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Introduction

In this talk, I shall show how Penrose's twistor formalism {41 arises
through the application, with the aid of a few geometrical tricks, of the
Kostant-Souriau geometric quantization theory [2,10,1i] to massless spinning
particles in Minkowski space. This isg not the usual way of introducing
twistors, still less does it reflect the historical development of the sub-
ject, but it does have the advantage of showing up some of the similarities
in the fundamental ideas of the two theories.

However, in spite of these similarities, it is important to realize
that their motivations are very different. The ultimate aim of geometric
guantization is the construction of a unified theory of the irreducible
unitary representations of connected Lie groups by first geometrizing and
then generalizing the physicist's concept of guantization. UWhen applied to
simple vhysical systems, such as those invariant under the Poincaré/group,
geometric guantization results in the synthesis within a geometric frame-
work of various well understood technicues from conventional guantum mech-
anic¢s; it does not incorporate any new physical ideas.

In his twistor theory, on the other hand, Penrose is trying to develop
a new formalism for relativistic quantum field theory and, eventually, to
lay the foundations for a quantum theory of gravity. loreover, Penrose has
often stressed that he is looking for a formalism which only works in four
dimensional space-time. In a sense, the existence of such a formalism
would explain the dimension and signature of the real world.

But, even z2llowing for these differences in outlook, there are a num-
ber of practical benefits which can be derived from a comparison of the two

theories:

1) If one tries to construct a manifestly conformally invariant theory

of massless particles by applying geometric quantization to the conformal
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group ¢€(1,3) - or, rather, to its fourfold cover, SU(2,2) - one runs into
a number of difficulties {which I shall describe later). Penrose's twis—
tor contour integration techniques provide a way of circumventing these
difficulties and it is possible that, when translated into a suitable form,
these techniques will lead to a friutful generalization of the Kostant-

Souriau theory.

2) Kostant and Souriau's geometric formulation of standard guantum
mechanics is ideally suited to answering the question: How much of twis-
tor theory is an elegant restatement of old ideas, and how much is new

physics?

3) Geometric quantization is often difficult to work with in practice:
one is frequently forced to rely on the introduction of gpecial coordinate
systems. However, by using some of the tricks suggested by twistor theory,
it is possible to quantize massless and massive particles in a covariant way
and thus to obtain an example of a completely geometric application of the

theory.
Notation

The notation used here for the SL(2,c) spinor calculus is essenti-
ally the same as that described by Penrose |6] and Pirani (8] . Capital
Roman letters are used for spinor indices (which run over 0,1) and lower
case Roman letters for space-time vector and tensor indices (which run over
0,1,2,3); orimed indices are used to denote conjugate spinors. The Ein-
stein range and surmation conventions are used throughout.

The correspondence hetween a vector Ya and its spinor equivalent

1]
YAA is given explicitly, in any proper ortliochronous Lorentz frame, by

a AAY

Y e+ Y =

St

10°* 11t} 7 2 3 L0 1 (1)

[Y.OO' yOr' e e I P
Y Y Y2 - iy

Yy -Y

Spinor indices are raised and lowered with the Levi-Civita symbols

. o] 1 0 1
e*? - l €, = l (2)
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and their complex conjugates € and €, (these are 21l SL(2,€)
invariant). Thus, for example,
A AB A - — At
XK = & ’XB’ XB = EAB’X and ’XB'= eA'B' X . (3)

This is consistent with the usual convention for raising and lowering
space-time indices since e"B Eprp is the spinor equivalent of the
Fas A
space-time metric Bap* Finally, the flat spinor connection KG“' is
Lt

. . . a
given in lLorentz coordinates {x ! by

2, + 3 3, - 12,

V2 Vg = 2, - = (4)

P, + 13, 9579

{In the Battelle convention [63 s spinor and tensor indices are reg—
arded as abstract labels indicating the type of the geometric object io
which they are attached., Thus, for example, % g actually a vector,

rather than the components of a vector, and (1) can be rewritten: Y= =

1
YAA « Though this convention will not be used explicitly, it can be used to
reinterpret a2ll the equations bhelow as relations between geometric objects,

rather than the components of geometric objects.)

Masslegs Particles: Canonical Formalism

In classical relativistic mechanics, the kinematical variables of a
massless particle with helicity s 3»0 can be represented by a position vec-
tor X% (relative to some origin 0) and two future pointing null vectors
1% ana J% (normalized so that IaJa' = 1), In terms of these, the mom-

entum and angular momentum are given by

.ab a2bcd a.b b.a
o, =1 and N =-s¢ Ich+x I° =X 1%, (5)
the form of Mab being fixed by the condition that the spin vector
=1 b..cd
8, = 2€adeP LA (6)
should be parallel to the momentum ( eﬂbcd is the zlternating ten°or).

Before quantizing this system, it is necessary to construct the class-

ical phase space: in practical terms, this means finding a suitable
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exnression for the symplectic 2-form of the system in terms of the vari-

ables Xa,Ia' and J%. In this search, there are two guiding principals:

1) The system is to be an elementary relativistic system: - this means
that the Poincare group P must act transitively on the phase space as a
group of canonical transformations. By the Kostant-Kirillov-Souriau theorem
[3], therefore, the phase space must be locally isomorphic {as a P-symplec—
tic space) with an orbit in the dual of the Poincare Lie algebra,

2) The physical variables P, and Mab are to have their usual in-

terpretation as generators of P,

The first implicetion of these is that each point in the phase space

is determined by the values of P, and Mab alone, or, after a little

calculation, ‘that one must identify (%a,fa; ¥y ana (%, 1% 7%) whenever

~3, abed

- x®4z?, *ao1?

- 322, 1% (1)

anda Y =0%4+ ¢ b

IchZd
for some Z% such that ZaIa'=-O. The resulting manifeold is six dimension-
al and has topology Dﬁ)(Sz. (The need for this identification Teflects
the fact that even classically a masslesc spinring particle is not local-
izable: it occunies an entire null hyperplane.)

I+t is then not hard to show that one, and hence the only, symplectic

ab
form on ¥ _ vwhich gives the correct I'oisson brackets for P, and I is
s 3

a.b.c .4
§-S€”MIJGIAM

- ax®*A a1 (8)
a
o . R . . a .a .a
(see Souriaun Eﬂﬂ, p.190), (As a 2-form on the nine dimensional (X oI, J )=
space, < is degenerate, However, the vectors in this space which anni-
hilate o are precisely those which generate the identification (7).

Thus < 7rrojects into a nondegenerate 2-form on Ms.)

Prequantization

The first stege in the vreguantization of (MS,CY) ig to replace 1%

a . A
and J° by two spinors OA and L chosen so that

n - A — L
1% ewot 34 , JPes A s and O ot e 1. (
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\J 1)
(This is possible since 1% and J% are null, so that IAA and JAA
are singular.) TIf then
J— t -
Tye = Oy ond wh o gt 4 ixtt O e (10)

the identification (7) Ybecomes (’ia, a)A, ﬁA,)Q(Xa, wA, T\‘A,) whenever

~ - : - .
x* = x® + 2%, Tye = elt’ﬁAl and b - eltuaA (11)

for some te® and for some real Z° such that ZAA'TfA1TA, = 0,

Thus a point of Ms can be fixed by gpecifying the pair (w ’TTA'):
the corresponding values of x* are then given as the solutions of the
linear eguation

AA

A ! — :
(W* = 1X™ T, )T, =8 (12)

and the valueg of the momenta are given explicitly by

- . A = Atp AB - (AY__B*

Pyev Ty Ty ond 1P s m(bo( T B)é Bl _ 4B (,o( ™ )). (13)
The four complex {eight real) dimensional vector space in which a)A

and TTA, are independent variables is called twistor svace (denoteda T).

A twistor (that is, an element of T) can be represented either as a pair

(a)A,TTA,) of spinors or as a guadruple Z%¥ = (Zl,Z2,Z3,Z4) where
1 0 1 g -
(z4,2%) = (0% 0h) ana (2%,2%) = (W, T ). (14)

(Again, the index & can be interpreted as an "abstract" index.)
The twistors which correspond to points in MN_ are those which lie in
the surface G < T given by

= A= —a
g(zq) = Z“ZK = W TrA + —WA' w = 28 (15)

— — ]
where Zy= (xTA, w ) is the Hermitian conjuzate of 7 (The map

A — —_At
g : T —pR: 27 b BTy = T, o+ ooA'\TM (16)
defines a pseudo-Hermitian metric on T of signature (+,+,—,—).) Recouse

A
the freedom available in the choice of the phases of O and vy the
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»rojection®

A
pro: G —pl_ 2 2% = (W7, )b (p , 1) (17)
s a
defined by (13) is not one-to-one and, in fact, pr(zZ%)= pr(¥*) wvhenever
7% = " ¥ Y% for some teR.

Now if, in T, one introduces the symplectic 2-form
o =i(az¥AdzZy) (18)

(which gives T +the structure of a pseudo~Kéhler manifold) then the Hamil-

tonian vector field generated by g : T —+ R is

Si(z%t 2 - T, ,
X, = i(2 e 7 b’z‘,‘) (19)
it

which has closed integral curves of the form + —b e Zg s In other

words,

¥ =G /Xg . (20)
Moreover, the restiction of & +to G is degenerate and is annihilated by
Xg (which is tangent to Gs), 20 tha: o projects into a clesed 2-form
in M_. A short calculation shows that this is precisely the symplectic
form ;ntroduced above.,

The point of this is that, while the symplectic structure of (MS,O“)

is not exact, that of (T,0) is, since, in T,
O =d@ where O = %1( 7% d‘Z-‘oc - Eo‘ az™ ). (21)
This can be exploited in the prequantization of (MS, 0"), as follows:
If, in the bundle space of the trivial line bundle GSXC——+ G‘s, one

puts:

p) is D
o =® +.1. 82 and Y=X_ -27i(X 30)s =X_ - 2is,
01 =z g g oz € "® 'Oz

*Wnen s = 0, the twistors of the form Z = (wA, 0) nust be omitted

from Gsz the reason for this will be made clear later.
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(vhere =z 1is the coordinate in ¢ , and, in the units used here, 4 =
oyt . . .
(2)™" ) then ®o is a connection form on G x € and the integral curves

of Y are parallel and are of the form

. -1
it -2ish "t
t — (e ZS, e .zo) 3

€T, zy€e C . (22)
These are closed whenever 2s = é%ﬁe (the integral being taken around an
orbit of X_ in Gs) is an integral multiple of #, in which case L =
(e xc )/Y ie a Hausdorff menifold, and, in fact, a line bundle over M_

(with the projection L —b M, making the diagram
s

G
s

C—b

—

i
G

=

s ¥ P

commute). Noreover, Yla = O and £Yx, = 0, so that « Pprojects onto
a connection form (also denoted o« ) on Lj it follows from the defini-
tion of « +that the curvature of this connection is O . Thus, when
2sﬁ_l is integral, this construction is an explicit prequantization for

(u, o).
Quantization

The next stage is to find a vpolarization for T which is invariant
under the action of the Poincard group. This action is easily found from
equation (10), Under translation through A%,

AA

A A . ,AAt
(@, ) —r (' + 1877 T,,,T,,) (23)

and under the Lorentz rotation defined by LABé sL(2,C ),

(o, ) (408, B, wy,) vhere 10,18 - 8% (24)
(Wote that both transformations preserve the form Guﬂé dZ%«dZE«dZy/\dZ§>
and the Kahler structure of T, and thus define elements of SU(2,2).)

It follows that the real polarization F of T, spanned at each
point by the vectors a/gwA and 9/a(;)A' is Poincareé invariant. It is
also Lie propagated by Xg.

Thig polarization induces a polarigation P oof MS: explicitly, ﬁ
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is the projection into Mg of the distribution H on Gs defined by

=
.
BN
m
2
=

b 0 ’l‘Z(GS) < ’I‘Z(Gs)

& &

where TZ( Gs

) is the tangent snrace to (}s at 7 (H is also Lie pProva-—
gated by X”); ¥ is, in fact, the 'natural' volarization of MS, in the
sense that it is spenned by the generating vector fields of the trans—
lation subgroup of P.

~ —
The integral manifolds of ¥ are the surfaces in I‘-‘IS given by T =

A
conste, ’ITA, = const. so that the points of the factor space 'Ms/%( are
parameterized by T,, and I, {modulo vhase); in other words, I‘»’is/%’

& L !

is simply the future half of the light cone in momentum svace (denoted I\T+).
Yow, up to normalization, there is a unicue Lorentz invariant volume

element v on N+, given in coordinates by

L= A - B!
(dpl/\dpg/\ de) = i(avw AAT A (1 d'ﬂ‘B,) -

At =B -
- o ~dtr, alarT dg)) (25)
Thus the wave functions of the T polarization can be written in the form
kX
Y=g er (26)

where 7/ : Ns —+ L is a2 section of L which is covariantly gons‘ban‘t on
the leaves of F (the precise meaning of the sguare root v~ — which is
not important here - is discussed in detail by Blattner [1] ).

The prequantization of (MS,G’) allows the sections of L +to be re-
alized in a particularly simple way: to be precise, any smooth function
£ s GS——b € which is homogeneous of degree —QSh—l in 2% defines a sec—

tion ‘Uf of L, which makes this diagram commute:

G XC ~— L
SJ;T(“ W@c

C—s - IVJS
Conversely, any section 7 : MS———\r I. can be obtained in this way from a
homogeneous function £, 3 Gs—ac. Furthermore, 7 will be covariantly
constant on the leaves of F if, and only if, f, is covariantly constani

in the directions in H (as a section of the trivial bundle GSS(C ),

that is, if, and only if, f, is of the form
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A - -1, A = — At
£ 2 27 = (&7, m,,) = kol )exn( 387 (w0 Ty - W ary,)
-1 a
=x (7, T,,) exp( i7" p X%) (27)
where k, is homogeneous of degree -2sh—1 in 'nA,:

= Ok Ak,

h('TT = - T, = ) = 28ke o (28)
AdTg ATy,

In this realization, the inner product of the two wave functions

-

pa
V= v V% and Y=V

is given by
A j’ JEgr | (29)

(since it is invariant under phase transformations of Tyeo kaE@:is a
well defined function on N ).
Finally, the relationship of this to the conventional guantum descrip-

tion of massless particles can be seen by introducing the spinor field

in~ p x&
/XA'B'C' .. S E‘—pt TgeSTge o0 ,a\) —S [TAv‘\er"'k e ]\7
(30}
(with oent indices). The integrand is again independent of the phase
of Tys and ?<A'B'C'... satisfies the zero-rest-mass field equation
AAT
V' Xpegrgr,, =0 (1)

Twistor Theory

So far, nothing exceptional has been achieved. It was already known
that geometric quantization leads in a straightforwerd way to the conven-—
tional quantum description of a free massless particle [9,10]. The twis-
tor formalism has done little except to make the calculations simpler.

The parting of the ways between conventional physics and twistor theory
proper come when one tries to repeat this analysis in a way which respects
the invariance of massless under the full conformal group of Minkowski
space (denoted €(1,3) ). Except for one minor subtlety, which I shall
deal with presently, the construction of the classical phase space and iis

prequantization are unehanged. The trouble is that the polarization intro-
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above is not invariant under the action of ¢{(1,3) on T. This action is
found by introducing a new geometrical realization of a twistor:

The definition of the wA part of a twistor Z“, corresponding to
some fixed point of Ms, depends on the choice of an origin O in Minkow-
ski space M. If O is translated through Y* then the T e part of
z% ig unaltered, while coA transforms according to

A A . RAY
wh ot - 1Y (32)
The spinor UOA can, therefore, be regarded as a field on M rather than
as & Tixed (but origin dependent) quantity. PFrom (32), this field satis-

fies the twistor eguation,

7. (23 g (34)

and, in fact, the general solutiom of this is

A AA

1
(coA)x = Wy = 1X7 1T, where xeM and T is fixed. (35)

A'
Here, Log is the value of wA at 0€M and X% is the position vector
of x relative to O, Thus vhe map ooA — (wg,’\TA,) dafines an isomor-
phism between T and the solution space of the twistor ecuation,

The point of this is that (34) is conformally invariant in the sense
that if ¢ : M —+M is a conformal isometry, and if wA satisfies (34),
then o does C(w)A, vut with VAA" replaced by the conhection "}AA'
of the conformally transformed metric ’éab = e(g)a.b = Slggab , which ig re-
lated to V,

ApN

by
v B B B c
o X = Vi X+ €, (TA'C[X where T, = ¥V, InQ. (36)

Thus if @ fixes the origin O then its action on T is

A =] . B
e 2% = (Wi, T )b (Bhywd, B, (T, + 104,08)) (37)

where U = ('Ta)o and LAB iz the SL(2,C) +transformation of the spin
srace at C induced by € and MCA LAB= Sg « Again, this transformation
defines an element of 51(2,2),

The subtlety mentioned above arises because, strictly speaking, the

only conformal isometries which fix O are the Lorentz rotations and the
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dilatations, The full 15-dimensional group ¢(1,3) acts not on W but
on its compactification M which is obtained from i by attaching the
‘null cone at infinity? [5] . The only role that this plays here is that,
when s = 0, the phase space of a conformally invariant particle includes
voints at infinity corresponding to twistors of the form (LOA,O ), and has
topology 53x 5°x R rather than 4 xs2,

One now sees that there is an obvious conformally invariant polarisz-
ation for T: +this is the Kahler polarization K, spanned at each point
by the antiholomorphic vectors gaéik}vo .

As before, K incuces a polarization K on each M (vhen s # 0,
this is Kahler, but when s = O, gl\ﬁ is one dimensional), The ¥ wave
functions are of the form Y = thf where ¥ is a section of L, covari-
antly constant in the directions in K and M is a 3-form, orthogonal to
4 and Lie propagated by the directions in ¥.

Again, ¥ can be represented by a function o ¢ Gs"‘° C , only now

f, must be of the form

s R
£o0 2% vk (B%) AL (38)
where k, : T—¢ € is holomorphic and homogeneous of degree -25ﬁ—1 in
»

z%,
This time, there is no natural choice for m . However, if u : T

—=& € is holomorphic and homogeneous of degree -2 +then
M= 1wl Eupys 2%0ZP A AZ¥A az® (39)

projects from Gs to a 3-form in MS which has the desired properties.
Thus the F wave functions can be represented symbolically in the form

1
g o= x( w? Cupys L7AZPA AZY NGZP)* (40)

where h = kyu : T~—%C is holomorphic and homogeneous of degree —ogm—l
- 2. In short, there is a one-to-one correspondence between holomorphic

1-2 and ¥ wave functions

homogeneous twistor functions of degree -2¢h”
on Ms.

At this point, the Kostant-Souriau procedure breaks down: such func-
tions are necessarily singular, and, even allowing singularities, there
are no scuare integrable wave functions,

Penroge's solution to this problem begins with the observation that
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if h ¢: T—» € is holomorphic and homogeneous of degree —2$h_1—2 then the
space-time field

. EE! . P
(CeA'B'C' ...))x = %’W‘Ai ‘\TB"\TC' S h(—lX ’WE" Hu")'\TJ‘ dTTF' (41)

i

(where Xa is the position vector of x) satisfies the zero-rest-mass field
equation (31), The integral here is around any closed one dimensional con~
tour in the TTA, space which avoids +the singularities of h, Because
of the homogeneity of h, the integrand is a closed 1l-form, so that the in-
tegral depends only on x and the cohomology class of the contour (in the
complement of the singularity set of h). Provided the contour varies con-
tinuously as x wvaries, the result will be a smooth, and, indeed, analytic,
field in ] »

When s is negative, the fields have unprimed indices and are given
by homogeneous holomorvhic functions on the dual space T%, so that, in

place of (41) one has
. LBE? ®
(@ume...0x = A}WA"TBTC coe 8Ty X T dmys g ¢ TX—2C (42)

The idea is that, eventually, all the momentum space integrals of con-
ventional quantum theory - such as inner products, charge integrals and
Feynman diagrams - should be replaced by integrals over compact contours
in twistor space (or in the product of several twistor spaces)., These are
necessarily finite, so there would be no need for renormalization.

For example, when s'=%% , the inner product of two fields @y and

‘PB' can he given by an integral over an 8-dimensional contour in T *T%

L,y = (2vi)—3§ (z"w,()‘1 w(z™) g(wa,)e,we" TVaZ% -2 AZS AN A-AGH

(43)

Here h generates ‘?A' and g generates §5B and the contour is fixed
by the choice of contours for <PA: and LVB' Similar expressions exist

for other values of the helicity, but when s» B , the contour is compact-

with-boundary rather than closed.

Hassive Particles

T shall end by making a few remarks about massive particles. Again,

s a
the lkinematical variables can be represented by a position vector X and

. - At
two future pointing null vectors IaA«b OA c)A and Ja«+» bA " 4 , only
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now (5), (6) ana (8) mt_).st be renlaced by

- ab abed a_ b b_a
pa=2“m(Ia+-Ja), M = -8 € Ich+X p ~-X'p (44)
¥ = x® 4+ rp®, T2 =1 ana ¥ = 1%, vhere re® (45)

a.b..c d a
T = seabcdl JTdITAQTT + mal A dX". (46)

One way to quantize this system is to first form the 12-dimensional
i ~
exact symplectic space (¥, ) in which X%, p, end x* - s* (2m) %’:OA
are independent variables and in which

-—pAt —
o = a( paan+ipAA,(XAd'xA - 'xA'd'xA)). (a7)

The phase space (Mm’s,c) of a particle with rest mass m and soin g>0
is recovered from (W,o ) by taking the 10-surface Gm’scw on which
P, pa= m2 and pAA,’XA ?A' = s and factoring out the two commuting Hamil-
tonian vector fields generated by papa and pAA'XA ’)_(A' .« As before, when
2s is an integral multiple of *h, the preguantization line bundle can be
exrregsed as a factor space of Gm,sx C.

In this notation, the polarization ¥ used by Renouard [9] is induced
from the polarization of (W,& ) spanned by the vector fields B/B")ZA' and
3/axa. The factor space Mm,s/i‘ is Nm’+x 82 where Nm’+ is the future

m-mass shell in momentum space and the F-wave functions are of the form
a A T A _B _C iﬁ_lp x® A +
. )
v (X sy Pys X )HL‘QABC”.’X K X eee € a ](\?/\’X d’xA) (48)

where ¥ is the invariant volume element on W and @ devends

) my+ ABC...
only on P, The conventional guantum mechanical description is recovered

by introducing the space-time field

~ r snlp x®
€ipc.,. = gN L ®upc... © a” o (49)
My+

Alternatively, one can recover (Mm s,o’) from the product Tx T =
’

£(2%,¥*)] of two twistor spaces with the exact symplectic form
o = i(az%a dZ, + aY™A d¥,) (50)

To be precise, (Mm ) 0-) is the symplectic manifold obtained from the
?
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1l-surface in Tx T given by

Z%Ty =8, Y*¥x =-s, %Y, =0 and ¥ =4%n (52)
where
s e*® 5
¥ o= (I°PZT)(Tag 2°Y®) and TP = . (53)
0

by factoring out the commuting Hamiltonian vector fields generated by
2% Ty , Y*Tx and ¥ (in Dirac's terminology, 2%%Y, =0 is a first
class constraint, that is, O restricts to a nondegenerate 2-form on the

l4-gurface 2%Y, = 0)., Sxplicitly,

A —_-eir(—é—sk—ltA+iXAA'('}\5A,),')\6A.) (54)
; 21 AT —_ —

T =M (entot w XM (T )T ) (55)
F

4

where A= m*2 and r,teWR.

This representation of (Mm ! ) is not unicue: the choice made for
the right hand sides in (52) can be changed, subject to the constraint that
the momentum and angular momentum defined by Z% and Y% should acd to
give the momentum and angular momentum of the massive particle. The trans-
formations of 2% and Y* which preserve this consiraint form a classical
tinternal symmetry' group isomorphic with SU(2)x ﬁ(E) [4, ]] (§(2) is
the double covering of the Buclidean group E(2)).

This time, the natural choice for the polarization in TX T is the
Kdhler polarization spanned by the vector fields 3452& and 3/5?& .

This choice results in a representation of cuantized massive particles by
holomorphic functions on TxT of fixed homogeneities in their two argu-

ments. Again, the space-time fields are obtained by contour integration.
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Footnote: After this talk, Professor Kostant suggested that, in the con-
formally invariant case, the Kostant-Souriau theory could be saved by con-
structing the quantum Hilbert space from certain cohomology groups associ-
ated with the prequantization line bundle and the antiholomorphic polariz-
ation, Unfortunately, this does not work since the wave functions would
then be represented by products of 3-forms with holomorphic forms on T
setistying gy f - ~2ist™l where = B.,.42%az%..., and the singu-

larities would still be present.



