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Abstract

Van der Waals like behavior of f (R) AdS black holes is revisited via two point correlation function, 
which is dual to the geodesic length in the bulk. The equation of motion constrained by the boundary 
condition is solved numerically and both the effect of boundary region size and f (R) gravity are probed. 
Moreover, an analogous specific heat related to δL is introduced. It is shown that the T − δL graphs of 
f (R) AdS black holes exhibit reverse van der Waals like behavior just as the T − S graphs do. Free energy 
analysis is carried out to determine the first order phase transition temperature T∗ and the unstable branch 
in T − δL curve is removed by a bar T = T∗. It is shown that the first order phase transition temperature 
is the same at least to the order of 10−10 for different choices of the parameter b although the values of 
free energy vary with b. Our result further supports the former finding that charged f (R) AdS black holes 
behave much like RN-AdS black holes. We also check the analogous equal area law numerically and find 
that the relative errors for both the cases θ0 = 0.1 and θ0 = 0.2 are small enough. The fitting functions 
between log | T − Tc | and log | δL − δLc | for both cases are also obtained. It is shown that the slope is 
around 3, implying that the critical exponent is about 2/3. This result is in accordance with those in former 
literatures of specific heat related to the thermal entropy or entanglement entropy.
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1. Introduction

Van der Waals like behavior of black holes has long been an interesting topic in the black 
hole physics research for it discloses the close relation between black hole thermodynamics and 
ordinary thermodynamic systems. In the famous paper, Chamblin et al. [1,2] found that Reissner–
Nordström-AdS (RN-AdS) black holes undergoes first order phase transition, which is analogous 
to the van der Waals liquid-gas phase transition. Carlip and Vaidya investigated the thermody-
namics of a four-dimensional charged black hole in a finite cavity in asymptotically flat and 
asymptotically de Sitter space and discovered similar phase transition [3]. Lu et al. [4] studied 
the phase structure of asymptotically flat nondilatonic as well as dilatonic black branes in a cav-
ity in arbitrary dimensions. It was shown that the phase diagram has a line of first-order phase 
transition in a certain range of temperatures which ends up at a second order phase transition 
point when the charge is below a critical value [4]. In this sense, van der Waals like behavior is 
such a universal phenomenon that it exists not only in AdS black holes, but also in asymptoti-
cally flat and asymptotically de Sitter black holes and black branes. Treating the cosmological 
constant as thermodynamic pressure, Kubizňák and Mann [5] investigated the P − V criticality 
of RN-AdS black holes in the extended phase space and further enhanced the relation between 
charged AdS black holes and van der Waals liquid-gas systems. It has been shown that black 
holes are in general quite analogous to van der Waal fluids and exhibit the diverse behavior of 
different substances in everyday life. See the nice reviews [6–9] and references therein.

Here, we would like to focus on the van der Waals like behavior of charged AdS black holes in 
the R + f (R) gravity with constant curvature [10], whose entropy, heat capacity and Helmholtz 
free energy was obtained in Ref. [10]. Ref. [11] studied their P − V criticality in the extended 
phase space and showed that van der Waals like behavior exists in the P − V graph of f (R)

AdS black holes. Recently, we investigated their phase transition in the canonical ensemble and 
further showed that T − S graphs of f (R) AdS black holes exhibit reverse van der Waals like 
behavior [12]. In this paper, we would like to revisit the van der Waals like behavior from a 
totally different perspective. Namely, the two point correlation function. Studying the properties 
of f (R) AdS black holes [10–32] is of interest, because f (R) gravity is one of modified gravity 
theories which successfully mimics the history of universe, especially the cosmic acceleration.

On the other hand, investigating the properties of the two point correlation function is also 
intriguing itself. The two point correlation function is dual to the geodesic length according to 
the famous AdS/CFT correspondence [33–35]. Interesting but intractable phenomena in strongly 
coupled system can be traced elegantly via the nonlocal observables such as two point correla-
tion function, Wilson loop and entanglement entropy. Examples can be found in the researches 
of superconducting phase transition [36–43], the holographic thermalization [44–57] and cos-
mological singularity [58,59]. Recently, the isocharges in the entanglement entropy-temperature 
plane was investigated in Ref. [60], where both the critical temperature and critical exponent 
were proved to be exactly the same as the case of entropy-temperature plane. This finding is 
really intriguing and is attracting more and more attention [61–70]. Especially, it was proved in 
Ref. [62] that the entanglement entropy-temperature plane obeys the equal area law just as T −S

curve does [71]. In this paper, we would like to generalize these research to see whether the two 
point correlation function of f (R) AdS black holes exhibits similar behavior. If it does, it would 
be a totally different perspective to observe the van der Waals like behavior of f (R) AdS black 
holes other than T − S graph and P − V graph. To the best of our knowledge, this issue has 
not been covered in literature yet. As described above, the former literatures mainly focus on the 
entanglement entropy, including its van der Waals like behavior [60] and equal area law [62]. 
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Our paper mainly focus on the two point correlation function (not the entanglement entropy) of 
f (R) AdS black holes. So the results presented in this paper is independent and will certainly 
contribute to the knowledge of both f (R) gravity and AdS black holes.

The metrics of f (R) AdS black holes and RN-AdS black holes look similar via rescaling 
of parameters. Then one may expect that the results presented in this paper can be compared 
with those of RN-AdS black holes by performing that rescaling. However, this is not the whole 
story. Similarities and differences coexist. So it is worth probing from two different perspectives. 
On the one hand, the more similarities they have, the more importance they gain. The amazing 
similarities imply that this black hole solution may serve as a bridge across the Einstein gravity 
and f (R) gravity. The similarities will also call for further investigation which may shed light 
on some deeper physics which has not been disclosed yet. On the other hand, one will expect 
to search for the possible unique features that are different from the features in Einstein gravity. 
These differences are certainly of interest since the metrics look similar. In this paper, we will 
show that although the free energy changes with b, the first order phase transition temperature 
is the same for different b. If we interpret q/

√
b as the rescaled charge that can be compared 

with that of RN-AdS black holes, then our result implies that the first order phase transition 
temperature does not vary with the rescaled charge Q (at least it is true for the cases when b
varies). And it is quite different from the RN-AdS black holes whose first order phase transition 
temperature depends on Q.

The organization of this paper is as follows. In Sec. 2 we will have a brief review of critical 
phenomena of f (R) AdS black hole. Two point correlation function of f (R) AdS black holes 
will be investigated numerically in Sec. 3. Maxwell equal area law will be numerically checked 
in Sec. 4. Conclusions will be drawn in Sec. 5.

2. A brief review of critical phenomena of charged AdS black holes in f(R) gravity

Ref. [10] obtained in the R + f (R) gravity with constant curvature scalar R = R0 a charged 
AdS black hole solution, whose metric reads

ds2 = −N(r)dt2 + dr2

N(r)
+ r2(dθ2 + sin2 θdφ2), (1)

where

N(r) = 1 − 2m

r
+ q2

br2
− R0

12
r2, (2)

b = 1 + f ′(R0). (3)

Note that b > 0, R0 < 0.
This black hole solution is asymptotically AdS when one identify the curvature scalar as [10]

R0 = −12

l2
= 4�. (4)

The black hole ADM mass M and the electric charge Q are related to the parameters m and 
q respectively [10]

M = mb, Q = q√ . (5)

b
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Fig. 1. (a) T vs. r+ for b = 1.5,R0 = −12 (b) T vs. S for b = 1.5,R0 = −12 [15].

Ref. [11] reviewed its Hawking temperature, entropy and electric potential as

T = N ′(r+)

4π
= 1

4πr+
(1 − q2

br2+
− R0r

2+
4

). (6)

S = πr2+b. (7)

� =
√

bq

r+
. (8)

In Ref. [12], we investigated in detail the critical phenomena in the canonical ensemble. As 
shown in Fig. 1, both T − S curve and T − r+ curve show reverse van der Waals behavior 
(reverse denotes that at small r+ or small S, T → 0 rather than T → ∞) when Q < Qc . The 
relevant critical quantities were derived as [12]

Qc =
√

−1

3R0
, rc =

√
−2

R0
, Sc = −2bπ

R0
. (9)

Numerical check of Maxwell equal area law for the cases Q = 0.2Qc, 0.4Qc, 0.6Qc, 0.8Qc was 
also carried out in T − S graph. It was shown that the relative errors are amazingly small and the 
Maxwell equal area law holds for T −S curve of f (R) black holes [12]. The analytic expression 
of free energy was obtained as

F = R0S
2 + 12πb(3bπQ2 + S)

48π3/2
√

bS
. (10)

It was shown that the classical swallow tails characteristic of first order phase transition appears 
in the case Q < Qc [12].

3. Two point correlation function of f (R) AdS black holes and its van der Waals like 
behavior

The equal time two point correlation function in the large � limit reads [72]

〈O(t0, xi)O(t0, xj )〉 ≈ e−�L, (11)

where L is the length of the bulk geodesic between the points (t0, xi) and (t0, xj ) on the AdS 
boundary while � denotes the conformal dimension of scalar operator O in the dual field theory.
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Here, we choose two boundary points as (φ = π
2 , θ = 0) and (φ = π

2 , θ = θ0) for simplicity. 
Parameterizing the trajectory with θ , the proper length can be obtained as

L =
θ0∫

0

L(r(θ), θ)dθ, L =
√

ṙ2

N(r)
+ r2, (12)

where ṙ = dr/dθ .
Utilizing the Euler–Lagrange equation ∂L

∂r
= d

dθ

(
∂L
∂r ′

)
, one can derive the equation of motion 

for r(θ) as

2r(θ)N(r)r̈(θ) − [r(θ)N ′(r) + 4N(r)]ṙ(θ)2 − 2N(r)2r(θ)2 = 0. (13)

The boundary conditions can be fixed as

r(0) = r0, ṙ(0) = 0. (14)

Solving the equation of motion (13) constrained by the boundary condition (14), one can obtain 
r(θ). However, the analytic expression is difficult to derive and we have to appeal for numerical 
methods.

It is worth mentioning that the geodesic length should be regularized by subtracting off the 
geodesic length in pure AdS with the same boundary region to avoid the divergence. We use 
δL to denote the regularized geodesic length, which can be calculated through the definition 
δL ≡ L − L0. Note that rAdS(θ) corresponding to entanglement entropy in pure AdS L0 has 
been obtained analytically as rAdS(θ) = l[( cos θ

cos θ0
)2 − 1]−1/2 [73,74]. Note that this formula 

can be applied to the case of f (R) AdS black holes by introducing an effective cosmological 
constant and rescaling the AdS length. And the outcome is in accord with the numerical treat-
ment.

To probe the effect of boundary region size on the phase structure, we choose θ0 = 0.1, 0.2 as 
two specific examples and we set the cutoff θc = 0.099, 0.199 respectively. On the other hand, we 
consider the case b = 0.5, 1, 1.5 to investigate the effect of f (R) gravity on the phase structure. 
For convenience, we set the AdS radius l to be 1, which is equivalent to R0 = −12. According 
to Eq. (9), Qc = 1/6. As we are interested in the possible reverse van der Waals behaviors, we 
would like to pay more attention to the case Q < Qc . So we set the charge Q to be 0.1 in most of 
the cases in this paper. The case Q = 0 is also probed for the purpose of comparison. As shown 
in Fig. 2 and Fig. 3, the T − δL graphs for Q = 0 have only one inflection point while the graphs 
for Q < Qc have two inflection points. From the T − δL graphs for Q < Qc , one can see clearly 
the reverse van der Waals like behavior. It is also shown that the effect of b is so small that the 
T − δL graphs seem the same at the first glance, although the specific numeric data points are 
different. On the other hand, the effect of boundary region size is quite obvious as reflected in 
the range of δL axis.

4. Numerical check of equal area law in T − δL graph

To investigate the stability of black holes reflected in the T − δL graph, one can introduce an 
analogous definition of specific heat as

C = T
∂δL

. (15)

∂T
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Fig. 2. T vs. δL for θ0 = 0.1 (a) b = 1,Q = 0 (b) b = 0.5,Q = 0.1 (c) b = 1,Q = 0.1 (d) b = 1.5,Q = 0.1.

Fig. 3. T vs. δL for θ0 = 0.2 (a) b = 1,Q = 0 (b) b = 0.5,Q = 0.1 (c) b = 1,Q = 0.1 (d) b = 1.5,Q = 0.1.
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Fig. 4. F vs. T for Q = 0.1,R0 = −12 (a) b = 0.5 (b) b = 1 (c) b = 1.5.

Similar to the T − S graph, one can find in the T − δL graph that when Q < Qc , both the 
large radius branch and the small radius branch are stable with positive specific heat while the 
medium radius branch is unstable with negative specific heat. Following a similar approach as 
that for T −S graph [71], one can remove the unstable branch in T − δL curve with a bar T = T∗
vertical to the temperature axis. Physically, T∗ denotes the Hawking temperature corresponding 
to the first order phase transition. The analogous Maxwell equal area law in the T − δL graph 
may be written as

T∗ × (δL3 − δL1) =
δL3∫

δL1

T dδL, (16)

where δL1, δL2, δL3 denote the three values of δL at T = T∗ with the assumption that δL1 <

δL2 < δL3.
T∗ can be determined utilizing the free energy analysis. One can find T∗ from the intersec-

tion point of two branches in the F − T graph. The free energy graphs for different choice of 
b is plotted in Fig. 4. From Fig. 4, one can see clearly that the values of free energy are influ-
enced by the parameter b showing the impact of f (R) gravity. To one’s surprise, the effect of 
b on T∗ is very little at the first glance at Fig. 4. We further obtain numerical result of T∗ to be 
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Table 1
Numerical check of Maxwell equal area law in T − δL graph for R0 = −12, Q = 0.1, b = 1.5.

θ0 δL1 δL2 δL3 T∗(δL3 − δL1)
∫ δL3
δL1

T dδL relative error

0.1 0.0000516933 0.0001149030 0.0002999516 0.00007068 0.00007099 0.4367%
0.2 0.0004189403 0.0009334939 0.0024361593 0.00057431 0.00057684 0.4386%

0.2847050173 for the three choices of b, namely, 0.5, 1, 1.5, implying that the first order phase 
transition temperature T∗ is the same at least to the order of 10−10 for different choices of b. 
Considering the fact that the f (R) AdS black holes reduce to RN-AdS black holes when b = 1, 
the result we obtain here is very interesting for it implies that f (R) gravity does not influence 
the first order phase transition temperature. Our result further supports the former finding that 
charged f (R) AdS black holes behave much like RN-AdS black holes. In former literature, it 
was reported in the reduced parameter space that charged f (R) AdS black holes share the same 
equation of state [11], the same coexistence curve [13] and the same molecule number density 
difference [13] with RN-AdS black holes. This can be attributed to the observation that these 
two black hole metrics are identical when the charge is rescaled and an effective cosmological 
constant is defined for f (R) AdS black holes. It is interesting that these two black holes in two 
different gravity theories (f (R) gravity and Einstein gravity) share so much similarities in their 
metrics and other behaviors.

With T∗ at hand, we calculate numerically the values of the left-hand side and right-hand 
side of Eq. (16) for the cases θ0 = 0.1 and θ0 = 0.2 respectively to check whether the analogous 
Maxwell equal area law holds for T − δL curve. As can be witnessed from Table 1, the relative 
errors for both cases are so small that we can safely draw the conclusion that the analogous 
Maxwell equal area law holds for T − δL curve of f (R) AdS black holes.

Utilizing Eqs. (6) and (9), one can easily derive the critical temperature as

Tc =
√−R0

3
√

2π
. (17)

Substituting R0 = −12 into the above equation, one can obtain Tc = 0.2598989337. Note that it 
is independent of θ0. Then one can adopt the interpolating functions obtained from the numeric 
result to obtain δLc. For the case θ0 = 0.1, δLc = 0.0001337812 while for the case θ0 = 0.2, 
δLc = 0.0010728619. The relation between log | T − Tc | and log | δL − δLc | is plotted for the 
cases θ0 = 0.1 and θ0 = 0.2 in Fig. 5(a) and 5(b) respectively. Note that the points are chosen 
neighboring the critical point from the T − δL graph corresponding to Q = Qc = 1/6. And the 
fitting function for these two cases are obtained as

log | T − Tc |=
{

25.7008 + 3.08202 log | δL − δLc |, for θ0 = 0.1,

18.9784 + 3.06772 log | δL − δLc |, for θ0 = 0.2.
(18)

From above, one can see clearly that the slope is around 3, implying that the critical exponent 
(defined through C ∼| T −Tc |−α) is about 2/3. Our result of critical exponent for the analogous 
specific heat related to the δL is in accordance with those in former literatures of specific heat 
related to the thermal entropy [2] or entanglement entropy [60].
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Fig. 5. log | T − Tc | vs. log | δL − δLc | for R0 = −12, b = 1.5,Q = Qc = 1/6 (a) θ0 = 0.1 (b) θ0 = 0.2.

5. Conclusions

In this paper, we focus on the two point correlation function of f (R) AdS black hole. First, we 
choose two boundary points as (φ = π

2 , θ = 0) and (φ = π
2 , θ = θ0) and obtain the proper length 

by parameterizing the trajectory with θ . Then utilizing the Euler–Lagrange equation, we derive 
the equation of motion for r(θ). Solving the equation of motion constrained by the boundary con-
dition, we obtain r(θ) numerically. Moreover, we regularize the geodesic length by subtracting 
off the geodesic length in pure AdS with the same boundary region.

Second, to probe the effect of boundary region size on the phase structure, we choose θ0 =
0.1, 0.2 as two specific examples and we set the cutoff θc = 0.099, 0.199 respectively. On the 
other hand, we consider the case b = 0.5, 1, 1.5 to investigate the effect of f (R) gravity on the 
phase structure. The case Q < Qc are plotted for different cases. From the T − δL graphs, one 
can see clearly the reverse van der Waals like behavior. It is also shown that the effect of b is 
so small that the T − δL graphs seem the same at the first glance, although the specific numeric 
data points are different. On the other hand, the effect of boundary region size is quite obvious 
as reflected in the range of δL axis.

Third, we introduce an analogous definition of specific heat to investigate the stability of black 
holes reflected in the T − δL graph. Similar to the T −S graph, one can find in the T − δL graph 
that when Q < Qc , both the large radius branch and the small radius branch are stable with 
positive specific heat while the medium radius branch is unstable with negative specific heat. We 
remove the unstable branch in T − δL curve with a bar T = T∗ vertical to the temperature axis, 
where T∗ denotes the Hawking temperature corresponding to the first order phase transition. We 
carry out free energy analysis to determine T∗. It is shown that the values of free energy are 
influenced by the parameter b showing the impact of f (R) gravity. However, to one’s surprise, 
the numerical result of T∗ to be 0.2847050173 for all the three choices of b, namely, 0.5, 1, 1.5, 
implying that the first order phase transition temperature T∗ is the same at least to the order of 
10−10 for different choices of b. Considering the fact that the f (R) AdS black holes reduce to 
RN-AdS black holes when b = 1, the result we obtain here is very interesting for it implies that 
f (R) gravity does not influence the first order phase transition temperature. Our result further 
supports the finding that charged f (R) AdS black holes behave much like RN-AdS black holes 
reported in former literature, where charged f (R) AdS black holes were shown to share the same 
equation of state [11], the same coexistence curve [13] and the same molecule number density 
difference [13] with RN-AdS black holes in the reduced parameter space. We also check the 
analogous equal area law numerically. It is shown that the relative errors for both cases are so 
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small that we can safely draw the conclusion that the analogous Maxwell equal area law holds 
for T − δL curve of f (R) AdS black holes.

Last but not the least, we plot the relation between log | T − Tc | and log | δL − δLc | for the 
cases θ0 = 0.1 and θ0 = 0.2 and obtain the fitting functions for these two cases. It is shown that 
the slope is around 3, implying that the critical exponent (defined through C ∼| T − Tc |−α) is 
about 2/3. Our result of critical exponent for the analogous specific heat related to the δL is in 
accordance with those in former literatures of specific heat related to the thermal entropy [2] or 
entanglement entropy [60].

To summary, the T − δL graph of f (R) AdS black holes exhibits the reverse van der Waals 
like behavior just as the T − S graphs do. And the analogous Maxwell equal area law holds for 
T − δL graph. Moreover, the critical exponent for the analogous specific heat related to the δL
is shown to be the same as those of specific heat related to the thermal entropy or entanglement 
entropy. So the two point correlation function may serves as an alternative perspective to observe 
van der Waals like behavior of f (R) AdS black holes.
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