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Within the standard effective field theory of general relativity, we show that the speed of gravitational
waves deviates, ever so slightly, from luminality on cosmological and other spontaneously Lorentz-
breaking backgrounds. This effect results from loop contributions from massive fields of any spin,
including Standard Model fields, or from tree level effects from massive higher spins s ≥ 2. We show that
for the choice of interaction signs implied by S-matrix and spectral density positivity bounds suggested by
analyticity and causality, the speed of gravitational waves is in general superluminal at low energies on null
energy condition preserving backgrounds, meaning gravitational waves travel faster than allowed by the
metric to which photons and Standard Model fields are minimally coupled. We show that departure of the
speed from unity increases in the IR and argue that the speed inevitably returns to luminal at high energies
as required by Lorentz invariance. Performing a special tuning of the effective field theory so that
renormalization sensitive curvature-squared terms are set to zero, we find that finite loop corrections from
Standard Model fields still lead to an epoch dependent modification of the speed of gravitational waves
which is determined by the precise field content of the lightest particles with masses larger than the Hubble
parameter today. Depending on interpretation, such considerations could potentially have far-reaching
implications on light scalar models, such as axionic or fuzzy cold dark matter.
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I. INTRODUCTION

In this new era of gravitational wave astronomy, it is
especially important to understand how gravitational waves
propagate. The recent simultaneous observation of gravi-
tational waves from the coalescence of two neutron stars,
GW170817, together with its gamma-ray counterpart, GRB
170817A, has put the cleanest constraint on the propaga-
tion speed of gravitational waves relative to photons [1–3].
In classical general relativity (GR) minimally coupled to

matter, gravitational waves always travel luminally, as
defined by the light cones of the metric gμν with respect
to which matter is coupled, by virtue of the equivalence
principle. For instance, when considering the propaga-
tion of linearized gravitational waves across some general
curved background geometry, the background metric may
always be put in aRiemann normal coordinate systemwhere
it is locallyMinkowski in the vicinity of a spacetime point x,

plus curvature corrections that grow away from x. Since the
Einstein-Hilbert action is second order, modifications from
the background curvature terms to the propagation of
gravitational waves on this background can only arise as
an effective mass term (simply from power counting
derivatives), and never as corrections to the kinetic or
gradient terms. For example, in Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime, gravitational waves
have an “effective mass” from the background expansion of
order H2; Ḣ, in terms of the Hubble parameter H, but their
sound speed defined by the ratio of kinetic to gradient terms
is luminal.1 Hence it is the two derivative nature of Einstein’s
theory, together with diffeomorphism invariance, that guar-
antees luminality in general relativity.
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1Canonically normalized tensor fluctuations in GR have
quadratic action SGR ¼ R

dηd3x 1
2
ðh02 − ð∇⃗hÞ2 þ a00

a h
2Þ. Despite

the effective mass −a00=a the actual mass is zero. In the well-
known case of the propagation of gravitational waves during
inflation, this effective mass is negative and drives an instability
which generates long wavelength scale invariant tensor fluctua-
tions, but the retarded propagator vanishes outside the light cone
defined by cs ¼ 1. In what follows, in FLRW we define the
speed via the light cone of the effective metric on which
modes propagate, i.e., via cs in the action Shh ¼

R
dηd3x 1

2
ðh02−

c2sð∇⃗hÞ2 −m2
effh

2Þ, so the effective mass does not play a role in
the definition of the speed.
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Classical general relativity is not, however, the real
world. At a minimum, gravitational effects generated from
quantum loops of known particles, e.g., the electron, will
already generate modifications to Einstein gravity which
alter this process. Many of these effects are finite (meaning
free from renormalization ambiguities) and calculable.
These effects are of course highly suppressed, being
induced by loops, but any potential departure of the speed
of propagation of gravitational waves from luminality is
itself significant, not least because it impacts our under-
standing of the causal structure of a given theory. Various
proposed extensions to four-dimensional general relativity,
such as extra dimension models, or string theory, will also
induce modifications to the Einstein-Hilbert Lagrangian
that can potentially change the above picture.
The general framework to account for such corrections is

well understood and goes under the umbrella of “effective
field theory for gravity” [4–7] (for a recent example of this
methodology, see [8]). Historical issues with nonrenorma-
lizability and the artificial separation of quantum fields on
curved spacetimes are replaced with the general effective
field theory (EFT) framework that allows us, if desired, to
simultaneously quantize matter and gravity despite the
nonrenormalizability of the Lagrangian. The price to pay is
the need to introduce an infinite number of counterterms,
but in practice at low energies only finite numbers are ever
relevant. The low energy effective theory is defined by an
effective Lagrangian valid below some scale E ≪ M which
accounts for all tree and loop level corrections from
particles of masses greater than or equal to M, and loop
processes of light fields at energies greater than M.2 The
starting point is then the Wilsonian action which includes
all possible covariant operators built out of the Riemann
tensor, its derivatives, and combinations of light fields and
their derivatives. For instance, assuming no other light
fields than gravity, the leading corrections are powers of
curvature and derivatives thereof, i.e., very schematically

SEFT ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−ΛþM2

Pl

2
Rþ C1R2 þ C2R2

μν

þ C3R2
μναβ þ

X∞
n¼1

Cn;p

M2n
Pl

Xn
p¼0

∇2pRiem2þn−p
�
;

where by ∇2pRiem2þn−p we mean all possible scalar local
operators constructed out of contractions of this number of
powers of Riemann tensor and covariant derivatives. The
precise energy scale of suppression Cn;p=M2n

Pl will depend
on the origin of a given term; e.g., it will in general be
different for interactions coming from tree level processes
or from loops. In general there is not one such EFT, but a

family of them depending on the choice of scale M above
which physics has been integrated out.
Even in the absence of matter, the speed of gravitational

waves is modified by the addition of higher curvature
terms, precisely because the earlier argument based on
power counting of derivatives is no longer valid. Higher
derivative curvature terms can, and do, modify the second
order derivative terms in the equation for propagation when
expanding around a background. Since gravitational waves
are luminal in pure GR, the sign of higher curvature terms
will typically lead the resulting corrections to make the
waves either superluminal or subluminal. Typically cau-
sality is imposed by demanding that the modified gravi-
tational waves are subluminal (with respect to the light cone
defined by the metric gμν) based on similar arguments for
scalar fields [9,10], hence fixing the signs for the higher
curvature coefficients. For instance, for Ricci flat back-
grounds this is done in [11] for quartic curvature correc-
tions of the type that arise in the low energy EFT from
string theory. Within the context of the EFTs of inflation/
dark energy, where matter sources the background, a
potential modification to the speed of gravitational waves
has been noted in [12–16]. For ppwaves such an effect was
also noted in [17].
More generally this procedure of demanding sublumin-

ality of all fluctuations is problematic because in a
gravitational EFT the metric itself is ambiguous (see
[18] for related discussions). It is always possible to
perform field redefinitions, schematically of the form

gμν → gμν þ
X
p;n

αn;p

M2ðnþpÞ
Pl

ð∇2pRiemnÞμν; ð1:1Þ

where ð∇2pRiemnÞμν is a tensor constructed out of n
contractions of Riemann and 2p covariant derivatives,
which leave invariant the leading Einstein-Hilbert term.
Those are consistent with the gravitational EFT, but modify
the light cone of the metric. In this way, in some cases,
some spacetime with superluminal fluctuations may be
rendered subluminal and vice versa.3 A related effect
known to occur at one loop is that the paths of massless
particles of different spins do not receive the same amount
of bending as they pass a massive object (e.g., the Sun)
[19–21], which means that despite being massless they
effectively do not see the same metric which further
confuses the question of how to describe the causal
structure.
In response to this, more recent discussions of causality

in the EFT context have focused on causality constraints
implied by S-matrix analyticity. These have the virtue of
being invariant under field redefinitions and are in some
sense true avatars of causality. One such idea is to demand

2Precisely how this is achieved depends on the renormalization
prescription, and we work with the most convenient which is
dimensional regularization.

3Although in general there is no universal procedure to render
all fields (sub)luminal.
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causality à la Wigner by imposing positivity of the
scattering time delay [22,23]. These arguments may
plausibly apply for weakly coupled UV completions
where the irrelevant operators in the EFT arise from tree
level effects of high mass modes, but are already known
to fail for QED where the corrections come from loops
[24]. Another proposal is to use S-matrix positivity
bounds [10,25–28] which constrain the 2 − 2 scattering
amplitude of gravitons and other particles. For example
S-matrix positivity arguments have been applied to
quartic curvature interactions in [29]. Recent works have
applied these ideas more specifically to the weak gravity
conjecture, which focuses on the EFT for gravity and a
Uð1Þ gauge field [30–32]. In what follows we shall see
that positivity bounds will provide very useful guidance
on corrections to propagation speeds.
Phenomenologically it is still pertinent to ask what is

the speed of gravitational waves relative to the metric to
which photons and the Standard Model fields couple
minimally, and this is independent of field redefinitions.
It is well known that the photon speed can be modified
in a curved background due to loop corrections from
charged particles, e.g., electrons, even leading to super-
luminal group velocities at low energies for certain
backgrounds [33,34]. The fact that this low energy
superluminal group velocity is not in conflict with
causality has been discussed extensively in a series of
papers [24,35–42], which essentially identify the require-
ment that the front velocity is luminal as the key
requirement for causality. Apparent low energy violations
of causality in, for instance, scattering time delays are
absent in the UV theory [24]. In the EFT description
these effects come from nonminimal Riemann curvature
coupling to the Maxwell field strength squared, specifi-
cally ΔL ∝ m−2

e
ffiffiffiffiffiffi−gp

RabcdFabFcd, which would arise
from electron loops. These effects arise in the EFT
defined below the scale of the electron, ∇ ≪ me, or
whatever charged particle has been integrated out. While
those operators are present in the EFT we will consider,
they do not affect the speed of gravitational waves in the
same way and are not the focus of our discussion.
Moreover they typically enter at a scale much larger
than what we have in mind in the cosmological context.
For the rest of this discussion, we shall therefore consider
that matter (including photons) minimally couples to the
metric, and equivalence principle violating curvature
terms are not present. We shall rather focus on pure
curvature interactions that can arise equally from inte-
grating out charged and chargeless particles and are
applicable for any matter (dark matter, Standard
Model, inflaton, etc.). In other words, photons will
always be luminal, and the relevant question is what
is the speed of gravitational waves as compared with a
luminal photon, or at least the metric to which the photon
is minimally coupled.

Our principal focus will be to ask what is the speed, by
which we mean the speed defined by the effective light
cone of the low energy equations of motion (specified
precisely in Sec. III A), of gravitational waves on a
spacetime with a long range spontaneous breaking of
Lorentz invariance. Thus we will not be interested in the
rather special shock wave or asymptotically flat geom-
etries considered for example in [17,22,24], but in cases
for which the departure of the speed of sound from unity
can significantly build up over time to lead to clearly
noticeable differences. The clearest example is FLRW
spacetimes since they spontaneously break time diffeo-
morphisms, have a clearly identifiable sound speed, have
sufficient symmetry to be simple such that gravitational
modes decouple from matter at linear order, and have
obvious phenomenological relevance. Nevertheless much
of what we will discuss will be relevant to other more
generic backgrounds. Crucially this means we do not
consider vacuum spacetimes, but require some light fields
to source the breaking. The inclusion of light fields in the
EFT is useful since they themselves provide a clock,
and their interactions with other matter can be used as we
will see, to impose S-matrix analyticity and unitarity
requirements.
Our main conclusions are the following:
(i) In the frame in which matter is minimally coupled,

the leading EFT corrections with signs imposed by
S-matrix locality, unitarity, and analyticity (if the
contribution from the massless graviton t-channel
pole can be ignored) enforce that gravitational waves
are superluminal for any matter satisfying the null
energy condition (NEC).

(ii) On performing a field redefinition, this is equivalent
at leading order (alone) to the generation of universal
gravitationally induced matter interactions (TT de-
formation) which ensure that standard matter fluc-
tuations propagate slower than gravity.

(iii) The precise coefficient that determines the departure
of the propagation speed from unity is connected
with the elastic scattering amplitudes for matter
fields, both those that drive the expansion and
spectator fields.

(iv) If the leading order EFT corrections are set to zero,
the next to leading order corrections that arise from
loops give rise to an epoch and species dependent
modification of the speed of gravitational waves. If
the lightest particle with mass above the Hubble
parameter has spin-0, the speed of gravity is super-
luminal throughout the whole standard cosmological
history of the Universe.

(v) Our results remain valid when considering purely
quartic curvature corrections, such as those known to
arise in the low energy string theory effective action,
for which gravitational waves also travel super-
luminally on NEC preserving backgrounds.
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Stated differently, given the assumed sign of the leading
EFT coefficients (either as inferred from explicit integration
of fields or from positivity bounds or as implied from string
theory), the light cone inferred from the low energy sound
speed of (minimally coupled) matter always lies inside the
light cone of gravitational waves and is never exactly at the
same speed. The superluminality of the propagation of
gravitational waves in the calculation in the original frame
is (far from being in conflict with) consistent with the
requirements of causality implied by S-matrix analyticity.
Arguably we must accept it as a price for the associated
field redefinition ambiguity in metric (1.1); however, as is
already clear from the QED case [33], there are no field
redefinitions which render all modes luminal or sublumi-
nal. We will further show that when additional nonminimal
EFT interactions between gravity and the light fields are
included, the same results hold, namely that positivity
bounds (if valid) enforce the overall superluminality.
The rest of this paper is organized as follows: In Sec. II

we start by reviewing what we need of the standard EFT of
general relativity and how curvature corrections are gen-
erated in the low energy EFT. We emphasize the role played
by field redefinitions and how to take care of them. We then
explore the leading curvature-squared contributions to the
low energy EFT for gravity in Sec. III and identify their
effect on the speed of gravitational waves on FLRWand on
static warped backgrounds. We then discuss the implica-
tions of our findings within the context of standard causal
and local UV completions in Sec. IV and argue that such
completions favor superluminal gravitational waves for
NEC preserving backgrounds. In Sec. V we explore the
possibility of tuning the EFT so that the leading quadratic
curvature corrections cancel, such that the dominant effect
comes from higher (cubic and quartic) curvature correc-
tions. In particular we show that the low energy speed of
the gravitational wave depends on the field content of
the high-energy completion, and particularly on the spin
of the lightest massive particle that is integrated out to
derive the low energy Wilsonian action. We provide an
outlook of our results in Sec. VI. Appendix A derives the
exact curvature-cubed operators in the one-loop effective
action obtained from integrating out a massive scalar.
Appendix B provides the details for the derivation of
the speed of gravitational waves on FLRW in the pre-
sence of curvature-cubed (dimension-6) operators. Finally
Appendix C highlights subtleties in defining the retarded
propagator perturbatively and justifies the approach we
follow in identifying the speed.
Throughout this paper we work in natural units where

the speed of light in vacuum, without any quantum
correction effects, is c ¼ 1. We shall also, as is standard,
slightly abuse the EFT operator counting terminology and
refer to Riemannn operators as dimension-2n operators
even though they include an infinite number of operators of
various dimensions

P
k h

kð∂2hÞn=Mkþ3n−4
Pl þ � � �.

II. EFFECTS OF HEAVY MODES ON
GRAVITY AT LOW ENERGY

Throughout this work, we consider gravity as a low–
energy EFT and look at the effects that heavy fields
minimally coupled to gravity have on the EFT. In other
words we shall focus on the Wilsonian effective action for
the light fields which shall include gravity as well as some
light field that sources the background expansion (e.g.,
radiation, quintessence, inflaton) and look at the influence
of those corrections that arise from integrating out massive
fields for which the masses satisfyMi ≫ H. Our focus will
be on identifying the speed of tensor gravitational waves on
non–maximally symmetric backgrounds, and for most of
Section III onwards we shall focus on cosmological back-
grounds. Working on FLRW has the advantage that at the
linear level tensor fluctuations cleanly decouple from scalar
and vector perturbations, the former of which is usually
coupled to whatever matter drives the cosmological expan-
sion. The FLRW symmetry also allows us to cleanly
distinguish between the speed of gravitational waves and
the speed of matter perturbations. However, we emphasize
that our results hold more generically beyond FLRW as is,
for instance, illustrated in Sec. III C dealing with static
warped geometries.

A. Effective field theory for gravity at low energy

We shall have in mind two different scenarios:
(i) Tree level corrections to the EFT, whereby tree level

effects of massive particles potentially generate
higher curvature interactions.

(ii) Loop level corrections to the EFT coming from
integrating out standard matter (e.g., Standard
Model fields) of any spin, including s ≤ 1.

The latter case is the most interesting since it does not
require any assumptions about an unknown UV comple-
tion, but rather relies on the calculable gravitational effects
of known particles, in particular from Standard Model
particles.

1. Tree level interactions

At tree level, a massive field which is minimally coupled
to gravity (i.e., without explicit curvature couplings) has no
effect on the low energy gravitational propagator if the spin
of that field is less than two s < 2. This can be seen
straightforwardly as a consequence of the scalar-vector-
tensor (SVT) decomposition. At tree level, we can work
with the (partial) UV completion that includes the addi-
tional massive mode as part of the Lagrangian. If this mode
has spin s < 2, then it has no tensor component and so will
at the level of quadratic fluctuations completely decouple
from the gravitational tensor modes. Thus integrating out
the massive mode at tree level will provide no contributions
to the gravitational fluctuations. Stated differently, it is not
possible to integrate out massive states with s < 2 at tree
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level and obtain higher curvature interactions that change
the speed of gravitational waves.
The situation changes if we integrate out at tree level

massive spins with s ≥ 2. Any spin of s ≥ 2 will by virtue
of the helicity or SVT decomposition effectively contain
spin 2 states, or more precisely tensor modes. Even at
quadratic order these states could mix with the usual
massless graviton, generating modifications to its speed
of propagation. We shall see explicit examples of this
below. Obvious examples are string theory, where an
infinite tower of massive spin states arise, or extra dimen-
sional models where the massless graviton in higher
dimensions can be viewed as a massless graviton in four,
together with an infinite tower of massive spin 2 states. See
Refs. [43,44] for examples from superstring theory where
integrating out massive higher spins at tree level leads to
specific types of quadratic and cubic curvature operators to
the low energy EFT for gravity.
Related arguments tell us that as soon as we allow

for massive spin 2 states, in order to construct a weakly
coupled UV completion of gravity we must necessarily
include an infinite number of spin particles. Recent versions
of these arguments have been given in [22,45,46] but they
follow straightforwardly from the observation that the
scattering amplitude of a massive spin 2 particle violates
the fixed t Froissart bound by virtue of the s2 growth of its
t-channel pole, and in a weakly coupled UV completion this
can only be turned around by an infinite number of powers
of s resumming into a softer behavior, which necessitates an
infinite number of spin states4 (e.g., see [47]).

2. Loop level interactions

At loop level the situation is quite different. An internal
loop, even of a particle of spin s ≤ 1, effectively contains
states of total angular momenta of arbitrary spin, as is
implied by the partial wave expansion. As such loop
corrections from the standard matter can, and do, correct
the propagation of gravitational waves. This effect is of
course tiny, being loop suppressed; nevertheless it is finite
(up to local counterterms), calculable, and controlled from
the EFT point of view. It is thus not necessary to know
what the appropriate theory of quantum gravity is in order
to determine the magnitude of this effect. In what follows
we will be integrating out heavy modes of mass M, with
H ≪ M ≪ MPl, where H is the typical scale at which we
are interested in probing our low energy EFT for gravity
(for instance, H is the typical scale of the curvature, and
we will consider modes with frequency H ≪ k ≪ M). We
will only be integrating out loops of “matter fields”; i.e.,
there will be no gravitons in the loops. This is consistent
with standard Wilsonian EFT, whereby we first integrate
out massive states to construct the low energy EFT, from

which light loops may be computed afterwards. The
former effects are captured by the Wilsonian effective
action, the latter by the 1PI effective action. When
focusing on the Wilsonian effective action, gravity, being
a light field, is treated “classically,” and so our results are
largely independent of the precise details of quantum
gravity and the UV completion of gravity at the Planck
scale (or string scale).
To be more concrete, we consider gravity (standard GR)

minimally coupled to light fields one or more of which will
be used to generate the cosmological backgrounds, and
heavy fields of mass Mi which define the UV completion.
In the case of loop calculations we shall consider heavy
fields of spin-s ¼ 0; 1=2, or 1, but for tree level UV
completions we have in mind any spin. We denote the
massive spin fields generically by Φ, and so schematically
we have the action

LUV ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ Lðl:e:Þ

ψ ðg;ψÞ þ Lðh:e:Þðg;ΦÞ þ Lc:t

�
;

ð2:1Þ

where Lðl:e:Þ
ψ is the low energy Lagrangian for the low

energy fields (denoted generically as ψ ) with masses mψ ∼
OðHÞ ≪ M (hence including massless modes), whose role
will be to generate the cosmological background, while
Lðh:e:Þðg;ΦÞ represents the dynamics of the heavy fields,
with massesMi ≳M. We focus in what follows on minimal
couplings between both the light and heavy fields and
gravity, meaning that the fields Φ and ψ do not directly
couple to the curvature below the Planck scale.5

At loop level, it is well known that integrating out any
massive field Φ would lead to divergent contributions to
the cosmological constant, as well as to R and curvature-
squared terms R2, R2

μν, and R2
μνρσ. In the EFT context, in

order to deal with these divergences we must add
ffiffiffiffiffiffi−gp

,ffiffiffiffiffiffi−gp
R and

ffiffiffiffiffiffi−gp
R2,

ffiffiffiffiffiffi−gp
R2
μν,

ffiffiffiffiffiffi−gp
R2
μνρσ counterterms.

Hence we must include in the UV action

Lc:t ¼ −ΛUV þ 1

2
M2

Pla
UVRþ CUV

1 R2 þ CUV
2 R2

μν

þ CUV
3 R2

μνρσ þ � � � ; ð2:2Þ

in addition to any other matter counterterms. The first two
terms are just a redefinition of the cosmological constant
and Planck mass and may be ignored in what follows as
their consequences are straightforward. The latter terms are
as we will see nontrivial and directly affect the speed of
propagation of gravitational waves.

4The pole itself cannot be canceled as its residue is positive by
unitarity.

5We would of course expect the EFT for gravity to include
operators that mix the Riemann curvature and the other fields
through Planck scale suppressed terms. Such types of interactions
are considered in Sec. IV D.
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3. Wilsonian effective action

To construct the low energy Wilsonian effective action,
we integrate out (both at tree and loop level) the heavy
modes in the schematic manner6

eiSIRðg;ψÞ ¼
Z

DΦeiSUVðg;ψ ;ΦÞ: ð2:3Þ

The resulting low energy effective theory will take the form

LIR ¼ ffiffiffiffiffiffi
−g

p �
−ΛIR þM2

Pl

2
Rþ Lðl:e:Þ

ψ ðg;ψÞ þ CIR
1 R2

þ CIR
2 R2

μν þ CIR
3 R2

μνρσ þ � � �
�
: ð2:4Þ

More generally Lðl:e:Þ
ψ ðg;ψÞ will also receive corrections if

the light field couples to the heavy fields integrated out. An
obvious and well-known example is if the light field is the
photon, and integrating out charged particles will result at
leading order in addition to the Euler-Heisenberg terms, the
RFF interactions considered in [33] (see also [34,49]). In
the interests of simplicity we will neglect these corrections
for now, but consider examples of them in Sec. IV D.
The IR coefficients that enter the low energy EFT will

differ from their UV values by virtue of both loop and tree
effects,

CIR
1;2;3 ¼ CUV

1;2;3 þ ΔC1;2;3: ð2:5Þ
The natural scale of the corrections ΔC1;2;3 is of order the
number of fields integrated out N, ΔC1;2;3 ∼ N. In what
follows we will see that positivity bounds generically imply
that two specific combinations of these coefficients satisfy

ΔCW2 ¼ 1

2
ΔC2 þ 2ΔC3 > 0; ð2:6Þ

ΔCR2 ¼ ΔC1 þ
1

3
ΔC2 þ

1

3
ΔC3 > 0: ð2:7Þ

Indeed, we shall further argue, provided we may apply
positivity bounds even in the presence of massless graviton
t-channel poles, as for example recently argued in [32],
that7 (see also Ref. [55] for related discussions on whether
this argument is justified)

CIR
W2 ¼ 1

2
CIR
2 þ 2CIR

3 > 0: ð2:8Þ

It is of course not possible in the EFT context to fix the
precise values of CUV

1;2;3 or C
IR
1;2;3 in the absence of an explicit

matching calculation onto a UV completion. Hence we are
instructed to compare them with observations. Precisely
one such observation which is at least in principle possible
to measure is the speed of gravitational waves relative to
that of light. We shall begin in Sec. III B by focusing on the
case where these terms are present. In Sec. VAwe shall set
them to zero and focus on the finite R3 terms that arise from
integrating out matter loops.

4. Inclusion of light loops

As we have discussed the Wilsonian effective action LIR
includes loops from heavy fields but not from light fields.
As such it is local and is the typical starting point for
cosmological and phenomenological analyses. It is inter-
esting to ask what would happen if we integrated out the
light fields, in particular the massless graviton and photon.
In this case we should be working with the 1PI effective
action which is nonlocal and difficult to deal with. There is
considerable work on this in the literature [56–64] and
results are often presented in terms of a curvature expan-
sion. At the level of curvature-squared terms, the contri-
butions from loops of massless (or light) fields may be
modeled by the following proxy effective action

ΔLlight−loops ¼ ĈIR
1 R ln

�
−□ − iϵ

μ21

�
R

þ ĈIR
2 Rμν ln

�
−□ − iϵ

μ22

�
Rμν

þ ĈIR
3 Rμνρσ ln

�
−□ − iϵ

μ23

�
Rμνρσ: ð2:9Þ

This has been used in the cosmological context in [65]. It is
clear that due to the logarithm, the massless loops can
dominate over the heavy loop contributions, in particular in
the IR. However, if as we will assume, the number of heavy
fields is much greater than the number of massless or light
fields, then we expectCi ≫ Ĉi and so it will be sufficient to
focus on the heavy contributions.

B. A word of caution on field redefinitions

As is well known, the R2 and R2
μν interactions are

redundant operators and are therefore removable with field
redefinitions. Since the S-matrix is invariant under field
redefinitions, it seems appropriate to ignore these contri-
butions. This would be true for pure gravity, but when
gravity is coupled to matter, all the field redefinition does is
shift the same effect into another operator that arises at the
same scale, specifically into a pure matter contribution that

6At loop level the process of “integrating out” may lead to
incorrect conclusions about the scales of coefficients, and so it is
better to phrase this in terms of a “matching” calculation [48].
This subtlety will, however, not be important for us since we will
be able to rephrase our result in terms of dispersion relations
which are universal.

7It is worth noting that this is the opposite sign from what is
required for the quadratic gravity scenario [50–53]. However, it is
expected that these models will have different causality and
analyticity structure [51,54] and hence the usual positivity
bounds are unlikely to apply.

CLAUDIA DE RHAM and ANDREW J. TOLLEY PHYS. REV. D 101, 063518 (2020)

063518-6



produces the same effect. In general field redefinitions of
the metric change the “speed” of propagation by virtue of
modifying the background metric with respect to which the
speed is identified. However, field redefinitions do not
change the relative speed. For instance, if gravitational
waves travel faster than photons in one “‘field frame,” they
do so in all field frames. That is in the cosmological context

c2sðtensorÞ
c2sðmatterÞ is invariant under field redefinitions: ð2:10Þ

The relative causal structure is kept intact [18]. Thus the
question of whether gravitational waves are superluminal
or subluminal with respect to light is a frame independent
question.
For backgrounds with FLRW symmetry, it is always

technically possible to perform a field redefinition that
renders the gravitational waves luminal. This is largely a
triviality, due to the symmetry, the difference between the
metric which matter couples to and the metric on which
gravitational waves propagate is just a rescaling of the time
component of the metric combined with an overall con-
formal factor (see e.g., [66]). Given whatever field is used
to spontaneously break time diffeomorphism, ψ , we can
always perform a field redefinition in the manner (as an
example)

gμν → AðψÞgμν þ BðψÞ∇μψ∇μψ ; ð2:11Þ

and engineer the functions A and B so that for a given
background the metric travels luminally. However, there is
in general no single local and covariant background field
redefinition that would render gravitational modes luminal
around all backgrounds and so this procedure while
comforting is also misleading. At one loop level and higher
order, we find Riemann cubed terms in the effective action
generated from loops (5.1), part of which are Weyl cubed
terms. These terms cannot be removed with a local field
redefinition since they are not proportional to the leading
equations of motion. Although these terms do not contrib-
ute on FLRW backgrounds, for backgrounds with less
symmetry they do change the speed of gravitational waves
and yet there is clearly no local field redefinition that
removes them.
In this work we shall mainly focus on dimension-four R2

and dimension-six (R3 and R∇2R) curvature operators, as
well as specific dimension-eight R4 curvature operators in
Sec. V B. Dimension-four curvature operators are naturally
the leading contributions, but if those vanish (as will be
considered in Sec. V) the dimension-six curvature oper-
ators are then the leading contributions.

1. Taking care of the dimension-four curvature operators

In discussing EFT descriptions of gravitational waves
from mergers, in [67] it was argued that the dimension-four

could be removed via a field redefinition and are hence
irrelevant for the low energy EFT relevant for gravitational
waves (GWs). While it is true that such operators could be
removed via field redefinitions, this would then affect

Lðl:e:Þ
ψ ðg;ψÞ and lead to nonminimal couplings with low

energy matter fields (and in particular photons), hence
leading to a nonstandard light cone for light and other light
particles. This effect is less important for the analysis there,
but is crucially important for cosmological analyses. Here
we largely insist on keeping a minimal coupling for the low
energy matter fields and hence avoid performing such field
redefinitions except where it is useful to give an alternative
explanation of the same phenomena and in deriving
positivity bounds.

C. Relevance of the dimension-six curvature operators

As for the dimension-six curvature operators, a subset of
them are not removable by field redefinitions (namely the
Weyl cubed terms). We shall consider those that arise in the
specific computations of loops from particles of spin s ≤ 1
in Sec. V. It was argued in [67] in the application to
gravitational waves from mergers that those terms should
be suppressed, and one should focus instead on dimension-
eight operators. This argument was on the grounds that for
weakly coupled UV completions, these terms would arise
at a scale M2

PlRiemann3=M48 where M is the scale of
particles that have been integrated out. In order for the
Riemann3 term to have an interesting effect for gravita-
tional wave astronomy, the scaleM would have to be taken
so low that we would have observed the effect of the
associated additional gravitationally coupled states that
arise at the scale M. However, if the dimension-six
operators are suppressed, the dimension-eight operators
must be further suppressed since it equally holds for
dimension-eight operators that if they arise in a weakly
coupled UV completion, they do so in the manner
M2

PlRiemann4=M6, and then the UV completion would
need an infinite number of states of spin s > 2 arising at the
same low scaleM. This is transparent by their influence on
the speed of propagation of gravitational waves, effects
which could not arise at tree level in a theory of massless
spin 2 and massless/massive spin s < 2. Thus it does not
make sense to argue on phenomenological grounds that the
dimension-eight operators are larger than the dimension-six
ones. Lower dimension operators are always more signifi-
cant, unless they are suppressed by a symmetry, which is
not the case here.

8In a weakly coupled UV completion, we assume that there
is a small dimensionless coupling constant g which controls the
loop expansion of the UV theory SUV ¼ g−2S0. The implicit
assumption is that M2

Pl ¼ M2=g2 which explains why tree level
effects will come with M2

Pl in front but one loop effects will have
no power ofMPl. In the case of string theory,M is the string scale
and g the string coupling constant (dilaton).
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In this work we shall not assume any such preconditions
and will consider the (albeit small) effect of all dimension-
four and -six operators from loop corrections where they
rather arise at the respective scales Riemann2, Riemann3=M2

from integrating out particles of any spin, including Standard
Model particles of mass M. By relinquishing ourselves
from the constraints of purely tree level effects, we may
consider lower mass scales M without being ruled out by
other gravitational constraints. We refer to Appendix A
for details on how integrating out a massive scalar field
leads to specific Riemann2 and Riemann3=M2 operators.
The contributions from integrating out generic spin s < 2
fields can be found in [59]. We will also consider those
dimension-eight operators known to arise in the string
effective action in from α0 corrections in Sec. V B.

III. TENSOR MODES ON A BACKGROUND,
LEADING EFT CORRECTIONS

In what follows we shall remain agnostic on the precise
low energy field content that leads to the cosmological
solution and only assume that it is as “standard” as
possible; in particular we assume that the effective degrees
of freedom relevant for the low energy dynamics (and the
cosmological background) are of spin s < 2 (in particular it

excludes massive gravity [68,69]) and couple minimally to
gravity.9

A. Identifying speeds in an EFT context

1. Reorganizing EFT expansion

Before proceeding to explicit calculations, it is worth
discussing how we identify the speed of propagation in a
time or space dependent setting in which we are working,
with a truncated EFT with higher derivative operators.
Throughout the following discussion we mainly have
FLRW in mind, although the reorganization of the EFT
and the way we identify the speed is fully generalizable to
any other type of background.
In an EFT higher derivative operators should be dealt

with perturbatively, and we may only draw conclusions
from them in the regime in which perturbation theory in
these higher derivative operators is valid. For instance,
working with the curvature-squared interactions introduces
fourth order derivatives in the equations of motion. Directly
perturbing will give an effective equation of motion for
gravitational waves written in momentum space of the
schematic form

�
1þ b̃2ðη; kÞ

M2
Pl

�
∂2
ηhkðηÞ þ

�
ã1ðηÞ þ

b̃1ðη; kÞ
M2

Pl

�
∂ηhkðηÞ þ

�
ã0ðη; kÞ þ

b̃0ðη; kÞ
M2

Pl

�
hkðηÞ

þ b̃4ðηÞ
M2

Pl

∂4
ηhkðηÞ þ

b̃3ðηÞ
M2

Pl

∂3
ηhkðηÞ þOðM−4;M−2

Pl M
−2;M−4

Pl Þ ≈ 0: ð3:1Þ

To simplify the procedure we may first perform a rescaling of field variables hkðηÞ → ΩðηÞhkðηÞ so that for the
resulting equation the leading friction term ã1ðηÞ vanishes and the resulting momentum space equation is schematically of
the form �

1þ b2ðη; kÞ
M2

Pl

�
∂2
ηhkðηÞ þ

b1ðη; kÞ
M2

Pl

∂ηhkðηÞ þ
�
a0ðη; kÞ þ

b0ðη; kÞ
M2

Pl

�
hkðηÞ

þ b4ðηÞ
M2

Pl

∂4
ηhkðηÞ þ

b3ðηÞ
M2

Pl

∂3
ηhkðηÞ þOðM−4;M−2

Pl M
−2;M−4

Pl Þ ≈ 0: ð3:2Þ

In the limit H ≪ k=a ≪ M we may use the Wentzel-Kramers-Brillouin (WKB) approximation to determine a dispersion
relation which has four powers of frequency and hence twice as many solutions as that of a second order differential
equation.10 The additional solutions of this dispersion relation are the ghostly states that arise from the truncation and whose
solutions should be ignored in the EFT context. What we are interested in are only the solutions that are continuously
connected with the solutions that arise in the limit MPl → 0 for which the equation of motion is second order,

∂2
ηhkðηÞ ¼ −a0ðη; kÞhkðηÞ þOðM−2

Pl Þ: ð3:3Þ

10The higher powers in the dispersion relation are always unphysical and simply signal the breakdown of perturbation theory when
k ∼M. At high energies the dynamics of the modes that have been integrated out should be accounted for. Note that the additional modes
one would obtain in any truncated theory are not and should not be directly identified with the degrees of freedom present in the high
energy theory [70].

9Conformal couplings to gravity can be dealt with by first diagonalizing and then working with the appropriate minimally coupled
fields.
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To identify these, we can use the lower order equations and substitute them either into the higher order ones or more
consistently at the level of the Lagrangian and perform field redefinitions to remove higher order time derivatives. Then to
the desired order, the equation of motion can be reexpressed as a second order in time derivatives equation of motion

�
1þ b2ðη; kÞ

M2
Pl

�
∂2
ηhkðηÞ þ

b1ðη; kÞ
M2

Pl

∂ηhkðηÞ þ
�
a0ðη; kÞ þ

b0ðη; kÞ
M2

Pl

�
hkðηÞ

þ b4ðηÞ
M2

Pl

∂2
ηð−a0ðη; kÞhkðηÞÞ þ

b3ðηÞ
M2

Pl

∂ηð−a0ðη; kÞhkðηÞÞ þOðM−4;M−2
Pl M

−2;M−4
Pl Þ ≈ 0: ð3:4Þ

2. Identifying the speed

We could at this stage use the WKB approximation to
define an effective dispersion relation. Indeed we will in
general only be interested in the effective speed of
propagation in the region H ≪ k=a ≪ M in which the
EFT is under control and the modes are sufficiently
subhorizon that the WKB approximation is valid and it
is meaningful to talk about waves. However, already for
gravitational waves in GR, such an analysis would imply a
superluminal group velocity when the effective mass is
negative. For instance for GR, to implement the WKB
approximation we begin with the ansatz

hkðηÞ ¼
Affiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωðη; kÞp eikz−i
R

η dη0ωðη0;kÞ; ð3:5Þ

which leads to the exact equation

ω2ðη; kÞ ¼ k2 −
a00

a
−
1

2

�
ω00

ω
−
3

2

ω02

ω2

�
: ð3:6Þ

The WKB approximation amounts to solving this equation
iteratively to any desired order. The leading iteration
ω2ðη; kÞ ¼ k2 − a00=a would for example during inflation,
where −a00=a is negative, give superluminal dω=dk. This is
clearly meaningless since an exact construction of the
retarded propagator on FLRW shows that it only has
support on and inside the light cone [71]. The WKB
approximation assumes k2 ≫ −a00=a and hence is not
accurate enough to account for the effective mass term
in the exponent; all we can infer from it is ω2 ≈ k2 and
that if this were the exact equation the front velocity
limk→∞ ω=k would be luminal.11 What is relevant from
the perspective causality is neither the phase or group

velocities which as we see are poorly defined in this time
dependent setting, but the causal properties of the hyper-
bolic equations defining the retarded Green’s functions.
This is entirely determined by the light cones of the
hyperbolic metric defining the equation.
With this in mind we reorganize the EFT expansion in a

manner suitable to determine the retarded propagator
perturbatively, as a second order in the time hyper-
bolic system plus (perturbative) higher spatial derivative
corrections. In doing so it is worth emphasizing that in
general the effective friction term, in the above example
ðb1 − b4∂ηa0 − a0b3Þ∂ηhk, is typically k-dependent and
an additional rescaling hkðηÞ → ð1þ Ωðk; ηÞ=M2

PlÞhkðηÞ is
helpful in order to remove any k-dependence in the friction
term before determining the propagation speed. Once this is
done, the equation of motion for tensors can be put in the
form

∂2
ηhkðηÞ ¼ −

X∞
n¼0

βnðηÞk2nhkðηÞ; ð3:7Þ

which is naturally reorganized as (to any desired order in
the EFT expansion)

∂2
ηhkðηÞ þ β1ðηÞk2hkðηÞ þ β0ðηÞhkðηÞ

¼ −
X∞
n¼2

βnðηÞk2nhkðηÞ: ð3:8Þ

The left-hand side (LHS) defines a hyperbolic system
with propagation speed c2s ¼ β1ðηÞ and effective mass
m2

eff ¼ β0ðηÞ. Temporarily ignoring the right-hand side
(RHS), just as in the GR case, the presence or not of
the effective mass is irrelevant to the causal structure of
the retarded propagator. The latter is determined by the
effective light cone of the two derivative=k2 terms. The full
Green’s function can be determined perturbatively by
iterating the relation

∂2
ηGk

retðη; η0Þ þ β1ðηÞk2Gk
retðη; η0Þ þ β0ðηÞGk

retðη; η0Þ

¼ −
X∞
n¼2

βnðηÞk2nGk
retðη; η0Þ þ δðη − η0Þ: ð3:9Þ

11The WKB approximation is still under control, and it is
just its interpretation that is failing. For example in the explicit
case of gravitational waves in de Sitter a ¼ −1=ðHηÞ, the
exact solutions are Hankel functions whose WKB form is
h ∼ k−1=2eikz−ikηð1þ α1=ðkηÞ þ

P∞
n¼2 αn=ðkηÞ2Þ. This follows

from (3.6) by taking the leading iteration as ω ¼ k and treating
all high order terms perturbatively outside the exponent rather
than inside it. In fact in this special case the series terminates
αn ¼ 0 for n ≥ 2, and so this is the exact solution.
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At any finite order in this expansion the causal structure of
Green’s function will be determined by zeroth order
Green’s function Gk

0 retðη; η0Þ

∂2
ηGk

0 retðη; η0Þ þ β1ðηÞk2Gk
0 retðη; η0Þ þ β0ðηÞGk

0 retðη; η0Þ
¼ δðη − η0Þ; ð3:10Þ

which has support on and inside the light cones defined by
the effective metric [71]

ds̃2 ¼ −c2sðηÞdη2 þ dx⃗2: ð3:11Þ

Hence this defines what we mean by the low energy speed
c2s ¼ β1ðηÞ. The above procedure may be easily generalized
to any order in time derivatives and hence any order in the
EFT expansion.12

In a fundamentally Lorentz invariant theory, all coef-
ficients βn → 0 for n ≥ 2 when the spontaneous breaking is
removed, and similarly β1 → 1. Thus while the corrections
to the sound speed from unity will be small, suppressed by
at least one power of the maximal symmetry breaking, e.g.,
by one power of Ḣ=M2

Pl in FLRW, the same will be true of
all the coefficients βn for n ≥ 2 which must similarly be
suppressed by one power of Ḣ=M2

Pl.
13 Hence, as long as

k=a is small in comparison to the momentum EFT cutoff,
the dominant low energy modification to the propagation
will be captured by β1 − 1, that is,

jðβ1ðηÞ − 1Þk2j ≫
X∞
n¼2

jβnðηÞjk2n: ð3:12Þ

The way in which we have defined the low energy speed is
easily generalizable to perturbations around any spacetime
and will always predict cs ¼ 1 for pure GR minimally
coupled to classical matter. The merit in its definition will
be seen in that it is naturally connected with precise terms
in scattering amplitudes that are potentially constrained by
means of S-matrix positivity bounds as we discuss
in Sec. IV.

B. Curvature-squared corrections on FLRW

1. Dimension-four curvature operators

We begin in this section with the leading curvature
corrections to our EFT, the R2 corrections. To reiterate,
these may arise either from tree level or loop level effects of
heavy fields, and are to this order

L ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ Ll:e:ðg;ψÞ

þ C1R2 þ C2R2
μν þ C3R2

μνρσ þ � � �
�
; ð3:13Þ

where the ellipses represent higher-order operators in the
EFT expansion, Ll:e:ðg;ψÞ is the Lagrangian for the low
energy fields ψ which we assume here are all minimally
coupled to gravity and do not include fields ψ with spin 2 or
more. Here and in what follows Ci denotes the IR value
CIR
i . In four dimensions R2

μνρσ can be written in terms of the
Gauss-Bonnet term, which does not contribute to local
dynamics, plus the remaining curvature-squared terms, and
so these coefficients are better written in terms of the
coefficients of Gauss-Bonnet, Weyl squared, and Ricci
scalar squared

C1R2 þ C2R2
μν þ C3R2

μναβ

¼ CR2R2 þ CW2W2
μναβ þ CGBGB; ð3:14Þ

where the Gauss-Bonnet term is

GB ¼ R2
μναβ − 4R2

μν þ R2: ð3:15Þ

The precise relations are C1 ¼ CR2 þ CGB þ 1
3
CW2 , C2 ¼

−2CW2 − 4CGB, C3 ¼ CW2 þ CGB. Since the Gauss-
Bonnet term is topological in four dimensions effectively
for the rest of this section, we shall be working with the
leading EFT corrections to GR as follows:

L ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ Ll:e:ðg;ψÞ þ CR2R2 þ CW2W2

μναβ

�
:

ð3:16Þ

As an example, we show in Appendix A how loops of a
massive scalar field of mass M leads to a contribution to
such curvature-squared contributions with [see Eq. (A28)]

CR2 ¼ 5

8

1

16 × 240π2
log

�
Λ2

M2

�
;

CW2 ¼ 1

4

1

16 × 240π2
log

�
Λ2

M2

�
: ð3:17Þ

These expressions need to be supplemented by UV
counterterms which remove the Λ dependence. They
confirm, however, the general expectation that CW2ðM1Þ −
CW2ðM2Þ > 0 for M1 < M2 which follows from dispersive
arguments (4.34). Thus as we flow to the IR, the coef-
ficients CW2 and CR2 will increase.

2. Tensor modes on FLRW

We now consider a FLRW background in conformal time
η, with metric γμν ¼ a2ημν, and introduce the transverse

12Attempting to solve for the retarded Green’s function
perturbatively directly about the GR result would lead to a
secular growth as explained in Appendix C.

13Or higher derivatives ofH, since on de SitterH ¼ const there
will be no modification to the speed by virtue of de Sitter
invariance.
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and traceless tensor fluctuations hij ¼
P

σ hσε
σ
ij, where the

sum is over the two polarizations σ ¼ þ;× and εþ;×
ij

represents the two polarization tensors. In what follows,
we shall omit any mention of those two polarizations and
simply denote the tensor modes as h, while it is of course
understood that a sum over both polarizations is implicit.
The tensor modes are normalized so that the full metric is
given by

gij ¼ γij þ ahij: ð3:18Þ
We use the standard notation, H ¼ ȧ=a ¼ a0=a2 is the
Hubble parameter, with dots referring to derivatives with
respect to physical time t, and primes with respect to
conformal time η.

3. Einstein-Hilbert

The Einstein-Hilbert term then leads to the standard
canonical kinetic term for the tensor modes,

LðhhÞ
EH ¼ M2

Pl

4
a2hða−2□η − 4H2 − 3ḢÞh; ð3:19Þ

where□η ¼ −∂2
η þ ∇⃗2 is the d’Alembertian on Minkowski

spacetime, with ∇⃗2 being the standard three-dimensional
Cartesian Laplacian (that will be replaced by the momenta
−k2 below).
Assuming that all the couplings to gravity involved in

Lðl:e:Þ
ψ ðg;ψÞ are minimal and there are no fields ψ with spin

2 or more, then the matter field Lagrangian leads to the
following “effective mass” term for the tensor fluctuations
on FLRW,14

ffiffiffiffiffiffi
−g

p
Lðl:e:Þ
ψ ðg;ψÞðhhÞ ¼ M2

Pl

2
a2ð3H2 þ 2ḢÞh2; ð3:20Þ

leading to the standard low energy contribution

LðhhÞ
EH;ψ ¼ M2

Pl

4
a2h

�
1

a2
□η þ 2H2 þ Ḣ

�
h: ð3:21Þ

4. Curvature-squared contribution

We shall now derive the equation of motion for tensor
modes on including the R2-operators which either arise as
logarithmically running terms coming from matter loops or

may independently arise from tree level corrections from
fields of spin s ≥ 2. The contributions from the R2-
operators are of the form

LðhhÞ
dim 4 ¼ a2hÔdim 4h; ð3:22Þ

where Ôdim 4 is a fourth order operator given by

Ôdim 4 ¼
1

a4
g1□2

η þ
1

a3
g3□η∂η þ

1

a2
g4□η þ

1

a
g5∂η

þ 1

a2
g7∇⃗2 þ g8; ð3:23Þ

with the coefficients expressed as

g1 ¼ CW2 ; ð3:24Þ

g3 ¼ 2CW2H; ð3:25Þ

g4 ¼ 6CR2ð2H2 þ ḢÞ þ 6CW2Ḣ; ð3:26Þ

g5 ¼ −6CR2ð4HḢ þ ḦÞ − 4CW2ðHḢ þ ḦÞ; ð3:27Þ

g7 ¼ −4CW2Ḣ; ð3:28Þ

g8 ¼ 6CR2ð4H4 − 10H2Ḣ − 8Ḣ2 − 11HḦ − 2H⃛Þ
− CW2ð2H2Ḣ þ Ḣ2 þ 3HḦ þ H⃛Þ: ð3:29Þ

Working perturbatively in the dimension-four curvature
operators, following the approach discussed in Sec. III A,
we may substitute the relation for □ηh in terms of h as
derived from (3.21),

□ηh ¼ a2ð−2H2 − ḢÞh: ð3:30Þ

This perturbative substitution can be performed on the first
three terms of the operator Ôdim 4 defined in (3.23) so that
only the last three terms remain with slightly altered
coefficients,

Ôdim 4 ¼
1

a
g̃5∂η þ

1

a2
g7∇⃗2 þ g̃8: ð3:31Þ

The expressions of g̃5;8 is irrelevant for the rest of the
discussion but we include them for completeness,

g̃5 ¼ g5 þ 2g1ð4H3 þ 6HḢ þ ḦÞ þ g3ð−2H2 − ḢÞ;
ð3:32Þ

g̃8 ¼ g8 þ g1ð16H4 þ 34H2Ḣ þ 9HḦ þ H⃛ þ 7ðḢÞ2Þ
þ g3ð−4H3 − 6HḢ − ḦÞ þ g4ð−2H2 − ḢÞ: ð3:33Þ

At this stage we see directly that to this order, the modified
equation of motion for the tensor modes on FLRW is

14This result follows for quite general Lagrangians; for
instance, for a single scalar ψ it follows for all interactions of
the form PðX;ψÞ ¼ Pðð∂ψÞ2;ψÞ as well as a generalized cubic
Galileon Gðð∂ψÞ2;ψÞ□ψ . However, we do not consider other
Horndeski operators as well as beyond Horndeski, as these
involve nonminimal couplings to gravity and already induce a
sound speed that differs from luminal at low energy on cosmo-
logical backgrounds without even accounting for the effect of
heavier modes.
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1

a2

�
−∂2

η þ
�
1 −

16CW2Ḣ
M2

Pl

�
∇2 þ 4ag̃5

M2
Pl

∂η

�
h ¼ m2

0h:

ð3:34Þ

The friction term can easily be taken care of by performing
a rescaling of the field which will keep the second space
and time derivatives unaffected and simply modify the
effective mass term by order H2=M2

Pl corrections. As a
result we can directly read off the effective low energy
sound speed which as we see gets affected by theWeyl term
(and solely the Weyl term) on this spontaneously Lorentz
breaking background,

c2s ¼ 1þ 16CW2ð−ḢÞ
M2

Pl

þO
�
H4

M4
Pl

�
: ð3:35Þ

Interestingly, we see that the effective sound speed is
superluminal on a null-energy condition satisfying back-
ground Ḣ < 0 as soon as CW2 > 0. At this stage we may be
inclined to conclude that CW2 ought to be negative for any
consistent (causal) UV completion; however, this conclu-
sion would be wrong, or at least highly premature, as we
will argue in what follows (see Sec. IV).
In a weakly coupled UV completion, the natural scale

for CW is M2
Pl=Λ2 where Λ is the scale of new tree level

physics. Hence the correction to the sound speed may be as
large as ∼jḢj=Λ2. This is particularly interesting in the case
of inflationary models where the hierarchy between jḢj1=2
and the scale of new physics Λ is not necessarily large.

C. Static warped geometries

Although our main focus is on cosmological spacetimes,
it is worth noting that the above analysis trivially general-
izes to static warped geometries with ISOð1; 2Þ symmetry.
By analytic continuation we can equally well consider
metrics with nontrivial dependence on only one space
dimension, e.g., y and associated matter profiles

ds2 ¼ aðyÞ2ðdy2 − dt2 þ dx2 þ dz2Þ þ aðyÞhabdxadxb;
ð3:36Þ

where hab are transverse and traceless with respect to the
ðt; x; zÞ subspace. Due to the fact that these solutions
have the same amount of symmetry as the FLRW solutions,
the equivalently defined tensor modes decouple from the
matter degrees of freedom which source the background y
dependence. Repeating the previous analysis, we find
similarly a fourth order differential equation which may
be reorganized into a second order differential equation
with associated propagation speed along the y direction (the
speed in the x-z plane is luminal by symmetry)

c2sðyÞ ¼ 1þ 16CW2ð−H0
yðyÞÞ

M2
Pl

þO
�
H4

M4
Pl

�
; ð3:37Þ

where HyðyÞ ¼ d ln aðyÞ=dy and H0
yðyÞ ¼ dHyðyÞ

aðyÞdy. As in the

cosmological case, for matter satisfying the null energy
condition we have

H0
yðyÞ < 0; ð3:38Þ

and so we again conclude that if CW2 > 0, then the tensor
modes propagate superluminally. This is consistent with the
arguments given below in Sec. IV which apply for any
geometry.

D. Sound speed frequency dependence

We have seen that the speed of gravitational waves is
superluminal in the low energy region for CW2 > 0. Since
this calculation is performed in an EFT context, we can
only trust the calculation of c2s up to and including 1=M2

Pl
corrections without including higher order operators in the
EFT Lagrangian. Nevertheless it is instructive to see what
happens if we temporarily assume that the R2 andW2 terms
define the exact Lagrangian and compute the speed to
higher order. The next order correction takes the form

ω2 ≈
�
1þ 16CW2ð−ḢÞ

M2
Pl

− 1024C3
W2

�
3Ḣ2 − 6H2Ḣ þ 5HḦ − H⃛

M4
Pl

�
k2

a2M2
Pl

þO
�
H4k4

M8
Pl

��
k2: ð3:39Þ

We see that at higher momenta, the departure of the speed
from unity is reduced regardless of the sign of CW2 . Indeed,
determining the exact form of the dispersion relation shows
that the speed of sound always asymptotes to unity as
k → ∞. This is simply because, at high energies in the
truncated Lagrangian, theW2 terms dominate the dispersion
relation, the leading term is a Lorentz invariant □2 operator.
We stress again that we cannot trust this calculation in the
EFT context since other operators will kick on; however, it is
indicative of a general expectation that even on a background

which spontaneously breaks Lorentz invariance, for mo-
menta much larger than the scales of the background it will
always be the leading Lorentz invariant operators which
dominate and guarantee a luminal front velocity

lim
k→∞

c2sðkÞ ¼ 1: ð3:40Þ

Indeed taking seriously the fourth order equation inferred
from (3.22) and (3.21), it is helpful to note that to this order
the effective action can be rewritten as
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SðhhÞ ¼
Z

d4x

�
g1
a2

ð□ηhÞ2 þ
�
M2

Pl

4
þ g4

�

× ðḣ2 − ð∇⃗hÞ2Þ − g7ð∇⃗hÞ2 þ a2DðηÞh2
�
: ð3:41Þ

This can be rewritten as a second order system by intro-
ducing an auxiliary variable Ψ,

SðhhÞ ¼
Z

d4x

�
Ψ□ηh −

1

4
a2g−11 Ψ2 þ

�
M2

Pl

4
þ g4

�

× ðḣ2 − ð∇hÞ2Þ − g7ð∇⃗hÞ2 þ a2DðηÞh2
�
: ð3:42Þ

Performing a standard WKB approximation with ansatz

h ¼ h0ðη; kÞe−iWðη;kÞ; Ψ ¼ Ψ0ðη; kÞe−iWðη;kÞ; ð3:43Þ

with e−iWðη;kÞ varying rapidly in time and h0ðη; kÞ;Ψ0ðη; kÞ
slowly in time, we obtain at leading order in k ≫ aH the
approximate equations

ðW02 − k2Þh0 ≈
1

2
a2g−11 Ψ0; ð3:44Þ

ðW02 − k2ÞΨ0 þ 2

�
M2

Pl

4
þ g4

�
ðW02 − k2Þh0 − 2k2g7h0 ≈ 0:

ð3:45Þ

Combining together the dispersion relation can be deter-
mined from

�
M2

Pl

4
þ g4

��
1

a2
W02 −

k2

a2

�
þ g1

�
1

a2
W02 −

k2

a2

�
2

−
k2

a2
g7 ≈ 0; ð3:46Þ

which has the exact solution (taking only that solution which
is continuously connected with the usual GR solution)

ω2 ¼W02 ¼ k2 þ a2
−4g4 −M2

Pl þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g1g7k2

a2 þ ðg4 þM2
Pl
4
Þ2

q
8g1

:

ð3:47Þ

Interestingly this solution is always real, meaning no decay,
regardless of the sign of CW2 (i.e., g1) as long as the null
energy condition is satisfied Ḣ < 0, has the desired low
energy behavior, and asymptotes to ω2 ¼ W02 → k2 at high
energies.
We have avoided performing a WKB analysis of the

fourth order equation in order to determine the speed of
propagation in the previous sections since for these higher
order derivative systems they generally do not give an

accurate determination of the low energy speed. In par-
ticular, we see from performing a Taylor expansion of this
approximation, the order k4 term is incorrect. It is, however,
correct in the higher momentum limit if the equation were
taken as exact.

IV. SUPERLUMINALITY AND CAUSAL
UV COMPLETIONS

On NEC preserving backgrounds, we have seen that
gravitational waves have superluminal low energy speeds
if the coefficient CW2 of the Weyl squared operator in the
EFT of gravity is positive. If one were to jump to
conclusions at this stage, one may be inclined to argue
that consistency of the EFT requires setting CW2 to be
negative (this is indeed the logic followed in much of the
standard literature). However, as we shall argue in this
section, this conclusion is premature and likely erroneous.
Indeed as already argued earlier, contributions to the
coefficient CW2 from tree level massive spin–s ≥ 2 fields
or from loops of massive spin–s < 2 fields lead to a
positive contribution to CW2 . In what follows we shall
show that a positive sign for CW2 typically follows from
standard positivity bound arguments (if applicable to
gravity) and ensures subluminality in the matter sector.

A. Gravity versus matter light cones
and null-energy condition

1. Matter frame

Both for NEC preserving FLRW backgrounds and for
NEC preserving static warped geometries, it was shown in
(3.35) and (3.37) that the effective low energy sound speed
of gravitational waves is (ever so slightly) superluminal as
soon as CW2 > 0. This result can actually be derived very
simply by recognizing that it is entirely a consequence
of the field redefinition between the metric frames in
which matter minimally couples and that in which gravity
minimally couples, following from (4.6). To see this
explicitly, we can start with our EFT Lagrangian for GR
including the leading order curvature corrections as given
in (3.16)

L ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ CR2R2 þ CW2W2

μναβ þ CGBGB

þ Lmatterðg;ψÞ
�
; ð4:1Þ

¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ

�
CR2 −

2

3
CW2

�
R2 þ 2CW2R2

μν

þ ðCW2 þ CGBÞ GBþ Lmatterðg;ψÞ
�
; ð4:2Þ

where Lmatterðg;ψÞ is the Lagrangian for the (low energy)
matter fields that we assume (for now) are minimally
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coupled to gravity. For definiteness, we refer to this frame
as the frame in which matter is minimally coupled and
denote the metric in this frame as gμν ¼ gmatter

μν . The leading
order equation of motion in this form is Gmatter

μν ¼ M−2
Pl Tμν,

where Tμν is the stress energy of the matter field

Tμν ¼ −
2ffiffiffiffiffiffi−gp 1

δgμν
ð ffiffiffiffiffiffi

−g
p

Lmatterðg;ψÞÞ: ð4:3Þ

2. Tensor frame

Consider now the following field redefinition:

gmatter
μν ¼ gtensorμν þ 1

M2
Pl

δgμν; ð4:4Þ

for which the Lagrangian picks up a new interaction

ΔL ¼ −
1

2
δgμνðGμν −M−2

Pl T
μνÞ þ 1

M2
Pl

OðRRμνÞ: ð4:5Þ

If we make the choice that

δgμν ¼ 4CW2

�
Gμν þ

1

M2
Pl

Tμν

�

− 2

�
CR2 −

2

3
CW2

��
R −

1

M2
Pl

T

�
gμν; ð4:6Þ

then the field redefined Lagrangian is15

L ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ CGBGBþ Lmatter þ

2CW2

M4
Pl

TμνTμν

þ ðCR2 − 2
3
CW2Þ

M4
Pl

T2 þ � � �
�
; ð4:7Þ

where again ellipses represent higher order curvature
operators (e.g., of order R3=M4) and gμν is now the tensor
(Einstein) frame metric gtensorμν . At the order at which we are
working, the dimension-four curvature-squared inter-
actions have now disappeared, other than the Gauss-
Bonnet term which does not affect local physics, at the

price of nonminimal interactions in the matter sector. Such
types of operators were considered within the context of
EFTs for cosmic acceleration [73,74]. It is clear that to this
order, in this representation, gravitational waves will travel
at the speed defined by the light cones of the metric gtensorμν ,
but light itself will no longer travel at this speed since
Maxwell’s equations are modified by the inclusion of
higher order operators.

3. Gravitationally induced matter interactions

This leading order “TT deformation” of the matter
Lagrangian in (4.7) can be understood diagrammatically
as arising from the process given in Figs. 1 and 2. The
diagram in Fig. 2 represents the tree level process whereby
a massive heavy state of spin-2 or -0 is exchanged between
the two stress energies. This corresponds to the explicit
example given in Sec. IV C 1. The diagram in Fig. 1
describes a loop process from a heavy field mediated via
tree level massless graviton exchange. This corresponds to
the explicit example given in Sec. VA 1, at least after field
redefinition. We stress again that while the perspective
obtained by performing these field redefinitions is useful, at
least at these low orders, once we consider higher order
interactions, gravitational couplings arise (e.g., Riemann3).
These cannot be removed via local field redefinitions alone,
and so it will not be possible to give such a simple effective
description in terms of gravitationally induced matter
interactions. Of course S-matrix elements are invariant
under these field redefinitions, and the on-shell process
described by Figs. 1 and 2 can be computed in any frame.

4. Connection with the NEC

After performing the field redefinition to remove the
curvature-squared terms, we have the Einstein (or tensor)

FIG. 2. TT amplitude: Gravitational strength matter inter-
actions arising from exchange of mass spin-0 and spin-2 states.

FIG. 1. TT amplitude: Graviton mediated loop contributions to matter interactions. χ symbolizes a matter field present in the stress-
energy tensor Tμν, a wiggly line is a graviton propagator, and solid purple lines are the loops of heavy fields.

15To this order this is similar to a four-dimensional TT̄
deformation; however, the coincidence ends at this order [72].
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frame metric in which the gravitational tensor fluctuations
are minimally coupled

gtensorμν ¼ gmatter
μν −

4CW2

M2
Pl

�
Gmatter

μν þ 1

M2
Pl

Tμν

�

−
2CR2 − 4

3
CW2

M2
Pl

�
−Rmatter þ 1

M2
Pl

T

�
gmatter
μν þ � � � :

ð4:8Þ

Evaluating this on-shell, then to the same order we have

gtensorμν ¼ gmatter
μν −

8CW2

M2
Pl

Gmatter
μν −

4CR2 − 8
3
CW2

M2
Pl

Rmattergmatter
μν

þ � � � ð4:9Þ

¼ gmatter
μν −

8CW2

M4
Pl

Tmatter
μν þ 4CR2 − 8

3
CW2

M4
Pl

Tmattergmatter
μν þ � � � :

ð4:10Þ

For concreteness, we now focus on the FLRW metric
considered in Sec. III B, although the following argu-
ment clearly applies for any background (as for the
example of the static warped geometry in Sec. III C),
not just FLRW.
When the matter metric has the FLRW form

gmatter
μν dxμdxν ¼ aðηÞ2ð−dη2 þ dx⃗2Þ, then to this order
the Einstein (tensor) frame metric is

gtensorμν dxμdxν ¼ Ω2a2ð−c2sdη2 þ dx⃗2Þ þ � � � ; ð4:11Þ

with c2s ¼ 1þ 16CW2ð−ḢÞ=M2
Pl which is exactly the result

obtained in (3.35). The conformal factor Ω2 is given by

Ω2 ¼
�
1þ 8CW2

M2
Pl

ð2Ḣ þ 3H2Þ

−
ð24CR2 − 16CW2Þ

M2
Pl

ðḢ þ 2H2Þ
�
: ð4:12Þ

One of the interesting features about the above results for
the sound speed is that the correction is proportional to Ḣ
and so changes sign if we consider a field theory with NEC
violation. A violation of the NEC, required to achieve
ϖ ¼ p=ρ < −1, typically leads to instabilities [75,76] or
even a breaking of the low energy effective field theory
[77], unless it is accompanied with superluminal modes in
the sector responsible for the breaking of the NEC [78]. Our
findings naturally complement these results in the case
where CW2 > 0. Indeed, for CW2 > 0, gravitational waves
become subluminal as soon as Ḣ > 0, which, in the field
frame in which gravity is luminal, is equivalent to the
statement that the matter fluctuations become superluminal
as soon as the NEC is violated (as soon as Ḣ > 0).

The previous argument works for any background given
the field redefinition (4.6). If nμ denotes a vector which is
null with respect to the matter light cone gμνnμnμ ¼ 0, then
if matter satisfies the NEC nμnνTμν > 0, we have

�
nμnνgtensorμν < 0; if CW2 > 0;

nμnνgtensorμν > 0; if CW2 < 0;
ð4:13Þ

meaning that the vector nν is timelike with respect to the
gravitational wave light cone if CW2 > 0 and spacelike if
CW2 < 0. Since the vector nν is timelike with respect to
the gravitational wave light cone, in the case where
CW2 > 0,16 the matter light cone always lies inside the
gravity light cone regardless of the choice of background,
for all NEC respecting matter. Violating the NEC or
having CW2 < 0 automatically reverses this (arguably
natural) order.

B. Positivity bounds for light fields

From an EFT point of view the coefficients CR2 and
CW2 are a priori undefined unless we match them with a
UV completion as will be performed shortly in Sec. IV C.
In the case where we are dealing solely with curvature-
squared corrections in the gravitational EFT, a local field
redefinition is always possible so as to move the
corrections into the matter sector as was performed in
the previous subsection. Before considering a matching
with a UV completion, we shall first consider how the
standard positivity bounds from S-matrix analyticity,
locality, and unitarity may be used to constrain the sign
of CR2 and CW2 of the resulting matter interactions,
provided we argue or assume that the contribution of the
graviton exchange t-channel pole can be neglected.

1. Scaling Limit

Assuming we are free to choose the coefficients in the
EFT, at this point we can take a decoupling limit MPl → 0

keeping CR2=M2
Pl and CW2=M2

Pl fixed. For instance, in the
case in which the R2 terms arise from loop corrections from
integrating out fields, we expect the C’s to scale with N, the
number of fields. At the same time the Planck mass is
related to the species scale as M2

Pl ¼ NΛ2
species [79]. Hence

this decoupling limit is simply the limit N → ∞,MPl → ∞
keeping Λspecies fixed. In this limit, gravity may be
described by a linearized massless spin-2 on Minkowski
coupled to matter with Lagrangian

16As would, for instance, be the case if the curvature-squared
corrections were solely arising from integrating out massive
scalar fields, or as implied from the spectral representation
discussion in Sec. IV C.
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L ¼ 1

8
habEhab þ

1

2MPl
habTab þ L0

matter þ � � � ; ð4:14Þ

where E ¼ □þ � � � is the Lichnerowitz operator, Tab is the
stress energy of Lmatter, and the last term is a modified
matter Lagrangian

L0
matter ¼ Lmatter þ

2CW2

M4
Pl

TμνTμν þ ðCR2 − 2
3
CW2Þ

M4
Pl

T2 þ � � � :

ð4:15Þ
Since this is now a local field theory living on Minkowski
spacetime, we may ask what are the constraints on the
coefficients CR2 and CW2 based on positivity bounds
applied to the scattering of these light matter states,
including these N−1 ∼M−2

Pl corrections.

2. Light scalar fields

For instance, suppose we consider matter to be a
single (nearly) massless scalar field whose stress energy
takes the form Tμν ¼ ∂μϕ∂νϕ − 1

2
ημνð∂ϕÞ2. The effective

Lagrangian for the scalar is then

L0
matter ¼ −

1

2
ð∂ϕÞ2 þ ðCR2 þ 4

3
CW2Þ

M4
Pl

ð∂ϕÞ4 þOðM−4
Pl Þ:

ð4:16Þ
At order N−1 ∼M−2

Pl , the tree 2 − 2 scattering amplitude
describing the process ϕϕ → ϕϕ will receive two types
of contributions. Contact interactions which come from
the ð∂ϕÞ4 interactions and s, t, and u channel poles that
come from the exchange of massless spin-2 graviton,

Aϕϕ→ϕϕðs; tÞ ∼
1

2M2
Pl

�
−tu
−s

þ −st
−u

þ −su
−t

�

þ 2
ðCR2 þ 4

3
CW2Þ

M4
Pl

ðs2 þ t2 þ u2Þ

þOðM−4
Pl Þ: ð4:17Þ

The direct application of forward limit positivity bounds
[10,25,26] is famously problematic due to the massless
t-channel pole. Defining as A0, the fixed t, s-channel pole
subtracted amplitude, we have

∂2
sA0ðs; tÞ ∼ −

1

M2
Pl

1

t
þ 4

M4
Pl

�
CR2 þ 4

3
CW2

�
þOðM−4

Pl Þ:

ð4:18Þ

The forward scattering limit of ∂2
sA0ðs; tÞ is dominated by

the contribution from the t-channel pole and potentially
bears no relevance for the sign of CR2 þ 4

3
CW2 . More

importantly, the pole at t ¼ 0 prevents analytic continu-
ation of the partial wave expansion from the physical

region t < 0 to t > 0, precluding any statement of
positivity even for small positive t.17

However, a recent argument given in [32] has suggested
a potential solution. The idea is to regulate the IR
divergence at t ¼ 0 by compactification to three dimen-
sions and apply positivity bounds there. Assuming the
validity of this reasoning (see Ref. [55] for subtleties that
may need to be accounted for), it makes it possible to
discard the contribution from the massless graviton t
channel pole. If correct, then in the present context the
forward limit positivity bounds [10,25,26] applied to the
pole subtracted amplitude impose

CR2 þ 4

3
CW2 > 0: ð4:19Þ

In the next section we shall argue for this positivity in a
different manner which is consistent with this ability to
ignore the t-channel pole.

3. Electromagnetism

Similarly, taking the example of the matter being
electromagnetism for which Tμν ¼ FμαFν

α − 1
4
ημνFαβFαβ

then the effective matter Lagrangian is

L0
matter ¼ −

1

4
FαβFαβ þ 2CW2

M4
Pl

ðTrðF4Þ − 1

4
ðTr½F2�Þ2Þ

þOðM−4
Pl Þ ð4:20Þ

¼ −
1

4
FαβFαβ þ CW2

2M4
Pl

ðFαβFαβÞ2

þ CW2

8M4
Pl

ðF̃αβFαβÞ2 þOðM−4
Pl Þ: ð4:21Þ

Familiar arguments on the absence of superluminalities for
photons in different backgrounds [10], or equivalently
positivity bounds applied assuming the graviton t-channel
pole can be neglected [32] imply that the coefficients of
both of the above dimension-six operators are positive
which is satisfied with the single condition

CW2 > 0: ð4:22Þ
We emphasize that what has been performed here is an

inverted logic as compared to what is typically considered
in the literature when imposing bounds on curvature
operators. Rather than applying positivity bounds directly
on the gravitational sector, we have applied it on scattering
amplitudes of the matter sector. Subtleties related to the
t-channel pole are of course equivalent in both cases, as it

17In the case of massive gravity, this problem is conveniently
avoided since the pole is at t ¼ m2 and so one can analytically
continue from t < 0 to m2 > t > 0. Extensions of positivity
bounds to t > 0 have recently been considered in [27,28] with
particular application to massive gravity in [47,80].
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should be. The related arguments of [32] similarly deter-
mine the positivity bounds on photon scattering.

C. TT amplitude

The previous arguments allow us to impose constraints
on the sign of the curvature-squared operators using
positivity bounds applied on a scattering amplitude of
the matter sector provided the t-channel pole that appears in
those amplitudes can be discarded. A stronger form of these
arguments follows from considering the TT-contributions
from the matter Lagrangian to arise from the integration of
massive spin-2 fields. Indeed, the effective matter
Lagrangian may also be written as

L0
matter ¼ Lmatter þ

2CW2

M4
Pl

�
TμνTμν −

1

3
T2

�

þ CR2

M4
Pl

T2 þOðM−4
Pl Þ; ð4:23Þ

which are the natural combinations following from the
Källén-Lehman spectral representation for the TT two-
point function. This emphasizes the fact that this interaction
could be viewed as the TT amplitude obtained from

integrating out massive spin-2 and higher states which
naturally coupled to the stress energy through the −1=3
polarization factor and massive spin-0 states which could
couple to the trace of the stress energy.

1. Weakly coupled UV completion

To make the previous argument explicit, imagine a
weakly coupled UV completion, with a potentially infinite
tower of massive spin states. Let us imagine that matter
couples to an effective metric build out of the Einstein
frame zero mode metric gμν and some combination of all
the other spin states. If the spin states are only weakly
excited, as would be expected in the regime of validity of
the EFT, we may treat them as approximately linear, even
while the zero mode metric gμν is nonlinear. Matter may
then be taken to effectively couple to geffμν ¼ gμν þ
1

MPl

P
i αiH

i
μν þ 1

MPl

P
j βjϕjgμν where Hi

μν are any number
of massive spin-2 particles of mass Mi and ϕj any number
of scalar particles of mass Mj. Other spin states will not
couple at this order.
The UV Lagrangian describing this setup may then be

taken to be (ignoring Gauss-Bonnet terms)

LUV ≈
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ

�
CUV
R2 −

2

3
CUV
W2

�
R2 þ 2CUV

W2R2
μν þ

X
i

�
1

2
Hμν

i EHi
μν −

1

2
M2

i ðH2
iμν −H2

i Þ
�

þ
X
j

�
1

2
ϕj□ϕj −

1

2
M2

jϕ
2
j

�
þ Lmatter þ

1

2MPl

X
i

αiHi
μνTμν þ 1

2MPl

X
j

βjϕjgμνTμν þ � � �
�
; ð4:24Þ

with E the covariant version of the Lichnerowitz operator and ellipses indicating higher order interactions for the additional
spin fields. The obvious examples of this kind of effective Lagrangian are extra dimensional braneworld setups where
matter is localized on a brane whose induced metric is not equivalent to the Einstein frame zero mode metric. The induced
metric will indeed include Kaluza-Klein modes Hμν

i as well as potentially other scalar moduli fields ϕj.
Now integrating out the massive fields to obtain the low energy effective theory, then due to the Fierz-Pauli structure of

the mass term from the spin-2 fields we obtain the −1=3 factor, namely

LIR ≈
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ

�
CUV
R2 −

2

3
CUV
W2

�
R2 þ 2CUV

W2R2
μν þ Lmatter

þ 1

4M2
Pl

X
i

α2i
M2

i

�
TμνTμν −

1

3
T2

�
þ 1

4M2
Pl

X
j

β2j
M2

j
T2 þ � � �

�
: ð4:25Þ

Here we have made use of the fact that at leading order∇μTμν ≈ 0, and so the action of the polarization tensors is simplified.
By rewriting the T2

μν and T2 back in terms of curvature-squared interactions we may identify

CIR
W2 ¼ CUV

W2 þ
X
i

M2
Pl

8M2
i
α2i ; CIR

R2 ¼ CUV
R2 þ

X
j

M2
Pl

4M2
j
β2j ; ð4:26Þ

that is,

ΔCW2 ¼
X
i

M2
Pl

8M2
i
α2i > 0; ΔCR2 ¼

X
j

M2
Pl

4M2
j
β2j > 0; ð4:27Þ

which gives the desired positivity properties. The equality could be saturated only if no fields coupled, i.e., if αi ¼ βj ¼ 0.
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2. Generic UV completion

Although the previous argument was made explicitly for
a weakly coupled UV completion, it follows equally well in
general from the spectral representation for the TT two-
point function [81] for a conserved source, which would
also apply when loops are included and hence for an
arbitrary UV completion

ΔLTT ¼ 1

M4
Pl

Z
∞

0

dμρ2ðμÞTμν 1

μ −□ − iϵ

�
Tμν −

1

3
gμνT

�

þ 1

M4
Pl

Z
∞

0

dμρ0ðμÞT
1

μ −□ − iϵ
T; ð4:28Þ

where standard unitarity arguments imply ρ2ðμÞ ≥ 0 and
ρ0ðμÞ ≥ 0. Crucially though this expression assumes that
no subtractions are necessary in writing this dispersion
relation. The leading subtraction term can be directly
absorbed into CUV

W2 and CUV
R2 so that we may formally write

CIR
W2 ¼ CUV

W2 þ 1

2

Z
∞

0

dμ
ρ2ðμÞ
μ

; ð4:29Þ

CIR
R2 ¼ CUV

R2 þ
Z

∞

0

dμ
ρ0ðμÞ
μ

; ð4:30Þ

with the understanding that CIR
W2;R2 are finite quantities. We

see that α2i =M
2
i is replaced by the spin-2 spectral density

divided by the spectral mass squared μ and β2j=M
2
j replaced

by the spin-0 spectral density divided by μ. Again we
see that

ΔCW2 > 0; ΔCR2 > 0: ð4:31Þ

We may define these coefficients at an arbitrary scale,
which may be interpreted as the coefficients in the EFT
defined with all states of energies greater thanM integrated
out, in the manner

CW2ðMÞ ¼ CUV
W2 þ 1

2

Z
∞

M2

dμ
ρ2ðμÞ
μ

; ð4:32Þ

CR2ðMÞ ¼ CUV
R2 þ

Z
∞

M2

dμ
ρ0ðμÞ
μ

; ð4:33Þ

so that the RG flow is finite (independent of subtraction/
renormalization considerations) and positive in the sense

CW2ðM1Þ − CW2ðM2Þ ¼
Z

M2
2

M2
1

dμ
ρ2ðμÞ
μ

: ð4:34Þ

We thus see that standard spectral representation arguments
imply the expectation that ΔCW2 > 0 and related positivity
bounds strengthen this to the expectation that CW2 > 0. It is
precisely with this sign that we found in (3.35) and (3.37)

gravitational waves to be superluminal on NEC preserving
backgrounds unless one insists on having CW2 ≡ 0 in
which case gravitational waves would be luminal to this
order (but not to higher orders as we see in Sec. V).
Related spectral representation arguments are given in

[81,82]. In these approaches the t-channel pole is effec-
tively neglected by focusing on graviton pseudoamplitudes
which are essentially on-shell stress energy correlators [83].
Similar arguments applied to the Gauss-Bonnet term or
equivalent Weyl squared term in higher dimensions are
given in [84] with the same implied choice of sign. S-matrix
positivity arguments have been applied to quartic curvature
interactions in [29,30] complementing previous superlu-
minality arguments [11]. Entropic arguments that constrain
the curvature-squared terms are given in [31,55] and are
consistent with these implied signs.

3. Neglecting the t-channel pole

The Källén-Lehman spectral representation for a
2-tensor can also include contributions from massless
graviton exchange. In the above we did not include this
as we have intentionally written the action (4.14) in a
representation in which the massless graviton has not been
integrated out. Had we done so then we would have
obtained an effective matter Lagrangian

L00
matter ¼ Lmatter þ ΔL0

TT; ð4:35Þ

where

ΔL0
TT ¼ 1

2M2
Pl

Tμν 1

−□ − iϵ

�
Tμν −

1

2
gμνT

�

þ 1

M4
Pl

Z
∞

0

dμTμν ρ2ðμÞ
μ −□ − iϵ

�
Tμν −

1

3
gμνT

�

þ 1

M4
Pl

Z
∞

0

dμT
ρ0ðμÞ

μ −□ − iϵ
T; ð4:36Þ

which is the full Källén-Lehman spectral representation
between two conserved sources. The first term in (4.36) is
of course the term that gives the pole terms in (4.17), in
particular the massless t-channel pole which is responsible
for the problems with applying standard forward limit
dispersion relations.
In the above representation (4.36), it is arguably obvious

why we can ignore the contribution of the t channel
pole. Unitarity imposes positivity of ρ2ðμÞ and ρ0ðμÞ
through the requirement ImðΔL0

TTÞ ≥ 0 regardless of
whether the massless pole part is present. This will allow
us to determine a positivity bound for CW2 and CR2 . This
argument is slightly different from that given in [32] since it
focuses on only those interactions that are written in terms
of a single Tμν; nevertheless it explains at least in part why
one would expect the result of [32] with regards to the
neglect of the t-channel to be correct.
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The real issue, however, is not the t-channel pole per se,
but the required number of subtractions of the remaining
terms. The dispersion relation (4.36) is valid only if the
integrals

Z
∞

0

dμ
ρ2ðμÞ
μ

and
Z

∞

0

dμ
ρ0ðμÞ
μ

ð4:37Þ

converge. If not, then it is necessary to perform subtrac-
tions. For instance, performing one subtraction is equiv-
alent to rewriting ΔL0

TT as

ΔL0
TT ¼ 1

2M2
Pl

Tμν 1

−□ − iϵ

�
Tμν −

1

2
gμνT

�

þ a2Tμν

�
Tμν −

1

3
gμνT

�
þ a0T2

þ 1

M4
Pl

Z
∞

0

dμTμν ρ2ðμÞ□
μðμ −□ − iϵÞ

�
Tμν −

1

3
gμνT

�

þ 1

M4
Pl

Z
∞

0

dμT
ρ0ðμÞ□

μðμ −□ − iϵÞT; ð4:38Þ

where a2 and a0 are the subtraction constants. After a field
redefinition, the addition of these constants is equivalent to
adding R2 and R2

μν counterterms, which are known to be
needed already in one-loop calculations to remove diver-
gences, in other words, the inclusion of CUV

R2 and CIR
W2 . In

the relations CIR
W2 ¼ CUV

W2 þ 1
2

R
∞
0 dμ ρ2ðμÞ

μ , etc., the RHS is
the difference of two infinite quantities, and it is hence not
possible to conclude positivity of the LHS. Hence the
ability to apply positivity bounds with the t-channel pole
neglected comes down to whether the integrals (4.37)
converge. This is not surprising since it is equivalent at
the scattering amplitude level to requiring some Froissart-
like bound on the t-channel pole subtracted amplitude.
Alternatively this comes down to the question of how many
subtractions are needed in specifying a dispersion relation
for the graviton two-point function.

4. Higher derivative corrections

The positivity bounds implied by the TT amplitude
argument also apply to higher derivative terms. In particular
if one subtraction is sufficient for convergence (as is known
to be the case at the one-loop level), then expanding the

dispersion relation (4.28) in powers of□=μ we infer at next
order

ΔLTT ¼ � � � þ 1

M4
Pl

Z
∞

0

dμρ2ðμÞTμν □

μ2

�
Tμν −

1

3
gμνT

�

þ 1

M4
Pl

Z
∞

0

dμρ0ðμÞT
□

μ2
T þ � � � ; ð4:39Þ

which after a field redefinition is equivalent to a higher
derivative curvature correction

ΔLTT ¼ � � � þ
�Z

∞

0

dμ
ρ2ðμÞ
μ2

�
Rμν□Rμν

þ
�Z

∞

0

dμ
ρ0ðμÞ
μ2

−
1

3

Z
∞

0

dμ
ρ2ðμÞ
μ2

�
R□Rþ � � � :

ð4:40Þ

As a nontrivial check on this, comparing with the explicit
one-loop effective action from massive particles of spin-0,
−1=2, -1 given in (5.1) or Appendix A for spin-0, then we
have

1

12ð2πÞ4
X
i

dðsiÞ2

M2
i
¼

Z
∞

0

dμ
ρ2ðμÞ
μ2

; ð4:41Þ

1

12ð2πÞ4
X
i

dðsiÞ1

M2
i
¼
Z

∞

0

dμ
ρ0ðμÞ
μ2

−
1

3

Z
∞

0

dμ
ρ2ðμÞ
μ2

: ð4:42Þ

The positivity of ρ2ðμÞ and ρ0ðμÞ at all scales implies that

dðsiÞ2 > 0; dðsiÞ1 þ 1

3
dðsiÞ2 > 0: ð4:43Þ

From the results of Table I, or from (A25) for spin-0, we
see that all computed values of d2 are positive and similarly

dðsiÞ1 þ 1
3
dðsiÞ2 ¼ ð 17

840
; 1
840

; 3
280

Þ> 0 for si ¼ ð0; 1=2; 1Þ. These
results are nontrivial since several of the dðsiÞ1 are negative.
Again we emphasize that since the one-loop effective
action is finite at this order, Eq. (5.1) needs no renormal-
ization counterterms which corresponds to the statement
that the dispersion relation (4.28) does not need any
subtractions at this order.

TABLE I. Coefficients entering the dimension-six operators in the one-loop effective action, for scalars, spinors, and vectors.
From [85].

Spin s d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

0 1=56 1=140 1=63 −1=180 1=180 −8=945 2=315 1=1260 17=7560 −1=270
1=2 −3=280 1=28 1=864 −1=180 −7=1440 −25=756 47=1260 19=1260 29=7560 −1=108
1 −27=280 9=28 −5=72 31=60 −1=10 −52=63 −19=105 61=140 −67=2520 1=18
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5. EFT matching

In Sec. III D, we have shown how already within the
truncated EFT (only including the quadratic-curvature
corrections), the sound speed is frequency dependent.
Moreover, to the level we have expanded the sound speed
(while remaining in the regime k ≪ M), the departures
from luminality are always reduced at higher frequency
regardless of the sign of CW2 and regardless of whether the
background satisfies the NEC (i.e., regardless of whether
the speed is sub- or superluminal at low frequencies).
Putting those arguments aside, the clearest argument that
the speed of sound returns to unity at high energy is
obtained from the EFT matching. The speed we have
calculated reflects the tree level speed identified from a
Wilsonian effective action in which states heavier that some
mass scaleM have been integrated out. As we have argued,
in general we anticipate

ΔCW2 ¼ CW2ðM1Þ − CW2ðM2Þ

¼
Z

M2
2

M2
1

dμ
ρ2ðμÞ
μ

> 0; M1 < M2; ð4:44Þ

whereCW2ðMÞ denotes the associated coefficient in an EFT
with masses above M integrated out. It follows that the
associated speed of gravitational waves on FLRW defined
in a given EFT is

c2sðMÞ ¼ 1þ 16CW2ðMÞð−ḢÞ
M2

Pl

þO
�
H4

M4
Pl

�
; ð4:45Þ

and so for any fixed Ḣ < 0 [or H0ðyÞ in a static warped
geometry]

c2sðM1Þ > c2sðM2Þ; M1 < M2; Ḣ < 0: ð4:46Þ

In other words integrating back in the heavy modes reduces
the departure of the speed of sound from unity. The need to
recover Lorentz invariance strongly suggests [86]

lim
M→∞

CW2ðMÞ ¼ CUV
W2 ¼ 0; ð4:47Þ

where byM → ∞ we mean at energy scales well above the
cutoff of the low energy EFTand the scale at which Lorentz
invariance is spontaneously broken.

D. Curvature couplings to light fields

In the previous discussion we assumed that the light
fields that generate the cosmological background are
minimally coupled to gravity. For instance, the light field
Lagrangian may be that describing a minimally coupled
scalar field ψ with a potential VðψÞ. Alternatively, the
light field Lagrangian may model a perfect fluid with a
Pðð∂ψÞ2;ψÞ Lagrangian. To be concrete let us consider the
example of the former so that we may take

Lðl:e:Þ
ψ ðg;ψÞ ¼ −

1

2
ð∂ψÞ2 − VðψÞ: ð4:48Þ

It is of course consistent to imagine that these light fields
also have nonminimal couplings to gravity. These may
arise if the light field is itself nontrivially coupled to the
heavy field, and then on integrating out the heavy fields we
generate new curvature interactions for the light fields.
Following the discussion in Sec. IV B we already know that
interactions of the form ð∇ψÞ4 could be viewed as having
arise from field redefinitions. Far less trivial are the
following dimension-six operators which will contribute
at the same order as the curvature-squared corrections,18

ΔLðl:e:Þ
ψ ðg;ψÞ ¼ C4

M2
Pl

Gμν∇μψ∇νψ þ C5

M2
Pl

Rð∇ψÞ2

þ C6R
UðψÞ
M2

Pl

; ð4:49Þ

where UðψÞ is a function of ψ with the same overall scale
as VðψÞ. The addition of these operators modifies the
background equations of motion at order 1=M2

Pl, and these
modifications need to be accounted for in analyzing the
perturbations. Following almost verbatim the previous
recipe we find that the speed of propagation for tensors
with the addition of these three nonminimal interactions
becomes

c2s ¼ 1þ 4ðC4 þ 4CW2Þð−ḢÞ
M2

Pl

þO
�
H4

M4
Pl

�
: ð4:50Þ

It would be tempting to suppose that the value of C4 should
be chosen in terms of CW2 so that either c2s ≤ 1 or, indeed
by taking C4 ¼ −8CW2 , c2s ¼ 1 so as to enforce GWs (sub)
luminality. The problem with this is that it presupposes that
the coefficient of whatever field is driving the cosmological
expansion is tied to the field content that has been
integrated out. But a priori, the field content driving the
expansion could be arbitrarily weakly coupled to the fields
that have been integrated out. For instance, ψ may represent
dark matter or dark energy degrees of freedom that may lie
in some dark sector arbitrarily weakly coupled to Standard
Model fields. Furthermore the precise light fields determin-
ing the cosmological expansion are epoch dependent,
inflaton, radiation, dark matter, dark energy, and there is
no reason to suppose each of these distinct light fields
should be nonminimally coupled in the precise manner
needed to enforce c2s ¼ 1. More importantly, however, just
as in Sec. IV B, positivity bounds (to the extent where the
t-channel pole may be ignored) lead to the inevitable
conclusion that C4 þ 4CW2 > 0 and hence that gravita-
tional waves remain superluminal.

18A special case of these interactions has been considered in
[87] from the perspective of time delays/advances. Our discus-
sion here complements the one in [87].
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To see how positivity bounds constrain the sign of
C4 þ 4CW2 , we note that the operators in (4.49) can
be removed with a field redefinition similarly as in
Sec. IVA,

gμν → gμν −
2

M4
Pl

ðC4∇μψ∇νψ −C5ð∇ψÞ2gμν −C6UðψÞgμνÞ;

ð4:51Þ

at the price of introducing additional matter interactions.
Let us consider a spectator field χ which we take to be a free
massless scalar living on the original metric. The above
field redefinition will induce interactions between the scalar
χ and the field ψ . Further removing the R2 and Weyl
squared terms via the field redefinition (4.6), then to this
order we obtain Einstein gravity minimally coupled to an
effective matter Lagrangian

L0
matter ¼ −

1

2
ð∇ψÞ2 − VðψÞ − 1

2
ð∇χÞ2 þ 1

M4
Pl

�
4C6UðψÞVðψÞ þ 4

�
4CR2 −

2

3
CW2

�
VðψÞ2

�

þ 1

2M4
Pl

ð∇ψÞ2
�
2C6UðψÞ þ 2

�
8CR2 −

4

3
CW2 − C4 þ 4C5

�
VðψÞ

þ
�
2CR2 þ 8

3
CW2 þ C4 þ 2C5

�
ð∇ψÞ2 þ

�
4CR2 −

8

3
CW2 − C4 þ 2C5

�
ð∇χÞ2

�

þ 1

M4
Pl

ð∇χÞ2
�
C6UðψÞ þ

�
8CR2 −

4

3
CW2

�
VðψÞ þ

�
CR2 þ 4

3
CW2

�
ð∇χÞ2

�

þ ð4CW2 þ C4Þ
M4

Pl

ð∇μχ∇μψÞ2: ð4:52Þ

1. Subluminal spectator

We may now take the double scaling limitMPl → ∞, keeping C=M2
Pl and C4=M2

Pl finite, so that L
0
matter may be taken as a

nongravitational field theory living on Minkowski spacetime. The effective equation for linearized fluctuations of the
spectator field is

∂μðZμν∂νχÞ ¼ 0; ð4:53Þ

with the effective metric

Zμν ¼ ημν
�
1 −

�
4CR2 −

8

3
CW2 − C4 þ 2C5

� ð∂ψÞ2
M2

Pl

−
2

M4
Pl

�
C6UðψÞ þ

�
8CR2 −

4

3
CW2

�
VðψÞ

��

−
2

M4
Pl

ð4CW2 þ C4Þ∂μψ∂νψ : ð4:54Þ

The effective speed of propagation on a background in which ψðtÞ is time dependent is seen to be to this order

c2sðχÞ ¼ 1 −
2ðC4 þ 4CW2Þψ̇2

M4
Pl

þOðM−4
Pl Þ ¼ 1 −

4ðC4 þ 4CW2Þð−ḢÞ
M2

Pl

þOðM−4
Pl Þ: ð4:55Þ

Thus in performing the field redefinition to the frame
in which gravity is minimally coupled, and hence gravi-
tational waves are luminal, we have made the spectator
field propagate subluminally by exactly the same amount.
This is consistent with the general expectation that
the ratio

c2sðtensorsÞ
c2sðspectatorÞ

ð4:56Þ

is field frame independent. Hence demanding that, in this
decoupling limit, the spectator field fluctuations are (sub)
luminal requires

C4 þ 4CW2 ≥ 0: ð4:57Þ

2. Positivity bounds

We may provide a better argument by focusing on
S-matrix positivity bounds applied to ϕψ → ϕψ scattering,
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assuming as per our previous discussion that we can neglect
the massless t-channel pole. Regardless of the choice of
potentials VðψÞ and UðϕÞ we can see by power counting
derivatives that the only terms in the Lagrangian (4.52) that
will potentially contribute to the twice subtracted scattering
amplitude at tree level are (neglecting again the contribu-
tion from exchange of massless gravitons)

L0
matter ⊃

ð4CW2 þ C4Þ
M4

Pl

ð∇μχ∇μψÞ2

þ ð4CR2 − 8
3
CW2 − C4 þ 2C5Þ
2M4

Pl

ð∇ψÞ2ð∇χÞ2;

ð4:58Þ

which gives a contribution of the form

Aψχ→ψχðs; tÞ ⊃
ð4CW2 þC4Þ

M4
Pl

�
1

2
ðs−m2

ψÞ2 þ
1

2
ðu−m2

ψÞ2
�

þ ð4CR2 − 8
3
CW2 −C4 þ 2C5Þ
2M4

Pl

tðt− 2m2
ψÞ;

ð4:59Þ

where u ¼ 2m2
ψ − t − s and mψ is that mass of ψ .

Consequently

1

2

∂2

∂s2A
0ðs ¼ 0; t ¼ 0Þ ¼ ð4CW2 þ C4Þ

M4
Pl

; ð4:60Þ

and so a standard application of the forward limit positivity
bounds implies [10,25,26]

C4 þ 4CW2 > 0: ð4:61Þ

The equality cannot be saturated since the right-hand side
of the dispersion relation is determined from the total
scattering cross section which is necessarily nonzero. Such
considerations would then ensure that in this field frame the
spectator field fluctuations are necessarily subluminal, or
that in the original field frame the gravitational waves are
necessarily superluminal. Although we have run this argu-
ment introducing a light spectator field, we could equally
apply it to any Standard Model field. For instance, the role
of χ could have been played by the Higgs field, indeed
introducing a mass for that field χ does not affect the
relevant conclusions.

V. EFFECTS FROM HIGHER-DIMENSION
CURVATURE OPERATORS

In the previous section, we discussed the effect of the
leading dimension-four operators in the EFT expansion,
the curvature-squared corrections. In the context of loop
corrections from matter the precise coefficients of the

curvature-squared terms cannot be determined since they
arise logarithmically divergent and must be renormalized
by introducing an appropriate counterterm CUV

R2;W2 . The
resulting renormalized coefficient CIR

R2;W2 can be consis-
tently chosen to take any value without contradicting
the requirements of consistency of the EFT. We have
argued from positivity bounds that it is reasonable to
suppose CIR

W2 > 0, which would then lead to superluminal
gravitational waves on NEC preserving backgrounds.
Nevertheless it remains technically possible that we
have CIR

W2 ¼ 0. Although a seemingly technically unnatural
tuning, it would ensure that the nonluminal propagation we
have uncovered so far is removed. This forces us to look to
next order in the EFT expansion where things become more
interesting.
In this section, we shall assume that the IR curvature-

squared terms are set to zero, CIR
W2 ¼ CIR

R2 ¼ 0, and that in
such a basis, SM fields are minimally coupled to the metric.
In this case any effect arising on the speed of propagation of
gravitational waves will arise at next order in the EFT
expansion, which in the present context means dimension-
six operators, i.e., curvature-cubed and higher derivative
curvature-squared terms, which we consider in Sec. VA
before considering dimension-eight operators (fourth
power of curvature) in Sec. V B. Unlike the curvature-
squared terms, the curvature-cubed terms that arise from
matter loops are finite, are calculable, and have explicit
dependence on the number of species. There is no need to
assume the existence of a UV contribution (at least in the
absence of graviton loops), and so we can meaningfully
consider unambiguous finite contributions to the sound
speed. Moreover, unlike the case of the curvature-squared
operators considered so far, there is no covariant and local
field redefinition that can remove all the higher-order
curvature operators that we consider in this section.

A. Dimension-six curvature operators

1. One-loop effective action

The general form of the dimension-six curvature oper-
ators that are expected to arise in a gravitational EFT are
well-known and can be parametrized by [43]

Γð1-loopÞ
dim-6 ¼ 1

12ð2πÞ4
ffiffiffiffiffiffi
−g

p X
i

1

M2
i

h
dðsiÞ1 R□Rþ dðsiÞ2 Rμν□Rμν

þ dðsiÞ3 R3 þ dðsiÞ4 RR2
μν þ dðsiÞ5 RR2

μναβ þ dðsiÞ6 R3
μν

þ dðsiÞ7 RμνRαβRμανβ þ dðsiÞ8 RμνRμαβγRν
αβγ

þ dðsiÞ9 RμναβRμνγσRαβ
γσ þ dðsiÞ10 Rμ

α
ν
βRα

γ
β
σR

γ
μ
σ
ν

i
;

ð5:1Þ

where dðsiÞI denotes the contribution from integrating
out a particle of mass Mi and spin si. The sign of the
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dimension-six curvature operators is not constrained by
known positivity bounds and fields of various spins can
lead to different sign coefficients of these operators, as is
illustrated here for fields of spin s ¼ 0; 1=2; 1. In Ref. [88],
it was shown how the spin of intermediary states may affect
the sign of six derivative operators in a scalar field theory
and higher spins may have interesting effects.
As usual, the above form can be simplified by using field

redefinitions to remove for example all the R and Rμν terms
(see [8] for a recent discussion), but doing so will only
introduce interactions in the matter sector which capture the
same basic one-loop process, such as those described in
Fig. 1. Performing this field redefinition would take us out
of the frame in which we have chosen to minimally couple
SM fields and so we prefer to remain in this frame, being
the natural one from the perspective of a path integral
calculation.
Unlike the case for the curvature-squared corrections,

other than the coefficients dðsiÞ1 and dðsiÞ2 there are no known
positivity bounds that fix the signs of the remaining
coefficients. That is because, even if we were to rewrite
these interactions as pure matter ones, they would corre-
spond to TabTcdTef interactions and would only contribute
(at tree level) to 3 − 3 scattering and higher order ampli-
tudes, or to three point Källén-Lehman dispersion relations,
for which clean statements of positivity are not known
(although see [46] for statements in the holographic/CFT
context).
We can bypass this problem by, however, focusing on the

explicit example of loop corrections from particles of spin
si ≤ 1 for which the coefficients are known and are finite.
This finiteness is crucial since it tells us there is no need to
add any counterterms at this order, and so there is no
ambiguity about the signs of the resulting coefficients. For
these dimension-six operators, the explicit one-loop effective
action was computed exactly in [59,85] for massive particles
of spin 0; 1=2, and 1, where the dimensionless coefficients

dðsiÞn are given in Table I of Appendix A and depend on the
spin si of the particle integrated. We reproduce these results
for spin-0 explicitly in Appendix A using dimensional
regularization for convenience.
As before, we shall see that the very existence of these

dimension-six operators leads to a sound speed for gravi-
tational waves at low energy which can differ from
luminality. On a cosmological background they lead to
corrections to the sound speed of order NḢH2=M2

PlM
2,

where N is the number of fields integrated out and M their
mass. What is crucially different at this order is, depending
on the field content of heavy modes, the speed of
gravitational waves can effectively turn both superluminal
and subluminal. This is true even for matter forced to
respect the null energy condition, for signs we know to be
consistent with positivity since they are derived from an
explicitly unitary calculation from a local and well-behaved
field content.

2. Dimension-six curvature operators on FLRW

In what follows it will be convenient to define the
effective number N�

s of scalars s ¼ 0, vectors s ¼ 1, and
spinors s ¼ 1=2 as

N�
s ¼

X
field i of spin s

M2

M2
i
; ð5:2Þ

where we only include fields with masses above the scale of
the EFT we are interested in, i.e., Mi ≫ H on FLRW.
Unless there are large number particles N ⋙ 1 at the same
mass, we would typically expect this effective number to be
dominated by the lightest massive particle beyond the low
energy EFT.
Given our assumption that the IR curvature-squared

terms have been set to zero, at energy scales below the
massM, then the leading terms in our gravitational EFT are

LIR ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ Lðl:e:Þ

ψ ðg;ψÞ
�
þ Γð1-loopÞ

dim -6

þ 1

M4
OððR2;∇2RÞ2Þ; ð5:3Þ

where Γð1-loopÞ
dim -6 is given in (5.1), where the terms omitted are

operators of dimension-eight and higher that are further
considered in Sec. V B. Expanding to quadratic order
around an FLRW background, using the same conventions
as in Sec. III B with tensor modes normalized as in (3.18),
the contributions from the dimension-six operators are of
the form

LðhhÞ
dim -6 ¼

1

12ð2πÞ4
a2

420M2
hÔdim -6h; ð5:4Þ

where the differential operator Ô includes up to fourth
order in derivatives. More specifically, the operator can be
put in the form

Ôdim -6 ¼
X
s

N�
s

�
1

a4
fðsÞ1 □

2
η þ

1

a4
fðsÞ2 □η∇⃗2

þ 1

a3
fðsÞ3 □η∂η þ

1

a2
fðsÞ4 □η

þ 1

a
fðsÞ5 ∂η þ

1

a3
fðsÞ6 ∇⃗2∂η þ

1

a2
fðsÞ7 ∇⃗2 þ fðsÞ8

�
;

ð5:5Þ

where again η is the conformal time and□η ¼ −∂2
η þ ∇⃗2 is

the d’Alembertian on Minkowski spacetime. The functions

fðsÞn depend on the background (and on the spin s of
the particles integrated). Their precise expressions are
rather nonilluminating and are provided in Appendix B,
Eqs. (B4)–(B27).
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As before, on pure de Sitter, the functions f2;5;6;7 vanish
and the one-loop contribution is a simple combination of
flat d’Alembertian and effective mass terms acting on the
tensor fluctuations, leading to the standard dispersion
relation of the form ω2 ¼ k2 þm2

0. On FLRW, however,
the breaking of the maximal symmetry implies the exist-
ence of additional time-derivative operators that break the
trivial relation between ω2 and k2 in the dispersion relation.

3. Modification of the dispersion relation

Working perturbatively in the corrections from (5.4), we
may use the equations of motion inferred from the standard
Einstein and matter term LEH;ψ into (5.4) so as to trade the
higher derivatives for lower ones as explained in Sec. III A.
This is performed explicitly in Appendix B, and we are then
left with a perturbative second order action of the form

LðhhÞ ¼ M2
Pl

4
a2h

�
1

a2
□η þ 2H2 þ Ḣ

�
h

þ 1

12ð2πÞ4
a2

420M2
hÔdim -6h ð5:6Þ

with now

Ôdim -6 ¼
X

s¼0;1=2;1

N�
s

�
1

a
f̃ðsÞ5 ∂η þ

1

a3
f̃ðsÞ6 ∇⃗2∂η

þ 1

a2
f̃ðsÞ7 ∇⃗2 þ f̃ðsÞ8

�
; ð5:7Þ

and the coefficients f̃5–8 are given in Eqs. (B30)–(B34).
The friction term can then be removed as usual with a field
redefinition, where the field redefinition is now momentum
dependent (unless we are on de Sitter), of the symbolic
form19

h →

�
1þ 1

M2
PlM

2

�
H4 þ Ḣ

k2

a2

��
h; ð5:8Þ

where the exact expression is provided in (B34) and (B35).
The apparent nonlocality of this field redefinition does not
cause a problem in identifying the speed of propagation,
since it is perturbatively local and the associated Green’s
function should be determined perturbatively in it. The
resulting equation of motion is then (symbolically) of the
form�
1þ Aðk; ηÞ

M2
PlM

2

�
h00 þ

�
1þ Bðk; ηÞ

M2
PlM

2

�
k2hþm2

0h ¼ 0; ð5:9Þ

where the two functions Aðk; ηÞ and Bðk; ηÞ are symboli-
cally of the form A; B ∼H4 þ k2

a2 H
2, but with precise

coefficients that differ away from de Sitter. We may thus
infer an effective sound speed symbolically of the form
c2s ¼ 1þ B−A

M2
PlM

2, derived explicitly in Appendix B to be

c2s ¼ 1 −
1

12 × 105ð2πÞ4M2M2
Pl

× ð2ð163N�
0 − 39N�

1=2 − 659N�
1ÞH2Ḣ

− ð46N�
0 þ 62N�

1=2 þ 530N�
1ÞḢ2

þ ð−93N�
0 þ 46N�

1=2 þ 617N�
1ÞHḦ

þ ð−37N�
0 − 10N�

1=2 þ 57N�
1ÞH⃛Þ; ð5:10Þ

and therefore departs from unity as soon as the back-
ground departs from pure de Sitter H ≠ const. At this
level, we can also directly see that there is also no field
content (no tuned values of N�

0; N
�
1=2; N

�
1) that would lead

to an exactly luminal speed for different cosmological
epochs.

4. Field content dependence

Assuming a constant equation of stateϖ on FLRW,20 the
effective speed of GWs is then

c2s ¼ 1 −
1

12ð2πÞ4140
H4

M2
PlM

4
ð1þϖÞ

× ½N�
0ð−349þ 1302ϖ þ 999ϖ2Þ

þ 6N�
1=2ð86þ 105ϖ þ 45ϖ2Þ

þ N�
1ð3209 − 966ϖ − 1539ϖ2Þ�; ð5:11Þ

where N�
s is the effective number of spin-s particles

integrated out [as defined in (5.2)]. The regions where
the effective speed cs is sub- vs superluminal for scalars,
vectors, and spinors is depicted in Fig. 3.

Scalar vs other fields.—Crucially, if the effective number of
scalars integrated out dominates over that of vectors and
spinors, then as we have defined it, cs would be super-
luminal for most of the late-time cosmological history of
our Universe (since radiation-matter equality). If, on the
other hand, the effect is dominated by vectors or spinors,
then cs would be subluminal for the whole (standard)
cosmological history of the Universe so long as one never
crosses down to ϖ < −1 corresponding to the breaking of
the null energy condition. This is an entirely novel effect
which did not arise at the previous order.

Subluminal radiation era.—Interestingly, independently
of the precise field content, the finite contributions from

19In this symbolic notation, H should be understood to also
include all derivatives of H, so, for instance, H4 is really a
placeholder for H4; H2Ḣ; ðḢÞ2; HḦ, and H⃛.

20In this section ϖ represents the background equation of state
parameter, not to be confused with the frequency ω of the GWs.
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integrating out heavier fields appears to lead to a sub-
luminal speed for gravitational during the radiation era
when ϖ ¼ 1=3.

Speed of GWs as a discriminator.—In the past literature, an
even small (unobservable) superluminal speed of gravita-
tional waves has been commonly used as a discriminator
between models or as a way to constrain parameters within
an EFT (for instance, related to the EFT of inflation or dark
energy introduced in Refs. [12,13]). In constructing the
EFT for gravity, we are free to choose at what scale we wish
to consider M to be, provided we only consider back-
grounds with H ≪ M. With this in mind, we are free to
integrate out Standard Model particles, including the
electron and neutrino. In this family of EFTs, it will be
that EFT defined with the lowest mass M for which the
dimension-six operators that scale 1=M2 will have the
largest effect. If we were to demand the gravitational waves
to be subluminal, it would “rule out” any model that
postulates the existence of a scalar field with mass between
the Hubble parameter and the neutrino mass, unless that
particle was also accompanied with either vectors or
spinors of comparable or lower mass. Applying this logic
to current late-time cosmology with H ∼ 10−33 eV, this
would discriminate against any model that carries a scalar
field with mass m between say 10−30 eV and 10−3 eV,
unless other fermions or vectors of comparably low mass
were also included. For concreteness, in the absence of
vectors, one should have N�

0 ≲ 0.2N�
1=2 to avoid cs being

superluminal as ϖ approaches −1 (from above). For one
spinor and one scalar field, this requires the mass of the
scalar to be at least twice that of the spinor.

Implications for light scalar dark matter.—The search for
dark matter has inspired the development of many light or
even ultralight scalar field models. Whether those scalar

particles are charged and whether they are pseudoscalar are
irrelevant for this discussion as all that matters here is the
coupling to gravity. The considerations laid here could then
potentially impact some of the following scalar models of
dark matter such as axion or axionlike dark matter as well
as a fuzzy cold dark matter. In particular axion dark matter
[89] (see [90] for a review) has lead to a quest for a
multitude of experimental searches [91]. The theoretical
mass window for axion or axionlike dark matter spans over
many orders of magnitude, but the open range is typically
considered to be around 10−6–10−2 eV, while it is sug-
gested that string theory may favor lower masses [91]. As
for fuzzy cold dark matter [92] their postulated mass could
be as low as 10−22 eV and within this logic would require
equally low-mass spinors or vectors to avoid a small
superluminal speed for GWs.

Speed of GWs as a discriminator redux.—It is, however,
clear from the discussions related to positivity bounds in
previous sections for the curvature-squared terms (see
Sec. IV) that one should take great caution prior to jumping
to any conclusion and using the presence, or absence, of
superluminal speed for gravitational waves as a discrimi-
nator. Indeed, as we have seen in Sec. IV, a superluminal
speed for gravitational waves at low energy may not
necessarily be in conflict with a causal UV completion
and may sometimes even be favored. Perhaps a more
appropriate criterion would be to require that gravitational
waves propagate faster than the light cone to which matter
minimally couples. This would then be the case for most of
the recent cosmological history of our Universe if the
curvature-squared corrections are included or if fields of
spin-0 dominate the contributions to the curvature-cubed
corrections. However, applying such a criterion would also
remain puzzling during the radiation era ϖ ¼ 1=3, where
modes are always subluminal, unless one relies on the
curvature-squared corrections. It may be possible that it is
not consistent in the given EFT to tune curvature-squared
terms to zero, and that their positive contribution should
dominate over the negative contribution from the dimen-
sion-six curvature operator. For this to be true we need

CW2

jḢj
M2

Pl

≫ N�
jḢjH2

M2M2
Pl

; ð5:12Þ

essentially at all scales M as long as H ≪ M. In other
words

CW2 ≫ N�
H2

M2
: ð5:13Þ

Given the expectation that CW2 scales with the total number
of species, and the EFT requirement that H ≪ M, this
condition is easily satisfied. Nevertheless from a low

FIG. 3. Regions of infinitesimal sub- and superluminal GW
speed on FLRW with a constant equation of state parameter ϖ,
from integrating out scalars, vectors, or spinors.
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energy perspective there appeared to be nothing wrong with
tuning CW2 ¼ 0.

B. Dimension-eight curvature operators

Following from the previous logic, we may also inspect
the effect of dimension-eight curvature operators (fourth
power of curvature) on the graviton speed of sound. Such
operators are known to arise in the effective action for string
theory from tree level α0 corrections [44,93]. These were
considered in [11] for Ricci flat backgrounds with the
following effective Lagrangian:

L ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ 1

M4
ðc1ðR2

μναβÞ2 þ c2GB2Þ
�
; ð5:14Þ

where GB is the Gauss-Bonnet term defined in (3.15). Then
following the same procedure as highlighted in Sec. III A as
applied for curvature-squared operators in Sec. III B and for
curvature-cubed operators in Sec. VA, we find that on
introducing a minimally coupled matter field (e.g., dilaton)
which sources an FLRW (or equivalently on a space
dependent) background, we find a departure of the gravi-
tational waves sound speed given by

c2s ¼ 1þ 384

M2
PlM

4
½c1ð−8ḢH4 þ 3ḦH3 þ 6Ḣ2H2 þ H⃛H2 þ 5HḢ ḦþḢH⃛ þ Ḧ2Þ

þ c2ð−4ḢH4 þ 3ḦH3 þ 10Ḣ2H2 þ H⃛H2 þ 6HḢ ḦþḦ2Þ�: ð5:15Þ
For constant equation of state parameter ϖ, this leads to a sound speed

c2s ¼ 1þ 144H6

M2
PlM

4
ð1þϖÞðc1ð19þ 15ϖÞð5þ 6ϖ þ 9ϖ2Þ − 4c2ð1þ 3ϖÞð17þ 15ϖÞÞ: ð5:16Þ

It is clear that if the quadratic and cubic curvature operators
were set to zero, then demanding the sound speed to be
subluminal for NEC preserving backgrounds (i.e., for
ϖ > −1) would require c1 ≤ 0 which is in tension with
the requirement found in [11] for Ricci-flat backgrounds
(unless we restricted ourselves to c1 ¼ c2 ≡ 0). Indeed in
Ref. [11] it was found that subluminality on Ricci-flat
backgrounds imposed c1, c2 ≥ 0.
If, on the other hand, one required that gravitational

waves propagate faster than the light cone to which
matter minimally couples, this would require c1 ≥ 0 and
−1.49c1 ≲ c2 ≲ 1.09c1. Interestingly, it was argued in [11]
that considering the explicit quartic Riemann corrections
from the string theory example proposed in [93] and
compactifying on a four-dimensional flat manifold would
lead to c1 ¼ c2 > 0, which in the analysis provided on
FLRW would be compatible with a superluminal sound
speed for gravitational waves.
A quite different result would arise if we first perform a

field redefinition to remove any Rμν and R terms in (5.14)
and then couple matter minimally to that new metric. In this
case (5.14) reduces to a quartic Weyl operator which will
not affect the speed of gravitational waves by virtue of the
vanishing of the Weyl tensor on FLRW. This is an example
of how the specific coupling to the light fields that source
the background expansion is crucial in the analysis.

VI. DISCUSSION

We have shown that in the standard effective field theory
treatment of general relativity coupled to matter, the low
energy speed of gravitational waves, defined precisely in

Sec. III A, is inevitably different than unity on a back-
ground which spontaneously breaks Lorentz invariance,
such as FLRW. The precise origin of this effect could be
loop corrections from matter fields, or from higher spin
particles s ≥ 2 that may arise in a given UV completion.
The former are effects that can never be turned off and arise
in any UV completion. The latter are known to already arise
in the low energy effective action for strings as discussed in
Sec. V B. Perhaps surprisingly, for natural expectations of
signs of Wilson (interaction) coefficients, the gravitational
waves are generically found to be superluminal with
respect to the metric with which the matter driving the
background expansion is minimally coupled. This effect is
in some sense a pure gravitational analogue of the well-
known property of the low energy EFT for QED on a
curved spacetime [33,34].
As is well known, low energy superluminal group or

phase velocities are themselves not direct signs of acausality.
The front velocity, corresponding to the large frequency limit
of the phase velocity, is the speed at which information
travels, and a superluminal group velocity does not imply
superluminal propagation of information. A discussion of
this point is presented in [69,94,95] and has been empha-
sized in discussions of QED in curved spacetime [35–42]. In
the present context, the ambiguity of metric field redefini-
tions means that there is no absolute definition of low energy
speeds, only relative ones. The ratio of the speed of
gravitational waves to an individual species of matter is
invariant under field redefinitions.
Causality is likely better implemented by demanding

S-matrix analyticity. At low energies, this criterion can be
used to derive various positivity bounds that fix the signs of
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coefficients in the effective Lagrangian [10,25–28]. If we
assume that these bounds may be applied in the context of
gravitational systems—assuming following [32] that it is
possible to neglect the massless t-channel graviton pole—
then we have derived precise positivity bounds in Sec. IV
that enforce that regardless of field redefinitions, gravita-
tional waves travel faster than allowed by the metric to
which matter minimally couples. This apparent acausality
is in fact seen after a field redefinition to be equivalent to
the more prosaic requirement that matter fluctuations are
(sub)luminal, and is thus usually regarded as a requirement
of causality.
In our analysis we have focused mainly on curvature

corrections in the EFT, keeping the matter that sources the
background relatively minimal. A more complete analysis
could for example focus on the full effective theory of the
Standard Model coupled to GR (see [8] for an explicit
discussion), but the examples considered in Sec. IV D
support the universality of the connection between pos-
itivity bounds and superluminal gravitational wave propa-
gation. Furthermore, in the case of low energy QED [or
more generally the EFT of a Uð1Þ gauge field coupled to
gravity], for which the general leading order EFT treatment
is well known, positivity bounds have been applied recently
in [32], and the signs are consistent with expectations when
applied in FLRW.
Assuming no fine-tuning of the EFT (no special proper-

ties of the UV completion), the magnitude of the departure
of the propagation speed from unity is of order

c2s − 1 ∼
Ḣ
Λ2

; ð6:1Þ

where Λ is the EFT cutoff, i.e., either the mass scale of any
heavy state or the strong coupling scale of the theory
integrated out. On de Sitter Ḣ ¼ 0 and so cs ¼ 1 as
required by de Sitter invariance. Hence during inflation
this effect is further slow roll suppressed. We have found
that quite generally the magnitude and sign of the effect is
controlled by the coefficient of theWeyl squared term in the
effective Lagrangian. Given this, it is worth looking for
independent arguments that may be used to constrain its
sign and magnitude (see for example [46,84]).
If the leading curvature-squared terms in the EFT

expansion are tuned to zero, as may be implied by a
specific UV completion, then the dominant effect will come
from higher order, whether dimension-six or dimension-
eight curvature operators. When this is the case, not only
does the sign of the effect switch at the onset of NEC
violation but also it becomes epoch dependent, a function
of the precise equation of state of the Universe. The attempt
to demand either universal subluminality or superlumin-
ality of gravitational waves would in turn place strong
constraints on the particle content in the Universe.
Our results have clear implications for cosmological

effective field theory model building where it is common

to assume that all fields (including tensor modes) are (sub)
luminal in constraining the form of the effective action.
Generically such a criterion is not well founded, and indeed
it is not even invariant under field redefinitions. At best it can
be implemented in some field frame, but as we have seen this
is not the natural one to which we expect Standard Model
fields to couple. Already in the case of the low energy
effective theory for QED, it is known that backgrounds can
be found in which different photon polarizations travel both
superluminally and subluminally, undermining the existence
of a single preferred field frame. What is needed is a better
understanding of how causality, likely through S-matrix
analyticity, could be used to constrain cosmological EFTs.
There have been some attempts in the recent literature
[46,96–98] although a clear understanding is absent due
to the particular challenge of dealing with a massless
graviton and the unclear meaning of analyticity on a curved
spacetime. From our analysis it is clear that a significant role
is played by the fully pole subtracted, elastic scattering
amplitudes for matter fields. This is not so surprising given
the similar role in nongravitational theories [10,25–28],
nevertheless the gravitational extension has yet to be fully
understood.
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APPENDIX A: ONE-LOOP EFFECTIVE ACTION

Here we show how to recover the one-loop effective
action derived in [85] following a perturbative diagram-
matic approach in the case of scalar fields; see Fig. 4. The
results are in complete agreements with those provided
in [85].
As we shall see below, by integrating (perturbatively) a

massive scalar field minimally coupled to gravity, we
recover the one-loop effective action (5.1) with the precise
same coefficients for the case of scalar fields. In Ref. [85]
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the one-loop effective action for the spin-1=2 and -1 fields
were also derived, and depending on the spin of the particle
integrated out, the coefficients cn are given in Table I below.

1. Minimally coupled scalar field

For concreteness, we shall integrate a scalar field φ of
mass M minimally coupled to gravity,

L½φ� ¼ ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μφ∂νφ −

1

2
M2φ2

�
: ðA1Þ

We work perturbatively in the metric perturbations about
flat spacetime defined as

gμν ¼ ðημν þ ςhμνÞ2 ¼ ημν þ 2ςhμν þ ς2hμαhνβηαβ; ðA2Þ

where the parameter ς has been introduced for bookkeeping
and we do not yet commit to hμν being the tensor

fluctuation as in what follows it will also carry the role
of the background field. To third order in perturbations for
hμν (i.e., third order in ς), one has

ffiffiffiffiffiffi
−g

p ¼ 1

4!
εabcdεa

0b0c0d0 ðηaa0 þ ςhaa0 Þðηbb0 þ ςhbb0 Þ
× ðηcc0 þ ςhcc0 Þðηdd0 þ ςhdd0 Þ ðA3Þ

¼ 1þ ςhþ ς2

2
ð½h�2 − ½h2�Þ

þ ς3

3!
ð½h�3 − 3½h�½h2� þ 2½h3�Þ þOðς4Þ; ðA4Þ

gμν ¼ ημν − 2ςhμν þ 3ς2h2μν − 4ς3h3μν þOðϵ4Þ; ðA5Þ

where square brackets represent the trace (with respect to
Minkowski) of a tensor.
The relevant graviton-scalar vertices are therefore

ðA6Þ

ðA7Þ

ðA8Þ

FIG. 4. Example diagrams indicating how loops of heavy fields correct the propagation of gravitational waves in a background
geometry. For weak backgrounds, the effect can be entirely accounted for by perturbative quantum field theory in Minkowski spacetime
(as we show below), giving identical results to covariant approaches.
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With those vertices in mind we can directly compute
the relevant one-loop scalar field contributions to the two
and three point gravitons. We do so using dimensional-
regularization and summarize our conventions in what
follows.

2. Dimensional regularization

We work in d ¼ 4 − ϵ dimensions in what follows.
Defining the following integrals Iln as

Iln ¼ μϵ

M4þ2ðl−nÞ

Z
ddk

ð2πÞd=2
ðk2Þl

ðk2 þM2Þn ; ðA9Þ

we have in dimensional regularization,

Il0 ¼ 0 ∀ l; ðA10Þ

I01 ≡ Ī ≡ 1

ϵ
Ii þ If; ðA11Þ

I02 ¼ −I01 − 2I03; ðA12Þ

I03 ¼ −
1

4
If; ðA13Þ

I0n ¼
2ðn − 3Þ!
ðn − 1Þ! I

0
3n ≥ 4; ðA14Þ

Iln ¼ Il−1n−1 − Il−1n ; ðA15Þ

where we emphasize that both If and Ii are finite but Ī is
not in the limit ϵ → 0.
We will also make use of the following relations:

μϵ

M4þ2ðl−nÞ

Z
ddk

ð2πÞd=2
kμkνðk2Þl−1
ðk2 þM2Þn ¼ 1

d
ημνIln; ðA16Þ

μϵ

M4þ2ðl−nÞ

Z
ddk

ð2πÞd=2
kμkνkαkβðk2Þl−2
ðk2 þM2Þn

¼ 1

dðdþ 2Þ ðημνηαβ þ ημαηνβ þ ηναημβÞIln; ðA17Þ

and similarly for higher order integrals.

3. Perturbative one-loop contributions

a. Graviton one-point function

For consistency, we start with the one-loop massive
scalar field contribution to the one-point function, which is
the leading term of the cosmological constant (and of
course at the origin of the cosmological constant problem).
The related Feynman diagram and amplitudes are

ðA18Þ

this is a diverging contribution and leads to a contribution to the effective cosmological constant that scales asM4. The order
of magnitude of this cosmological constant is of course well above that of the classical value we have considered so far.
Tackling the cosmological constant problem is well beyond the scope of this work, and for now we shall simply put this
problem aside.

b. Graviton two-point function

Two types of diagrams contribute to the two–point function. The first one, referred to below asAðaÞ
2 and coming from the

vertex (A7), is simply

ðA19Þ

As for the second one, referred to asAðbÞ
2 , it involves a product of Feynman propagators, which, for the context of this work

we simply deal with by expansion in the power of derivatives p of the external legs,

1

ðk2 þM2Þððk − pÞ2 þM2Þ ¼
1

ðk2 þM2Þ2 þ 2
2k · p

ðk2 þM2Þ3 þ
�

4ðk · pÞ2
ðk2 þM2Þ4 −

p2

ðk2 þM2Þ3
�
þ � � � ;

and work up to sixth order in the external leg derivative.
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Then as a perturbative expansion, the contribution of the second diagrams to the graviton two-point function is

ðA20Þ

where we immediately recognize the Lichnerowicz operator on the second line, corresponding to the leading expansion of
the Einstein-Hilbert term

ffiffiffiffiffiffi−gp
R.

Adding the one- and two-point functions, we see that to the order we are working this is precisely equivalent to the
following effective action:

A1 þA2 ≡M4

4

�
Ī þ Ii

4ϵ

� ffiffiffiffiffiffi
−g

p þM2

6
Ī

ffiffiffiffiffiffi
−g

p
Rþ 1

240
ðĪ − IiÞ

ffiffiffiffiffiffi
−g

p �
1

2
R2 þ R2

μν

�

þ Ii
6720M2

ffiffiffiffiffiffi
−g

p ð5ð∂RÞ2 þ 2ðDμRαβÞ2Þ þO
�
ς3;

∂8

M4

�
; ðA21Þ

where so far the right-hand side should be understood as being only up to second order in the metric fluctuation. We see that
all the terms on the first line diverge and can in principle be fully removed by an appropriate renormalization procedure
while the term on the second line is entirely finite.

c. Graviton three-point function

We can follow the same procedure for the three-point function. Three types of diagrams contribute at that level. The first
one is a tadpole type and contains no derivatives acting on the external legs, hence solely leading to a contribution toward
the cosmological constant at cubic order in ς,

ðA22Þ

The next diagram, involving both a hhφφ and a hφφ vertex, leads to contributions that are again computed performing a
derivative expansion. Below we only present explicitly the leading order contributions, but they have been explicitly
computed up to sixth order in derivative,

ðA23Þ

where the first line is exact while the second line is of course only symbolic but accounts for the correct split between finite
and divergent pieces.
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Finally the diagram involving three hφφ vertices is the most challenging to account for, and once again we only give its
symbolic form in what follows (apart from the first line which is exact) even though it has been computed explicitly to sixth
order in derivatives,

ðA24Þ

Combining the one, two, and three point functions explicitly, one can check that up to cubic order in the metric perturbation
and up to sixth order in derivatives, we obtain the following effective action (up to integrations by parts):

A1 þA2 þA3 ≡M4

4

�
Ī þ Ii

4ϵ

� ffiffiffiffiffiffi
−g

p þM2

6
Ī

ffiffiffiffiffiffi
−g

p
Rþ 1

240
ðĪ − IiÞ

ffiffiffiffiffiffi
−g

p �
1

2
R2 þ R2

μν

�

þ Ii
6720M2

ffiffiffiffiffiffi
−g

p ð5ð∂RÞ2 þ 2ðDμRαβÞ2Þ

−
Ii

241920M2

ffiffiffiffiffiffi
−g

p ð47R3 − 80R3
μν − 60RR2

μν þ 72RμνRabRμaνb

þ 56RαμβνRαaβbRab
μν − 40RαμβνRαaβbRa

μ
b
ν þ 114RR2

abcdÞ þO
�
ς4;

∂8

M4

�
; ðA25Þ

where again only the terms on the first two lines include
running and divergent pieces and could be entirely removed
via an appropriate renormalization procedure while the
remainder is finite. In particular Ī contains running and
divergent pieces, Ii=ϵ is divergent, but Ii itself is finite and
does not run. One can check that they precisely match the
coefficients given in Table I for scalars as derived by [85],
up to appropriate integrations by parts.
It is worth noting that up to integrations by parts (i.e., up

to the Gauss-Bonnet term which is irrelevant in four
dimensions), the R2 terms can be expressed in terms of
the Weyl term Wabcd as follows:

1

240
ðĪ − IiÞ

ffiffiffiffiffiffi
−g

p �
1

2
R2 þ R2

μν

�

¼ 1

240
ðĪ − IiÞ

ffiffiffiffiffiffi
−g

p �
5

8
R2 þ 1

4
W2

�
: ðA26Þ

This implies that the low energy EFT defined at a scale
M0 < M (so that there are no other massive states between
M0 and M) includes operators of the form

Leff ⊃
ffiffiffiffiffiffi
−g

p ðC̄R2ðμ; ϵÞ þ δμCR2ðMÞÞR2

þ ffiffiffiffiffiffi
−g

p ðC̄W2ðμ; ϵÞ þ δμCW2ðMÞÞW2
μναβ; ðA27Þ

where the quantities C̄R2 and C̄W2 include the UV counter-
terms and with the contribution from integrating out the
massive particles going as

8

5
δμCR2ðMÞ ¼ 4δμCW2ðMÞ ¼ 1

240

�
1

8π2ϵ

−
1

16π2

�
−1þ γ þ log

�
M2

4πμ2

���
: ðA28Þ

Had this been calculated directly in a cutoff scheme, with
cutoff Λ, we would have found

8

5
δΛCR2ðMÞ ¼ 4δΛCW2ðMÞ ∼ 1

240

�
1

16π2

�
log

�
Λ2

M2

���
;

ðA29Þ

which given the requirement M ≪ Λ implies δΛCW2 > 0.
Of course neither (A28) nor (A29) can be taken as an
answer because they are UV divergent and the 1=ϵ and Λ
dependence must be absorbed into a UV counterterm C̄
whose sign we cannot determine. However, what they do
confirm is the positivity of the flow as determined by the
spectral representation (4.34).
If we were to consider different UV completions, where

we adjust the mass of the heavy field being integrated out,
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for instance, if we considered the coefficient of the Weyl
square term in a low energy EFT endowed with a UV
completion where the mass of the particle we integrate out
is M1 and compared it with the coefficient of another low
energy EFT that now enjoys another UV completion with a
massive state M2 then regardless of renormalization
scheme we would have21

CW2ðM1Þ − CW2ðM2Þ ¼
1

960

�
1

16π2

�
log

�
M2

2

M2
1

���
> 0;

M1 < M2: ðA30Þ

This difference is finite, positive, and renormalization
scheme independent. Since the IR part of the one-loop
dispersion relation is determined by the unitarity cut which
begins at 4M2, adjusting the mass of the particle in this way
is equivalent to adjusting the IR cutoff in the dispersion
relation. Thus (A30) is capturing the essential result of
(4.34). The logarithmic divergence of this one-loop con-
tribution arises because ρ2ðμÞ → constant for μ ≫ M.

APPENDIX B: TENSOR MODES ON FLRW
FROM DIMENSION-SIX OPERATORS

In this appendix, we shall derive the equation of motion
for tensor modes coming from dimension-six R3 correc-
tions arising from integrating out loops of massive fields of
various spins. Unlike the dimension-four operators
explored previously, these are finite and independent of
any renormalization procedure. Once again we work in
conformal time η, with metric γμν ¼ a2ημν, and we intro-
duce the transverse and traceless tensor fluctuations
hij ¼

P
σ hσε

σ
ij. Without loss of generality, we omit any

mention of those two polarizations and simply denote the
tensor modes as h and use the normalization gij ¼
γij þ ahij.
As explained previously, the standard contributions from

GR (the Einstein-Hilbert term and the low energy matter
fields) lead to the following contributions to the tensor
modes on FLRW:

LðhhÞ
EH;ψ ¼ M2

Pl

4
a2h

�
1

a2
□η þ 2H2 þ Ḣ

�
h: ðB1Þ

The contributions from the dimension-six operators are

LðhhÞ
dim -6 ¼

1

12ð2πÞ4
a2

420M2
hÔdim -6h; ðB2Þ

where Ôdim -6 is a fourth order operator similar in spirit to
the one found in (3.23) but with slightly different coef-
ficients,

Ôdim -6 ¼
X

s¼0;1=2;1

N�
s

�
1

a4
fðsÞ1 □

2
η þ

1

a4
fðsÞ2 □η∇⃗2

þ 1

a3
fðsÞ3 □η∂η þ

1

a2
fðsÞ4 □η

þ 1

a
fðsÞ5 ∂η þ

1

a3
fðsÞ6 ∇⃗2∂η þ

1

a2
fðsÞ7 ∇⃗2 þ fðsÞ8

�
;

ðB3Þ

where the functions fðsÞn are functions of time depending on
the spin of the particle integrated out.
For scalars,

fð0Þ1 ¼ 49H2 þ 37Ḣ; ðB4Þ

fð0Þ2 ¼ −18Ḣ; ðB5Þ

fð0Þ3 ¼ 196H3 − 48HḢ − 74Ḧ; ðB6Þ

fð0Þ4 ¼ 394H4 þ 1128H2Ḣ þ 59HḦ − 37H⃛ þ 199ðḢÞ2;
ðB7Þ

fð0Þ5 ¼ −1968H3Ḣ − 810H2Ḧ − 46HH⃛ − 1620HðḢÞ2
− 492Ḣ Ḧ; ðB8Þ

fð0Þ6 ¼ 18ðḦ − 2ḢHÞ; ðB9Þ

fð0Þ7 ¼ 10ðḢÞ2 þ 46H⃛ þ 66ḦH − 344ḢH2; ðB10Þ

fð0Þ8 ¼ 1528H6 − 1608Ḣ3 − 466ðḦÞ2 − 466ḢH⃛

− 5830Ḣ Ḧ H − 11313ðḢÞ2H2 − 841H⃛H2

− 4443ḦH3 − 2836ḢH4: ðB11Þ

For vectors,

fð1Þ1 ¼ −161H2 þ 363Ḣ; ðB12Þ

fð1Þ2 ¼ −446Ḣ; ðB13Þ

fð1Þ3 ¼ −644H3 − 726Ḧ þ 2096ḢH; ðB14Þ

fð1Þ4 ¼ −358H4 þ 1059ðḢÞ2 − 363H⃛ þ 1577ḦH

− 2300ḢH2; ðB15Þ

fð1Þ5 ¼ 572ðḢÞ2H − 166H⃛H þ 286ḦH2

− 4Ḣð47Ḧ − 680H3Þ; ðB16Þ

21We emphasize that the relation (A30) does not represent how
the coefficients of a specific low energy EFT run with scale; the
relation (A30) only illustrates how the positivity of the flow is in
agreement with previous arguments from the dispersion relation
if we adjust the mass of the heavy field being integrated out.
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fð1Þ6 ¼ 446Ḧ − 892ḢH; ðB17Þ

fð1Þ7 ¼ −362ðḢÞ2 þ 166H⃛ − 1286ḦH þ 872ḢH2; ðB18Þ

fð1Þ8 ¼ −1016H6 þ 618ðḦÞ2 þ 11253ðḢÞ2H2 þ 109H⃛H2

þ 2687ḦH3 þ 1714ðḢÞ3 þ 2Ḣð309H⃛ þ 2441ḦH

þ 1528H4Þ; ðB19Þ

and finally for spinors

fð1=2Þ1 ¼ 1

2
ð−21H2 þ 104ḢÞ; ðB20Þ

fð1=2Þ2 ¼ −76Ḣ; ðB21Þ

fð1=2Þ3 ¼ −42H3 − 104Ḧ þ 250ḢH; ðB22Þ

fð1=2Þ4 ¼ 1

2
ð−113H4 þ 359ðḢÞ2 − 104H⃛ þ 450ḦH

− 284ḢH2Þ; ðB23Þ

fð1=2Þ5 ¼ −92ðḢÞ2H − 48H⃛H − 46ḦH2

− Ḣð157Ḧ − 310H3Þ; ðB24Þ

fð1=2Þ6 ¼ 76Ḧ − 152ḢH; ðB25Þ

fð1=2Þ7 ¼ −90ðḢÞ2 þ 48H⃛ − 160ḦH þ 2ḢH2; ðB26Þ

fð1=2Þ8 ¼ 1

2
ð−288H6 þ 100ðḦÞ2 þ 2811ðḢÞ2H2

þ 53H⃛H2 þ 755ḦH3 þ 391ðḢÞ3 þ Ḣð100H⃛
þ 1088ḦH þ 753H4ÞÞ: ðB27Þ

Working perturbatively in the dimension-six operators,
we may substitute the relation for □ηh in terms of h as
derived from (B1),

□ηh ¼ a2ð−2H2 − ḢÞh: ðB28Þ

This perturbative substitution can be performed on the first
line of the operator Ôdim -6 defined in (B3) so that only the
second line remains which slightly altered coefficients,

Ôdim -6 ¼
X

s¼0;1=2;1

N�
s

�
1

a
f̃ðsÞ5 ∂η þ

1

a3
f̃ðsÞ6 ∇⃗2∂η

þ 1

a2
f̃ðsÞ7 ∇⃗2 þ f̃ðsÞ8

�
; ðB29Þ

with

f̃ðsÞ5 ¼ fðsÞ5 þ 2fðsÞ1 ð4H3 þ 6HḢ þ ḦÞ þ fðsÞ3 ð−2H2 − ḢÞ;
ðB30Þ

f̃ðsÞ6 ¼ fðsÞ6 ; ðB31Þ

f̃ðsÞ7 ¼ fðsÞ7 þ f2ð−2H2 − ḢÞ; ðB32Þ

f̃ðsÞ8 ¼ fðsÞ8 þ fðsÞ1 ð16H4 þ 34H2Ḣ þ 9HḦ þ H⃛ þ 7ðḢÞ2Þ
þ fðsÞ3 ð−4H3 − 6HḢ − ḦÞ þ fðsÞ4 ð−2H2 − ḢÞ:

ðB33Þ

The original normalization of the tensor modes gij ¼
ahij was chosen precisely so as to remove the friction term
that would otherwise have arisen from the standard
Einstein-Hilbert term. We now perform a subleading
rescaling of the tensor modes so as to absorb the subleading

friction term ðf̃ðsÞ5 þ a−2f̃ðsÞ6 ∇⃗2Þ present in (B29). For this it
is easier to move to momentum space and perform the
rescaling

hkðηÞ →
�
1þ Ωðk; ηÞ

12 × 420ð2πÞ4M2M2
Pl

�
hkðηÞ; ðB34Þ

with

Ωðk; ηÞ ¼ − 4ð9N�
0 þ 38N�

1=2 þ 223N�
1ÞḢ

k2

a2

− ð592N�
0 − 71N�

1=2 − 72N�
1ÞH4

− 14ð74N�
0 − 27N�

1=2 − 226N�
1ÞH2Ḣ

− ð298N�
0 − 99N�

1=2 þ 1430N�
1ÞðḢÞ2

− ð92N�
0 þ 96N�

1=2 þ 332N�
1ÞHḦ; ðB35Þ

leading to the following equation of motion for the tensor
modes,

h00 þ c2sk2h ¼ m2
0h; ðB36Þ

with

c2s ¼ 1 −
1

12 × 105ð2πÞ4M2M2
Pl

× ð2ð163N�
0 − 39N�

1=2 − 659N�
1ÞH2Ḣ

− ð46N�
0 þ 62N�

1=2 þ 530N�
1ÞḢ2

þ ð−93N�
0 þ 46N�

1=2 þ 617N�
1ÞHḦ

þ ð−37N�
0 − 10N�

1=2 þ 57N�
1ÞH⃛Þ; ðB37Þ
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while the IR part in the dispersion relation is

m2
0 ¼ a2

�
−2H2 − Ḣ þO

�
H6

M2
PlM

2

��
: ðB38Þ

APPENDIX C: RESUMMING GREEN’S
FUNCTION SECULAR BEHAVIOR

Rather than following the logic presented in Sec. III A 2 to
determine the speed, one could have attempted to define
Green’s function iteratively around the GR one. Following
such an approach, one would be lured into the belief that the
causal structure appears to be the standard one at any finite
order. A similar argument can be applied to any theory with a
small departure of the sound speed. The reason why such a
procedure is not correct in general is because it relies on
perturbations that carry secular effects, whose growth can in
turn undermine the perturbative expansion.
Indeed in rewriting in the form (3.7) we have implicitly

resummed effects, similar to a self-energy resummation,
which contribute already at two-derivative order. Super-
ficially higher order time derivatives generate second order
time derivatives by partly acting on the background, e.g.,

∂nðaðηÞmhÞ ¼ � � � n!
2!ðn − 2Þ! ð∂

n−2aðηÞmÞ∂2hþ � � � ;

ðC1Þ

hence giving a contribution to the low energy sound speed.
The superficially larger contributions from higher time

derivatives are canceled by similar spatial derivative terms
by virtue of the leading order equations of motion. Field
redefining the equation of motion into standard two time
derivative form (3.7) is helpful so that we may define the
retarded propagator in the standard way via time order-
ing, i.e., Gretðx; x0Þ ¼ iθðt − t0ÞΔðx; x0Þ ¼ ihT̂hðxÞhðx0Þi −
ihhðx0ÞhðxÞi with Δðx; x0Þ the commutator function. But
perhaps more importantly the resummation removes sec-
ular behaviors that would have been obtained otherwise.
Specifically the resummed WKB modes can be rewritten
perturbatively in terms of the unresummed ones,

eikx−i
R

η dη0k=csðηÞ

¼ eikx−i
R

η dη0k
�
1þ ik

Z
η
dη0ðcsðη0Þ − 1Þ þ � � �

�
: ðC2Þ

The secular perturbative growth of the right-hand side
would become large for jkηj ∼ 1=ðcs − 1Þ, invalidating this
perturbative approach of solving (3.1) by directly iterating
about the GR result. Instead, in Sec. III A 2, we have
identified the retarded Green’s function by iterating the
resummed counterpart given in Eqs. (3.8) and (3.9). In
doing so, we have effectively resummed an infinite number
of contributions, leading to a better behaved perturbative
expansion. This is the approach we follow in identifying the
speed throughout this work.
Ultimately the causal structure is determined by the front

velocity, i.e., the high energy limit of the phase velocity.
As we have argued we expect this to be luminal in a
fundamentally Lorentz invariant theory.
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