as a flavour eigenstate for the T fi measurement,
a CP eigenstate for the cfi measurement and either the final state of interest itself
or a final state whose hadronic parameters are known – such as K0

S,Lπ
+π−.

Sensitivity to the CKM angle γ can also be obtained by integrating over the full
phase space of the multi-body D decay. The decay width can then be expressed in
terms of the CP -even fraction F+ of the D decay. Like the hadronic parameters, the
CP -even fraction can be measured using quantum correlated DD pairs created in
decays of the ψ(3770) resonance.

The measurement of the CP -even fraction of the D0→ 2π+2π− decay is documented
in Chapter 3. The study of the sensitivity to the CKM angle γ that can be obtained
using the GGSZ method for B±→ D(→ 2π+2π−)K± decays at LHCb is performed
in Chapter 6.
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2. The CLEO-c Experiment

The CLEO experiment was the only large particle physics experiment located at the
Cornell Electron Storage Ring (CESR) at the Laboratory for Elementary Particle
Physics (LEPP) in Ithaca (NY). It recorded data from electron-positron-collisions
at a center of mass energy between 3 and 11 GeV. While B physics was its main
focus, many analyses on a variety of topics — such as charm, quarkonium and τ
physics — have been performed. The collaboration’s most cited result is the first
measurement of the flavour-changing neutral current in the b → sγ transition [25],
which was measured to be in accordance with the Standard Model expectation and
placed constrains on possible contributions from physics beyond the Standard Model,
for example from charged Higgs bosons.

In its run period from 1979 to 2008 the CLEO detector underwent several upgrades,
the last of which was the CLEO-c detector. While the operation time before the
CLEO-c detector was mainly spent at the Υ(4S) resonance to study B mesons,
the operation time of CLEO-c was spent at three lower center of mass energies of√
s = 3770 MeV,

√
s = 4140 MeV and

√
s = 3100 MeV. Those energies corresponded

to the D+
s D

−
s threshold, the ψ(3770) resonance and the J/ψ resonance, respectively.

The first two center of mass energies allowed CLEO-c to study D and D+
s mesons

that were created just above threshold and in the case of the neutral D mesons in
correlated pairs. This means that the events were very clean with low multiplicity,
resulting in high efficiencies and low systematic errors.

The CLEO III and therefore its successor the CLEO-c detector were much more
advanced with respect to previous charm experiments — such as BES and Mark
III— having e.g. substantially superior particle identification, mass resolution and
photon energy resolution. The CLEO-c detector also had an increased solid angle
coverage of 25% relative to BES giving it an advantage in any measurements that
required the reconstruction of both D mesons. Additionally, CLEO-c worked at a
much higher luminosity, resulting in a data sample three magnitudes bigger than
the Mark III datasets and 270 times as much D and D+

s data compared to BES.

This chapter is dedicated to the description of the CLEO-c detector. After a general
overview over the detector the different subdetectors are presented and a summary
of the detector performance is given. Then the CLEO-c trigger system is introduced
as well as the reconstruction of D meson candidates within the CLEO-c reconstruc-
tion framework.
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2.1 Overview of the CLEO-c Detector

The series of CLEO detectors were designed as general purpose detectors and offer
a 93% coverage of the solid angle.

The small kinetic energy of the D mesons created during CLEO-c collision periods
made a vertex detector obsolete. Furthermore the final state particles from col-
lisions in CLEO-c had a smaller average momentum than in the previous CLEO
experiments. Therefore, the CLEO-c detector was built with a minimal amount of
material budget, even replacing its predecessor’s silicon vertex detector with a wire
drift chamber. Additionally, the magnetic field was lowered. The muon chambers
were obsolete in CLEO-c since not even the muons could penetrate them.

The CLEO-c detector was composed of several subdetectors shown in Figure 2.1
which are presented in the following sections.
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Figure 2.1: The CLEO-c detector. 1: Inner wire drift chamber ZD, 2: Wire drift
chamber, 3: Rich imaging Cherenkov detector (RICH), 4: calorimeter barrel, 5:
endcap calorimeter, 6: the magnet. [26]

2.1.1 The Inner Wire Chamber (ZD)

The ZD was the detector closest to the beam pipe. It replaced the silicon vertex
detector of CLEO III with a six layer wire drift chamber, since it featured a lower
material budget than the silicon detector. The ZD was used for pattern recognition
in the trigger and momentum measurement of charged particle tracks. It did not
provide vertexing, which was not needed since the D mesons were created barely
above threshold and resulting in a decay length of about 20 to 40µm.
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2.1 Overview of the CLEO-c Detector

The ZD consisted of 300 square cells, each measuring 10 mm across. The cells were
made of one sense wire surrounded by eight parallel field wires with a potential of
1900 V between the sense and the field wires. The gas of the drift chamber was a
mixture of 60% helium and 40% propane gas, chosen for its long radiation length.

The wires were approximately parallel to the beam pipe but arranged at a small
stereo angle, with the innermost layer having a stereo angle of 4.4◦ to the beam axis
and the outermost layer a stereo angle of 5.8◦. The stereo angle allowed for the
reconstruction of the z component of particle trajectories.

A schematic illustration as well as a close up photo of the ZD is shown in Figure 2.2.

Figure 2.2: Left: Schematic illustration of the ZD. Right: Close up photo of one
side of the ZD of the CLEO-c detector. The photo shows the different layers of wires
arranged at slightly different stereo angles.

2.1.2 The Wire Drift Chamber

The wire drift chamber surrounded the ZD. It had the same gas mixture as the ZD
and was used for tracking as well as particle identification (see Section 2.1.6).
The wire drift chamber was made up of square cells measuring 14 mm across. As for
the ZD, the cells of the wire drift chamber consisted of one sense wire surrounded by
eight field wires. The potential between the sense and the field wires was 2100 V [27].

The wire drift chamber had 47 layers in total. The 16 innermost layers were parallel
to the beam pipe while the following layers were grouped into superlayers of 4 layers.
These superlayers were arranged at alternating stereo angles between 1.2◦ and 1.6◦.
Additionally, the outer wall of the wire drift chamber was lined with cathode pads
with 1 cm segmentation in z direction.

2.1.3 The Ring Imaging CHerenkov (RICH) Detector

The Ring Imaging CHerenkov (RICH) detector was located outside the wire drift
chamber and had a solid angle coverage of 83%. It offered particle identification for
charged particles with momentum greater than 0.7 GeV [28]. The RICH detector
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relied on the principle of Cherenkov radiation which occurs when charged particles
pass through a dielectric medium at a velocity greater than the speed of light in
that medium [29]. The Cherenkov radiation is emitted by the charged particle at
an angle that depends on the mass and momentum of the charged particle as well
as the refractive index of the RICH radiator. By measuring the particle momentum
p with the tracking system and the Cherenkov angle θC the particle mass m can be
determined using

cos θC =
1

nβ
(2.1)

=
1

n

√
m2 + p2

p
(2.2)

where n is the refractive index of the RICH radiator and β is the ratio of the speed
of the particle to the speed of light.

The RICH radiator was located at the inner boundary of the RICH detector and
consisted of 14 rows of Lithium fluoride (LiF) crystals. The four rows closest to
the collision point were equipped with a ”sawtooth” edge in order to avoid total
internal reflection of the Cherenkov photons which can occur when the charged
particles enter the crystal at a right angle as can be seen in Figure 2.3. The main
volume of the RICH was an expansion gap filled with nitrogen gas. Travelling
through this volume allowed the different Cherenkov photons from the same track
to separate further and thus to be detected as separate photons. The outer boundary
of the RICH was made of Multi Wire Proportional Chambers (MWPC) filled with
a methane-triethylamine mixture in which the Cherenkov photons converted into
photo-electrons. The multiplied signal of the photo-electrons was then measured via
charge induced on an array of cathode pads of size 75 mm × 8 mm.
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Figure 2.3: Left: Schematic illustration of the part of the CLEO-c RICH detector.
The charged particles travel from the left to the right side. The LiF radiators can be
seen on the left side and the nitrogen-filled expansion gap makes up the biggest part
of the detector. Right: Illustration of the internal reflection of Cherenkov photons
in square radiators (top) and the avoidance of internal reflection from using a ”saw-
tooth” edge on the relectors outer side. [28]
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2.1 Overview of the CLEO-c Detector

2.1.4 The Calorimeter

The CLEO-c calorimeter was used for the detection and energy measurement of neut-
ral particles such as photons, neutral pions and η mesons, for electron identification
and luminosity studies [26].

The calorimeter covered about 93% of the solid angle and consisted of 7800 scin-
tillating crystals of dimension 5 cm × 5 cm × 30 cm. The crystals were located in
the central barrel region and in the two endcaps as shown in Figure 2.4. In order
to reduce the probability of particles flying into the gap between the crystal and
thus being undetected, the crystals in the barrel pointed towards a point slightly
displaced from the collision point.
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Figure 2.4: Cross section of a quadrant to the CLEO-c detector. The orientation
of the calorimeter crystals can be seen at the top.

2.1.5 The Magnet

The CLEO-c magnet was a superconducting solenoid coil which surrounded all sub-
detectors, except for the obsolete muon chambers. The magnet created a uniform
field with a strength of 1 T. The field lines were parallel to the beam axis (z direc-
tion), meaning that charged particles are curved in the x− y plane.

2.1.6 Particle Identification

Three subdetectors were used for the particle identification (PID) in CLEO-c, namely
the drift chamber, the RICH detector and the calorimeter.

The PID with the drift-chambers used the dE/dx principle of specific ionisation.
This principle describes that the energy loss per distance travelled in a medium
depends on the charged particle species. The mean dE/dx for charged particles is
described by the Bethe-Bloch formula [1], except for electrons where it is described
by the Berger-Seltzer formula [30]. Example distributions obtained by CLEO-c
can be seen in Figure 2.5. In order to identify the particle species, h, the number
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of standard deviations from the expected energy loss for the particle hypothesis,
χdE/dx(h), was calculated for each of the particle hypotheses, i.e. for electron, muon,
pion and kaon:

χ2
dE/dx(h) =

(dE/dx(h)− < dE/dx >)2

σ2
(2.3)

To complement the dE/dx method, CLEO-c also used the principle of Cherenkov
radiation with the RICH detector. The RICH information could only be evaluated
for particle trajectories within the detector acceptance, meaning the angle θ between
the track and the beam axis had to fulfil the requirement of |cos θ| < 0.80. Addi-
tionally, the RICH information was only used for tracks with a momentum above
0.7 GeV which guaranteed a decent separation of pions and kaons as can be seen in
Figure 2.5. For a given particle hypothesis all photon hits within 5 standard devi-
ations of the expected ring size for Cherenkov photons are combined to produce a
likelihood value, χRICH . These likelihood are compatible with the χ2

dE/dx(h) values

from the dE/dx measurements and can be combined.

For all pion and kaon candidates a delta log likelihood ∆LK−π was constructed from
the individual dE/dx and RICH particle hypothesis.

∆LK−π = χ2
dE/dx(K

±)− χ2
dE/dx(π

±) + χRICH(K±)− χRICH(π±) (2.4)

If either the dE/dx information or the RICH information was not available for a
given track, the respective χ value was set to zero.

Figure 2.5: Left: dE/dx curves for different charged particle species in the CLEO-
c drift chambers. The separation between protons and kaons ceases to work above
0.5 GeV and between kaons and pions above 0.9 GeV. [26] Right: Separation in
terms of the number of standard deviations between various particle hypotheses as a
function of momentum as achieved by the CLEO-c detector. [31]

Since the principles of specific ionisation and Cherenkov radiation only work for
charged particles the identification of neutral particles was provided by the calor-
imeter. The neutral particles were identified by the shape of their shower in the
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calorimeter. For electron candidates, additional info was provided by the calorimeter
in form of the ratio of the energy deposited in the calorimeter to the measured mo-
mentum [32].

2.1.7 CLEO-c Performance Summary

Even though the first CLEO detectors were designed for physics at a higher center of
mass energy, due to the lower magnetic field and the low material budget of the inner
drift chamber, the CLEO-c detector matched the performance of its predecessors.

The average drift distance resolution for the drift chambers was 85µm [33] which
yielded a momentum resolution of less than 0.5% for tracks with a momentum be-
low 1 GeV [26]. The calorimeter attained an energy resolution of 1.5% for 5 GeV
photons, 4% for 100 MeV photons and 7% for 30 MeV photons [26]. The resulting
mass resolution of neutral pions from π0 → γγ is shown in Figure 2.6. Figure 2.6
also shows that the efficiency for identifying charged pions with a momentum below
0.7 GeV was stable and above 97% while the rate of wrongly identifying kaons as
pions lay below 1% [34].

Figure 2.6: Left: Resolution of the π0 mass in the CLEO-c calorimeter. The π0

candidate is reconstructed in its decay channel π0 → γγ with both γ reconstructed
in the main calorimeter barrel (top) and with one γ reconstructed in the main barrel
and the other γ reconstructed in the endcap (bottom). Right: Pion-identification
efficiency as a function of the momentum p (top) and the probability of misidentifying
a kaon as a pion [34].

2.2 The CLEO-c Trigger System

The CESR accelerator had a peak luminosity of L ≈ 10−33 1
cm2 s

[35]. The events of

interest in the CLEO-c physics program where predominantly e+e− → DD events.
At a center-of-mass energy 3770 MeV the cross-section for e+e− → DD is σ(DD) =
6.57 nb [34]. Thus, the rate for decays of interests was approximately 7 Hz. The
data acquisition system required that the data were collected and written to disk
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at a rate of 80 Hz, which was an order of magnitude greater than the rate by which
the events of interest occurred. This means that the trigger could accept almost all
events of interest, rejecting only background events such as interactions of the beam
with the beam pipe. Additionally, events consistent with Bhabha scattering into
the CLEO-c barrel were retained for the luminosity measurement. The trigger also
provided the timing information that was used later in the event reconstruction.

The CLEO-c trigger was fully hardware based and ran on field-programmable gate
arrays (FPGA). Trigger decisions were based on information from the calorimeter
and the drift chamber. In a first step trigger primitives were calculated by individual
customised circuit boards. These trigger primitives were quantities such as the
shower count and topology in the calorimeter, and track count and topology in
the drift chamber. Track-finding algorithms were applied to the axial and stereo
components of the drift chambers individually to build all possible track patterns
whose closest approach to the beam line was 5 mm or less. The showers in the
calorimeter were placed in three categories according to their energy.

The information from the trigger primitives was correlated by a global trigger circuit
to generate a global trigger decision for the event. An example for a positive trigger
decision would be an event with more than 2 tracks and one low-energy shower. The
trigger had an efficiency greater than 99% for hadronic events.

2.3 The CLEO-c D Meson Tagging (DTag)

The CLEO-c framework offers an efficient and clean preselection for final state
particles as well as the construction of intermediate particles, such as K0

S mesons,
and D meson candidates. Within this framework final state particles are recon-
structed from tracks in the drift chambers or showers in the calorimeters. Different
selection criteria are placed on the track quantities, shower energies and particle
identification. These selection criteria for the final state particles were optimised
for the kinematic distributions of the decays of interest as well as for the detector
performance. The specific selection criteria for the final state particles used in the
measurement of the CP even fraction of D0→ 2π+2π− are listed in Section 3.3.2.

The final state particles are combined by the CLEO-c framework to intermediate
candidates which are further combined to form a specific D meson decay. This con-
struction and selection of D meson candidates is called DTag and ensures that no
physics object such as tracks and showers are used more than once per event. Two
individual DTag candidates such as D→ 2π+2π− and D→ K0

Sπ
+π− can be combined

to form a DDoubleTag.
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3. Measurement of the CP-even
Fraction F+ of the
D0→2π+ 2π− Decay using
quantum correlated DD̄ Pairs
at CLEO-c

This chapter describes the measurement of the CP -even fraction F+
4π of the

D0→ 2π+2π− decay using D→ K0
Sπ

+π− and D→ K0
Lπ

+π− decays to tag the signal
mode. In the first section of this chapter the strategy used to perform the measure-
ment is outlined. In the second section the different data and simulation samples
used in the analysis are introduced. In the third section the reconstruction and se-
lection of the D0→ 2π+2π− vs. D→ K0

Sπ
+π− and D→ 2π+2π− vs. D→ K0

Lπ
+π−

candidates is presented. In the fourth and fifth section the procedure used to extract
the number of D→ 2π+2π− vs. D→ K0

Sπ
+π− and D→ 2π+2π− vs. D→ K0

Lπ
+π−

signal events, respectively, is explained. In the sixth section the fit to extract the
CP even fraction F+

4π is described. In the seventh section all considered systematic
uncertainties are summarised. The eighth and last section contains a conclusion that
includes the comparison of the results of this analysis to other measurements of F+

4π.

3.1 Strategy
As outlined in Chapter 1, F+

4π can be determined using correlated D0D0 decays where
one D meson decays to 2π+2π− and the other D meson decays to a CP -mixed final
state such as K0

S π
+π− or K0

Lπ
+π−. These double tags are denoted as D→ 2π+2π−

vs. D→ K0
Sπ

+π− and D→ 2π+2π− vs. D→ K0
Lπ

+π−, respectively.

The sensitivity to F+
4π lies in the variation of density of events over the Dalitz plot

of the D→ K0
Sπ

+π− or D→ K0
Lπ

+π− candidate. If the Dalitz plot is divided into

bins, the number of D→ 2π+2π− vs. D→ K0
Sπ

+π− events N
K0

Sπ
+π−

i in bin i of the
D→ K0

Sπ
+π− Dalitz plot is given by

N
K0

Sπ
+π−

i = h
(
Ti + T−i − 2

√
TiT−i ci

(
2 F 4π

+ − 1
))

(3.1)

and the number of D→ 2π+2π− vs. D→ K0
Lπ

+π− events N
K0

Lπ
+π−

i in bin i of the
D→ K0

Lπ
+π− Dalitz plot is given by

N
K0

Lπ
+π−

i = h′
(
T ′i + T ′−i − 2

√
T ′iT

′
−i c

′
i

(
2 F 4π

+ − 1
))

(3.2)
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where h and h′ are normalisation factors specific to the double tag. The factors Ti and
T ′i are the flavour-tagged fractions of the D→ K0

Sπ
+π− and D→ K0

Lπ
+π− candidate,

respectively. The ci and c′i are the amplitude weighted cosine of the strong-phase
difference between D0→ K0

S,Lπ
+π− and D0→ K0

S,Lπ
+π− decays averaged over bin

i. The values for Ti, T
′
i , ci and c′i have been previously determined [36] [22] and

are used as external inputs in this analysis. The CP -even fraction F+
4π and both the

normalisation factors h and h′ are determined in this analysis.

The binning scheme for the K0
S,L π

+ π− Dalitz plot is chosen to be the ∆δ BaBar
2008 binning described in Section 1.6 of Chapter 1, in which the Dalitz plot is
divided according to the strong-phase difference between the D0→ K0

S,Lπ
+π− decay

and the D0→ K0
S,Lπ

+π− decay, as predicted by a model developed by the BaBar
collaboration [23]. The shape of the bins in the D → K0

S,Lπ
+π− Dalitz plot can

be seen in Figure 3.1. The Dalitz plot of the D→ K0
S,Lπ

+π− mode is divided into
eight pairs of symmetric bins by the line m2

K0
S,Lπ

+ = m2
K0

S,Lπ
− where m2

K0
S,Lπ

± is the

invariant-mass squared of the K0
S,L π

± pair. The bins lying on one side of this line
(m2

K0
S,Lπ

+ > m2
K0

S,Lπ
−) are labelled −1→ −8, and those on the other side 1→ 8.
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Figure 3.1: Shape of the bins in the D→ K0
S,Lπ

+π− Dalitz plot in the ∆δ BaBar
2008 binning scheme. The Dalitz plot is divided into bins according to the strong-
phase difference between D0→ K0

S,Lπ
+π− and D0→ K0

S,Lπ
+π− decays as predicted

by the model developed by the BaBar collaboration [23].

The yields given by Equations 3.1 and 3.2 for bin i and bin −i are identical. They
can therefore be added and the yields in the bin with the absolute bin number |i|
given by

N
K0

Sπ
+π−

|i| = N
K0

Sπ
+π−

i +N
K0

Sπ
+π−

−i N
K0

Lπ
+π−

|i| = N
K0

Lπ
+π−

i +N
K0

Lπ
+π−

−i (3.3)

are studied in this analysis. In the following, bins denoted by i refer to the union of
bin i and bin −i as defined in the above binning scheme.

The first part of this analysis consists of the measurement of the distribution of
D→ 2π+2π− vs. D→ K0

Sπ
+π− events and D→ 2π+2π− vs. D→ K0

Lπ
+π− events

over the respective K0
S,Lπ

+π− Dalitz plot. The measurement is carried out on the
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full CLEO-c dataset recorded in e+e− → ψ(3770) collisions. The D→ 2π+2π− vs.
D→ K0

Sπ
+π− candidate events and D→ 2π+2π− vs. D→ K0

Lπ
+π− candidate events

are reconstructed and selected using different selection criteria. Data-driven and
simulation-driven techniques are used to determine the remaining contribution from
different background sources. The background is divided into peaking background,
and combinatorial and continuum background. After the background contributions
are subtracted from the D→ 2π+2π− vs. D→ K0

Sπ
+π− yields and the D→ 2π+2π−

vs. D→ K0
Lπ

+π− yields, the reconstruction and selection efficiency for both signal
channels is determined using signal Monte Carlo. The distribution of background-
subtracted signal events over the K0

S,Lπ
+π− bins is then corrected for the efficiency

to account for relative bin-to-bin efficiency variations. Note that while F+
4π is only

sensitive to the relative variation of the signal events over the K0
S,Lπ

+π− Dalitz plot,
the yields and efficiencies in this analysis are still calculated in absolute terms. This
has no impact on the result of F+

4π.

The second part of this analysis is the fit to extract the CP -even fraction F+
4π of

D0→ 2π+2π−. The background-subtracted and efficiency-corrected distributions of
D→ 2π+2π− vs. D→ K0

Sπ
+π− events and D→ 2π+2π− vs. D→ K0

Lπ
+π− events

are simultaneously used in a least square fit. The fit parameters are the CP -even
fraction F+

4π and the overall normalisations h and h′. The values of Ti, T
′
i , ci and c′i

are also fitted, but with their measurement uncertainties and correlations imposed
with Gaussian constraints.

The last part of the analysis is the consideration of several different sources of
potential bias. The effect of the possible biases is estimated either with pseudo-
experiments or by using an independent technique to determine a certain quantity
and recalculating F+

4π.

3.2 Data and Simulation Samples

In this section the data samples and the different simulation samples used in the
measurement of the CP -even fraction of D0→ 2π+2π− are presented.

3.2.1 Recorded Data Sample

The dataset used in this analysis is the full CLEO-c dataset recorded in
e+e− → ψ(3770) collisions1, consisting of a total of (818 ± 8) pb−1 in ten sets. The
integrated luminosity of each dataset is given in Table 3.1.

3.2.2 Simulated Data Samples

All samples of simulated data (Monte Carlo data) are produced within the CLEO-c
framework. Different Monte Carlo samples are used for different purposes, such as
the determination of the reconstruction and selection efficiencies and the identifica-
tion of different sources of background.

1Dataset 35 is not used in the D→ 2π+2π− vs. D→ K0
Lπ

+π− data samples.
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Dataset Integrated Luminosity Dataset Integrated Luminosity

31 19.104 pb−1 37 109.349 pb−1

32 30.487 pb−1 43 116.648 pb−1

33 6.184 pb−1 44 173.987 pb−1

35 47.677 pb−1 45 108.192 pb−1

36 68.575 pb−1 46 137.084 pb−1

Table 3.1: The integrated luminosity of each dataset used in this analysis. The
total integrated luminosity is 818.3 ± 8.2 pb−1.

The CLEO-c framework employs the EvtGen software package [37] as a generator
to simulate e+e− collisions and propagate the decay of their products. The final
state particles are passed to the Geant4 software package [38] which is used to de-
scribe the CLEO-c detector, the passage of particles through the detector including
material interactions, possible noise and bremsstrahlung. The simulated detector
responses are recorded in the same format as the real responses obtained from the
data acquisition thus enabling an identical reconstruction of the Monte Carlo data
and in real data.

3.2.2.1 Signal Monte Carlo

Dedicated signal Monte Carlo samples are generated within the CLEO-c framework
in order to study selection criteria and estimate reconstruction efficiencies.

Signal Monte Carlo samples are generated for D→ 2π+2π− vs. D→ K0
Sπ

+π− events,
D→ 2π+2π− vs. D→ K0

Lπ
+π− events, D→ K0

Sπ
+π− vs. D→ K0

Sπ
+π− events and

D→ K0
Sπ

+π− vs. D→ K0
Lπ

+π− events. All samples are reconstructed under the
signal decay hypotheses. The signal Monte Carlo samples are generated with non-
resonant amplitude models in the CLEO-c framework where correlations between the
D mesons are neglected. After reconstruction, the samples are reweighted to take
into account amplitude models with resonant structures and the correlation between
the two D mesons in the event. The reweighting procedure uses the amplitude
models for the D→ 2π+2π− and D→ K0

Sπ
+π− decays from amplitude analyses in

Reference [24] and Reference [39], respectively. Since there is no amplitude model
for the D→ K0

Lπ
+π− decay, its amplitude is approximated using the D→ K0

Sπ
+π−

amplitude, i.e.

A(D0→ K0
Lπ

+π−) = A(D0→ K0
Sπ

+π−) (3.4)

and

A(D0 → K0
Lπ

+π−) = −A(D0 → K0
Sπ

+π−) . (3.5)

As shown in Appendix A, this approximation holds when the doubly Cabibbo sup-
pressed amplitudes contributing to the decay are negligible with respect to the
Cabibbo favoured amplitudes.
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3.2 Data and Simulation Samples

The amplitude model for ψ(3770)→ D0D0 → f1f2 decays is given by (see Chapter 1)

A(ψ(3770)→ D0D0 → f1f2) ∝ A(D0 → f1) · A(D0 → f2) (3.6)

− A(D0 → f2) · A(D0 → f1) (3.7)

which takes into account the correlation between the two D mesons.

An example for the distribution of events in the D→ K0
Sπ

+π− Dalitz plane before
and after the reweighting procedure is shown in Figure 3.2. The resonant structures
from the K∗± and the ρ are clearly visible after the reweighting.

A systematic uncertainty is applied in Section 3.7.4 to account for any model de-
pendence in the efficiency determination.
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Figure 3.2: Distribution of events over the D→ K0
Sπ

+π− Dalitz plane for
D→ 2π+2π− vs. D→ K0

Sπ
+π− events at generator level. Left: Distribution of

events generated with non-resonant amplitude model. Right: Distribution of events
after the reweighting procedure. The K∗+ and K∗− resonance can be seen as vertical
and horizontal lines at 0.96 GeV2/c4. The diagonal structure is the ρ resonance.

3.2.2.2 Generic Monte Carlo

The CLEO-c collaboration provides a sample of generic Monte Carlo used to identify
and estimate background contributions. The generic Monte Carlo contains both
e+e− → ψ(3770) → D0D0 and e+e− → ψ(3770) → D+D− events. Each D meson
decays to a final state f with a probability equal to its measured branching fraction
B(D → f) in the 2004 PDG [40]. Decay modes not listed in the PDG – such as
D→ K0

Lπ
+π− – are added with estimated branching ratios. The integrated lumin-

osity of the generic Monte Carlo samples corresponds to approximately 10 times the
luminosity in data for the datasets 31 - 33 and 35 - 37 (abbreviated as datasets 31 -
37) and 20 times the luminosity for the datasets 43 - 46. The generic Monte Carlo
uses non-resonant decay models for the D mesons.

The generic Monte Carlo can be used to estimate the background contribution from
specific decays. Therefore, the yields in the generic Monte Carlo samples have to
be scaled to match the yield expected in the data sample. Two different scaling
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factors need to be applied to the generic Monte Carlo yields. The first scaling
factor accounts for the different number of D0D0 events between the generic Monte
Carlo and the data. The ratio of ψ(3770) → D0D0 events to ψ(3770) → D+D−

events for generic Monte Carlo samples 31 - 37 was assumed to be 1.33. With
a production cross section σ (e+e− → ψ(3770)) = 7.25 nb [34] and the branching
ration BR

(
ψ(3770)→ DD

)
= 0.83 [34] this results in a total number of 9.789 · 106

D0D0 events. The number of D0D0 events in the corresponding data sample was
measured to be (1.031±0.015)·106 [34] which means a factor of f 31−37

lumi = 0.105 needs
to be applied to the yields in the generic Monte Carlo sample 31-37. For the samples
43-46 the factor is taken from the ratio of the luminosities in data and generic Monte
Carlo and is f 43−46

lumi = 0.05.

The generic Monte Carlo was generated without taking into account quantum cor-
relations between the two D mesons. For two correlated decays D → fi and D → fj
the scaling factor f ijquan applied to the generic Monte Carlo is

f ijquan =
κ

4
·
(

1− δij
2

)[
(1− F+

i )F+
j + (1− F+

j )F+
i

]
(3.8)

where F+
i and F+

j are the CP -even fractions of D → fi and D → fj, respectively,
and κ ≈ 4.0004 [41] is a factor that ensures that the sum over all combinations of
final states i and j yields the total number of quantum-correlated D0D0 events.

3.2.2.3 Continuum Monte Carlo

The CLEO-c collaboration also provides a sample of continuum Monte Carlo used to
identify and estimate background contributions. Continuum events are created by
off-resonant e+e− → qq {q = u, d, s} interactions. The model used to simulate the
continuum events is the Lund string model [42] which is very successful at describing
the creation of additional hadrons from two quarks moving apart.

The continuum Monte Carlo was generated for the data samples 31 - 37 with a lu-
minosity 5 times higher than the data. This continuum Monte Carlo sample is used
to represent the full data sample used in this analysis.

3.3 Reconstruction and Selection of theD→ 2π+2π−

vs. D→K0
S,Lπ

+π− Candidates

In this section the procedure to select the D→ 2π+2π− vs. D→ K0
Sπ

+π− candidates
and D→ 2π+2π− vs. D→ K0

Lπ
+π− candidates is described. This builds the basis for

the measurement of F+
4π. First, the topology of the signal decays and what quantities

can be used to distinguish it from background is introduced. Second, the selection
of the D decay candidates within the CLEO-c DTag framework is described. Finally,
the additional selection — including a veto for D→ K0

Sπ
+π− candidates within the

D→ 2π+2π− candidates — is explained.
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3.3 Reco. and Sel. of the D→ 2π+2π− vs. D→ K0
S,Lπ

+π− Candidates

3.3.1 Topology of the Signal Events

The electron and positron beams at CESR have the same energy and are collided at a
crossing angle of 3.3 mrad. In the e+e− → ψ(3770)→ DD reaction the total energy
of the colliding electron-positron pair is transferred to the ψ(3770) and subsequently
to the DD pair. This means that the four momentum of the DD pair is fully known.
If the electron and the positron each have an energy Ebeam and the crossing angle is
α, the center of mass energy of the event is given by

s = 2E2
beam (1− cosα) ≈ 4E2

beam . (3.9)

The approximation holds for small angles such as the crossing angle at CLEO-c of
α = 3.3 mrad. Thus, each D meson in e+e− → ψ(3770) → DD has an energy of
Ebeam. This is used to construct the beam constrained D mass, mD

BC , where

mD
BC ≡

√
E2
beam − p2

D . (3.10)

Since the energy of the electron beam is known to a much higher precision than the
energies of the D decay products, the beam constrained D mass is more precise than
the D meson mass calculated from the energies of D decay products.
Additionally the energy difference, ∆E,

∆E ≡ ED − Ebeam (3.11)

is calculated for each D meson in the event. For events that truly come from the
e+e− → ψ(3770)→ DD reaction the value of ∆E is 0 within the energy resolution
of the CLEO-c detector. Figure 3.3 shows the distribution of D→ 2π+2π− vs.
D→ K0

Sπ
+π− signal Monte Carlo events in the plane spanned by ∆E2π+2π− vs.

m2π+2π−
BC . The two variables are nearly uncorrelated.
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Figure 3.3: Distribution D→ 2π+2π− vs. D→ K0
Sπ

+π− signal Monte Carlo events
in the plane spanned by ∆E2π+2π− vs. m2π+2π−

BC for all events that pass the CLEO-
c preselection (left) and a zoom around the signal region (right). The correlation
factors are -0.05 and -0.23, respectively.

The D mesons in e+e− → ψ(3770) → DD events are created just above threshold,
meaning that they have very little kinetic energy and are created almost at rest.
It is therefore not possible to distinguish any secondary vertices and all final state
particles originate very close to the primary vertex. This information can be used
to reject background events by selecting only events where all final state particles
have small impact parameters.
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Even though the kinetic energy of the D mesons is small, in the center-of-mass
frame of the DD pair their three-momenta point in opposite directions. In the
case that only one of the two D mesons is fully reconstructed – as is the case for
D→ 2π+2π− vs. D→ K0

Lπ
+π− events where the K0

L meson is not reconstructed –
the four-momentum of the other D meson is calculated using the assumption that
in the center-of-mass frame of the ψ(3770) the D0 and the D0 mesons have equal
energy and opposite three momenta.

3.3.2 The CLEO-c Reconstruction and Preselection

The preselections for the fully reconstructible decaysD→ 2π+2π− andD→ K0
Sπ

+π−

and the partially reconstructible decay D→ K0
Lπ

+π− are performed by the CLEO-c
framework that was introduced in Section 2.3. Within the CLEO-c framework,
charged pions are identified as charged tracks in the detector that fulfil a number
of selection requirements on the track parameters and the particle identification
variables for these tracks. First, the pion candidates have to lay within the fiducial
volume of the CLEO-c detector meaning that the angle θ between the particle track
and the beam line has to have a |cos(θ)| ≤ 0.9. Additional selections are placed
on the momentum, p, the impact parameters, z0 (impact parameter in z direction)
and, db (impact parameter in the x− y plane), the track fit quality, χ2

track, and the
fraction of hits in the drift chambers, fhit. In order to distinguish the charged pions
from kaons, selections are executed on the combined likelihood difference ∆LK−π for
particle identification (see Section 2.1.6).

The K0
S candidates are constructed by combining two pions of opposite charge. The

selection criteria for K0
S candidates demands that the two opposite sign pions can be

successfully constrained to a common vertex (indicated by a χ2
vtx >= 0 of the fit).

The DTag candidates for D→ 2π+2π− decays are constructed by combining two
positively-charged pions and two negatively-charged pions. The DTag candidates
for D→ K0

Sπ
+π− decays are constructed through the combination of a K0

S candid-
ate, one negative and one positive pion. Selection criteria are placed on the beam
constrained D mass mD

BC and the energy difference ∆E of the D meson candidate.

Due to the long lifetime of the K0
L meson, the D→ K0

Lπ
+π− decay cannot be fully

reconstructed and therefore has no DTag candidate. It is build within the CLEO-c
framework by combining the DTag candidates for the D→ 2π+2π− decays with two
pions of opposite charge. The selection requires that there are no additional tracks
or neutral pion candidates in the events. The four-momentum of the K0

L candidates
is calculated using the fact that in the center-of-mass frame of the ψ(3770) the
D0 and the D0 mesons have equal energy and opposite three momenta. Using the
momenta of the reconstructed pions in D→ K0

Lπ
+π−, the missing momentum from

the K0
L meson can be inferred.

All selection criteria from the CLEO-c framework are listed in Table 3.2. The re-
construction and selection efficiency from the CLEO-c framework as determined on
the signal Monte Carlo is 45% for D→ 2π+2π− vs. D→ K0

Sπ
+π− decays and 62%

for D→ 2π+2π− vs. D→ K0
Lπ

+π− decays.
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3.3 Reco. and Sel. of the D→ 2π+2π− vs. D→ K0
S,Lπ

+π− Candidates

Particle Parameter Selection Criterion

D mD
BC > 1.83 GeV

∆E < 0.1 GeV

K0
S Vertex Quality χ2

vtx > 0

π± Track Momentum p ≥ 50 MeV and ≤ 2 GeV

Impact Parameter z0 ≤ 5 cm

Impact Parameter db ≤ 5 mm

Track Angle |cos θ| ≤ 0.9

Track Fit Quality χ2
track ≤ 100000

Hit Fraction fhit ≥ 0.5

Particle ID ∆LK−π > 0

Table 3.2: Selection criteria for all particles for D→ 2π+2π− vs. D→ K0
S,Lπ

+π− in
the DTag framework. The K0

S vertex quality cut does not apply to the D→ 2π+2π−

vs. D→ K0
Lπ

+π− candidates.

3.3.2.1 Kinematic Fitting

The CLEO-c reconstruction framework provides the option of performing fits on
kinematic objects like tracks and showers. Kinematic parameters like the momenta of
the final-state particles can be determined more accurately by imposing constraints
on for example the invariant mass of a group of particles or the net momentum in
the laboratory frame. The kinematic fit takes the magnetic field, the beam spot, the
beam energy and the beam crossing-angle into account. These fits are performed by
the FitEvt package [43] and have a variety of options.

In this analysis the kinematic fitting is applied to the D→ K0
S,Lπ

+π− candidates,
allowing the position of the event on the Dalitz plane to be determined more accur-
ately. A kinematic fit is also applied to the D→ 2π+2π− candidates since a selection
on the quality of the fit can be used to reject background events. The kinematic fits
use the method of least squares.

For the D→ K0
Sπ

+π− candidates a first fit of two opposite sign pion tracks forming
the K0

S candidate is performed. The two pions are required to originate from the
same vertex and the invariant mass of the π+ π− pair is fixed to the nominal K0

S mass.
If the fit is successful (indicated by a positive χ2), the K0

S candidate and the two
additional pions are constrained to the same vertex and the nominal D mass in a
second fit.

For the D→ K0
Lπ

+π− candidates the K0
L candidates information is given as the four-

momentum determined previously. The error matrix for the K0
L candidates are set to

the identity matrix. The tracks of the two pions and the K0
L candidate are required

to originate from the same vertex and are constrained to the nominal mass of the
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D meson. For the D→ 2π+2π− candidates the tracks of the four pions are required
to originate from the same vertex and their combined invariant mass is constrained
to the nominal mass of the D meson.

The effect of the kinematic fit on the reconstructed position of events in phase space
is quantified with signal Monte Carlo. Without the kinematic fit an average of 76%
of the D→ 2π+2π− vs. D→ K0

Sπ
+π− candidates are reconstructed in the correct bin

while with the kinematic fit an average of 95% of the candidates are reconstructed
in the correct bin. Without the kinematic fit an average of 74% of the D→ 2π+2π−

vs. D→ K0
Lπ

+π− candidates are reconstructed in the correct bin while with the
kinematic fit an average of 76% of the candidates are reconstructed in the correct
bin. Figure 3.4 shows the purity of events per bin, i.e. the number of events that
were produced in a given bin divided by the total number of events reconstructed in
that bin.
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Figure 3.4: Distribution of purity of events per bin as determined on Monte
Carlo for D→ 2π+2π− vs. D→ K0

Sπ
+π− candidates (left) and D→ 2π+2π− vs.

D→ K0
Lπ

+π− candidates (right) without the kinematic fitting (blue) and with the
kinematic fitting (red).

3.3.3 Additional Selection Criteria

Additional selection criteria are placed on the signal candidates to further reduce
background and increase the signal purity.

3.3.3.1 D → 2π+2π− vs. D → K0
Sπ

+π− Candidate Selection

Tighter selections are placed on the energy difference ∆E for both the D→ 2π+2π−

and D→ K0
Sπ

+π− candidates. Additionally, all kinematic fits have to successfully
converge. In order to reject background from D→ 2π+2π− decays reconstructed as
D→ K0

Sπ
+π− a selection is placed on the flight distance significance χ2

FS of the K0
S

candidate – defined as the separation of the K0
S decay vertex from the interaction

region divided by the uncertainty assigned to the K0
S flight distance. Another cut is

placed on the invariant mass of the K0
S candidate.

The additional selection criteria for D→ 2π+2π− vs. D→ K0
Sπ

+π− candidates are
listed in Table 3.3. The selection efficiency from the additional selection as determ-
ined on the signal Monte Carlo is 45% for D→ 2π+2π− vs. D→ K0

Sπ
+π− decays

and the background rejection as determined from the sidebands in data is 99%.
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3.3 Reco. and Sel. of the D→ 2π+2π− vs. D→ K0
S,Lπ

+π− Candidates

Parameter Selection Criterion

Energy Difference for D→ 2π+2π− ∆E < 0.025 GeV

Energy Difference for D→ K0
Sπ

+π− ∆E < 0.020 GeV

Kinematic Fits all converged

K0
S invariant mass

∣∣∣mK0
S
−mPDG

K0
S

∣∣∣ < 7.5 MeV

K0
S flight distance significance χ2

FS > 2

Table 3.3: Selection criteria for D→ 2π+2π− vs. D→ K0
Sπ

+π− candidates.

3.3.3.2 D → 2π+2π− vs. D → K0
Lπ

+π− Candidate Selection

A tighter selection is placed on the beam constrained D mass m2π+2π−
BC and the energy

difference ∆E of the D→ 2π+2π− candidate. Additionally, the kinematic fits for
both decays have to be successful. In order to reject background from decays that
mimic D→ K0

Lπ
+π− candidates because of particles that were not reconstructed,

selection criteria are placed on calorimeter showers that are not directly associated to
D→ K0

Lπ
+π−. Each shower that was not associated by the CLEO-c reconstruction

can be classified according to two variables: the energy of the shower ES and the
angle θS between the shower and the inferred missing momentum in the event. A
two dimensional cut is performed on all not-associated calorimeter showers in the
event and if one shower in the event fails the selection, the event is rejected. This
selection is parameterised by

−1 < cos θS < 0.9 and ES < 0.1 GeV

or

0.9 < cos θS < 0.98 and ES < 2.5 cos θS + 2.15

(3.12)

The distribution of signal and background events in the ES vs. θ plane and the
selection criteria is shown in Figure 3.5.
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Figure 3.5: The distribution of signal (red) and background (blue) events in the ES
vs cos θ plane of the not-associated shower in the events. The green line represents
the selection criteria.
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All additional selection criteria for D→ 2π+2π− vs. D→ K0
Lπ

+π− candidates are
listed in Table 3.4. The selection efficiency from the additional selection as determ-
ined on the signal Monte Carlo is 33% for D→ 2π+2π− vs. D→ K0

Lπ
+π− decays

and the background rejection as determined from the sidebands in data is 97%.

Parameter Selection Criterion

m2π+2π−
BC 1.86 GeV/c2 < m2π+2π−

BC < 1.87 GeV/c2

∆E2π+2π− ∆E < 0.025 GeV

Kinematic Fits all converged

Not-associated Showers −1 < cos θS < 0.9 and ES < 0.1 GeV

or

0.9 < cos θS < 0.98 and ES < 2.5 cos θS + 2.15

Table 3.4: Selection criteria for D→ 2π+2π− vs. D→ K0
Lπ

+π− candidates.

3.3.3.3 K0
S Veto Selection

A selection is developed to rejectD→ K0
Sπ

+π− decays reconstructed asD→ 2π+2π−

candidates. The signal Monte Carlo sample of D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π−

events is reconstructed as D→ 2π+2π− vs. D→ K0
Sπ

+π− and compared to the
D→ 2π+2π− vs. D→ K0

Sπ
+π− signal Monte Carlo. Within the CLEO-c frame-

work all combinations of pions of opposite charge from the D→ 2π+2π− candidates
are combined to test if they can form a K0

S candidate (as defined in the CLEO-c
preselection in Section 3.3.2). One or more K0

S candidates are found in 28% of
the D→ 2π+2π− vs. D→ K0

Sπ
+π− decays and in 99% of the D→ K0

Sπ
+π− vs.

D→ K0
Sπ

+π− decays. All events with no K0
S candidate are accepted by the se-

lection. If a K0
S candidate is found, a selection is applied on its flight distance

significance.

This selection retains 85% of D→ 2π+2π− vs. D→ K0
Sπ

+π− events while reject-
ing 93% of D→ K0

Sπ
+π− vs. D→ K0

Sπ
+π− events. The distribution of the flight

distance significance of all found K0
S candidates for D→ 2π+2π− vs. D→ K0

Sπ
+π−

events and D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π− events and the selection criteria can be
seen in Figure 3.6.
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3.4 Determination of the D→ 2π+2π− vs. D→ K0
Sπ

+π− Signal Event Yields
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Figure 3.6: Distribution of the flight distance significance of K0
S candidates found in

the D→ 2π+2π− vs. D→ K0
Sπ

+π− events (red) and D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π−

candidates (blue) reconstructed as D→ 2π+2π− vs. D→ K0
Sπ

+π− events. The black
lines indicates the K0

S veto selection cut.

3.3.3.4 Multiple Candidate Selection

A selection is applied to events where multiple candidates in the same event have
been reconstructed and have passed the above selection. The amount ofD→ 2π+2π−

vs. D→ K0
Sπ

+π− events that have multiple candidates after the selection is 2% while
the amount of D→ 2π+2π− vs. D→ K0

Lπ
+π− events with multiple candidates after

the selection is 1%.

For the D→ 2π+2π− vs. D→ K0
Sπ

+π− events the candidate with the smallest figure
of merit δF is chosen, where

δF =

∣∣∣∣∣m2π+2π−
BC +m

K0
Sπ

+π−

BC

2
−mD0

∣∣∣∣∣ (3.13)

mD0 the nominal D0 meson mass taken from the PDG [1]. The figure of merit for
the D→ 2π+2π− vs. D→ K0

Lπ
+π− candidates is defined as

δP =
∣∣∣m2π+2π−

BC −mD0

∣∣∣ (3.14)

and the candidate with the smallest δP is selected.

In order to account for a potential bias arising from the multiple candidate selection,
a systematic uncertainty is evaluated in Section 3.7.3.

3.4 Determination of the D→2π+2π− vs.

D→K0
Sπ

+π− Signal Event Yields

In this section the distribution of D→ 2π+2π− vs. D→ K0
Sπ

+π− events over the
bins of the D→ K0

Sπ
+π− Dalitz plot is calculated. The data in each bin is treated

independently of the other bins. First the signal and background regions are defined.
Second, the reconstructed number of D→ 2π+2π− vs. D→ K0

Sπ
+π− candidates is

counted for each bin. Third, the background contribution is estimated for each bin.
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The selection and reconstruction efficiency per bin is determined. The reconstructed
number of signal candidates in each bin is corrected for the background yields and
corrected for the efficiency.

3.4.1 Signal and Background Regions

The two-dimensional space spanned by the beam constrained D masses m
K0

Sπ
+π−

BC vs.
m2π+2π−
BC is divided into five regions as illustrated in Figure 3.7. The region labelled

S is the signal region while the regions labelled A - D are backgrounds regions used
to estimate the contribution of combinatorial background. The regions are defined
in Table 3.5. Each region corresponds to a different kind of background. Events in
region A are events where the D→ K0

Sπ
+π− candidate is correctly reconstructed

while the D → 2π+2π− candidate is misidentified while the opposite is the case
for events in region B. Events in region C are events where tracks between the D
meson candidates are swapped. Since the total momentum of all tracks in the event
is zero, this results in both D candidate masses being either lower or higher than the
nominal D meson mass. The region above the signal region S is omitted here since
the source of background events is the same as in region C and the density of events
is expected to be the same as in region C. The region D is taken to identify the
density of events from a random combination of tracks that mimic the signal decay.

This background is uniformly distributed over the m
K0

Sπ
+π−

BC vs. m2π+2π−
BC space.
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Figure 3.7: Left: Definition of the signal region S and the sidebands A - D for
the case where both D mesons are fully reconstructible, here for D→ 2π+2π− vs.
D→ K0

Sπ
+π−. Right: Distribution of D→ 2π+2π− vs. D→ K0

Sπ
+π− candidates

over the m
K0

Sπ
+π−

BC vs. m2π+2π−
BC space after reconstruction and selection.
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Region m4π
BC( GeV/c2) m

K0
Sππ

BC ( GeV/c2) δmBC( GeV/c2)

Min. Max. Min. Max.

S 1.860 1.870 1.860 1.870

A 1.830 1.855 1.860 1.870

B 1.860 1.870 1.830 1.855

C 1.830 1.855 1.830 1.855 ≤ 0.0035

D 1.830 1.855 1.830 1.855 ≥ 0.0055

Table 3.5: Definition of the signal region S and the sidebands A - D for the
case where both D mesons are fully reconstructible, here for D→ 2π+2π− vs.
D→ K0

Sπ
+π−.

3.4.2 Reconstructed D→ 2π+2π− vs. D→K0
Sπ

+π− Can-
didates

The distribution of D→ 2π+2π− vs. D→ K0
Sπ

+π− candidates after reconstruction

and selection over the m
K0

Sπ
+π−

BC vs. m2π+2π−
BC space is shown in Figure 3.7. The

total number of candidates in the signal region is 248. There are 23 events in
all background regions combined. The number of D→ 2π+2π− vs. D→ K0

Sπ
+π−

candidates per region is listed in Table 3.6. The one dimensional distributions of
the beam constrained masses of both D meson candidates in the signal region S are
shown in Figure 3.8.

Region Number of Events Region Number of Events

A 1 C 25

B 0 D 2

S 249

Table 3.6: Number of D→ 2π+2π− vs. D→ K0
Sπ

+π− candidates after reconstruc-

tion and selection for the different regions in m
K0

Sπ
+π−

BC vs. m2π+2π−
BC space.
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Figure 3.8: Distribution of the beam constrained mass of the D→ 2π+2π− can-
didates (red line) and the D→ K0

Sπ
+π− candidates( blue dashed line) in the signal

region S.

The distribution of reconstructed and selected candidates per K0
S π

+π− bin in the
signal region over the D→ K0

Sπ
+π− Dalitz plane is illustrated in Figure 3.9 and the

number of events per bin is listed in Table 3.7.
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Figure 3.9: Distribution of the D→ 2π+2π− vs. D→ K0
Sπ

+π− events over the
Dalitz plot of the D→ K0

Sπ
+π− candidate in the full data sample after reconstruction

and selection.
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+π− Signal Event Yields

Bin Number of Events Bin Number of Events

1 38 ± 6.16 5 59 ± 7.68

2 22 ± 4.69 6 24 ± 4.90

3 21 ± 4.58 7 30 ± 5.48

4 13 ± 3.61 8 42 ± 6.48

Table 3.7: Number of D→ 2π+2π− vs. D→ K0
Sπ

+π− candidates after reconstruc-
tion and selection for the different K0

S π
+π− bins in the signal region S. The uncer-

tainty is the Poisson uncertainty on the yields.

3.4.3 Background Estimation

The background for D→ 2π+2π− vs. D→ K0
Sπ

+π− events is divided into two cat-
egories: background from specific misidentified decays and background from the
combination of tracks to mimic one or both sides of the signal decay. The back-
ground from specific misidentified decays is called peaking background since it peaks

in m2π+2π−
BC vs. m

K0
Sππ

BC space like the signal. It is expected to have a non-uniform
structure in the m2

K0
Sπ
− vs. m

2
K0

Sπ
+ space of the D→ K0

Sπ
+π− candidate.

The background from the random combination of tracks is called combinatorial back-
ground2. It is assumed to be distributed uniformly over the m2

K0
Sπ
− vs. m

2
K0

Sπ
+ space

of the D→ K0
Sπ

+π− candidate3.

For each category, the background yields per K0
S π

+π− bin are determined in two
steps. In the first step the total number of background events in the signal region S
from a certain source is estimated. In the second step these total yields are distrib-
uted over the K0

S π
+π− bins.

3.4.3.1 Interlude: Statistical Uncertainty on Very Small Event Yields

The estimated background yields for individual bins can be very small. In order
to give a statistical uncertainty on this yield a Poisson distribution is generated
for each yield where the Poisson parameter λ is the respective yield. The 68%
Confidence Level interval is identified by finding the inner 68% of the distribution.
The asymmetric uncertainty is then taken to be the differences between the yield and
the lower and upper boundaries of the confidence interval. An example is illustrated
in Figure 3.10.

2The contribution from continuum events is expected to be very small due to the high track mul-
tiplicity in D→ 2π+2π− vs. D→ K0

Sπ
+π− events. It is not considered separately but is implicitly

included in the estimation of combinatorial background events.
3There is no significant peaking structure from continuum events reconstructed as D→ 2π+2π−

vs. D→ K0
Sπ

+π− decays [44].
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Figure 3.10: Example to illustrate the determination of the statistical uncertainty
on very small yields. The histogram shows the Poisson distribution for λ = 1.33
(dashed red line). The lower and upper boundaries of the inner 68% Confidence
Level interval are shown as blue lines. The differences between λ and the lower and
upper boundaries are taken to be the asymmetric statistical uncertainties.

3.4.3.2 Peaking Background Contribution

The decays for the peaking background contribution are identified using the generic
Monte Carlo sample. All considered contributions are extrapolated from the yields
in the generic Monte Carlo sample using the formalism outlined in Section 3.2.2.2.
All results are listed in Table 3.8. The uncertainties are calculated by propagating
the Poisson uncertainties on the yields in the generic Monte Carlo samples. The
only significant contribution is found to be from D→ K0

Sπ
+π− vs. D→ K0

Sπ
+π−

decays with an estimated total number of D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π− events in
the signal region of 19.52 ± 1.15.

The value for the CP -even fraction F 4π
+ of D0→ 2π+2π− used in Equation 3.8 to

estimate the D→ 2π+2π− vs. D → K0
SK

0
S contribution is taken from an independent

amplitude analysis of D0→ 2π+2π− decays [24]. To evaluate a potential bias from
using F+

4π as input to the analysis, the number of expected D→ 2π+2π− vs. D →
K0

SK
0
S events in the data is calculated for different values of F+

4π. The greatest
contribution is achieved with F+

4π = 0 and yields 1.41 ± 0.41 events. This accounts
for less than 0.5% of events in the signal region and can be neglected.

Decay FD1
+ FD2

+ Ndata
exp

D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π− 0.556 [41] 0.556 [41] 19.52 ± 1.15

D→ 2π+2π− vs. D → K0
SK

0
S 0.729 [24] 1 [41] 0.38 ± 0.11

D→ K0
Sπ

+π− vs. D → K0
SK

0
S 0.556 [41] 1 [41] 0.14 ± 0.10

Table 3.8: Contribution of different possible peaking backgrounds to the reconstruc-
ted event yield estimated from the full generic Monte Carlo sample. The uncer-
tainties are calculated by propagating the Poisson uncertainties on the yields in the
generic Monte Carlo samples.

54



3.4 Determination of the D→ 2π+2π− vs. D→ K0
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The distribution of D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π− events over the K0
S π

+π− bins
is determined using the D→ K0

Sπ
+π− vs. D→ K0

Sπ
+π− Monte Carlo sample de-

scribed in Section 3.2.2.1. The results are listed in Table 3.9. The first uncer-
tainty is the statistical uncertainty determined as described in Section 3.4.3.1. The
second uncertainty is the combination from the uncertainty on the total number
of D→ K0

Sπ
+π− vs. D→ K0

Sπ
+π− events and the uncertainty from the limited

D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π− Monte Carlo sample used to determine the distri-
bution of the D→ K0

Sπ
+π− vs. D→ K0

Sπ
+π− events over the bins. For the purpose

of simplicity the second uncertainty is called the systematic uncertainty.

A systematic uncertainty is assigned to the total number ofD→ K0
Sπ

+π− vs. D→ K0
Sπ

+π−

events in Section 3.7.5.1 as well as to the amplitude model used to reweight the Monte
Carlo samples in Section 3.7.4.

Bin Number of Events Bin Number of Events

1 2.17 +1.83
−1.17 ± 0.37 5 2.88 +2.12

−1.88 ± 0.42

2 3.94 +2.06
−1.94 ± 0.49 6 2.34 +1.65

−1.34 ± 0.38

3 2.24 +1.76
−1.24 ± 0.37 7 1.68 +1.32

−1.68 ± 0.32

4 1.28 +0.72
−1.28 ± 0.28 8 2.98 +2.02

−1.98 ± 0.43

Table 3.9: Estimated distribution of D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π− events over
the K0

S π
+π− bins in the signal sample. The first uncertainty is the statistical un-

certainty of the yields per K0
S π

+π− bin, determined as described in Section 3.4.3.1.
The second uncertainty is the combination of the uncertainty on the total num-
ber of D→ K0

Sπ
+π− vs. D→ K0

Sπ
+π− events and the uncertainty from the limited

D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π− Monte Carlo sample used to determine the distri-
bution of the D→ K0

Sπ
+π− vs. D→ K0

Sπ
+π− events over the bins. For the purpose

of simplicity the second uncertainty is called the systematic uncertainty.

3.4.3.3 Combinatorial Background Contribution

The total contribution of combinatorial background events is determined using a
fully data-driven method. The events in the sidebands A - D (defined in Section
3.4.1) are assumed to contain no peaking background. The number of events in
the sideband is extrapolated to give the total number of combinatorial background
events in the signal region S. The number of expected combinatorial background
events N comb

S in the signal region is calculated using

N comb
S =

aS
aD
·ND +

∑
X=A,B,C

aS
aX

(
NX −

aX
aD
·ND

)
(3.15)

where ai is the area of region i (i = S, A, B, C, D) and Ni is the number of events
in region i. This formulation ensures that there is no double counting of events.
The formalism predicts 14.71 ± 3.19 combinatorial background events in the signal
region S. The uncertainty is the propagated Poisson uncertainty on the yields in the
sidebands.
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Since the combinatorial background events are expected to be uniformly distributed
over the m2

K0
Sπ
− vs. m2

K0
Sπ

+ space of the D→ K0
Sπ

+π− candidate, the fraction of

combinatorial background events per K0
S π

+π− bin is allotted according to the bins’
area in the K0

S π
+π− Dalitz plot. The resulting combinatorial background yields for

each K0
S π

+π− bin are listed in Table 3.10. The first uncertainty is the statistical
uncertainty determined as described in Section 3.4.3.1 and the second uncertainty
is the propagated uncertainty from the total number of combinatorial background
events. For the purpose of simplicity the second uncertainty is called the systematic
uncertainty.

A systematic uncertainty related to the method used to estimate the total number
of combinatorial background events is evaluated in Section 3.7.7.1. A systematic
uncertainty is assigned to the distribution of the events over the K0

S π
+π− bins in

Section 3.7.7.2.

Bin Number of Events Bin Number of Events

1 4.86 +2.14
−1.86 ± 1.05 5 1.96 +1.04

−0.96 ± 0.42

2 1.68 +1.32
−1.68 ± 0.36 6 1.19 +0.81

−1.19 ± 0.26

3 0.94 +1.06
−0.94 ± 0.20 7 1.24 +0.76

−1.24 ± 0.27

4 0.87 +1.13
−0.87 ± 0.19 8 1.97 +1.03

−0.97 ± 0.43

Table 3.10: Estimated distribution of combinatorial background events over the K0
S

π+π− bins in the signal sample. The first uncertainty is the statistical uncertainty of
the yields per K0

Sπ
+π− bin, determined as described in Section 3.4.3.1 and the second

uncertainty is the propagated uncertainty from the total number of combinatorial
background events. For the purpose of simplicity the second uncertainty is called the
systematic uncertainty.

3.4.4 The Reconstruction and Selection Efficiency

The reconstruction and selection efficiency of the D→ 2π+2π− vs. D→ K0
Sπ

+π−

signal candidates is determined using the signal Monte Carlo described in Section
3.2.2.1. The absolute efficiency for each K0

S π
+π− bin is listed in Table 3.11. The

uncertainty on the efficiency is taken to be the binomial uncertainty.

A systematic uncertainty is assigned in Section 3.7.4 to account for a possible bias
in the amplitude models used in the reweighting procedure.

Bin Efficiency [%] Bin Efficiency [%]

1 23.34 ± 0.73 5 23.18 ± 0.65

2 22.80 ± 1.03 6 24.77 ± 1.06

3 27.29 ± 0.89 7 21.43 ± 1.02

4 26.23 ± 0.79 8 23.66 ± 0.97

Table 3.11: Reconstruction and selection efficiency of the D→ 2π+2π− vs.
D→ K0

Sπ
+π− signal events for each K0

S π
+ π− bin obtained from the signal Monte

Carlo sample. The uncertainty on the efficiency is the binomial uncertainty.
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3.4.5 D→2π+2π− vs. D→K0
Sπ

+π− Signal Event Yields

The number of D→ 2π+2π− vs. D→ K0
Sπ

+π− signal events in the data sample is
determined by subtracting the peaking background yields (Section 3.4.3.2) and the
combinatorial background yields (Section 3.4.3.3) from the reconstructed and selec-
ted D→ 2π+2π− vs. D→ K0

Sπ
+π− candidates (Section 3.4.2) and then correcting

for the reconstruction and selection efficiency (Section 3.4.4).

The distribution of the reconstructed D→ 2π+2π− vs. D→ K0
Sπ

+π− candidates
over the K0

Sπ
+π− bins is shown in Figure 3.11. The figure shows the estimated con-

tributions from the peaking and the combinatorial background. The background-
subtracted and efficiency-corrected number of signal events in the data sample for
each K0

Sπ
+π− bin is listed in Table 3.12. The first uncertainty is the statistical uncer-

tainty propagated from the Poisson uncertainties on the reconstructed D→ 2π+2π−

vs. D→ K0
Sπ

+π− candidates and the individual background contributions. The
second uncertainty is the combination of the systematic uncertainties on the indi-
vidual background yields. The third uncertainty is the propagated binomial uncer-
tainty from the reconstruction and selection efficiency.

Bin Number of Signal Events Bin Number of Signal Events

1 132.7 +29.03
−28.04 ± 4.78 ± 0.08 5 233.6 +34.66

−34.36 ± 2.58 ± 0.09

2 71.89 +23.22
−23.44 ± 2.69 ± 0.14 6 82.63 +21.13

−21.06 ± 1.86 ± 0.14

3 65.28 +18.40
−17.73 ± 1.56 ± 0.09 7 126.4 +26.54

−27.36 ± 1.96 ± 0.19

4 41.35 +14.66
−14.96 ± 1.30 ± 0.10 8 156.6 +29.02

−28.93 ± 2.56 ± 0.13

Table 3.12: Background-subtracted and efficiency-corrected number of
D→ 2π+2π− vs. D→ K0

Sπ
+π− signal events in the full CLEO-c data sample for

each K0
S π

+π− bin. The first uncertainty is the purely statistical uncertainty propag-
ated from the statistical uncertainties on the reconstructed yields and the individual
background yields. The second uncertainty is the combination of the systematic un-
certainties on the individual background yields. The third uncertainty is the propag-
ated binomial uncertainty from the reconstruction and selection efficiency.
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Figure 3.11: Distribution of reconstructed and selected D→ 2π+2π− vs.
D→ K0

Sπ
+π− candidates over the K0

Sπ
+π− bins. The figure shows the contribution of

signal events (red), peaking background events from D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π−

decays (blue) and combinatorial background events (green).
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3.5 Determination of the D→2π+π− vs.

D→K0
Lπ

+π− Signal Event Yields

In this section the distribution of D→ 2π+2π− vs. D→ K0
Lπ

+π− events over the
bins of D→ K0

Lπ
+π− Dalitz plot is calculated. The data in each bin is treated in-

dependently of the other bins. First, the signal and background regions are defined.
Second, the reconstructed number of D→ 2π+2π− vs. D→ K0

Sπ
+π− candidates is

counted for each bin. Third, the background contribution is estimated for each bin.
The selection and reconstruction efficiency per bin is determined. The reconstructed
number of signal candidates in each bin is corrected for the background yields and
corrected for the efficiency.

3.5.1 Signal and Background Regions

The signal region and sidebands for the D→ 2π+2π− vs. D→ K0
Lπ

+π− candidates
are defined in terms of the missing mass squared m2

miss in the events. The signal
region S is centred around the nominal K0

S mass. All regions are illustrated in Figure
3.12 and defined in Table 3.13.
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Figure 3.12: Distribution of the m2
miss of the reconstructed D→ 2π+2π− vs.

D→ K0
Lπ

+π− candidates. The Signal region is shaded in red and the lower and
upper sidebands are shaded in blue.

Region m2
miss( GeV/c2)

Min. Max.

LS 0.0 0.15

S 0.2 0.3

US 0.45 0.8

Table 3.13: Signal region and sidebands as defined for D→ 2π+2π− vs.
D→ K0

Lπ
+π−.
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3.5.2 Reconstructed D→ 2π+2π− vs. D→K0
Lπ

+π− Can-
didates

The total number of D→ 2π+2π− vs. D→ K0
Lπ

+π− candidates after reconstruction
and selection in the signal region is 592 ± 24.33. There are 411 events in both
background regions combined. The number of D→ 2π+2π− vs. D→ K0

Lπ
+π− can-

didates per region is listed in Table 3.14 and their distribution over the m2
miss range

shown in Figure 3.12. The distribution of the events in the signal region over the
D→ K0

Lπ
+π− Dalitz plane is illustrated in Figure 3.13 and the number of candidates

per K0
Lπ

+π− bin in the signal region is listed in Table 3.15.

Region Number of Events

LS 213 ± 14.59

S 592 ± 24.33

US 198 ± 14.07

Table 3.14: Number of D→ 2π+2π− vs. D→ K0
Lπ

+π− candidates after reconstruc-
tion and selection for the different m2

miss regions. The uncertainty is the Poisson
uncertainty on the yields.
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Figure 3.13: Distribution of the D→ 2π+2π− vs. D→ K0
Lπ

+π− events in the data
sample after reconstruction and selection the Dalitz plot of the D→ K0

Lπ
+π− can-

didate.
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Bin Number of Events Bin Number of Events

1 172 ± 13.11 5 58 ± 7.62

2 72 ± 8.49 6 33 ± 5.74

3 62 ± 7.87 7 72 ± 8.49

4 24 ± 4.90 8 99 ± 9.95

Table 3.15: Number of D→ 2π+2π− vs. D→ K0
Lπ

+π− candidates after recon-
struction and selection for the different K0

L π
+ π− bins in the signal region S. The

uncertainty is the Poisson uncertainty on the yields.

3.5.3 Background Estimation

The background for D→ 2π+2π− vs. D→ K0
Lπ

+π− events is divided into three cat-
egories: background from specific misidentified decays, background from the com-
bination of tracks from ψ(3770) → D+

(s)D
−
(s)/D

0D0 which mimic one or both sides
of the signal decay and background from continuum events. The background from
specific misidentified decays is called peaking background since it peaks in m2π+2π−

BC

vs. m
K0

Lππ

BC space like the signal. It is also expected to have a non-uniform structure
in the m2

K0
Lπ
− vs. m

2
K0

Lπ
+ space of the D→ K0

Lπ
+π− candidate.

The background from the combination of tracks from ψ(3770) → D+
(s)D

−
(s)/D

0D0

events is called combinatorial background and the background from the combination
of tracks from e+e− → qq {q = u, d, s} interactions is called continuum background.
Both the combinatorial background and the continuum background 4are assumed
to be distributed uniformly over the m2

K0
Lπ
− vs. m

2
K0

Lπ
+ space of the D→ K0

Lπ
+π−

candidate.

For each category, the background yields per K0
L π

+π− bin are determined in two
steps. In the first step the total number of background yields from a certain source
are estimated. In the second step these yields are distributed over the K0

Lπ
+π− bins.

3.5.3.1 Peaking Background

The peaking background contributions are identified using the generic Monte Carlo
sample. All considered contributions are listed in Table 3.16 and their distributions
over the squared missing mass m2

miss range are illustrated in Figure 3.14. The
uncertainties are calculated by propagating the Poisson uncertainties on the yields
in the generic Monte Carlo samples. The only significant contributions were found to
be from D→ K0

Sπ
+π− vs. D→ K0

Lπ
+π− decays and D→ 2π+2π− vs. D→ K0

Sπ
+π−

decays.

The distribution of the peaking background events over the K0
S π

+ π− bins is de-
termined using the respective Monte Carlo samples described in Section 3.2.2.1.

4There is no significant peaking structure from continuum events for D→ 2π+2π− vs.
D→ K0

Lπ
+π− decays [44].
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Figure 3.14: Distribution of the reconstructed and selected events in the full generic
Monte Carlo sample, signal events (red), D→ 2π+2π− vs. D→ K0

Sπ
+π− (blue),

D→ K0
Sπ

+π− vs. D→ K0
Lπ

+π− (green), D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π− (magenta)
and other events (black).

Decay FD1
+ FD2

+ Ndata
exp

D→ 2π+2π− vs. D→ K0
Sπ

+π− 0.729 [24] 0.556 [41] 8.50 ± 0.72

D→ K0
Sπ

+π− vs. D→ K0
Lπ

+π− 0.556 [41] 0.630 [22] 35.71 ± 1.52

D→ K0
Sπ

+π− vs. D→ K0
Sπ

+π− 0.556 [41] 0.556 [41] 1.10 ± 0.27

Table 3.16: Contribution of different possible peaking backgrounds to the recon-
structed event yield estimated from the full generic Monte Carlo sample. The un-
certainties are calculated by propagating the Poisson uncertainties on the yields in
the generic Monte Carlo samples.

The results are listed in Table 3.17. The first uncertainty is the statistical uncer-
tainty determined as described in Section 3.4.3.1. The second uncertainty is the
combination from the uncertainty on the total number of events of the respective
peaking background and the uncertainty from the limited Monte Carlo sample used
to determine the distribution of the respective peaking background events over the
bins. For the purpose of simplicity the second uncertainty is called the systematic
uncertainty.

A systematic uncertainty is assigned to the total number of peaking background
events from D→ 2π+2π− vs. D→ K0

Sπ
+π− events in Section 3.7.6. This systematic

uncertainty accounts for a possible bias from using F+
4π to calculate the contribution

of D→ 2π+2π− vs. D→ K0
Sπ

+π− events. A systematic uncertainty is also assigned
to the total number of D→ K0

Sπ
+π− vs. D→ K0

Lπ
+π− events in Section 3.7.5.1.

As mentioned in Section 3.2.2.2, an estimation was used for the branching ratio of
D0→ K0

Lπ
+π− in the generic Monte Carlo. The latter systematic also takes into

account the uncertainty on this branching ratio. Another systematic uncertainty
is assigned in Section 3.7.4, taking into account the uncertainty on the amplitude
model used to reweight the Monte Carlo samples.
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Bin
D→ K0

Sπ
+π− vs. D→ K0

Lπ
+π− D→ 2π+2π− vs. D→ K0

Lπ
+π−

Events Events

1 10.44+3.56
−3.44 ± 0.69 2.93 +2.07

−1.93 ± 0.50

2 3.53 +1.47
−1.53 ± 0.41 0.95 +1.05

−0.95 ± 0.28

3 6.47 +2.53
−2.47 ± 0.55 0.67 +0.33

−0.67 ± 0.24

4 1.32 +0.68
−1.32 ± 0.25 0.26 +0.74

−0.26 ± 0.15

5 3.83 +2.17
−1.83 ± 0.43 0.62 +0.38

−0.62 ± 0.23

6 2.23 +1.77
−1.23 ± 0.33 0.45 +0.55

−0.45 ± 0.20

7 2.95 +2.05
−1.95 ± 0.38 1.15 +0.85

−1.15 ± 0.31

8 4.94 +2.06
−1.94 ± 0.48 1.47 +1.53

−1.47 ± 0.35

Table 3.17: Estimated distribution of peaking background events over the
K0

Lπ
+π− bins in the signal sample. The first uncertainty is the statistical uncertainty

of the yields per K0
Lπ

+π− bin, determined as described in Section 3.4.3.1. The second
uncertainty is the combination of the uncertainty on the total number of peaking
background events and the uncertainty from the limited Monte Carlo sample used to
determine the distribution of the peaking background events over the bins. For the
purpose of simplicity the second uncertainty is called the systematic uncertainty.

3.5.3.2 Combinatorial and Continuum Background

The total contribution of combinatorial and continuum background events is de-
termined simultaneously using different Monte Carlo samples and information from
the data sample.

The total event yield NX in data for each region X (as defined in Section 3.5.1) is ex-
pressed as the the sum of the signal event yields N sig

X , the peaking background yields
Npeak
X , the combinatorial background yields N comb

X and the continuum background
yields N cont

X

NX = N sig
X +Npeak

X +N comb
X +N cont

X (3.16)

⇒ NX −Npeak
X = N sig

X +N comb
X +N cont

X . (3.17)

Under the assumption that the ratio of events between the signal region and the
sidebands is accurately modelled in the different Monte Carlo samples, the yield for
e.g. the combinatorial background in data in region X can be expressed in terms of
the combinatorial background yield in data in region Y with

N comb
X =

M comb
X

M comb
Y

N comb
Y (3.18)

where M comb
X and M comb

Y represent the combinatorial background yields in the generic
Monte Carlo samples in region X and Y. Analogous, the signal event yields in data in
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region X can be calculated from the signal event yield in data in region Y using the
ratio of yields from the signal Monte Carlo sample and the continuum background
yields can be calculated using the continuum Monte Carlo sample. Using these
substitutions, the three possible equations from Equation 3.16 are rewritten as

NLS −Npeak
LS = N cont

LS +
M sig

LS

M sig
S

N sig
S +

M comb
LS

M comb
US

N comb
US (3.19)

NS −Npeak
S =

M cont
S

M cont
LS

N cont
LS + N sig

S +
M comb

S

M comb
US

N comb
US (3.20)

NUS −Npeak
US =

M cont
US

M cont
LS

N cont
LS +

MS
US

MS
S

N sig
S + N comb

US . (3.21)

This is expressed in matrix formalism as y = Ax, where

A =


1

M sig
LS

M sig
S

M comb
LS

M comb
US

M cont
S

M cont
LS

1
M comb

S

M comb
US

M cont
US

M cont
LS

MS
US

MS
S

1

 (3.22)

and

y =


NLS −Npeak

LS

NS −Npeak
S

NUS −Npeak
US

 x =


N cont
LS

N sig
S

N comb
US

 . (3.23)

This equation can be solved to obtain the total number of combinatorial and con-
tinuum background events in the signal region. The results are 42.36 ± 4.60 com-
binatorial background events and 18.52 ± 7.99 continuum background events in the
signal sample. The uncertainties are the propagated Poisson uncertainties on the
individual data and Monte Carlo yields.

Since the combinatorial and continuum background events are expected to be uni-
formly distributed over the m2

K0
Lπ
− vs. m

2
K0

Lπ
+ space of the D→ K0

Lπ
+π− candidate,

the fraction of combinatorial background events per K0
Lπ

+π− bin is allotted accord-
ing to the bins’ area in m2

K0
Lπ
− vs. m

2
K0

Lπ
+ space. The resulting background yields

for each K0
L π

+π− bin are listed in Table 3.18. The first uncertainty is the statist-
ical uncertainty determined as described in Section 3.4.3.1. The second uncertainty
is the propagated uncertainty from the total number of combinatorial background
events. For the purpose of simplicity the second uncertainty is called the systematic
uncertainty.

A systematic uncertainty from the method used to calculate the total number of
combinatorial and continuum background events is evaluated in Section 3.7.8.1. A
systematic uncertainty is assigned to the distribution of the events over the
K0

Lπ
+π− bins in Section 3.7.8.2.
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Bin Combinatorial Events Continuum Events

1 14.42 +3.58
−3.42 ± 1.25 6.30 +2.70

−2.30 ± 1.65

2 4.84 +2.16
−1.84 ± 0.72 2.11 +1.89

−1.11 ± 0.96

3 2.61 +1.39
−1.61 ± 0.53 1.14 +0.86

−1.14 ± 0.70

4 2.41 +1.59
−1.41 ± 0.51 1.05 +0.95

−1.05 ± 0.67

5 5.49 +2.51
−2.49 ± 0.77 2.40 +1.60

−1.40 ± 1.02

6 3.43 +1.57
−1.43 ± 0.61 1.50 +1.50

−1.50 ± 0.81

7 3.51 +1.49
−1.51 ± 0.62 1.54 +1.46

−1.54 ± 0.81

8 5.66 +2.34
−2.66 ± 0.78 2.47 +1.53

−1.47 ± 1.03

Table 3.18: Estimated distribution of flat background events over the K0
Lπ

+π− bins
in the signal sample. The first uncertainty covers the statistical uncertainty of the
yields per K0

Lπ
+π− bin while the second uncertainty stems from the method used to

determine the total number of combinatorial and continuum background events in
the signal sample.

3.5.4 The Reconstruction and Selection Efficiency

The efficiency for the reconstruction of the D→ 2π+2π− vs. D→ K0
Lπ

+π− signal
events is determined from the signal Monte Carlo described in Section 3.2.2.1. The
absolute efficiency for each K0

Lπ
+π− bin is listed in Table 3.19. The uncertainty on

the efficiency is taken to be the binomial uncertainty.

A systematic uncertainty is assigned in Section 3.7.4 to account for a possible bias
in the amplitude models used in the reweighting procedure.

Bin Efficiency [%] Bin Efficiency [%]

1 27.01 ± 0.71 5 27.01 ± 0.72

2 26.64 ± 0.78 6 25.43 ± 1.75

3 25.92 ± 1.01 7 26.39 ± 1.06

4 29.3 ± 1.01 8 26.94 ± 1.01

Table 3.19: Reconstruction and selection efficiency of the D→ 2π+2π− vs.
D→ K0

Lπ
+π− signal events for each K0

L π
+ π− bin obtained from the signal Monte

Carlo sample. The uncertainty on the efficiency is the binomial uncertainty.

3.5.5 D→2π+2π− vs. D→K0
Lπ

+π− Signal Event Yields

The number of D→ 2π+2π− vs. D→ K0
Lπ

+π− signal events in the data sample
is determined by subtracting the peaking background yields (Section 3.5.3.1), and
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combinatorial and continuum background yields (Section 3.5.3.2) from the recon-
structed and selected D→ 2π+2π− vs. D→ K0

Lπ
+π− candidates (Section 3.5.2) and

subsequently correcting for the reconstruction and selection efficiency (Section 3.5.4).
The distribution of the reconstructedD→ 2π+2π− vs. D→ K0

Lπ
+π− candidates over

the K0
Lπ

+π− bins is shown in Figure 3.15. The figure also shows the contributions
from the different background sources. The background-subtracted and efficiency-
corrected number of signal events in the data sample for each K0

Lπ
+π− bin is listed

in Table 3.20. The first uncertainty is the statistical uncertainty propagated from
the Poisson uncertainties on the reconstructed D→ 2π+2π− vs. D→ K0

Sπ
+π− can-

didates and the individual background contributions. The second uncertainty is the
combination of the systematic uncertainties on the individual background yields.
The third uncertainty is the propagated binomial uncertainty from the reconstruc-
tion and selection efficiency.
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Figure 3.15: Distribution of reconstructed and selected D→ 2π+2π− vs.
D→ K0

Lπ
+π− candidates over the K0

Lπ
+π− bins. The figure shows the contribution of

signal events (red), peaking background events from D→ K0
Sπ

+π− vs. D→ K0
Lπ

+π−

decays (dark blue) and D→ 2π+2π− vs. D→ K0
Lπ

+π− decays (light blue), combin-
atorial background events (dark green) and continuum events (light green).

Bin Number of Signal Events Bin Number of Signal Events

1 510.70 +53.55
−52.95 ± 8.29 ± 0.14 5 169.10 +31.35

−30.96 ± 5.06 ± 0.01

2 227.30 +34.3
−33.54 ± 4.87 ± 0.02 6 99.79 +25.21

−24.56 ± 4.25 ± 0.14

3 197.20 +32.55
−32.83 ± 4.11 ± 0.04 7 238.20 +34.16

−34.27 ± 4.29 ± 0.06

4 64.72 +18.2
−18.35 ± 3.06 ± 0.07 8 313.50 +39.53

−39.66 ± 5.30 ± 0.01

Table 3.20: Background-subtracted and efficiency-corrected number of
D→ 2π+2π− vs. D→ K0

Lπ
+π− signal events expected in the full CLEO-c

data sample for each K0
L π

+ π− bin. The first uncertainty is the purely statistical
uncertainty propagated from the statistical uncertainties on the reconstructed yields
and the individual background yields. The second uncertainty is the combination
of the systematic uncertainties on the individual background yields. The third
uncertainty is the propagated binomial uncertainty from the reconstruction and
selection efficiency.
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3.6 Extraction of the CP-even Fraction F 4π
+

The method used to compute F+
4π from the signal event yields determined in Sec-

tion 3.4 and Section 3.5 is a least square fit. As shown in Section 1.5.4 and Sec-

tion 3.1, the expected number of D→ 2π+2π− vs. D→ K0
Sπ

+π− events N
K0

Sπ
+π−

|i| in
the
K0

S π
+π− bin i5, for a given value of F+

4π is

N
K0

Sπ
+π−

|i| = h
(
Ti + T−i − 2

√
TiT−i ci

(
2 F 4π

+ − 1
))

(3.24)

and the expected number of D→ 2π+2π− vs. D→ K0
Lπ

+π− events N
K0

Lπ
+π−

|i| in the

K0
Lπ

+π− bin i is given by

N
K0

Lπ
+π−

|i| = h′
(
T ′i + T ′−i − 2

√
T ′iT

′
−i c

′
i

(
2 F 4π

+ − 1
))

(3.25)

where h and h′ are normalisation factors specific to the double tag.

The fit parameters are the CP -even fraction F+
4π as well as the normalisation factors

h and h′. The values for Ti, T
′
i , ci and c′i are let to vary in the fit under Gaussian

constraints. The means of the respective Gaussians are the measured values from
Reference [36] for Ti and T ′i and from Reference [22] for ci and c′i. The widths of the
Gaussians are determined by the respective measurement uncertainties. Correlations
between the c

(′)
i are taken into account. The resulting expression that is minimised

during the fitting procedure is given by

χ2 =
bins∑
i

(
N
K0

Sπ
+π−

|i| −NK0
Sπ

+π− fit

|i|

)2

σ2(N
K0

Sπ
+π−

|i| )
(3.26)

+
bins∑
i

(
N
K0

Lπ
+π−

|i| −NK0
Lπ

+π− fit

|i|

)2

σ2(N
K0

Lπ
+π−

|i| )

+
bins∑
i

(
Ti − T fiti

)2

σ2(Ti)

+
bins∑
i

(
T ′i − T

′fit
i

)2

σ2(T ′i )

+∆T
c,c′V

−1∆c,c′

where ∆c,c′ is the vector consisting of the ci − cfiti and c′i − c′fiti and V is the
covariance matrix that contains the correlation between the individual ci’s and the
c′i’s. The asymmetric uncertainties on the number of D→ 2π+2π− vs. D→ K0

Sπ
+π−

events and D→ 2π+2π− vs. D→ K0
Lπ

+π− events, listed in Table 3.12 and Table 3.20
respectively, are averaged in the fitting procedure.

Individual fits are also performed as a cross check to the D→ 2π+2π− vs.
D→ K0

Sπ
+π− events and D→ 2π+2π− vs. D→ K0

Lπ
+π− events separately.

5Here bin i refers to the union of bin i and bin −i as defined in the ∆δ BaBar 2008 binning
scheme described in Section 1.6 of Chapter 1.
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3.6.1 Validation of the Fitting Procedure

The fitting procedure is validated using pseudo-experiments. A true distribution of
the number of D→ 2π+2π− vs. D→ K0

Sπ
+π− and D→ 2π+2π− vs. D→ K0

Sπ
+π−

events over the K0
S,Lπ

+π− bins is generated for three different values of F+
4π respect-

ively. These true distributions are varied 20 000 times according to a Gaussian with
the width corresponding to the uncertainties on the events yields per bin listed in
Table 3.12 and Table 3.20. A fit to extract F+

4π is performed on each of the 20 000
distributions. The pulls of these pseudo-experiments — i.e. the difference of F+

4π

used to generate the true distribution and the fitted F+
4π divided by the uncertainty

on the fitted F+
4π— are shown in Figure 3.16. The means and widths of these distri-

butions are listed in Table 3.21. The means of all three distributions are consistent
with 0 and their standard deviations consistent with 1. This indicates that there
is no bias in the fitting procedure and that the uncertainty on F+

4π is calculated
correctly by the fitter.

F+
4π Mean Standard Deviation

0.69 0.00 0.99

0.74 0.00 0.98

0.79 0.02 0.98

Table 3.21: Mean and widths of the pull distributions of the pseudo-experiments
used to validate the fitting procedure.
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Figure 3.16: Distribution of the pulls — i.e. the difference of F+
4π used to generate

the true distribution and the fitted F+
4π divided by the uncertainty on the fitted F+

4π—
of the pseudo-experiments used to evaluate the fitting procure.
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3.6.2 Fit Result for the CP-even Fraction F 4π
+

The results of the individual fits to the D→ 2π+2π− vs. D→ K0
Sπ

+π− distribution
and the D→ 2π+2π− vs. D→ K0

Lπ
+π− distribution are F+

4π = 0.858±0.077 and F+
4π

= 0.682±0.063, respectively. The result of the simultaneous fit is F+
4π = 0.755±0.053.

The uncertainty is the combined statistical uncertainty and the uncertainty from
the hadronic parameters of the D0→ K0

S,Lπ
+π− decays. The results on F+

4π from
D→ 2π+2π− vs. D→ K0

Sπ
+π− events and D→ 2π+2π− vs. D→ K0

Lπ
+π− events

are in agreement within 1.8σ.

The χ2
ndof of the individual fit results are 0.76 and 0.42 for the D→ 2π+2π− vs.

D→ K0
Sπ

+π− distribution and the D→ 2π+2π− vs. D→ K0
Lπ

+π− distribution, re-
spectively. The χ2

ndof for the simultaneous fit is 0.49.

All results of the fitting procedure are listed in Table 3.22.

F+
4π h h′ χ2

D→ K0
Sπ

+π− 0.858± 0.077 479.49± 45.16 0.76

D→ K0
Lπ

+π− 0.682± 0.063 826.66± 58.27 0.42

simultaneous fit 0.755± 0.053 468.29± 42.77 794.81± 58.83 0.49

Table 3.22: Results of the individual fits to the D→ 2π+2π− vs. D→ K0
Sπ

+π− dis-
tribution and the D→ 2π+2π− vs. D→ K0

Lπ
+π− distribution and the simultaneous

fit.

3.7 Systematic Uncertainties

A comprehensive list of systematic uncertainties is studied. Sources of potential
bias are identified and their effect on the value of F+

4π is estimated using either
pseudo-experiments or an alternative method of estimating a certain quantity and
recalculating F+

4π. The contribution of all individual sources to the uncertainty on
F+

4π is summarised at the end of this section in Table 3.24.

3.7.1 Uncertainty on the D0 → K0
Sπ

+π− Hadronic Para-
meters

The hadronic parameters of the D→ K0
Sπ

+π− decay and the D→ K0
Lπ

+π− decay
are constrained in the nominal fit to extract F+

4π. In order to estimate the contri-
bution of the uncertainties of the hadronic parameter to the uncertainty to F+

4π, the
fit is performed once with the hadronic parameters constrained as shown in Equa-
tion 3.26 and once with the hadronic parameters fixed to their measured values. The
contribution of the uncertainty on the hadronic parameters σhad to the uncertainty
on F+

4π is then calculated as
σ2

had = σ2 − σ2
stat (3.27)
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where σstat is the uncertainty on F+
4π given by the fit when the hadronic parameters

are fixed to their measured values and σ is the uncertainty on F+
4π given by the

fit when the hadronic parameters are constrained as described by Equation 3.26.
This procedure yields a systematic uncertainty of 0.02 on F+

4π in the simultaneous
fit coming from the uncertainty on the hadronic parameters used as input to the fit.
This makes it the largest systematic uncertainty to F+

4π.

3.7.2 Bin-to-bin Migration

Due to the finite momentum resolution of the CLEO-c detector, an event can be
reconstructed in a different K0

S,Lπ
+π− bin from its true bin. The effect of this bin

migration on the value of F+
4π is assessed with pseudo-experiments.

The bin-migration matrices for the D→ 2π+2π− vs. D→ K0
Sπ

+π− and D→ 2π+2π−

vs. D→ K0
Lπ

+π− events are determined on the respective signal Monte Carlo samples.
Uncertainties are assigned to the matrix elements due to the limited number of events
in the Monte Carlo samples. The elements of the bin-migration matrices are varied
20 000 times according to a Gaussian with the mean corresponding to the matrix ele-
ment itself and the width corresponding to the matrix elements’ uncertainties. These
20 000 bin-migration matrices are each applied to the true distribution of number of
events per K0

S,Lπ
+π− bin. The true distributions of D→ 2π+2π− vs. D→ K0

Sπ
+π−

events and D→ 2π+2π− vs. D→ K0
Lπ

+π− events were generated according to Equa-
tion 3.24 and Equation 3.25, respectively. Three different input values of F+

4π are
used, namely 0.69, 0.74 and 0.79.

Figure 3.17 shows the resulting distribution of the difference between the F+
4π used

to generate the true distributions and the F+
4π from the fit to the bin-migrated

distributions. Table 3.23 lists the means and widths of the distributions. The
average of the means of the three distributions is taken as systematic uncertainty
associated with the bin migration. This results in a systematic uncertainty of 0.011
for the simultaneous fit result which makes it one of the three biggest systematic
uncertainties.
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Figure 3.17: Distribution of the difference between the true F+
4π and the fitted F+

4π

from the pseudo-experiments used to evaluate the systematic uncertainty associated
to the migration of events between the K0

S,Lπ
+π− bins.
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F+
4π Mean Standard Deviation

0.69 -0.011 0.012

0.74 -0.006 0.012

0.79 -0.015 0.012

Table 3.23: Mean and widths of the distributions of the pseudo-experiments to
determine the effect of bin-to-bin migration of events.

3.7.3 Multiple Candidate Selection

In order to evaluate a possible bias on F+
4π from the multiple candidate selection in

Section 3.3.3.4, the analysis procedure is redone using an alternative multiple candid-
ate selection. In this selection one candidate in the events is chosen at random. The
value for F+

4π is recalculated and the systematic uncertainty assigned to the multiple
candidate selection is the difference between the resulting value of F+

4π and the nom-
inal F+

4π. This yields a systematic uncertainty of 0.004 for the simultaneous fit result.

3.7.4 Amplitude Model used in Reweighting Procedure

To account for a possible bias from an incorrect model used to reweight the signal
Monte Carlo samples in Section 3.2.2.1 the samples are reweighted with an altern-
ative model corresponding to the density of states, e.g. neglecting any correlation
between the two D mesons in the event. The PDF for this reweighting is given by∣∣A(ψ(3770)→ D0D0 → f1f2)

∣∣2 ∝ ∣∣A(D0 → f1) · A(D0 → f2)
∣∣2 (3.28)

+
∣∣A(D0 → f2) · A(D0 → f1)

∣∣2 (3.29)

The different reweighting impacts the selection and reconstruction efficiencies of the
signal decays as well as the relative distribution of peaking background events over
the K0

S,Lπ
+π− bins. The value for F+

4π is recalculated and the systematic uncertainty
is the difference between the resulting value of F+

4π and the nominal F+
4π. This yields

a systematic uncertainty of 0.013 for the simultaneous fit result which makes this
the second biggest systematic uncertainty.

3.7.5 Peaking Background from D→K0
Sπ

+π− vs.

D→K0
S,Lπ

+π− Events

3.7.5.1 Absolute Number of D→ K0
Sπ

+π− vs. D → K0
S,Lπ

+π− Back-
ground Events

The nominal way of determining the absolute peaking background yields from
D→ K0

Sπ
+π− vs. D→ K0

S,Lπ
+π− events is based on the generic Monte Carlo sample.

To estimate a systematic uncertainty associated to this method the result is com-
pared to a data-driven method. Instead of the K0

S veto described in Section 3.3.3.3
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a K0
S selection is applied to K0

S candidates within the D→ 2π+2π− candidates.
Events with no K0

S candidate in the D→ 2π+2π− events are rejected. This selec-
tion gives a data sample that consists of 96% of D→ K0

Sπ
+π− vs. D→ K0

Sπ
+π−

events for the D→ 2π+2π− vs. D→ K0
Sπ

+π− candidates and 91% of D→ K0
Sπ

+π−

vs. D→ K0
Lπ

+π− events for the D→ 2π+2π− vs. D→ K0
Lπ

+π− candidates6. The
ratio of events in the K0

S selection over the events in the K0
S veto can be determined

from the signal Monte Carlo sample. This ratio is used to extrapolate the number of
D→ K0

Sπ
+π− vs. D→ K0

S,Lπ
+π− events in the K0

S selection in data to the number
of D→ K0

Sπ
+π− vs. D→ K0

S,Lπ
+π− events in the K0

S veto in the data.

The value for F+
4π is recalculated and the systematic uncertainty is the difference

between the resulting value of F+
4π and the nominal F+

4π. This yields a systematic
uncertainty of 0.001 for the simultaneous fit result.

This systematic uncertainty also covers uncertainty from the unknown branching
fraction of D0→ K0

Lπ
+π− decays used in the generic Monte Carlo sample.

3.7.5.2 Distribution of D→K0
Sπ

+π− vs. D→K0
S,Lπ

+π− Background

Events over the K0
S,Lπ

+π− Bins

The distribution of the D→ K0
Sπ

+π− vs. D→ K0
S,Lπ

+π− events over the K0
S,Lπ

+π−

bins is determined according to the distribution in the signal Monte Carlo samples
as described in Section 3.4.3.2 and Section 3.5.3.1. In order to evaluate the system-
atic uncertainty from an incorrect model used in the reweighting procedure of the
Monte Carlos samples (see Section 3.2.2.1), the Monte Carlo samples are reweighted
according to the density of states without taking into account correlation between
the D mesons. This systematic uncertainty is incorporated in the systematic un-
certainty associated with the amplitude model used to reweight the Monte Carlo
described in Section 3.7.4.

3.7.6 Peaking Background from D→2π+2π− vs.
D→K0

Sπ
+π− Events

3.7.6.1 Absolute Number of D→2π+2π− vs. D→K0
Sπ

+π− Background
Events

The impact of a possible bias from using F+
4π in the estimation of the number of

D→ 2π+2π− vs. D→ K0
Sπ

+π− events in the D→ 2π+2π− vs. D→ K0
Lπ

+π− can-
didates is studied by calculating the total number of D→ 2π+2π− vs. D→ K0

Sπ
+π−

events for a value of F+
4π = 0 and F+

4π = 1 which will yield the greatest and smallest
possible contributions respectively. The values for F+

4π are recalculated for both cases
and systematic uncertainty is calculated as the difference between the two resulting
values for F+

4π and the nominal value for F+
4π. This yields a systematic uncertainty

smaller than +0.001
−0.001 for the simultaneous fit result which is less than 0.1% relative

uncertainty and considered negligible.

6The percentages were determined on the generic Monte Carlo samples.
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3.7.6.2 Distribution of D → 2π+2π− vs. D → K0
Sπ

+π− Background
Events over the K0

Lπ
+π− Bins

The distribution of the D→ 2π+2π− vs. D→ K0
Sπ

+π− events over the K0
L π

+ π−

bins is determined according to the distribution in the signal Monte Carlo samples
as described in Section 3.5.3.1. In order to evaluate the systematic uncertainty from
an incorrect model used in the reweighting procedure of the Monte Carlos samples
(see Section 3.2.2.1), the Monte Carlo samples are reweighted according to the dens-
ity of states without taking into account correlation between the D mesons. This
systematic uncertainty is incorporated in the systematic uncertainty associated with
the amplitude model used to reweight the Monte Carlo described in Section 3.7.4.

3.7.7 Combinatorial Background to D→2π+2π− vs.
D→K0

Sπ
+π− Candidates

3.7.7.1 Absolute Number of Combinatorial Background Events

In the determination of the absolute number of combinatorial background events in
the D→ 2π+2π− vs. D→ K0

Sπ
+π− candidates (see Section 3.4.3.3), the assumption

was made that the density of combinatorial background events in the sidebands is
the same as the density of combinatorial background events in the signal region. In
order to estimate a systematic uncertainty from the total number of combinatorial
background events being incorrect, the value of F+

4π is determined for 50% and 200%
of the nominal number of combinatorial background events. The systematic uncer-
tainty is the difference between the resulting values of F+

4π and the nominal value of
F+

4π. It yields an uncertainty of +0.001
−0.004 for the simultaneous fit result.

3.7.7.2 Non-uniform Distribution of Combinatorial Background Events

In Section 3.4.3.3 the assumption was made that the combinatorial background
events are distributed uniformly over them2

K0
Sπ
− vs. m

2
K0

Sπ
+ space of theD→ K0

Sπ
+π−

candidate. To account for a potential bias introduced by this assumption, the distri-
bution of the combinatorial background events over the K0

Sπ
+π− bins is determined

using the distribution of the combinatorial background events as represented in the
generic Monte Carlo samples. The value of F+

4π is recalculated under the new as-
sumption and the uncertainty assigned to a potentially non-uniform distribution of
combinatorial background events is the difference between the resulting F+

4π and the
nominal F+

4π. This yields a systematic uncertainty of 0.006 for the simultaneous fit
result.

3.7.8 Combinatorial and Continuum Background to
D→2π+2π− vs. D→K0

Lπ
+π− Candidates

3.7.8.1 Absolute Number of Combinatorial and Continuum Background
Events

The absolute number of combinatorial and continuum background events events in
the signal sample is calculated in Section 3.5.3.2 under the assumption that the
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3.7 Systematic Uncertainties

ratio of events between the signal region and the sidebands is accurately modelled
in the different Monte Carlo samples. In order to estimate a potential bias from
this assumption the number of combinatorial and continuum background events in
the signal sample is extrapolated from the sidebands defined by 0.075 GeV2/c4 ≤
m2
miss ≤ 0.15 GeV2/c4 or 0.45 GeV2/c4 ≤ m2

miss ≤ 0.8 GeV2/c4. The value for F+
4π

is calculated with the new number of combinatorial and continuum events. The
systematic uncertainty is the difference between the resulting F+

4π and the nominal
F+

4π and is 0.006 for the simultaneous fit result.

3.7.8.2 Non-uniform Distribution of Combinatorial and Continuum Back-
ground Events

In Section 3.5.3.2 the assumption was made that the combinatorial background and
the continuum background events are distributed uniformly over the m2

K0
Lπ
− vs.

m2
K0

Lπ
+ space of the D→ K0

Lπ
+π− candidate. To account for a potential bias in-

troduced by this assumption, the distribution of the combinatorial and continuum
background events over the K0

Lπ
+π− bins is determined according to the distribution

of events in a sideband in data. In order to exclude any contributions from peaking
background events, the sideband is defined as 1.83 MeV/c2 ≤ mD

BC ≤ 1.85 MeV/c2 for
the beam constrained D mass of the D→ 2π+2π− candidate and 0.075 GeV2/c4 ≤
m2
miss ≤ 0.15 GeV2/c4 or 0.45 GeV2/c4 ≤ m2

miss ≤ 0.8 GeV2/c4 for the square of the
missing mass in the event. The fit for F+

4π is rerun and the systematic uncertainty is
taken to be the difference between this F+

4π value and the nominal F+
4π value. This

results in a systematic uncertainty of 0.005 for the simultaneous fit result.

3.7.9 Summary of Systematic Uncertainties

All systematic uncertainties are listed in Table 3.24. The sources of greatest un-
certainties are the uncertainties on the D → K0

S,Lπ
+π− hadronic parameters, the

bin-to-bin migration and the use of a different amplitude model in the reweighting
of the signal Monte Carlo. This is expected since they have the most direct impact
on the relative distribution of events over the K0

S,Lπ
+π− bins.

The resulting value for F+
4π from the simultaneous fit is F 4π

+ = 0.755± 0.050 (stat)±
0.029 (sys). Even with the complete CLEO-c e+e− → ψ(3770) data sample, the
statistical uncertainty dominates over the systematic uncertainty.

73



Chapter 3

σK
0
Sπ

+π− σK
0
Lπ

+π− σsimultaneous

hadronic parameters ± 0.021 ± 0.030 ± 0.021

bin migration ± 0.001 ± 0.020 ± 0.011

multiple candidate selection ± 0.007 ± 0.006 ± 0.004

amplitude model ± 0.014 ± 0.0101 ± 0.013

D→ K0
Sπ

+π− vs. D→ K0
S,Lπ

+π− bkg ± 0.002 ± 0.001 ± 0.001

D→ 2π+2π− vs. D→ K0
Sπ

+π− bkg +0.000
−0.000

+0.000
−0.000

D→ K0
Sπ

+π− absolute combinatorial bkg +0.030
−0.016

+0.001
−0.004

D→ K0
Sπ

+π− relative combinatorial bkg ± 0.009 ± 0.006

D→ K0
Lπ

+π− absolute combinatorial bkg ± 0.006 ± 0.006

D→ K0
Lπ

+π− relative combinatorial bkg ± 0.011 ± 0.005

total ± 0.036 ± 0.040 ±0.029

Table 3.24: Summary of systematic uncertainties on F+
4π from the measurement

using D→ 2π+2π− vs. D → K0
S,Lπ

+π− decays in the complete CLEO-c e+e− →
ψ(3770) data sample.

3.8 Results

The results of the individual fits to the D→ 2π+2π− vs. D→ K0
Sπ

+π− distribution
and the D→ 2π+2π− vs. D→ K0

Lπ
+π− distribution including the systematic uncer-

tainties are F+
4π = 0.858± 0.075 (stat)± 0.036 (sys) and F+

4π = 0.682± 0.056 (stat)±
0.040 (sys), respectively. The result of the simultaneous fit including the systematic
uncertainty is F+

4π = 0.755 ± 0.050 (stat) ± 0.029 (sys). The uncertainty from the
limited signal Monte Carlo sample used to calculate the reconstruction and selec-
tion efficiency is less than 0.1% and therefore completely negligible. The results on
F+

4π from D→ 2π+2π− vs. D→ K0
Sπ

+π− events and D→ 2π+2π− vs. D→ K0
Lπ

+π−

events are in agreement within ≈ 1.4σ.

The resulting distributions of D→ 2π+2π− vs. D→ K0
Sπ

+π− and D→ 2π+2π− vs.
D→ K0

Lπ
+π− events after the fit are compared to the data in Figure 3.18 for the

simultaneous fit.
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Figure 3.18: Distribution of events over the K0
S,Lπ

+π− bins for D→ 2π+2π− vs.
D→ K0

Sπ
+π− events (left) and D→ 2π+2π− vs. D→ K0

Lπ
+π− events (right). The

black markers represent the distributions of signal events from data and the black
histograms the distributions determined by the fitted valued of F+

4π. The blue/red
histograms represent the distributions for F+

4π ±σ while the light blue/light red his-
tograms represent the distributions for F+

4π ±2σ.

3.9 Conclusion

In this chapter the measurement of the CP -even fraction of the D0→ 2π+2π− decay
was performed using a dataset corresponding to 818 pb−1 of quantum correlated DD
decays produced in electron-positron collisions at the ψ(3770) resonance collected
by the CLEO-c experiment. In the analysis, one of the correlated D mesons is
reconstructed as D→ 2π+2π− while the other D meson is reconstructed as D →
K0

S,Lπ
+π−. The phase space of the D→ K0

S,Lπ
+π− decays is divided into bins and

sensitivity to the CP -even fraction of D0→ 2π+2π− is obtained by determining the
variation of signal yields over these bins. The CP -even fraction is measured to be
F+

4π = 0.755± 0.050 (stat)± 0.029 (syst).

This analysis is part of the first measurement of the CP -even fraction F+
4π of the

D→ 2π+2π− decay and was published in Reference [45]7. This analysis was pub-
lished alongside two other analyses which also used correlated D mesons. The first
analysis reconstructed the other D meson in various CP eigenstates while the second

7The value for F+
4π from K0

S,Lπ
+π− tags in Reference [45] differs from the value determined in

the analysis in this document. The difference is due to improved analysis techniques since 2015 as
well as to a different treatment of the systematic uncertainties.
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analysis used a technique analogous to this analysis with the other D mesons recon-
structed as π+π−π0. These analyses yield results of F 4π

+ = 0.754 ± 0.031 ± 0.021
and F 4π

+ = 0.695 ± 0.050 ± 0.021, respectively. The CP -even fraction was also de-
termined from an amplitude model of the D0→ 2π+2π− decay and found to be
F 4π

+ = 0.729±0.009±0.015±0.01 [24]. All these results are in good agreement with
each other and with the result of this analysis of F 4π

+ = 0.755± 0.050± 0.029.

The precisely measured value of F 4π
+ = 0.755± 0.050± 0.029 and the relatively high

branching fraction of D→ 2π+2π− makes this channel is a valuable addition to the
number of D decays that can be used for the measurement of the unitarity-triangle
angle γ through the process B±→ DK±. A measurement of the CP observables in
B±→ DK± and B±→ Dπ± decays with two-and four-body D decays has already
been performed at LHCb using the result of this thesis [6].

The measurement of the CP -even fraction of D0→ 2π+2π− also laid the groundwork
for the measurement of the hadronic parameters of the D→ 2π+2π− decay. The
measurement of the hadronic parameters was performed using the same CLEO-c
data sample of correlated DD pairs and has just been published in Reference [46].
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4. The LHCb Experiment

LHCb is one of the four large experiments allocated at the Large Hadron Collider
(LHC). It is dedicated to the study of CP violation and the search for new physics in
rare decays of B and D mesons. As much focus is put on the precision measurement
of SM parameters as on the indirect detection of physics beyond the SM that can
be identified through its contribution to loop-mediated processes.

The LHC provides an ideal environment for new research in the sector of heavy
flavour physics. The nominal center of mass energy of the LHC in Run II is

√
s =

13 TeV. The according bb production cross sections within the LHCb acceptance is
σbbX(13 TeV) = 515µb [47] resulting in 6 · 1011 B hadrons produced in the LHCb
detector acceptance 2015 and 2016 combined (2 fb−1 integrated luminosity collected
in 2015 + 2016). Additionally to providing high statistics, the LHC gives access
to the system of the Bs meson – which was mostly beyond the reach of previous b
factories such as BaBar and Belle – allowing for the investigation of CP violation
and the search for new physics in the B0

s system.
The LHCb collaboration has already published several new results constraining SM
parameters and possible contributions from new physics, for example the restraining
of SUSY parameters with the decays B0

s → µ+µ− and B0 → µ+µ− [48].

This chapter is dedicated to the description of the LHCb detector in Run II. After
a general overview of the detector, the different subdetectors of the tracking system
and the particle identification system are presented and a summary of the detector
performance is given. Then the LHCb trigger system and different trigger lines are
introduced. At the end of this chapter the LHCb software is described briefly.

4.1 The LHCb Detector

The LHCb detector was designed as a single arm forward spectrometer [49] to
match the kinematics of bb production in pp collisions shown in Figure 4.1. Cor-
responding to this distribution, the LHCb detector covers an angular range of
10 mrad− 300 mrad in the horizontal, bending and 10 mrad− 250 mrad in the ver-
tical, non-bending plane. At a center of mass energy of 14 TeV 24 % of the produced
bb pairs are in the detector acceptance.

To enable precision measurements, the LHCb detector was built with a minimal
amount of material budget. Additionally, the LHC conducts luminosity levelling for
LHCb, keeping the number of proton-proton interactions per bunch-crossing adjus-
ted to an average of 1.5 throughout the entire run. This is achieved by displacing
the proton-beams with respect to each other at the LHCb collision point, giving the
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bunches only a small overlap while colliding.
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Figure 4.1: At hadron colliders the dominant mechanism for bb production is
through gluon gluon fusion. Due to the statistical partition of the energy inside
the protons the bb pairs originated from the gluon gluon interactions are boosted in
the forward or backward direction. Left: Density of bb events produced in proton-
proton collisions as a function of the angular distribution of the b quark and the b
quark. Right: Density of bb events produced in proton-proton collisions as a function
of the pseudo rapidity of the b quark and the b quark. The yellow solid box shows
the geometrical acceoptance of the general purpose detectors while the red solid box
shows the LHCb geometrical acceptance. [50]

The LHCb detector is composed of several subdetectors shown in Figure 4.2 which
are presented in the following sections. Altogether the LHCb detector incorpor-
ates precision vertexing and tracking, worldwide leading particle identification and
efficient triggering through a system of dynamic triggers.

78



4.1 The LHCb Detector

  

1

2 3 4

5 6 7 8 9

Figure 4.2: The LHCb detector. 1: Vertex Locator (VELO), 2: Ring Imaging
Cherenkov detector 1 (RICH1), 3: Tracker Turicensis (TT), 4: the magnet, 5:
the tracking stations, 6: Ring Imaging Cherenkov detector 2 (RICH2), 7: Muon
chamber 1 (M1), 8: Scintillating Pad Detector (SPD), PreShower Detector (PS),
electromagnetic calorimeter (ECAL) and hadronic calorimeter (HCAL), 9: Muon
chambers 2 to 5 (M2 to M5). [51]

4.1.1 The Tracking System

The LHCb tracking system’s purpose is the detection of charged particle tracks and
the measurement of their momenta. It is also responsible for the reconstruction of
production and decay vertices of B and D mesons. This is essential not only for
lifetime measurements but also for an efficient background rejection in the analysis
of rare decays.
The tracking system consists of the Vertex Locator (VELO), the magnet, the Silicon
Tracker (ST) and the Outer Tracker (OT). The Silicon Tracker makes up for the en-
tire Tracker Turicensis (TT) and the Inner Tracker (IT) which is the inner part of
the three tracking stations (T1, T2 and T3) downstream of the magnet. The Outer
Tracker is the outer part of the tracking stations (see 5. in Figure 4.2).

4.1.1.1 The Vertex Locator (VELO)

The VELO [52] accurately measures the positions of tracks close to the interaction
point and allows for a very precise reconstruction of the primary vertex and the
impact parameters of all tracks.
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As shown in Figure 4.3, the vertex locator is approximately 1 m long and consists
of 21 disc-like modules arranged around the beam pipe. Each module is composed
of two halves, each having two sides with silicon strips arranged to measure the R
and Φ coordinate respectively. The modules can be approached as close as 8 mm to
the beam and have a total radius of 4.2 cm. The strip pitch varies from 38µm wide
strips nearest to the beam pipe to 102µm wide strips for the R sensors and 79µm
wide strips for the Φ sensors at the outer margin, matching the particle density in
the detector.

Figure 4.3: Schematic illustration of the VELO. Top: top view of the 21 modules.
Bottom: Two VELO modules shown with both halves to measure Φ (blue) and R
(red). Module in closed position (left) and in open position (right) which is engaged
while unstable beam conditions. [52]

4.1.1.2 The Magnet

The LHCb magnet [53] is a warm dipole magnet with saddle shaped coils. The field
lines of the magnetic field are parallel to the y axis, making the (x − z) plane the
bending plane. Since the relative momentum resolution, σp

p
, varies with magnetic

field, B, as
σp
p
∝ 1

B
, (4.1)

the integrated magnetic field was chosen to be 4 Tm. Additionally, the magnet po-
larisation is regularly changed to reduce systematic effects on measurements due to
geometrical acceptances.

4.1.1.3 The Silicon Tracker (ST)

The ST [54] implements silicon microstrip technology for the Tracker Turicensis (TT)
and the Inner Tracker (IT) with a strip pitch of about 200µm. Combining the TT
and the IT, the ST has four stations. Each of these four stations consists of four
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layers that are arranged in a (x − u − v − x) geometry with vertical strips in the
x layers and strips rotated by a stereo angle of −5◦ and +5◦ in the u and v layer
respectively.

The TT is located upstream of the magnet and covers the total LHCb angular
acceptance. It allows reconstruction of low momentum particles which are swept out
of the detector acceptance after entering the magnetic field and additionally provides
information for the trigger by performing transverse momentum measurements for
tracks with a large impact parameter. The TT consists of sensors of size 9.4 cm ×
9.6 cm as is illustrated in Figure 4.4. In the inner region the sensors are read out
individually, while in regions with lower occupancy the sensors are bonded together
in groups of two, three or four sensors.

Figure 4.4: The two parts of the Silicon Tracker (ST). Left: Layer of the Tracker
Turicensis (TT). The sensors are read out individually (yellow) or bonded together
in groups of two, three (light brown) or four (dark brown). The blue boxes at the
bottom and the top represent the readout hybrids. Right: Layer of the Inner Tracker
(IT) which is the inner part of the downstream tracking stations. The blue boxes at
the bottom and the top of the modules represent the readout hybrids. [54]

The IT covers the inner region of the downstream tracking stations where the particle
flux is highest. One layer of the IT can be seen in Figure 4.4 on the right. It consists
of four pieces arranged in a criss-cross pattern around the beam pipe that cover a
total area of 0.35 m2.

4.1.1.4 The Outer Tracker (OT)

The OT [55] covers the outer region of the downstream tracking stations. Since
the particle flux is lower in this area the OT implements the technology of drift
tubes. The inner boundaries filled by the IT were determined by the requirement
that occupancies in the straw-tubes should not exceed 10% at the nominal running
luminosity of 2 · 1032 cm−2s−1.

As for the ST, each OT tracking station has four layers arranged in a (x−u−v−x)
geometry with vertical tubes in the x layers and tubes rotated by a stereo angle of
−5◦ and +5◦ in the u and v layer respectively. Each of these layers are composed
of two staggered layers (monolayers) of straw-tubes. All straw-tubes are 5 mm thick
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and filled with a gas mixture of Argon and CO2 (70 : 30) which combines fast
response time (< 50 ns) with a high resolution of the drift coordinate (200µm).

The structure of the OT layers is shown in Figure 4.5. Each layer is built of two
different types of modules. The F modules are 4.85 m long and their monolayers are
split along the y axis, at different positions for each monolayer to avoid insensitive
regions in the middle of the modules. The S modules are shorter than the F modules
and located above and below the beam pipe.

Figure 4.5: One layer of the Outer Tracker (OT) with the long F modules and the
shorter S modules combined out of 256 and 128 drift tubes respectively. [55]

4.1.2 The Particle Identification System

The LHCb particle identification system consists of two Ring Imaging CHerenkov
(RICH) detectors, the calorimeter system and the muon system. The information
of these subdetectors is combined and evaluated with the use of a likelihood function.

4.1.2.1 The RICH1 and RICH2

The LHCb detector includes two RICH detectors [56] to allow for a precise sep-
aration of charged pions and kaons over the entire momentum spectrum. When
the ultra-relativistic charged particles traverse the gas of the RICH detectors they
emit Cherenkov radiation [29]. As can be seen in Figure 4.6, the angle under which
the Cherenkov light is emitted depends on the mass and momentum of the charged
particle as well as the refractive index of the RICH radiators. Since the particle
momentum is established by the tracking system, the particle mass and therefore
the particle type can be determined by the RICH detectors.

Both LHCb RICH detectors use a system of primary and secondary mirrors to reflect
the Cherenkov photons emitted by the charged particles onto the Hybrid Photon
Detectors (HPD) located outside the detector acceptance. This is illustrated in
Figure 4.7.

RICH1 is placed between the VELO and the TT and covers the full angular accept-
ance of the LHCb detector. It uses C4F10 gas to distinguish charged particles with
a momentum between 1 GeV/c − 60 GeV/c.
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Figure 4.6: Cherenkov angle versus the particle momentum for pions (blue lines)
and kaons (red lines) in the radiators of RICH1 (solid lines) and RICH2 (dashed
lines).
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Figure 4.7: Schematic illustration of the RICH1 (left) and the RICH2 (right)
detectors. The Cherenkov photons are reflected from spherical mirrors onto plane
mirrors and then onto the photon detector planes which are located outside of the
LHCb acceptance.

RICH2 is located downstream of the magnet behind the tracking stations. It is de-
signed to cover the momentum range from 15 GeV/c to 100 GeV/c using CF4 radiator
gas. Corresponding to the region where high momentum particles are produced, the
RICH2 covers an angular acceptance of 15 mrad to 120 mrad (bending plane) and
100 mrad (non-bending plane). More detailed information about the RICH detect-
ors, particularly about the mirror systems, can be found in Chapter 5.
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4.1.2.2 The Calorimeter System

The LHCb calorimeter system [57] consists of a Preshower detector (PS), a Scintil-
lating Pad Detector (SPD), an electromagnetic calorimeter (ECAL) and a hadronic
calorimeter (HCAL). The main purpose of the calorimeter system is the identific-
ation of light particles such as electrons and neutral particles such as photons or
π0 as illustrated in Figure 4.8 [58] and the measurement of energy and position of
neutral particles that can’t be detected by the tracking system. The calorimeters
also provide information for the hardware based L0 trigger (see Section 4.2.1).

Figure 4.8: Schematic illustration of the particle separation using the calori-
meter system. The lead layer between the Scintillation Pad Detector (SPD) and
the PreShower detector (PS) is thick enough to induce electromagnetic showers. [57]

Each subdetector of the calorimeter system is composed of square cells varying in
size according to the particle flux. For the SPD, PS and the ECAL three different
zones were chosen with cell sizes of 4 cm, 6 cm and 12 cm as shown in Figure 4.9.
The HCAL is segmented into two zones with larger cells (13.13 cm in the inner
section and 26.26 cm in the outer section) because of the size of hadronic showers.
All calorimeters implement the technology of scintillation light that is transmitted
to Photo-Multipliers (PMT) by wavelength-shifting (WLS) fibres.

Figure 4.9: Schematic illustration of the segmentation of the Scintillating Pad De-
tector (SPD), PreShower detector (PS) and the ECAL (left) and the HCAL (right).
The pictures show one quarter of the calorimeter surfaces. The black area on the
bottom left of both images is the area close to the beam pipe where the particle flux
is too high for any calorimeter performance. [57]

The PS and the SPD are located before the ECAL and separated by lead sheet
of 2.5X0 thickness allowing for a separation of electrons from a high background
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of pions. Both PS and SPD are made of one single layer of 15 mm thick plastic-
scintillator tiles.

The ECAL is composed of cells that are built after the shashlik principle, one cell
is composed of alternating layers of 2 mm thick lead and 4 mm thick polystyrene
scintillator tiles. One cell, made out of 66 lead and scintillator layers, is illustrated
in Figure 4.10. The HCAL employs a non-typical structure where the scintillating
tiles are arranged parallel to the beam pipe as shown in Figure 4.10. The absorber
for the HCAL was chosen to be 1 cm iron tiles and the scintillator layers are made
out of 3 mm thick doped polystyrene tiles.

Figure 4.10: One cell of the ECAL (left) and the HCAL (right). The scintillating
tiles of the ECAL are arranged perpendicular to the beam while they are parallel to
the beam for the HCAL. The absorber is made of lead for the ECAL and iron for
the HCAL. [57]

4.1.2.3 The Muon Chambers

The LHCb detector contains five muon stations (M1- M5) dedicated to muon iden-
tification and muon triggering [59].

The first muon station M1 is placed upstream of the calorimeters to provide a pre-
cise transverse momentum measurement. The other muon stations are placed down-
stream of the calorimeters and are interleaved with 80 cm thick iron absorbers. The
stations M2 and M3 yield a very good spacial resolution for the tracks while the last
two stations only deliver information for the particle identification. The side view
of the muon system is shown in Figure 4.11.

As can be seen on the right in Figure 4.11, each muon chamber is divided into four
regions R1 to R4. The granularity in the regions decreases radially which provides
an isotropic channel occupancy for each muon station. Except for the inner region
R1 of M1, all muon stations are composed of Multi Wire Proportional Chambers
(MWPC). R1 of M1 implements the Triple GEM [60] technology because the particle
flux in this region would overburden the MWPC.
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Figure 4.11: Side view of the muon stations (left) and the schematic front view of
the upper right quarter of one muon station with the segmentation into four regions
R1 to R4. All modules are composed of MWPC except for R1 of M1 which uses the
Triple GEM technology due to extremely high particle flux. [59]

4.1.2.4 The Discriminant Particle Identification Variables

The information from all the detectors of the particle identification system is com-
bined to calculate two different sets of discriminative variables. These variables are
calculated for all final state tracks of an event.

The first set of variables (DLL) are based on a combined log likelihood. It is com-
puted for each subsystem by testing the hypothesis that a track is a certain particle
with respect to the hypothesis that the track comes from another particle. The
reference particle is usually chosen to be a pion. The likelihoods from the different
subdetectors are then summed to obtain the global discriminative variable.
The second sets of variables (ProbNN) are the output of a multivariate data analysis
for each particle hypothesis. The multivariate tool used is a multilayer perceptron
(MLP)1 that takes various output of the PID detectors as input as well as inform-
ation from the tracking system. In contrast to the DLL variables, the ProbNN
variables are limited to a range between 0 and 1 and represents the probability for
certain hypothesis [61].

Even though the input from all subdetectors is combined, the information on the
particle identification variable for kaons and pions comes mainly from the RICH1
and RICH2. For neutral particles and electrons the calorimeter system provides the
significant information while the particle identification variable for muons is calcu-
lated by relying especially on the muons system.

1A multilayer perceptron is a deep neural network that consists of a series of single perceptrons.
The linear predictor functions of the single perceptons is used to identify small linearly separable
sections of the inputs (see Figure 6.5 for an example of a linear predictor funtion). The combination
of layers of single percetrons to a multilayer perceptron allows the solution of nonlinearly separable
problems by producing arbitrarily shaped decision regions. Multilayer perceptrons are capable of
separating any classes (Kolmogorov theorem).
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4.1.3 LHCb Performance Summary

The LHCb detector has shown a high and stable performance over the entire range
of data taking [62].

The resolution of the x and y coordinates of the primary vertex and the resolution
on the impact parameter’s x coordinate are shown in Figure 4.12. For 25 tracks
in the event, a resolution of 13µm on the x and y coordinates and a resolution of
69µm on the z coordinate of the primary vertex can be reached [63]. Additionally an
equally excellent impact parameter resolution of < 35µm for tracks with a transverse
momentum pT > 1 GeV can be obtained. The tracking system has an average relative
momentum resolution of

∆p

p
= 0.5 (4.2)

The relative energy resolution for the ECAL is

∆E

E
=

10%√
E[ GeV/c]

⊕ 1% (4.3)

and for the HCAL
∆E

E
=

80%√
E[ GeV/c]

⊕ 10% (4.4)

Using Bs→ J/ψφ decays, the decay time resolution of LHCb has been determined
to be about 50 fs [64]. As can be seen in Figure 4.12 the decay time resolution is
essentially independent of the B momentum.

 [c/GeV]
T

1/p
0 0.5 1 1.5 2 2.5 3

m
]

µ
) 

[
X

(I
P

σ

0

10

20

30

40

50

60

70

80

90

100

LHCb VELO Preliminary

T
 = 11.6 + 23.4/pσ2012 Data: 

T
 = 11.8 + 23.7/pσ2015 25 ns Data: 

LHCb VELO Preliminary

T
 = 11.6 + 23.4/pσ2012 Data: 

T
 = 11.8 + 23.7/pσ2015 25 ns Data: 

2012 Data

2015 25 ns Data

]c [GeV/p
0 100 200 300 400

T
im

e 
R

es
ol

ut
io

n 
[f

s]

0

10

20
30

40
50

60
70

80
90

100
LHCb Preliminary

 = 13 TeVs

φ ψ J/→ sB

Momentum Distribution

Effective Resolution

Figure 4.12: Summary of the LHCb VELO performance obtained from 2015 data.
The resolution of the x coordinate of the impact parameter as a function of the
transverse momentum pT (left) and the decay time resolution as a function of the B
momentum p (right).

4.2 The LHCb trigger system

The LHC collides bunches at a maximal rate of 40 MHz. Due to the LHCb’s lu-
minosity levelling the visible2 rate of interaction is about 25 MHz which has to be

2To be visible, events must have at least two charged particles producing enough hits in the
tracking system to be reconstructed.
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reduced to about 12.5 kHz to be permanently stored for offline analysis. At LHCb
this is realised by a two-stage trigger system [65] [66]: the Level-0 (L0), a purely
hardware based trigger, followed by the High Level Trigger (HLT) which is executed
on a CPU farm.

Since the beginning of Run II, LHCb has implemented a stage of real-time alignment
and calibration of the subdetectors within the HLT. This allows for a new concept -
called Turbo stream - where physics measurements are performed on the output of
the HLT. A schematic presentation of the trigger system for Run II can be seen in
in Figure 4.13.

40 MHz bunch crossing rate

450 kHz
h±

400 kHz
µ/µµ

150 kHz
e/γ

L0 Hardware Trigger : 1 MHz 
readout, high ET/PT signatures

Software High Level Trigger

12.5 kHz (0.6 GB/s) to storage

Partial event reconstruction, select 
displaced tracks/vertices and dimuons

Buffer events to disk, perform online 
detector calibration and alignment

Full offline-like event selection, mixture 
of inclusive and exclusive triggers

LHCb 2015 Trigger Diagram

Figure 4.13: A schematic representation of the LHCb trigger system. The first
state is the hardware based Level-0 trigger. Afterwards the High Level Triggers are
executed on a processor farm. Each subtrigger uses several trigger lines for dynamic
and specific triggering.

4.2.1 The Level-0 Trigger

The LHCb Level-0 (L0) trigger is made from custom electronics and reduces the rate
from 25 MHz to 1 MHz. To identify events from B hadrons the L0 trigger uses the
fact that the large mass of B hadrons provides a significant amount of transverse
kinetic energy to the decay particles. Therefore it selects events with a high amount
of transverse energy deposited in the calorimeter or the muon system. Additionally,
the L0 accesses pileup information from the VELO and the SPD to reject events
with too many tracks. There are different L0 trigger lines for different final state
particles.

The most important L0 line for the analysis is the L0 Hadron. The L0 Hadron
trigger line is activated by one cluster in the HCAL. The threshold transverse energy
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ET for the L0 Hadron is the sum of the transverse energy in the HCAL with the
transverse energy in the corresponding ECAL cells.

4.2.2 The High Level Trigger

All events that pass the L0 trigger are processed by the High Level Trigger (HLT).
Since the beginning of Run II, the HLT consist of three stages. The first stage is the
HLT1 stage after which the accepted events are buffered to disk. The HLT1 per-
forms a partial event reconstruction by reconstructing tracks, primary vertices and
potential secondary vertices. The second stage is the full alignment and calibration
of the LHCb detector which is performed on a subset of the buffered events. The
third stage is the HLT2 which performs a full reconstruction of the buffered events
using the newly determined alignment and calibration constants. Due to an upgrade
of the CPU farm for the HLT and the increased performance of the reconstruction
algorithms, the reconstruction of the events in HLT2 is identical to the offline re-
construction. By performing the alignment and calibration of the detector before
HLT2 it is ensured that there are no more differences between the online and offline
reconstruction.

The HLT1 has access to information from the VELO, the tracking system and the
muon stations as well as the information available to the L0. It reconstructs particle
tracks in the VELO and determines the position of the primary vertices in each
event. The HLT1 then makes a decision based upon impact parameter, momentum,
transverse momentum and/or track quality of one or more tracks in the event. For
each L0 line several HLT1 lines are executed. The HLT1 reduces the rate to approx-
imately 1 MHz.

After HLT1 the events are buffered to disk while the calibrations and alignments are
performed. The calibrations are the RICH refractive index calibration, the RICH
hybrid photon detector image calibration, the OT time calibration and the ECAL
calibration. These can be performed as simple fits on monitoring histograms. The
alignments are the spacial alignment of the VELO modules, the tracking stations,
the RICH mirror systems and the muon chambers. The alignments require more
complex algorithms that run on the same CPU farm as the HLT. The first three
calibrations are run every hour during data taking while the ECAL calibration and
the alignments are performed every couple of hours. The newly determined calibra-
tion and alignment constants are applied in the subsequent HLT2 processing of the
events.

The HLT2 performs a full event reconstruction identical to the offline analysis. Start-
ing by reconstructing all tracks in the event using the VELO tracks as seeds, the
HLT2 reconstructs intermediate particles and resonances and identifies displaced
vertices. Afterwards, depending on the HLT2 line, different sets of selections are
applied which are dominantly designed to identify decays of B and D hadrons. The
HLT2 finally reduces the rate to about 12.5 kHz which is either stored for the off-
line analysis or directly used for physics analysis in the Turbo Stream. The use of
real-time alignment and calibration of the detector also enables the HLT2 to use the
particle identification variables and to perform at optimal efficiency at all times.
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Two HLT1 line and several HLT2 lines will be used in the analysis of the B± →
D(→ 2π+2π−)K± decays. The HLT1 lines are the Hlt1TrackMVA line and the
Hlt1TwoTrackMVA [67]. The former line selects events with at least one track with
a high transverse momentum pT and a great impact parameter (IP) with respect
to the primary vertex, since this track is likely to come from a decaying B hadron.
The latter line searches for two tracks that form a secondary vertex that is displaced
with respect to the primary vertex.

The HLT2 lines that are used are the HLT2 topological lines [67]. They were de-
signed to trigger inclusive n-body (n = 2, 3, 4) B decays. The HLT2 lines implement
a Boosted Decision Tree (see Section 6.5.2) to determine if n tracks show the to-
pology of a B decay. Missed tracks are compensated for by taking into account
the difference between the total momentum of the n tracks and the momentum
of the hypothetical B hadron. More information about the HLT lines used in the
analysis of the B±→ D(→ 2π+2π−)K± decay are given in Section 6.4.1 of Chapter 6.

4.2.3 The Turbo Stream

Since HLT2 performs a reconstruction that is identical to the offline reconstruction,
the output of HLT2 can be directly used for physics analysis. This new concept is
called the Turbo stream [68]. Currently about 30% of events go through the Turbo
stream in Run II.

The Turbo stream consists of a collection of Turbo lines which are equivalent to
HLT2 lines. While after the HLT2 decision its reconstruction is discarded, all physics
objects (such as tracks, primary vertices etc.) reconstructed in HLT2 are saved for
the Turbo lines. For all Turbo candidates the raw detector information is discarded
and only the objects reconstructed by HLT2 are kept, halving the size of the event.

The events in the Turbo stream are then processed by the software TESLA (see
Section 4.4) which extracts the objects reconstructed in HLT2 and converts them
for physics analysis. Performing analyses on the output of the online reconstruction
is only possible since there is a real-time alignment and calibration of the LHCb
detector.

The Turbo stream was designed for use during Run III (starting in 2020). In Run III
the center-of-mass energy of the proton proton collisions will be increased to 14 TeV
while the instantaneous luminosity seen at LHCb will be increased by a factor of
five. In order to maintain signal efficiencies close to those obtained during Run I
the hardware trigger stage has to be removed and higher output rates are necessary.
This will be archived by using only the Turbo stream and dispensing with an offline
reconstruction. Run II is used as commissioning period for the Turbo stream.

4.3 The LHCb Preselection (Stripping)

In order to reduce computing time, all events are preselected by a certain stripping
line. Each analysis performed at LHCb has its own dedicated stripping line. Most
stripping lines aim at identifying a specific decay and consist of a loose selection for
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rejecting as much background as possible while keeping as much signal as possible.
The stripping is executed by the physics analysis software DaVinci (see Section
4.4).

During the stripping procedure every event is scanned for particle candidates that
can be combined to make the signal decay. Events with signal candidates are stored
for later use.

The stripping line used in the analysis of the B±→ D(→ 2π+2π−)K± decay is the
B2D0KD2HHHH line that selects B±→ DK± decays with the D meson decaying to a
hadronic four-body final state (see Section 6.4.2).

4.4 The LHCb Software

The data processing at LHCb goes through a series of steps which are executed by
different software frameworks. To ensure consistency between these frameworks and
the way that data and Monte Carlo are treated, all LHCb core software is embedded
in the Gaudi framework [69]. There are six main applications, each responsible for
a different stage of event processing:

• Gauss is used for the generation of Monte Carlo. Therein, proton-proton col-
lisions are simulated with Pythia [50], the decay of B hadrons is made with
EvtGen [37] and the detector simulation is implemented in Geant4 [38].

• Boole takes the output from Gauss and simulates the digitisation of data to
give it the same format as the LHCb data obtained by the electronics and data
acquisition systems.

• Moore performs online subdetector and global reconstruction in HLT1 and
HLT2 during data taking. For Run II the reconstruction in Moore is identical
to the offline reconstruction performed in Brunel.

• Brunel performs offline subdetector and global reconstruction using pattern
recognition for both Monte Carlo and data.

• TESLA processes the events in the Turbo stream by extracting the physics
objects constructed by Moore in HLT 2.

• DaVinci executes the last step, namely the reconstruction of the final signal
events and running the stripping [70].
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5. Implementation and
Commissioning of the Real-time
Alignment of the LHCb RICH
Mirror Systems

The alignment procedure of the LHCb RICH mirror systems in Run II of the LHC is
performed in real-time. This chapter describes the alignment procedure of the RICH
mirrors in Run II using proton-proton collision data, in particular the implementa-
tion of the alignment procedure into the online framework and the commissioning
and improvement of the alignment method during the first two years of Run II.

The first section of this chapter is an overview of the importance of particle iden-
tification and the role of the RICH mirror alignment. The second section provides
an introduction to Cherenkov radiation and its use in obtaining the particle iden-
tification information in LHCb. The third section is a presentation of the LHCb
RICH optical systems. The fourth section explains the irreducible limitations to the
precision of the particle identification. The fifth section describes the method used
to align the RICH mirror systems. The sixth section outlines the alignment strategy
in Run I of the LHC while the seventh section gives a in-depth explanation of the
alignment strategy and its implementation in Run II. The eighth section summarises
the results of several studies aimed at improving the RICH mirror alignment pro-
cedure. The ninth section presents the first alignment performed in 2016 and the
tenth section summarises the information collected during the automatic running of
the alignment procedure throughout 2016. The last section gives the conclusion and
provides an outlook on the future of the alignment for the LHCb upgrade.

The author implemented the RICH mirror alignment in the online system and com-
missioned the alignment throughout 2015 and 2016. The implementation of the
RICH mirror alignment in the online system is described in Section 5.7.4. The au-
thor also facilitated the monitoring of the procedure as described in Section 5.7.5
and performed the studies presented in Sections 5.8, 5.9 and 5.10.

5.1 Introduction

The primary role of the RICH system is the identification of charged hadrons such
as pions, kaons and protons. One of the major requirements for charged hadron
identification in flavour-physics experiments is for the exact reconstruction of the in-
variant mass of a decaying particle – such as B0 → π+π− — to reduce combinatorial
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background. The most precise invariant mass can only be obtained if the masses of
all final state particles — and therefore their species — is known. Another crucial
use of particle identification is the discrimination between final states which are to-
pologically identical but have different final state particles, such as B±→ DK± and
B±→ Dπ±. These decays have almost identical kinematics but very different CP
asymmetries. Extracting a signal using only kinematic and vertex-related selection
criteria would mean summing over all B± → Dh± decay modes and diluting CP
violation effects. It is therefore necessary to identify all final state particles. An ex-
ample of the impact of the particle identification information is shown in Figure 5.3
and in Section 6.5.5 of Chapter 6.

The LHCb RICH system consists of two RICH detectors which together cover the
particle identification in the momentum range from 2 to 100 GeV/c. Both RICH
detectors have two sets of mirrors, amounting to a total of 20 mirrors in RICH1 and
96 mirrors in RICH2 (see Section 5.3). The mirrors reflect the Cherenkov photons
emitted by charged particles travelling through the RICH radiators onto the detector
plane. Consequently, the particle identification requires the accurate knowledge of
the position and orientation of the RICH mirrors, more precisely their position and
orientation with respect to the LHCb tracking system. The orientation of the mirrors
is also called the alignment of the mirrors.

The RICH mirror alignment procedure determines the difference between the po-
sition of each the mirror in the LHCb conditions database and its actual position.
The LHCb conditions database stores the non-event time-varying data pertaining
to detector conditions including the orientation of all sub-detectors. The difference
between the orientation of a mirror in the conditions database and its actual position
is called the misalignment of the mirror. The orientations in the conditions database
can then be corrected for any misalignments and the LHCb conditions database up-
dated. The alignment procedure corrects for rotations around the mirrors individual
y- and z-axes (see Section 5.3).

The LHCb detector performed well during Run I [62] [64] but the data-taking condi-
tions changed significantly for Run II. Firstly, the centre-of-mass energy of the LHC
was increased from 8 TeV to 13 TeV with a reduced bunch spacing of 25 ns instead
of 50 ns. This means an increase in instantaneous luminosity. In order to keep the
selection efficiencies in the high level trigger as high as in Run I or even higher, re-
quirements on the particle identification have to be used in the high level trigger in
Run II. This requires the full alignment and calibration of the RICH detectors within
the high level trigger sequence (see Section 4.2.2). Secondly, the Turbo stream was
implemented, which allows the direct use of the output of HLT2 for physics analyses
(see Section 4.2.3). Hence, the alignment and calibration of the detector has to be
performed before HLT2. An additional advantage of the real-time alignment and
calibration of the detector is that there are no more differences between the recon-
struction during the high level trigger stage and the offline reconstruction. This
enables much more precise understanding of the reconstruction efficiencies.

In Run II the full LHCb detector is aligned and calibrated either each run or each
fill1. The RICH refractive index calibration, the calibration of the RICH hybrid

1A run takes usually an hour while a fill takes on average about 12 hours.
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photon detectors and the global time calibration of the outer tracker are performed
per run while the spacial alignment of the full tracking system, the alignment of the
RICH mirror systems and the calibration of the calorimeter is performed once per
fill.

5.2 Cherenkov Radiation and Particle Identifica-

tion at LHCb

When a charged particle traverses a medium at a speed higher than the phase ve-
locity of light in that medium, the particle emits photons. This radiation is called
Cherenkov radiation and is emitted at a polar angle θC - called the Cherenkov angle
- with respect to the particle’s direction and uniformly in azimuthal angle φ. For a
charged particle with momentum p and mass m travelling through a medium with
refractive index n the Cherenkov angle is

cos θC =
1

nβ
(5.1)

=
1

n

√
m2 + p2

p
. (5.2)

The curves of the Cherenkov angle over the particle momentum can be seen in
Figure 5.1 for protons, pions and kaons in the radiators of RICH1 and RICH2.
The graph shows that for higher momentum the Cherenkov angles converge to the
same value. The Cherenkov angle is said to be saturated. The momentum at which
the Cherenkov angle saturates and the value of the saturated angle depend on the
refractive index of the material.
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Figure 5.1: Cherenkov angle as a function of particle momentum for pions, kaons
and protons in the C4F10 radiator (n = 1.0014) of RICH1 and the CF4 radiator (n
= 1.0005) of RICH2.

Figure 5.2 shows two examples of the images on the HPD planes for two selected
events during nominal LHCb run conditions. While in one example the Cherenkov

95



Chapter 5

rings from different tracks are distinguishable, these events are very rare. Typical
events have high occupancy and several overlapping Cherenkov cones, making it
difficult to distinguish individual Cherenkov rings. Therefore, particle identification
at LHCb using the RICH systems is performed using an overall event log-likelihood
minimisation algorithm, where all tracks in the event and in both RICH detectors
are considered simultaneously [71] [72]. The process can be described in two steps.
The first step is called ray tracing and consists of taking a photon hit on the detector
plane and matching it to a charged track under the assumption that the hit came
from a Cherenkov photon emitted by the track. Since the emission point of the
Cherenkov photon cannot be known it is taken to be in the middle of the track in
the respective RICH detector volume. From this the Cherenkov angle is computed.
Each track is matched to all hits on the detector plane that lie within an expected
region around the track. This region is defined in terms of the Cherenkov angle
resolution σθ.
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Figure 5.2: Examples of the images on the HPD planes of RICH1 (top) and RICH2
(bottom) for two nominal LHCb events. The left figures show an event with distin-
guishable, individual Cherenkov rings in RICH1. The right figure shows a typical
events with high occupancy and indistinguishable Cherenkov rings.

The second step of the procedure is the construction of the likelihood function. The
probability distribution for Cherenkov photons from tracks (i.e. the signal) is taken
to be Gaussian in θ and uniform in φ and given by

fhj(θ, φ) =
1

(2π)3/2σθ
e
−

(θ − θC(hj))
2

2σ2
θ , (5.3)

where θC(hj) is the expected Cherenkov angle for the track under the mass hypo-
thesis hj. The background contribution to the pattern observed on the detector
plane is also modelled in the likelihood function. It is estimated using a data-driven
technique where the observed signal in each HPD is compared to the expected signal
in that HPD that would be caused by only the tracks in the event. Additionally,
detector inefficiencies are taken into account.
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The log likelihood function is calculated for different particle hypotheses for each
track for the entire event. Since pions are the most common particles in proton-
proton collisions, the likelihood minimisation procedure starts by assuming all charged
particles are pions. The overall event likelihood, computed from the observed distri-
bution of photon hits on the detector plane, the associated tracks and their errors, is
then calculated for this set of hypotheses. Then, for each track in turn, the likelihood
is recomputed changing the mass hypothesis to e±, µ±, π±, K± and proton, whilst
leaving all other hypotheses unchanged. The change in mass hypothesis amongst
all tracks that gives the largest increase in the event likelihood is identified, and
the mass hypothesis for that track is set to its preferred value. This procedure is
repeated until all tracks have been set to their optimal hypotheses. To lower the
CPU usage of this algorithm, tracks are sorted according to the size of their likeli-
hood change from the previous step, and the search starts with the track most likely
to change its hypothesis. If the improvement in the likelihood for the first track is
above a given threshold, this iteration is stopped and the hypothesis for that track
is immediately changed. Additionally, if a track shows a clear preference for one
mass hypothesis, it is set to that hypothesis and is removed from the minimisation
procedure.

The final results of the log-likelihood minimisation algorithm are differences in the
log-likelihood values (DLL) for each track individually. The DLL describe the differ-
ence in the overall event log-likelihood between the pion hypothesis and each of the
e±, µ±, K± and proton hypotheses. These values can then be used to apply selec-
tion criteria on particle types. An example of the effect of the particle identification
information can be seen in Figure 5.3 for invariant mass distribution in B0 → π+π−.

Figure 5.3: Demonstration of the effect of the particle identification on the in-
variant mass distribution of B0 → π+π−. [73] Left: Distribution before the use of
the particle identification information. The signal decay B0 → π+π− (turquoise
line) has a relatively small contribution. Contributions from different b-hadron
decay modes, such as B0 → K+π− decays (red line), B0 → 3-body decays (or-
ange line), B0

s → K+K− decays (yellow line), B0
s → K+π− decays (brown line),

λB → pK decays (purple line) and λB → pπ decays (green line), are clearly vis-
ible. Right:Distribution after the use of the particle identification information. Most
contribution from other decay modes have been eliminated. The remaining two back-
ground contributions are much suppressed with respect to the left plot.
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The exact knowledge of the physical position of all components of the RICH optical
systems, i.e. the alignment of the RICH optical system, is of crucial importance
at several different points of the particle identification procedure. The ray tracing
algorithm relies on a precise description of the RICH systems in the LHCb software.
Furthermore, an incorrect alignment of the optical systems results in a greater Cher-
enkov angle resolution σθ which has a direct impact on the probability distribution
function used in the log likelihood function. Additionally, the Cherenkov angle res-
olution defines the regions on the detector plane from which hits are matched to a
given track. A smaller Cherenkov angle resolution would result in a smaller region
and therefore fewer hits. This would reduce the amount of background as well as
the time needed to run the particle identification algorithm.

5.3 The RICH Optical Systems

The designs of the RICH optical systems are shown in Figure 5.4 [56, 74]. Both
RICH1 and RICH2 have similar optical systems with a set of focusing spherical
primary mirrors, and the secondary, much flatter mirrors. Each optical system
is divided into two halves, with RICH1 being divided vertically above and below
the beam pipe and RICH2 horizontally on either side of the beam pipe. The four
primary mirrors of RICH1 are made from carbon-fibre while its 16 secondary mirrors
and the 56 primary mirrors of RICH2 and its 40 secondary mirrors employ a thin
glass substrate. All mirrors are lined with an aluminium magnesium fluoride (Al +
MgF2) coating which was chosen for the mirrors to obtain a good reflectivity in the
UV range.
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Figure 5.4: Schematic representation of the LHCb RICH detectors in Run II. Left:
Side view of the RICH1 detector. The formation of a Cherenkov ring and its propaga-
tion through the detector is illustrated in blue. Right: Top view of the RICH2 de-
tector.
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5.3 The RICH Optical Systems

Cherenkov photons emitted by a charged track are reflected off a primary mirror onto
a secondary mirror, and from there out of the LHCb acceptance onto the detector
plane. The detector plane consists of hybrid photon detectors (HPDs) and coincides
with the focal plane of the given part of the optical systems. The HPDs are vacuum
tubes with a 75 mm active diameter. Photoelectrons generated in the photo cathode
are focused onto silicon pixel arrays. The pixel arrays consist of 23×23 pixel of size
2.5×2.5 mm2. A total of 196 HPDs are tightly packed to cover both detector planes
in RICH1 and 288 HPDs cover the detector planes in RICH2.

Each mirror has its own coordinate system in which potential misalignments are
described as rotations around the y- and z-axes. The right-handed coordinate system
of each mirror is defined by placing the origin at the centre of its curvature with the x-
axis pointing towards the mirror, the y-axis pointing upwards and the corresponding
z-axis being horizontal. Figure 5.5 shows the arrangement and the numbering of the
primary and secondary mirrors of RICH1. Each secondary mirror only receives
photons from one primary mirror, making each primary mirror and its secondary
mirrors an independent system. Figure 5.6 shows the arrangement and numbering
of the primary and secondary mirrors of RICH2. Both halves of the system are
independent of each other. The primary and secondary mirrors of each half are
interconnected.
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Figure 5.5: Arrangement and numbering of the 4 primary (left) and 16 secondary
(right) mirrors of RICH1. Each secondary mirror only receives photons from one
primary mirror, as indicated by the colours.
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5.4 Limitations on the Precision of the Single Photon

Cherenkov Angle Resolution

The performance of the RICH detector can be quantified in terms of the Cherenkov
angle resolution. The resolution is limited by four irreducible sources of uncertainty:

1. Emission point
The emission point uncertainty of the Cherenkov angle comes from the fact
that the real point of emission of the Cherenkov photon along the charged
particle track is unknown. The particle identification algorithm assumes the
emission point to be at the center of the charged particle track in the RICH
detector volume.

2. Chromatic dispersion
The Cherenkov angle depends on the refractive index n of the medium, as
shown in Equation 5.1. The refractive index depends on the wavelength of the
medium and therefore so does the Cherenkov angle. A charged particle with
momentum p can emit Cherenkov photons under different Cherenkov angles.

3. Pixel size The pixels of the hybrid photon-detectors have a finite size which
adds an uncertainty to the measured Cherenkov angle.

4. Tracking The uncertainty on the direction of the charged particle track de-
termined by the tracking system contributes to the uncertainty on the Cher-
enkov angle.

The size of each uncertainty is presented in Table 5.1. Adding the uncertainties in
quadrature gives the minimal total uncertainty, which can theoretically be obtained
by having an optimal alignment of all optical components of the RICH detectors.
The minimal single photon Cherenkov angle resolution for RICH1 is about 1.6 mrad
and for RICH2 0.7 mrad. The alignment procedure aims at reaching this resolution.

σθ [mrad]

RICH1 RICH2

Emission point 0.9 0.2

Chromatic dispersion 0.9 0.5

Pixel size 0.6 0.2

Tracking 0.4 0.4

Total 1.6 0.7

Table 5.1: Sources of uncertainty on the measurement of a single photon Cherenkov
angle for the LHCb RICH detectors. The total uncertainty is the minimal uncertainty
that can be achieved with an optimal alignment of all optical components of the RICH
detectors [75]. Due to the removal of the aerogel in RICH1 the emission point error
in Run II is slightly larger than in Run I.

100



5.5 Alignment Method for the RICH Mirror Systems

There is an additional uncertainty for RICH1 which has not yet been quantified.
The field of the LHCb magnet reaches into the RICH1 detector and distorts the im-
age in the HPDs by deflecting photoelectrons on their way from the photocathode
to the silicon anode. A system is devised to reduce this effect – called the magnetic
distortion correction system – which measures the resulting distortion of the images.
The correction is applied when reconstructing the Cherenkov angle resolution. The
residual uncertainty of the distortion of the image adds to the overall Cherenkov
angle uncertainty of RICH1.

5.5 Alignment Method for the RICH Mirror Sys-

tems

This section provides a description of the method used to align the RICH mirror sys-
tems. First, the identification of a misalignment of the mirrors is described. Second,
an overview of the entire alignment procedure is given. Subsequently, two intricate
parts of the procedure are explained in detail.

5.5.1 Identification of a Misalignment in the RICH Mirror
Systems

In order to align all mirrors of the RICH mirror system, misalignments in the system
have to be identified and corrected for. The misalignment of a mirror is defined as
the difference between the position of the mirror as described in the LHCb software
and the real position of that mirror.

The effect of misalignments in the mirror system can be explained by considering the
image on the detector plane. This principle is illustrated in Figure 5.7. For a charged
track with a sufficient number of Cherenkov photons, a Cherenkov ring is formed
which is visible as a circle on the detector plane. In the case of perfect alignment, the
projection point of the charged particle track onto the detector plane is right in the
center of the corresponding Cherenkov ring. However, if a misalignment is present
for one or several mirrors, the projected track position on the detector plane is shifted
with respect to the center of the circle. This shift is determined by analysing the
difference δθ between the measured Cherenkov angle θ and the expected angle θC

δθ(φ) = θ(φ)− θC (5.4)

as a function of the azimuthal angle φ. For a well aligned detector the Cherenkov
angle is independent of the azimuthal angle, whereas a sinusoidal dependence occurs
for a misaligned detector. The expression for δθ is then

δθ(φ) = Θy sinφ+ Θz cosφ (5.5)

where Θy and Θz are called the misalignments on the detector plane. An example
of the δθ vs. φ distributions of a misaligned detector and an aligned detector can be
seen in Figure 5.8. The projection of the two dimensional histogram onto the y axis
is shown in Figure 5.9. The distributions of δθ are fitted with a Gaussian function
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for the signal component and a second order polynomial for the background com-
ponent. The width of the Cherenkov angle distribution with the misaligned mirror
combination is greater than the width for the aligned combination. Additionally,
the mean of the Gaussian for the misaligned mirrors is shifted by -0.65 mrad with
respect to zero. Both these factors will negatively impact the performance of the
particle identification.

Figure 5.7: Schematic illustration of the effect of a rotational misalignment of
a RICH mirror on the image observed on the detector plane. Left: A rotational
misalignment of a RICH mirror causes a shift of the projected track position on the
detector plane from P ′ to P . Right: The Cherenkov ring on the detector plane is
illustrated as a blue circle. Due to the misalignment, the projected track position on
the detector plane is shifted from the center of the Cherenkov ring at P ′ to P . The
Cherenkov angle θ shows a sinusoidal dependency of the azimuthal angle φ. [75]
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Figure 5.8: Distribution of δθ vs.φ for the combination of primary mirror 22 and
secondary mirror 14 of RICH2 with a misalignment (left) and after correction of
the misalignment (right). The black line represents the sinusoidal function given
in Equation 5.5 fitted to the histograms. The full fitting procedure is described in
Section 5.5.3.
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Figure 5.9: Distribution of δθ for the misaligned mirror combination (blue) and
the aligned mirror combination(red). The distributions are fitted with a Gaussian
function for the signal component and a second order polynomial for the background
component. The signal component of the misaligned mirror combination is shifted
with respect to zero and has a greater widths.

5.5.2 The RICH Mirror Alignment Procedure

The alignment procedure is iterative and completely data-driven. An flow chart
of the procedure is shown in Figure 5.10 and an overview is given below. A de-
tailed description of the steps for the alignment is given later in Section 5.5.3 and
Section 5.5.4 of this chapter.

1. The alignment starts with a sample of preselected events and a given database
entry, usually the latest version of the LHCb conditions database.

2. The events are reconstructed with the current database entry and tracks with
a momentum above 20 GeV for RICH1 and 40 GeV for RICH2 are selected.
These tracks have a momentum high enough for the Cherenkov angle to be
saturated and therefore not to depend on the particle species.

3. For each possible combination of primary and secondary mirror a δθ vs.φ histo-
gram (introduced in Section 5.5.1) is created and filled with photon candidates
that can be associated to the high momentum tracks from 2. A sinusoidal func-
tion is fitted to each histogram to extract the misalignments in the detector
plane. The filling and the fitting of the δθ vs.φ histograms is described in
further detail in Section 5.5.3.

4. The misalignments on the detector plane are disentangled to find the misalign-
ments of the individual primary and secondary mirrors. The image on the
detector plane, and therefore the δθ vs.φ histograms, are created by a combin-
ation of a primary mirror with a secondary mirror. Obtaining the individual
primary mirror and secondary mirror misalignments requires the solution of a
system of linear equations.

5. A new database entry is produced containing the new mirror orientations. The
convergence criterion — which is formulated in terms of the maximal rotation
of any mirror — is verified.
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(a) If the convergence criterion is fulfilled the alignment procedure has con-
verged and the LHCb conditions database can be updated with the newly
produced database entry.

(b) If the convergence criterion is not met, another iteration of the alignment
procedure is set up. The alignment parameters calculated in the previous
iteration are used in the reconstruction of events for this iteration. The
alignment procedure iterates until the convergence criterion is met.

database	

Events	
Fill	histograms	with	Δθ	
vs.	Φ	distribu9on		of	
unambiguous	photons	
for	each	mirror	
combina9on.	

Select	high	energy	tracks	
and	reconstruct	them	
under	
the	pion	hypothesis.	
	

Fit	misalignments	on	
detector	plane	for	each	
mirror	combina9on	and	
determine	individual	
mirror	misalignments.	

Produce	new	database	
and	verify	if	the	
convergence	criteria	was	
met.	

Replace	database	
and	perform	
another	itera9on.	

		Alignment	
		converged!	

YE
S	

N
O
	

Figure 5.10: Overview of the iterative, data-driven procedure to align the RICH
mirrors. The procedure is explained in detail in the text.

5.5.3 Filling and Fitting the δθ vs.φ Histograms

For each possible combination of primary mirror and secondary mirror a δθ vs.φ
histogram is filled. Each track that passes the selection is projected onto the detector
plane. The hits in the detector in a region around the track position are taken as
Cherenkov photon candidates. For all photon candidates the Cherenkov angle with
respect to the track is determined. Since the exact emission point of the photon
is unknown it is assumed to be emitted at the middle point of the track in the
detector volume. For the mirror alignment procedure the noise from incorrectly
associated photons can be reduced by selecting only unambiguous photons. These
are photon candidates that, regardless of their emission point along the track, will
be reflected by the same pair of primary and secondary mirrors. The expected
Cherenkov angle θC can be calculated under the pion hypothesis and the difference
δθ between the measured Cherenkov angle θ and the expected angle is computed as
δθ(φ) = θ(φ)− θC .

Each δθ vs.φ histogram is divided into 20 bins in φ. For each bin the δθ distribution
is fitted with a Gaussian function plus a second order polynomial. The means of the
Gaussian functions are connected by the sinusoidal function given as

δθ(φ) = Θz cosφ+ Θz sinφ (5.6)
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where Θz and Θy are called the misalignment on the detector plane in y and z
respectively.

Two options have been tested for the fit.

1. The functions fitted to each of the φ bins within one δθ vs.φ histogram are
completely independent of each other apart from the means of the Gaussians
that are constrained to the sinusoidal function.

2. The widths of the Gaussians are constrained to be the same in each bin. The
widths of the Gaussians correspond to the Cherenkov angle resolution.

Both approaches are evaluated and compared in Section 5.8.1.

5.5.4 Determination of Individual Mirror Misalignments

The misalignments on the detector plane Θy, Θz are caused by the rotations of
the primary and/or secondary mirror with respect to their orientation in the LHCb
conditions database. For rotations αyp, α

z
p of the primary mirror p around y, z

respectively, and rotations βys , βzs of the secondary mirror s around y, z respectively,
the misalignments on the detector plane are expressed as

Θy = Aypsα
y
p +By

psβ
y
s + azpsα

z
p + bzpsβ

z
s (5.7)

Θy = Azpsα
z
p +Bz

psβ
z
s + azpsα

y
p + bypsβ

y
s (5.8)

where Ayps, B
y
ps, A

z
ps and Bz

ps are the major magnification coefficients and ayps, b
y
ps

azps and bzps are the minor magnification coefficients. The magnification coefficients
translate the effect of a rotation of a mirror onto the detector plane. They depend
on the path the Cherenkov photons travel through the detector. The magnification
coefficients for different combinations of primary mirror p and secondary mirror s
are very similar. The average values of the major magnification coefficients are
listed in Table 5.2. The absolute values of the minor magnification coefficients vary
approximately between 0.001 and 0.250.

RICH1 RICH2

〈Ay〉 1.86 2.05

〈Az〉 2.02 1.83

〈By〉 -0.55 -1.04

〈Bz〉 0.81 0.61

Table 5.2: Average of the major magnification coefficients for both RICH detectors.

Each possible combination of primary and secondary mirrors has the two Equa-
tions 5.7 and 5.8. For RICH1 this results in 32 equations — each secondary mirror
receives photons from exactly one primary mirror — for 40 unknowns. This means
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the system is under-constrained. This can be illustrated by considering each quad-
rant — a primary mirror and its four associated secondary mirrors — independently.
A rotation of the primary mirror in one direction can be compensated by an oppos-
ite rotation of all secondary mirrors, causing the same image on the detector plane.
While many more combinations of primary and secondary mirrors are possible in
RICH2 and therefore more equations, this principle still holds in the approxima-
tion that the magnification coefficients for all primary and secondary mirrors are
the same. It can be shown that the system of equations for RICH2 is degenerate
(see Appendix B for proof). Since the magnification coefficients are not completely
identical a unique solution to the system of equations exists. As the difference
between the magnification coefficients is very small, this solution is unstable.

Two methods have been used to solve the system of equations.

1. The Algebraic Method
For the mirrors of RICH1 the algebraic method consists of two steps. In the
first step the rotations of the primary mirrors are determined by assuming the
secondary mirrors to be fully aligned. Since there are four secondary mirrors
of each primary mirror, four values are obtained for each αyp and αzp. The
mirror rotations for the primary mirrors are taken to be the average of the
four values. In the second step the secondary mirrors are aligned with respect
to the primary mirrors whose rotations αyp and αzp have been determined in the
first step.

For each of the two halves of RICH2 all mirrors are aligned with respect to one
selected mirror, primary mirrors 12 and 43. All primary and secondary mirrors
are linked in a chain as shown in Figure 5.11. The alignment of the mirrors
of RICH2 happens along this chain by assuming no misalignment in primary
mirror 12 and aligning secondary mirror 9. From there the next primary mirror
in the chain, e.g. primary mirror 17 is aligned and so on until the entire system
is aligned. There is more than one way to build the chain linking all mirrors.
The chain for this method is chosen in such a way that it contains the mirror
combinations with the highest population in the histograms.

This method solves the problem of degeneracy in the system of equations in
a simple manner. The disadvantage of this method is that it singles out the
fixed mirrors. The solution from this method is also unstable.

2. The L2 regularisation The principle of the L2 regularisation method is a
least square fit with an additional minimisation term. This term is the sum of
the squares of all individual mirror rotations. The term minimised in the least
square fit is thus given by∑
p,s

[
(Θy

p,s − Ayp,sαyp −By
p,sβ

y
s − ayp,sαzp − byp,sβzs )2
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(5.9)
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About 1 000 combinations of primary and secondary mirrors are physically pos-
sible for RICH2. To solve the system of equations 96 combinations are chosen
in such a way that all mirrors are included and that the δθ vs.φ histograms of
the chosen combination have the highest population.

The L2 regularisation always provides one, stable solution. Additionally, unlike
the algebraic method, the L2 regularisation treats all mirrors equally.

Figure 5.11: Chain linking all primary and secondary mirrors of the left half of
RICH2. The chain is not unique and here chosen in such a way that it contains the
mirror combinations with the highest population in the histograms.

Both methods for determining the individual mirror misalignments are evaluated
and compared in Section 5.8.2.

The Magnification Coefficients

The magnification coefficients depend on the paths the photons take through the
RICH detector to reach the HPD plane. They may therefore depend on the orient-
ation of the mirror themselves since a rotation of a mirror may shorten or lengthen
the path of the photon.

The magnification coefficients can be determined on data with a method similar to
the determination of the misalignments of the individual mirrors. For each mirror
combination the magnification coefficients are evaluated by introducing 8 independ-
ent calibrational rotations — positive or negative rotations about y or z for the
primary or secondary mirrors — and by measuring the resulting misalignments on
the detector plane. The final value of each factor is the arithmetical mean of the two
corresponding values obtained with the calibrating rotations in opposite directions.
The magnification coefficients are re-evaluated only after big changes of the mirror
orientations. In stable periods a predetermined set of magnification coefficients is
used for the alignment procedure.
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5.6 Alignment Strategy in Run I

The data processing strategy of LHCb in LHC Run I (2010-2012) is shown in Fig-
ure 5.12. During the HLT stage the particle trajectories of the events are recon-
structed in real-time. This event reconstruction is called the online reconstruction.
All events accepted by the HLT were sent offline for permanent storage. The data
sent offline included all raw information from the detector. An additional event
reconstruction was performed on the LHC Computing Grid [76], the offline recon-
struction, recreating particles and decays from the raw data using improved detector
calibration. In Run I the online reconstruction was a simplified, faster version of the
offline reconstruction.

The RICH mirror alignment was also performed offline and only once a year. The
alignment procedure was run after the data-taking period and reapplied to the data
in the reprocessing of the entire dataset for the year. One alignment was provided
for each magnet polarity (magnet up and magnet down).

The reconstruction of the events, and therefore the filling of the δθ vs.φ histograms,
was executed offline on the LHCb Computing Grid. The dataset was divided into
subsets and the reconstruction submitted as individual jobs. The outputs of these
jobs were merged and the individual mirror misalignments determined. An instabil-
ity was introduced to the alignment procedure by requesting that in each iteration
only 80% of the jobs were finished. A full alignment procedure required several days
to run. The reprocessing of the entire dataset with the new alignment constants
took several months.

5.7 Alignment Strategy in Run II

The dataflow for Run II is shown in Figure 5.12. As in Run I a rate of 1 MHz of
events passes the level-0 trigger (L0) and is passed on to first high level trigger
stage (HLT1). In HLT1 the events are partially reconstructed and accepted events
are written to disk. At this stage the different alignment procedures are run on
a dedicated part of the buffered data. In case of a change in alignment constants
the new constants are propagated to the LHCb conditions database and used in
the subsequent reconstruction of the events by the second high level trigger stage
(HLT2). Due to an upgrade of the HLT computing facilities, the online reconstruc-
tion is identical to the offline reconstruction in Run II. About two thirds of the events
accepted by the HLT are send to permanent offline storage, as in Run I. A third of
the events are part of the Turbo stream which stores the offline-quality reconstruc-
tion from HLT2. See Section 4.2 of Chapter 4 for a more detailed description of the
data-taking strategy in Run II.

The alignment tasks being performed between HLT1 and HLT2 are — in the or-
der they are being run — VELO alignment, tracker alignment, RICH alignment
and muon chamber alignment. Each alignment has its own dedicated HLT1 line
which collects a given number of events at the beginning of each fill. It was found
that ∼ 1 M events for RICH1 and ∼ 2 M events for RICH2 is sufficient to produce
stable results. Once enough events have been collected the alignment procedure is
automatically started.

108



5.7 Alignment Strategy in Run II

The first year of Run II (2015) was dedicated to the implementation of the RICH
mirror alignment into the online framework. All alignments in 2015 were started
manually. In the second year of Run II (2016) the alignment was started automat-
ically in each fill when enough events were collected. While the LHCb conditions
database was only updated once at the beginning of the year, the frequent running
of the alignment procedure enabled the monitoring of a potential movement of the
RICH mirrors over a long period of time. The information gathered during 2016
were used to tune sensible thresholds for the automatic update of the alignment
constants for 2017.

Figure 5.12: LHCb dataflow for Run I (left) and Run II (right). In Run II the data
is buffered after HLT1 and an alignment is performed for each fill. The HLT2 then
processes the buffered events with the updated alignment constants.

5.7.1 HLT1 Selection for the RICH Mirror Alignment

In order to perform a successful alignment, the δθ vs.φ histograms for each mirror
combination have to contain enough entries for the fits described in Section 5.5.3 to
converge. The minimum condition for a successful fit has been found to be that 16
of the 20 bins in φ contain at least 300 entries.

This is accomplished by having two dedicated HLT1 selections, one for each RICH
detector. The lines trigger on tracks of high momentum particles whose Cherenkov
photons would populate the mirror combinations containing the fewest photons. The
other mirror combinations are then populated by the rest of the tracks in the events.

The variables used in the selection are the track momentum p, the transverse track
momentum pT , the pseudorapidity η, the goodness of fit for the track χ2 and the
polar angle of the track φ. The selection criteria of tracks that are triggered upon
are listed in Table 5.3. The HLT1 lines for the RICH alignment can be optimised
and updated at any time.
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RICH1 RICH2

momentum p p > 20 GeV p > 40 GeV

transverse momentum pT pT > 0.5 GeV pT > 0.5 GeV

pseudorapidity η 1.6 < η < 2.04 2.65 < η < 2.80

track χ2 χ2 < 2 χ2 < 2

polar angle φ −2.65 < φ < −2.30 −2.59 < φ < −2.49

−0.80 < φ < −0.50 −0.65 < φ < −0.55

0.50 < φ < 0.80 0.55 < φ < 0.65

2.30 < φ < 2.65 2.49 < φ < 2.59

Table 5.3: Selection criteria for the HLT1 line for RICH1 and RICH2 in 2016.
Events that are accepted by these trigger lines need to have at least one track that
satisfies the selection criteria.

5.7.2 The LHCb Event Filter Farm

The RICH mirror alignments are run on the LHCb Event Filter Farm (EFF) which
also executes both HLT1 and HLT2. The EFF consists of 62 sub-farms, which
are largely, but not completely, homogeneous. The sub-farms make up a total of
approximately 1700 independent units. Each unit has a harddisk space between
4 Tbytes and 12 Tbytes and between 24 and 40 logical cores. This means that each
unit can run between 24 and 40 processes in parallel making it possible to run about
50 000 processes at the same time. The data that passed the HLT1 selection is
stored evenly distributed over the units until all alignments and calibrations have
been performed. It can then be processed by HLT2.

For the purpose of the alignment, one central unit is singled out and called iterator
while all other units are called analysers. The analysers work independently of each
other on every node and reconstruct the events selected by the HLT1 line and thus
produce the individual δθ vs.φ histograms. Each analyser produces the histograms
for the data that is stored on it and when all analysers are finished the histograms
are merged and evaluated by the iterator. The iterator also computes the individual
mirror misalignments and verifies the convergence criteria. The tasks of the iterator
and the analysers are explained in more detail in Section 5.7.4.

All units are completely independent of each other. The parallel processing of the
units is asynchronous and has to be coordinated between the individual analysers
and the iterator. This is described in the next section.

5.7.3 The Control Flow

The execution of the alignment tasks is under the control of the LHCb Experiment
Control System (ECS), and is implemented as a finite state machine, which is il-
lustrated in Figure 5.13. The principle of a finite state machine means that each
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component of the system (here every individual analyser and the iterator) has to be
in one of a finite number of states at all times. The states used for the alignment
procedure are also shown in Figure 5.13; Ready, Running, Paused and Stopped.

The alignment procedure is steered by the ECS which knows the state of all parts
of the system. The ECS also has the ability to send commands — such as config-
ure, start, pause and stop — to all individual parts of the system. If a command
is received by a unit, it will go from its current state into the state declared by
Figure 5.13. When in a new state, the unit will usually perform a task and once the
task is finished set itself into another state.

For a given state only a certain number of commands are possible - for example if
the component is in state Paused it can only receive the commands continue and
stop.

Figure 5.13: Example of one unit within a system functioning under the principle
of a finite state machine. The boxes show the states the unit is in while the arrows
show the commands the unit gets from the run control.

5.7.4 Implementation of the RICH Mirror Alignment for
Run II

The interplay between the iterator, one example analyser and the run control during
the course of the alignment procedure of a RICH detector is shown in Figure 5.14.

The individual analysers and the iterator all follow the same sequence of states,
namely the one shown in Figure 5.13. When the alignment is being started the run
control sends the command to configure to both the iterator and all analysers. All
units will go into state Configuring while setting up to run the alignment. For the
analysers this means that they read in the configuration for the reconstruction of
the events, while the iterator sets up a directory in which all files for this alignment
are saved. It also retrieves the current RICH mirror orientations (usually from the
LHCb conditions database) and makes this information available to the analysers.

When finished configuring, each unit changes into state Ready. When all individual
units are in the Ready the run control sends the command to start which makes
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all units change their status into Running. This prompts the analysers to start the
reconstruction of the events and the production of the δθ vs.φ histograms. During
this time the iterator is idle.

Each analyser that has completed processing its data updates its state to Paused.
Once all analysers have reached this state, the run control sends the stop command
and they update their states to Ready.

The iterator is then sent the pause command which changes its state into Paused.
During this time the iterator retrieves the histograms produced by the analysers and
performs the fits to the δθ vs.φ histograms. It then calculates the individual mirror
misalignments and creates from them a new database entry. The iterator evaluates
the convergence criterion and then either indicates that conversion has been reached
by changing its state to Ready, or that another iteration is required by changing
its state to Running.

In the latter case the iterator will provide the new database entry to the analysers
before changing its state and another iteration is started.

Figure 5.14: Interplay between the iterator, one example analyser and the run
control during the RICH alignment procedure. The analysers reconstruct the data
and produce the δθ vs.φ histograms that the iterator evaluates. The run control sends
commands to the iterator and the analysers to ensure that the alignment procedure
happens in the necessary sequence.

5.7.5 Monitoring of the Automatic Procedure

When performing frequent alignments, it is important to monitor the procedure.
For this purpose a set of monitoring plots is produced after each alignment. The
monitoring plots are accessible through the website of the LHCb RICH group and
offer the possibility to look at every alignment ever performed.
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Figure 5.15 is a screenshot of the layout of the monitoring website2. A time period
can be chosen in the upper left corner of the site. All alignments that were performed
in this time period will then be listed. The left most links in the table lead to a
collection of plots that summarise the alignment procedure.

Figure 5.16 and Figure 5.17 show these plots for an example alignment of the RICH1
mirrors. The first plots show the distribution of δθ for each iteration. A fit is per-
formed to extract the widths of the distributions which corresponds to the Cherenkov
angle resolution. The subsequent plot shows the development of the Cherenkov angle
resolution over the iterations of the alignment. The final plots show the determined
total misalignments for the individual mirrors in y and z with respect to the LHCb
conditions database.

Figure 5.15: Screenshot of the layout of the monitoring website. A time period can
be chosen in the upper left corner of the site and all alignments performed in this
time period will be listed. The links on the very left of the table lead to a collection
of plots that summaries the alignment procedure.
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Figure 5.16: Example of the monitoring plots produced after each alignment pro-
cedure. This example is a RICH1 alignment that took two iterations to converge.
Distribution of the expected Cherenkov angle minus the measured Cherenkov angle
for the first iteration (left) and the second iteration (right). Fits are performed to
extract the width of the distribution which corresponds to the Cherenkov angle res-
olution.

2The layout of the monitoring website for the RICH alignment has changed from its initial
implementation but its functionality is similar
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Figure 5.17: Example of the monitoring plots produced after each alignment proced-
ure. This example is a RICH1 alignment that took two iterations to converge. Top:
The development of the Cherenkov angle resolution over the iterations of the align-
ment. Bottom: Total misalignments for the individual mirrors in y (red markers)
and z (blue markers) for the primary mirrors (left) and the secondary mirrors(right).
The mirror numbering scheme is explained in Section 5.3. The misalignments are
determined with respect to the current LHCb conditions database.

5.8 Improvements to the Alignment Procedure

This section presents two studies aimed at improving the RICH mirror alignment
procedure. During the periodic running of the real-time alignments in Run II, speed
is of crucial importance. Therefore two different methods to perform the fit to the
δθ vs.φ histograms introduced in Section 5.5.3 are evaluated in the first study. In
the second study the performance of the two methods used for the determination of
the individual mirror misalignments, shown in Section 5.5.4, is compared.

5.8.1 Fitting of the δθ vs.φ Histograms

As introduced in Section 5.5.3, two different fit functions can be used to fit the δθ vs.φ
histograms to extract the misalignments on the detector plane Θy and Θz for each
combination of primary and secondary mirror. In the first method the widths of the
Gaussians describing the signal contribution in each φ bin are independent of each
other while in the second method they are fixed to a shared value.

Both methods have been applied to a set of histograms for each RICH detector.
The histograms have varying degrees of misalignments. The performance of the two
fit methods is compared by evaluating the fit results as well as the duration of the fits.
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RICH1

Figure 5.18 shows the difference of the fit results of the method with the free Gaus-
sian widths and the results of the methods with the unified Gaussian widths for
RICH1. The means of the distributions lie at 0.00 mrad with a standard deviation
of 0.02 mrad and 0.01 mrad for Θy and Θz, respectively.

Figure 5.19 shows the fit results of the method with the free Gaussian widths over
the results of the methods with the unified Gaussian widths for RICH1. The points
lie on a diagonal and show no significant bias between the two methods.

Figure 5.20 shows the duration of each fit for both methods. The method with the
free Gaussian widths takes an average of 79 s while the method with the unified
Gaussian widths takes an average of 15 s. The relative time difference ∆t/tfree =
tfree−tunif.

tfree
is also shown in Figure 5.20. The method with the unified Gaussian width

is on average 82% faster than the method with the free Gaussian widths.
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Figure 5.18: Distribution of the difference of the fit results of the method with
the free Gaussian widths and the results of the methods with the unified Gaussian
widths for RICH1 for the misalignments on the detector plane in y (left) and in z
(right). The means of the distributions are 0.00 mrad and the standard deviation is
0.02 mrad and 0.01 mrad for Θy and Θz, respectively.

 (mrad)unif.
yΘ

0.6− 0.4− 0.2− 0 0.2

 (
m

ra
d

)
fr

ee
y

Θ

0.6−

0.5−

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

 (mrad)unif.
zΘ

0.2− 0 0.2

 (
m

ra
d

)
fr

ee
z

Θ

0.3−

0.2−

0.1−

0

0.1

0.2

0.3
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Figure 5.20: Right: Distributions of the time taken to perform one fit for the
method with the free Gaussian widths (blue) and the method with the unified Gaussian
widths (red) for RICH1. Left: Distribution of the relative time difference ∆t/tfree =
tfree−tunif.

tfree
between the two methods for RICH1.

RICH2

Figure 5.21 shows the difference of the fit results of the method with the free Gaus-
sian widths and the results of the methods with the unified Gaussian widths for
RICH2. The means of the distributions lie at 0.00 mrad with a standard deviation
of 0.006 mrad and 0.001 mrad for Θy and Θz, respectively.

Figure 5.22 shows the fit results of the method with the free Gaussian widths over
the results of the methods with the unified Gaussian widths for RICH2. The points
lie on a diagonal and show no significant bias between the two methods.

Figure 5.23 shows the duration of each fit for both methods. The method with the
free Gaussian widths takes an average of 128 s while the method with the unified
Gaussian widths takes an average of 27 s. The relative time difference ∆t/tfree =
tfree−tunif.

tfree
is also shown in Figure 5.23. The method with the unified Gaussian width

is on average 76% faster than the method with the free Gaussian widths.
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Figure 5.21: Distribution of the difference of the fit results of the method with
the free Gaussian widths and the results of the methods with the unified Gaussian
widths for RICH2 for the misalignments on the detector plane in y (left) and in z
(right). The means of the distributions are 0.00 mrad and the standard deviation is
0.006 mrad and 0.001 mrad for Θy and Θz, respectively.
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between the two methods for RICH2.

Conclusion

Both fit methods give consistent results for the misalignments on the detector plane
Θy and Θz and no significant bias is observed between the results. The method
using the unified Gaussian widths is much faster, taking on average 82% less time
for RICH1 and 76% less time for RICH2. Since time is of crucial importance during
the real-time alignment, the method with the unified Gaussian widths is chosen for
the automatic alignment procedure.

5.8.2 Algebraic Method vs. L2 Regularisation

In this section the two methods used to compute the individual mirror misalignments
are compared. The methods introduced in Section 5.5.4 are evaluated on a number
of fills by comparing their performance in terms of Cherenkov angle resolution and
speed. Each fill is used to perform the full alignment procedure, once with the al-
gebraic method and once with the L2 regularisation method.
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RICH1

The RICH1 alignments were performed on five different fills. All alignments pro-
cedures converged within one iteration as is shown in Figure 5.24. Figure 5.24 also
shows for each fill the Cherenkov angle resolution obtained with the L2 regular-
isation method against the resolution obtained with the algebraic method. The
corresponding resolutions are almost identical.
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Figure 5.24: Right: Distributions of the iterations needed to reach convergence
for the alignments using the algebraic method (red) and the alignments using the
L2 regularisation method (blue) for RICH1. Left: The Cherenkov angle resolution
obtained with the L2 regularisation method against the resolution obtained with the
algebraic method for each fill for RICH1.

RICH2

The RICH2 alignments were performed on four different fills. As shown in Fig-
ure 5.25, the alignment procedures using the algebraic method took between two
and 5 iterations to converge. All alignment procedures using the L2 regularisation
method converged within two iterations. The reason these alignment procedures
converge within two iterations rather than one iteration like all RICH2 alignment
procedures performed automatically during Run II (see Section 5.10) is that the
starting point for the alignments here was an alignment obtained with the algebraic
method. Due to the mathematical difference of both methods, their solutions for
the individual mirror misalignments differ. Figure 5.25 also shows for each fill the
Cherenkov angle resolution obtained with the L2 regularisation method against the
resolution obtained with the algebraic method. The corresponding resolutions are
almost identical.

Conclusion

There is no visible difference in performance of the algebraic method and the L2
regularisation method for RICH1. This make intuitively sense, since the problem of
identifying the individual mirror misalignments is not as complex for RICH1 as for
RICH2.

For RICH2 both methods yield the same Cherenkov angle resolution but the L2 reg-
ularisation method reaches convergence in fewer iterations and is thus faster. Since
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Figure 5.25: Right: Distributions of the iterations needed to reach convergence
for the alignments using the algebraic method (red) and the alignments using the
L2 regularisation method (blue) for RICH2. Left: The Cherenkov angle resolution
obtained with the L2 regularisation method against the resolution obtained with the
algebraic method for each fill for RICH2.

time is of crucial importance during the real-time alignment the L2 regularisation
method is chosen for the automatic alignment procedure.

5.9 First Update of the LHCb Conditions Data-

base in 2016

The first year of Run II (2015) was mainly used to implement the RICH mirror
alignment into the online framework and to improve its performance. In the second
year of Run II (2016) the RICH mirror alignment was ready to run automatically
for each fill. To provide an adequate starting point, an alignment was performed
at the beginning of the data-taking period which started from a very misaligned
database entry. During this alignment procedure the magnification coefficients were
recalculated for each iteration. The LHCb conditions database was updated with
the thus determined RICH mirror orientations.

5.9.1 RICH1

The first alignment of the RICH1 mirrors performed on 2016 data took eight it-
erations to converge. The development of the Cherenkov angle resolution over the
iterations is shown in Figure 5.26. The Cherenkov angle resolution improves with
each iteration until it converges to about 1.72 mrad which is close to the theoretical
optimum listed in Section 5.4. This indicates a successful alignment procedure.

Figure 5.27 shows the development of the corrections to the mirror orientations over
the iterations for each primary and secondary mirror. The orientations for each
mirror show acceptable convergence behaviour over the iterations, also indicating a
successful alignment procedure.
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Figure 5.26: Development of the Cherenkov angle resolution over the iterations
for the first alignment of RICH1 with 2016 data. The alignment started from a
database entry with a big misalignment which explains the Cherenkov angle resolution
of 4 mrad in the first iteration. The right figure is a zoom into the left figure without
the first iteration.
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Figure 5.27: Development of the corrections to the mirror orientations over the
iterations for each primary (top) and secondary (bottom) mirror of RICH1 in y (left)
and z (right) direction. Each colour represents a different mirror.

5.9.2 RICH2

The first alignment of the RICH2 mirrors performed on 2016 data took three it-
erations to converge. The development of the Cherenkov angle resolution over the
iterations is shown in Figure 5.28. The Cherenkov angle resolution improves with
each iteration until it converges to about 0.66 mrad which is better than the theoret-
ical optimum listed in Section 5.4. This indicates a successful alignment procedure.
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Figure 5.28: Development of the Cherenkov angle resolution over the iterations
for the first alignment of RICH2 with 2016 data. The alignment started from a
database entry with a big misalignment which explains the Cherenkov angle resolution
of 0.755 mrad in the first iteration.
Figure 5.29 shows the development of the corrections to the mirror orientations over
the iterations for each primary and secondary mirror. The orientations for each
mirror show acceptable convergence behaviour over the iterations, also indicating a
successful alignment procedure.
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Figure 5.29: Development of the corrections to the mirror orientations over the
iterations for each primary (top) and secondary (bottom) mirror of RICH2 in y (left)
and z (right) direction. Each colour represents a different mirror.

5.9.3 Conclusion

The first alignment procedures performed on 2016 data were successful for both
RICH1 and RICH2. The LHCb conditions database was updated with the thus
determined RICH mirror orientations.
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In the alignment procedures the magnification coefficients were calculated on the
data for each iteration anew. The magnification coefficients for the last iteration
were taken as predetermined set for the automatic alignment procedures performed
in 2016.

5.10 Summary of the 2016 Data-taking Period

In the second year of Run II (2016) the alignment was started automatically for
each fill3 after the required number of events was collected by the HLT1 lines. The
alignment procedure for RICH1 is started first. The alignment procedure for RICH2
is started after the RICH1 alignment procedure has finished.

While the framework for the automatic running of the alignment procedure for each
fill was in place for 2016, the automatic update of the LHCb conditions database
for the RICH mirror alignment was only put in place for 2017. The LHCb con-
ditions database was only updated once in 2016 for the orientations of the RICH
mirrors with the database entry produced in the procedure presented in Section 5.9.
All alignments performed automatically in Run II started from this database entry.
This allows the study of the mirror orientations throughout the year as well as the
evaluation of the stability of the alignment procedure.

For the data-taking period of 2016, 44 alignment procedures are evaluated for RICH1
and RICH2, respectively. In the following, the time needed to perform an alignment
is assessed as well as the development of the mirror orientations and the Cherenkov
angle resolutions over the year.

Duration of Alignment Procedures

Figure 5.30 shows distribution of iterations needed to reach convergence of the align-
ment procedure for RICH1 and RICH2 as well as the distribution of time needed for
the alignment procedures. All alignment procedures of RICH2 converged within one
iteration and took 14 min on average. The alignment procedures of RICH1 needed
between one and five iterations to converge and took 22 min on average.
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Figure 5.30: Left: Distribution of iterations needed for the alignment procedure of
RICH1 (blue) and RICH2 (red) to converge. Right: Distribution of time needed for
the alignment procedure of RICH1 (blue) and RICH2 (red) to converge.

3A fill takes on average about 12 hours.
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5.10 Summary of the 2016 Data-taking Period

Mirror Orientations

Figures 5.31 and 5.32 show the misalignment of the individual mirrors of RICH1
for each alignment in 2016. Figures 5.33 and 5.34 show the misalignment of the
individual mirrors of RICH2 for the same period. Since the LHCb conditions data-
base was only updated once at the beginning of the year, all the misalignments are
computed with respect to the same conditions database. Thus these graphs can be
used to evaluate the mirror orientations throughout the year.

The polarity of the LHCb magnet is changed regularly between magnet up and
magnet down during the data taking. The figures show that the magnet polarity
has a clear impact on the misalignments determined by the alignment procedure for
RICH1. This effect occurs because the field of the LHCb magnet reaches into the
RICH1 detector. Since the magnetic field does not range into the RICH2 detector,
no difference can be seen in misalignments between the two magnet polarities.
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Figure 5.31: Misalignments of the RICH1 primary mirrors in y (left) and z (right)
for the alignments performed throughout 2016. The dashed lines indicate the con-
vergence criteria. The changes of the magnet polarity at alignments 5, 10, 19 and
25 are distinguishable in the y misalignments.
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Figure 5.32: Misalignments of the RICH1 secondary mirrors in y (left) and z
(right) for the alignments performed throughout 2016. The dashed lines indicate the
convergence criteria. The changes of the magnet polarity at alignments 5, 10, 19
and 25 are clearly distinguishable in the y misalignments.

Figures 5.33 and 5.34 show the misalignment of the individual mirrors of RICH2 for
each alignment in 2016. The procedure and the mirrors are extremely stable and
show no dependency on the magnet polarity. The only visible effect on the RICH2
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mirror orientations comes from the different data-taking conditions at the beginning
of the year4. It can be seen in the figures that the first six alignments were performed
on data taken under different conditions than the data for following alignments.
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Figure 5.33: Misalignments of the RICH2 primary mirrors in y (left) and z (right)
for the alignments performed throughout 2016. The dashed lines indicate the conver-
gence criteria. The data-taking conditions for the first six alignments differed from
the conditions for the rest of the alignments.
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Figure 5.34: Misalignments of the RICH2 secondary mirrors in y (left) and z
(right) for the alignments performed throughout 2016. The dashed lines indicate the
convergence criteria. The data-taking conditions for the first six alignments differed
from the conditions for the rest of the alignments.

5.10.1 Cherenkov Angle Resolution

The Cherenkov angle resolutions for RICH1 and RICH2 as computed for the mon-
itoring plots after each alignment are shown in Figure 5.35. The average resolution
is 1.71 mrad for RICH1 and 0.66 mrad for RICH2. As for the RICH1 mirror mis-
alignments, the RICH1 Cherenkov angle resolution shows a clear dependence on the
magnet polarity. This was already observed in Run I. No such effect can be discerned
for RICH2.

4The data taking conditions at the beginning of the year include e.g. a lower track multiplicity
in the individual events and therefore a lower occupancy in the RICH detectors.
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Figure 5.35: Development of the Cherenkov angle resolution for RICH1 (left) and
RICH2 (right) over the data-taking period of 2016. The solid horizontal line shows
the average resolution while the dashed vertical lines indicate the magnet polarity
switches. The RICH1 Cherenkov angle resolution shows a clear dependence on the
magnet polarity while no such effect can be discerned for RICH2.

5.10.2 Conclusion

The real-time alignment procedure of the RICH mirror systems was very successful
during 2016. The results of 44 alignment procedures performed throughout the year
were evaluated in order to gain a better understanding of the procedure itself as well
as of the data-taking conditions. The alignment procedures took on average 22 min
and 14 min for RICH1 and RICH2 respectively which is an acceptable amount of
time during the real-time data-taking, and a dramatic improvement from several
days in Run I. The mirror orientations determined by the alignment procedures for
RICH2 are very stable while the RICH1 mirror orientations show a dependence on
the polarity of the LHCb magnet. The average Cherenkov angle resolutions were
1.71 mrad for RICH1 and 0.66 mrad for RICH2. These resolutions are comparable
with the minimal resolutions possible to obtain with a perfectly aligned mirror sys-
tem.

This study led to the decision to update the alignment constants in the LHCb con-
ditions database after each magnet polarity change for the remaining time of Run II.

5.11 Conclusion and Outlook

The alignment of the RICH mirror systems was successfully implemented into the
sequence of real-time alignment procedures for LHCb. The alignment procedure has
been improved at different points, leading to the procedure taking about 20 min to
converge, compared to several days in Run I.

The information gathered by the frequent running of the alignment in 2016 is used to
further the understanding of the alignment procedure as well as the understanding of
the LHCb detector itself. The development of the mirror misalignments throughout
the year (see in Section 5.10) has already been used to optimise the convergence
criteria. This allows to obtain maximum precision on the Cherenkov angle while
avoiding sensitivity to statistical fluctuations. The same information has also been
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used to tune thresholds for automatic updates of the LHCb conditions database in
2017.

The RICH mirror alignment will gain even more importance after the upgrade of the
LHCb detector, since the overall Cherenkov angle resolution will be smaller. Two
main changes of the RICH detectors will contribute to the reduced resolution. The
first change is the transition from the hybrid photon detectors to multiple-anode
photon multipliers (MaPMT) in both RICH detectors. The new photon detectors
accept a smaller range of wavelength, thus greatly reducing the uncertainty from
chromatic dispersion. The second change concerns the entire optical system of the
RICH1 detector, which will be optimised for having only the C4F10 gas as radiator
(the aerogel that was removed before Run II will not be reintroduced). The optical
system of RICH1 will spread out the image, which reduces the occupancy of the
photon detectors as well as increases the size of the Cherenkov rings. The latter effect
indirectly reduces the uncertainty from the finite pixel size. Additionally, the tilt of
the primary mirrors, will be reduced which reduces the emission point uncertainty.
With the reduced Cherenkov angle resolution the alignment procedure has to be
more precise to achieve the best possible performance of the particle identification.
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6. Study of the sensitivity to the
CKM angle γ using
B±→D(→2π+2π−)K± decays
at LHCb

This chapter is dedicated to the study of the sensitivity to the CKM angle γ that
could be obtained with B±→ D(→ 2π+2π−)K± decays at LHCb. In this analysis
the sensitivity to γ is obtained by dividing the D → 2π+2π− phase space into
bins and evaluating the variation of B−→ D(→ 2π+2π−)K− yields and B+→ D(→
2π+2π−)K+ yields over the 2π+2π− bins.

In order to estimate the expected B±→ D(→ 2π+2π−)K± yields for the full Run II
dataset of the LHCb experiment, the 2016 dataset is analysed. The resulting yield
from the 2016 dataset is then extrapolated to the full, expected Run II luminosity.

The sensitivity study is the performed by simulating the distributions of B−→ D(→
2π+2π−)K− events and B+→ D(→ 2π+2π−)K+ events over the bins and extract-
ing the values of rB, δB and γ with a fit. Three sets of B−→ D(→ 2π+2π−)K− and
B+→ D(→ 2π+2π−)K+ event yields are simulated, namely the yield expected in
2016, the yield expected in the entire Run II data sample and the yield expected in
the Run I and Run II data sample combined. Additionally, the propagated contri-
bution from the uncertainty on the hadronic parameters of the D0→ 2π+2π− decay
is determined.

The first section outlines the strategy used to estimate the sensitivity to γ using
simulated samples of B±→ D(→ 2π+2π−)K± decays. The second section lists the
data and simulation samples used in this analysis. The third section explains the
topology of b hadron decays in proton-proton collisions. The fourth section sum-
marises the LHCb reconstruction and preselection of the B±→ D(→ 2π+2π−)K±

candidates. The fifth selection explains the selection criteria applied after the LHCb
preselection, including a multivariate analysis technique. The sixth section presents
the extraction of the B−→ D(→ 2π+2π−)K− and B+→ D(→ 2π+2π−)K+ signal
yields. The seventh section describes the methods used to estimate the sensitivity
to γ and summarises the results. The last section offers a conclusion of the results.

6.1 Strategy

As outlined Chapter 1, the CKM angle γ can be determined usingB±→ DK± decays
where the D meson decays to a final state accessible to both D0 and D0 mesons.
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Sensitivity to γ is gained through the interference of the B± → D0K± and the
B±→ D0K± transition. The strength of this interference varies over the D meson
decay phase space. This leads to an increased sensitivity to γ when dividing the
D meson decay phase space into different regions as opposed to integrating over the
entire phase space.

The formalism introduced in Section 1.4.3 of Chapter 1 shows how γ can be meas-
ured from the variation of the yields of B±→ D(→ 2π+2π−)K± decays over the
D→ 2π+2π− phase space. If the D→ 2π+2π− phase space is divided into bins, the
number of B−→ D(→ 2π+2π−)K− events NB−→DK−

i in bin i is given by

NB−→DK−
i = hB−

(
T f−ir

2
B + T fi + 2

√
T fi T

f
−i(c

f
i x− + sfi y−)

)
(6.1)

and the number of B+→ D(→ 2π+2π−)K+ events NB+→DK+

i in bin i is given by

NB+→DK+

i = hB+

(
T fi r

2
B + T f−i + 2

√
T fi T

f
−i(c

f
i x+ − sfi y+)

)
(6.2)

where hB− and hB+ are independent normalisation factors. The T fi , cfi and sfi are
the D0→ 2π+2π− hadronic parameters that have been determined previously with
data recorded by the CLEO-c experiment [46]. The hadronic parameters are used
as input to this analysis.

The binning scheme used to divide the 2π+2π− phase space is chosen to be the ∆δ
binning described in Section 1.6 of Chapter 1. The phase space is divided into bins
according to the strong-phase difference between D0→ 2π+2π− and D0→ 2π+2π−

decays as predicted by a recently published amplitude model [24]. The binning
scheme with N = 5 bins is chosen, where the index i in Equations 6.1 and 6.2
goes from −N to N . This binning scheme was also used in the measurement of the
hadronic parameters of the D0→ 2π+2π− decay in Reference [46].

The distributions of B−→ D(→ 2π+2π−)K− events and B+→ D(→ 2π+2π−)K+

events over the 2π+2π− bins can be measured at the LHCb experiment. Then a fit
can be performed to the distributions to extract γ together with rB and δB. The
normalisation factors hB− and hB+ are also free parameters in the fit.

The first step towards measuring the CKM angle γ is the study of the sensitivity
to γ that can be obtained with data recorded by the LHCb experiment. Therefore
the expected B−→ D(→ 2π+2π−)K− and B+→ D(→ 2π+2π−)K+ yields have to
be estimated. From these yields the distribution of B−→ D(→ 2π+2π−)K− and
B+→ D(→ 2π+2π−)K+ events over the 2π+2π− bins can be simulated and γ can
be extracted from a fit.

The yield of B± → D(→ 2π+2π−)K± events in the Run I data sample has pre-
viously been measured to be 1 500 B± → D(→ 2π+2π−)K± [6]. The yield of
B±→ D(→ 2π+2π−)K± events in Run II is estimated in the following sections by se-
lecting B±→ D(→ 2π+2π−)K± candidates from the 2016 data sample and extrapol-
ating the result to the full expected luminosity of Run II. TheB±→ D(→ 2π+2π−)K±

candidates are preselected by a dedicated LHCb stripping line, then a further se-
lection is applied that includes a multivariate analysis. The number of B−→ D(→

128



6.2 Data and simulation samples

2π+2π−)K− and B+→ D(→ 2π+2π−)K+ events in the data sample is extracted by
fitting a probability distribution (PDF) to the distribution of the reconstructed mass
of the B±→ D(→ 2π+2π−)K± candidates. The PDF contains three components,
one signal component and two different background components.

The sensitivity to the CKM angle γ is determined by generating distributions of
B−→ D(→ 2π+2π−)K− and B+→ D(→ 2π+2π−)K+ events over the 2π+2π− bins
according to the yields of the three LHCb data-taking scenarios. These distributions
are varied according to statistical fluctuations to extract the statistical uncertainty
on γ. Additionally, there is an uncertainty on γ that comes from the measured un-
certainties on the hadronic parameters of the D→ 2π+2π− decay. This uncertainty
is determined by randomly varying the hadronic parameters in the fitting procedure
within their measured uncertainties and determining γ each time.

6.2 Data and simulation samples

In this section the data samples and the simulation samples used in the estimation
of the B±→ D(→ 2π+2π−)K± events yields are presented.

6.2.1 Recorded data sample

The dataset used in this analysis is the ≈ 1.6 fb−1 of proton-proton collision data
collected by LHCb in 2016. The center of mass energy of the proton-proton collision
is 13 TeV.

6.2.2 Simulated data samples

All samples of simulated data are produced within the LHCb framework. Different
Monte Carlo samples are used for different purposes, such as the training of mul-
tivariate analysis tool, the estimation of the reconstruction and selection efficiencies
and the identification of different sources of background.

At LHCb simulated events are generated using the Gauss software package [77].
Therein, proton-proton collisions are simulated with Pythia [50], the decay of
B hadrons is made with EvtGen [37] and the detector simulation is implemen-
ted in Geant4 [38].

All samples are generated with a non-resonant amplitude model for the D decay. For
the signal Monte Carlo to more accurately match the signal in data, the signal Monte
Carlo samples forB±→ D(→ 2π+2π−)K± are reweighted according to Equation 1.31
with the weights W(B−→ DK−) for B−→ DK− events given by

W(B−→ DK−) = Afp
2 + r2

B Ā
f
p

2 + 2Afp Ā
f
p

[
x− cos(∆δfp) + y− sin(∆δfp)

]
. (6.3)

The weights W(B+ → DK+) for B+ → DK+ events are defined equivalently
according to Equation 1.32 as

W(B+→ DK+) = r2
B A

f
p

2 + Āfp
2 + 2Afp Ā

f
p

[
x+ cos(∆δfp) + y+ sin(∆δfp)

]
. (6.4)
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The values for the D0 and D0 amplitudes Afp and Āfp at the point p in phase space
are taken from the D0→ 2π+2π− amplitude model [24]. The values for rB and
δB are taken from the UTfit collaboration as 0.1025 and 137.0◦, respectively [14].
Three different sets of event weights are produced for three different values for the
CKM angle γ to avoid introducing a bias, namely 60◦, 70◦ and 80◦. An example
of the distribution of events in the plane spanned by the square of the invariant
masses of two opposite sign pion pairs m2(π+

1 π
−
1 ) vs. m2(π+

2 π
−
2 ) before and after

the reweighting procedure is shown in Figure 6.1. The resonant structures from
the ρ0 resonance decaying to two opposite sign pions is clearly visible after the
reweighting procedure.

Apart from the signal decay, the decays B± → D(→ K0
Sπ

+π−)K± and B± → D(→
2π+2π−)π± are generated to evaluate their possible contribution to the signal yield
and develop veto selections.
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Figure 6.1: Distribution of events over the plane spanned by m2(π+π−) vs.
m2(π+π−) before (left) and after (right) the reweighting procedure. The resonant
structures from the ρ0 → π+π− decay is clearly visible after the reweighting proced-
ure.

6.3 Topology of the signal decay

A schematic illustration of the topology of B±→ D(→ 2π+2π−)K± decays is shown
in Figure 6.2. B hadrons are produced predominantly in the forward region (see
Figure 4.1 in Chapter 4). Since they are produced with a large momentum and have
a lifetime of 1.6 ps they fly several millimetres before decaying. This results in a
detectable secondary vertex.

In B±→ DK± decays a significant amount of the B± mass is transferred to the
kinetic energy of its daughters. This means that the D meson with its lifetime of
410 fs also travels a short distance before decaying. Additionally, the B± mesons
are created predominantly in the forward direction. The forward boost of the B± is
transferred to its daughters meaning that the D decay vertex lies further downstream
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6.4 The LHCb Reconstruction and Preselection

than the B± decay vertex. This can be used to distinguish the signal decay from
events with the same or similar final states that do not contain a D meson.

The B± meson has a large mass compared to its daughters. This means that even
though the B± and its daughters are usually boosted in the forward direction, the
daughters have a significant transverse momentum component. This can be used to
differentiate between the signal decay and combinatorial background. The relatively
high transverse momentum of the final state particles and the flight distance of the
B± and D mesons also leads to comparably large impact parameters with respect
to the primary vertex for the D candidates and all final state tracks. Since the
B± candidate originates from the primary vertex it has a comparably small impact
parameter.

B± 

D0 

K± 

π+ 

π+ 

π− 

π− 

PV 

D0 decay vertex 

B± decay vertex 

Figure 6.2: Schematic illustration showing the topology of a
B±→ D(→ 2π+2π−)K± decay at LHCb. The flight distances of the B± and
D mesons are indicated by the black dashed lines. The impact parameters of the
final state particles are shown for the K± and for one π−. The grey arrows represent
particles originating from the primary vertex which do not belong to the signal
decay. These particles are also used to constrain the position of the primary vertex.

6.4 The LHCb Reconstruction and Preselection

This section presents the reconstruction and selection of B±→ D(→ 2π+2π−)K±

events within the LHCb framework. The first stage is the LHCb trigger selection
and the second stage the LHCb stripping. Additionally, a kinematic fit is performed
during the reconstruction of the events to better constrain the position of the signal
events in the 2π+2π− phase space.
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6.4.1 The LHCb Trigger Selection

The LHCb data acquisition has three trigger stages that were introduced in Sec-
tion 4.2. For each trigger stage a selection is chosen.

First, the trigger selection requires that the signal candidates trigger the L0 Hadron

line (see Section 4.2.1) or that the L0 was triggered independently of the signal decay.
The L0 Hadron line is activated when one cluster in the hadronic calorimeter passes
a transverse energy threshold. The transverse energy of a cluster is calculated from
the sum of the transverse energy in the hadronic calorimeter with the transverse
energy the corresponding electromagnetic calorimeter cells.

Second, the signal candidates have to trigger the HLT1 TrackMVA line or the HLT1 Two-

TrackMVA line [67]. The first line places selection criteria on individual tracks and
selects events with at least one track that passes its selection criteria. First a rectan-
gular selection is applied to the transverse momentum pT , the quality of the impact
parameter χ2

IP and the track fit quality χ2
track/ndof of the track. Subsequently a

multivariate analysis tool is used to distinguish signal candidates from background
events in the plane spanned by the quality of the impact parameter and the trans-
verse momentum. The HLT1 TwoTrackMVA searches for two tracks that form a vertex
that is displaced with respect to the primary vertex. First a set of rectangular se-
lection criteria, similar to the HLT1 TrackMVA, is applied on the individual tracks.
Selection criteria are then placed on the combination of two tracks, such as the
vertex fit quality χ2 and the composite transverse momentum pT . Subsequently a
multivariate analysis tool is used.

Third, the signal candidates are required to trigger one of the four HLT2 Topolo-

gical lines [67]. The HLT2 Topological lines were designed to trigger specifically
on n-body B decays (n = 2, 3, 4) with at least two charged children and handle
the possible omission of child particles. Since the HLT2 performs a full reconstruc-
tion of the events, the entire signal decay including all tracks and possible displaced
vertices can be evaluated. As a first step the HLT2 topological lines perform a
rectangular preselection on variables related to the charged particle tracks, such as
transverse momentum pT and impact parameter significance χ2

IP , and on variables
from displaced vertices, such as the quality of the vertex fit χ2

SV . Then a multivariate
analysis tool in form of a MatrixNet [78] is used to more efficiently separate signal
candidates from background.

6.4.2 The LHCb Preselection: the Stripping Line

The LHCb stripping offers an efficient preselection of the entire dataset. The strip-
ping line used in this analysis is the B2D0KD2HHHH line that selects B±→ DK±

decays with the D meson decaying to a hadronic four-body final state. The B±→
D(→ 2π+2π−)K± candidates are build by first selecting tracks for charged pion can-
didates and combining two opposite-sign pion pairs to form a D meson candidate.
The D meson candidate is then paired with a charged kaon candidate to give the
B± meson candidate.

Selection criteria are applied to all particle momenta p, transverse momenta pT
and impact parameter significances χ2

IP . Selection criteria are also placed on the
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track parameters of the final state particles, namely on the quality of the track
fit χ2

track/ndof and the probability Pghost that a track is not associated to a real
particle [79]. Additionally, a loose selection is applied on the discriminant particle
identification variable DLLK−π of the charged pion candidates (see Section 4.1.2.4).

Further selections are applied to variables of the composite particles such as the
angle between the direction of the composite candidate momentum and the direction
between the primary vertex and the particle’s decay vertex θflight, masses of the B±

and D candidates m±B and mD, the fit quality of the D decay vertex χ2
vtx/Ndof and

the decay-time τB± of the B± meson. All selection criteria of the LHCb stripping
for the B±→ D(→ 2π+2π−)K± candidates are listed in Table 6.1.

Particle Parameter Selection criteria

π± p > 1000 MeV

pT > 100 MeV

DLLK−π < 20

χ2
track < 4

χ2
IP > 4.0

Pghost < 0.4

K± p > 5000 MeV

pT > 500 MeV

χ2
track < 4

χ2
IP > 4.0

Pghost < 0.4

D pT > 1800 MeV

mD [1764.84, 1964.84] MeV

χ2
vtx/Ndof < 10

θflight > 0

B± pT > 1000 MeV

mB± [4750, 7000] MeV

τB± > 0.2 ps

χ2
IP < 25

θflight >0.999

Table 6.1: Selection criteria for all particles for B±→ D(→ 2π+2π−)K± candidates
in the LHCb stripping framework.
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The combined reconstruction and selection efficiency of the trigger lines and the
stripping line is determined on the signal Monte Carlo sample to be 3.5% for the
B±→ D(→ 2π+2π−)K± decay.

6.4.3 Kinematic Fitting

The LHCb reconstruction software DaVinci provides the option of performing fits
on kinematic objects like tracks. The algorithm for the kinematic fitting is provided
by the DecayTreeFitter package [80]. The algorithm parameterises a complete de-
cay chain in terms of vertex positions, decay lengths and momentum parameters.
All free parameters are then fitted simultaneously, taking into account the relevant
constraints, such as the measured parameters of the final state tracks and photons,
and momentum and energy conservation at each vertex.

The kinematic fit is used to more accurately reconstruct the position of the B±→
D(→ 2π+2π−)K± events in the 2π+2π− phase space, or more specifically, in which
2π+ 2π− bin the individual B±→ D(→ 2π+2π−)K± event lies. For this purpose, in
addition to the constraints listed above, the four charged pions are constrained to
the nominal D meson mass.

The effect of the kinematic fit on the reconstructed position of the B± → D(→
2π+2π−)K± events in the 2π+2π− phase space is quantified with signal Monte Carlo.
Without the kinematic fit an average of 92% of the B±→ D(→ 2π+2π−)K± can-
didates are reconstructed in the correct bin while with the kinematic fit an average
of 96% of the candidates are reconstructed in the correct bin. Figure 6.3 shows the
purity of events per bin, i.e. the number of events that were produced in a given bin
divided by the total number of events reconstructed in that bin.
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Figure 6.3: Distribution of purity of events per bin as determined on Monte Carlo
for B±→ D(→ 2π+2π−)K± candidates without the kinematic fitting (blue) and with
the kinematic fitting (red).
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6.5 Selection of B± → D(→ 2π+2π−)K± Events

for the Sensitivity Study

An additional selection has to be applied to the B±→ D(→ 2π+2π−)K± candidates
after the LHCb stripping since the signal to background ratio is so small as can be
seen in Figure 6.4. The additional selection of the B±→ D(→ 2π+2π−)K± candid-
ates consists of a preselection, a veto selection against B± → D(→ K0

Sπ
+π−)K±

decays, a multivariate analysis and a set of selection criteria on the particle identi-
fication.

6.5.1 Preselection

Before the Boosted Decision Tree is trained, as explained in Section 6.5.2, a set
of rectangular selection criteria is applied. This selection is designed to keep the
signal efficiency very high while removing any candidates that are almost certainly
background.

Selections are placed on the particle identification discriminant variables ProbNN
(see Section 4.1.2.4) of all final state particles as well as on the impact parameter
significances χ2

IP of the kaon candidates and the D and B± candidates, the trans-
verse momentum of the D candidate pT , the flight distance significance χ2

FD of the
D and B± candidates and the quality of the kinematic fit χ2

DTF . Additionally, a
relatively strict selection is applied to the D mass to further remove B± → D(→
K±π∓π+π−)K± decays and events with a random combination of four pions that
do not originate from a D meson.

Another discriminating variable is the fight distance significance of the D meson in
the z direction, defined as

χ2
FD z =

zDdecay vtx − zDorigin vtx√
σ2(zDdecay vtx)− σ2(zDorigin vtx)

(6.5)

where zDorigin vtx is the z coordinate of the point of origin of the D meson candidate
and zDdecay vtx is the z coordinate of the decay vertex of the D meson candidate. As
mentioned in Section 6.3, this quantity can be used to reject events where the final
state particles come directly from the B± meson decay, so-called charmless decays.

All preselection criteria are listed in Table 6.2. The preselection is evaluated on the
signal Monte Carlo sample and the low-mass sideband of the data sample defined as
mB− < 5000 MeV and the high-mass sideband of the data sample defined as mB− >
5500 MeV. The high-mass sideband consists mainly of combinatorial background
events while the low-mass sideband has a significant contributions from partially
reconstructed decays of the type B → D(∗)X containing a real B hadron. The
signal efficiency obtained from the Monte Carlo sample is 93.4% while 91.0% of
events in the low-mass sideband and 93.2% of events in the high-mass sideband are
removed. The greatest loss of signal efficiency comes from the selection on the mass
of the D candidates which removes 5.5% of signal decays. The distribution of the
B± mass before and after the selection is shown in Figure 6.4.
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Particle Parameter Selection criteria

π± ProbNNπ > 0.02

ProbNNK < 0.96

K± ProbNNK > 0.02

ProbNNπ < 0.96

χ2
IP > 5

D pT > 800 MeV

mD [1839.84, 1889.84] MeV

χ2
IP > 1.5

χ2
FD > 50

χ2
FD z > −4

B± χ2
IP < 20

χ2
FD > 30

θflight > 0.9995

χ2
DTF < 60

Table 6.2: Preselection criteria for all particles for B±→ D(→ 2π+2π−)K± can-
didates in the LHCb stripping framework. This selection aims at retaining as much
signal as possible.
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Figure 6.4: Distribution of events over the B± mass range for the 2016 LHCb
dataset (left) and signal Monte Carlo (right). The blue distributions are the can-
didates after the trigger and the LHCb stripping while the red distributions are the
candidates after the preselection.

6.5.2 Boosted Decision Tree

In order to efficiently select B±→ D(→ 2π+2π−)K± candidates a multivariate ana-
lysis (MVA) is used. The MVA is especially powerful in rejecting the combinatorial
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background, that is background that results from the false combination of tracks in
the detector. The MVA chosen for this analysis is the Boosted Decision Tree (BDT)
with gradient boost which is implemented in the TMVA software package [81].

Three different BDTs are trained, one for each reweighted B±→ D(→ 2π+2π−)K±

Monte Carlo sample defined in Section 6.2.2. The responses of the three BDTs can
be averaged in the selection procedure to avoid biasing the selection toward a given
value of γ.

In this section the mathematical formalism of the BDT is explained. Furthermore
the input variables, and the data and simulation samples used to train the BDTs
are presented. Then the results of the trained BDTs are summarised.

6.5.2.1 Boosted Decision Tree: a Multivariate Method

To separate the signal events from the surplus of background events a set of n
discriminative variables is used. Classically each of these variables is examined
independently of the others and the total selection of n rectangular cuts is applied.

The multivariate analysis methods combine the information on the different dis-
criminate variables into one single classifier. The selection can have either a linear
or non-linear shape in the n-dimensional space of the variables. This principle is
illustrated in Figure 6.5 [82].

Figure 6.5: Illustration of the multivariate analysis for two variables xi and xj and
two data types H0 and H1 (for example signal and background). The left plot shows
a set of rectangular cuts as used in a classic selection. The middle and the right plot
represent a selection from a multivariate analysis where the combination of variables
is used to find the optimal selection. The middle plot shows a linear discriminant
(Fischer discriminant) and the right plot shows a non-linear discriminant (Boosted
Decision Tree, Neural Networks, etc.). [82]

The multivariate method used in this analysis is the Boosted Decision Tree (BDT).
The BDT is a weighted sum of m simple decision trees. Each decision tree classifies
a given event with n variables x as either background or signal with the output of
-1 and 1, respectively. The response F (x) of the full BDT is the weighted sum of
the responses of the individual decision trees. The weight for the individual tree
is determined by how well this tree separates the signal and the background in
the training sample. Small values of F (x) indicate that a certain event is more
background-like while large values indicate a more signal-like characteristics.
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The BDT is trained on a sample of events which are already classified as signal or
background. During the training process, each decision tree aims at minimising the
weighted misclassification rate. When training the first tree all events are given the
same weight. The subsequent tree is trained on a modified event sample where the
previously misclassified events are given a bigger weight.

Different methods exists to determine the values of the weights assigned to mis-
classified events. The BDT used in this analysis implements the GradientBoost
method. The GradientBoost does not over-penalise misclassified events and there-
fore performs very well in a noisy environment, that is an environment where some
background events tend to look like signal. This makes the GradientBoost BDT
very robust with respect to overtraining. A more detailed description of BDTs and
the GradientBoost method is provided in Appendix C.

6.5.2.2 The Input Variables

The variables for the BDT must have discriminative power between the combinat-
orial background and the B±→ D(→ 2π+2π−)K± signal.

In accordance with the description of the topology of the signal decay given in
Section 6.3, the variables chosen for the BDT are the transverse momenta pT of all
particles, the logarithms of the impact parameter significances χ2

IP of all particles,
the logarithms of the flight distance significances χ2

FD of the B± and the D meson
candidates, the logarithms of the quality of the D and B± decay vertex, the θflight

1

of the B± and the D meson candidates and the quality χ2
DTF of the kinematic fit to

the whole decay. An additional variable that has been found to carry discriminative
power [6] is the imbalance of transverse momentum IpT around the B± candidate,
defined as

IpT =
pT (B±)−

∑
pT

pT (B±) +
∑
pT

(6.6)

where the sum is taken over tracks lying within a cone around the B± candidate,
excluding the tracks related to the signal. The cone is defined by a circle with a
radius of 1.5 units in the plane of pseudorapidity and azimuthal angle (expressed in
radians). This variable can be used to select B± candidates that are either isolated
from the rest of the event, or consistent with a recoil against another b hadron.

All variables used as input to the BDT are listed in Table 6.3 and a selection is
displayed in Figure 6.6 for background and signal respectively.

The particle identification variables ProbNN are not used in the training of the
BDTs but applied later independently. That is because they are used to reject
specific background such as B±→ D(→ 2π+2π−)π± events.

1As mentioned in the previous section, θflight is the angle between the direction of the composite
candidate (here B± or D meson candidate) momentum and the direction between the primary
vertex and the composite particle’s decay vertex.

138



6.5 Selection of B±→ D(→ 2π+2π−)K± Events for the Sensitivity Study
1 1.5 2 2.5 3 3.5 4 4.5 5

log10(Pion4_IPCHI2_OWNPV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.
11

8 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

log10(Kaon_IPCHI2_OWNPV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.
12

1 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

2 3 4 5 6 7

log10(Bu_FDCHI2_OWNPV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.70.
14

 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

2 3 4 5 6

log10(D0_FDCHI2_OWNPV)

0

0.1

0.2

0.3

0.4

0.5

0.60.
13

 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

0.005 0.01 0.015 0.02 0.025 0.03

flight
θB 

0

100

200

300

400

500

0.
00

08
1 

 /  
(1

/N
) 

dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

0.1 0.2 0.3 0.4 0.5

acos(D0_DIRA_OWNPV)

0

5

10

15

20

25

30

35

40

45

0.
01

29
 

 /  
(1

/N
) 

dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.1

, 0
.5

)%

5000 10000 15000 20000 25000 30000

Kaon_PT

0

0.1

0.2

0.3

0.4

0.5

0.6

3−
10×

81
3 

 /  
(1

/N
) 

dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.1

, 0
.1

)%

4− 3− 2− 1− 0 1

θlog10(Bu_IPCHI2_OWNPV)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.
15

3 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

0.5 1 1.5 2 2.5 3 3.5 4 4.5
) 

IP
2χD log(

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.
12

 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

1 1.5 2 2.5 3 3.5 4 4.5 5

log10(Pion1_IPCHI2_OWNPV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.
11

4 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

1 1.5 2 2.5 3 3.5 4 4.5 5

log10(Pion2_IPCHI2_OWNPV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.
11

9 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

1 1.5 2 2.5 3 3.5 4 4.5 5

log10(Pion3_IPCHI2_OWNPV)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.
11

1 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

8− 7− 6− 5− 4− 3− 2− 1− 0 1

log10(Bu_ENDVERTEX_CHI2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.
23

1 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

Input variable: log10(Bu_ENDVERTEX_CHI2)

1.5− 1− 0.5− 0 0.5 1 1.5

log10(D0_ENDVERTEX_CHI2)

0

0.2

0.4

0.6

0.8

1

1.2

0.
08

82
 

 /  
(1

/N
) 

dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

Input variable: log10(D0_ENDVERTEX_CHI2)

0 10 20 30 40 50 60

Bu_DTF_CHI2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1.
56

 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

Input variable: Bu_DTF_CHI2

20− 0 20 40 60 80 100 120

D0_ENDVERTEX_Z-Bu_ENDVERTEX_Z

0

0.02

0.04

0.06

0.08

0.1

0.12

3.
74

 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.2

)%

Input variable: D0_ENDVERTEX_Z-Bu_ENDVERTEX_Z

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

T
PI

0

1

2

3

4

5

6

7

8
0.

05
04

 
 /  

(1
/N

) 
dN

U
/O

-f
lo

w
 (

S
,B

):
 (

0.
0,

 0
.0

)%
 / 

(0
.0

, 0
.0

)%

Input variable: Bu_ptasy_1.50

Figure 6.6: A choice of variables used in the BDT training. The red distribution
represents the combinatorial background while the blue distribution comes from the
signal. Top left: θflight of the B± meson candidate. This variables carries the most
discriminative power. Top right: Logarithm of the impact parameter significance
of the D meson candidate. Bottom: Transverse momentum imbalance around the
B± meson candidate.

Particle Variable

B0 pT , log(χ2
IP ), log(χ2

FD), log(χ2
V ertex), θflight

D pT , log(χ2
IP ), log(χ2

FD), log(χ2
V ertex), θflight, χ2

FD z

K pT , log(χ2
IP )

π pT , log(χ2
IP )

IpT , χ2
DTF

Table 6.3: Variables used in the Boosted Decision Tree.

6.5.2.3 The Signal and Background Samples for the BDT Trainings

The signal sample for the BDT is taken from the B±→ D(→ 2π+2π−)K± Monte
Carlo. Three different BDTs are trained, one for each of the reweighted Monte
Carlo samples presented in Section 6.2.2.

The background sample is taken from the data. The BDT is very effective against
combinatorial background and should hence be trained on combinatorial background
only. Therefore the data for the background is taken from the upper sideband of the
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2016 data sample. Since the events used in the training of the BDT cannot be used
in the later analysis, the sideband is chosen far enough away from the signal region
to not be needed in the fit to extract the signal yields (see Section 6.6). Therefore
the upper sideband defined as any candidate with a reconstructed B± mass greater
than 5900 GeV/c2.

Both the signal sample and the background sample are halved. One half is used for
the training of the BDTs while the other half is used to test the performance of the
BDTs, particularly to test if a BDT was overtrained.

6.5.2.4 Results of the BDT Trainings

Figure 6.7 shows the response of the trained BDTs on the signal and the background.
It can be seen from the agreement of the distributions of the testing and the training
samples that the BDTs were not overtrained.
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Figure 6.7: Response on the signal and the background of the BDTs trained on
the signal Monte Carlo weighted with γ = 60◦ (top left), γ = 70◦ (top right) and
γ = 80◦ (bottom). The graphs show the response on the background training sample
(red dots), the response on the background testing sample (red area), the response on
the signal training sample (blue dots) and the response on the signal testing sample
(blue area). The response for the testing and the training samples coincide for signal
and background respectively which implies that the BDTs were not overtrained.

Figure 6.8 shows the background rejection efficiency as a function of the signal
selection efficiency obtained from applying the trained BDTs on the testing samples.
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Figure 6.8: Background rejection efficiency as a function of the signal selection
efficiency obtained from the testing samples for the BDTs trained on the signal Monte
Carlo weighted with γ = 60◦ (top left), γ = 70◦ (top right) and γ = 80◦ (bottom).

6.5.3 Selection of B± → D(→ 2π+2π−)K± Events for the
Sensitivity Study

In order to estimate the number of B±→ D(→ 2π+2π−)K± decays in the 2016 LHCb
data sample further selection criteria are placed on the particle identification variable
ProbNN of the final state particles, on the value of the BDT responses and on
the variable χ2

FD z defined in Equation 6.5. The particle identification discriminant
variables from the neural network for the pion hypothesis ProbNNπ and for the kaon
hypothesis ProbNNK are combined for the charged pion candidates in the final state
according to

ProbNNπ · (1− ProbNNK) . (6.7)

The selection on the particle identification information of the charged kaon is dis-
cussed in the context of the B±→ D(→ 2π+2π−)π± veto selection in Section 6.5.5.

The values of the three BDTs– each corresponding to a different value of γ used in
the reweighting procedure for the signal Monte Carlo – are averaged according to

BDT av =
BDTW1 +BDTW3 +BDTW3

3
. (6.8)

Figure 6.9 shows the distributions of the combined ProbNN variable for one of the
charged pions, the averaged response of the BDTs and the variable χ2

FD z for the sig-
nal Monte Carlo sample, the low B± mass sideband and the high B± mass sideband
in data. The vertical black lines indicate the chosen selection criteria. The combina-
tion of these three selection criteria removed 84% of candidates in the low B± mass
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sideband and 98% of candidates in the high B± mass background, while accepting
70% of signal decays. The values for the selection criteria are also summarised in
Table 6.4.
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Figure 6.9: Distributions of the discriminant variables used in the final selection
of the B±→ D(→ 2π+2π−)K± candidates for the signal Monte Carlo sample (red),
the low B± mass background (blue) and the high B± mass background (green) in
data. The vertical black line indicates the chosen selection criterion. Top left: Dis-
tribution of the combined ProbNN variable for one of the charged pions. Top right:
Distribution of the averaged BDT responses. Bottom: Distribution of χ2

FD z.

Particle Parameter Selection Criterion

π± ProbNNπ · (1− ProbNNK) > 0.55

D χ2
FD z > 0

BDTW1
+BDTW2

+BDTW3

3
> 0.6

Table 6.4: Selection criteria for the B±→ D(→ 2π+2π−)K± events.

6.5.4 The B± → D(→ K0
Sπ

+π−)K± Veto Selection

A selection is applied to remove candidates where theD meson decayed intoK0
S π

+π−

instead of 2π+2π−. Since the branching ratio of D0→ K0
Sπ

+π− is four times bigger
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than the branching ratio of D0→ 2π+2π−, D → K0
Sπ

+π− is an important back-
ground. The LHCb B2D0KD2HHHH stripping line and the preselection from Sec-
tion 6.5.1 already removes 99.90% of B±→ D(→ K0

Sπ
+π−)K± events. The K0

S

mesons in the remaining sample have a short flight distance, making the D →
K0

Sπ
+π− decay look like a D→ 2π+2π− decay.

In accordance with the selection used in the measurement of the hadronic paramet-
ers of D0→ 2π+2π− from Reference [22], a rectangular selection is applied to the
invariant mass m(π+π−) of each pair of opposite sign pions. The region around the
K0

S mass is excluded with 480 MeV/c < m(π+π−) < 505 MeV/c. The distribution
of events over the invariant mass range of one example opposite-sign pion pair for
B±→ D(→ 2π+2π−)K± decays and B±→ D(→ K0

Sπ
+π−)K± decays reconstructed

as B±→ D(→ 2π+2π−)K± is shown in Figure 6.10.

The D → K0
Sπ

+π− veto selection reduces the B±→ D(→ K0
Sπ

+π−)K± selection
efficiency to 0.002%, while removing 9.5% of the signal decays. This means that the
expected contribution from B±→ D(→ K0

Sπ
+π−)K± decays is less than 0.5% of the

signal yield.
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Figure 6.10: Distribution of events over the B± mass range for the
B±→ D(→ 2π+2π−)K± Monte Carlo sample (red) and the B±→ D(→ K0

Sπ
+π−)K±

Monte Carlo reconstructed as B±→ D(→ 2π+2π−)K± (blue). The peak in the dis-
tribution of the B±→ D(→ 2π+2π−)K± Monte Carlo at about 770 MeV/c2 is the ρ0

resonance.

6.5.5 The B±→D(→ 2π+2π−)π± Veto Selection

The B±→ Dπ± decay is an important source of background since its branching ratio
is over ten times larger than the B±→ DK± branching ratio [1]. The B±→ Dπ±

decay has almost the same topology as the B±→ DK± decay but a very different
CP asymmetry. It is therefore important to remove the B±→ Dπ± events from the
B±→ DK± sample.

Since no particle identification variables are used in the training of the BDT, the
BDT cannot distinguish between B±→ D(→ 2π+2π−)K± events and B±→ D(→
2π+2π−)π± events. In order to remove B± → Dπ± events a selection is applied
on the particle identification variables from the neural network ProbNN (see Sec-
tion 4.1.2.4) of the charged kaon candidate. The variables representing a kaon hypo-
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thesis ProbNNK and the pion hypothesis ProbNNπ are combined according to give

ProbNNK · (1− ProbNNπ) . (6.9)

The selection is studied on the B± → D(→ 2π+2π−)K± Monte Carlo sample
and the B± → D(→ 2π+2π−)π± Monte Carlo sample that is reconstructed as
B±→ D(→ 2π+2π−)K± events. The distribution of the combined ProbNN vari-
able of the charged kaon candidate for the B±→ DK± events and the B±→ Dπ±

events is shown in Figure 6.11. The selection criterion is chosen to be greater than
0.8 such that it reduces the expected B±→ Dπ± contribution in the data to less
than 1% of the B±→ DK± contribution. This selection removes an additional 50%
of the signal yields. The effect of the selection is illustrated in Figure 6.12 on the
Monte Carlo samples.
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Figure 6.11: Distribution of the combined ProbNN variable for the charged kaon
candidate for the signal Monte Carlo sample (red) and the B±→ D(→ 2π+2π−)π±

Monte Carlo reconstructed as B±→ D(→ 2π+2π−)K± events. The vertical black
line indicates the chosen selection criterion.
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Figure 6.12: Distribution of the invariant mass of the B± candidate for the sig-
nal Monte Carlo sample (red) and the B± → D(→ 2π+2π−)π± Monte Carlo re-
constructed as B±→ D(→ 2π+2π−)K± events (blue). The Monte Carlo distribu-
tions represent the expected ratio of B±→ D(→ 2π+2π−)K± events and B±→ D(→
2π+2π−)π± events in data before the selection on the combined ProbNN variable
for the charged kaon candidate (left) and after the selection (right). The expected
contribution of B± → D(→ 2π+2π−)π± events is reduced to less than 1% of the
B±→ D(→ 2π+2π−)K± yields.
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6.6 Estimation of the B± → D(→ 2π+2π−)K±

Event Yield

In order to study the sensitivity to the CKM angle γ the number of reconstructed and
selected B−→ D(→ 2π+2π−)K− events and B+→ D(→ 2π+2π−)K+ events in the
1.6 fb−1 of data collected by LHCb in 2016 are estimated. To do this, a probability
density function (PDF) is fitted to the reconstructed B+ and B− mass distributions.
The PDFs are composed of three different components, namely the signal component
PDF signal, the combinatorial background component PDF comb and the partially
reconstructed background component PDF partially. The PDFs are summed to give

PDF = Nsignal · PDF signal +Ncomb · PDF comb +Npartially · PDF partially (6.10)

where Nsignal, Ncomb and Npartially are the events yields of the signal, the combin-
atorial background and the partially reconstructed background in the data sample,
respectively. The contributions from B± → D(→ 2π+2π−)π± and B± → D(→
K0
Sπ

+π−)K± events is assumed to be negligible and is not accounted for in the fit.
The individual PDFs and the total PDF are built and fitted with the RooFit pack-
age [83] within Root. The individual PDFs are explained in the following.

6.6.1 The Signal PDF

The PDF of the signal component PDF sig. is represented by the sum of two Gaussian
distributions which share the same mean as

PDF sig. = afracG(mB|µ, σ1) + (1− afrac)G(mB|µ, σ2) (6.11)

where the fraction afrac between the two Gaussian distributions is determined from
a fit to the signal Monte Carlo. The widths of the Gaussian distributions are related
via

σ2 = aσ · σ1 (6.12)

where the fraction aσ between the widths of the two Gaussian distributions is also
determined from a fit to the signal Monte Carlo. Since there are no distinguishable
differences in the B+ and B− mass distributions in Monte Carlo, the same shape
parameters are used to define their PDFs. The mean of the Gaussians are left free
in the fit to the data.

The fit to the signal Monte Carlo is shown in Figure 6.13 and the resulting values
for the parameters of the PDF sig are listed in Table 6.5. The extracted values for
afrac and aσ are 0.90 and 2.25, respectively.
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Figure 6.13: Distribution of the B± mass in Monte Carlo (black dots) and the
double Gaussian function (black line) fitted to the Monte Carlo. The two individual
Gaussian functions are shown as the blue and the red line.

Parameter Fit Result

µ (5280.19± 0.05) MeV/c2

σ1 (12.12± 0.07) MeV/c2

aσ 2.25± 0.01

afrac 0.90± 0.01

Table 6.5: Result of the fit of the signal component PDF sig. to the B±→ D(→
2π+2π−)K± signal Monte Carlo sample.

6.6.2 The Combinatorial Background PDF

The PDF of the combinatorial background is described by an exponential function
as

PDF comb. = e−bmB (6.13)

where the slope b of the exponential function is a free parameter in the fit.

6.6.3 The Partially Reconstructed Background PDF

The partially reconstructed background consists of decays of the type B → D(∗)X
where one or more particles are not reconstructed or misidentified. For the purpose
of estimating the B±→ D(→ 2π+2π−)K± event yields in 2016 LHCb data sample,
the shape of the partially reconstructed background is approximated by a Gaussian
distribution

PDF part. = G(mB|µ, σ) (6.14)

where all parameters are free in the fit.
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6.6.4 Results

Figure 6.14 shows the B− and B+ mass distributions in the reconstructed and se-
lected 2016 data sample and Table 6.6 lists the resulting values for the different
parameters of the PDF. From the fit, the number of B−→ D(→ 2π+2π−)K− decays
in the 2016 LHCb data sample is estimated to be 1193 ± 41 and the number of
B+→ D(→ 2π+2π−)K+ decays is estimated to be 1149 ± 41.

The B±→ D(→ 2π+2π−)K± yield of ≈ 2 200 events in the 1.6 fb−1 of data recorded
by LHCb in 2016 surpasses the yield of 1 500 events in the 3 fb−1 of data recorded in
Run I. This is due to the increased bb production cross section at the center-of-mass
energy of 13 TeV in Run II with respect to the 7 and 8 TeV in Run I. Additionally,
the new trigger scheme in Run II allows a full offline-like reconstruction in the high
level trigger scheme. In combination with the full alignment and calibration of the
LHCb detector, this leads to increased selection efficiencies.
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Figure 6.14: Distribution of the B− (left) and B+ (right) invariant mass of the
B±→ D(→ 2π+2π−)K± candidates that were reconstructed and selected from the
2016 LHCb data sample. The black dots represent the data while the black line shows
the fitted PDF. The individual PDFs for the the signal (red area), the combinatorial
background (green area) and the partially reconstructed background (blue area) are
also shown.
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Parameter B− Fit Result B+ Fit Result

N sig. 1193.51± 41.26 1149.57± 40.55

µsig. (5279.85± 0.55) MeV/c2 (5278.87± 0.62) MeV/c2

σsig.1 (14.85± 0.55) MeV/c2 (16.49± 0.60) MeV/c2

N comb. 1238.66± 73.05 1077.38± 68.28

bcomb. (−2.36± 0.23) · 10−3 (−2.26± 0.25) · 10−3

Npart. 857.82± 55.50 922.98± 52.59

µpart. (5090.44± 2.15) MeV/c2 (5086.75± 2.55) MeV/c2

σpart. (33.25± 2.79) MeV/c2 (35.65± 2.82) MeV/c2

Table 6.6: Result of the fit to B− (left) and B+ (right) invariant mass distributions
of the B±→ D(→ 2π+2π−)K± candidates that were reconstructed and selected from
the 2016 LHCb data sample.

6.7 Extraction of the Sensitivity on the CKM

Angle γ

In order to determine the sensitivity of the B±→ D(→ 2π+2π−)K± events col-
lected by LHCb to γ a series of pseudo-experiments is used. First a distribu-
tion of B−→ D(→ 2π+2π−)K− yields NB−→DK−

i and B+→ D(→ 2π+2π−)K+ yields
NB+→DK+

i in each bin of the 2π+2π− phase space is generated according to

NB−→DK−
i = hB−

(
T f−ir

2
B + T fi + 2

√
T fi T

f
−i(c

f
i x− + sfi y−)

)
(6.15)

and

NB+→DK+

i = hB+

(
T fi r

2
B + T f−i + 2

√
T fi T

f
−i(c

f
i x+ − sfi y+)

)
, (6.16)

where hB− and hB+ are independent normalisation factors and the T fi , cfi and sfi are
the D0→ 2π+2π− hadronic parameters that have been determined previously with
data recorded by the CLEO-c experiment [46]. The input values for the generation
of the B±→ D(→ 2π+2π−)K± distributions over the 2π+2π− bins are chosen to
be rB = 0.1, δB = 140◦ and γ = 70◦. The normalisation factors hB− and hB+ are
calculated such that the total number of B±→ D(→ 2π+2π−)K± decays corresponds
to the number expected in one of the three LHCb data-taking periods considered.
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To generate toy datasets, the expected number of decays in each bin (found from
Equation 6.15 and Equation 6.16) is varied 20 000 times according to a Poisson
distribution. A fit is performed to each toy dataset to extract the normalisation
factors, rB, δB and γ.

The fit is performed by minimising the total χ2, defined by

χ2 =
bins∑
i

(
NB−→DK−
i −NB−→DK− fit

i

)2

σ2(NB−→DK−
i )

(6.17)

+
bins∑
i

(
NB+→DK+

i −NB+→DK+ fit
i

)2

σ2(NB+→DK+

i )
. (6.18)

Constraining the hadronic parameters of the D decay in the fit introduces a sig-
nificant bias [16]. Therefore the hadronic parameters are fixed in the fit and the
effect of their uncertainties on γ is determined using an alternative method. In this
method the fit for toy dataset is repeated 200 times, where for each fit the hadronic
parameters are randomly sampled from their associated covariance matrix.

The sensitivity study is performed for one set of rB, δB and γ values and for three
different B±→ D(→ 2π+2π−)K± events yields.

6.7.1 Validation of the Fitting Procedure

The fitting procedure is validated by generating toy datasets with larger numbers of
signal decays, specially, 100 000B−→ D(→ 2π+2π−)K− and 100 000B+→ D(→ 2π+2π−)K+.

The distributions of the pulls of the pseudo-experiments — i.e. the difference of the
values of rB, δB and γ used to generate the true distribution of yields per 2π+2π−

bin and the fitted values divided by the uncertainty provided by the fit — are
shown in Figure 6.15. The means and widths of the pull distributions are listed in
Table 6.7. The means of all distributions are close to 0 and their widths are close to
1. This indicates that there is no significant bias in the fitting procedure and that
the statistical uncertainty on rB, δB and γ is calculated correctly by the fitter.

Variable Mean Standard Deviation

rB 0.02 0.99

δB 0.00 1.00

γ 0.03 1.00

Table 6.7: Means and widths of the pull distributions for rB, δB and γ of the
pseudo-experiments used to validate the fitting procedure.
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Figure 6.15: Distributions of the pulls of the pseudo-experiments from the pseudo-
experiments used to evaluate the fitting procure for rB (top left), δB (top right) and
γ (bottom).

6.7.2 The Statistical Sensitivity

The sensitivity to the CKM angle γ is estimated by generating toy datasets with the
number of signal decays expected in the three LHCb data-taking scenarios, namely
the yields expected in 2016 LHCb data sample, in the entire Run II LHCb data
sample and in the Run I and Run II LHCb data samples combined.

As shown in Section 6.6, the expected yield of B−→ D(→ 2π+2π−)K− decays and
B+→ D(→ 2π+2π−)K+ decays in the 1.6 fb−1 of data collected in 2016 is 1 100
events each. This can be extrapolated to the expected yield for the full Run II
luminosity of≈ 5 fb−1 to 3 400 events for each b flavour. TheB±→ D(→ 2π+2π−)K±

yields for Run I were already determined in a previous analysis to be 750 for each b
flavour [6]. The event yields used for the three different scenarios are summarised in
Table 6.8.

Figure 6.16 shows the difference between the input value and the fitted value for rB,
δB and γ for all three scenarios. Table 6.9 lists the means and the widths of these
distributions. The statistical uncertainty on γ that can be obtained with the 2016
data is 20◦ which is reduced to 10◦ with the expected full Run II dataset and even
further reduced to 9◦ when adding the Run I dataset. The means of the distributions
vary from zero which shows that there is a small bias on the fitted values. This bias
is 4◦ for γ for the 2016 data which corresponds to 20% of the standard deviation.
For the combined Run I and Run II this bias is reduced to 1◦ which corresponds to
11% of the standard deviation.
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Data Sample
Expected B−→ D(→ 2π+2π−)K− /

B+→ D(→ 2π+2π−)K+ Yields

2016 data 1 100

Run II data 3 400

Run I+ Run II data 4 200

Table 6.8: B−→ D(→ 2π+2π−)K− and B+→ D(→ 2π+2π−)K+ events yields used
in the three scenarios to estimate the statistical sensitivity to the CKM angle γ with
LHCb data.
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Figure 6.16: Distributions difference of the input value and the value determined by
the fitter of the pseudo-experiments for rB (top left), δB (top right) and γ (bottom).
Three different scenarios are shown, namely the results on the 2016 data sample
(green line), the expected Run II data sample (blue line) and the combined Run I and
Run II data sample (red line).
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Dataset Variable µ σ

2016 data rB 0.01 ± 0.00 0.03 ± 0.00

δB -2.61◦ ± 0.16◦ 21.31◦ ± 0.11◦

γ 4.04◦ ± 0.15◦ 20.30◦ ± 0.10◦

Run II data rB 0.00 ± 0.00 0.02 ± 0.00

δB -0.54◦ ± 0.07◦ 10.21◦ ± 0.05◦

γ 1.07◦ ± 0.07◦ 9.98◦ ± 0.051◦

Run I + Run II data rB 0.00 ± 0.008 0.02 ± 0.00

δB -0.36◦ ± 0.07◦ 9.07◦ ± 0.05◦

γ 1.00◦ ± 0.06◦ 8.92◦ ± 0.05◦

Table 6.9: Means and widths of the distributions difference of the input value and
the value determined by the fitter of the pseudo-experiments.

Figure 6.17 illustrates the distribution of the fit results in the plane spanned by γ
and δB for the three different datasets.
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Figure 6.17: Distribution of the results of the fitting procedure in the plane spanned
by γ and δB for the 2016 dataset (top left), the expected full Run II dataset (top right)
and the combined Run I and Run II dataset (bottom).
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6.8 Next Steps Towards the Measurement of the CKM Angle γ

6.7.3 The Systematic Uncertainty from Hadronic Paramet-
ers

The systematic uncertainty on γ from the measured uncertainty on the D→ 2π+2π−

hadronic parameters is studied by generating toy datasets with the number of signal
decays in the 2016 LHCb data sample.

Each generated distribution is then fitted 200 times to extract rB, δB and γ where
for each fit the hadronic parameters are varied according to their covariance matrix.
The results of rB, δB and γ for each fit are filled into a histogram. The mean of the
histogram is chosen as the fitted value for the given dataset and the width of the
histogram is taken as the systematic uncertainty on the respective variable rB, δB
or γ.

This procedure yields an uncertainty of 0.02 on rB, 15◦ on δB and 21◦ on γ. This
uncertainty is comparable with the statistical uncertainty on γ for the 2016 data
sample but would dominate the uncertainty for any bigger dataset.

6.8 Next Steps Towards the Measurement of the

CKM Angle γ

The study of the sensitivity to the CKM angle γ is the first step towards the measure-
ment of γ using the GGSZ approach with B±→ D(→ 2π+2π−)K± decays at LHCb.
In order to obtain a final measurement on γ four more steps have to be executed.

1. The B+→ D(→ 2π+2π−)K+ events and B−→ D(→ 2π+2π−)K− events have
to be divided into 5 pairs of bins according to their position in the D→ 2π+2π−

phase space.

2. The distribution of the reconstruction and selection efficiency of the B+ →
D(→ 2π+2π−)K+ and B−→ D(→ 2π+2π−)K− decays over the bins has to
be determined. This can be done using a mainly data-driven method with an
additional correction applied from Monte Carlo. The efficiency is first determ-
ined by comparing the reconstructed and selected B± → D(→ 2π+2π−)π±

yields with the yields that are expected under the assumption that the CP
violation is negligible in this channel. Any possible difference due to the pion
in the B± → Dπ± final state can be corrected by comparing the efficiency
of B± → DK± decays and B± → Dπ± decays in Monte Carlo. Thus, this
method reduces the dependency of the calculated efficiency on the Monte Carlo
samples.

3. A simultaneous fit to the invariant mass distributions of the B+ and B− meson
candidates is performed for each bin of the D→ 2π+2π− phase space to ex-
tract rB, δB and γ. To this purpose, a fit such as described in Section 6.6 is
performed to the B+ and B− invariant mass distribution, with the difference
that the number of signal events in each bin is described by the product of the
reconstruction and selection efficiency with NB−→DK−

i from Equation 6.1 and
NB+→DK+

i from Equation 6.2, respectively. The shape of the signal component
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can be further constrained using the B±→ D(→ 2π+2π−)π± decay channel
which has a much higher statistics than the B±→ D(→ 2π+2π−)K± channel.
Possible differences between the two channels due to the different hadron in
the final state can be compensated with the use of the Monte Carlo samples.
Additionally, the shape of the shape of the partially reconstructed background
can be further constraint with the use of a Monte Carlo sample that consists
of a mixture of all decays that can contribute to this background.

4. As a last step the systematic uncertainties related to this analysis procedure
have to be evaluated. These include uncertainties related to the correctness
of the Monte Carlos samples used in the analysis ad well as the models that
are used to fit the signal and different background components. The effects of
possible – albeit very small – CP violation in B±→ Dπ± decays have also to
be studied and accounted for.

6.9 Conclusion and Outlook

In this chapter a study is performed on the sensitivity to the CKM angle γ that
can be obtained using the GGSZ approach with B±→ D(→ 2π+2π−)K± decays at
LHCb. In the GGSZ approach the phase space of the D meson decay is divided into
bins and the sensitivity to the CKM angle γ is obtained by analysing the variation
of the yields of B−→ D(→ 2π+2π−)K− decays and B+→ D(→ 2π+2π−)K+ decays
over the bins. For this, the D decay is parameterised in terms of the hadronic
parameters.

The study in this chapter is performed for the expected B±→ D(→ 2π+2π−)K±

decay yields for the 2016 LHCb dataset, the expected full Run II LHCb dataset
and the combined Run I and Run II LHCb dataset. To this purpose, the yield of
B±→ D(→ 2π+2π−)K± decays is extracted from the 2016 LHCb data sample and
extrapolated to the full luminosity expected for Run II. The resulting statistical
uncertainties on γ are found to be 20◦, 10◦ and 9◦ for the three datasets, respectively.
There is an additional uncertainty on γ due to the measured uncertainty on the
D→ 2π+2π− hadronic parameters. This systematic uncertainty is estimated to be
20◦ and would dominate the uncertainty on γ for any dataset that is bigger than the
2016 dataset.

The current best measurements of γ are from LHCb [16], BaBar [84] and Belle [85].
These analyses use B± → D(∗)K(∗)± decays where the D meson is reconstructed as
K0

S π
+π− and K0

S K
+K−. The result of the LHCb analysis is γ = (62+15

−14)◦ 2. The
results of the BaBar analysis is γ = 68◦ ± 14◦ (stat) ± 4◦ (syst) ± 3◦ (model) and
of the Belle analysis is γ = 78◦+11◦

−12◦ (stat) ± 4◦ (syst) ± 9◦ (model), where the last
uncertainty is due to the modelling of the D decay. The measurement of γ using the
GGSZ approach with B±→ D(→ 2π+2π−)K± decays collected by LHCb in Run II
would thus yield a comparable statistical uncertainty but suffer from a much bigger
uncertainty from the modelling of the D decay.

The uncertainties on the hadronic parameters could be reduced through additional
constraints from BESIII and LHCb. The current BESIII dataset recorded in e+e−

2The uncertainty quoted in Reference [16] is not divided into individual uncertainties.
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collisions at the ψ(3770) resonance is 2.9 fb−1 and a further 7 fb−1 is planned to be
recorded in the future. These datasets correspond to 3.5 and 12 times the amount
collected by CLEO-c, respectively, and could significantly reduce the uncertainty on
the hadronic parameters of the D→ 2π+2π− decay. Additionally, the flavour tagged
fractions Ti could be measured at LHCb using D∗+ → D0π+ decays and its conjugate
where the charge of the pion defines the flavour of the D meson, and with semi-
leptonic B decays such as B+ → D0µ+νµ decays and its complex conjugate where
the charge of the lepton defines the flavour of the D meson. Since the uncertainties
on the hadronic parameters are still dominated by the statistical uncertainty, the
addition of the LHCb dataset could significantly improve the measurements and
make the measurement of γ using the GGSZ method on B±→ D(→ 2π+2π−)K±

decays a valuable contribution to the overall constraint on γ.
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Conclusion

Three subjects were covered in this thesis, namely the measurement of the CP -even
fraction of the D0 → 2π+2π− decay, the real-time alignment of the LHCb RICH
mirror systems and the estimation of the sensitivity to the CKM angle γ that can
be obtained using B±→ D(→ 2π+2π−)K± decays at LHCb.

The measurement of parameters associated with CP violation in the Standard Model
is currently one of the principal objectives in flavour physics. Many of these para-
meters, such as the CKM angle γ, appear as complex phases in the theory and are
difficult to determine. It is therefore important to measure these parameters in many
different and independent analyses and to combine and compare the results. The
work in this thesis is a step towards the measurement of the CKM angle γ using
B±→ D(→ 2π+2π−)K± decays at LHCb. The formalism developed in Chapter 1
shows that the CKM angle γ appears in combination with quantities related to
the D meson decay. In order to avoid the difficulty of modelling the D meson de-
cay amplitude over the five-dimensional phase space of the D0 → 2π+2π− decay,
the model-independent approach of the GGSZ method is chosen in this thesis. In
this approach the phase space of the D meson decay is divided into bins and the
B± → D(→ 2π+2π−)K± decay width is integrated over each bin. The resulting
D meson decay related quantities are called hadronic parameters and can be meas-
ured directly.

The first analysis presented in this thesis is the measurement of the CP -even fraction
F+

4π of the D0 → 2π+2π− decay. The CP -even fraction F+
4π was measured using

quantum correlated DD decays collected by the CLEO-c experiment at Cornell
University. In this analysis one of the correlated D mesons was reconstructed as
D→ 2π+2π− while the other D meson was reconstructed as a CP -mixed final state,
namely D→ K0

Sπ
+π− or D→ K0

Lπ
+π−. The phase space of the D→ K0

S,Lπ
+π−

decays was divided into bins and the CP -even fraction of D→ 2π+2π− was measured
by analysing the variation of the signal events over the K0

S,Lπ
+π− bins. This analysis

was the first measurement of the CP -even fraction of D0→ 2π+2π− using CP -mixed
tags. The result of the analysis was F+

4π = 0.755 ± 0.050 (stat) ± 0.029 (syst) and
was been published in Reference [45]. The value of F+

4π has already been used in
a measurement of the CP observables in B±→ DK± and B±→ Dπ± decays with
two-and four-body D decays at LHCb [6]. The measurement of F+

4π was also the
basis for the measurement of the hadronic parameters of the D→ 2π+2π− decay
presented in Reference [46].

The second analysis in this thesis is the study of the sensitivity to the CKM angle
γ that can be achieved with the GGSZ method applied to B±→ D(→ 2π+2π−)K±

decays recorded by LHCb. In this study the distribution of B±→ D(→ 2π+2π−)K±

decays over the 2π+ 2π− bins is simulated using the expected yield for three LHCb
data-taking scenarios, namely 2016 LHCb dataset, the expected Run II LHCb data-
set and the combined Run I and Run II LHCb dataset. To this purpose, the yield
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of B±→ D(→ 2π+2π−)K± decays is extracted from the 2016 LHCb data sample
and extrapolated to the full luminosity expected for Run II. The resulting statistical
uncertainties on the CKM angle γ are found to be 20◦, 10◦ and 9◦ for the three
datasets, respectively. There is an additional uncertainty on γ due to the measured
uncertainty on the D→ 2π+2π− hadronic parameters. This systematic uncertainty
is estimated to be 21◦ and would dominate the uncertainty on the CKM angle γ for
any dataset bigger than the 2016 dataset. The measurement of the CKM angle γ us-
ing the GGSZ method on B±→ D(→ 2π+2π−)K± decays is a valuable contribution
to the overall constraint on γ.

Particle identification, especially separation of charged pions and kaons, is of crucial
importance for the measurement of the CKM angle γ using B±→ D(→ 2π+2π−)K±

decays. In LHCb, the main source of particle identification information for charged
kaons and pions are the two ring imaging Cherenkov (RICH) detectors. Both de-
tectors possess intricate optical systems for detecting Cherenkov photons. In order
for the particle identification to function optimally, the position of all optical com-
ponents has to be known to the best precision. This is achieved with the data-driven
RICH mirror alignment procedure. As part of this thesis, the LHCb RICH mirror
alignment was implemented into the LHCb online computing framework, enabling
the mirror alignment to be performed in real-time during the data-taking period.
Additionally, the alignment procedure was improved at different points leading to
the procedure taking about 20 min to converge, compared to several days in Run I.
The information gained in the frequent running of the alignment procedure dur-
ing the 2016 data-taking period was analysed and has already been used to further
optimise the RICH mirror alignment procedure.
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A. Appendix

The weak eigenstates for the K0
S and K0

L meson can be expressed in terms of the
mass eigenstates as

|K0
S 〉 =

1√
2

(
|K0〉+ |K0〉

)
|K0

L〉 =
1√
2

(
|K0〉 − |K0〉

)
. (A.1)

This means that the D0 meson decay amplitude to K0
S π

+π− and K0
L π

+π− can be
written as

A(D0→ K0
Sπ

+π−) =
1√
2

(
A(D0 → K0π+π−) +A(D0 → K0π+π−)

)
A(D0→ K0

Lπ
+π−) =

1√
2

(
A(D0 → K0π+π−)−A(D0 → K0π+π−)

)
(A.2)

and the decay amplitude of D0 mesons to K0
S π

+π− and K0
Lπ

+π− is given by

A(D0→ K0
Sπ

+π−) =
1√
2

(
A(D0 → K0π+π−) +A(D0 → K0π+π−)

)
A(D0→ K0

Lπ
+π−) =

1√
2

(
A(D0 → K0π+π−)−A(D0 → K0π+π−)

)
. (A.3)

The amplitudes A(D0 → K0π+π−) and A(D0 → K0π+π−) are doubly Cabibbo
suppressed while the amplitudes A(D0 → K0π+π−) and A(D0 → K0π+π−) are
Cabibbo favoured. By neglecting the Cabibbo suppressed amplitudes the D0 decay
amplitudes to K0

S π
+π− and K0

Lπ
+π− become

A(D0→ K0
Sπ

+π−) =
1√
2
A(D0 → K0π+π−)

A(D0→ K0
Lπ

+π−) =
1√
2
A(D0 → K0π+π−) (A.4)

and the D0 decay amplitudes to K0
S π

+π− and K0
Lπ

+π− become

A(D0→ K0
Sπ

+π−) =
1√
2
A(D0 → K0π+π−)

A(D0→ K0
Lπ

+π−) = − 1√
2
A(D0 → K0π+π−) . (A.5)

Under this approximation is follows that

A(D0→ K0
Sπ

+π−) = A(D0→ K0
Lπ

+π−)

A(D0→ K0
Sπ

+π−) = −A(D0→ K0
Lπ

+π−) . (A.6)
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B. Appendix

Degeneracy of system of equations for the RICH2

mirror system

For rotations αyp, α
z
p of the primary mirror p around y, z respectively, and rotations

βys , βzs of the secondary mirror s around y, z respectively, the misalignment on the
detector plane is expressed as

Θy
ps = Aypsα

y
p +By

psβ
y
s + azpsα

z
p + bzpsβ

z
s

Θz
ps = Azpsα

z
p +Bz

psβ
z
s + azpsα

y
p + bypsβ

y
s

where Ayps, B
y
ps, A

z
ps, B

z
ps, a

y
ps, b

y
ps a

z
ps and bzps are the magnification coefficients. The

RICH2 detector has 56 primary and 40 secondary mirrors. This results in a total of
192 unknowns in total (rotations in y and z for each mirror).
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The set of equations for Θy
ps can be written in matrix formalism as



Θy
0,0

Θy
1,0

...

Θy
56,0

Θy
0,1

Θy
1,1

...

Θy
56,1

...

...

Θy
56,40



= Y



αy0

αy1

...

αy56

βy0

βy1

...

βy40

αz0

αz1

...

αz56

βz0

βz1

...

βz40



and similarly for Θz
ps.
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If the magnification coefficients are the same for every mirror combination, i.e. Ayps =
Ay, it can now be shown that the order of the matrices Y and Z is 95 each. The
matrix can be reduced to 95 independent rows



Ay 0 · · · 0 By 0 · · · 0 az 0 · · · 0 bz 0 · · · 0

0 Ay · · · 0 By 0 · · · 0 0 az · · · 0 bz 0 · · · 0

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

0 0 · · · Ay By 0 · · · 0 0 · · · az bz 0 · · · 0

Ay 0 · · · 0 0 By · · · 0 az 0 · · · 0 0 bz · · · 0

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

Ay 0 · · · 0 0 0 · · · By az 0 · · · 0 0 0 · · · bz


Any other row can be expressed as a linear combination of the rows in this matrix.

To show this, consider the row for the combination of primary mirror i 6= 0 and
secondary mirror j 6= 0,

i 56 + j 56 + 40 + i 2 · 56 + 40 + j(
0 · · · Ay · · · 0 0 · · · By · · · 0 0 · · · az · · · 0 0 · · · bz · · · 0

) .

This row can be expressed as the linear combination of three rows from matrix Y by
first adding the row for the combination of primary mirror 0 and secondary mirror
j and the row for the combination of primary mirror i and secondary mirror 0

0 i 56 + j 56 + 40 56 + 40 + i 2 · 56 + 40 + j

(
Ay · · · 0 · · · 0 0 · · · By · · · 0 az · · · 0 · · · 0 0 · · · bz · · · 0

)
+(

0 · · · Ay · · · 0 By · · · 0 · · · 0 0 · · · az · · · 0 bz · · · 0 · · · 0
)

=(
Ay · · · Ay · · · 0 By · · · By · · · 0 az · · · az · · · 0 bz · · · bz · · · 0

)
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The the row for the combination of primary mirror 0 and secondary mirror 0 is
subtracted

0 i 56 + j 56 + 40 56 + 40 + i 2 · 56 + 40 + j

(
Ay · · · Ay · · · 0 By · · · By · · · 0 az · · · az · · · 0 bz · · · bz · · · 0

)
−(

Ay · · · 0 · · · 0 By · · · 0 · · · 0 az · · · 0 · · · 0 bz · · · 0 · · · 0
)

=(
0 · · · Ay · · · 0 0 · · · By · · · 0 0 · · · az · · · 0 0 · · · bz · · · 0

)
which yields the desired result. The same counts for the matrix Z.

Thus, having 95 + 95 independent equations for 190 unknowns means that the
system of equation degenerate. Now in reality the magnification coefficients for
different mirror combinations differ from each other and the system of equations is
not truly degenerate. But since the magnification coefficients don’t differ by much
the solution to the system of equations is unstable.
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C. Appendix

C.1 Boosted Decision Tree: a Multivariate Method
To separate the signal events from the surplus of background events a set of n
discriminative variables is used. Classically each of these variables is examined
independently of the others and a cut for each variable is found that rejects most of
the background while keeping as much signal as possible. The total selection is then
a rectangular set of n cuts.

The multivariate analysis methods combine the information on the different discrim-
inate variables into one single classifier. The selection has then a linear or non-linear
shape in the n-dimensional space of the variables. This principle is illustrated in
Figure C.1 [82].

Figure C.1: Illustration of the multivariate analysis for two variables xi and xj and
two data types H0 and H1 (for example signal and background). The left plot shows
a set of rectangular cuts as used in a classic selection. The middle and the right plot
represent a selection from a multivariate analysis where the combination of variables
is used to find the optimal selection. The middle plot shows a linear discriminant
(Fischer discriminant) and the right plot shows a non-linear discriminant (Boosted
Decision Tree, Neural Networks, etc.). [82]

There are different multivariate methods of combining the variables to the final clas-
sifier. The multivariate method used in this analysis is the Boosted Decision Tree
(BDT). The BDT is a weighted sum of m simple decision trees, called ’basic classi-
fiers’ or ’weak learners’. Each decision tree classifies a given event with n variables x
as either background or signal with the output of f(x) = −1 and f(x) = 1 respect-
ively. The response F (x) of the final BDT– called the boosted event classification –
is then

F (x) =
1

m

m∑
i=0

ln(αi)fi(x) (C.1)
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where the αi represent the weights associated to the i-th tree. Small values of F (x)
indicate that a certain events is more background-like while great values indicate a
more signal-like structure.

The BDT is trained on a sample of events that each have a label y(x), meaning that
they are already classified as signal or background. During the training process,
each decision tree aims at minimising the weighted misclassification rate err. When
training the first tree all events are given the same weight α = 1. The subsequent
tree i is trained on a modified event sample where the previously misclassified events
are given a weight derived from the previous misidentification rate err(i−1)

αi =
1− err(i−1)

err(i−1)

(C.2)

The entire sample is then renormalised such that the sum of the weights over all
events remains normalised to 1.

C.1.1 Gradient Boost

The BDT used in this analysis implements the GradientBoost method. The Gradi-
entBoost performs very well in s noisy environment, that is and environment where
some background events tend to look like signal. This is due to the fact that the
loss-function (Equation C.4) varies smoothly and does not over-penalise misclas-
sified events. As a consequence the GradientBoost is very robust with respect to
overtraining.

BDTs implement a loss-function L(F, y) which represents the deviation between the
BDT response F (x) and the true label y(x) of a certain event. Furthermore, all
events are given an individual weight corresponding to their loss-function.
The GradientBoost implements a binomial log-likelihood loss

L(F, y) = ln(1 + e−2F (x)y) (C.3)

From here the average loss over the whole training sample with k events can be
calculated as

〈L〉i =
k∑
l=0

ωilL
i
l (C.4)

which is the analogous to the misclassification rate err. From 〈L〉i the boosting
coefficient αi for the i-th tree can be computed

αi =
〈L〉i

1− 〈L〉i
(C.5)

This boosting factor is used to extract the weight ωik for each event k in the i-th
step

ωik = ω
(i−1)
k · α1−L(i−1)

k
i (C.6)

By minimising the loss-function Li(F (x), y) in each step, that is for each decision
tree, the total BDT is optimised.
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