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Introduction 

In this talk, I shall show how Penrose's twister formalism ~4~ arises 

through the application, with the aid of a few geometrical tricks, of the 

Kostant-Souriau geometric quantization theory ~3~I0,1~ to massless spinning 

particles in Minkowski space. This is not the usual way of introducing 

twistors, still less does it reflect the historical development of the sub- 

ject, but it does have the advantage of showing up some of the similarities 

in the fundamental ideas of the two theories. 

However, in spite of these similarities, it is important to realize 

that their motivations are very different. The ultimate aim of geometric 

quantization is the construction of a unified theory of the irreducible 

unitary representations of connected Lie groups by first geometrizing and 

then generalizing the physicist's concept of quantization. ]Jhen applied to 

simple physical systems, such as those invariant under the Poincare~group, 

geometric quantization results in the synthesis within a geometric frame- 

work of various well understood techniques from conventional quanttun mech- 

anics; it does not incorporate any new physical ideas. 

In his twistor theory, on the other hand, Penrose is trying to develop 

a new formalism for relativistic quantum field theory and, eventually~ to 

lay the foundations for a~uantum theory of grsvity. Moreover, Penrose has 

often stressed that he is looking for a formalism which only works in four 

dimensional space-time. In a sense, the existence of such a formalism 

would explain the dimension and signature of the real world. 

But, even allowing for these differences in outlook, there are a num- 

ber of practical benefits which can be derived from a comparison of the two 

theories: 

I) If one tries to construct a manifestly conformally invariant theory 

of massless particles by applying geometric quantization to the conformal 
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group 0(1,3) - or, rather, to its fourfold cover, SU(2,2) - one runs into 

a number of difficulties (which I shall describe later). Penrose's twis- 

for contour integration techniques provide a way of circumventing these 

difficulties and it is possible that, when translated into a suitable form, 

these techniques will lead to a friutful generalization of the Kostant- 

Souriau theory. 

2) Kostant and Souriau's geometric formulation of standard quantum 

mechanics is ideally suited to answering the question: How much of twis- 

tot theory is an elegant restatement of old ideas, and how much is new 

physics? 

3) Geometric quantization is often difficult to work with in practice: 

one is frequently forced to rely on the ~ntroduction of special coordinate 

systems. However, by using some of the tricks suggested by twistor theory, 

it is possible to quantize massless and massive particles in a Cevariant way 

and thus to obtain aft example of a completely geometric application of the 

theory. 

Notation 

The notation used here for the SL(2, ~) spinor calculus is essenti- 

ally the same as that described by Penrose [6] and Pirani [8] . Capital 

Roman letters are used for spinor indices (which run over O,1) and lower 

case Roman letters for space-time vector ~ and tensor indices (which run over 

0,1,2,3); primed indices are used to denote conjugate spinors. The Ein- 

stein range and summation conventions are used throughout. 

The correspondence between a vector Ya and its spinor equivalent 

yAA' is given explicitly, in any proper erthochronous Lorentz frame, by 

[zOo, yOl, 7 l[yO÷yl yy+iy3] 
ya~yAA' = LY I0' yll'J =~ 2 - iy3 yO - yl ] 

(1) 

Spinor indices are raised and lowered with the Levi-Civita symbols 

gAB = -I GAB = i (2) 
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and their complex conjugates 6A'B' and 6A,B, (these are all SL(2,~) 

invariant). Thus, for example, 

9QA = ~-AB~(B' ~B = 6AB ")QA and ~ B' = ~A'B' ~A'. (3) 

This is consistent with the usual convention for raising an~ lowering 

space-time indices since CAB ~A'B' is the spinor equivalent of the 

space-time metric gab" Finally, the flat spinor connection ~AA' is 

given in Lorentz coordinates ~x a~ ; by 

i ~o + ~I ~2 - iB I (4) 

(In the Battelle convention [6~ , spinor and tensor indices are reg- 

arded as abstract labels indicating the type of the geometric object to 

which they are attached. Thus, for example~ ya is actually a vector, 

rather than the components of a vector, and (1) can be rewritten: y a = 

yAA'. Though this convention will not be used explicitly, it can be used to 

reinterpret al! the equations below as relations between geometric objects, 

rather than the components of geometric objects.) 

~iassless Particles: Canonical Formalism 

In classical relativistic mechanics, the kinematical variables of a 

massless particle with helicity s~O can be represented by a position vec- 

tor X a (relative to some origin 0) and two future pointing null vectors 

I a and ja (normalized so that I ja = I). In terms of these, the mom- a 
entum and angular momentum are given by 

o = I and N ab -s6abcdI Jd + xaIb - xbIa (5) 
-a a = c ' 

the form of N ab being fixed by the condition that the spin vector 

should be parallel to the momentum ( 6abcd is the ~iternatin C tensor). 

Before quantizing this system, it is necessary to construct the class- 

ical phase space: in practical terms~ this means finding a suitable 
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expression for the symplectic 2-form of the system in terms of the vari- 

ables X a, I a and ja. In this search, there are two guiding principals: 

I) The system is to be an elementary relativistic system: this means 

that the Poincare group P must act transitively on the phase space as a 

group of canonical transformations. By the Kostant-Kirillov-Souriau theorem 

[~, therefore, the phase space must be locally isomorphic (as a P-symplec- 

tic space) with an orbit in the dual of the Poincare Lie algebra. 

2) The physical variables Pa and N ab are to have their usual in- 

terpretation as generators of P. 

The first implication of these is that each point in the phase space 

is determined by the values of Pa and M ab alone~ or, after a little 

calculation, that one must identify (~a, ~a I, ~a) and (Xa i~ ja) whenever 

~a = X a + Z a, ~a = i a and ~a = ja + £abCdibJcZd_ ½zbZb Ia (7) 

for some Z a such that zaI = O. The reeultin~ manifold is six dimension. 
2 a 

al and has topology ~4 ×S . (The need for this identification reflects 

the fact that even classically a massless spinning particle is not local- 

izable: it occupies an entire null hyperplane.) 

It is then not hard to show that one: an~ henoe the only, symplectic 

form on T~ which gives the correct ?oisson brachets for p~ ~nd ~ab ..... ~ 

O- = Sgabed IaJbdIcAdJd _ d XaAdi a (8) 

(see Sonriau ~, p.190). (As a 2-form on the nine dimensional (X a, I~ ja)_ 

space, ~ is degenerate. Ho~ever, the vectors in this space which anni- 

hilate ~ are precisely those which generate the identification (7). 

Thus ~ ?rojects into a nondegenerate 2-form on Ms. ) 

Fre~uantizstion 

The first stage in the prequantization of (Ms, O-) is to replace I a 

and ja A by two spinors O A and chosen so that 

--A' ~A la~-~O A C> , ja _.? 5A ~ A' and O A = I. (9) 
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(This is possible since I a and ja are null, so that I AA' and jAA' 

are sin~lar.) If then 

T[A' = ~A' and 6oA = s~A + ixAA' ~A' (lO) 

-~a ~A 
the identification (7) becomes (X ,~O, ITA,)~(xa, ~o A _  , 7[A, ) whenever 

~a = X a + Z a, ~A' = ei~qTA ' and ~o A = eii~o A (II) 

for some te ~ and for some real Z a such that zAA'~AqTA, = O. 

Thus a point of M s can be fixed by specifying the pair (a>A~qTA,): 

the corresponding values of X a are then given as the solutions of the 

linear equation 

(CO A iX AA' qTA,)~ A = s (12) 

and the values of the momenta are given explicitly by 

Pa ~ ~A VA, and Mab~ i(~ (A W~)E A'~'- 6 A~ D(A'v~')). (13) 

A 
The four complex (eight real) dimensional vector space in which o_~ 

and T]-A, are independent variables is called twistor space (denoted T). 

A twis~or (that is, an element of T) can be represented either as a pair 

(~A,~A,) of spinors or as a quadruple Z~= (Zl,Z2,Z3,Z 4) ~eere 

(ZI,z 2) :(coO, 0o I) and (Z3,Z 4) : (qTO,,~71,). (14) 

(Again~ the index ~ can be interpreted as an "abstract" index.) 

The twistors which correspond to points in N are those which lie in 
s 

the surface G ~ T g i v e n  by 
s 

~(z ~) :z~ : A VA +-~,, ~ o  =~s (15) 

~Jhere ~,<= (~A' ~A') is the !{ermitian conju~Tate of Z ~ • (The map 

z ~ ~ (16) g : T ~ @: ~ ~ Z~ = -~A + ~A'qTA' 

defines a pseudo-Hermitian metric on T of signature 

the freedom available in the choice of the phases of 

(+,+,-,-).) ~ec~.use 
A 

O and ~", the 
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projection* 

pr : ~ -~ : z ~-- (~AsVA,)-~ ~ (pa,M ab) (~7) 
s s 

defined by (13) is not one-to-one and s in fact, pr(Z ~ ) = pr(Y ~) whenever 

Z ~ = e itY~ for some t E ~. 

Now if~ in T~ one introduces the symplectic 2-form 

(which gives T the structure of a pseudo-K~hler manifold) then the Hamil, 

%onian vector field generated by g : T ~ ~ is 

x~ i(z ~- - ~ - - )  
= ~z ~ ~ 

which has closed integral curves of the form 

words s 

(I9) 

% ~ ~ e it ~ In other Z 0 . 

%/x (20) M s = 
g 

Noreover~ the restiction of 6- to ~s is degenerate and is annihilated by 

X (which is tangent to Gs) , so that o- projects into a closed 2-form 
g 

in M s . A short calculation shows that this is precisely the symplectic 

form introduced above. 

The point of this is that~ while the symplectic structure of (Ms,O~) 

is not exact s that of (Ts~) is, since, in T~ 

o- = d@ where @ = ½i( Z ~ d~ - ~dZ ~ ). (21) 

This can be exploited in the prequantization of (MS, ~)~ as follow,s: 

If, in the bundle space of the trivial line bundle G s × t----* Gss one 

puts: 

o6 = 8 + 1 dz and Y = X - 21~i( O ) ~z = X - 2is 
2~i z g XgJ g ~ . 

*When s = 0, the twistors of the form Z = (6oAs 0 ) must be omitted 

from G : the reason for this will be made clear later. 
s 
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(~There z is the coordinate in ~ , and, in the units used here, ~ = 

(2~)-1) then m is a connection form on G XC and the integral curves 
S 

of Y are parallel and are of the form 

t -~ (e itzo, ~ e-2is~-lt.z o) ~ ~CT, ~o ~ . (~2) 

These are close6 whenever 2s = ~e (the integral bein~ taken aroun~ ~ an 

orbit of X in Gs) is an integral multipTe of dl, in wh5ch case L = 

(G × dl )/ is a Hausdorff manifold, and, in fact~ a line bundle over M s s Y 
(with the projection L ---+ N s making the diagram 

O ×~ ~ L 

G- ~ g 
S S 

commute). ~oreover 9 YJ~ = 0 and £y~ = O, so that ~ projects onto 

a connection form (also denoted < ) on L; it follo~s from the defini- 

tion of ~ that the curvature of this connection is c~ . Thus, when 

2s~ -1 is integral, this construction is an explicit prequantization for 

(M s, ~). 

Quant i zat ion 

The next stage is to find a polarization for T which is invariant 

under the action of the Poincar6 group. This action is easily found from 

equation (I0). Under translation through A a, 

( J'~A, ) ~--~ ( ~ + i AAA'~A,, VA, ) (23) 

and under the Lorentz rotation defined by LABE SL(2,C), 

~B ' MCA LA B (ooA,~A,)I---+ (LABco B, M A' TUB') where = S B (24) 

(Note that both transformations preserve ~he form E~ dZ~dZ~AdZYAdZ ~ 

and the Kghler structure of T, and thus define elements of SU(2,2).) 

It follows that the real polarization F of T, spanned at each 
• / 

point by the vectors ~/~A and ~/~A' is Polncare invarian%. It is 

also Lie propagated by X . 
g 

This polarization induces a polarization F of Ms: explicitly, 
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is the projection into M of the distribution H on G defined by 
s s 

H : z ~ Gs ~ Fz a <'Z(Gs) C- TZ(%) 

where Tz(G ) is the tangent s~ace %o G at Z (H is also Lie prooa- 

gated by Xg);~ ~_ is, in fact, the 'natural' Dolarization~ of I~s, in the 

sense that it is spanned by the generating veeto~ fields of the trans- 

lation subgroup of P. 

The integral, manifolds of F are the surfaces in Ms given by ~A = 

cons%., ~A' = const, so that the points of the factor space N /~ are 
- s ~ F 

parameterized by ~A' and ~ ~ (modulo phase)~ in other words, ~,'is/~ 

is simply the future half of the light cone in moment~n s!i~ace (~enoted N+). 

~o~;~ uD to normslization, there is a unioue Lorentz invariant volume 

element @ on N+, given in coordinates by 

= ~0(dPlA e.p2^ alp2) = i(dT, A^ d#A% (s~ B' dWs,) - 

( 2 5 )  

Thus the ~.:ave functions of the F polarization can be written in the form 

where T : N ---* L is a section of L ~ich is covariantly constant on 
s 

the leaves of F (the precise meaning of the square root ~2 _ which is 

not important here - is discussed in detail by Blattner [~ ). 

The prequantization of (Ks~ ~) allows the sections of L to be re- 

alized in a particularly simple way: to be precise, any smooth function 

f : G -~ ~ which is homogeneous of degree -2s~ -I in Z < 4efines a see- 
s 

tion ~f of L, which makes this diagram commute: 

G ×~ -----~ L 

G --F N s s 

Conversely, any section ~ : Ms--~L can be obtained in this way from a 

homogeneous function f~ : Gs--~C . Furthermore, ~ will be eovariantly 

constant on the leaves of F if, and only if, f~ is covariantly constant 

in the directions in H (as a section of the trivial bundle Gs×C ), 

that is, if, and only if, f~ is of the form 
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m A t 

f~ : Z~ = (~A'~A') ~ k~(qrA' ~A ')exp(½ ~'I(~°A ~A - ~O ~VA, ) 

= k (WA, VA,) exp( i~ -1 pX a) (27) 

where k~ is homogeneous of degree -2s~ -I in ~A': 

~ -  ~ , ~) = 2sk~ . (28) 
~(~A A ~A' 

In this realization~ the inner product of the two wave funotions 

~ and ~ ~' 

is given by 

<% ~'> = I~, k<k--~, + (29) 
+ 

(since it is invariant under phase transformations of q]i, ~ k~, is a 

well defined function on N+). 

Finally, the relationship of this to the conventional quantum descrip- 

tion of massless particles can be seen by introducing the spinor field 

j O(A,B,C, = ~TA,~B,qTC, ... f%~9 = ~qTA, q£B, ... k~e a j q 
"'" N+ + (3o) 

(with 2s~ -1 indices). The integrand is again independent of the phase 

of ~A' and ~A,B,C, ... satisfies the zero-rest-mass field equation 

V AA' = 0 (31) 
~A'B'C' ... 

Twistor Theory 

So far, nothing exceptional has been achieved. It was already known 

that geometric quantization leads in a straightforwerd way to the conven- 

tional quantum description of a free massless particle ~9~10]. The twis- 

for formalism has done little except to make the calculations simpler. 

The parting of the ways between conventional physics and twistor theory 

proper come when one tries to repeat this analysis in a way which respects 

the invariance of massless under the full conformal group of Ninkowski 

space (denoted C(1,3) ) . Except for one minor subtlety, which I shall 

deal with presently~ the construction of the classical phase space and its 

prequantization are unchanged. The trouble is that the polarization intro- 
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above is not invariant under the action of C(1,3) on T. This action is 

found by introducing a new geometrical realization of a twister: 

The definition of the ~A part of a twistor Z~ corresponding to 

some fixed point of Ns~ depends on the choice of an origin 0 in Ninkow- 

ski space ~I. If 0 is translated through ya then the ~A' part of 

Z ~ is unaltered, while A transforms according to 

~A ~ A - iyAA'-~A , (32) 

The spinor ~A can, therefore~ be regarded as a field on qlq rather than 

as a fixed (but origin dependent) quantity. From (32), this field satis- 

fies the twistor equation, 

#A,(A~ ~) : o (34) 

and, in fact, the general solutiom of this is 

(60 ~')x = 6OoA ixAA'~A, ~yhere x~1~ and I~A, is fixed. (35) 

Here~ &°O A is the value of A at 0~11] and X a is the position vector 

of x relative to O. Thus ~he map uoA~-¢ (6OO,~A , A  ) defines an isomor- 

phism between T and the solution space of the twistor equation. 

The point of this is that (34) is conformally invariant in the sense 

that if ( : f117--eq~ is a conformal isometry, and if co A satisfies (34), 

then so does ((co) A, but with ~AA' replaced by the connection VAA' 

of the conformally transformed metric gab = ~(g)ab = zh2 gab ' which is re- 

lated to ~AA' by 

= + gA B ~A'C where ~a = •a inil. (36) 

Thus if ~ fixes the origin 0 then its action on T is 

C: Z~ = (~#' '~&,)~'--~ (LAB000 B' ~B' A, ( "H'B' + iU~B'0oB) ) (37) 

~:here U a = (~a) 0 and LAB is the SL(2, C) transformation of the spin 

I~C A LA B C Again, this transformation s ace at 0 induced by g and = ~B " 

Cefines an element of ~;U(2,2). 

The subtlety mentioned above arises because, strictly speaking, the 

only conformal isometr!es which fix 0 are the Lorentz rotations and the 
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dilatations. The full 15-dimensional group C(1,3) acts not on ~O but 

on its compactificaticn ~ which is obtained from W0 by attaching the 

'null cone at infinity' ~5~ • The only role that this plays here is that, 

when s = O, the phase space of a conformally invariant particle includes 

points at infinity corresponding to %wistors of the form (co A, 0 ), and has 

topology $3~ S2×~( rsther than ~4~S2. 
One now sees that there is an obvious conformally invariant polariz- 

ation for T: this is the K&hler polarization K, spanned at e~ch point 

by the antiholomorphic vectors ~ ~ / ~ .  
As before, K induces a polarization K on each N s (when s / O, 

this is K£hler, but when s = O~ KNK is one dimensional). The ~ wave 
1 

functions are of the form ~ = ~ where ~ is a section of L, covari- 

antly constant in the directions in ~ and ~ is a 3,form, orthogonal to 

and Lie propagated by the directions in K. 

Again, ~ cam be represented by a function 

f~ must be of the form 

f~ : Gs- -~ C , only now 

_!~ -I Z~'~< 
f¢~ : Z ~ ~----~k~(Z ~ ) e (,38) 

where k~ : T ~ C is holomorphic and homogeneous of degree -2s~ -1 in 

Z ~ . 

This time, there is no natural choice for /~ . However, if U : T 

~ is holomorphic and homogeneous of degree -2 then 

u 2 Z~dZ ~ A dZYA dZ $ = 6~9~ s (39) 

projects from G to a 3-form in M ~ich has the desired properties. 
S S 

Thus the K wave functions can be represented symbolically in the form 

= .~(u 2 
~" 6~N~ Z~dZ~A dZ ¥/kdZ % )½ (40) 

where h = k~u : T---~ is holomorphic and homogeneous of degree -2sd% -I 

- 2. In short, there is a one-to-one correspondence between holomorphic 

homogeneous twistor functions of degree -2s~-1-2 and K wave functions 

on M s- 

At this point, the Kostant-Souriau procedure breaks dovm: such func- 

tions are necessarily singular, and, even allowing singularities, there 

are no square integrable wave functions. 

Penrose's solution to this problem begins with the observation that 
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if h : T---~ 6 is holomorphic and homogeneous of degree -2s~-1-2 then the 

space-time field 

( ~A'B'C' .))x = ~ ~A' ~B'~C' h(-i X ~  ~' .. ... ~,,~,)~ d~F, (41) 

(where X a is the position vector of x) satisfies the zero-rest-mass field 

equation (31). The integral here is around any closed one dimensional con- 

tour in the qTA, space which avoids the singularities of h. Because 

of the homogeneity of h, the integrs~d is a closed 1-form, so that the in- 

tegral depends only on x and the cohomology class of the contour (in the 

complement of the singularity set of h). Provided the contour varies con- 

tinuously as x varies, the result will be a smooth, and~ indeed, analytic, 

field in Oq. 

When s is negative, the fields have unprimed indices and are given 

by homogeneous holomorphic functions on the dual space T*~ so that, in 

place of (41) one has 

(~A~c..)~ ~VA~C "" g(~E' .EE' , F • = . ix "[rE) d~F ; g : T*-4~C (42) 

The idea is that, eventually, all the momentum space integrals of con- 

ventional quantum theory - such as inner products, charge integrals and 

Feynman diagrams - should be replaced by integrals over compact contours 

in twistor space (or in the product of several %wistor spaces). These are 

necessarily finite, so there would be no need for renormalization. 

For example, when s=½~ , the inner product of two fields qOA, and 

~B' can be given by an integral over an 8-dimensional contour in T ~T* 

<~, ~ = (2~i) -3 ~ (z~wD -1 ~(z ~) g(W~)~e'e~dZ%--~dZ~d~^ ^d~ 
(43) 

Here h generates ~A' and g generates ~B and the contour is fixed 

by the choice of contours for qA' and ~B" Similar expressions exist 

for other values of the helicity, but when s~ { , the contour is compact- 

with-boundary rather than closed. 

}~assive Particles 

I shall end by making a fe]~ remarks about massive particles. Again~ 

the kinematical variables can be represented by a position vector X a and 

two future pointing null vectors ia4~ oA ~A' and ja + A ~A', only 
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now (5) ,  (6) and (8) must be reT~laoed by 

I Nab g abcd ic Jd X a pb X b pa Pa = 2-L>m( Ia + "Ja ) ' = -s + - (44) 

~a = X a + rpa ~a = la ~a , and = ja, where r~ ~ (45) 

i aJbdIckdJd + mdla~dX a. (46) 
= s < abed 

One way to quantize this system is to first form the 12-dimensional 

exact symplectic space (WRY) in which xar Pa and A = s½(2m)-½oA 

are independent variables and in which 

= d( padX a + iPAA, ( ~ A d ~ A '  - ~A' d~<A)). (47) 

The phase space (Mmrs,G) of a particle with rest mass m and spi~ s>O 

is recovered from (W, ~ ) by taking the lO-surface G ~%'f on which 

Papa = m2 and PAA,~ A ~A' = s and factoring out them'Stwo commuting Hamil- 

a PAA,%A ~A' ionian vector fields generated by pap and . As before r when 

2s is an integral multiple of ~, the pre~uantization line bundle can be 

expressed as a factor space of G x ~ . 
m~s 

In this notation, the polarization F used by Renouard [9~ is induced 

from the polarization of (W, ~ ) spanned by the vector fields B/~ ~A' and 

The factor space Mm,s/~ is Nm,+X S 2 where Nm, + is the future %/~X a • 
m-mass shell in momentum space and the ~-wave functions are of the form 

a i : ~<A 7(B ~C e i~q- lpax ] (  ~>A ~zAdOcA )~(48)  (X a, Par %A)w-~ [q?ABC... - . .  

where ~ is the invariant volume element on Nm, + and ~ABC... depends 

only on Pa" The conventional quantum mechanical description is recovered 

by introducing the space-time field 

.. ei -lpax 3 
mr+ 

Al te rna t i ve l y~  one can recover (Mmrs~d) from the product 
[(Z~,Y~)~ of two twister spaces with the exact symplectic form 

(49) 

T~T = 

(5o) 

To be precise r (Mm,s, O) is the symplectic manifold obtained from the 
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ll-surface in T % T given by 

Z~ = s, Y~ = -s, Z~ = 0 and K = ½m 2 (52) 

where 

(53) 

by factoring out the commuting Hamiltonian vector fields generated by 

Z~ , Y~ and N (in Dirac's terminology, Z~K = 0 is a first 

class constraint, that is, o ~ restricts to a nondegenerate 2-form on the 

14-surface Z~ = 0). Explicitly, 

Z~ = eir(½s ~-I &A + ixAA'( % ~ A' ) '%~A' ) (54) 

y~ it i X AA' = e (½s%-!o A + ( % 7 A' ) ' %7A' ) (55) 

1 1 

where % = m ~2 -T and r~tE~. 

This representation Of (Nm,s, o-) is not unique: the choice made for 

the right hand si~es in (~2) can be changed~ s~jeci to the constraint that 

the momentum and angular momentum defined by Z ~ and Ym should a~d to 

give the momentum and angular momentum of the massive particle. The trans- 

formations of Z ~ and Y~ which preserve this constraint form a classical 

'internal symmetry' group isomorphic with SU(2)× E(2) E4, 7] (E(2) is 

the double covering of the Euclidean group E(2)). 

This time, the natural choice for the polarization in TX T is the 

K~hler oolarization spanned by the vector fields ~4~ and ~4~ " 

This choice results in a representation of quantized massive particles by 

holomorphic functions on T×T of fixed homogeneities in their two argu- 

ments. Again, the space-time fields are obtained by contour integration. 
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Footnote: After this talk, Professor Kostant suggested that, in the con- 

formally invarian% case~ the Kostan%-Souriau theory could be saved by con- 

Structing the quantum Hilbert space from certain cohomology groups associ- 

ated with the prequantization line bundle and the antiholcmorphic polariz- 

ation. Unfortunately, this does not work since the wave functions would 

then be represented by products of ~-forms with hclomorphic forms on T 

£X ~ = -2is~-!~ where 9 = ~9.dZ~ dZg..., and the singu- satisfying 
g 

larities would still be present. 


