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Abstract. This short review is a contribution to the conference proceeding of IF-YITP
Symposium VI, 2016. We discuss how Nambu geometry emerges in the context of higher
dimensional quantum Hall effect or A-class topological insulators [1].

1. Introduction

Non-commutative geometry (NCG) is a promising framework of quantum geometry to extend
concepts of classical geometry. While the classical geometry is formulated on infinitely divisible
spaces, it is considered that quantum geometry consists of indivisible finite volume elements. A
natural scale of quantum space-time will be the Planck scale,

[h
lp = (g ~ 1.6 x 10**[m]. (1)

As the Einstein’s theory of general relativity is based on Riemann geometry, the quantum
geometry needs a new mathematical framework of quantum space-time. NCG is expected to
play the role of such mathematical formulation. Interestingly, NCG also appears effectively in
the context of quantum Hall effect (QHE). In QHE, the electrons undergo cyclotron motion with

the cyclotron radius,
h
lp = M—B ~8.1x 10 ?[m] for B = 10[T]. (2)
e

Though the cyclotron scale is typically 10?7 times much larger than the Planck scale, QHE
realizes the NCG framework due to the level projection [2, 3, 4]. Concretely, on 2D plane in
magnetic field, the electron coordinates of cyclotron motion realizes the Heisenberg algebra of
NC plane

[X.Y] = ilp? (3)

and similarly on a two-sphere in monopole background, electron coordinates satisfy the the
SU(2) algebra of fuzzy two-sphere [5, 6, 7]
[Xi, Xy] = iOZEiijk. (4)

Here both /5 and « = 2r/I (r is the radius of sphere, and I/2 is the magnetic charge of the
monopole) denote constants of dimension of length related to the indivisible volume element.
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It is expected that knowledge obtained from the analysis of the QHE leads us to a better
understanding of quantum geometry. We will discuss higher D generalizations of the spherical
case (4) in the following.

2. Two Ways to Higher D Non-commutative Geometry

Since the fuzzy two-sphere is based on the SU(2) Lie algebra, one natural way to generalize
(4) is to adopt higher D Lie algebras [8, 9, 10, 11, 12, 13]. For realization of 2k-D fuzzy sphere,
the SO(2k + 1) gamma matrices are adopted as the coordinates X, (a = 1,2,--+ ,2k 4+ 1):

[Xa: Xp] = iaXap, (5)

where X, denote the SO(2k+1) operators. Alternatively by using the quantum Nambu bracket,
i.e., a generalized commutator for n entities [14, 15]

(X1, Xo, -+, Xn] = sgn(0) Xo(1) Xo2) 5 Xo(n)s (6)
we can generalize (4) to represent the fuzzy 2k-sphere as [16, 17, 18]
[XlluXaza T aXazk] = Z11604216716@@2"'112/1\;+1‘)(6121c+1' (7)

Hereafter, we will consider the quantum Nambu bracket with even entities. (For odd entities,
simple use of the quantum Nambu bracket contains critical difficulties [15].) Though the above
two algebras, (5) and (7), take superficially different forms, in both cases X, are given by the
SO(2n + 1) gamma matrices, and hence (5) and (7) represent the same fuzzy 2k-sphere.
The fuzzy two-sphere appears physically in the context of the Landau problem on two-sphere
[19]:
1

H = —m ' Di2|r:1 (8)
i=1,2,3

where D; are the covariant derivatives whose commutator gives the monopole field strength,
, I
[Dj, Dj] = €ijk 5 5Tk (9)

Here I1/2 (I: integer) represents the charge of the monopole. The energy eigenvalues of the
Hamiltonian are readily obtained as

Ba(l) = o (nln+ 1) + I(n+ ), (10)

T 2M

and the degeneracy of the lowest Landau level (n = 0) is
drrr(I)=1+1. (11)
The total SU(2) angular momentum operators are constructed as
L; = —iejpxi Dy + éfvi, (12)
and in the lowest Landau level, L; are reduced to

1
L; — ;. 1
— am (13)
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Therefore in the lowest Landau level, x; can be identified with the operator
X, = ol (14)

and satisfy the fuzzy two-sphere algebra (4). This is the mechanism of the emergent NCG in
the context of the lowest Landau level. Heuristically, the NC algebra (4) can be obtained from
(9) by the replacement

For relativistic case, the Dirac operator acts as the relativistic Hamiltonian. In the presence of
non-trivial bundle topology of magnetic field, the Dirac Hamiltonian necessarily accommodates
the zero-modes with the number

ind(—iP) =dpr(I —1)=1, (16)
which coincides with the 1st Chern number on the two-sphere

1

Cl = —
2 S2

F=1 (17)
This demonstrates the index theorem, ind(—ip) = ¢;.

3. Higher D Quantum Hall Effect and Non-Abelian Gauge Field

The higher D study of the QHE was initiated by the work of Zhang and Hu [20]. They
utilized the quaternions to generalize the QHE in four-dimensional space. After their proposal,
many works have been devoted to the developments of higher D QHE [21, 22] (see Refs.[23, 24]
as reviews and references therein). In particular, we explored higher D QHE on arbitrary even
D spheres [25] and on supersphere [26, 27]. The constructions are summarized in Fig.1.

2D 4D 2kD 212D
Complex # Quaternions Clifford algebra Grassmann #
u(1) suU(2) SO(2k) u(1)
Dirac monopole Yang monopole Non-abelian Landi
monopole super-monopole
1st Chern # 2nd Chern # kth Chern # 1st Chern #
Fuzzy two-sphere |  Fuzzy four-sphere Fuzzy 2k-sphere [Fuzzy super-sphere

Figure 1. Higher D and supersymmetric generalizations of QHE.

In the setup, we adopted the non-Abelian monopoles introduced in Refs.[28, 29, 30, 31, 32].
For QHE on S%, we used the SO(6) monopole, and in general, for QHE on S SO(2k). The
SO(2k) monopole gauge fields are explicitly given by

1

A1 obh = = 0wy, A1 =0, (o :SO(2k) Weyl generators)  (18)
r(r + Togt1)

and the covariant derivatives are constructed as D, = 9, + iA,. Their commutators yield the
field strength,

[Da:Db] = 'L.Fab (19)
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where . , 1
F = LTy — —7T A N F = — _|_ €T A . 20
M (r + zogy) Ty = g Tl Fu2ktl = 0y (r + Top41) Ay (20)

Using the covariant derivative, we introduce the Landau Hamiltonian on S%* as

| 2]
_ 2
H=—rs > Do?lr=t. (21)
a=1
The Landau levels are explicitly derived as
Bn= s (n(n42k-1)+I(n+ ") (n=012) (22)
n = g7 (n(n ntg n=0,1,2, :

For 2k = 4 and 6, the lowest Landau level (n = 0) degeneracies are given by

AP0 = ST+, dE 1) = s (T )T+ 2431441 +5). (29

The non-Abelian monopoles have the non-trivial Chern numbers guaranteed by the homotopy
theorem:

71'2]6,1(80(2/47)) ~ 7. (24)
For k = 2 and 3 of (20), the Chern numbers
ck = 1 / tr(FF) (25)
FTRIRE e
are calculated as
1 1
eo(I) = EI(I +1)(IT+2), c3()= %1(1 + 1) (T4 2)%(1 +3)(I +4). (26)

From (23) and (26), we can confirm that the validity of the index theorem in higher D:
Ind(—iP)r =drrr(I — 1) = ci(I). (27)

More general discussion can be found in Ref.[33].
Recalling the replacement (15), we can find that the commutation relation (19) implies the
NCG
[Xa. Xp] = iaXqp, (28)

which exactly reproduces (5).

4. Topological Insulator and Tensor Gauge Field

We have constructed a higher D QHE by introducing the non-Abelian monopole. While the
2D restriction was relaxed, magnetic field is still necessary for the set-up. However, the condition
about the existence of magnetic field can also be relaxed. The strong spin-orbit coupling takes
the place of external magnetic field, and the time reversal counterpart of the QHE, called the
quantum spin Hall system, was proposed theoretically [34, 35, 36] and subsequently observed
experimentally [37]. Since the spin-orbit coupling is not specific to 2D, the spin-orbit coupling
can give rise to the 3D analogue of the quantum spin Hall system referred to as the topological
insulator (in a narrow sense) [38, 39, 40]. Thus there are 3D and 2D analogues of the QHE,
and there may be no wonder if other cousins of QHE exist. Indeed, a comprehensive list of such
cousins, i.e. topological insulators in a broad sense, was proposed in Refs.[41, 42, 43] according



IF-YITP GR+HEP+Cosmo International Symposium VI IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 883 (2017) 012010 doi:10.1088/1742-6596/883/1/012010

to the random matrix theory classification based on discrete symmetries. Among them, the
original 2D QHE belongs to the so-called A-class, and so the higher D QHE can be identified
with higher D entity of the A-class. In Refs.[44, 45], the quantum Nambu geometry was shown
to appear as the geometry of the A-class topological insulators by level projection. Meanwhile,
as discussed above, the higher D QHE is realized in the non-Abelian monopole background.
Therefore, there must be underlying relations between the quantum Nambu geometry and the
non-Abelian monopole background. We clarify the relations in the remaining sections.

While the non-Abelian generalization is concerned with the internal gauge space of monopole,
there is another way to generalize monopole based on external space extension: The internal
gauge group is still U(1), but the external indices are added to the gauge field and the gauge
field become a tensor-type [46, 47] (such tensor gauge field is called the Kalb-Ramond field [48]).
For 5D and 7D, the tensor monopole gauge fields are given by

1 1 r
Coupe=——I(IT+1)(I+2
abe 613 ( + )( + )<T‘—|-.’125 + (r+m5)2>5abcd5$da

7.2

(r + z7

1 n T
r+z7  (r+z7)?

Cobede = ———c T(T + 1)(I +2)°(I + 3)(T + 4) <

2
_407-5 + g )3>€abcdef7$f

(29)

and the corresponding field strengths, G = dC, are obtained as

1
Gabed = 71(1"‘ 1)(I+2)2(I+3)(I+4)6abcdefg$9- (30)

1
—=I(I+1)(I+2)€gpedete, Gabedef = 87

2r5

The integrations of G on S?* yield

G:11(1+1)(I+2), G:iI(H 1)(I+2)*(I+3)(I +4). (31)
S 6 56 360

These results coincide with the Chern numbers (26). Even before the integration, we can make
an exact map from the non-Abelian monopole gauge field to the tensor monopole gauge field
though the Chern-Simons term

1
CCR=D1A] = k / dt tr(A(dA + it> A%)F=T) (32)
0

and then
G?* = tr F*, (33)

One may convince himself by substituting SU(2) and SO(6) monopole gauge fields (18) to the
4D and 6D Chern-Simons terms

2
CP)[A] = tr(AdA + §¢A3), CO)[A] = tr(A(dA)? + %A%A - %AE’), (34)
to derive (29). From (33), we have
1 2
mxa - meaalaz---aqua% br(Faras =+ Fagy 1ass)- (35)
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5. Quantum Nambu Geometry and Index Theorem
Armed with the observation of the correspondence between the non-Abelian monopole and
tensor monopole, we revisit the non-Abelian Landau problem on S2*:

| 2kH1 1
H = *W Z DaDa|1":1 = mzAab27 (36)
a=1 a>b
where Ay, = —z,Dp + ixpD, denote the covariant angular momentum. The total angular

momentum operators are constructed as
Loy = Agp + T2Fab- (37)

In the lowest Landau level, the covariant derivatives are quenched and from (37) Fpy ~ Lgy.
Consequently, (35) gives the relation

I
Xo = ameaa]a2“‘a2k—la2klja102 e La2k—1a2k‘ (38)

The S%¢ coordinates now become the operator given by (38), and X, satisfy the higher D
algebra of the quantum Nambu bracket (7). Thus, through the correspondence between the
non-Abelian and tensor monopoles, we have shown that the quantum Nambu geometry realizes
as the geometry of the lowest Landau level [Fig.2].

Quantum Nambu Geometry Monopole
2D ESRERES U(1) monopole
[Xi, X;j] = i€ X
4-bracket SU(2) monopole
4D t
[Xau X, Xe, Xd] = —€gbedeXe 3-tensor monopole
6-bracket S0(6) monopole
w Xay, X, X i X ‘
Xayy Aasy  y Agg) = —1€gy074
[ ap 202 ﬂﬁ] 67207 5-tensor monopole
2k-bracket $0(2k) monopole
2k-D ‘

5 v oo .
Xy, Xagy -+ Kag] = eagar Xagy (2k-1)-tensor monopole

Figure 2. Correspondence between the quantum Nambu geometries and the non-Abelian or
tensor monopole background.

The higher D fuzzy sphere coordinates are essentially the higher D gamma matrices which
can be constructed from the low D ones. Similarly, the higher D quantum Nambu algebra
incorporates the low D quantum Nambu algebras, for instance,

(X1, X2, X3, X4] = [X1, Xo][X3, X4] — [ X1, X3][X2, Xy] +--- (39)
and

(X1, Xo, X3, X4, X5, X¢] = [X1, Xo, X3, X4][ X5, X¢] — [X1, Xo, X3, X5][ X4, Xg] +--- . (40)



IF-YITP GR+HEP+Cosmo International Symposium VI IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 883 (2017) 012010 doi:10.1088/1742-6596/883/1/012010

These algebraic structures manifest a dimensional hierarchy of the higher D QHE: The low D
QH liquids condense to form higher D QH liquid [25]. The index theorem also enforces the
observation. The index of the Dirac operator (27) counts the number of the quantum states in
the lowest Landau level, and the index theorem tells that such quantum states correspond to
the number of the finite volume elements on the quantum geometry given by the Chern number.
The index of the non-Abelian Dirac operator on the 2kD sphere behaves as

Ind(—iP) =dp(I-1) ~ I2'THD = 1. 12. ... T*, (41)

and we see the dimensional hierarchy: The right-hand side of (41) implies that the higher D
quantum geometry consists of lower D quantum geometries. Such hierarchy is quite similar to
the D-brane structure in string theory [49, 50].

6. Summary

We gave a short review about the Nambu geometry in the context of the monopole magnetic
field background along with the development of the higher D QHE and topological insulator.
The higher D QHE rediscovered in the recent development of the topological insulator naturally
realizes the quantum Nambu geometry. As the Nambu bracket formation is equivalent to the
Lie bracket formulation for fuzzy spheres, two superficially different non-Abelian and tensor
monopoles are shown to be related by the Chern-Simons term. The index theorem manifests
itself in the context of higher D QHE and guarantees the dimensional hierarchy of the quantum
geometry. While the present review focused on the even D Nambu geometry, related works
about odd D Nambu geometry can be found in Refs.[51, 45, 52].
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