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Abstract

In this thesis we study aspects of (0,2) superconformal field theories (SCFTs), which

are suitable for compactification of the heterotic string. In the first part, we study

a class of (2,2) SCFTs obtained by fibering a Landau-Ginzburg (LG) orbifold CFT

over a compact Kähler base manifold. While such models are naturally obtained as

phases in a gauged linear sigma model (GLSM), our construction is independent of

such an embedding. We discuss the general properties of such theories and present

a technique to study the massless spectrum of the associated heterotic compactifica-

tion. We test the validity of our method by applying it to hybrid phases of GLSMs

and comparing spectra among the phases. In the second part, we turn to the study

of the role of accidental symmetries in two-dimensional (0,2) SCFTs obtained by RG

flow from (0,2) LG theories. These accidental symmetries are ubiquitous, and, unlike

in the case of (2,2) theories, their identification is key to correctly identifying the IR

fixed point and its properties. We develop a number of tools that help to identify such

accidental symmetries in the context of (0,2) LG models and provide a conjecture

for a toric structure of the SCFT moduli space in a large class of models. In the final

part, we study the stability of heterotic compactifications described by (0,2) GLSMs

with respect to worldsheet instanton corrections to the space-time superpotential

following the work of Beasley and Witten. We show that generic models elude the

vanishing theorem proved there, and may not determine supersymmetric heterotic

vacua. We then construct a subclass of GLSMs for which a vanishing theorem holds.
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1

Introduction

Perhaps the most striking example of the fruitful interaction between physics and

geometry is general relativity, where classical geometry is key and guide in predicting

and understanding phenomena like singularities and more generally the structure of

spacetime. One would expect that string theory, as a quantum theory of gravity,

should be equipped with its own geometric tools and intuitions which would con-

stitute the mathematical framework for developing the theory. As it stands, the

definition of this mathematical framework is a formidable challenge even at the clas-

sical level. In order to better understand this statement, we should recall that in

string theory there are two different quantities, gs and α1, which can be thought

as expansion parameters. The former, known as the string coupling, is the vacuum

expectation value of the dilaton field and it can be considered the stringy generaliza-

tion of ~ in quantum field theory (QFT). The loop expansion of Feynman diagrams

in QFT is replaced in string theory by a sum over worldsheet topologies, where gs

is a weight for these different topologies. The classical limit, which we referred to

above, is defined by taking gs Ñ 0, and it corresponds to string theory formulated

on a spherical worldsheet. The second quantity, α1, is merely a scale that controls
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the auxiliary quantum field theory defined on a worldsheet of fixed genus.

The full formulation of string theory should describe the theory for general values

of both these “parameters”. In fact, even in the classical limit gs Ñ 0, the geometry

that characterizes string theory is far from the classical Riemannian geometry under-

lying general relativity or Yang-Mills theory. We refer to this new set of geometric

tools as stringy geometry, and we reserve the term quantum geometry for the full

quantum formulation of string theory.

In this thesis we will focus on compactifications of the E8ˆE8 heterotic string

preserving N “ 1 supersymmetry in four dimensions in the classical limit gs Ñ 0.

The main reason for us to focus on this subset in the space of superstring theories

is that the choice of gauge bundle gives rise to phenomenologically intriguing mod-

els, with gauge groups in the four-dimensional spacetime that embed the Standard

Model’s. Moreover, these degrees of freedom are well-described by the worldsheet ap-

proach we wish to pursue. Other superstring theories, upon compactification to lower

dimensions, can give rise to phenomenologically attractive gauge groups. However,

these are obtained by D-branes wrapping circles in the non-compact dimensions, in

general together with orbifold planes. These features do not have clear worldsheet

corresponding degrees of freedom, thus this set of compactifications is hard to analyze

via the methods of this thesis.

In the rest of this chapter we will start from the field theory limit of string theory

(gs Ñ 0, α1 Ñ 0) and work our way up to the subject of interest for this thesis,

namely (0,2) superconformal field theories in two dimensions.

1.1 From supergravity onto the worldsheet

A natural place to start the analysis of the compactification of the heterotic string is

in some large radius limit, if available. The goal of this section is to show that this

subset of compactifications, while certainly interesting, merely constitutes a corner of

2



a larger landscape. In fact, we will be mostly interested in the worldsheet approach

to heterotic compactifications, which will lead us to the study of conformal field

theories as a tool to explore the stringy geometry of the moduli space.

However, we find it instructive to first give a swift review of the supergravity

approach to hetorotic compactifications as well as some spacetime aspects.

1.1.1 Heterotic supergravity

The bosonic massless string spectrum of the E8ˆE8 heterotic string theory in ten

dimensions consists of the following:

• The metric GMN ;

• The heterotic B-field B2. Its field strength is given by H3;

• The E8ˆE8 gauge-field AM . Its field strength is given by F2;

• The dilaton Φ.

Here the indices M,N “ 1, . . . , 10, parametrize the ten dimensional target space.

The fermion content of the theory is given by the gravitino ΨM , the dilatino λ and

the gaugino χ. While the main body of this thesis will consider compactifications to

10´d dimensions, for now we want to study the low-energy behavior of the heterotic

string in ten dimensions. This theory has N “ 1 supersymmetry, that is, it is

invariant under the action of 16 supercharges 1. This high degree of supersymmetry

completely determines the low-energy action, whose bosonic part is given by2

S “
1

2κ2

ż

d10x
?
´Ge´2Φ

„

R ` 4|BµΦ|2 ´
1

2
|H̃3|

2
´
α1

4

`

tr|F2|
2
´ tr|R2|

2
˘



, (1.1)

1 This is also true for type I, and indeed the low-energy actions are the same, except that the
heterotic theory does not admit R-R fields.

2 For notation and more details we refer to [19].
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where R is the scalar curvature, R2 is the Riemann tensor 2-form, and the field

strengh H3 is twisted by

H̃3 “ dB2 `
α1

4
pωCS

L ´ ωCS
YMq . (1.2)

The two ωCS terms are the Lorentz and Yang-Mills Chern-Simons terms respectively

ωCS
L “ tr

ˆ

ω ^ ω `
2

3
ω ^ ω ^ ω

˙

, ωCS
YM “ tr

ˆ

A^ A`
2

3
A^ A^ A

˙

, (1.3)

where ω is the spin connection. The field H̃3 satisfies a Bianchi identity

dH̃3 “
α1

4

`

tr|R2|
2
´ tr|F2|

2
˘

. (1.4)

The supersymmetry variations of the fermions of the theory are

δΨM “

ˆ

BM `
1

4
ωNPM ΓNP

˙

ε´
1

8
H̃NPMΓNP ε ,

δλ “ ´
1

2
?

2

ˆ

ΓMBMΦ´
1

12
H̃MNPΓMNP

˙

ε ,

δχ “ ´
1

8
FMNΓMNε . (1.5)

A solution is supersymmetric if the variations above vanish. The appearance of H̃3

in the first equation in (1.5) gives it the interpretation of torsion.

Now we are ready to start considering possible supersymmetric solutions obeying

(1.4). We restrict our attention to the case of interest, that is when the target space

factors as R1,3 ˆ X, where X is a six-dimensional internal manifold. In this case,

solving (1.5) implies that X is complex with Hermitian form Jµν such that

H̃3 “
i

2
pB̄ ´ BqJ ,

JµνFµν “ Fµν “ Fµν “ 0 . (1.6)

The indices µ, ν and their barred counterparts parametrize the complex coordinates

of the internal manifold X. The first equation is the statement that if H̃3 ‰ 0, X is

4



non-Kähler and the Bianchi identity now reads

iBB̄J “
α1

4

`

tr|R2|
2
´ tr|F2|

2
˘

. (1.7)

Throughout the rest of this thesis, we will only consider the case of torsion-free

models, so the space X will be Kähler. We therefore restrict ourselves to the case

H̃3 “ 0 from here on. With this assumption, the second equation of (1.5) implies

that the dilaton is constant, while the vanishing of the variation of Ψµ forces ε to be

covariantly constant on X. This amounts to the fact that X has SUp3q holonomy,

which is equivalent to the space being Kähler and Ricci flat, which in turn means

that X has vanishing first Chern class. That is, X is a Calabi-Yau manifold. Now

we need to analyze the second line of (1.5), which constrains the bundle F over X.

The equations Fµν “ Fµν “ 0 imply that the bundle is homolorphic, while the first

equation is referred to as Hermitian-Yang-Mills. When the manifold is Kähler, there

is a powerful result known as the Donaldson-Uhlenbeck-Yau theorem. This theorem

states that given a holomorphic vector bundle over a Kähler space the second line

of (1.5) admits solutions when the bundle is poly-stable. Stability is a topological

condition which in rough terms can be stated as follows: a vector bundle is said

to be stable if it is more ample than any proper sub-bundle3. This definition of

stability is not rigorous, but we will not need a more precise definition of stability

for the purpose of this thesis. In Chapter 4, when studying the linear sigma model

approach to (0,2) models, we will assume the existence of such a stable bundle over

the Calabi-Yau threefold. Moreover, a bundle is said to be poly-stable if it splits as

a direct sum of stable bundles. Finally, the Bianchi identity can be recast as the

topological condition ch2pFq “ ch2pTXq, where TX is the tangent bundle of X.

3 In the case of bundles over a Riemann surface, we say that W is a stable bundle if and only if
degpW q{ rankpW q ą degpV q{ rankpV q for each proper sub-bundle V of W .

5



1.1.2 The non-linear sigma model

A different approach, which exploits the underlying worldsheet theory, is the non-

linear sigma model. This is a two dimensional theory of maps φi : Σ Ñ X, where

X is a Riemannian manifold equipped with a metric g and a closed two-form B,

and Σ is a Riemann surface. In addition, we have the superpartners of φi, which

we denote as ψi and which transform as Grassman-valued sections of the pullback

of the tangent bundle of X, K
1
2 b φ˚pTXq, and a set of left-moving fermions γI ,

which instead transform as sections of K´ 1
2 bφ˚pEq, where E is a holomorphic vector

bundle over X. Here, K is the canonical line bundle of Σ. The action for this theory

is given by

S “
1

2πα1

ż

Σ

d2z

„

1

2
gipBφ

i
B̄φ


` Bφ


B̄φiq `BipBφ

i
B̄φ


´ Bφ


B̄φiq ` giψ


Dzφ

i

`HIJγ
JDzγ

I
`RJIiγ

JγIψiψ

ı

, (1.8)

where the covariant derivative Dz is constructed by pulling back the Christoffel

connection on TX , and the covariant derivative Dz is constructed by pulling back

the Hermitian connection constructed from the metric H on X. See also [81] for

notation and a generalization of (1.8) to comprise H-fluxes.

Let us have a look at the symmetries of this theory. If X is complex Kähler, then

the theory posseses (0,2) supersymmetry, which is enhanced to (2,2) supersymmetry

when E “ TX . One way to see this is that in this case the action can be explicitly

written in (0,2) (or (2,2)) superspace, and (1.8) becomes the component action ob-

tained by evaluating the superderivatives. Conformal invariance, on the other hand,

is a much tricker business, as in general (1.8) does not possess this symmetry. A

way to check this is to consider the metric g as a coupling constant and compute

the β function with respect to it. As a result, at lowest order in α1 the β function is

proportional to the Ricci tensor of X. Hence, a necessary condition for conformality

6



is X to be a Calabi-Yau manifold. We have thus recovered, from the worldsheet

perspective, one of the conditions that characterized the heterotic supergravity solu-

tions. In fact, one can push this further. If one computes the β function with respect

to the two-form B and the metric g at the appropriate order in α1 one recovers (1.5)

(we are ignoring the dilaton dependent part of the action here, but this extends to it

as well). We then see the relation between the non-linear sigma model and the super-

gravity approaches: constraints from conformal invariance translate into spacetime

equations of motion.

1.1.3 Stringy geometry

The discussion up to this point is valid in the field theory regime, where the curva-

ture of the background is small compared to the string scale. When the curvature

becomes large, this approximation is not valid anymore, and we need to substitute

our geometric interpretation by the properties of abstract conformal field theory. In

other words, instead of considering the target space to be R1,3 ˆX, we will consider

more in general R1,3ˆCFT, where the “internal” conformal field theory must satisfy

some constraints, for example a fixed central charge. These conformal field theories

naturally come with a moduli space, that is there exists a collection of operators that

we can use to deform the theory to reach a nearby conformal field theory. We refer

to these operators as exactly marginal. The study of different aspects of this moduli

space is the subject of this thesis.

We can start characterizing the moduli space by restricting ourselves to theories

that posses (2,2) superconformal symmetry. These theories come with a moduli space

that it is locally a product of two factors, which have a geometrical interpretation

when the conformal field theory is realized as a non-linear sigma model with a Calabi-

Yau target space. In fact, the two different types of marginal operators correspond

to the two different kinds of deformations that preserve the Calabi-Yau condition,

7



namely Kähler and complex structure deformations.

We can picture the Kähler moduli space for a given Calabi-Yau X as a cone, given

by elements of J P H2pX,Rq satisfying certain positivity properties. Moreover, by

adding the contribution of the two-form B, the relevant object becomes the so-called

complexified Kähler form J`iB. Its corresponding complexified Kähler moduli space

is also described by a cone, whose walls, in real codimension one, are parametrized

by metrics that fail to satisfy the positivity properties and therefore should lead to

a singular theory of some sort.

In order to briefly describe the complex structure moduli space, let us consider

the simple case of a Calabi-Yau given as a hypersurface in a (weighted) projective

space. The equation that defines the hypersurface depends on some coefficients, and

different choices for these correspond to different choices for the complex structure,

modulo the field redefinitions that act on the coordinates. The locus where the

Calabi-Yau is singular is referred to as the discriminant locus, and it is a complex

codimension one sublocus.

This picture is unsatisfactory for different reasons. For example, what happens

when we shrink the area of a given curve, or in other words when we move towards

the wall of the complexified Kähler cone? The problem in probing this regime is

that perturbation theory is not reliable anymore, as one of the scales in the theory,

namely the size of the shrinking curve, is now comparable to the string scale.

Mirror symmetry [53] provides an elegant answer to this, as under mirror sym-

metry the complex structure moduli space and the complexified Kähler moduli space

get exchanged in the mirror Calabi-Yau rX. Thus, the region near to the wall in X

is mapped to a particular complex structure in rX, which comes with the advantage

that now we are free to choose any Kähler form. In particular, we can pick a Kähler

form deep in the Kähler cone, where the perturbative analysis (in rX) is valid. The

resolution of the puzzle is provided by the previous paragraph: the singular theories
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in the complex structure of rX are a complex codimension one sublocus of the com-

plex structure moduli space of rX. Translating back to X, this means that the locus

of singular theories in the complex Kähler moduli space is complex codimension one

as well. In particular, the theories near and on the wall of the Kähler cone are gen-

erally well-behaved, and we can ask what happens if we cross the wall. What we

discover is that, by a mathematical procedure called flop, we enter into the Kähler

cone for a topologically different, but birationally equivalent, Calabi-Yau [10]. By

choosing a path that does not intersect the singular locus, this process is smooth in

the sense that the conformal field theory makes sense for any point along the path.

Thus we uncovered two properties of stringy geometry: topology chance is a smooth

process and perfectly well defined physics can arise from singular geometries (as in

orbifolds).

If one wants to study compactifications of type II string theory, one might be

quite satisfied with this picture, at least from a theoretical point of view in the

context of perturbative string theory. However, if we want to study compactifications

of the heterotic strings, this does not suffice even at the perturbative level. In fact,

while a theory with (2,2) superconformal symmetry can be completed to a consistent

heterotic vacuum, the moduli space Mp2,2q of (2,2) theories is only a sub-locus of

the moduli space of a more generic heterotic compactification. In fact, as we will

show in the next section, N “ 1 supersymmetry in spacetime requires at least (0,2)

superconformal symmetry on the worldsheet, and we will denote this general moduli

space as Mp0,2q.

The natural first step in this exploration is towards howMp2,2q sits insideMp0,2q,

and which properties extend off the (2,2) locus. One can then imagine starting from

a theory exhibiting (2,2) symmetry and considering small deformations that preserve

only (0,2) symmetry. Again referring to the case of a Calabi-Yau manifold described

by a hypersurface in some toric variety, these moduli correspond to deforming the
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bundle for the left-moving fermions away from the tangent bundle. The study of

various aspects of these deformations has been carried out by various groups in the

past decade. There are two main lessons we can extrapolate from this body of work.

The first one is that, despite some technical challenges, many properties that hold

on the (2,2) locus keep holding in the deformed theory [11, 76, 17]. For this reason

we are especially interested in exploring theories which do not exhibit a (2,2) locus,

as it is for these theories that we expect many more exotic things to happen. The

second lesson is that even in this confined area there are many issues that are not yet

resolved. For example, at the moment there is not a complete generalization of the

mirror map to the bundle moduli, even though some steps have been made towards

it [80, 78].

The author hopes to have provided convincing evidence that the study of these

matters, despite being a classic topic in string theory, is both important and in need

of more profound understanding. Except in some special cases, it is very hard to give

a global description of this moduli space. For this reason we will follow a different

approach: we will study limiting points/corners in the moduli space, and develop

techniques to compute physically interesting quantities. By comparing these features

between different corners it is then possible to learn more about the structure and

the global properties of the moduli space.

1.2 Superconformal algebras

In this section we are going to provide some basics about supersymmetric CFTs

in two dimensions. The conformal group in two dimensions is somehow special, as

the local conformal group is infinite dimensional. The word local here means that

not all of these transformations are well-defined on the Riemann sphere P1. The

transformations that are well defined comprise the global conformal group, which

is isomorphic to SOp3, 1q » SLp2,Cq{Z2. These transformations are translations,
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dilations and special conformal transformations, and they are realized on the states

of the CFT by the operators L´1, L0 and L1 respectively. These satisfy the algebra

rL1, L´1s “ 2L0 , rL0, L˘1s “ ¯L˘1 . (1.9)

An central notion is the one of a primary operator. An operator Φpz, zq is said to be

primary if it transforms as

Φpz, zq Ñ

ˆ

Bf

Bz

˙hΦ
ˆ

Bf

Bz

˙hΦ

Φpfpzq, fpzqq (1.10)

under the transformation

z Ñ fpzq , z Ñ fpzq . (1.11)

If (1.10) holds only when (1.11) are restricted to global conformal transformations,

we say that Φ is quasi-primary.

The most important object in any CFT is the energy-momentum tensor, which

has the following OPE with itself

T pzqT pwq „
c{2

pz ´ wq4
`

2T pwq

pz ´ wq2
`
BT pwq

z ´ w
. (1.12)

Each of the terms on the RHS of the above OPE has a specific meaning. The first

term indicates the fact that T pwq is not a primary operator unless the central charge

vanishes, c “ 0. However, it is quasi-primary, i.e., SLp2,Cq primary, for any value

of c. The second term means that T pzq is an operator of weight (2,0). It is then

possible to expand the energy-momentum tensor in modes as

T pzq “
ÿ

n

Lnz
´n´2 , (1.13)

where the summand ´2 in the exponent is appropriate for operators of weight h “ 2.

The modes L0,˘1 are precisely the generators of the global conformal transformations

in (1.9). An equivalent way of phrasing the information contained in the OPE (1.12)

is in terms of commutators of the modes

rLn, Lms “ pn´mqLn`m `
c

12
npn2

´ 1qδn,´m . (1.14)
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Since OPEs and (anti-)commutators provide the same content about the algebra,

henceforth we will stick to the former. Now we want to extend the above non-

supersymmetric algebra to posses N “ 1 supersymmetry. This is possible if there is

an operator Gpzq of weight (3/2,0), the worldsheet superpartner of T pzq, with the

following OPEs

T pzqGpwq „
3{2Gpwq

pz ´ wq2
`
BGpwq

z ´ w
,

GpzqGpwq „
2c{3

pz ´ wq3
`

2T pwq

z ´ w
, (1.15)

and (1.12) still holds. This algebra is further enhanced to N “ 2 SUSY when it is

possible to write 4

Gpzq “
1
?

2
G`pzq `

1
?

2
G´pzq , (1.16)

with OPE

G`pzqG´pwq „
2c{3

pz ´ wq3
`

2Jpwq

pz ´ wq2
`

2T pwq ` BJpwq

z ´ w
,

G˘pzqG˘pwq „ 0 ,

T pzqG˘pwq „
˘G˘pwq

z ´ w
. (1.17)

We see the appearance of a operator Jpzq which is a current of weight (1,0), therefore

we need to complete the algebra

T pzqJpwq „
Jpwq

pz ´ wq2
`
BJpwq

z ´ w
,

JpzqG˘pwq „
˘G˘pwq

z ´ w
,

JpzqJpwq „
c{3

pz ´ wq2
. (1.18)

4 We are ignoring a possible phase between the two terms.
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1.2.1 The Sugawara decomposition

We have seen the appearance of a up1q current in the N “ 2 superconformal algebra

above. This has some very peculiar consequences that we will use abundantly in the

work presented in this thesis. In fact, even when the supersymmetry structure of

the algebra does not provide us with a natural candidate for such a up1q symmetry,

as happens on the left-moving side in a (0,2) SCFT, we will restrict our attention to

models for which the existence of such a current is guaranteed. In this section, we

are going to sketch some of its properties.

The Jpzq current of weight (1,0) that appeared above is the simplest example of

a Kac-Moody (KM) algebra, corresponding to a up1q algebra. In general, the OPE

is given by

JpzqJpwq “
r

z ´ w
, (1.19)

where r ą 0 is known as the level of the algebra, and we assume r P Z. In the

SCFTs we will consider in this work, r will be related to the rank of the gauge

bundle associated to the corresponding heterotic compactification. A field is KM

primary if and only if

JpzqΦpwq „ q
Φpwq

z ´ w
. (1.20)

We will now describe how it is possible to “factorize” this KM dependence. We will

use this fact in the next section to prove a crucial fact for a SCFT to describe a

N “ 1 SUSY heterotic compactification in d “ 4 dimensions. Let us represent the

KM current as J “ i
?
rBH, where H is a free chiral boson. Now, a KM primary

field Φ with charge q under the Up1q and weights ph, hq can be decomposed as

Φpzq “ exppiq{
?
rHqpzqpΦpzq , (1.21)

where pΦpzq is KM neutral and has weights ph ´ q2{2r, hq. This is the Sugawara

decomposition.
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1.3 Spacetime and worldsheet supersymmetry

The bosonic string theory has a number of features that historically made the theory

not suitable for realizing a conceivable model of particle physics 5. The two main

issues are the following:

1. The closed string spectrum has a tachyon. This means that the vacuum of

the theory is unstable, or in other words that we are considering the theory

around a local maximum of the potential. Also the open string spectrum has

its own tachyons, but these are somehow more benign. In fact, they have

been interpreted as the decay of D-branes into closed string-radiation (see for

example [62]).

2. The spacetime spectrum does not contain fermions. This is a substantial prob-

lem if we want string theory to generate the particle content of the Standard

Model.

This leads us into the study of superstring theories. There are two approaches to

this, namely supersymmetry on the worldsheet (RNS formalism) or supersymme-

try in spacetime (GS formalism). It is easy to show that they are equivalent in

ten dimensional Minkowski spacetime, but since the main point of this thesis is to

further the understanding of string compactifications from the point of view of the

worldsheet, we are naturally going to implement the former approach.

This thesis aims at studying properties of (0,2) SCFTs relevant for heterotic

compactifications. It is perhaps useful to review the classic result [43] that relates

(0,2) SCFTs on the worldsheet and N “ 1 SUSY in d “ 4 spacetime. For ease

of exposition we will switch our convention and consider the left-moving part of

the algebra to be supersymmetric. We now assume (1,0) SUSY on the worldsheet,

5 This statement is not entirely fair, because half of the worldsheet theory in the heterotic string
is indeed purely bosonic.
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as it is necessary for a consistent string background [57], and show that N “ 1

spacetime SUSY corresponds to (2,0) SUSY on the worldsheet. We start by writing

the spacetime supercurrents

V α
´ 1

2
pzq “ e´φ{2SαΣpzq , V

α

´ 1
2
pzq “ e´φ{2SαΣpzq , (1.22)

where α “ p˘1
2
,˘1

2
q and α “ p˘1

2
,¯1

2
q, and the spacetime supercharges are

Qα “

¿

dzV α
´ 1

2
pzq , Qα “

¿

dzV
α

´ 1
2
pzq . (1.23)

Let us explain what these quantities are. Qα and Qα are Weyl spinors representing

the four supercharges of N “ 1 SUSY in d “ 4, which satisfy the algebra

tQα, Qβu “ σµ
αβ
Pµ , tQα, Qβu “ tQα, Qβu “ 0 , (1.24)

where the index µ parametrizes the Minkowski spacetime. The currents (1.22) are

built out of three different pieces: expp´1
2
φq is a spin field for the pβ, γq Faddeev-

Popov ghost SCFT that one introduces when gauge-fixing the Polyakov path-integral

for the superstring; the terms Sα and Sα are Weyl spin fields for the fermions cor-

responding to the flat four dimensional Minkowski directions; finally, Σ and Σ are

fields in the internal SCFT. Although our main focus will be on these internal fields,

we need to determine first the OPEs for the spin fields. This is easily done by consid-

ering first the bosonization of the spin fields (this is already explicit for the ghosts),

i.e., by writing the spin fields as the exponential of free bosons. Then, the dimen-

sions of the fields and their OPEs just follow from the ones for the bosonic fields

(see for example (2.2.14) and (2.2.17) of [88] with α1 “ 1). We can then determine

the dimension h of the operators Σ and Σ, and we present the result in the following

table

e´φ{2 Sα “ eiα¨H Sα “ eiα¨H V α
´ 1

2

V
α

´ 1
2

Σ Σ

h 3{8 1{4 1{4 1 1 3{8 3{8

(1.25)
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The OPEs are

expp´
1

2
φqpzq expp´

1

2
φqpwq „

expp´φq

pz ´ wq1{4
,

SαSα „ σµ
αβ
ψµpwq ,

SαSβ „
ηαβI

pz ´ wq1{2
, (1.26)

where I is the identity operator and similarly for Sα. Now, (1.24) determines the Σ

and Σ OPEs

ΣpzqΣpwq „ pz ´ wq3{4Opwq ` ¨ ¨ ¨ ,

ΣpzqΣpwq „ pz ´ wq3{4Opwq ` ¨ ¨ ¨ ,

ΣpzqΣpwq „
I

pz ´ wq´3{4
, (1.27)

where O and O are some dimension 3/2 operators. For example, the first equation

of (1.24) implies that

`

e´φ{2SαΣ
˘

pzq
`

e´φ{2SαΣ
˘

pwq „
expp´φq

pz ´ wq1{4
σµ
αβ
ψµpwqΣpzqΣpwq (1.28)

has a simple pole proportional to σµ
αβ

. The other two equations follow similarly by

imposing that the second set of equalities in (1.24) are satisfied.

At this point, we implement our assumption that we have already a N “ 1

SCFT on the worldsheet, that is, we have operators T pzq and Gpzq satisfying (1.12)

and (1.15) for c “ 9. A first result that will be useful later on comes from the

supersymmetry invariance of the gravitino vertex operator exppφqGpzq. In other

words
`

e´φ{2SαΣ
˘

pzq
`

eφG
˘

pwq „ pz ´ wq1{2 expp1{2φqSαpwqΣpzqGpwq (1.29)

must have no single pole. This means that the most singular term in the OPEs

ΣpzqGpwq and ΣpzqGpwq must be proportional to pz ´ wq´1{2.
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In order to study the next order in the ΣΣ OPE we consider the four-point

function

fpz1, z2, z3, z4q “ xΣpz1qΣpz2qΣpz3qΣpz4qy . (1.30)

The OPEs (1.27) and SLp2,Cq invariance constrain the above function to be

fpz1, z2, z3, z4q “

ˆ

z13z24

z12z14z23z34

˙3{4

. (1.31)

We can expand this expression as z12 Ñ 0 and we obtain

fpz1, z2, z3, z4q “ z
´3{4
12 z

´3{4
34

„

1`
3

4

z12z43

z23z24

` ¨ ¨ ¨



. (1.32)

The second order in the expansion signals the presence of an operator of dimension

´1{4` 2p3{8q “ 1 in the ΣΣ OPE

ΣpzqΣpwq „
I

pz ´ wq´3{4
` pz ´ wq1{4

1

2
Jpwq , (1.33)

thus J is a up1q Kac-Moody current. In particular, we can see that Σ and Σ have

charge ˘3{2 under this symmetry

JpzqΣpwq „
3{2Σpwq

z ´ w
,

JpzqΣpwq „
´3{2Σpwq

z ´ w
. (1.34)

This is particularly nice, since we are starting to gain the structure of a more general

algebra. It is possible to implement the Sugawara decomposition described in the

previous section to all the operators we considered so far in the theory. In practice,

let us write Jpzq “ i
?

3BHpzq, where Hpzq is a free scalar. From (1.34) we see that

Σ “ exppi
?

3{2Hq and similarly Σ “ expp´i
?

3{2Hq. For these there is no need

to multiply the exponential by a J-neutral operator because the dimensions already
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work out. Instead, G does not have a definite charge under J , and we decompose it

as follows

G “
ÿ

q

exppiq{
?

3HqGq
0 . (1.35)

We can use these representations to determine for which values of q we are able to

reproduce the OPE between Σ and Σ with G. For example, in the case of ΣpzqGpwq

we find

´

exppi
?

3{2HqΣ0

¯

pzq

˜

ÿ

q

exppiq{
?

3HqGq
0

¸

pwq „
ÿ

q

pz ´ wqq{2 ¨ ¨ ¨ , (1.36)

from which we conclude that q “ ´1. The same analysis with Σ gives q “ 1, therefore

we have found a decomposition G “ 1?
2
pG``G´q analogous to (1.16), which satisfies

JpzqG˘pwq „
˘G˘pwq

z ´ w
. (1.37)

The above OPE can be rewritten as

GpwqJpzq „ ´
1
?

2

G`pwq ´G´pwq

z ´ w
, (1.38)

that is pJ,´
?

2G` `
?

2G´q assemble in a primary N “ 1 superfield. It is then

convenient to define G ” 1?
2
pG`pwq ´G´pwqq which means that

GpzqGpwq „ ´
1
2
Jpwq

pz ´ wq2
´

1
4
BJpwq

z ´ w
. (1.39)

For the last part of the argument it is convenient to expand the operators in modes

Gpzq “
1

2

ÿ

r

Grz
´r´3{2 , Gpzq “

1

2

ÿ

r

Grz
´r´3{2 , Jpzq “

ÿ

n

Jnz
´n´1 . (1.40)

These satisfy the relations

rJn, Jms “
c

3
mδm,´n, rJn, Grs “ Gn`r, rJn, Grs “ Gn`r, tGr, Gsu “ ps´ rqJr`s,

(1.41)
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which follow from (1.18), (1.38) and (1.39). Now we compute

tGr, Gsu “ trJ0, Grs, Gsu “ J0GrGs ´GrJ0Gs `GsJ0Gr ´GsGrJ0

“ ´tGr, rJ0, Gssu ` rJ0, tGr, Gsus “ ´tGr, Gsu ´ pr ´ sqrJ0, Jr`ss

´ tGr, Gsu , (1.42)

which, translated back into the OPE language, yields

GpzqGpwq „ GpzqGpwq . (1.43)

This means that the GG and GG OPEs have the same singular terms. This fact

combined with (1.39) yield the remaining relations in (1.17). We have thus recovered

the structure of a N “ 2 superconformal algebra, proving the claim that N “ 1 SUSY

in spacetime implies (2,0) SUSY on the worldsheet.

1.4 Organization of the thesis

The remainder of this thesis is divided into three parts.

The work described in Chapter 2 is published in [27] and it was carried out in

collaboration with Ilarion Melnikov and Ronen Plesser. In this chapter we undertake

the study of hybrid theories with (2,2) supersymmetry. Roughly, a hybrid model is

a Landau-Ginzburg orbifold fibered non-trivially over a compact Kähler base. Al-

though the existence of such theories was known for more then two decades, their

properties have remained largely unexplored until recent years. In this work, we

present an intrinsic definition of a hybrid theory, that is independent of a GLSM

embedding. In order to do so, we derive several geometric constraints that charac-

terize the flow of the theory in the IR to a non-trivial fixed point. We also present

a method to compute the massless spectrum of the theory, which corresponds to

first-order deformations of the theory.

The work described in Chapter 3 is published in [26] and it was carried out in

collaboration with Ilarion Melnikov and Ronen Plesser. In this chapter we study
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RG flows of (0,2) Landau-Ginzburg models. The superpotential of the UV theory

does not get renormalized under the RG flow, while the corrections to the kinetic

terms are believed to be irrelevant. This fact makes the problem very tractable,

as the IR behavior of the theory is encoded only in the superpotential. The UV

theory has in general a set of field redefinitions consistent with the symmetries of

the action, and the endpoints of RG flows corresponding to theories in the same

orbit of field redefinitions must coincide. If the UV superpotential admits a point

of enhanced symmetry, the R-symmetry at the conformal point might differ from

the näıve one of the UV theory for general values of the superpotential. This rather

simple observation has two striking consequences: first, the moduli space of the

theory is stratified according to basins of attraction of orbits of enhanced symmetry;

second, the conformal manifold describing a theory with the näıve UV properties

(central charges, etc.) might be empty. In this work, we study these “accidents” in

the context of (0,2) Landau-Ginzburg orbifolds, and, for a large subclass of theories,

we propose a geometric conjecture for the conformal manifold.

The work described in Chapter 4 is published in [25] and it was carried out in

collaboration with Ronen Plesser. In this chapter we undertake a study of α1 non-

perturbative corrections in the context of gauged-linear sigma models (GLSMs). It

is well known that, while most calculations are done in some appropriate large radius

limit (see for example the spectrum computation of Chapter 2), instanton effects are

important, as they can lift classically flat directions and they might destabilize the

vacuum and ruin conformal invariance. Indeed, at first it was thought that this was

the destiny of a general (0,2) model [35]. It was then shown that (0,2) models are non-

perturbatively stable when the gauge bundle splits non-trivially over every rational

curve in the Calabi-Yau [40]. Furthermore, there can be cases where the individual

instantons do contribute but these contributions sum up to zero [11]. It was argued in

the context of (0,2) GLSMs, that this is indeed the case [17]. However, the argument,
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while elegant and powerful, was not fully exploited and the only concrete evidence

was based on a very simple example. In this work, we show that the argument does

not apply to all linear models, and we provide a counterexample. We then conclude

by proving a theorem that defines a class of linear models that are truly conformally

invariant.
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2

(2,2) hybrid conformal field theories

2.1 Introduction

Just what is a hybrid anyway? In constructing two-dimensional superconformal field

theories (SCFTs) relevant for superstring vacua we are used to two sorts of massless

fluctuating fields: those corresponding to a non-linear sigma model (NLSM), and

those corresponding to a Landau-Ginzburg (LG) theory. The former define a clas-

sically conformally invariant system. Under favorable conditions, e.g. a Calabi-Yau

target space and world-sheet supersymmetry, the background fields can be chosen

to preserve superconformal invariance, and when the background is weakly coupled

in a “large radius limit” (i.e. the background fields have small gradients), the the-

ory reduces to a free-field limit. The latter have superpotential interactions that

explicitly break scale invariance; however, under favorable conditions, e.g. a quasi-

homogeneous superpotential, the IR limit of such a theory defines a non-trivial SCFT.

In each case, the utility of the description is two-fold: at a fundamental level, we

can use the weakly coupled UV theory to define a SCFT; as a practical matter, the

weakly coupled description, combined with non-renormalization theorems that follow
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from supersymmetry, allow us to identify and compute certain protected quantities

such as chiral rings and massless spectra of the associated string vacua in terms of

the UV degrees of freedom.

By now the reader has surely guessed what is meant by a hybrid [97, 10]: it

is a two-dimensional theory that includes both types of massless fluctuating fields:

ones that have classically conformally invariant NLSM self-interactions, as well as

some that self-interact via a superpotential; of course an interesting hybrid also has

interactions between the two types of degrees of freedom. A hybrid is a fibered

theory, where the fiber is a LG theory with potential whose coefficients depend on

the fields of the base NLSM. The potential is chosen so that its critical point set is

the base target space. We then have two important questions: what are the criteria

for a hybrid theory to flow to a SCFT? how do we generalize NLSM/LG techniques

to compute physical quantities?

It is well-known that all of these descriptions— large radius limits of NLSMs,

Landau-Ginzburg orbifolds (LGOs), and hybrid loci—arise as phases of (2,2), and

more generally (0,2) gauged linear sigma models (GLSMs) [97]. The GLSM phi-

losophy is that each phase should yield a limiting locus where at least protected

quantities should be amenable to computation via the UV weakly-coupled field the-

ory description. Such techniques are known for large radius NLSM and LGO phases

but not for more general phases. In this work, we take a step in developing techniques

for what we will call the “good hybrid” phases of a GLSM.1

Although this does not cover a generic GLSM phase, and there are perhaps

good reasons [8] that we should not expect a simple description for a generic phase,

it does increase the set of special points in the moduli space amenable to exact

computations; this can lead to useful insights into stringy moduli space as in [11, 7,

1 Along the way we obtain a simple and direct description of the massless spectrum for the large
radius limit of a (0,2) NLSM — an application to CY NLSMs with non-standard embedding may
be found in appendix A.4 .

23



4, 28]. In addition, our definition of a good hybrid model, although inspired by the

GLSM construction, will not explicitly invoke the GLSM. Thus, we are in principle

providing a new class of UV theories that can lead to SCFTs without a known GLSM

embedding.

In this chapter we will focus on hybrid theories with (2,2) world-sheet supersym-

metry that are suitable for supersymmetric string compactification, i.e. ones with

integral Up1qLˆUp1qR R-symmetry charges; as in the case of LGO string vacua, this

is achieved by taking an appropriate orbifold.

While such models offer a good point of departure, it is clear that a more general

(0,2) hybrid framework will be both computationally useful and conceptually illu-

minating. While we are not going to tackle (0,2) hybrids in this thesis, for now we

note that just like (2,2) LG models, the hybrids incorporate a class of Lagrangian

deformations away from the (2,2) locus. These are obtained by smoothly deforming

the (2,2) superpotential to a more general (0,2) form.

In what follows, we first give a broad geometric description of (2,2) hybrids,

construct a Lagrangian for a good hybrid model and study its symmetries. With

that basic structure in hand, we turn to a technique, valid in the large base volume

limit and generalizing the well-known (2,2) and (0,2) LGO results of [61, 41], to

compute the massless heterotic spectrum of a hybrid compactification. We then

apply the techniques to a number of examples and conclude with a brief discussion

of applications and further directions.

2.2 A geometric perspective

The geometric setting for our theory is a (2,2) NLSM constructed with (2,2) chiral

superfields. Consider a Kähler manifold Y0 equipped with a holomorphic function—

the superpotential W—chosen so that its critical point set is a compact subset B Ă

Y0. More precisely, dW , a holomorphic section of the cotangent bundle T ˚Y0 , has
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the property that dW´1p0q “ B Ă Y0. We call this the potential condition. A LG

model, with Y0 » Cn and B being the origin, is a familiar example. A compact Y0

necessarily has a trivial superpotential, and the resulting theory is just a standard

compact NLSM.

We say a geometry satisfying the potential condition has a hybrid model iff the

local geometry for B Ă Y0 can be modeled by Y — the total space of a rank n

holomorphic vector bundle X Ñ B over a compact smooth Kähler base B of complex

dimension d. The point of this definition is that the superpotential interactions will

lead to a suppression of finite fluctuations of fields away from B, so that the low

energy physics of the original NLSM will be well-approximated by the restriction

to the hybrid model. Our main task will be to describe this low energy physics,

and in what follows we will concentrate on the hybrid model geometry Y . In many

examples (e.g. the LG theories) Y » Y0, but our results apply to the more general

situation where Y is simply a local model. A simple example of a hybrid geometry,

where X “ Op´2q over B “ P1, is presented in appendix A.1.

In order to be reasonably confident that the low energy limit of a hybrid model

is a (2,2) SCFT, we will need the geometry to satisfy several additional conditions

intimately related to the existence of chiral symmetries and GSO projections. It will

be easiest to discuss these after we introduce the explicit Lagrangian realization of

this geometry. In our examples these features will already be present in the “UV”

completion of the hybrid model, offered either by Y0 or some other high energy

description such as a GLSM.2

A final geometric comment, relevant for heterotic applications, concerns (0,2)-

preserving deformations of these theories. (2,2) theories often admit a class of smooth

(0,2) deformations, where the left-moving fermions couple to a vector bundle E Ñ Y ,

a deformation of TY , and the (0,2) superpotential is encoded by a holomorphic section

2 It would be interesting to find hybrid examples where these features emerge accidentally.
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J P ΓpE˚q with J´1p0q “ B. In the hybrid case there exist (0,2) deformations where

E “ TY but dJ ‰ 0; such a (0,2) superpotential cannot be integrated to a (2,2)

superpotential W . Turning these on leads to a simple class of (0,2) hybrid models.

2.3 Action and symmetries

In this section we construct the (2,2) SUSY UV action for a hybrid model and

analyze its symmetries. We begin with the necessary superspace formalism for a

flat Euclidean world-sheet with coordinates pz, zq. Since we are interested in (0,2)

deformations of (2,2) theories, it will be convenient for us to work with both (2,2) and

(0,2) superspaces.3 Let’s start with the latter. Introducing Grassmann coordinates

θ and θ, we obtain the supercharges

Q “ ´ B
Bθ
` θB̄z, Q “ ´ B

Bθ
` θB̄z, (2.1)

where B̄z ” B{Bz. These form a representation of the (0,2) SUSY algebra: Q2 “

Q2
“ 0 and tQ,Qu “ ´2B̄z. The supercharges are graded by a Up1qR symmetry that

assigns charge q “ 1 to θ, and they anticommute with the supercovariant derivatives

D “ B

Bθ
` θB̄z, D “ B

Bθ
` θB̄z, (2.2)

that satisfy D2 “ D2
“ 0 and tD,Du “ 2B̄z.

To build a (2,2) superspace we introduce additional Grassmann variables θ1, θ
1

and form Q1, Q1, as well as D1 and D1, by replacing pθ, θ, B̄zq Ñ pθ1, θ
1
, Bzq, where

Bz “ B{Bz. These supercharges and derivatives are graded by Up1qL that assigns

charge q “ 1 to θ1.

2.3.1 Multiplets

We are interested in Kähler hybrid models with target space Y , and these can be

constructed by using bosonic chiral (2,2) superfields and their conjugate anti-chiral

3 Our superspace conventions are those of [81]; more details may be found in [39] or [95].
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multiplets4 denoted by Yα and Yα, with α, α “ 1, . . . , dimY . These decompose into

(0,2) chiral and anti-chiral multiplets as follows:

Yα “ Y α
`
?

2θ1X α
` θ1θ

1
BzY

α , Yα “ Y
α
´
?

2θ
1X α

´ θ1θ
1
BzY

α
,

Y α
“ yα `

?
2θηα ` θθB̄zy

α , Y
α
“ yα ´

?
2θηα ´ θθB̄zy

α ,

X α
“ χα `

?
2θHα

` θθB̄zχ
α , X α

“ χα `
?

2θH
α
´ θθB̄zχ

α . (2.3)

The Y α are bosonic (0,2) chiral multiplets, while the X α are chiral fermi multiplets,

with lowest component a left-moving fermion χα; the Hα and their conjugates are

auxiliary non-propagating fields.5

Since Y is the total space of a vector bundle, it will occasionally be useful to split

the yα into base and fiber coordinates, which we will denote by yα “ pyI , φiq, with

I “ 1, . . . , d and i “ 1, . . . , n. The yI are then coordinates on the base manifold B,

while the φi parametrize the fiber directions.

2.3.2 The (2,2) hybrid action

The two-derivative (2,2) action is a sum of kinetic and potential terms, with

Skin “
1

4π

ż

d2z DDLkin, Lkin “
1

2
D1D1KpY ,Yq,

Spot “

?
2m

4π

ż

d2z DWpY,X q ` c.c., W “
1
?

2
D1W pYq . (2.4)

As is well-known, the kinetic term leads to a Y NLSM with a Kähler metric g. The

superpotential W is a holomorphic function on Y satisfying the potential condition,

i.e. dW p0q´1 “ B; m is a parameter with dimensions of mass. If the metric g is

4 Recall that a chiral superfield A satisfies the constraints DA “ D1A “ 0; more general (2,2)
multiplets (twisted chiral and semi-chiral) are reviewed in, for instance, [74].

5 A comment on Euclidean conventions: the charge conjugation operator C, inherited from
Minkowski signature, conjugates the complex bosons and acts as Cpχq “ χ and Cpχq “ ´χ for
every fermion χ.
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well-behaved, then the potential condition leads a suppression of field fluctuations

away from B Ă Y via the bosonic potential

S Ą
|m|2

2π

ż

d2z gαβBαWBβW , (2.5)

and at low energies (as compared to |m|) the kinetic term can be taken to be quadratic

in the fiber directions, i.e. the Kähler potential is

K “ KpyI , yIq ` φhpyI , yIqφ` . . . , (2.6)

where K is a Kähler potential for a metric on B, h is a Hermitian metric on X Ñ

B, and . . . denotes neglected terms in the fiber coordinates. Using the base–fiber

decomposition the metric gαβ “ BαBβK ”Kαβ then takes the form

g “ pKIJ ´ φFIJhφqdyIdyJ `DφhDφ` . . . , (2.7)

where A “ Bhh´1 is the Chern connection for the metric h, F “ B̄A is its (1,1)

curvature, and Dφ “ dφ` φA is the corresponding covariant derivative.

Positivity of the metric and the case Y » Y0

In many cases we need not worry about higher order corrections to g in order to define

a sensible theory. As in the simple case of LG models, this would be a situation where

we need not consider the distinction between Y and Y0 from above. Examining the

form of g, we see that a necessary condition is that φFIJhφ is non-positive for all

points in Y .6 We say a bundle X Ñ B is non-positive if it admits a Hermitian

metric h that satisfies this non-positivity condition.

Thus, to use (2.6) to define a UV-complete theory, we are led to a geometric

question: what are the non-positive bundles over B? This is closely related to

classical questions in algebraic geometry regarding positive and/or ample bundles,

6 Suppose there is a point p P B and φ0 P π
´1ppq such that the Hermitian form φ0FIJhφ0 has

a positive eigenvalue. Then taking φ “ tφ0, for sufficiently large t the metric g will cease to be
positive.
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and using those classical results we can easily find sufficient conditions for non-

positivity. Recall that a line bundle LÑ B is said to be positive if its (1,1) curvature

form is positive; it is said to be negative if the dual bundle L˚ is positive [54, 73].

Taking X “ ‘iLi, a sum of negative and trivial line bundles, leads to many examples

of non-positive bundles.

We should stress two points: first, even this set of examples leads to many pre-

viously unexplored SCFTs. Second, more generally, we do not need to assume that

Y » Y0 or that g has no higher-order terms in the fibers. The low energy limit of a

UV theory with a hybrid model will be well-described by our action, and the poten-

tial condition will imply that the fiber corrections to the metric will not be important

to the low energy physics. We will analyze one such example below, where X is a

sum of a positive and a negative bundle.

(0,2) action

Since we are interested in heterotic applications as well as (0,2) deformations, it is

useful to have the manifestly (0,2) supersymmetric action obtained by integrating

over θ1, θ
1

in (2.4). Absorbing the superpotential mass scale m into W the result is

Lkin “
1
2
pKαBzY

α
´KαBzY

α
q ` gαβX αX α

, W “ X αWα . (2.8)

where Kα ” BK{BY α, Wα ” BW {BY α, etc. It is a simple matter to obtain the

classical equations of motion from the (0,2) action7. The result is

D X α “
?

2Wα, D
”

gαβBY
β
` gαβ,γX

βX γ
ı

“
?

2X βWαβ , (2.9)

where we defined the fermi superfield X α ” gαβpY, Y qX
β
.

7 If A and B are (0,2) superfields, then DDpABq|θ,θ“0 “ 0 @B ùñ A “ 0; any chiral (anti-

chiral) superfield, say δX (δX ), can be expressed as DP (DP ) for some superfield P .
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Component action

Finally, we can integrate over the remaining (0,2) superspace coordinates θ and θ to

obtain the component action. The auxiliary field H
α

is determined by the equations

of motion (2.9):

gαβH
β
“ gαβ,γη

γχβ `Wα , (2.10)

and using this as well as χα ” gαβχ
β we obtain

2πL “ gαβ

´

B̄zy
α
Bzy

β
` ηβDzη

α
¯

` χαDzχ
α
´ ηβηαR δ

αβγ
χδχ

γ
´ χαηβDβWα

` χαηβDβWα ` g
βαWαW β , (2.11)

where the covariant derivatives are defined with the Kähler connection Γαβγ ” gγβ,βg
βα,

e.g.

Dzχ
α
“ B̄zχ

α
` B̄zy

βΓαβγχ
γ , DαWβ “ Wβα ´ ΓγαβWγ , (2.12)

and the curvature is R δ
αβγ

” Γδ
αγ,β

. This is a complicated interacting theory, and

in general it is not clear that one set of fields is preferred to another (say using χα

instead of χα); however, for the purpose of determining the massless spectrum, it

turns out to be useful to introduce another field redefinition to keep track of the

non-zero left-moving bosonic excitations:

ρα ” gααBy
α
` Γδαγχδχ

γ , (2.13)

in terms of which the left-moving kinetic terms take a strikingly simple form:

2πL “ ραB̄zy
α
` χαB̄zχ

α
` ηα

”

gαβDzη
β
` ηβR δ

αβγ
χδχ

γ
` χβDαWβ

ı

` χαηβDβWα ` g
βαWαW β . (2.14)

Unlike the other fields ρ does not transform as a section of the pull-back of a bundle

on Y under target space diffeomorphisms; this will have important consequences

below.
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2.3.3 Symmetries

We now examine the symmetries of the hybrid Lagrangian.

The Q supercharge

Our action respects (2,2) SUSY generated by the superspace operators Q and Q, as

well as their left-moving images. We define the action of the corresponding operators

Q and Q by

?
2rξQ` ξQ, As ” ´ξQA´ ξQA, (2.15)

where ξ is an anti-commuting parameter and A is any superfield. In order to avoid

writing the graded commutator, we will use a condensed notation ξQ ¨A ” rξQ, As.

For our subsequent study of the right-moving Ramond ground states, we will be

particularly interested in the action of Q. Using the superfields in (2.3), we obtain

Q ¨ yα “ 0, Q ¨ χα “ 0, Q ¨ ηα “ B̄zy
α , Q ¨Hα

“ B̄zχ
α ,

Q ¨ yα “ ´ηα , Q ¨ χα “ H
α
, Q ¨ ηα “ 0 , Q ¨H

α
“ 0 . (2.16)

The action of the remaining supercharges is easily obtained from this one by conju-

gation and/or switching left- and right-moving fermions. Eliminating the auxiliary

fields by their equations of motion we obtain

Q ¨ yα “ 0 , Q ¨ χα “ 0 , Q ¨ ηα “ B̄zy
α ,

Q ¨ yα “ ´ηα , Q ¨ χα “ Wα , Q ¨ ηα “ 0 . (2.17)

From (2.9) it follows that up to the η equations of motion we also have Q ¨ ρα “

χβWβα. Hence we can decompose Q as Q “ Q0 `QW , where the non-trivial action

is

Q0 ¨ y
α
“ ´ηα , Q0 ¨ η

α
“ B̄zy

α , QW ¨ χα “ Wα , QW ¨ ρα “ χβWβα . (2.18)
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These satisfy Q
2

0 “ Q
2

W “ tQ0,QW u “ 0.8 Q0 is the supercharge for the NLSM

with W “ 0, while QW incorporates the effect of a non-trivial potential.

Chiral Up1q symmetries

The Up1qL ˆ Up1qR symmetries play an important role in relating the UV hybrid

model to the IR physics of the corresponding SCFT. In the classical NLSM with

W “ 0 the presence of these symmetries is a consequence of the existence of an

integrable, metric-compatible complex structure on Y . In terms of component fields,

the symmetries leave the bosonic fields invariant, while rotating the fermions as

follows:

Up1q0L : δ0
Lη “ 0, δ0

Lχ “ ´iεχ ; Up1q0R : δ0
Rη “ ´iεη, δ0

Rχ “ 0 , (2.19)

where ε is an infinitesimal real parameter. These naive symmetries are explicitly

broken by the superpotential, but they can be improved if the geometry pY , gq

admits a holomorphic Killing vector V satisfying LVW “ W .9 V generates a non-

chiral symmetry action

δV Y
α
“ iεV α

pY q, δV Y
α
“ ´iεV

α
pY q; δVX α

“ iεV α
,βX β , δVX

α
“ ´iεV

α

,βX
β
,

(2.20)

and it is easy to see that δL,R ” δ0
L,R ` δV are symmetries of the classical action.

While Up1qdiag Ă Up1qL ˆ Up1qR has a non-chiral action on the fermions and

hence is non-anomalous, Up1qL is a chiral symmetry that will be anomaly free iff

c1pTY q “ 0, a condition satisfied when Y is a non-compact Calabi-Yau manifold, i.e.

8 If we keep the terms in Q ¨ ρ proportional to η equations of motion and decompose that into
a W -independent and W -dependent contributions, we find that the decomposition Q “ Q0 `QW

into a pair of nilpotent anti-commuting operators holds without use of equations of motion; for us
the result of (2.18) will be sufficient.

9 Holomorphic Killing vectors satisfy V α
,β
“ 0 and LV g “ 0. They are a familiar topic in

supersymmetry—see, e.g., Appendix D of [94]. Note that on a compact Kähler manifold a Killing
vector field is holomorphic, but this can fail on a non-compact manifold. Killing vectors on Kähler
manifolds are further discussed in [14, 83].
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Y has a trivial canonical bundle KY » OY . In what follows we assume KY is indeed

trivial (this is stronger than c1pTY q “ 0). When X “ ‘iLi, a sum of line bundles

such that biLi is negative, then since KY “ KB bi L
˚
i the anti-canonical class of B

is very ample and B is Fano.10

In what follows we will denote the conserved charge for Up1qL (Up1qR) by J0 (J0)

and its eigenvalues on various operators and states by q (q).

R-symmetries for good hybrid models

We would like to identify the UV Up1qL ˆ Up1qR symmetries described above with

their counterparts in the conjectured IR SCFT. As usual, there is a small subtlety in

doing this when V is not unique. In practice this is easily achieved by picking a suffi-

ciently generic superpotential and more generally, one could use c-extremization [23]

to fix Up1qL ˆ Up1qR up to the usual caveats of accidental IR symmetries.

More importantly, in order for the UV R-symmetry of the hybrid model to be a

good guide to the IR physics, we need V to be a vertical vector field, i.e. LV π˚pωq “ 0

for all forms ω P Ω‚pBq, and in particular the Up1qLˆUp1qR symmetries fix B point-

wise. We denote a model where this is the case a good hybrid. As we show in

Appendix A.2 this implies

V “
řn
i“1qiφ

i B
Bφi
` c.c. (2.21)

for some real charges qi. The qi have to be compatible with the transition functions

definingX Ñ B, and since LVW “ W , andW is polynomial in every patch, qi P Qě0.

In a LG theory, i.e B a point, standard results show that if the potential condition

is satisfied then without loss of generality 0 ă qi ď 1{2 [69, 67]. More generally,

the potential condition requires that W pyI , φq, thought of locally as a LG potential

for the fiber fields φ depending on the “parameters” yI , should be non-singular in a

10 A variety is Fano iff its anti-canonical class is ample; Fano varieties are quite special: for instance
HipB,Oq “ 0 for i ą 0, PicpBq » H2pB,Zq; in addition, they are classified in dimension d ď 3 and
admit powerful criteria for evaluating positivity of bundles [73].
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small neighborhood of any generic point in B. Hence, the range of allowed qi is the

same for a hybrid theory as it is for LG models.

The orbifold action

Our main interest in the hybrid SCFTs is for applications to supersymmetric com-

pactification of type II or heterotic string theories. For left-right symmetric theories

this requires the existence of Up1qL ˆ Up1qR symmetries with integral q, q charges

of all (NS,NS) sector states [15]. Our hybrid theory, if it flows as expected to a

c “ c “ 9 SCFT in the IR will not satisfy this condition. Fortunately, the solution

is the same as it is for Gepner models [51] or LG orbifolds [92, 58]: we gauge the

discrete symmetry Γ generated by expr2πiJ0s, where J0 denotes the conserved Up1qL

charge; since all fields have q´q P Z, the orbifold by Γ is sufficient to obtain integral

charges.

In the line bundle case with qi “ ni{di we then see that Γ » ZN , with N the least

common multiple of pd1, . . . , dnq. Since Γ is embedded in a continuous non-anomalous

symmetry we expect the resulting orbifold to be a well-defined quantum field theory,

and the resulting orbifold SCFT will be suitable for a string compactification.

In addition to the introduction of twisted sectors and the projection, the orbifold

has one important consequence for the physics of hybrid models: it allows us to

consider more general “orbi-bundles,” where the fiber in X Ñ B is of the form Cn{Γ,

and the transition functions are defined up to the orbifold action. For instance, we

will examine a theory with B “ P3 and X “ Op´5{2q‘Op´3{2q, where the orbifold

Γ “ Z2 reflects both of the fiber coordinates.11

11 A GLSM embedding of this hybrid model is given in section 2.5 of [1] .
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2.3.4 The quantum theory and the hybrid limit

Having defined the classical hybrid model’s Lagrangian and discussed its symmetries,

we now discuss the quantum theory. To orient ourselves in the issues involved, let’s

recall the case of (2,2) LG models — the simplest examples of hybrids. These theories

have a Lagrangian description at some renormalization scale µ as a free kinetic term

for chiral multiplets, and a superpotential interaction with dimensionful couplings

m. The theory is weakly coupled when µ " m, and we can use the Lagrangian

and (approximately) free fields to describe the theory. The low energy limit µ Ñ 0

is then strongly coupled, and while W is protected by SUSY non-renormalization

theorems, the kinetic term receives a complicated but irrelevant set of corrections.

There is by now overwhelming evidence that these do flow to the expected SCFTs,

in accordance with the original proposals [75, 93], and computations of RG-invariant

quantities allow us to use the weakly coupled µ " m description to describe exactly

the SCFT’s (c,c) chiral ring and more generally the Q-cohomology. Furthermore,

the results extend to LGOs suitable for string compactification.12

There is a small IR subtlety in using the weakly coupled LG description: the

theory at W “ 0 is non-compact and has all the usual difficulties associated with

non-compact bosons. This is of course not very subtle since the theory is free;

however, more to the point, in using the weakly coupled description we still keep

track of the R-charges and weights that follow from the superpotential and do not

consider states supported away from the W “ 0 locus.

A more general hybrid theory has a similar structure, except that now there are

two sorts of couplings: the superpotential couplings m{µ, as well as the choice of

Kähler class on the base B. Although the latter coupling is typically encoded in

the kinetic D-term, it can also be expressed as a deformation of the twisted chiral

12 These typically have non-trivial (a,c) rings encoded in the twisted sectors, and that ring structure
is not easy to access directly via the LG orbifold description.
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superpotential. Hence, the Kähler class and superpotential couplings do not receive

quantum corrections. Of course we do expect corrections to the D-terms, but these

should be irrelevant just as they are in the LG case. Moreover, there is good evidence,

based on GLSM constructions, that the hybrid models with a GLSM UV completion

should flow to SCFTs with expected properties (i.e. correct central charges and R-

symmetries), and we expect the same to hold for more general hybrid models. As

in the LG case, the strict W “ 0 limit may be subtle, perhaps even more so, since

it may require us to specify additional details about the geometry of Y . However,

we may use the same cure for these IR subtleties as we do in the LG case: use the

R-charges and weights encoded by the superpotential and restrict attention to field

configurations and states supported on B.

Assuming a hybrid model does flow to an expected SCFT, we would like to

have techniques to evaluate RG-invariant quantities such as the Q-cohomology. It

is here that there will be important conceptual and technical differences from the

LG case due to the non-trivial base geometry B. For instance, we expect the Q-

cohomology to depend on the choice of Kähler class on B. While there will not

be a perturbative dependence, we do in general expect corrections from world-sheet

instantons wrapping non-trivial cycles in B. These corrections are suppressed when

B is large, which leads us to define the hybrid analogue of the large radius limit of a

NLSM: the hybrid limit, where the Kähler class of B is taken to be arbitrarily deep

in its Kähler cone. In what follows, we will study the Q-cohomology of a hybrid

model in the hybrid limit.

2.4 Massless spectrum of heterotic hybrids

In this section we develop techniques to evaluate the massless spectrum for a com-

pactification of the E8ˆE8 heterotic string based on a c “ c “ 9 (2,2) hybrid SCFT.13

13 The SOp32q case can be handled in an entirely analogous fashion.
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We first review the standard prescription [51, 92, 61] to obtain a modular invariant

theory and identify world-sheet Ramond ground states with massless fermions in

spacetime. We then discuss how to enumerate these ground states by studying the

Q cohomology in the hybrid limit.

2.4.1 Spacetime generalities

In order to describe a heterotic string compactification, we complete our hybrid

c “ c “ 9 N “ p2, 2q SCFT internal theory to a critical heterotic theory by adding

ten left-moving fermions (with fermion number Fλ) that realize an sop10q level 1

current algebra, a left-moving level 1 hidden e8 current algebra, and the free c “ 4,

c “ 6 theory of the uncompactified spacetime R1,3.

A modular invariant theory is obtained by performing left- and right- GSO pro-

jections. The left-moving GSO projection onto eiπJ0p´qFλ “ 1 is responsible for

enhancing the linearly realized up1qL ‘ sop10q gauge symmetry to the full e6. The

right-moving GSO projection has a similar action, combining J0 with the fermion

number of the R1,3 theory. Its immediate spacetime consequence is N “ 1 space-

time supersymmetry, or equivalently, a relation, via spectral flow, between states in

right-moving Neveu-Schwarz and Ramond sectors. Spacetime fermions arise in the

(NS,R) and (R,R) sectors, and supersymmetry allows us to identify the full spectrum

of supermultiplets in the spacetime theory from these states.

The spacetime theory obtained by this procedure will have a model-independent

set of massless fermions: the gauginos of the hidden e8, the gravitino, and the dilatino.

In what follows we focus on the model-dependent massless spectrum. In particular,

the hidden e8 degrees of freedom are always restricted to their NS ground state and

just make a contribution to the left-moving zero-point energy.

On-shell string states have vanishing left- and right-moving energies. For massless

states there is no contribution to L0 from the R1,3 free fields; massless fermions are
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thus states in the (R,R) and (NS,R) sectors with vanishing left-moving and right-

moving energies. In the (R,R) sector, massless states are associated to the ground

states in the internal theory, related by spectral flow to (NS,NS) operators comprising

the “chiral rings” [93] of the theory. Massless states in the (NS,R) sector include

states related to these by left-moving spectral flow as well as additional states. The

main result of [61] is a method for describing these states in LGO theories, which we

here extend to hybrids. This relies on the familiar fact that since

tQ,Qu “ 2L0 ; Q2
“ Q

2
“ 0 (2.22)

the kernel of L0 is isomorphic to the cohomology of Q.

The right-moving GSO projection is onto states with q P Z ` 1
2
; those with

q “ ´1{2 (q “ 1{2) correspond to chiral (anti-chiral) multiplets, while states with

q “ ˘3{2 are gauginos in vector multiplets. The Up1qL charge q determines the e6

representation according to the decomposition

e6 Ą sop10q ‘ up1q

78 “ 450 ‘ 16´3{2 ‘ 163{2 ‘ 10

27 “ 161{2 ‘ 10´1 ‘ 12

27 “ 16´1{2 ‘ 101 ‘ 1´2 . (2.23)

As in the LG orbifold case [92, 61], the GSO projection can be combined with the

hybrid orbifold of Γ “ ZN to an orbifold by Z2 ˙ ZN – Z2N . Therefore we need to

study the 2N sectors twisted by rexppiπJ0qs
k, k “ 0, . . . , 2N ´ 1.14 Spacetime CPT

exchanges the k-th and the p2N ´ kq-th sectors, and CPT invariance means we can

restrict our analysis to the k “ 0, 1, . . . , N . sectors. The states arising in (R,R) (k

even) sectors give rise to e6-charged matter. This is easy to see since in this case the

ground states of the sop10q current algebra transform in 16‘16. Massless e6-singlets

14 That is, schematically, in the k-th twisted sector fields satisfy φpze2πi, ze´2πiq “

rexppiπJ0qs
kφpz, zq. We will make these periodicities more precise shortly.
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are of particular interest, and they can only arise from (NS,R) sectors, i.e. sectors

with odd k.

2.4.2 Left-moving symmetries in cohomology

The action of Up1qL commutes with Q, and following [98, 90], we can find a repre-

sentative for the corresponding conserved current in Q-cohomology, denoted by HQ.

Consider the operator

JL ” X β
pDβV

α
´ δαβ qX α ´ V

αgαβBzY
β
. (2.24)

Using (2.9) and LVW “ W it follows DJL “ 0. Observing that Q and D are

conjugate operators, Q “ ´ exp
“

2θθB̄z
‰

D exp
“

2θθB̄z
‰

, we conclude that

JL ” JL|θ“0 “ χβpV α
,β ´ δ

α
β qχα ´ V

αρα (2.25)

is Q-closed and hence has a well-defined action on HQ. Similarly, we can obtain

the remaining generators of the left-moving N “ 2 algebra in HQ. To find the

energy-momentum generator T we observe that

T0 “ ´gαβBzY
α
BzY

β
´ X αDzX α “ ´BzY

α
”

gαβBzY
β
´ gγβ,αX γX β

ı

´ X α
BzX α

(2.26)

satisfies DT0 “ 0, as does

T ” T0 ´
1

2
BzJL . (2.27)

The lowest component of T is Q-closed and given by

T “ ´Byαρα ´
1

2
pχαBzχ

α
` χαBzχαq ´

1

2
Bz
“

χβχαV
α
,β ´ V

αρα
‰

. (2.28)

The remaining generators of a left-moving N “ 2 algebra are obtained from the

D-closed fields

G` ” i
?

2
“

X αBzY
α
´ BzpX αV

α
q
‰

, G´ ” i
?

2
”

X αgαβBzY
β
ı

, (2.29)

yielding the left-moving supercharges G˘ in HQ:

G` “ i
?

2 rχαBzy
α
´ BzpχαV

α
qs , G´ ” i

?
2χαρα . (2.30)
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Table 2.1: Weights and charges of the fields.

yI ρI χI χI φi ρi χi χi
q 0 0 ´1 1 qi ´qi qi ´ 1 1´ qi
2h 0 2 1 1 qi 2´ qi 1` qi 1´ qi
q 0 0 0 0 qi ´qi qi ´qi

2.4.3 Reduction to a curved bc´ βγ system

The action (2.14) determines the OPEs for the left-moving degrees of freedom to be

yαpzqρβpwq „
1

z ´ w
δαβ , χαpzqχβpwq „

1

z ´ w
δαβ . (2.31)

Using the normal ordering defined by these free-field OPEs we can define T , J , and

G˘ in the quantum theory. This is particularly simple with our choice of fields and

Killing vector V : the operators are quadratic in the fields, and it is easy to check

that they indeed generate an N “ 2 algebra with central charge

c “ 3d` 3
řn
i“1p1´ 2qiq , (2.32)

which we recognize as the sum of the fiber LG central charge and the contribution

from the base. The Up1qL charge J0 and left-moving Hamiltonian L0 are obtained in

the standard fashion as

J0 “

¿

dz

2πi
JLpzq , L0 “

¿

dz

2πi
zT pzq , (2.33)

and the resulting charge and weight assignments for the fiber fields are given in

table 2.1 together with the Up1qR charge q. These currents are trivially annihilated

by Q0 and commute with QW , whose action is now realized as

QW ”

¿

dz

2πi
rχαWαpyqs pzq . (2.34)

It may seem a little bit puzzling that we have been able to reduce the entire

problem to a free first order system. What, the reader may ask, encodes the target
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space geometry, for example? The answer, familiar from [85, 99], is that the free

field theory description only applies patch by patch in field-space. That is, we cover

Y with open sets Ua and local coordinates xαa , and on each Uab “ Ua X Ub ‰ H

xb “ xbpxaq, and we define the holomorphic transition functions

pTbaq
α
β ”

Bxαb
Bxβa

, pSbaqαβγ ” pT´1
ba q

α
δ pTbaq

δ
β,γ . (2.35)

The left-moving fields then patch according to

yαb “ xαb pyaq , χαb “ pTbaq
α
βχ

β
a , χbα “ pT

´1
ba q

β
αχaβ ,

ρbα “: pT´1
ba q

β
α

“

ρbβ ´ Sδbaβγχδχγ
‰

: , (2.36)

where the transition functions are evaluated at ya, e.g. Tba “ Tbapyaq. Note that the

patching of ρ requires a normal-ordering due to singularities in the y ´ ρ and χ´ χ

OPEs. Of course there are similar transformations for the right-moving fields y and

η, η. For instance, the ηI transform as sections of y˚pTBq.
15

These transition functions require a careful analysis when we expand about world-

sheet instanton configurations, i.e. non-trivial holomorphic maps Σ Ñ Y . This,

together with non-trivial fermi zero modes in the background of an instanton will

lead to world-sheet instanton corrections to Q0.16 These corrections vanish in the

hybrid limit where we expand about constant maps Bzy “ B̄zy “ 0, and the only

non-trivial Q0 action is on the anti-holomorphic zero modes Q0 ¨ y
α
0 “ ´η

α
0 . In fact,

since the ηı are Q-exact, as far as cohomology is concerned, we can safely ignore

the ηı as well as the anti-holomorphic bosonic fiber zero modes φ
ı

0. So, the only

non-trivial Q0 action is on the base anti-holomorphic zero modes: Q0 ¨ y
I
0 “ ´η

I
0. In

what follows we will drop the zero mode subscript on these right-moving fields with

the understanding that y and η will denote the base antiholomorphic zero modes.

15 As we are working on a flat world-sheet throughout this chapter, we do not keep track of the
world-sheet spinor properties of the fermionic degrees of freedom.

16 Since QW is associated to a chiral superpotential, we do not expect it to be corrected by world-
sheet instantons.
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2.4.4 Massless states in the hybrid limit

Our task now is to work out, in each twisted sector, the set of GSO-even states

that belong to HQ and carry left-moving energy E “ 0. We construct the relevant

states (i.e. the only ones with required energy and charges) in the Hilbert space

as polynomials in the fermions and non-zero bosonic oscillator modes tensored with

wavefunctions of the bosonic zero modes. In a generic twisted sector the bosonic

zero modes correspond to the compact base B, while in less generic sectors there can

be additional bosonic zero modes. However, since the non-compact bosonic modes

will be lifted by the superpotential, in what follows all bosonic wavefunctions will be

taken to be polynomial in the fiber fields.

The operators T and JL can be used to grade the states according to their energy

E and left-moving charge q, and we can evaluate Q-cohomology on the states of

fixed E and q. An important simplification comes from working in the right-moving

Ramond ground sector. A look at (2.18) shows that, as far as Q-cohomology is

concerned, we can neglect any states containing oscillators in B̄zy
α, as well as any

non-zero mode of ηα. We choose the Ramond ground state annihilated by the zero

modes of ηα, so our states will be constructed without ηα or right-moving bosonic

oscillators. We will call the resulting space of states the restricted Hilbert space H.

In general this will be infinite-dimensional even at fixed E and q.

Twisted modes and ground state quantum numbers

In this section we provide expressions for E, q and q of the states in a fixed twisted

sector. For simplicity, we work out the case X “ ‘iLi. The result extends imme-

diately to orbi-bundles of the form X “ ‘iL
xi
i for xi P Q. It should be possible to

treat the case of more general X at the price of additional notation.

The first task is to describe the mode expansions of the fields and the quantum

numbers of the ground states |ky. While we can restrict to right-moving (i.e. anti-
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holomorphic) zero modes, the left-moving oscillators need to be treated in detail.

In each patch of the target space the moding of the left-moving fields in the k-th

twisted sector is

yαpzq “
ÿ

rPZ´να

yαr z
´r´hα , χαpzq “

ÿ

rPZ´rνα

χαr z
´r´rhα ,

ραpzq “
ÿ

rPZ`να

ραrz
´r`hα´1, χαpzq “

ÿ

rPZ`rνα

χαrz
´r`rhα´1, (2.37)

where

να “
kqα
2

mod 1 , rνα “
kpqα ´ 1q

2
mod 1 , rhα ´

1

2
“ hα “

qα
2
. (2.38)

We choose 0 ď να ă 1 and ´1 ă rνα ď 0 and recall that the oscillator vacuum |ky is

annihilated by all the positive modes. When χ, χ have zero modes our conventions

are that the ground state is annihilated by the χ0 modes.

The mode (anti)commutators follow from (2.31) and (2.37):

ryαr , ρβss “ δαβ δr,´s , tχαr , χβsu “ δαβ δr,´s . (2.39)

Each oscillator carries the obvious q, q charges and contributes minus its mode num-

ber to the energy. By using this mode expansion to compute 1-point functions of T

and JL in the oscillator vacuum |ky, we determine the quantum numbers of |ky. The

left- and right-moving charges are given by

q|ky “
ÿ

α

„

pqα ´ 1qprνα `
1

2
q ´ qαpνα ´

1

2
q



,

q|ky “
ÿ

α

„

qαprνα `
1

2
q ` pqα ´ 1qp´να `

1

2
q



, (2.40)

and while the left-moving energy is E|ky “ 0 for k even, we have

E|ky “ ´
5

8
`

1

2

ÿ

α

rναp1´ ναq ` rναp1` rναqs , (2.41)
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for k odd. Note that this includes the usual ´c{24 shift: E “ L0 ´ 1.

The oscillator vacuum |ky we have constructed is not in general a state in the

Hilbert space. To specify a state we need to prescribe a dependence on the bosonic

zero modes so as to get a well-defined state, but from above we see that |ky transforms

as a section of a holomorphic line bundle L|ky over B. When X “ ‘iLi we find (using

KY “ OY )

L|ky “

#

biL
prνi´νiq
i for k even,

biL
prνi´νi`

1
2
q

i for k odd .
(2.42)

From (2.38) we see that if we set νI “ 0 and rνI “ ´k{2 mod 1, then τα “ να´ rνα is

τα “

#

0 να “ 0

1 να ‰ 0
for even k ; τα “

#

1{2 να ď
1
2

3{2 να ą
1
2

for odd k . (2.43)

This shows that L|ky is well-defined because τα P Z for k even and τα P Z ` 1
2

for k

odd. A well-defined ground state can be of the form

|Ψk
0y “ Ψ0py

1, yqI1¨¨¨Iu
ηI1 ¨ ¨ ¨ ηIu |ky , (2.44)

where y1 denotes bosonic zero modes, the ηI are the right-moving superpartners of the

base coordinates and Ψk
u are (0,u) horizontal forms on Y valued in the holomorphic

sheaf L˚
|ky. In sectors in which there are additional zero modes (k “ 0 is always an

example of this) there are more general ground states, and in (R,R) sectors a subset

of these ground states describes the massless spectrum.

This non-trivial vacuum structure is a generalization of familiar limiting cases of

the hybrid construction. When Y “ B a compact Calabi-Yau manifold, the Ramond

ground state is a section of a trivial bundle (the square root of the trivial canonical

bundle); in the LGO case each twisted sector has a unique ground state |ky.

The double-grading and spectral sequence

Our restricted Hilbert space H at fixed E and q admits a grading by Up1qR charge,

and Q acts as a differential, Q : Hq Ñ Hq`1 that preserves the left-moving quantum
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numbers. A key observation, made in the LG case in [61], that makes the cohomology

problem tractable is that in factH admits a double-grading compatible with the split

Q “ Q0 ` QW in (2.18). Let U be an operator that assigns charge `1 to η, ´1

to η, and leaves the other fields invariant. Although U is not a symmetry of the

theory when W ‰ 0, we can still grade our restricted Hilbert space according to the

eigenvalues u of U and p ” q´u, and since rU,Q0s “ Q0 and rU,QW s “ 0 we obtain

a double-graded complex with

Q0 : Hp,u
Ñ Hp,u`1, QW : Hp,u

Ñ Hp`1,u (2.45)

acting, respectively, as anticommuting vertical and horizontal differentials. The co-

homology of Q is thus computed by a spectral sequence with first two stages

Ep,u
1 “ Hu

Q0
pHp,‚

q, and Ep,u
2 “ Hp

QW
Hu

Q0
pH‚,‚q . (2.46)

In general, Er`1 is obtained from Er as the cohomology of a differential dr acting as

dr : Ep,u
r Ñ Ep`r,u`1´r

r . (2.47)

We have, for example, d0 “ Q0 and d1 “ QW . The differentials at higher stages are

produced by a standard zig-zag construction [30]. Since the range of U is 0 ď U ď d

the differentials vanish for r ą dimB, and the sequence converges: Ep,u
dimB`1 “ Ep,u

8 “

Hp,u

Q
pH‚,‚q.

We now have almost all of the tools to describe the massless spectrum. In each

twisted sector there is a geometric structure that organizes the states in the spectral

sequence. On H the Q0 action is simply

Q0 “ ´η
I B

ByI
, (2.48)

so Q0 cohomology amounts to restricting to horizontal17 Dolbeault cohomology

groups, while QW cohomology imposes further algebraic restrictions.

17 We mean in the sense of the fiber–base geometry of Y .
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Since the geometry is typically non-compact the Q0 cohomology groups are of-

ten infinite-dimensional. Fortunately we can obtain a well-defined counting problem

because Q0 respects the fine grading by a vector r “ pr1, . . . , rnq P Zn that assigns

grade r to a monomial
ś

i φ
ri
i .18 Restricting to a particular grade leads to finite-

dimensional vector spaces that, as we show in appendix A.3, are readily computable

in terms of sheaf cohomology over B. The fine grading is a refinement of the phys-

ically relevant grading by q and E, and therefore it gives an effective method for

evaluating the first stage in the spectral sequence Ep,u
1 at fixed twisted sector, q, and

E.

The next step is to study the QW cohomology, i.e. the second stage Ep,u
2 “

Hp

QW

´

Hu
Q0
pH‚,‚q

¯

. Once the first two stages of the spectral sequence are determined,

we are able to compute the cohomology of Q; higher derivatives are then determined

by standard zig-zag arguments in terms of the two differentials Q0 and QW .

The geometric structure depends on the twisted sector, and rather than presenting

a universal framework at the price of opaque notation, we will next consider the

relevant geometries in three separate situations:

1. The (R,R) sectors: k P 2Z. In this case since E|ky “ 0 we can restrict to zero

modes for all the fields, which leads to a very transparent structure.

2. The untwisted (NS,R) sector: k “ 1. This and its CPT conjugate sector

k “ 2N ´ 1 are the only states with E|ky “ ´1. In this case the geometry

is simply Y , and the spectrum involves an interplay between non-trivial base

and fiber oscillators.

3. (NS,R) sectors with odd k and E|ky ą ´1. In this case the organizing geometry

is a sub-bundle of Y Ñ B, and while the choice of sub-bundle is k-dependent,

18 This grading has a simple physical interpretation: the W “ 0 theory has n Up1q symmetries
that rotate the fiber fields separately.
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the spectrum simplifies since base oscillators have h “ 1 and do not contribute

to the massless states.

We consider these possibilities in turn in the next section.

2.5 Twisted sector geometry

To describe the geometric framework for the various twisted sectors we find it useful

to distinguish base and fiber fields, with the latter differentiated according to the

values of τα. More precisely, we split the coordinates yα Ñ pyα
1

, φAq, such that

τα1 ă 1 and τA ě 1. The yα
1

decompose further into base and fiber directions:

yα
1

“ pyI , φi
1

q, where τi1 ă 1 (since νI “ 0 for all the base fields τI ă 1 in all sectors).

We decompose the bundle X accordingly as X “ Xk ‘‘ALA and define

Yk ” totpXk
πk
ÝÑ Bq. (2.49)

The utility of this is that the “light” fields, labeled by α1, including the corresponding

fermions, are organized by Yk, while the remaining “heavy” fields, labeled by A, are

organized by the pull-backs π˚kpLAq. The right-moving sector is considerably simpler:

we restrict to zero modes, and as we described at the end of section 2.4.3, the only

relevant ones are the zero modes yI and their Q0 superpartners ηI . We now describe

how this works in detail in various twisted sectors.

2.5.1 (R,R) sectors

In this case E|ky “ 0 as a consequence of the left-moving supersymmetry, and to

describe the massless states we can restrict to zero modes for all the fields. A look

back at the modes in (2.37) and (2.38) shows that the only fields with zero modes

are the light fields. Among these the ρα1 also have no zero modes, while the χα1 zero

modes annihilate the vacuum state. Hence the most general state in the truncated

Hilbert space is a linear combination of

|Ψs
uy “ Ψpy1, xq

α11¨¨¨α
1
s

I1¨¨¨Iu
χα11χα12 ¨ ¨ ¨χα1sη

I1 ¨ ¨ ¨ ηIu |ky . (2.50)
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The fermions χα1 and ηI transform respectively as sections of T ˚Yk and π˚kpTBq,
19

while |ky is a section of L|ky “ π˚kpbAL
˚
Aq. Hence to be a well-defined state the

wavefunction Ψs
u must be a p0, uq horizontal form valued in the holomorphic bundle

Es “ ^sTYk b L˚|ky.

We can decompose the Ψ according to their eigenvalues under the Lie derivative

with respect to the restriction of the holomorphic Killing vector V to Yk : LV Ψ “

qΨΨ.20 The resulting |Ψy has well-defined Up1qL ˆ Up1qR charges:

q “ q|ky ` qΨ ` s , q “ q|ky ` qΨ ` u . (2.51)

Q0 acts by sending Ψs
u Ñ ´B̄Ψs

u`1, and we can use the fine grading described in

appendix A.3 to reduce Q0 cohomology to computing the finite-dimensional vector

spaces H‚
rpYk, E‚q.

The result is still infinite-dimensional, since these cohomology groups will be non-

zero for an infinite set of grades r. This is a general feature of any sector with bosonic

fiber zero modes. Fortunately, the action of QW , which takes the form

QW “ Wα1py
1
qχα

1

, (2.52)

restricts the spectrum further. WhenW is non-singular we expect a finite-dimensional

result, and indeed, this is easy to prove for LG models.21 It would be useful to give a

more general proof for hybrids. At any rate, we see from (2.34) that the QW action

on our state is simply

QW : Ψs
u ÞÑ psWα11

Ψα11α
1
2¨¨¨α

1
sq
s´1
u . (2.53)

The spacetime interpretation of these states is either as e6 gauginos (q “ ˘3{2) or

the 16˘1{2 components of 27s and 27s.

19 The pull-back to the world-sheet is irrelevant since in the hybrid limit we consider constant
maps.

20 The Lie derivative has a well-defined action even when L|ky is non-trivial because V is a vertical
vector, while the transition functions for L|ky only depend on B.

21 The result follows from the finite-dimensionality of the Koszul cohomology groups associated to
the ideal xW1, ¨ ¨ ¨ ,Wny P Crφ1, . . . , φns for a non-singular superpotential [65, 79].
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Y “ B

As a simple consistency check we can see that we correctly reproduce the expected

spectrum from the unique k “ 0 (R,R) sector when Y “ B a compact Calabi-Yau

3-fold. The non-vanshing Q0-cohomology classes, given with multiplicities and pq, qq

charges are

|0y‘1
´3{2,´3{2 |Ψ3

0y
‘1
3{2,´3{2 |Ψ0

3y
‘1
´3{2,3{2 |Ψ3

3y
‘1
3{2,3{2 ,

|Ψ1
1y
‘h1pT q
´1{2,´1{2 |Ψ2

2y
‘h1pT q
1{2,1{2 |Ψ2

1y
‘h1pT˚q
1{2,´1{2 |Ψ1

2y
‘h1pT˚q
´1{2,1{2 . (2.54)

Comparing to (2.23), we see that the first line corresponds to the gauginos, while

the second line corresponds to the 16´1{2 and 161{2 components of h1pT q chiral 27

and h1pT ˚q chiral 27 multiplets.

2.5.2 The k “ 1 sector

The k “ 1 sector is untwisted with respect to the LG orbifold action. It has the

richest geometric structure and a number of universal features generalizing those

observed for the LGO case [11]. Since τα “ 1{2 for all the fields, the geometry is

simply Y1 “ Y , while the vacuum bundle L|ky “ KY is trivial. We also have

q|1y “ 0 , q|1y “ ´3{2 , E|1y “ ´1 . (2.55)

Since E|1y “ ´1 massless states may include non-zero modes of ByI and ρI .

We now want to describe the operators that create zero-energy states from |1y. It

turns out that hybrid theories for which some qi “ 1{2 have additional zero-energy

states that are not found in more generic theories. We will first describe the zero

energy states present generically and then turn to the special states available due to

fields with qi “ 1{2.
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Generic k “ 1 operators

Ignoring multiplets with qi “ 1{2, we list the operators that can carry weight h ď 1:22

O1,s
“ Ψ1sα1¨¨¨αspyqχα1

¨ ¨ ¨χαs , O2
“ Ψ2

αpyqχ
α , O3

“ Ψ3
αβpyqχ

αχβ ,

O4
“ Ψ4

αpyqBy
α , O5

“ : Ψ5α
β pyqχαχ

β : ,

O6
“ : Ψ6α

pyqρα `Ψ6α
,βpyqχαχ

β : . (2.56)

The index s in O1s can take values s “ 0, 1, 2, 3. In each case we only indicated

the dependence on the left-moving fields; each Ψ also depends on the y and η zero

modes:

Ψt
“

d
ÿ

u“0

pΨt
uqI1¨¨¨Iu

ηI1 ¨ ¨ ¨ ηIu , (2.57)

and plugging in this expansion, we obtain a set of operators Otupzq. We also used

the normal ordering that follows from (2.31) to subtract off the yρ and χχ short-

distance singularities. Since our free fields are only defined on open sets covering the

target space Y , just as in the k even case the wavefunctions Ψt
0 have to transform

as sections of appropriate holomorphic bundles E t over Y . For instance, the fermi

bilinear term appearing in O8 is chosen to account for the unusual transition function

of ρα in (2.36). That is, using (2.36), we find that for two patches Ua and Ub with

Uab ‰ H O6
b “ O6

a (i.e. O6 is well-defined) iff Ψ6
0 transforms as a section of TY .

Similarly, the remaining wavefunctions must transform in the expected way, e.g.

Ψ1s
0 as a section of ^sTY and Ψ2

0 as a section of T ˚Y . The wavefunctions for Ψt
uą0

transform as (0,u) horizontal forms valued in E t, and taking Q0 cohomology means

the Ψt
u taken at a fine grade r define classes in H‚

rpY , E‚q. As in the k even case we

need to consider all r that contain states with h “ 1 and non-trivial QW classes. It

22 Working with fields, as opposed to modes, avoids complications in patching the non-trivial
bosonic oscillators on the base. These complications do not arise in sectors with E|ky ą ´1.
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is useful to introduce the following notation for the relevant holomorphic bundles E t:

Bs,t,q ” ^
sTY b^

tT ˚Y b Symq
pTY q . (2.58)

If we grade the wavefunctions by the eigenvalue of the Lie derivative with respect

to the symmetry vector V , i.e. LV Ψt
u “ qΨ, then we obtain the following weights,

charges and QW action for these operators: qO “ q ` u, and

op. O1,s
u O2

u O3
u O4

u O5
u O6

u

qO q ` s q ´ 1 q ´ 2 q q q

hO
q`s

2
q`1

2
q`2

2
q`2

2
q`2

2
q`2

2

QW ¨ sWα1Ψ1sα1¨¨¨αsχα2
¨ ¨ ¨χαs 0 0 0 Ψ5β

uγWβχ
γ χαBαpΨ

6βWβq

(2.59)

Note that for s ą 0 the O1,s can carry negative eigenvalues under LV , but it is not

hard to show that they are bounded by q ą ´s{2. Using these operators we create

states in the usual fashion: |Otuy ” limzÑ0Otupzq|1y. They carry energy E “ hO ´ 1

and charges q “ qO ´ 3{2 and q “ qO.

Currents

The hO “ 1 qO “ 0 operators in Q cohomology are conserved left-moving currents,

and in a generic k “ 1 sector the corresponding states arise in the bottom row of the

spectral sequence:

|O5
0y ‘ |O6

0y
QW // |O2

0y , (2.60)

where

Ψ5
P ‘rH

0
rpY , B1,1,0q , Ψ6

P ‘rH
0
rpY , B0,0,1q , Ψ2

P ‘rH
0
rpY , B1,0,0q . (2.61)

Before taking cohomology, there are a number of states here, including, for exam-

ple, holomorphic vector fields in H0pB, TBq that lift to Y or various enhanced R-

symmetries of the W “ 0 theory. Most of these states are lifted by the superpotential
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couplings. In fact, for a suitably generic W the only current that survives is JL, which

corresponds to Ψ5 “ 1 and Ψ6 “ ´V ; the resulting state is QW closed as a result

of LVW “ W . This gaugino corresponds to the linearly realized up1qL Ă e6. For

less generic W additional currents may appear, and of course they are accompanied

by additional chiral q “ ´1{2 states |O2
0y in the cokernel of QW . In spacetime each

current corresponds to a gauge boson, and the appearance of extra currents reflects

the spacetime Higgs mechanism.

Y “ B

As in the k “ 0 case, we examine the case of trivial fiber and a CY target space.

Taking Q0 cohomology on the space of operators in (2.56), we find the following

massless states with q ă 0 (for brevity we omit their conjugates with q ą 0)

O1,0,O5
0 Ñ |1y‘1

0,´3{2 ‘ χαχ
α
|1y‘1

0,´3{2 450 ‘ 10

O1,1,O2
Ñ |O1,1

1 y
‘h1pT q
1,´1{2 ‘ |O

2
1y
‘h1pT˚q
´1,´1{2 10

‘h1pT q
1 ‘ 10

‘h1pT˚q
´1

O1,2,O3
Ñ |O1,2

1 y
‘h1p^2T q
2,´1{2 ‘ |O3

1y
‘h1p^2T˚q
´2,´1{2 1

‘h1pT˚q
2 ‘ 1

‘h1pT q
´2

O4,O5
1,O6

Ñ |O4
1y
‘h1pT˚q
0,´1{2 ‘ |O5

1y
‘h1pEndT q
0,´1{2 ‘ |O6

1y
‘h1pT q
0,´1{2 1

‘th1pT q`h1pT˚q`h1pEndT qu
0

It is not hard to extend this analysis to a more general (0,2) CY NLSM with

supnq bundle V ‰ TB. In particular, this offers certainly the most direct world-sheet

perspective, in the spirit of [40], on marginal gauge-neutral deformations and agrees

with spacetime [44, 3] and world-sheet [81] results on marginal deformations in the

large radius limit. This may be found in appendix A.4.
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Table 2.2: Quantum numbers for the octic model.

k E|ky q|ky q|ky `k νi rνi νI rνI

0 0 ´3
2

´3
2

0 0 0 0 0

1 ´1 0 ´3
2

0 1
8

´3
8

0 ´1
2

2 0 1
2

´3
2

´2 1
4

´3
4

0 0

3 ´1
2

´1 ´1
2

0 3
8

´1
8

0 ´1
2

4 0 ´1
2

´1
2

´2 1
2

´1
2

0 0

φi ρi χi χi

q 1
4

´1
4
´3

4
3
4

q 1
4

´1
4

1
4

´1
4

A hybrid example

We will now illustrate how to set up the spectrum computation in a simple but non-

trivial hybrid. We consider the “octic model”23 with B “ P1 and X “ Op´2q‘O‘3.

The quantum numbers of the ground states of the twisted sectors, as well as charges

of the fiber fields are given in table 2.2.

In this example as well as those that follow PicB “ H2pB,Zq, and the vacuum

bundle L|ky is determined by a class in H2pB,Zq. We label the class of the dual

bundle L˚
|ky by `k P H

2pB,Zq. In this example `k is simply the degree of the line

bundle over P1.

Let us consider as an example the states at E “ 0 and q “ 2 in the k “ 1 sector.

We see from (2.23) that these states belong to 12 of sop10q. Energy and charge

considerations show that the relevant operators from (2.56) are O1,s, and the states

23 The name comes from the large radius phase of this much-studied example. Let X0 be an octic
hypersurface in the two-parameter toric resolution of the weighted projective space P4

t2,2,2,1,1u. The

hybrid model Op´2q ‘O‘3 Ñ P1 arises as one of the phases of the corresponding GLSM [84].
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fit in a double complex

Ψαβ
r2sχαχβ|1y Ψα

r5sχα|1y 0

Ψαβ
r2sχαχβ|1y Ψα

r5sχα|1y Ψr8s|1y
//

OO

´3
2

´1
2

1
2

p

U

(2.62)

The wavefunctions satisfy LV Ψαβ “ 0 and LV Ψα “ Ψα; in practice this means that

each Ψrdspy, y, ηq is a quasi-homogeneous polynomial of degree d in the fiber bosons

φi if both indices are vertical, while it is of degree d ´ 1 is one of the indices is

horizontal. To limit clutter in the notation we suppressed the ηs; their number is

indicated by the U grading. Recall that the horizontal grading is by p “ q ´ u.

Taking Q0 cohomology at the relevant q, q, E eigenvalues indicated by the sub-

scripts, we obtain

rH1pY , B2,0,0qs2,´1{2,0 rH1pY , B1,0,0qs2,1{2,0 0

rH0pY , B2,0,0qs2,´3{2,0 rH0pY , B1,0,0qs2,´1{2,0 rH0pY , B0,0,0qs2,1{2,0 //

OO

´3
2

´1
2

1
2

p

U

(2.63)

To illustrate the counting, we concentrate on the dimension of

rH0
pY , B1,0,0qs2,´1{2,0 “ rH

0
pY , TY qs2,´1{2,0 “

à

ř

i ri“4

H0
rpY , TY q . (2.64)

The computation is simple since Y » Y 1 ˆ C3, where Y 1 is the total space of

Op´2q Ñ P1. In this case, as we show in appendix (A.3), the non-trivial graded

cohomology groups are

H0
r1
pY 1,OY 1q “ C2r1`1, H0

r1
pY 1, TY 1q “ C4r1`4 . (2.65)
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Decomposing pTY qr according to (A.30) we find two types of contributions toH0
rpY , TY q,

those with ri ě 0, and those with ri “ ´1 for i “ 2, 3, 4:

rH0
pY , TY qs2,´1{2,0 “

4
à

r1“0

“

H0
r1
pY 1, TY 1q ‘H

0
r1
pY 1,OY 1q

‘3
‰

b Cp
6´r1
4´r1
q

‘

«

5
à

r1“0

H0
r1
pY 1,OY 1q b C6´r1

ff‘3

“ C595
‘ C273

“ C868. (2.66)

The factors of
`

6´r1
4´r1

˘

and p6 ´ r1q arise from counting monomials, respectively, of

degree 4´ r1 in three variables and 5´ r1 in two variables.

Computing the remaining cohomology groups in a similar fashion we obtain the

E1 stage of the spectral sequence

C18 QW // C21 0

C126 QW // C868 QW // C825
//

OO

´3
2

´1
2

1
2

p

U

(2.67)

Finally, we turn to the computation of the QW cohomology for these states and for

simplicity consider the Fermat superpotential

W “ Sr8spφ
1
q
4
` pφ2

q
4
` pφ3

q
4
` pφ4

q
4 , (2.68)

where Sr8s P H0pP1,Op8qq. From (2.56) we see that for the states appearing at

p “ ´3
2

QW

´

Ψαβ
r2suχαχβ

¯

|1y “ 2Ψαβ
r2sWβχα|1y , (2.69)

and the derivatives of the superpotential that appear are (a “ 2, 3, 4)

Wa “ 4pφaq3 , W1 “ 4Sr8spφ
1
q
3 , WI “ BISr8spφ

1
q
4 . (2.70)
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The map (2.69) has vanishing kernel, while the QW action on the p “ ´1
2

states is

QW

`

Ψα
r5sχα

˘

|1y “ Ψα
r5sWα . (2.71)

Setting this to zero implies Ψα
r5s “ Φαβ

r2sWβ for some Φαβ
r2s anti-symmetric in its indices.

Hence the cohomology in the pp, uq “ p´1
2
, 0q position is trivial, and the spectral

sequence degenerates at

0 C3 0

0 0 C83
//

OO

´3
2

´1
2

1
2

p

U

(2.72)

Here we count 86 anti-chiral states in the 12. These correspond to the 83 polynomial

and the 3 non-polynomial deformations of complex structure of the octic hypersurface

now determined from the hybrid’s point of view.

Extra states in k “ 1

Multiplets with qi “
1
2

can potentially give rise to additional massless states. In a

LGO theory these genuinely correspond to massive multiplets that can be integrated

out without affecting the IR physics. In general this is not so in the hybrid theory:

if a qi “
1
2

field is non-trivially fibered then its mass vanishes on the discriminant of

W in B, and the field cannot be integrated out globally over B. This leads to a rich

structure entirely absent from LGO theories.

To describe the additional operators with h “ 1 we sadly need a little more

notation. Just in this section we use the indices i1, j1, etc. to denote the multiplets

with qi1 “
1
2
; the α, β, . . . continue to denote all the fields, while I, J, . . . denote

the fields of the base geometry. Let X 1
2
” ‘i1Li1 and A be a holomorphic (in fact
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diagonal) connection on the bundle X 1
2
Ñ B. The new operators are then

O7
“ Ψ7i1j1k1m1

pyIqχi1χj1χk1χm1 , O8
“ : Ψ8i1j1

I pyIqχi1χj1χ
I : ,

O9
“ : Ψ9i1j1

pyIqpρi1 ` χ
IAk1Ii1χk1qχj1 : . (2.73)

The wavefunctions are (0,u) forms valued in the following bundles:

Ψ7 : ^
4 X 1

2
, Ψ8 : ^

2 X 1
2
b T ˚B , Ψ9 : X 1

2
bX 1

2
. (2.74)

These operators have weight h “ 1 and charges

O7
u O8

u O9
u

q 2 0 0

q u´ 2 u´ 1 u´ 1

(2.75)

The action of Q0 on O7 is simply to send Ψ7
u Ñ p´B̄Ψ7qu`1. Since we used the

holomorphic connection A in O9 to build a well-defined operator, the Q0 action on

O8
u `O9

u is a bit more involved:

Q0 ¨ pO8
u `O9

uq “ ´pB̄Ψ
9i1j1
qI0¨¨¨Iu

ηI0 ¨ ¨ ¨ ηIupρi1 ` χ
IAk1Ii1χk1qχj1

`

”

obspΨ9
q
k1j1

I ´ B̄Ψ8k1j1

I

ı

I0¨¨¨Iu
ηI0 ¨ ¨ ¨ ηIuχk1χj1χ

I , (2.76)

where the linear map

obs : Ω0,u
pX 1

2
bX 1

2
q Ñ Ω0,u`1

p^
2X 1

2
b T ˚Bq (2.77)

is given by contracting Ψ9 with the curvature F “ B̄A :

obspΨ9
q
k1j1

I I0¨¨¨Iu
dyI0 ¨ ¨ ¨ dyIu ” 1

2

´

F k1

II0 i1
Ψ9i1j1

I1¨¨¨Iu
´ F j1

II0 i1
Ψ9i1k1

I1¨¨¨Iu

¯

dyI0 ¨ ¨ ¨ dyIu .

(2.78)

It is easy to see that obspΨ9q is B̄-closed when Ψ9 is B̄-closed, so that O8
u`O9

u is Q0-

closed iff B̄Ψ9 “ 0 and obspΨ9q corresponds to the trivial class inHu`1pB,^2X 1
2
bT ˚Bq.

We will meet examples of such possible “obstruction classes” below, but for now we
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simply note that obs vanishes in a number of important cases that often arise in

particular examples. For instance, obspΨ9
dq is clearly zero, and obs “ 0 for any

Ψ9 P H‚pB,Lj1 b Lj1q. A little less trivially, we can also show that obs vanishes for

any Ψ9 P H‚pB,^2X 1
2
q.

The QW action can also be determined;24 the results are:

QW ¨O7
“ 4Wi1Ψ

7i1j1k1m1χj1χk1χm1 , QW ¨O8
“ 2Wi1Ψ

8i1j1

I χj1χ
I ,

QW ¨O9
“ Ψ9i1j1

”

pρi1 ´Ai
1

I χi1χ
I
qWj1 ` pχ

αWi1α ´ χ
IAk1Ii1Wk1qχj1

ı

. (2.79)

2.5.3 k ą 1 (NS,R) sectors

Finally, we turn to (NS,R) sectors with 1 ă k ă 2N ´ 1. These sectors have, in

general, two complications relative to the k “ 1 sector: in general Yk ‰ Y , and |ky

may transform as a section of a nontrivial bundle over the base B.

The vacuum

Recalling the discussion above (2.49), we split the coordinates as yα Ñ pyI , φi
1

, φAq.

The quantum numbers of the vacuum are then write the vacuum energy as

E|ky “ ´1`
1

2

«

ÿ

i1

pνi1 ´
qi1

2
q `

ÿ

A

p1´
q

2
´ νAq

ff

,

q|ky “
ÿ

i1

p
qi1

2
´ νi1q `

ÿ

A

p1´
qA
2
´ νAq ,

q|ky “
ÿ

i1

p
qi1

2
´

1

2
´ νi1q `

ÿ

A

pνA ´
qA
2
`

1

2
q ´

d

2
, (2.80)

where d is the dimension of the base B. Note that in the twisted sectors 1 ă k ă

2N ´ 1 we have E|ky ą ´1. The vacuum bundle (2.42) is given by

L|ky “ bAL
˚
A . (2.81)

24 A little care is required in using point-splitting and the free OPE in computing the action on
O9.
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Modes and transition functions

Because we have Ek ą ´1 we can restrict attention to the subspace of the Hilbert

space generated by the lowest modes of the left-moving fields. That is, we trun-

cate (2.37) to

yαpzq “ zνα´qα{2pyα ` z´1ρ:αq , ραpzq “ zqα{2´ναpρα ` z
´1y:αq ,

χαpzq “ zrνα´qα{2´
1
2 pχα ` z´1χ:αq , χαpzq “ zqα{2`

1
2
´rναpχα ` z

´1χ:αq , (2.82)

where in our restricted Hilbert space ρI “ 0.

The transition functions for these oscillators follow by expanding (2.36). These

show that yα
1

are coordinates on Yk, while χα
1

(χα1) take values in TYk (T ˚Yk). On the

other hand, φA and λA take values in Ẑk “ π˚kp‘LAq and ρA and λA in Ẑ˚k . As is the

case for k “ 1, ρi1 is not a covariant operator due to the fermion bilinear term.

Conserved charges

Inserting (2.82) into our expressions for the conserved charges (2.33) we find in our

Hilbert space

L0 “
ÿ

α

“

´ναφ
αφ:α ` p1´ ναqραρ

:α
` p1` rναqχ

αχ:α ´ rναχαχ
:α
‰

,

J0 “
ÿ

α

“

pqα ´ 1qpχαχ:α ´ χαχ
:α
q ´ qα

`

yαy:α ` ραρ
:α
˘‰

,

J0 “
ÿ

α

qα
`

´yαy:α ´ ραρ
:α
` χαχ:α ´ χαχ

:α
˘

.

States

We again list the operators that can carry weight h ă 1, suppressing the right-moving

ηI dependence. These can contain at most one operator with h ě 1
2

and we organize
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them according to the nature of this operator as

O1,l,m
“ Ξ1lmα

1,i12¨¨¨i
1
l

A1¨¨¨Am
χα1χi12 ¨ ¨ ¨χi1lχ

A1 ¨ ¨ ¨χAm

O2,l,m
“ Ξ2lmi

1
1¨¨¨i

1
l

α1,A2¨¨¨Am
χi11 ¨ ¨ ¨χi1lχ

α1χA2 ¨ ¨ ¨χAm

O3,l,m
“ Ξ3lmB,i

1
2¨¨¨i

1
l

A1¨¨¨Am
χBχi12 ¨ ¨ ¨χi1lχ

A1 ¨ ¨ ¨χAm (2.83)

O4,l,m
“ Ξ4lmi

1
1¨¨¨i

1
l

B,A1¨¨¨Am
φBχi11 ¨ ¨ ¨χi1lχ

A1 ¨ ¨ ¨χAm

O5,l,m
“ Ξ5lmj

1,i11¨¨¨i
1
l

A1¨¨¨Am

”

ρj1 ´AJk
1

j1χ
Jχk1

ı

χi11 ¨ ¨ ¨χi1lχ
A1 ¨ ¨ ¨χAm .

In constructing O5 we have introduced a holomorphic (and diagonal) connection on

‘i1Li1 . Here the Ξt include the dependence on yα
1

and ρA, as well as on the right-

moving zero modes of yI . We can make this more explicit by writing, for example,

Ξ1lmα
1,i12¨¨¨i

1
l

A1¨¨¨Am
“
ÿ

t

Ψ1lm
t pyq

α1,i12¨¨¨i
1
l

A1¨¨¨Am

ź

B

ρ
tB`

řm
a“1 δB,Aa

B , (2.84)

in terms of a vector of integers tB ě ´1 such that no negative powers of ρB appear.

O1 will now create a well-defined state when acting on |ky provided the wavefunction

Ψ1lm
t transforms as a section of a suitable bundle E1lm

t over Yk

E1lm
t “ TYk ^

`

^
l´1π˚kpXkq

˘

b
`

bBpπ
˚
kL

tB`1
B q

˘

. (2.85)

Note that this takes into account the transformation properties of the vacuum (2.81)

and that the odd shift in the power of ρB is now seen to be sensible. Incorporating the

right-moving fermion zero modes, the wavefunction is in general a (0,u) horizontal

form valued in this bundle. These can be fine graded as in A.3 by a vector of integers

r “ prα1q.

Proceeding in an analogous way with the other operators we find that the wave-
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functions take values in the following bundles, organized by t and the fine grading r

E1lm
t,r pkq “

“

TYk ^
`

^
l´1π˚kpXkq

˘

b
`

bApπ
˚
kL

tA`1
A q

˘‰

r

E2lm
t,r pkq “

“`

^
lπ˚kpXkq

˘

b T ˚Yk b
`

bApπ
˚
kL

tA`1
A q

˘‰

r

E3lm
t,r pkq “ ‘B

“`

^
l´1π˚kpXkq

˘

b
`

bApπ
˚
kL

tA`1
A q

˘‰

r
(2.86)

E4lm
t,r pkq “ ‘B

“`

^
lπ˚kpXkq

˘

b
`

bApπ
˚
kL

tA`1
A q

˘‰

r

E5lm
t,r pkq “

“

π˚kpXkq b
`

^
lπ˚kpXkq

˘

b
`

bApπ
˚
kL

tA`1
A q

˘‰

r

We need to consider all t, r that contain states O|ky with E “ 0.

Q and cohomology

On states of the formO1
u|ky, . . . ,O4

u|kyQ0 acts as ´B̄ on horizontal (0,u) forms valued

in holomorphic bundles over Yk, and Q0 cohomology is the horizontal Dolbeault

cohomology. The action on states of the form O5|ky has an added term of the sort

already familiar from (2.76,2.77) for the “massive” states in the k “ 1 sector:

Q0O5
u|ky “ ´η

K
”

B̄KO5
u
j1
` FKJ

j1

k1χ
Jχj1pΞ

5k1

u q
i11¨¨¨i

1
l

A1¨¨¨Am
χi11 ¨ ¨ ¨χi1lχ

A1 ¨ ¨ ¨χAm
ı

|ky ,

(2.87)

where F is the curvature of A. For B̄-closed Ψ5, the additional “obstruction” term

is B̄-closed and gives a linear map

obs : Ω0,u
pE5l,m

q Ñ Ω0,u`1
pE4pl`1q,m

b π˚kT
˚
Bq . (2.88)

If obspΨ5q is exact, then we can construct a Q0-closed state just as we saw in the

k “ 1 case. We have not encountered a nontrivial obstruction term in any of the

examples we considered, and in 2.5.4 we argue that this will be the case in any

well-defined model.

The action of QW is given by the mode expansion of

QW “

¿

dz

2πi
χαWα “ χα

¿

dz

2πi
zrνα´qα{2´1{2Wα ` χ

:α

¿

dz

2πi
zrνα´qα{2´3{2Wα ,

(2.89)
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where we write

Wα “ Wα

`

zνβ´qβ{2pφβ ` z´1ρ:βq
˘

. (2.90)

We can use the homogeneity relation Wαpλ
qφβq “ λ1´qαWαpφ

βq and simplify this to

QW “ χα
¿

dz

2πi
zrναWα

`

zνβpφβ ` z´1ρ:βq
˘

` χ:α
¿

dz

2πi
zrνα´1Wα

`

zνβpφβ ` z´1ρ:βq
˘

.

(2.91)

2.5.4 Comments on CPT

The spectrum we obtain should be invariant under CPT. This means that for any

massless state with charge pq, qq in the k sector we should find a massless state with

charge p´q,´qq in the 2N ´ k sector. In this section we will discuss how this works

for sectors with odd k. To avoid additional notational elaborations we will make

the simplifying assumption that rν ă 0 for all fields.25 As we will now argue, CPT

invariance essentially reduces to Serre duality for Dolbeault cohomology on B, as

well as a natural dual action of QW .

A pairing on the Hilbert spaces

The two-point function in the CFT is a natural pairing between the conjugate sectors

respecting charge conservation and pairing states with the same energy, and given

the quantum orbifold symmetry we expect that the Hilbert spaces of states in the

|ky and |2N ´ ky sectors are dual to each other in this way.

From the expressions above it is clear that the vacua satisfy

E|2N´ky “ E|ky; pq|2N´ky, q|2N´kyq “ p´q|ky, d´ q|kyq (2.92)

while the moding in the conjugate sectors is related by

να Ø 1´ να; rνα Ø ´1´ rνα . (2.93)

25 When this is not the case there are, as in the (R,R) sectors, χ and χ zero-modes. It should be
possible to extend the CPT discussion to these situations as well.
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This implies that the fields φi
1

for which τ “ 1{2 in the k sector have τ “ 3{2 in the

conjugate 2N ´ k sector, and vice versa, so that we have

Yk “ totp‘i1Li1ÑBq L|ky “ bAL
˚
A

Y2N´k “ totp‘LAÑBq L|2N´ky “ bi1L
˚
i1 . (2.94)

In particular L|ky b L|2N´ky “ K˚
B. For any state with weight h and charge pq, qq in

the k sector, we can find a state with the same weight and charge p´q, d´ qq in the

2N ´ k sector by exchanging the oscillator excitations according to

yα Ø ρα χα Ø χα . (2.95)

This is enough to show that at the level of left-moving oscillators the two-point

function leads to a pairing between the state spaces defined above, which respects q

and violates q by d. If we denote Htlm
t,r pkq “ ΓpE tlmt,r pkqq, then the pairing takes the

form

H1‘2‘3lm
t,rpkq ˆH1‘2‘3ml

r,tp2N ´ kq Ñ C

H4lm
t,r pkq ˆH5ml

r,t p2N ´ kq Ñ C , (2.96)

Q0 and Serre duality

The pairing descends to Q0 cohomology, and in a reasonable physical theory this

must be nondegenerate. This will be the case if

H‚

Q0

`

Hlm
k pt, rq

˘

“

”

Hd´‚

Q0

`

Hml
2N´kpr, tq

˘

ı˚

. (2.97)

For the first line in (2.96), in which Q0 acts as ´B̄, this is in fact equivalent to Serre

duality. For simplicity let’s see first how this works in H111
r,t . The fine grading on

H‚pTYkq can be obtained from the long exact sequence (LES) following from the

short exact sequence (SES) (A.29)

0 // ‘ipπ
˚
kLiqr`xi

// pTYkqr
// pπ˚kTBqr

// 0 , (2.98)
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which we here encounter twisted by a vector bundle (so still exact) as

0 // ‘ipπ
˚
kLiqr`xi b

pVt // pTYkqr b
pVt // pπ˚kTBqr b

pVt // 0 , (2.99)

where

pVt “ π˚k
“

‘B
`

bApL
tA`1
A q

˘‰

. (2.100)

The bundles on either end of the SES are pulled back from B, and we can use (A.20)

to compute their cohomology. Thus

H‚
r

´

Yk,‘ipπ
˚
kLiqr`xi b

pVt

¯

“ H‚
`

B,‘i,B
`

bApL
tA`1
A q b

`

bjpL
˚
j q
rj
˘˘˘

, (2.101)

while

H‚
r

´

Yk, pπ
˚
k TBqr b

pVt

¯

“ H‚
`

B, TB b
`

‘B
`

bApL
tA`1
A q b

`

bjpL
˚
j q
rj
˘˘˘˘

. (2.102)

Recalling that KB “ bαLα, these are Serre dual, respectively, to

Hd´‚
`

B,‘i,B
`

bApL
˚
Aq

tA b
`

bjpLjq
rj`1

˘˘˘

“ Hd´‚
´

Y2N´k,‘i,B

´

π˚2N´kpL
˚
Aqt´yA b

´

bjpL̂
rj`1
j q

¯¯¯

(2.103)

and

Hd´‚
´

B, T ˚B b
´

‘B

´

bApL
˚
Aq

tA b

´

bjpL
rj`1
j q

¯¯¯¯

“ Hd´‚
`

Y2N´k,
`

π˚2N´k T
˚
B

˘

t
b
`

‘jpπ
˚
2N´kpLjq

rj`1
q
˘˘

. (2.104)

Inserting this result into the dual LES we find

H‚
ppTYkqr b

pVtq “
”

Hd´‚
ppTY2N´kqt b

pVrq
ı˚

(2.105)

with a suitable natural definition for pVr.

Higher powers of the tangent/cotangent bundles are fine graded by recursively

using the same SES and the dual, so recursively applying this argument we find

that Serre duality implies CPT in the sense above whenever we can use Q0 “ ´B̄.

This argument will fail if nontrivial obstruction classes arise in (2.87), because no

such obstruction can arise for the dual states in H4. We conclude that in reasonable

physical theories there will be no nontrivial obstructions in the twisted sectors.
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QW and CPT

Given that the cohomology of Q0 produces a spectrum consistent with CPT, we can

also show that the action of QW is consistent with this. Consider a monomial in Wα

that contributes to QW in the k sector a term

χα
ź

β

“

pφβqmβpρ:βqnβ
‰

. (2.106)

This means that
ÿ

β

rνβ,kpmβ ` nβq ´ nβs “ ´rνα,k ´ 1 . (2.107)

Using (2.93) we see that this implies
ÿ

β

rνβ,2N´kpmβ ` nβq ´mβs “
ÿ

β

r´νβ,kpmβ ` nβq ` nβs “ rνα,k ` 1 “ ´rνα,2N´k ,

(2.108)

which means that the same monomial contributes a term

χ:α
ź

β

“

pφβqnβpρ:βqmβ
‰

(2.109)

to QW in the 2N ´ k sector. This acts in precisely the appropriately dual way on

the states as mapped above, showing that CPT is maintained as a symmetry after

taking QW cohomology.

2.6 Examples

In this section we will apply the techniques developed in the previous sections to a

number of hybrid examples. In each case we will focus on characterizing first order

deformations that preserve (0,2) superconformal invariance and the e8‘ e6 spacetime

gauge symmetry.

The infinitesimal deformations which preserve (2,2) symmetry parametrize the

tangent space of the (2,2) moduli space. They are not obstructed and in a large
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radius limit are identified with complex structure and complexified Kähler moduli of

the CY. There is a well-known correspondence between the (2,2) moduli and the e6-

charged matter, and we will borrow the large radius notation by denoting the number

of chiral 27’s and 27’s in the hybrid computation by h1,1 and h2,1 respectively.

More interesting are the deformations which only preserve (0,2) superconformal

invariance. The computation of the number of massless gauge singlets associated to

these deformations, which we indicate asM, is the main goal of this section. These

singlets arise in (NS,R), i.e. the odd k sectors. In the following we will compute M

in three examples that illustrate a number of technical and conceptual points.

1. For the first example we choose the simplest possible base, i.e. B “ P1. This is

a good warm-up for more difficult cases and is of interest in its own right since

the model can be found as a phase of a GLSM without a large radius limit in

its Kähler moduli space. In fact, it can be shown [6] that h1,1 “ 1, and the

only other phase is a LGO.

2. In the second example we describe a model in the broader orbi-bundle set-up

with B “ P3. It will be clear that most of our discussion above was restricted

to the case in which X is a sum of line bundles solely for ease of exposition.

This example also give us a chance to compute a higher order differential (it

will turn out to be zero).

3. In the last example we consider the case in which one of the line bundles

defining X is positive, and B “ F0 is not a projective space.

While our construction does not depend on a GLSM embedding, all of these

models do arise as phases of a GLSM. That gives us the possibility to compare the

hybrid spectrum with the spectrum known in other phases. What we discover is that

while in the hybrid limit extra singlets appear at a particular complex structure or
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Table 2.3: Quantum numbers for the X “ Op´2q ‘O‘4 Ñ P1 model.

k E|ky q|ky q|ky `k νa, ν1 rνa, rν1

0 0 ´3
2 ´3

2 0 0, 0 0, 0

1 ´1 0 ´3
2 0 1

8 ,
1
4 ´3

8 ,´
1
4

2 0 1
2 ´3

2 ´2 1
4 ,

1
2 ´3

4 ,´
1
2

3 ´1
2 ´1 ´1

2 ´2 3
8 ,

3
4 ´1

8 ,´
3
4

4 0 ´1
2 ´1

2 0 1
2 , 0 ´1

2 , 0

φi, φ1 ρi, ρ1 χi, χ1 χi, χ1

q 1
4 ,

1
2 ´1

4 ,´
1
2 ´3

4 ,´
1
2

3
4 ,

1
2

q 1
4 ,

1
2 ´1

4 ,´
1
2

1
4 ,

1
2 ´1

4 ,´
1
2

Kähler form, there is no evidence of world-sheet instanton corrections to masses of

e6 singlets.

2.6.1 A hybrid with no large radius

We begin with the model X “ Op´2q ‘O‘4 and B “ P1 with superpotential

W “

2
ÿ

p“0

Fr2pspφ
1
q
p. (2.110)

Some notational clarifications are in order: it is convenient to distinguish between

the trivial and non-trivial fiber indices, so let a, b “ 2, . . . , 5; moreover, let Frds

be a generic polynomial of degree 4 ´ d in the φa’s, whose coefficients belong to

H0pP1,Opdqq. The left- and right-moving charges for the fields and the quantum

numbers of the twisted ground states are summarized in table 2.3.

The orbifold action Γ “ Z8 introduces 7 twisted sectors; because of CPT invari-

ance to compute the number of massless e6-singlets it is sufficient to study the k “ 1

and k “ 3 sectors.

k “ 1 sector

The E1 stage of the spectral sequence is obtained by taking HQ0
pHq as described

in section 2.4.4 and we reproduce here the result, where the subscripts denote the

67



dimension of the respective cohomology groups

Ep,u
1 :

H1 pY , B1,0,0q3
QW //

H1 pY , B0,0,1q10

‘

H1 pY , B1,1,0q63

QW // H1 pY , B0,1,0q35

H0 pY , B0,0,1q20

‘

H0 pY , B1,1,0q17

QW // H0 pY , B0,1,0q176

//

OO

´3
2

´5
2

´1
2

p

U

(2.111)

The lowest row of the sequence provides an example of the universal structure

of currents we indicated above in (2.60), and for generic W the kernel is one-

dimensional, corresponding to the Up1qL symmetry. By choosing a particular form

of the superpotential (2.110) we can increase kerQW , and the additional vectors

correspond to an enhanced symmetry at the special locus in the moduli space.

In order to compute the cohomology of the top row of (2.111) let us list all the

states contributing at Ep,1
1 :

V ρ1χ1|1y3
QW //

Hr2sχ1χ
I |1y30

‘

Gr1sχbχ
I |1y16

‘

Gr1sχ1χ
b|1y16

‘

ΦIφ
1χ1χ

I |1y1
‘

Gr2sρ1|1y10

‘

ΨIBzy
I |1y1

QW // Gr4sχ
I |1y35 (2.112)

where Grds and Hrds are generic polynomials of degree d in the φa’s with coefficients

in H1pP1,Op´2qq and H1pP1,Op´4qq, respectively, while ΨI ,ΦI P H
1pP1,Op´2qq.
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First, consider the map on the left. We have the state V ρ1χ1|1y where V P H1pY , TYb

TY q » H1 pP1,Op´4qq. Under QW it maps to

QWV ρ1χ1|1y “ V
`

B1Wρ1 ` B11Wχ1χ1 ` B1IWχIχ1

˘

|1y ` V pB1aWχaχ1q |1y .
(2.113)

Since B1W, B1aW P ΓpP1,Op2qq, it follows that V B1W,V B1aW P H1 pP1,Op´2qq. To

compute the dimension of the cokernel of this map we first note that if we restrict

the superpotential to its Fermat form, namely W “
ř5
i“2pφ

iq4 ` Sr4spφ
1q2, we have

QWV ρ1χ1|1y “ 2V
`

φ1Sr4sρ1 ` Sr4sχ
1χ1 ` φ

1
BISr4sχ

Iχ1

˘

|1y . (2.114)

Since V φ1Sr4s P H
1 pP1,Op´2qq and h1pP1,Op´2qq “ 1 the kernel at Fermat is 2-

dimensional.

Adding to W a term of the form Sr2sφ
2φ3φ1 ` Tr2sφ

4φ5φ1, where Sr2s, Tr2s P

ΓpB,Op2qq, we find that (2.113) reads

QWV ρ1χ1|1y “ V
`

B1Wρ1 ` B11Wχ1χ1 ` B1IWχIχ1

˘

|1y
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Fermat

` V Sr2s
`

φ2χ3
` φ3χ2

˘

χ1|1y ` V Tr2s
`

φ4χ5
` φ5χ4

˘

χ1|1y , (2.115)

and the map is injective for W generic enough. Now, for the map on the right in

(2.112) we have

QW

`

Ψabρ1 `Ψab,Iχ
Iχ1

˘

φaφb|1y “ Bα pΨabB1W qχ
αφaφb|1y

QWΣabIχ
Iχ1φ

aφb|1y “ ´ΣabIχ
I
B1Wφaφb|1y

QWV
b
a φ

aχIχb|1y “ ´V
b
a φ

a
BbWχI |1y

QWΦIφ
1χIχ1|1y “ ´ΦIφ

1
B1WχI |1y (2.116)

The cokernel of this map is thus any object of the form Ψabcdφ
aφbφcφdχI |1y for

Ψabcd P H
1pP1,Op´2qq, which cannot be written as B1WφaφbχI |1y or φaBbWχI |1y.
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We find a 9-dimensional space. Thus, the E2 stage of the spectral sequence is

Ep,u
2 :

0 C45 C9

C1 C139
//

OO

´5
2

´3
2

´1
2

p

U

(2.117)

and obviously all higher differentials vanish. Hence the spectral sequence degenerates

already at this stage, E8 “ E2. Thus, in this sector we count 45` 139 “ 184 chiral

and 9 anti-chiral e6-singlets.

k “ 3 sector

The k “ 3 ground state has a non-trivial vacuum bundle L|3y “ Op2q and, as

discussed in section 2.5, we must distinguish between light and heavy fields. In

particular we have A “ 1, i1 “ 2, . . . , 5, α1 “ pI, i1q, while the geometry is determined

by Y3, the total space of O‘4 π3
ÝÑ P1. The expansion of QW in this sector takes the

form

QW “ χA:BAW ` χABAiWρi: ` χα
1:
Bα1iWρi: ` χα

1

Bα1ijWρi:ρj: . (2.118)

The E1 stage of the spectral sequence is given by

Ep,u
1 :

H1pY3, π
˚
3 pL

˚
6q b ^

2TY3q18
QW // H1pY3, TY3q16

0
H0pY3,^

2TY3 b T
˚
Y3
q6

‘

H0pY3, TY3q1 //

OO

´3
2

´1
2

p

U

(2.119)

Now, the only non-trivial map is at U “ 1, where

QWV
abρ1χaχb|3y “ 2V abρ1B1aWχb|3y ‰ 0 . (2.120)
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The RHS never vanishes, giving a 6-dimensional image. Hence, the spectral sequence

degenerates at the E2 term

Ep,u
2 :

C12 C10

0 C7
//

OO

´3
2

´1
2

p

U

(2.121)

Hence we count 19 chiral and 10 anti-chiral states for a total of 222 e6 singlets. By

similar methods we compute h2,1 “ 61 and h1,1 “ 1, yielding M “ 160.

2.6.2 The orbi-bundle

Now we present an example in which X is not a sum of line bundles, but a more

general orbi-bundle. Let us take B “ P3 and X “ Op´5{2q ‘ Op´3{2q along with

the quasi-homogeneous superpotential

W “ S5pφ
1
q
2
` S4φ

1φ2
` S3pφ

2
q
2, (2.122)

where Sd P H
0pB,Opdqq. The ground state quantum numbers and charges of the

fields are given in table 2.4, and to find the singlets we need only consider the first

twisted sector.
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Table 2.4: Quantum numbers for the X “ Op´5{2q ‘Op´3{2q Ñ P3 model.

k E|ky q|ky q|ky `k νi rνi

0 0 ´3
2

´3
2

0 0 0

1 ´1 0 ´3
2

0 1
4

´1
4

2 0 1
2

´3
2

´4 1
2

´1
2

φi ρi χi χi

q 1
2

´1
2
´1

2
1
2

q 1
2

´1
2

1
2

´1
2

The first stage of the spectral sequence is

Ep,u
1 :

H3 pY , B1,0,1q6
‘

H3 pY , B2,1,0q15

0 0

0 H1 pY , B1,1,0q2 0

0
H0 pY , B0,0,1q21

‘

H0 pY , B1,1,0q6

QW // H0 pY , B0,1,0q295

//

OO

´5
2

´3
2

´1
2

p

U

(2.123)

The bottom row is the only place where we can have cokernel, and for generic su-

perpotential we find dim kerQW “ 1.

Thus, the E2 stage of the spectral sequence is

Ep,u
2 :

C21

0 0

0 C2 0

0 C C269 0 //

OO

´5
2

´3
2

´1
2

1
2

p

U
(2.124)
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All higher differentials vanish, and the spectral sequence degenerates at the E2 term.

We then count 271 chiral and 21 antichiral states corresponding to massless e6 sin-

glets. We also computed by similar methods the number of charged singlets, h2,1 “ 90

and h1,1 “ 2, corresponding to the (2,2) moduli, which we can subtract from the total

number of neutral singlets to find M “ 200.

A higher differential ?

It is worth noting that the spectral sequence for computing the number of 12 Ă 27

states degenerates only at the E4 term, giving us an example of a possible higher

differential. At zero energy and q “ 2 we have

Ep,u
1 :

0

H2pY , B1
3,0,0q1

0

0 0 0

0 H0pY , B2,0,0q120

QW // H0pY , B1,0,0q905

QW // H0pY , B0,0,0q875 //

OO

´5
2

´3
2

´1
2

1
2

p

U

(2.125)

Trivially d2 “ 0, thus E3 “ E2, but there is one more map we have to compute, in

fact

Ep,u
3 :

0

C

d3

$$

0

0 0 0

0 0 0 C90
//

OO

´5
2

´3
2

´1
2

1
2

p

U
(2.126)
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Let us recall that an element b P H represents a cohomology class in E3 if there exist

c1, c2 P H such that

Q0b “ 0 , QW b “ Q0c1 , QW c1 “ Q0c2 , (2.127)

and d3 on the cohomology class rbs3 is given by

d3rbs3 “ rQW c2s3 . (2.128)

Thus, we just chase down the state ηJηKV I
JK
χ1χ2χI |1y P E

´5{2,3
3 as prescribed in

(2.128)

0 0

ηJηKV I
JK
χ1χ2χI |1y

QW //

Q0

OO

ηJηKV I
JK
εαβγBαWχβχγ|1y

Q0

OO

ηJSI
J
εαβγBαWχβχγ|1y

Q0

OO

QW // ηJSI
J
εαβγBαWBrβWχγs|1y

RIεαβγBαWBrβWχγs|1y

Q0

OO

QW // 0 .

(2.129)

The coefficients satisfy

V I
JK
“ ´pB̄SqI

JK
, SI

J
“ ´pB̄RqI

J
. (2.130)

We just showed that d3, while in principle allowed, vanishes, and the spectral se-

quence degenerates at the E4 “ E2 term. In this sector we count h2,1 “ 90 and

h1,1 “ 1 and the “missing” Kähler modulus is to be found in the k “ 3 sector, as

expected.

2.6.3 A positive line bundle

For our last example we consider X “ Op´3,´3q‘Op1, 1q and B “ F0. The novelty

here is that we allow a positive line bundle over a non-projective base.

74



A non degenerate superpotential is given by

W “ pφ1
q
4Sr12,12s ` pφ

1
q
3φ2Sr8,8s ` pφ

1φ2
q
2Sr4,4s ` φ

1
pφ2
q
3Sr0,0s , (2.131)

where Srm,ns P ΓpF0,Opm,nqq and the quantum numbers for this theory are listed in

table 2.5. Studying the (R,R) sectors we find h1,1 “ 3 and h2,1 “ 243, and to count

the remaining e6 singlets we need to consider the k “ 1 and k “ 3 sectors.

k “ 1 sector

In the first twisted sector the spectral sequence at q “ 0 is

Ep,u
1 :

H2pY , B1,1,0q39

‘

H2pY , B0,0,1q9

QW // H2pY , B0,1,0q39

H1pY , B1,1,0q10

QW // H1pY , B0,1,0q2

H0pY , B1,1,0q63

‘

H0pY , B0,0,1q27

QW // H0pY , B0,1,0q825

//

OO

p

U

´3
2

´1
2

(2.132)

It is not hard to verify that both the maps QW

ˇ

ˇ

U“1
and QW

ˇ

ˇ

U“2
are surjective for

sufficiently generic W , and as we already saw in the discussion about the general

k “ 1 sector, there is only one state at q “ ´3
2
, u “ 0 in the kernel of QW . The

spectral sequence degenerates at the E2 term

Ep,u
2 :

C9

C8 0

C C736
//

OO

p

U

´3
2

´1
2

(2.133)

Thus we count 744 chiral and 9 anti-chiral massless e6-singlets and one vector.
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Table 2.5: Quantum numbers for the X “ Op´3,´3q ‘Op1, 1q Ñ F0 model.

k E|ky q|ky q|ky `k νi rνi

0 0 ´3
2

´3
2

0 0 0

1 ´1 0 ´3
2

0 1
8

´3
8

2 0 1
2

´3
2

p´2,´2q 1
4

´3
4

3 ´3
4

´1
2

´1 0 3
8

´1
8

4 0 ´1 ´1 p´2,´2q 1
2

´1
2

φi ρi χi χi

q 1
4

´1
4
´3

4
3
4

q 1
4

´1
4

1
4

´1
4

k “ 3 sector

In the k “ 3 sector all the fields are “light”, L|3y is trivial, and the geometry is again

encoded in the full Y3 “ Y . The spectral sequence starts then as

Ep,u
1 :

H2pY , Sym2 TY q27

‘

H2pY ,^2TY b T
˚
Y q6

QW // H0pY ,Oq1

0 0

H0pY , Sym2 TY q9
QW // H0pY ,Oq58 //

OO

´3
2

´1
2

p

U

(2.134)

It can be shown that the mapQW

ˇ

ˇ

U“0
is injective while the mapQW

ˇ

ˇ

U“2
is surjective.

Therefore the second stage of the spectral sequence is

Ep,u
2 :

C32 0

0 0

0 C49
//

OO

p

U

´3
2

´1
2

(2.135)

The spectral sequence degenerates at the E2 term, and we find 49 chiral and 32

anti-chiral singlets.
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Summarizing, we count 834 massless chiral e6-singlets and once we subtract the

moduli we obtain M “ 588.

2.7 Discussion

We have described a class of perturbative vacua for heterotic string compactifications

and a limit in which their properties are computable. We have illustrated these

computations in models with (2,2) world-sheet supersymmetry, although the methods

clearly extend to more general (0,2) theories.

Our class of (2,2) models fits in with a number of other constructions. To describe

this we proceed in increasing dimension d of the base B and assume this is Fano.

For d “ 1 this means B “ P1 and the c “ 6 LGO theory on the fiber determines a

one-parameter family of K3 compactifications. Models with no large radius limit in

the Kähler moduli space, such as the first example in section 2.6, are obtained when

the monodromies of the family are not simultaneously geometrical in any duality

frame. It seems likely that any such model would be obtained as a limit in some

GLSM, but we have not shown this.

For d “ 2 the base is a del Pezzo surface and the c “ 3 LGO theory on the fiber

can be interpreted as determining in Weierstrass form an elliptic fibration over B.

This can be smooth if the discriminant is nonsingular in B, in which case the model

will have a large-radius limit. It is not clear how to construct a GLSM embedding

for a hybrid with a non-toric base.

For d “ 3 there are many possible choices for B, but the c “ 0 LGO theory

is quadratic, and hence appears to be trivial. Since the fiber fields are massive at

generic points on the base, one might think the low-energy theory would be a NLSM

with target space B, but this cannot be correct, as this would not be conformally

invariant. This näıve discussion omits the orbifold action. Since at low energy there

are no excitations in the fiber direction, one can try [2] to describe the resulting
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model as a NLSM with target space a double cover of B branched over the singular

locus of W py, φq considered as a function of φ only . This leads to a geometric

interpretation of the limiting point we called the hybrid limit. It is not directly

related to a symplectic quotient construction and, if the model has a large-radius

limit, it is not birational to the target space at this limit. The relationship between

the two descriptions is unclear. It would be interesting to study, among other things,

the behavior of the D-brane spectrum and moduli in a type-IIA compactification

near such a hybrid limit.

The models we have studied have been “good” hybrids, in which the R-symmetry

does not act on the base. Limiting points of GLSMs often produce hybrids for which

this does not hold. The hybrid limit for “good” hybrids is expected to lie at infi-

nite distance in the moduli space of SCFTs; it should be possible to determine the

approximate moduli space metric in the hybrid limit. We expect that the approx-

imation should improve as the hybrid limit is approached and the distance to the

hybrid limit deep in the Kähler cone of B will diverge. It would be interesting to

verify this in detail. In [8] “pseudo” hybrids were defined as hybrid limits lying at

finite distance; the behavior of the D-brane spectrum near these limits was found

to be quite different from that expected near a “good” hybrid. It seems natural to

conjecture that “good” hybrids and “true” (not “pseudo”) hybrid limits coincide.

Although we focused on models with (2,2) world-sheet supersymmetry, the meth-

ods extend naturally to a much larger class of models with (0,2) supersymmetry. This

larger class presents an array of interesting questions. As a first foray in this direc-

tion, the massless e6 singlets in (NS,R) sectors belong to (anti-) chiral multiplets

containing massless scalars. Expectation values for these represent marginal defor-

mations of the world-sheet SCFT preserving (0,2) supersymmetry. We do not at

present have effective techniques to determine which of these are exactly marginal,

and the structure of the moduli space of (0,2) SCFTs is still largely unknown.
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In general one expects [35, 40] that away from the hybrid limit the (0,2) models

we construct will be destabilized by world-sheet instantons wrapping cycles in B. In

some classes of models this expectation has been thwarted, and the anticipated cor-

rections are absent [91, 16, 17]. Even in cases in which no known argument precludes

such corrections they have been found less generally than one might expect [11, 7].

It would be very interesting to investigate this issue in the context of hybrid models,

in which the structure of the relevant instantons – associated to rational curves in

B rather than in a Calabi–Yau threefold, may provide a simpler context for their

study.

More generally, we can construct (0,2) hybrid models that are not deformations

of (2,2) models by taking the left-moving fermions to be sections of a holomorphic

bundle E Ñ Y and a (0,2) superpotential given by a section J P ΓpE˚q with J´1p0q “

B. It is to be expected that most such models will not have a limit in which they

are described by a (0,2) NLSM or one in which they reduce to a (0,2) LGO theory,

so that these will determine a large class of new perturbative vacua of the heterotic

string.
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3

Accidents in (0,2) Landau-Ginzburg models

3.1 Introduction

The construction and classification of conformal field theories (CFTs) plays a key role

in modern quantum field theory. One approach is to solve the conformal bootstrap.1

Another approach that has proven useful is to study the low energy (or IR) limits of

renormalization group (RG) flows from known CFTs. This has challenges of its own,

since the IR dynamics often involves emergent degrees of freedom and interactions.

Nevertheless, as already indicated in the seminal work of [100, 63, 75, 93], it is

often possible to identify certain classes of operators and their OPEs and correlators

of an IR CFT with corresponding objects in terms of the UV degrees of freedom. This

is especially useful when the UV theory is asymptotically free, since then perturbative

computations can provide information about a non-trivial CFT without a notion of

a weak coupling. The identification of UV and IR data is simplified when some

amount of supersymmetry is preserved along the RG flow: SUSY constraints lead to

1 This is difficult in practice and can be carried out analytically only in theories with enormously
enlarged symmetries like the WN algebras of the minimal models [22]. Recently progress has
been made with numeric techniques, for example in applications to the three-dimensional Ising
model [48, 47].
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well-known simplifications such as the relation between dimensions and R-charges of

chiral operators and non-renormalization theorems. For instance, in two dimensional

theories with (2,2) SUSY these simplifications are responsible for many well-known

phenomena such as mirror symmetry and the Calabi-Yau (CY) / Landau-Ginzburg

(LG) correspondence [56], and the identification of UV and IR data is a key tool in

exploration and exploitation of these two-dimensional gems.

Such techniques rely on the assumption that accidental symmetries that might

emerge in the IR limit do not invalidate the identification of operators in the IR with

their UV avatars. This assumption is well-tested in (2,2) theories but is also often

applied to theories with only (0,2) supersymmetry. For instance, it is key to various

gauged linear sigma model constructions of (0,2) CFTs corresponding to heterotic

string vacua [97, 41, 91, 39].

In this chapter we show that the assumption cannot be taken for granted in

(0,2) theories, and the resulting “accidents” have drastic consequences for the IR

physics and the relation between UV parameters and IR data. The examples we

consider are (0,2) Landau-Ginzburg theories, and we identify a class of accidental

symmetries of (0,2) LG RG flows by studying the space of F-term UV couplings

modulo field redefinitions. We find that these accidental symmetries significantly

modify the analysis of the IR theory. For instance, the spectrum of chiral operators

and even the IR central charge are in general modified. This invalidates certain UV

theories from giving good models for (0,2) SCFTs appropriate for a heterotic string

vacuum—we examine an example taken from [41].

A classic (2,2) example

To describe the challenges of (0,2) accidents more precisely, it is useful to review

the successes of the (2,2) theories. Consider the quintic (2,2) LG model with chiral
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superpotential

W “ α0X
5
0 ` α1X

5
1 ` ¨ ¨ ¨ ` α4X

5
4 ´ 5α5X0X1 ¨ ¨ ¨X4 .

Here the Xi are (2,2) chiral superfields and the αa are complex parameters. This

theory flows to a c “ c “ 9 (2,2) SCFT.2 The complex parameter

ψ “ α5
5pα0α1 ¨ ¨ ¨α4q

´1

is invariant under C˚ rescalings of the chiral superfieldsXi and labels a one-parameter

family of IR CFTs. At generic values of ψ the IR fixed point is a well-behaved CFT,

and small changes in ψ correspond to small marginal deformations of the CFT, where

“small” refers to the distance in the Zamolodchikov metric. At special values of ψ

the CFT can become singular. For instance, ψ “ 1 is a finite distance singularity

—the analogue of a conifold point. This can be detected in the UV description: the

theory develops a family of supersymmetric vacua with Xi “ const., and these signal

a non-compact CFT: a theory with a continuum spectrum of conformal dimensions.

Another point, ψ “ 8 is an infinite-distance singularity.

The quotient of the UV parameter space by field redefinitions is a complicated

object [9, 33] with singularities and non-separated points. For instance, we can take

the limit α0 Ñ 0 and α5 Ñ 0 while keeping ψ constant so as to obtain a product of

four minimal models coupled to a free chiral superfield X0, with c “ c “ 3p3 ` 2
5
q.

Fortunately, all such bad points are singular CFTs. The bad points corresponding to

various infinite distance singularities and “wrong” central charges are easily identified

in terms of the UV data: they all correspond to singular superpotentials with a

continuum of supersymmetric vacua and therefore a continuum of states in the IR

CFT. Away from such points the quotient is sensible and describes (2,2) marginal

deformations of the IR theory.

2 A Z5 orbifold of the theory describes a (2,2) non-linear sigma model with target space the quintic
CY hypersurface in P4 at a special value of the complexified Kähler parameter. A complex structure
parameter of the geometry is then related to the LG parameter ψ.
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Similar considerations apply to more general (2,2) gauged linear sigma models,

and with the parametrization of the smooth CFTs in terms of the UV parameters

in hand, localization and topological field theory techniques can be used to compute

certain correlators and chiral spectra in the CFT in terms of the weakly coupled UV

Lagrangian.

(0,2) challenges

As we will show in section 3.3, the situation is more delicate in (0,2) theories, even

in the relatively simple class of LG models (we review these in section 3.2). The

essential difference is that we lack the simple diagnostic we had for a “bad” point in

(2,2) theories. It is not sufficient to exclude UV parameters that lead to flat directions

in the potential, and the identification of UV parameters with marginal deformations

of the CFT requires (at least) a study of loci with enhanced symmetry. Unlike in

(2,2) examples, accidental symmetries can emerge for non-singular UV potentials,

thereby complicating the description of IR physics in terms of the UV data. Unlike

in (2,2) theories a family of smooth UV potentials with each potential preserving

the same R-symmetry along the RG flow need not correspond to a family of CFTs

related by truly marginal deformations.

Fortunately, at least in (0,2) LG models it appears that we have enough control

to identify accidental symmetries and special loci in the parameter space by gen-

eralizing the (2,2) paradigm of parametrizing the IR fixed points by the space of

UV parameters modulo field redefinitions. This uncovers a rich structure of (0,2)

RG flows and of the space of marginal deformations of (0,2) fixed points and will

undoubtedly play a role in quantitatively descriptions of (0,2) moduli spaces.

Once we have identified a (0,2) LG theory with some particular IR fixed point, it

is useful to develop the correspondence between deformations of the UV Lagrangian

and (0,2) conformal perturbation theory. In section 3.4 we describe some properties
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of (0,2) conformal perturbation theory independent of any embedding of the CFT in

a critical heterotic string. This section can be read independently from the rest of

the chapter. We use these observations in section 3.5 to describe a conjecture for the

global structure of the moduli space of (0,2) SCFTs with expected central charge in

terms of the UV data for what we term plain (0,2) LG models.

3.2 A glance at (0,2) Landau-Ginzburg theories

We begin with a quick review of (0,2) LG theories following [41, 66, 79].3 We work

in Euclidean signature and a (0,2) superspace with coordinates pz, z, θ, θq. The UV

theory consists of n bosonic chiral multiplets Φi “ φi ` . . . , and N fermionic chiral

multiplets ΓA “ γA` . . ., as well as their conjugate anti-chiral multiplets. These are

given a free kinetic term and a (0,2) SUSY potential term as interactions:

Lint “

ż

dθ W ` h.c. , W “ m0

ř

A ΓAJApΦq , (3.1)

where m0 has mass dimension 1 and the JA are polynomial in the Φi. This is the

simplest example of a (0,2) SUSY asymptotically free theory: for energies E " m0

the theory is well-described by the set of free fields. Conversely, when E ! m0 the

interactions become important and lead to non-trivial IR dynamics that depend on

n,N , as well as the choice of ideal J “ xJ1, . . . , JNy Ă CrΦ1, . . . ,Φns. What can we

say about the IR limit of this theory?

A basic constraint comes from the gravitational anomaly. In the UV the central

charges are easy to determine: each Φ multiplet contains a complex boson and a

right-moving Weyl fermion, while each Γ contains a left-moving Weyl fermion and

an auxiliary field. Hence, we have cUV “ 2n`N , cUV “ 3n. The RG flow induced by

W will decrease the central charges, but since it is Lorentz-invariant, it will preserve

the difference c´ c “ N ´ n.

3 Our superspace conventions are those of [79].
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Another basic property of the theory is the set of global symmetries. The free

theory has a large global symmetry that commutes with (0,2) SUSY: namely, Upnqˆ

UpNq rotations of the chiral superfields. In addition we have the R-symmetry that

rotates θ and leaves the lowest components of the superfields φi and γA invariant.

The interactions break these symmetries. For completely generic JA the remaining

symmetry just Up1q0R – an R-symmetry that assigns charge `1 to θ and γA and

charge 0 to φi.

Properties of the superpotential

A key feature of (0,2) LG theories is that the holomorphic superpotential obeys

the same non-renormalization properties as the, perhaps more familiar N=1 d=4

Wess-Zumino model’s superpotential. The kinetic term, on the other hand, is a

full superspace derivative and will receive complicated corrections along the RG

flow. However, just as in (2,2) theories, we expect these corrections to be irrelevant

provided that the fields Φ and Γ all acquire non-trivial scaling dimensions. In order

to relate these scaling dimensions to properties of the UV theory, we will assume

that the interactions preserve an additional global Up1q symmetry, which we will call

Up1qL, under which ΓA have charges QA, while the Φi carry charges qi. This will be

the case if and only if the ideal is quasi-homogeneous, i.e.

JApt
qiΦiq “ t´QAJApΦq (3.2)

for all t P C˚. We will demand that the ideal is zero-dimensional, i.e. JApΦq “ 0 for

all A if and only if Φ “ 0. If it is not then the theory necessarily has a non-compact

set of supersymmetric vacua labeled by vevs of the bosonic fields. We will call such

superpotentials singular. We are interested in “compact” CFTs and exclude this

possibility.4

4 A CFT is compact if its spectrum is such that for every fixed real ∆ there is a finite number of
fields with dimension less than ∆.
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Another important property of the superpotential is that typically some of its

parameters are not, in fact, F-terms. To see this, consider a perturbation of the form

δW “
ř

A ΓAδJA around a theory with W0 “
ř

A ΓAJA. In the undeformed theory,

if we assume canonical kinetic terms, the equations of motion read

DΓ
A
“ JApΦq , DBzΦi “

ÿ

A

ΓA
BJA
BΦi

, (3.3)

where D is the antichiral superspace derivative D “ Bθ` θBz. A more general kinetic

term leads to more complicated expressions under the D derivative of the left-hand

sides of the equations.5 Hence, a first order deformation of W of the form

δJA “
ÿ

B

MB
A pΦqJBpΦq `

ÿ

i

BJA
BΦi

FipΦq (3.4)

is equivalent up to equations of motion to a D-term deformation.

The LG assumption that the D-terms are irrelevant along the flow implies that

any two UV theories with superpotentials related by a holomorphic field redefinition

lead to the same IR fixed point. Hence, any two UV superpotentials that are related

by a holomorphic field redefinition belong to the same universality class.

(2,2) LG theories

The (0,2) theory will have an enhanced left-moving SUSY when N “ n, so that

in the free limit we can combine pΓi,Φiq into (2,2) chiral multiplets X i, and when

Ji “ BW {BΦi for some potential W . In that case, we can rewrite the theory in a

manifestly (2,2) supersymmetric fashion with a chiral superpotential W pXq. The

quasi-homogeneity conditions set Qi “ qi ´ 1, and the resulting central charge is

given by the famous

c “ 3
ÿ

i

p1´ 2qiq . (3.5)

5 In a NLSM such total derivatives are more subtle than in this LG setting, as they are usually
only sensible patch by patch in target space. Indeed, marginal deformations of NLSMs are such
F-terms that cannot be globally recast as D-terms [18, 81].
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IR consequences of UV symmetries

Returning to the more general (0,2) setting, if we assume that Up1q0R and Up1qL are

the only symmetries along the whole RG flow, then we can determine the linear

combination of charges corresponding to the IR R-symmetry Up1qIRR as well as those

of a left-moving Up1qIRL . The charges of the latter are fixed up to normalization by

the quasi-homogeneity condition, and the normalization is fixed by

´
ÿ

A

QA ´
ÿ

i

qi “
ÿ

A

Q2
A ´

ÿ

i

q2
i . (3.6)

This ensures that Up1qIRL and Up1qIRR have no mixed anomalies and become, respec-

tively, left-moving and right-moving Kac-Moody symmetries in the IR theory. The

central charge is determined from the two-point function of the Up1qIRR current. The

result is

c “ 3pr ` n´Nq , r “ ´
ÿ

A

QA ´
ÿ

i

qi . (3.7)

By studying the cohomology of the supercharge Q of the theory, we can also describe

chiral operators and their charges. More details can be found in [79], but for our

purposes it will be sufficient to note the charges and corresponding dimensions of φi

and γA. Denoting the Up1qIRL and Up1qIRR charges by, respectively, q and q, we have

φi γA

q qi QA

q qi 1`QA

h qi
2

2`QA
2

h qi
2

1`QA
2

Since these are chiral operators, the right-moving weights are determined in the usual

fashion h “ q{2, and the left-moving weights are fixed since RG flow preserves the

spin of the operators.

87



This structure determines many properties of the IR theory such as the elliptic

genus [66] and the topological heterotic ring [79]. As for (2,2) theories, there is also

a simple prescription for using orbifolds of such (0,2) LG theories to build spacetime

SUSY heterotic string vacua [41, 29]. For instance, the elliptic genus is given by [66]

Zpτ, zq “ TrRRp´q
FyJ

IR
L0e2πiτHLe´2πiτHR

“ iN´ne2πiτpN´nq{12y´r{2
“

χpyq `Ope2πiτ
q
‰

, (3.8)

where y “ e2πiz, and

χpyq “

ś

Ap1´ y
´QAq

ś

ip1´ y
qiq

ˇ

ˇ

ˇ

ˇ

yinteger

. (3.9)

The remaining τ -dependent terms are determined by modular properties of Zpτ, zq.

Enhanced symmetry and c-extremization

For special values of the superpotential the UV theory will acquire enhanced sym-

metries that commute with the (0,2) SUSY algebra. In two dimensions these cannot

be spontaneously broken, and, as in four dimensions, the abelian component Up1qM

can mix with Up1q0R and Up1qL symmetries. Fortunately, as in the four-dimensional

case we can still find candidate Up1qIRL and Up1qIRR symmetries by applying the ana-

logue of a-maximization [59] known as c-extremization [23]. We can summarize the

results of [23] as follows. Let J0 denote the Up1q0R R-symmetry current, and let Jα,

α “ 1, . . . ,M be the currents for Up1qM . Assuming that the correct Up1qIRR symme-

try is a linear combination of J0 and the Jα, [23] construct the trial current and trial

central charge

J “ J0 `
ÿ

α

tαJα , 1
3
C “ n´N ` 2

ÿ

α

tαK
α
`
ÿ

α,β

tαtβLαβ , (3.10)

where

Kα
“ ´

ÿ

A

Qα
A ´

ÿ

i

qαi , Lαβ “
ÿ

i

qαi q
β
i ´

ÿ

A

Qα
AQ

β
A . (3.11)
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Here Qα
A and qαi denote the Up1qα charges of ΓA and Φi, respectively. The Up1qIRR is

then identified by extremizing C with respect to tα, leading to Up1qIRL charges

qi “
ÿ

α

qαi tα˚ , QA “
ÿ

α

Qα
Atα˚ , (3.12)

where tα “ tα˚ is the extremum point. The central charge is then also fixed as

c “ Cpt˚q.

The symmetric form L has a real spectrum, and the sign of an eigenvalue has the

following significance in the IR theory. We decompose the UV currents according to

the sign of the eigenvalues as Jα Ñ tJ `,J 0,J ´u. If we assume that there are no

accidental symmetries in the IR, then unitarity of the SCFT implies that in the IR

the J ` currents must correspond to right-moving Kac-Moody (KM) currents and

the J ´ must flow to left-moving KM currents. Finally, the J 0 must decouple from

the SCFT degrees of freedom. The last point has two consequences: on one hand,

we should treat a theory with kerL ‰ 0 with some care; on the other hand, if we

can be certain that the IR limit is nevertheless a unitary CFT, we can without loss

of generality restrict to symmetries orthogonal to kerL.

In typical examples of (0,2) LG theories L is negative definite; we do not know

of a non-singular model where L has a positive eigenvalue. In fact, as far as the

extremization procedure goes, symmetries corresponding to the positive eigenspace

of L cannot be broken in the SCFT. More precisely, a UV deformation away from

an RG trajectory with a “positive” symmetry is irrelevant — in the IR the “pos-

itive” symmetry will be restored. To understand this, we consider the change in

the extremized central charge upon breaking a symmetry. Assuming kerL “ 0, the

extremum central charge is

1
3
C0 “ n´N ´KTL´1K . (3.13)

Now suppose we change parameters so that some of the symmetries are broken. We

can characterize the unbroken symmetries by a a vector vα, so that the unbroken
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symmetries satisfy tTv “ 0. The modified extremization is then easily carried out

with the aid of a Lagrange multiplier s:

1
3
Cvpt, sq “ n´N ` 2tTK ` tTLt` 2stTv . (3.14)

Extremizing with respect to t leads to

1
3
Cvpsq “

1
3
C0 ´ 2svTL´1K ´ s2vTL´1v . (3.15)

This may be extremized for s if and only if vTL´1v ‰ 0, in which case we obtain

1
3
Cv “

1
3
C0 `

pvTL´1Kq2

vTL´1v
. (3.16)

The first observation is that the deformation changes the IR central charge if and

only if the original symmetry, with charges determined from t˚ “ ´L
´1K is broken.

Next, we see that if in addition v belongs to the positive eigenspace of L, then the

central charge of the deformed theory is strictly greater than that of the undeformed

theory — this means the deformation must be irrelevant in the IR, and we expect the

deformed theory to flow to the original undeformed fixed point. Once we eliminate

these irrelevant deformations from the parameter space, the symmetries correspond-

ing to the positive eigenvalues of L are never broken, and we can restrict to v in the

negative eigenspace of L.

We stress that in all examples we considered L is negative definite. In that

case (3.16) shows that when a deformation breaks a symmetry the central charge

changes if and only if the deformation breaks the R-symmetry, and whenever that

happens the central charge decreases.

Constraints on UV data

The structure relating UV and IR physics sketched above assumes that for a given

set of charges pqi, QAq there exists a non-singular potential with a zero-dimensional

ideal J and of course that Up1qL and Up1q0R are the only symmetries all along the

RG flow. Both of these are non-trivial assumptions.
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It is an open problem to classify all sets of charges consistent with (3.7) and

some fixed c that can be realized by a non-singular J .6 Demanding that χpyq is a

polynomial rules out many choices of charges, but while being a necessary condition,

it is not sufficient to show that there exists a zero-dimensional J realizing the charge

assignment.

The second assumption, which amounts to the statement that there are no acci-

dental symmetries in the IR, also leads to some necessary conditions. For instance,

just as in N=1 d “ 4 SQCD [89], violation of unitarity bounds on the charges can

indicate an inconsistency in the assumption. In particular, we have the unitarity

bounds

0 ă qi ď c{3 , 0 ă p1`QAq
ÿ

A

p1`QAq ď c{3 . (3.17)

These arise by demanding that φi, γ
A, and

ś

A γ
A are chiral primary operators

of a unitary N=2 superconformal algebra. The latter is particularly strong and

eliminates many possible candidate charges.7 While these criteria are important and

will certainly play a role in any attempt to classify (0,2) LG theories, they are not

sufficient to rule out accidents.

3.3 Accidents

Having reviewed the basic structure of (0,2) LG theories, we will now study it in a

few examples that will illustrate some of the subtleties in their analysis.

6 This should be contrasted with (2,2) LG models, for which such a classification exists [68, 67]
and yields a finite set of quasi-homogeneous potentials at fixed central charge.

7 In the (2,2) case this translates to the known bound
ř

i qi ď n{3 [69].
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3.3.1 Accidents in (2,2) Landau-Ginzburg orbifolds

There are two familiar examples of accidental symmetries in (2,2) flows. Consider

LG orbifolds with potentials

W3 “ X3
1 `X

3
2 `X

3
3 ´ ψX1X2X3 , W4 “ X4

1 `X
4
2 `X

4
3 `X

4
4 ´ ψX1X2X3X4 ,

(3.18)

For W3 (W4) we take the orbifold by Z3 Ă Up1qR (Z4 Ă Up1qR). The endpoint of the

flow in each case has accidental symmetries. In the case ofW3, which is a special point

in the moduli space of a (2,2) compactification on T 2, there is an accidental N=2 Kac-

Moody Up1q algebra for both left and right movers, corresponding to the isometries

of the torus. In the case of W4 the IR theory is actually a (4,4) SCFT, and there are

additional currents that enhance Up1qL ˆUp1qR to SUp2qL ˆ SUp2qR. Of course this

is the case for any Landau-Ginzburg orbifold (or more generally linear sigma model)

that corresponds to a locus in the moduli space of T 2 or K3 compactification.

3.3.2 A contrived (2,2) example

Consider a (2,2) LG theory with

W “ X3
` Y 4 . (3.19)

There is a unique assignment of R-charge qpXq “ 1{3 and qpY q “ 1{4, and the

IR fixed point is the E6 minimal model. On the other hand, we can make a field

redefinition rX “ X ´ Y and rY “ Y . This is certainly non-singular and leads to a

superpotential

ĂW “ rX3
` 3 rX2

rY ` 3 rX rY 2
` rY 3

` rY 4 . (3.20)

If we also perform the field redefinition in the kinetic terms, we have of course

done nothing; however, if we assume the D-terms are indeed irrelevant, then taking

standard kinetic terms and either W or ĂW interactions should lead to the same IR
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fixed point. Unlike the original theory, the ĂW theory has no manifest R-symmetry

along the flow — the symmetry emerges accidentally in the IR.

The example is very contrived, but it illustrates the basic issue: field redefinitions

can obscure the UV fields that should be identified with IR operators of some fixed

scaling dimension. As we show in 3.3.5, if we restrict to (2,2) theories with a quasi-

homogeneous potential, this ambiguity turns out to be harmless. As the next example

shows, in (0,2) theories this is not the case.

3.3.3 A simple (0,2) example

Consider a theory with N “ 3, n “ 2 and superpotential

W0 “
`

Γ1 Γ2 Γ3
˘

¨

˝

α11 α12 α13

α21 α22 α23

α31 α32 α33

˛

‚

¨

˝

Φ6
1

Φ2
2

Φ3
1Φ2

˛

‚ . (3.21)

For generic values of the 9 parameters α the potential preserves a unique Up1qL

symmetry, and normalizing the charges as in (3.6) leads to r “ 2, c “ 3, and charge

assignments

Φ1 Φ2 Γ1,2,3

q 1
7

3
7

´6
7

q 1
7

3
7

1
7

(3.22)

To obtain a description of the parameter space of the IR theory we consider the α

modulo field redefinitions consistent with (0,2) SUSY and the Up1qL symmetry:

ΓA Ñ
ÿ

B

ΓBMA
B , Φ1 Ñ xΦ1 , Φ2 Ñ yΦ2 ` zΦ3

1 . (3.23)

These transformations are invertible if and only if M P GLp3,Cq and x, y P C˚. The

induced action on the Φ monomials is then
¨

˝

Φ6
1

Φ2
2

Φ3
1Φ2

˛

‚Ñ S

¨

˝

Φ6
1

Φ2
2

Φ3
1Φ2

˛

‚ , S “

¨

˝

x6 0 0
x3z x3y 0
z2 2yz y2

˛

‚ , (3.24)
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and hence the action on the parameters α is α ÞÑMαS.

A bit of algebra shows that every non-singular ideal J described by α is equivalent

by a field redefinition to one of three superpotentials:

W1 “ Γ1Φ6
1 ` Γ2Φ2

2 ` Γ3Φ3
1Φ2 ,

W2 “ Γ1
pΦ6

1 ` Φ2
2q ` Γ2Φ3

1Φ2 ,

W3 “ Γ1Φ6
1 ` Γ2Φ2

2 . (3.25)

The UV parameter space is stratified to three points, and we consider each in turn.

1. W1 has a Up1q2 global symmetry that acts independently on Φ1 and Φ2; ex-

tremization picks out the following charges.

θ Φ1 Φ2 Γ1 Γ2 Γ3

q 0 26
167

64
167

´156
167

´128
167

´142
167

c “ 3
`

1` 2
167

˘

q 1 26
167

64
167

11
167

39
167

25
167

2. W2 has a free Γ3 multiplet. The interacting part of the theory has no extra

global symmetries and Up1qIRL ˆ Up1qIRR charges

θ Φ1 Φ2 Γ1 Γ2

q 0 4
31

12
31

´24
31

´24
31

c “ 3
`

1` 1
31

˘

.

q 1 4
31

12
31

7
31

7
31

3. W3 has a free Γ3 multiplet, and the interacting part of the theory is a product

of (2,2) minimal models with (2,2) superpotential W “ X7
1 `X

3
2 and charges

θ Φ1 Φ2 Γ1 Γ2

q 0 1
7

1
3

´6
7

´2
3

c “ 3
`

1` 1
21

˘

.

q 1 1
7

1
3

1
7

1
3

If we assume that there are no accidental symmetries for theW1,W2 andW3 theories,

we obtain a consistent picture of the RG flows starting with the UV theory in (3.21).
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There are three basins of attraction; each has a central charge c ą 3, a set of charges

consistent with unitarity bounds and no marginal deformations. Moreover, we can

construct interpolating RG flows W3 ÑW2 ÑW1 by adding relevant deformations

to the superpotentials. However, W1 has no Up1qL-invariant relevant deformations

that make it flow to a putative c “ 3 theory described by W0.

We conclude that (0,2) LG RG flows have accidental symmetries, and identifying

these is key in order to correctly pinpoint even basic properties of the IR theory. For

instance, we see in the example at hand that no point in the UV parameter space

leads to an IR theory with c “ 3 and r “ 2.

3.3.4 Puzzles from enhanced symmetries

There are two questions that probably occur to our erudite reader. First, what’s the

big deal? One has to take account of field redefinitions when discussing the parameter

space of a theory, and it seems that all we learned here is that the parameter space

is smaller than one may have naively thought. Second, is it not perverse to discover

some accidental symmetries associated toW1,2,3 versusW0 but then blithely assume

that W1,2,3 do not themselves suffer from accidents?

There is a pragmatic answer to the second question: we assume there are no

accidents unless we are able to identify some paradox in the putative description of

the IR physics in terms of the UV parameters. In our example we find such a paradox:

while a generic W has a unique global symmetry in the UV, there are special points

with enhanced symmetries and a central charge that exceeds the putative c “ 3 of

the generic W ! Once we take into account the accidental symmetries, we discover

that the enhanced symmetries are unavoidable, and there is no c “ 3 theory that

can be reached within the parameter space of these UV theories. It is also easy to

construct paradoxical examples that would violate unitarity bounds unless one takes

accidents into account [79].
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The answer to the first question is contained in this pragmatic perspective. The

“big deal” is that in the examples with which we are most familiar, namely the (2,2)

LG theories, one never encounters these enhanced symmetry puzzles: although there

are plenty of points with enhanced symmetries, these never mix with Up1qIRR , and

the central charge does not jump for any choice of non-singular (2,2) superpotential.

We discuss this in detail in the next section.

3.3.5 Enhanced symmetries of (2,2) LG theories

Consider a (2,2) LG theory with a quasi-homogeneous (2,2) superpotential W pXq

obeying W ptqiXiq “ tW pXq. Unless W satisfies an independent quasi-homogeneity

condition, the (2,2) R-symmetries are fixed uniquely, giving charge q “ qi to Φi and

Γi, where pΦi,Γ
iq are the (0,2) components of the (2,2) multiplet Xi. Without loss

of generality we can restrict attention to 0 ă qi ă 1{2.8 A special case occurs when

we can split the fields tXiu Ñ tXau Y tXpu so that W “ W 1pXaq `W 2pXpq. This

leads to an enhanced symmetry, but the enhancement is very large: on both the left

and right we obtain two N “ 2 superconformal algebras with c1 and c2 that add up

to the total c. The enhanced right-moving Up1q symmetry is not part of an N=2

Kac-Moody algebra: there are two commuting N=2 superconformal algebras, and

each Up1q is the lowest component of a different N “ 2 algebra. Thinking of this

theory as a (0,2) LG model and carrying out c-extremization leads to the same result

for c and charges of the chiral fields.

We will now show that in non-singular (2,2) theories this is the only way that

enhanced symmetries occur. Hence, there are no (2,2) accidents.

A necessary and sufficient condition to be able to perform the split tXiu Ñ

tXau Y tXpu and W “ W 1pXaq `W 2pXpq is that the matrix of second derivatives

8 We assume qi ą 0. In that case for a non-singular potential any fields with qi ě 1{2 can be
eliminated by their equations of motion.
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Wki is block diagonal in the two sets of variables. 9 Since we understand the symmetry

enhancement in that case, we assume that Wki has no non-trivial block.10 We will

now show that no additional symmetry is possible when W is non-singular. The

argument uses three facts.

1. A non-singular W can satisfy at most one linearly independent quasi-homogeneous

relation. To see this, suppose the contrary. By taking linear combinations of two

relations we arrive at
ř

i αiXiWi “ 0. We can now split the fields Xi according to

αi ą 0, αi ă 0, or αi “ 0: tXiu Ñ tYau Y tZsu Y tUαu and recast the relation as

ÿ

a

βaYaWa “
ÿ

s

γsZsWs , (3.26)

where βa, γm ą 0. Without loss of generality we may assume β1 “ 1 ě βa for a ‰ 1.

Every monomial in W that contains Y1 must contain at least one Z. Hence, W will

be singular unless W Ą Y m
1 Zs for some s, say s “ 1. Similarly, dW |Y“0 will be

independent of Z1 unless W Ą Zp
1Ya for some a, which requires βa “ γ1p “ pm ą 1,

where the last inequality follows since W has no quadratic terms in the fields. That

is in contradiction with βa ď 1, so the theory must be singular.

2. Suppose we have a symmetry of the (2,2) theory that commutes with the (0,2)

SUSY algebra. This means that there are charges Q1i and q1i such that

´Q1iWi “
ÿ

j

q1jXjWij ùñ ´Q1iWik “ q1kWki `
ÿ

j

qjXjWjik .

Exchanging i and k in the second equation and taking the difference, we obtain

pQ1k ´ q
1
kqWki “ WkipQ

1
i ´ q

1
iq .

9 We use the shorthand Wi “ BW {BXi, Wki “ BW {BXkBXi , etc.

10 Take the n ˆ n matrix Wki and set to 1 all non-zero components. The result is a symmetric
matrix Aki that is the adjacency matrix for a graph G on n nodes, with each Aki ‰ 0 specifying a
path in the graph from node k to node i. The statement that there is no non-trivial block is simply
that G is connected.
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This means that whenever Wki ‰ 0 we need Q1k ´ q
1
k “ Q1i ´ q

1
i.

11

3. The (2,2) superpotential satisfies

pq1i ´Q
1
iqW ´

ÿ

j

q1jXjWj “ U i ,

where U i is independent of X i. This follows by integrating the quasi-homogeneity

condition obeyed by Wi.

Using these observations, we now complete the argument as follows. Since Wki

does not contain a non-trivial block, we see from the second fact that for all k, i

Q1k ´ q1k “ Q1i ´ q1i. Combining this with the third fact, we find that W satisfies a

quasi-homogeneity relation W ptq
1
jXjq “ tq

1
i´Q

1
iW pXq; the first fact then implies that

either q1i “ cqi and q1i ´Q
1
i “ c, or W is singular.

3.3.6 Subtleties for heterotic vacua

We have seen that the identification of UV parameters with a deformation space of

an IR CFT, while reasonably well understood for (2,2) theories, is more subtle for

(0,2) theories. The difference is that while in non-singular (2,2) theories enhanced

symmetries are always associated to a decomposition of the UV theory into non-

interacting components, this is not the case for (0,2) models. An enhanced symmetry

of a (0,2) model does generically mix with the naive Up1qR, so that the enhanced

symmetry point has a different central charge from what one might expect naively.

As illustrated by the example in section 3.3.3, the RG fixed points of a (0,2) model

need not realize any CFT with the naive central charge.

There are situations where the consequences are more benign: there is a choice

of UV parameters that leads to a CFT with the expected IR symmetries, but even

then the identification of UV parameters with marginal deformations of the IR theory

requires a careful study of the field redefinition orbits on the space of UV parameters.

11 This is trivially satisfied for the usual (2,2) Up1qL, where Qi “ qi ´ 1.

98



The following familiar example illustrates the issue.

An SOp10q heterotic Landau-Ginzburg orbifold

Consider a (0,2) theory with the following field content and charge assignment

θ Φ1,2 Φ3,...,6 Γ1,...,7

q 0 2
5

1
5

´4
5

q 1 2
5

2
5

1
5

(3.27)

It is easy to see that this symmetry leads to r “ 4 and c “ 9. The orbifold of this

theory by e2πiJ0 is a candidate for an internal SCFT of an SOp10q heterotic vacuum.

As described in [41] that does seem to be the case: the massless spectrum is organized

into sensible SOp10q multiplets, and there is a reasonable large radius interpretation

in terms of a rank 4 holomorphic bundle on a complete intersection CY manifold in

CP5
111122. The generic superpotential for this theory is

W “
ÿ

A

ΓAJA , (3.28)

where each JA has charge q “ 4{5. We can choose the UV parameters of the theory

to produce the following non-singular potential:

W1 “ Γ1Φ2
1 ` Γ2Φ2

2 `

6
ÿ

i“3

ΓiΦ4
i ` Γ7

ˆ 0 . (3.29)

This is a product of (2,2) minimal models and a free left-moving fermion. The

resulting central charge is c “ 3p3 ` 1
15
q. Thus, this choice of UV parameters does

not correspond to a point in the moduli space of the c “ 9 CFTs. Of course the orbit

of field redefinitions of this point yields a large basin of attraction of UV theories

that flow to the same CFT with c “ 3p3` 1
15
q. In this case we can identify another

point that does lead to c “ 9:

W2 “ Γ1Φ2
1 ` Γ2Φ2

2 `

6
ÿ

i“3

ΓiΦ4
i ` Γ7Φ1Φ2 . (3.30)
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While this superpotential still has a Up1q6 global symmetry, c-extremization leads to

c “ 9 and R-charges as in the table above. Clearly there is a relevant deformation

by Γ7Φ1Φ2 that leads to an RG flow from the c “ 3p3` 1
15
q theory to the c “ 9 CFT.

The general lesson is clear: field redefinitions stratify the space of UV parameters

into orbits, and in general these orbits correspond to different IR fixed points that are

not related by marginal deformations — in particular they can have different central

charges. The orbits may or may not include an IR fixed point for which the manifest

symmetry of the generic superpotential becomes the Up1qIRR : in this example they

do, while in that of section 3.3.3 they do not.

3.4 Marginal deformations of a unitary (2,0) SCFT

This section contains a number of results on (2,0) SCFTs. Many if not all of these are

well-known in the context of heterotic compactifications, but the derivations given

here are more general and give a useful alternative perspective.

3.4.1 Basic results

Consider a unitary compact (2,0) SCFT with the usual superconformal algebra gen-

erators Jpzq, G˘pzq, and T pzq, with modes given respectively by Jn, G˘r and Ln.12

We will show that marginal Lorentz-invariant and supersymmetric deformations

of this theory by a local operator take the form

∆S “

ż

d2z ∆L , ∆L “ tG´
´1{2,Uu ` h.c. , (3.31)

where U is a chiral primary operator with Up1qL-charge q “ 1 and weights ph, hq “

p1{2, 1q.13 In string theory, where one considers (0,2) SCFTs with quantized q

12 While for many purposes it is very convenient to treat the supersymmetric side of the theory as
anti-holomorphic, in the discussion that follows it leads to a great profusion of bars. Hence, in this
section the SUSY side will be taken to be holomorphic.

13 Some of the arguments given here were developed by IVM and MRP in collaboration with Ido
Adam.
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charges, this is a classic result [42]. Here we will apply the point of view developed

for N “ 1 d “ 4 SCFTs [52] to arrive at the statement without any assumptions of

charge integrality.

Constraints from supersymmetry

Without loss of generality we can consider deformations δL “ Opz, zq by a quasi-

Virasoro primary operator O, since a descendant would just be a total derivative.

Lorentz invariance requires O to have spin 0, i.e. hO “ hO. In order for δL to

be supersymmetric, we need rG¯
´1{2,Os to be a total derivative, i.e. G¯

´1{2|Oy “

L´1|M¯y. Applying G˘
´1{2 to both sides of the equation and using the N=2 algebra,

we obtain

G˘
´1{2G

¯

´1{2|Oy “ L´1G
˘

´1{2|M
¯
y ,

ùñ L´1

”

|Oy ´G`
´1{2|M

´
y ´G´

´1{2|M
`
y

ı

“ 0 . (3.32)

Hence, up to a constant multiple of the identity operator, which does not lead to a

deformation of the theory, we can write |Oy as

|Oy “ G´
´1{2|M

`
y `G`

´1{2|M
´
y , (3.33)

and hence, without loss of generality, any non-trivial deformation corresponds to a

state

|Oy “ G´
´1{2|Uy `G

`

´1{2|Vy `
”

G`
´1{2G

´

´1{2 ´ p1`
qK
2hK
qL´1

ı

|Ky , (3.34)

where |Uy, |Vy and |Ky are all quasi-primary with respect to the N=2 superconformal

algebra, i.e. annihilated by the lowering modes of the global N=2 algebra, L1 and

G˘1{2. The linear combination of operators in the last term is fixed by L1|Oy “ 0.

The spins of the fields are

hU ´ hU “ 1{2 , hV ´ hV “ 1{2 , hK ´ hK “ 1 . (3.35)
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The remaining constraints from supersymmetry are

G`
´1{2G

´

´1{2|Uy “ L´1|Xy , G´
´1{2G

`

´1{2|Vy “ L´1|Y y (3.36)

for some states |Xy and |Y y. We will now show that the only solution to these

equations is that U (V) is a chiral primary (anti-chiral primary ) state. It suffices to

work out the constraint on |Uy — the one on |Vy follows by exchanging G` and G´.

Without loss of generality we decompose

|Xy “ a|Uy ` |χy , (3.37)

where a is real and |χy is orthogonal to |Uy. The condition now becomes

pG`
´1{2G

´

´1{2 ´ aL´1q|Uy “ L´1|χy . (3.38)

Applying xU |L1 to both sides and using orthogonality of |Uy and |χy, we find a “

1` qU
2hU

. Application of xχ|L1 to both sides shows L´1|χy “ 0, so we are left with

G`
´1{2G

´

´1{2|Uy “ p1`
qU
2hU
qL´1|Uy . (3.39)

Finally, applying G´
´1{2, we find

p1` 1
2hU
qp2hU ´ qUq “ 0 . (3.40)

The only solution of this equation consistent with unitarity is 2hU “ qU , i.e. |Uy is

a chiral primary state of the N=2 superconformal algebra.

Combining the preceding results and applying them to deformations by real op-

erators, we conclude that real Lorentz-invariant supersymmetric deformations take

the form

Opz, zq “
”

tG´
´1{2,Upz, zqu ` h.c.

ı

` tG`
´1{2, rG

´

´1{2,Kpz, zqsu , (3.41)

where U is a fermionic chiral primary operator with hU “
1
2
`hU , hU “ qU{2, and K is

a real bosonic quasi-primary operator with hK “ 1` hK. As in four dimensions [52],

we recognize the familiar superpotential and Kähler deformations.
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Marginal operators

If we impose in addition that the perturbation is marginal, we obtain the constraints

qU “ 1 and hK “ 0. The latter implies that L´1|Ky “ 0, i.e. Kpzq is an anti-

holomorphic conserved current that leads to a trivial deformation of the action. We

arrive at the result (3.31).

3.4.2 A few consequences

The preceding analysis, when combined with some basic assumptions about super-

conformal perturbation theory, leads to important constraints on (2,0) SCFTs. The

key feature is that we can use a (2,0) superspace to recast the marginal deformations

into the form

∆S “

ż

d2z

ż

dθ αiUi ` h.c. , (3.42)

where αi denote the couplings and Ui are denote the chiral primary marginal fermi su-

perfields. Assuming there exists a manifestly supersymmetric regularization scheme

for conformal perturbation theory, the renormalized action at a renormalization scale

µ must take the form

∆Lren “

ż

d2θ

«

Za
pα, α;µqJa `

ÿ

A

µ2´dAKA

ff

`

"
ż

dθ
“

pαi ` δα
i
pα;µqqUi ` ζIpα;µqUI

‰

` h.c.

*

. (3.43)

At the conformal point (α “ 0) the Ja and KA are real operators of dimension

∆a “ 2 and ∆A ą 2, while the Ui and UI are chiral primary operators with q “ 1

and q ą 1 respectively.14 The first line is parallels the N “ 1 d “ 4 situation;

however, the second line is new, following from the fact that the UiUj OPE will in

14 Compactness of the CFT ensures a gap in dimensions between Ja and KA, as well as between
Ui and UI .
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general have singular z dependence. Of course supersymmetry still requires that the

renormalization of the superpotential should be holomorphic in the parameters.

Marginal irrelevance

Marginal deformations preserve the R-symmetry of the original SCFT. Hence, the

unitarity bound hU ě q{2 implies that a marginal deformation is at worst marginally

irrelevant and never marginally relevant.

D-terms and F-terms

Assuming that conformal perturbation theory is renormalizable, the terms involving

the KA and UI do not arise, and scale invariance of the theory is equivalent to

Da
pα, αq ” µ

B

Bµ
Za
“ 0 and F

i
pαq ” µ

B

Bµ
δαi “ 0. (3.44)

A two-dimensional unitary compact scale-invariant theory is automatically confor-

mal [87], so every deformation satisfying these “D-term” and “F-term” constraints

is exactly marginal.

The “D-term” obstructions to marginality are exactly the same as in the d “ 4

case studied in [52] — such a scale dependence requires the breaking of a global

right-moving symmetry. This is easy to understand at leading order in conformal

perturbation theory. In the presence of abelian currents Ja, the OPE of U with its

conjugate takes the form

Uipz, zqU pw,wq „
gi

pz ´ wqpz ´ wq2
`

giq
i
aJ

a
pw,wq

pz ´ wqpz ´ wq
` . . . , (3.45)

where J
a
“ γabJ b, and zzxJapzqJ bp0qy “ γab in the undeformed theory. This leads

to a logarithmic divergence in conformal perturbation theory proportional to

ż

d2wG`
´1{2G

´

´1{2

ż

d2z
|αi|2qiaJ

a
pw,wq

pz ´ wqpz ´ wq
„ log µˆ |αi|2qiaJ

a
pw,wq , (3.46)
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which corresponds to the leading order D-term proportional to

Da “
ÿ

i

|αi|2qia . (3.47)

In applications to heterotic compactifications such a symmetry necessarily corre-

sponds to a gauge boson in the space-time theory, and the space-time picture of the

breaking is just the Higgs mechanism: the obstruction to marginality of a coupling

α that breaks a right-moving symmetry is encoded in a space-time D-term potential.

We believe that in (0,2) LG models without an orbifold there are no F-term

obstructions. The reason is simple: the free field UV presentation of the theory

comes with the usual non-renormalization theorems for the superpotential, so the

only divergences we expect to encounter will correspond to D-term counter-terms.

The two sources of obstruction are in one to one correspondence with the two

ways in which a short chiral primary multiplet can combine into a long multiplet

of (2,0) SUSY. Suppose we consider an infinitesimal (2,0) SUSY deformation under

which a marginal chiral primary state |Uy acquires weights ph, hq “ p1
2
` ε

2
, 1 ` ε

2
q.

In this case |Uy is no longer chiral primary, and by a choice of basis we can consider

two separate cases:

G`
´1{2|Uy ‰ 0 , G´1{2|Uy “ 0 , or G`

´1{2|Uy “ 0 , G´1{2|Uy ‰ 0 . (3.48)

In other words, |Uy remains primary but is no longer chiral, or it remains chiral but

fails to be primary. The first case corresponds to an F-term obstruction, where at

ε “ 0 we have two chiral primary superfields pU ,Fq with qU “ 1 and qF “ 2 and

h “ 1, while for ε ą 0 we find a complex long multiplet with lowest component |Uy

and G`
´1{2|Uy “

?
ε|Fy.15 The second case corresponds to a D-term obstruction,

where at ε “ 0 we have chiral primary superfields U , its anti-chiral conjugate U ,

15 In a c “ 9 theory with spectral flow there is a canonical F for every U in the theory. Indeed, as
observed in [12, 36, 42], the F (2,0) superfields can be used to construct vertex operators for the
space-time auxiliary fields residing in chiral multiplets of the associated four-dimensional theory.
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and a Kac-Moody current J ; for ε ą 0 we obtain a long real multiplet with lowest

component J and descendants G`
´1{2|Jy “

?
ε|Uy and G´

´1{2|Jy “
?
ε|Uy.

In particular, we see that there are no F-term obstructions if the undeformed

theory has no chiral primary operators with q “ 2 and h “ 1. This is the case, for

instance, in every (2,0) SCFT with c ă 6. If there are also no left-moving Kac-Moody

symmetries then every (2,0) marginal deformation must remain exactly marginal. In

appendix B.1 we mention a simple example illustrating an F-term obstruction at

c “ 9.

Kähler geometry of the moduli space

One can use the same reasoning as in [52] to argue that the space of truly marginal

deformations of a (2,0) SCFT must be a Kähler manifold. This is because the D-term

constraints and the quotient by global symmetries lead to a toric quotient on the

space of marginal couplings, while the F-term constraints are manifestly holomorphic

constraints, restricting the truly marginal directions to a Kähler subvariety of the

toric variety. In heterotic compactification this can of course be argued either from

the space-time heterotic supergravity or by using additional assumptions of a (2,0)

SCFT with integral charges [86]. The argument given here is more direct and general.

Application to (2,2) theories

The case of a (2,2) SCFT and its (2,2)-preserving deformations is much simpler.

There are two types of superpotential deformations: the chiral and the twisted chiral.

The former corresponds to deformations by chiral primary (c,c) ring operators, while

the latter by the (a,c) ring operators. Supersymmetry implies that twisted chiral

parameters can never show up in the renormalized chiral superpotential and vice-

versa. Moreover, the OPE of the (c,c) and (a,c) chiral primaries with themselves is

non-singular, so that neither potential is corrected—there are no F-term obstructions
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to marginality. Hence, all marginal (c,c) and (a,c) symmetry-preserving deformations

are truly marginal. This is again a familiar story in string applications [35, 42] .

Accidents beyond field redefinitions

We can now see that the field redefinitions of (0,2) LG theories do not describe all

accidents. It is not the case that every direction transverse to field redefinition orbits

corresponds to a marginal deformation of the IR theory. This is due to the possibility

that marginal deformations of a (0,2) theory can turn out to be marginally irrelevant.

In (0,2) LG theories this is due to D-term obstructions where a Up1q symmetry is

broken by turning on operators with a definite sign of the Up1q charge. We give an

example of this phenomenon in a well-known heterotic vacuum in appendix B.2.

3.4.3 Deformations and left-moving abelian currents

As a final application of the preceding results, we consider the interplay between

deformations of a (2,0) SCFT and left-moving currents.

A (2,0) SCFT may possess a KM algebra on the SUSY side of the world-sheet

in addition to the Up1qL current JL in the N “ 2 multiplet. Such structures are

familiar from heterotic compactifications preserving 8 space-time supercharges in four

dimensions — when realized geometrically these correspond to geometries π : X Ñ

K3 — principal T 2 fibrations over a base K3 [20, 82]. In each such case we can use

a Sugawara-like decomposition to decompose the N “ 2 world-sheet superconformal

algebra (SCA) into two commuting sets of generators, one associated to the KM

algebra, and the other corresponding to the remaining degrees of freedom.

Suppose we have an abelian current algebra Up1q with current J1. There are two

ways that the decomposition can work. If J does not belong to a multiplet of the

Ac SCA, then we must have a decomposition

Ac “ A1c1 ‘A2c2 , (3.49)
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where c “ c1 ` c2, and the lowest components of the N=2 multiplets of A1 and A2

are obtained by appropriate linear combinations of JL and J1. We are familiar with

such examples from above: this happens whenever the LG theory decomposes into

a product of two non-interacting theories.

If J does belong to a multiplet of A, then it must be accompanied by a second

Up1q Kac-Moody current J2, as well as weight h “ 1{2 operators ψ1 and ψ2. Together

these arrange themselves into a well-known c “ 3 unitary representation of N “ 2:

JL “: ψψ : , G` “
?

2ψ , G´ “
?

2ψ , T “:  : ´1
2
p: ψBψ : ` : ψBψ :q ,

(3.50)

where ψ and  have the free-field OPEs

ψpzqψpwq „ pz ´ wq´1, pzqpwq „ pz ´ wq´2. (3.51)

This is equivalent to the holomorphic sector of a T 2 (1,0) non-linear sigma model,

and we will call it Afree
3 .

There is a key difference between these two generalizations. In the first case,

there are generally deformations that can break the extra left-moving symmetry —

in (2,2) LG this happens when we move away from a Gepner point to a more generic

theory. In the second case such breaking is impossible. To see this, we just need

to apply what we learned about the structure of SUSY deformations in conformal

perturbation theory. Since our algebra splits as

Ac “ A1c´3 ‘Afree
3 , (3.52)

a marginal deformation has a similar decomposition

U “ U 1 ` Sψ , (3.53)

where U 1 is a chiral primary operator with h “ 1 and q1 “ 1, while S is a (0,1)

current. The deformation of the action is then

G´
´1{2 ¨ U “ G1´

´1{2 ¨ U
1
`
?

2S . (3.54)

This is neutral with respect to JL,  and . More generally, any relevant deformation

must be of the form U “ U 1 with q1 ă 1.
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3.5 Toric geometry of the deformation space

In the previous sections we saw that accidental symmetries play an important role in

(0,2) Landau-Ginzburg theories, and more generally, in (0,2) SCFTs. In this section

we will describe a conjecture that allows us to account for these accidents in a certain

class of (0,2) LG theories. In that context our goal is to describe the moduli space

M of IR fixed points corresponding to a class of UV data determined by a choice of

charges qi and QA which have the expected central charge

c “ 3pn´N ` rq , r “ ´
ÿ

A

QA ´
ÿ

i

qi . (3.55)

To do so, we need to perform two steps:

1. decompose the UV parameter space into orbits under the action of field redef-

initions;

2. determine which orbits contribute to M.

The result is expected to be a (typically singular) Kähler space. In general these

are rather formidable tasks. The group of field redefinitions is rather large and

the space of orbits is non-separable. A reasonable geometry can only emerge after

implementing the second task. This involves excluding two types of orbits:

• Along a discriminant locus ∆ in parameter space, the superpotential is singular.

The discriminant will clearly be invariant under field redefinitions, and orbits

contained in ∆ will not contribute to M.

• For some non-singular values of the parameters, the theory will have accidental

symmetries in the IR. As we have seen, in some cases these symmetries will

mix nontrivially with the R-symmetry and the central charge of the IR fixed

point will be larger than c. Thus, these orbits as well need to be excluded from

M.
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In general, the second step is difficult even if one restricts attention to symmetries

which act diagonally on the UV fields. Detecting the basin of attraction of some

component of the IR moduli space with central charge c1 ą c requires a determination

of the R-symmetry along each such component to find which deformations away from

this locus are in fact irrelevant.

3.5.1 The toric conjecture

There is a simpler version of both of these problems that may be tractable. The

group of field redefinitions always contains an abelian subgroup, the complexification

of the Up1qnˆUp1qN subgroup of the global symmetry of the free kinetic terms, that

corresponds to rescaling the chiral fields of the theory. In particular, if we write the

most general superpotential in our class as

W “
ÿ

A

ΓA
ÿ

mP∆A

αAm
ź

i

Φmi
i , (3.56)

where

∆A “ tm P Zn |
ř

imiqi “ ´QAu (3.57)

describes the lattice points in the Newton polytope for JA, then the field redefinitions

Φi ÞÑ tiΦi , ΓA ÞÑ τAΓA (3.58)

lead to a TC “ pC˚qN´n`1 action16 on the space of UV parameters Y “ C
ř

A |∆A|

αAm ÞÑ τA
ś

i t
mi
i ˆ αAm . (3.59)

We will refer to these as toric field redefinitions.

We now restrict attention to these toric actions in both of the tasks listed above.

Namely, we decompose the parameter space into TC orbits and exclude those orbits

that either lie in ∆ or exhibit accidental symmetries contained in TC and lead to

16 The rank of the C˚ action is reduced by 1 due to the quasi-homogeneity of W.
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c1 ą c. The result, which we will call MT , will in some cases be equivalent to M,

but in general the two will differ. We will comment on this further below.

The action of the compact torus T Ă TC , given by restricting to |t| “ |τ | “ 1 ,

determines a moment map µ “ pλ; Λq : Y Ñ RN`n with

λi “
ÿ

A

ÿ

mP∆A

mi|αAm|
2 , ΛA “

ÿ

mP∆A

|αAm|
2 . (3.60)

Quasi-homogeneity of W implies that the image lies in the hyperplane
ÿ

i

qiλi `
ÿ

A

QAΛA “ 0 . (3.61)

The image of µ is the intersection of this hyperplane with a cone, determined by the

charges, inside the positive orthant in RN`n. This intersection is itself a cone pΣ, of

dimension N ` n ´ 1. The level sets of µ determine a selection of orbits: generic

orbits will be N ` n ´ 1 dimensional, but the action will degenerate along points

with a non-trivial stabilizer subgroup, leading to orbits of smaller dimension.17 More

precisely, the cone pΣ can be subdivided into a fan Σ, such that the collection of orbits

containing a point for which µpαq “ µ˚ is determined by the cone of Σ that contains

µ˚. This is the secondary fan for the T action. We now have enough structure to

state our conjecture.

Conjecture

The toric moduli space MT is the complement of the discriminant subvariety ∆ in

a toric variety

V “ µ´1
pλ˚,Λ˚q{T , (3.62)

where

λ˚i “ 1´ qi , Λ˚A “ 1`QA . (3.63)

17 There are orbifold singularities when the subgroup is discrete; we will focus on continuous
stabilizer subgroups.
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This is a rather strong statement, and we will not provide a complete proof but

rather some evidence for it. Some ideas on a possible derivation are discussed in sec-

tion 3.5.4. We will motivate the conjecture by combining our results and observations

from above with some facts about toric varieties.

We should note a few important points. First, V may turn out to be empty.

Second, while we claim that V z∆ describes MT as a variety, we do not make any

statement about the relation between the Zamolodchikov metric on the space of

marginal couplings and the metric on V obtained by the Kähler quotient. Finally,

in this chapter we will be concerned with orbits of continuous field redefinitions. In

general there will be additional discrete quotients that identify points in MT .

Combinatorics of the secondary fan

Codimension-one cones in Σ are associated with orbits containing a point at which a

single C˚ Ă TC is unbroken. More precisely, Gpq1,Q1q “ C˚ Ă TC acting with charges

q1i, Q
1
A on the chiral superfields will fix points at which

|αAm|
2
pQ1A `

ř

imiq
1
iq “ 0 for all A, m P ∆A . (3.64)

The µ-image of the TC orbits of such points will lie in a cone σpq1,Q1q generated by the

charge vectors of the αAm fixed by Gpq1,Q1q. Thus, the codimension-one cones of Σ are

determined by one-dimensional subgroups for which σpq1,Q1q has dimension N `n´ 2

and lies in the hyperplane
ÿ

A

Q1AΛA `
ÿ

i

q1iλi “ 0 . (3.65)

In terms of W the codimension-one cones of Σ correspond to subgroups for which

we can write a (possibly singular) family of models fixed precisely by pC˚q2. Cones

of higher codimension in the fan are boundaries of these cones and arise at the

intersections of these hyperplanes.18 Points in the interior of some cone of the fan (of

18 Note that this does not imply that cones of higher codimension correspond to models with larger
unbroken symmetry: values of µ at the intersection of two codimension-one cones can be in the
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any codimension) lie in the image of a collection of orbits determined by that cone.

Our conjecture is thus equivalent to the statement that the µ-image of the TC orbits

of models with central charge c intersects the cone σ˚ containing µ˚ in its interior.

A cone σ P Σ can be specified by its relation to the codimension-one cones σpq1,Q1q.

For each of these, σ either lies inside σpq1,Q1q, in which case µ P σ satisfy (3.65), or it

lies on one side or the other, meaning (3.65) is satisfied as a strict inequality for all

µ P σ. To prove our claim we thus need to show that orbits of points in parameter

space corresponding to models with central charge c are precisely those containing

in their image points satisfying the inequalities satisfied by µ˚. To do this we must

consider all codimension-one cones of Σ. We classify these by the nature of the

models exhibiting the enhanced symmetry.

3.5.2 Enhanced toric symmetries

Symmetries realized by a non-singular potential

Consider first the case of one-parameter subgroups of TC for which the generic point in

the locus they fix corresponds to a nonsingular model with a Up1q2 global symmetry.

The IR R-symmetry can then be determined by c-extremization as

q̂i “ tqi ` sq
1
i , Q̂A “ tQA ` sQ

1
A , (3.66)

where

L

ˆ

t´ 1
s

˙

“

ˆ

0
ř

i q
1
iλ
˚
i `

ř

AQ
1
AΛ˚A

˙

. (3.67)

L is the negative-definite 2ˆ 2 matrix defined in (3.11) and pq,Qq are normalized as

in (3.6). We now distinguish two situations.

1. c1 “ c. If
ÿ

i

q1iλ
˚
i `

ÿ

A

Q1AΛ˚A “ 0 , (3.68)

image of two distinct TC orbits, each of which is fixed by a different subgroup.
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then the IR symmetry is given by pq;Qq, and the TC orbit of the model with enhanced

symmetry is a point in V . In this case, we can apply conformal perturbation theory

to deformations of this theory. The symmetry-breaking couplings αAm (those van-

ishing on the locus exhibiting enhanced symmetry) parameterize classically marginal

deformations away from the symmetric theory. The analysis of section 4 shows that

in fact some of these will be marginally irrelevant, and the moduli space is given to

first order in the symmetry-breaking couplings by the vanishing of the D-term for

the broken symmetry. We can write this explicitly here as

D “
ÿ

A,nP∆A

pQ1A `
ÿ

i

miq
1
iq|αAm|

2

“
ÿ

i

q1iλi `
ÿ

A

Q1AΛA . (3.69)

This holds at leading order in conformal perturbation theory about the symmetric

point, and our conjecture amounts here to the statement that higher order correc-

tions do not qualitatively modify the structure of the symplectic quotient that leads

to the variety V : while the metric may be modified, which orbits are kept and which

are excluded is not changed by higher order corrections. This implies that points in

V are TC orbits containing points whose image under µ lies in the cone σpq1,Q1q. We

see from (3.68) that this condition is satisfied by µ˚.

2. c1 ą c. If (3.68) is not satisfied, the central charge c1 determined by extremization

will be larger than c, and the TC orbit of the model with enhanced symmetry is not

a point of V . Moreover, the symmetry-breaking parameters αAm are not marginal

couplings in this theory. Solving (3.67) we find

s “ ´
r

detL

˜

ÿ

i

q1iλ
˚
i `

ÿ

A

Q1AΛ˚A

¸

. (3.70)

Without loss of generality we can choose the sign of pq1, Q1q so that s is negative. Since
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by construction all our couplings are invariant under pq;Qq, and by assumption L is

negative definite, the sign of the charge under the IR R-symmetry is then the opposite

of the charge under pq1, Q1q. Thus, couplings αAm for which Q1A`
ř

imiq
1
i ą 0 will be

relevant deformations of the model with enhanced symmetry, while couplings with

the opposite charge will be irrelevant; couplings preserving the enhanced symmetry

are marginal. The TC orbits of points in parameter space corresponding to irrelevant

deformations of the symmetric model will not be points in V : as discussed above

they will exhibit an accidental symmetry in the IR and a central charge c1. Orbits

for which at least one relevant coupling is nonzero are characterized precisely by the

fact that they contain points for which the moment map satisfies

ÿ

i

q1iλi `
ÿ

A

Q1AΛA ą 0 . (3.71)

This specifies one side of the hyperplane associated to the enhanced symmetry, and,

as we have shown, this is the side on which the point µ˚ lies.

Symmetries without a smooth realization

If every enhanced symmetry were realized by a non-singular W the discussion above

would suffice. In general, however, there are codimension-one cones in Σ associated

to one-parameter subgroups of TC for which it is not possible to construct a non-

singularW exhibiting the symmetry. In these cases the RG trajectories exhibiting the

enhanced symmetry along the flow are singular, and we cannot use their properties

to determine the local structure of the moduli space.

A simple example of this is given by the symmetry acting as ΓA Ñ τΓA for some

A with all the other fields invariant. This fixes the locus JA “ 0 which will in general

be singular (it will always be singular when n “ N). In this case, the corresponding

hyperplane is ΛA “ 0, and the associated codimension-one cone lies on the boundary

of pΣ.
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More interesting is the case of a codimension-one cone in the interior of pΣ to

which the methods of the previous section do not apply. Our conjecture here is that

whenever the enhanced symmetry does not satisfy (3.68), non-singular models will

only exist when at least one symmetry-breaking coupling whose charge under the

broken symmetry is in accord with the sense of the inequality is non-zero. In parallel

with the second discussion in the previous subsection, TC orbits associated to points

in V will be those containing points whose image under µ lies on the side of the

hyperplane which contains the point µ˚.

There will also be codimension-one cones in Σ associated to one-parameter sub-

groups for which there is no non-singular model exhibiting the symmetry, but which

satisfy (3.68). Here as well we can classify the symmetry-breaking couplings by their

charge under the broken symmetry. In this case, we conjecture that non-singular

models will have nonzero values for at least one coupling of each sign. Restricting

to models with non-zero couplings of only one sign (as well as the neutral couplings)

will produce a singular model. The space of TC orbits associated to points in V

in this case will not be toric. It can, however, be described as the complement of

the symmetric locus (a component of ∆) in a (singular) toric variety. This contains

orbits containing points whose image under µ lies in the cone σpq1,Q1q. When we ex-

clude the singular symmetric locus here, we find precisely orbits that have nonzero

symmetry-breaking couplings with both signs of the broken charge. The point µ˚

clearly lies in this hyperplane.

3.5.3 Examples

A few examples may be helpful at this point. We proceed from a simple example

for which our methods produce correctly the actual moduli space to models demon-

strating their limitations.
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A plain model

Consider first the class of models with n “ N “ 2 and charges

Φ1 Φ2 Γ1 Γ2

q 1
4

1
6
´3

4
´5

6

(3.72)

and c{3 “ r “ 1` 1
6
. The most general superpotential is

W “ Γ1
`

α11φ
3
1 ` α12φ1φ

3
2

˘

` Γ2
`

α21φ
5
2 ` α22φ

2
1φ

2
2

˘

, (3.73)

and the discriminant is

∆ “ α11α21 pα11α21 ´ α12α22q . (3.74)

This is an example of what we call a plain model: the torus TC includes all field

redefinitions consistent with the symmetry, so our toric considerations will in fact

generate the moduli space M itself.

The torus T “ Up1q3 action on C4 is characterized by the charges and moment

map components

D α11 α12 α21 α22

λ1 3 1 0 2

λ2 0 3 5 2

Λ1 1 1 0 0

Λ2 0 0 1 1

(3.75)

where the latter satisfy

3λ1 ` 2λ2 “ 9Λ1 ` 10Λ2 . (3.76)

There are six codimension-one cones in Σ. Only two of these are realized by non-

singular models; the remaining four comprise the boundaries of pΣ given by Λ1 ą

0 and Λ2 ą 0, as well as λ2 ´ 2Λ2 ą 0 and λ1 ´ Λ1 ą 0.
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There are two codimension-one cones in the interior of pΣ. Consider first the

symmetry pq1;Q1q “ p1, 0;´3, 0q, which satisfies (3.68). The non-singular models

realizing this symmetry have α12 “ α22 “ 0. In fact the model reduces to a product

of two (2,2) minimal models and, as expected, the central charge is c. The symmetry

determined by pq1, Q1q “ p´1, 1;´2, 0q, for which
ř

i q
1
iλ
˚
i `

ř

AQ
1
AΛ˚A ă 0, fixes mod-

els with α11 “ α22 “ 0.19 Under the broken symmetry, α11 is negatively charged and

α22 positively charged. We see from (3.74) that, in accordance with the conjecture,

non-singular models require a non-zero value for the negatively charged coupling.

The moduli spaceM is thus determined. We can fix two of the generators of TC

by setting α11 “ α21 “ 1, and the remaining couplings parameterize the toric variety

V “ C with invariant coordinate z “ α12α22. The moduli space is M “ V zr∆ where

the discriminant reduces in these coordinates to 1´ z.

A non-plain model

We can also consider the model with n “ N “ 2 and charges given by

Φ1 Φ2 Γ1 Γ2

q 46
471

115
471

´460
471

´230
471

(3.77)

with c{3 “ r “ 1 ` 58
471

. The most general superpotential invariant under this

symmetry is

W “ Γ1
pα11Φ10

1 ` α12Φ5
1Φ2

2 ` α13Φ4
2q ` Γ2

pα21Φ5
1 ` α22Φ2

2q , (3.78)

and the discriminant is

∆ “ α11α
2
22 ´ α12α21α22 ` α13α

2
21 . (3.79)

The torus T “ Up1q3 action on C5 is characterized by the charges and moment

19 Note that this symmetry leads a 2 ˆ 2 L matrix that is not negative-definite; however, the
corresponding superpotential is singular.
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map components

D α11 α12 α13 α21 α22

λ1 10 5 0 5 0

λ2 0 2 4 0 2

Λ1 1 1 1 0 0

Λ2 0 0 0 1 1

(3.80)

where the latter satisfy

2λ1 ` 5λ2 “ 20Λ1 ` 10Λ2 . (3.81)

The cone pΣ is the intersection of this with the positive orthant. This is bounded, in

this case, by the coordinate hyperplanes. There are four codimension-one cones in

the interior of pΣ here, none of which satisfy (3.68).

The symmetries acting with charges pq1;Q1q “ p1, 0;´5,´5q and pq1, Q1q “ p1, 0,´5, 0q

are preserved by singular models, and non-singular models, as per the conjecture, lie

in orbits containing points for which λ1´ 5Λ1´ 5Λ2 ă 0 ă λ1´ 5Λ1. The symmetry

acting with charges pq1, Q1q “ p1, 0;´10, 0q fixes the locus α12 “ α13 “ α21 “ 0 where

we find a product of (2,2) minimal models: up to a rescaling

W1 “ Γ1Φ10
1 ` Γ2Φ2

2 , (3.82)

with central charge c1{3 “ 1` 5
33
ą r. At this point, the operators associated to α12

and α13 are irrelevant but the operator associated to α21 is relevant. We conclude

that models with α11α22 ‰ 0 and α21 “ 0 flow to this IR fixed point and orbits

containing such models do not contribute to V . Orbits that do contribute have a

point for which λ1 ą 10Λ1.

The symmetry acting with charges pq1, Q1q “ p0, 1;´4, 0q fixes the locus α11 “

α12 “ α22 “ 0 where we find a product of (2,2) minimal models: up to a rescaling

W2 “ Γ1Φ4
2 ` Γ2Φ5

1 , (3.83)
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with central charge c2{3 “ 1 ` 4
15
ą c1{3. At this point, the operators associated

to α11 and α12 are irrelevant but the operator associated to α22 is relevant. We

conclude that models with α13α21 ‰ 0 and α22 “ 0 flow to this IR fixed point and

orbits containing such models do not contribute to V . The orbits that do contribute

have a point for which λ2 ą 4Λ1.

Our toric model V of the moduli space is thus determined here by the cone

λ1 ą 10Λ1 , λ2 ą 4Λ1 , Λ1 ą 0 . (3.84)

Applying (3.63) we find that, as expected, the point

µ˚ “ p435
471
, 356

471
; 11

471
, 241

471
q (3.85)

lies in this cone. Points in the preimage of this have α21 and α22 both non-zero.

We can use two of our rescalings to fix α21 “ α22 “ 1, and under the remaining

symmetry the three coefficients in J1 transform homogeneously, so we have V “ P2.

Of course, this is an overparametrization. This is not a plain model, and we can use

the remaining field redefinitions Γ2 Ñ Γ2`Γ1paΦ5
1`bΦ

2
2q to show that these theories

flow to a unique IR fixed point. Not unrelated to this is the fact that there is no

discriminant here: any point in P2 corresponds to a non-singular model.

A model with N ą n

The model discussed in section 3.3.3 shows more of the limitations of toric methods.

Here we have Y “ C9 and TC “ pC˚q4 acts on the couplings. pΣ is the intersection

of λ1 ` 3λ2 “ 6pΛ1 ` Λ2 ` Λ3q with the positive orthant. There are a total of

18 codimension-one cones in the interior of pΣ. Proceeding with our method we

find a five-dimensional toric variety V determined by the moment map values µ˚ “

p6
7
, 4

7
; 1

7
, 1

7
, 1

7
q. This is a puzzle, since we found previously that there are no models

in this class with c “ 3. The resolution is that the model

W 1
3 “ Γ1Φ6

1 ` Γ2Φ2
2 ` Γ3Φ2

2 , (3.86)
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which is in the inverse image under µ of the point µ˚, is fixed by a Up1q rotation in

the Γ2,3 plane that is not contained in TC. This is a symmetry which arises as an

accidental symmetry for all points in V , and is manifest for W 1
3. This mixes with

the IR R-symmetry leading to the central charge found above. This phenomenon

in which a Fermi field is in fact free in the IR can occur in non-plain models with

N ą n. For models with N “ n a model with a free Fermi field will be singular.

3.5.4 Summary and further thoughts

We have provided evidence for a strong conjecture on the structure of the space of TC

orbits contributing to V . For models in which these are the only field redefinitions

consistent with the UV symmetry this produces the moduli spaceM of SCFTs with

central charge c. By analogy with studies of (0,2) GLSM parameter spaces [70, 80],

we call these plain models. For models with larger groups of field redefinitions, our

discussion is partial in two ways: we have overparametrized the moduli space, and

we have failed, in general, to exclude the basins of attraction of models in which a

symmetry in the complement of TC mixes with the IR R-symmetry.

Our evidence, while suggestive, falls short of a derivation of the result. The key

difficulties in a proof are twofold. First, the consequences of enhanced symmetries

that are only realized by singular superpotentials are difficult to grasp, since we

do not have conformal perturbation theory as a guide. For these our evidence is

based on the analysis of many examples that all turned out to be consistent with

the conjecture. The second difficulty lies in extending the leading order conformal

perturbation theory result for enhanced symmetry loci with c1 “ c. It may be possible

to improve this by a more detailed study of the combinatorial structures involved.

A more satisfactory derivation can be imagined, which proceeds by constructing

a c function along the RG flow and showing that this can be written in terms of α
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through the combinations forming pλ; Λq, along the lines of [71, 72, 49].20 In that

work, global symmetries broken by couplings were incorporated into a-maximization

in four-dimensional theories by imposing constraints on the space of symmetries over

which one maximized a trial a-function. The Lagrange multipliers implementing the

constraints could then be used to parameterize the flow. In our case the symmetry-

breaking couplings are the superpotential couplings which break the global symmetry

Up1qN`n of the (free) UV theory to Up1q and one can introduce Lagrange multipliers

to constrain the symmetries over which c is extremized. Of course, imposing N `

n ´ 1 constraints is a formal procedure, because this is tantamount to specifying

the outcome. However, if one proceeds formally, one finds an expression for c in

terms of the Lagrange multipliers and the values of these at the extremum — which

reproduces (3.7) — are precisely the values of the moment map given by (3.63). The

relation between this formal result and the values of the moment map is not clear to

us.

3.6 Outlook

The project described in this chapter began as an attempt to classify IR fixed points

of (0,2) LG theories — a generalization of the results obtained for (2,2) LG theories

in [68, 67] . This beautiful work shows that for fixed c “ c there is a finite set of

families of superpotentials W pX1, . . . , Xnq, or equivalently charges qpXiq that lead to

a non-singular (2,2) SCFT of desired central charge. Having the (0,2) generalization

would be very useful: we would have a new class of heterotic vacua and more generally

(0,2) SCFTs with many properties computable in terms of the simple UV description.

These would naturally fit into the class of (0,2) gauged linear sigma models and could

be used to produce a large class of hybrid models along the lines of [27].

20 A conversation with D. Kutasov, in which he suggested this idea, was instrumental in leading
us to the results of this section.
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What we learned is that, in contrast to the (2,2) case, it is not enough to classify

non-singular (0,2) potentials realizing a particular set of Up1qLˆUp1qR charges. For

instance, the model studied section 3.3.3 would naively realize a c “ 4, c “ 3 (0,2)

SCFT that could correspond to some rather exotic 8-dimensional heterotic vacuum.

In fact no such IR fixed point is obtained for any choice of the UV parameters. This is

a general lesson for building UV models of (0,2) SCFTs: a check of UV R-symmetry

anomalies is not enough, and while the UV theory may well flow somewhere (i.e

to an SCFT with c ą 0), it may wind up far (i.e. at infinite distance) from the

expectations of the model builder. We expect this to be a general lesson applicable

to the wider class of gauged linear sigma models. In exploring that latter point it

should be interesting to study in detail GLSMs with LG phases that exhibit accidents

and extrapolate their consequences to large radius geometries.

For a class of models—the plain LG theories—we were able to obtain a com-

pelling conjecture for a global description of the (0,2) moduli spaceM realizing the

expected central charge. While the resulting combinatorial structure is consistent

with a case-by-case analysis of field redefinitions and their orbits in examples, we

were not able to prove it in generality. Progress on both testing and proving the

conjecture could be made by developing a better understanding of the combinatorial

structure of quasi-homogeneous (0,2) superpotentials, as well as developing Lagrange

multiplier techniques and trial c functions. A classification of plain LG theories seems

achievable; this would yield a large playground to explore LG RG flows and could give

hints to the more general classification problem. Finally, it should be illuminating

to relate our work to studies of RG flows with redundant couplings, e.g. [21].
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4

Worldsheet instantons and linear models

4.1 Introduction

A natural starting point for exploring the moduli space of (0,2) heterotic compactifi-

cations is the study of the geometry of holomorphic vector bundles V over Calabi-Yau

(CY) manifolds M . Under suitable conditions such bundles determine, to all orders

in α1, a supersymmetric heterotic vacuum. For a long time it has been known [35]

that worldsheet instantons wrapping rational curves in M in principle generate a

potential which destabilizes the vacuum. In rather special cases, such as models

with (2,2) supersymmetry [42] or some specially fine-tuned (0,2) models [38, 40], the

correction terms vanish for each instanton separately, but this is not true in more

generic models [24, 31, 7].

In this context, heterotic compactifications obtained as gauged linear sigma mod-

els (GLSMs) [97] have received special attention, as they are believed to be stable

under worldsheet instantons, even in the generic case in which the contributions of

individual instantons do not vanish. This claim is then a nontrivial vanishing theo-

rem about the total contribution from each instanton class. This was first proposed
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in [91] and further studied in [17] 1. This work suggests that in these models the

corrections vanish even when the contributions of individual instantons do not. If

true, this would guarantee the existence of a vast playground for tackling issues of

(0,2) moduli spaces.

Essentially, these arguments rely on the fact that in heterotic vacua determined by

(0,2) theories the space-time superpotential for gauge singlets can be determined by

a correlator C computed in a (half-) twisted version of the model. Unlike the twisted

versions of (2,2) theories, this is not a topological field theory, but the simplifications

associated with the existence of a nilpotent scalar charge, such as the decoupling of

exact operators from the correlators of closed operators, carry over to this case and

show that C depends holomorphically on the relevant worldsheet couplings.

This holomorphy together with compactness arguments can be used to show that

the correlator vanishes identically. The argument of [91] used the fact that the

parameter space of the GLSM is compact (or has a natural compactification). C

was shown to be a global section of a holomorphic bundle of negative curvature. If

nonzero, this must exhibit poles, which in this theory arise from the finite-energy

configurations with very large field values which occur at special loci in the parameter

space. At these loci the model is indeed singular, but the large-field region can be

studied semiclassically to demonstrate that these configurations do not lead to any

singularities in C. The absence of poles shows that this vanishes identically. This

was pursued explicitly in a simple example, but the argument did not appear to rely

on details of this example so seemed likely to generalize.

In turn, the argument of [17] relied on the compactness of an appropriate moduli

space of instantons. More precisely, these authors used the fact that the contribu-

tion to C at any fixed instanton number can be related to a calculation in a model

in which many of the worldsheet couplings vanish. In this model, the moduli space

1 In [16] an argument along rather different lines was pursued.
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of instantons is compact, and a zero-mode counting argument shows that the contri-

bution to C vanishes. Here too, detailed calculations were done in simple examples

but the argument seemed very robust and likely to hold in general.

In this chapter, we follow up on this work with a systematic study of the condi-

tions under which the vanishing theorem of [17] applies. We find that in a generic

gauged linear sigma model the argument that the moduli space of instantons is com-

pact fails, reviving the question of whether these models are in fact destabilized

by worldsheet instantons. We do not resolve this question. We are, however, able

to construct an extensive class of models for which the argument holds – a sizable

playground, if not as extensive as had been hoped.

The rest of the chapter is organized as follows. In Section 4.2 we review the

construction of (0,2) linear models relevant for our analysis. In Section 4.3 we show

that there exist models for which the vanishing of the space-time superpotential for

gauge singlets is not guaranteed and we present an example in detail. In Section

4.4 we prove a vanishing theorem for a particular subclass of (0,2) linear models. In

Section 4.5 we end with some implications of this work and future directions.

4.2 The linear model

Our tool for investigating the issue of instanton corrections in this chapter is the

(0,2) gauged linear sigma model. For a suitably constructed bundle V on a CY space

M presented as a complete intersection HA “ 0 in a Fano toric variety V ,2 the IR

worldsheet dynamics is expected to be the same as that of an Abelian gauge theory

with (0,2) supersymmetry. In this section we are going to review the construction

of the (0,2) linear model [97] in order to establish notation and define the class of

models we consider. More details can be found in appendix C.1.

The linear models we consider are gauge theories with gauge group Up1qR, along

2 We recall that a variety V is Fano if and only if the anticanonical bundle KV of V is ample.
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with m neutral chiral supermultiplets we call Σµ “ pσµ, λµ,`q. We couple these to a

collection of charged supermultiplets determined by the geometric data:

fields Pα Φi ΓI ΛA S Ξ

Up1qa ´ma
α qai Qa

I ´daA ma ´ da da ´ma

(4.1)

where

ma
“
ÿ

α

ma
α , da “

ÿ

A

daA . (4.2)

The n chiral multiplets Φi “ pφi, ψiq and their charges are determined by a

presentation of V as a symplectic Up1qR quotient. The model has Fayet-Iliopoulos

D-terms whose values ra correspond to the shift in the moment map for the Up1qR

action. The moduli space of classical vacua of a theory containing only these fields

will be V when the ra lie in a cone KV , the Kähler cone of V .

The N Fermi multiplets ΓI , with lowest components the left-moving fermions γI ,

satisfy a chirality condition 3

DΓI “
?

2EI
pΣ,Φq , EI

pΣ,Φq “ ΣµE
Iµ
pΦq , (4.3)

and their charges determine the bundle E Ñ V by the short exact sequence (SES)

0 // ‘µO EIµ // ‘IOpQIq // E // 0 . (4.4)

This collection of fields with these couplings comprises what we refer to as the V

model [84]. It is not a conformal field theory, and will typically exhibit trivial IR

behavior. The space of V models is parameterized by ra complexified by θ angles as

well as the coefficients of the maps EIµ.4

In general, there is a larger cone, which we call the geometric cone Kc, in which

the space of vacua has this character. More precisely, this is the cone in which the

3 Unless otherwise specified, we use Einstein’s summation convention throughout the chapter.

4 These are in general subject to identifications, so this is an overparameterization.
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V model as defined above has supersymmetric classical vacua. It is generated by

qi, and it is divided into phases. These correspond to subcones of Kc, one of which

is KV , separated by hyperplanes associated to Up1q subgroups of the gauge group

which are unbroken at large φ.

To construct our superconformal theory we augment the V model by the k chiral

multiplets Pα “ ppα, χαq. For r P KV the space of classical vacua for the theory

including these is the total space V ` “ tot p‘αOp´mαq Ñ V q. We introduce as well

L Fermi multiplets ΛA, whose lowest components are the left-moving fermions ηA,

satisfying a chirality condition

DΛA
“
?

2EA
pP,Σ,Φq , EA

pP,Σ,Φq “ ΣµP
αEAµ

α pΦq . (4.5)

The model with these fields and couplings will be referred to as the V ` model. Like

the V model, it will not in general be conformal. In addition to the parameters listed

above, it is specified by the coefficients of the maps EAµ
α .

The conformal model in which we are interested – the M model – is obtained

from the V ` model by adding a superpotential interaction

ż

dθ`
`

ΛAHApΦq ` ΓIJIpP,Φq
˘ ˇ

ˇ

θ
`
“0
` h.c. , (4.6)

where

JIpP,Φq “ PαJIαpΦq , (4.7)

subject to the conditions

ÿ

A

HAE
Aµ
α `

ÿ

I

JIαE
µI
“ 0 @α, µ , (4.8)

required in order to preserve (0,2) supersymmetry. For r P KV and generic HA,

the space of classical vacua is the complete intersection M “ tφ P V |HApφq “ 0u.

When this is nonsingular the Λ fermions all acquire a mass and the light left-moving
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fermions take values in the bundle V Ñ M defined by the restriction to M of the

complex

0 // ‘µO EIµ // ‘IOpQIq
JIα // ‘αOpmαq // 0 , (4.9)

as V “ Ker J{ImE. We assume that E is everywhere injective and J everywhere

surjective on M , and that V is a nonsingular, stable holomorphic vector bundle.

These are the geometric models to which our methods apply. An intermediate step

in the vanishing argument below involves setting H “ J “ E “ 0 in the M model –

we refer to this as the O model.

The chiral superfield S and the chiral Fermi multiplet Ξ are the “spectator” fields

introduced in [39] to maintain the Kähler parameters ra as RG invariant quantities.

In fact, the counterterm by which r gets renormalized at one-loop is proportional to

the sum of the gauge charges of the scalar fields in the theory. In our models this is in

general nonzero (this is related to the fact that V ` is not Calabi–Yau). Introducing

S as above cancels this. The spectators earn their name because they interact via a

superpotential

ż

dθ`ΞS
ˇ

ˇ

θ
`
“0
` h.c. . (4.10)

This means these are massive fields and have no effect on the IR dynamics of the

theory, so one might question the relevance of including them here. As we will

see, in some cases accounting for their presence allows the argument to proceed

where it might otherwise fail. This is, of course, a technical matter. If there are no

instanton corrections in the presence of spectators there are none in their absence.

This demonstrates an important caveat to our work, mentioned above. When the

argument of [17] fails, we cannot assert that instanton corrections do destabilize the

model, only that this particular argument that they do not is not valid.
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Symmetries

The action (C.9)-(C.14) we have described is invariant under (0,2) SUSY and the

gauge symmetry Up1qR, as well as a global Up1qR ˆ Up1qL symmetry acting as

fields Pα Φi ΓI ΛA S Ξ Σµ Υa

Up1qL 1 0 ´1 0 1 ´1 ´1 0

Up1qR 1 0 0 1 1 0 1 1

(4.11)

While Up1qR is believed to be the R-symmetry of the SCFT to which our model is

supposed to flow, the global Up1qL symmetry is equally important for our purposes:

in heterotic compactifications, it can be used to construct a left-moving spectral flow

operator and it provides a linearly realized component of the space-time group. The

action of global symmetries on charged fields is of course defined up to an arbitrary

action of the gauge symmetry generators. We have here chosen a representative

action that is manifestly unbroken in the classical vacua (when r P KV ) comprising

M .

These symmetries are respected by the classical action, but are in general anoma-

lous in the presence of non-trivial gauge fields. The anomalies vanish when the

charges satisfy

da “
ÿ

i

qai ,

ma
“
ÿ

I

Qa
I ,

ÿ

α

ma
αm

b
α `

ÿ

i

qai q
b
i “

ÿ

A

daAd
b
A `

ÿ

I

Qa
IQ

b
I . (4.12)

In terms of our geometric data, the first two conditions reflect the fact that

c1pTMq “ c1pVq “ 0 , (4.13)
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while the quadratic condition implies

ch2pTMq “ ch2pVq . (4.14)

Under these conditions, the M model is believed to flow at low energies to a nontrivial

superconformal field theory which is in the same moduli space as the nonlinear

sigma model determined by the pair pM,Vq. Nonperturbative effects (worldsheet

instantons) which can destroy conformal invariance are captured by GLSM gauge

instantons, which are the subject of our investigation here.

4.3 The argument

Let us first review the argument prescribed in [17] for the vanishing of the instanton

contributions to the superpotential W for space-time gauge singlets in a (0,2) linear

sigma model.

The goal is to probe for a background space-time superpotential W . A simple

and direct way to achieve this is to compute the correlator Cabc “ xRaRbRcy, where

Ra is the vertex operator representative for the Kähler modulus Ra of V . In fact, for

each instanton the exponential factor eI0 , where I0 is the instanton classical action,

contains all the dependence on Ra [35, 37]. The correlator Cabc computes the third

derivatives of W with respect to Ra, thus it determines W up to quadratic terms

in the Ra. These terms are forbidden by standard α1 non-renormalization theorems,

hence Cabc determines W directly.

The computation is most easily done in the half-twisted model (see appendix

C.2). In this model, the supercharge Q` becomes a nilpotent scalar symmetry gen-

erator, and correlators of Q`-closed operators can be computed in its cohomology.

On a genus-zero worldsheet, the twist can be realized by spectral flow insertions

and calculations in the twisted model produce suitable correlators of the untwisted

(physical) model.
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In order to determine the linear model representative of the space-time mode Ra

we restrict our attention to the (0,2) gauge multiplets. In fact, Ra appears in the

linear model through a F-I term. Moreover, gauge singlets must have qL “ 0 and

bosonic vertex operators have qR “ 1. Finally,

Q`λa,´ “ 0 , Q`λa,´ “
1

2
pDa ´ ifa,01q (4.15)

determine Ra “ λa,´.

The first step of the argument is to show that Cabc vanishes in the O model.

The idea is that the theory without superpotential has a very large symmetry,

G “ Up1q‘pn`N`k`L`2q, where each matter superfield is rotated separately, and the

vertex operators Ra are invariant under this. This symmetry is generically broken

by superpotential couplings down to Up1qL. If the zero-mode path integral measure

5 in nontrivial topological sectors turns out not to be invariant under G, i.e. the

symmetry is anomalous, then contributions to the invariant correlator Cabc from this

sector will vanish. In practice, we follow [17] and construct a Up1q subgroup of

G that is rendered anomalous in all topological sectors by the twisting procedure,

demonstrating that Cabc “ 0 identically in the O model.

The second step uses the fact that Cabc depends holomorphically on J, H and E.

One can then examine the contribution at arbitrary order in an expansion in these

couplings. If there is no term that can possibly absorb the fermion zero-modes in

the anomalous measure, then the correlator vanishes identically. This computation

can be performed in each topological sector of the path integral.

In the untwisted model, the limiting point J “ H “ E “ 0 is of course highly

singular. Both σ and p acquire zero-modes and the space of classical vacua is non-

compact. Such a singularity can invalidate the order-by-order calculation described

5 We recall that the path integral for a correlator of Q`-invariant operators localizes on fixed loci
of Q`, given by zero-modes.
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above. The key observation of [17] is that in suitable examples these dangerous zero-

modes are absent in the half-twisted model. For example, the bosons σ always have

zero-modes, but in the twisted model (see appendix C.2) these fields acquire a spin

and their zero-modes are absent. In general, as we shall see below, p zero-modes are

not completely removed by the twisting.

Another approach was presented in [17], where the vanishing of Cabc at any in-

stanton number follows from an appropriate counting of fermi zero-modes in the

half-twisted model. This was applied in detail for heterotic compactifications de-

scribed by half-linear sigma models, but it also extends to linear models as well.

However, as pointed out above, the same assumption of compactness is required for

this argument to be valid. For definiteness, we present our analysis of the linear

model following the approach of [17] reviewed above, as our results will not depend

on this choice.

4.3.1 The quintic

Let us review how all of this works for the linear model describing the deformations

of the tangent bundle TM over the quintic hypersurface M in V “ P4. The gauge

charges for the (2,2) multiplets Φi “ pΦi,Γiq and P “ pP,Λq are

fields P Φ1 Φ2 Φ3 Φ4 Φ5

Up1q ´5 1 1 1 1 1

(4.16)

The Kähler cone KV “ Kc here is simply given by r ě 0 and the relevant instantons

are defined by K_V “ tn ě 0u. The O model has as a target space the total space

of the anticanonical bundle on V , tot pOp´5q Ñ P4q. First of all, we check that the

moduli space of gauge instantons for this model is compact. Indeed, we verify that

there are no holomorphic sections of

p Ø ΓpK
1
2 bOp´5nqq , (4.17)
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and thus p has no zero-modes. This, together with the fact that there are no zero-

modes of σ shows that the space of zero-modes is compact in any topological sector.

Next, by looking at the degree of the line bundles of the half-twisted model in (C.21)

we see that the relevant fermions zero-modes are

fields ψ
i

γi η χ

bundle Opnq Opn´ 1q Op5nq Op5n´ 1q

# z.m. n` 1 n 5n` 1 5n

(4.18)

The fermion contribution to the zero-mode path-integral measure is then given by

dµF “ dλ´dηdχ
ź

i

dψ
i
dγi . (4.19)

Now, the O model is invariant under a symmetry Up1qC which assigns charge `1

to the multiplets Φi and leaves everything else invariant. Under this symmetry the

measure above transforms with charge `5. Hence, the correlator C vanishes in the

O model. The holomorphic superpotential couplings are given by

LYuk

ˇ

ˇ

J“H“E“0
“ ´γiEiλ` ` γ

iJiχ` ηH,jψ
j , (4.20)

where H is a quintic polynomial defining the hypersurface M , Ji are generic quartic

polynomials and Ei are generic linear polynomials subject to (4.8). Clearly, each

coupling transforms under Up1qC with either charge +5 or is neutral. By the argu-

ment above the correlator C vanishes in the full theory and there are no instanton

corrections to the space-time superpotential.

4.3.2 A counter-example

Let us consider a two-parameter model with the following charge assignments

fields Φ1,2,3 Φ4,5 Φ6,7 Λ1 Λ2 Γ1,2 Γ3 Γ4,5,6,7 P 1 P 2

Up1q1 1 1 0 ´3 ´2 2 1 0 ´4 ´1

Up1q2 1 0 1 ´3 ´2 0 1 1 ´2 ´3

(4.21)
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In the geometric phase it describes a complete intersection M of degree p3, 3q and

p2, 2q hypersurfaces in the toric variety V defined by the charges

ˆ

1 1 1 1 1 0 0
1 1 1 0 0 1 1

˙

. (4.22)

It is useful to write the maps defining the superpotential more explicitly. For ease

of notation, let us denote x “ tφ1,2,3u, y “ tφ4,5u, z “ tφ6,7u, as well as Γp1q “

tΓ1,2u, Γp2q “ tΓ3u, Γp3q “ tΓ4,5,6,7u, and a condensed notation in which, e.g. xk

denotes a generic homogeneous polynomial of degree k in φ1,2,3. With this notation

the maps are given as

Jp1q “ p1
px2

` xyz ` y2z2
q ,

Jp2q “ p1
pxy2

` y3zq ` p2z2 ,

Jp3q “ p1
pxy3

` y4zq ` p2
pxz ` yz2

q , (4.23)

while the equations defining the complete intersections are

H1 “ x3
` x2yz ` xy2z2

` y3z3 ,

H2 “ x2
` xyz ` y2z2 . (4.24)

The complete intersection M is realized in the cone KV “ tr1 ą 0, r1´r2 ă 0u, where

the irrelevant ideal is B “ pxyqpzq. Since the z’s are not both allowed to vanish and

the coefficients in the expressions above are generic, we have that

pxz ` yz2
q

loooomoooon

4 of these

“ x3
` x2yz ` xy2z2

` y3z3
“ x2

` xyz ` y2z2
“ 0 ,

px2
` xyz ` y2z2

q
loooooooooomoooooooooon

3 of these

“ xy2
` y3z “ pxy3

` y4zq
looooomooooon

4 of these

“ x3
` x2yz ` xy2z2

` y3z3
“ 0 ,

(4.25)

have no solutions compatible with the ideal B. Thus p1 “ p2 “ 0 and there are no

flat directions in this phase.
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Now, note that ´p2 P KV but ´p1 R KV . Therefore there are instantons con-

tributing for this phase for which p1 develops zero-modes in the O model. We can

see this explicitly. Gauge instantons in this model have instanton numbers na P K_V ,

i.e. n2 ą 0 and n1 ` n2 ą 0. From appendix C.2 we see that the zero-modes of p1

are in one to one correspondence with holomorphic section of the bundle

p1
Ø ΓpK

1
2 bOp´4n1 ´ 2n2qq , (4.26)

and the number of such sections is non-zero when 2n1`n2 ă 0. The subcone defined

by p2n1 ` n2 ă 0q X K_V is non empty, and the moduli space of gauge instantons of

the O model is not compact. The twisted O model calculation in these sectors is

ill-defined and the argument from holomorphy does not exclude instanton corrections

to Cabc.

4.4 The vanishing theorem

The example of the previous section shows that a generic (0,2) GLSM is not protected

from worldsheet instanton corrections. In this section we undertake the task of

constructing a class of models for which the vanishing theorem holds. In fact, a

necessary condition for the vanishing argument to apply is that there exists a cone

KV Ď Kc such that

1. the M model defined in KV is nonsingular;

2. the O model of the half-twisted theory has a compact moduli space of gauge

instantons for any na P K_V .

Notice that as advertised above, due to the twist the bosons σ acquire a spin and do

not have zero-modes. A quick inspection at the form of the E-couplings (4.3) and

(4.5) implies that setting E “ 0 does not lead to any singularities in the half-twisted

theory.
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4.4.1 O model gauge instanton moduli space

While the moduli space of gauge instantons for the V model is compact, as we have

seen above, there can be unbounded zero-modes coming from the pα fields. This

occurs when, for a given subcone KV Ď Kc we have mα R KV for some α. Hence,

a necessary condition for the argument to work is that there exists a nonsingular

subcone KV Ď Kc such that mα P KV @α.

The discussion so far did not take into account the spectator boson s, whose

expectation value is set to zero, and whose zero-modes could also be fatal for our

assumption of compactness. In order to establish when this is the case, we need the

following simple fact: the cone pKc defined by adjoining the vector m ´ d to Kc is

convex unless d´m P Kc. In fact, pKc fails to be convex if we can write
ÿ

i

αiqi ` βpm´ dq “ 0 , (4.27)

with αi, β ě 0 and not all vanishing. Because Kc is convex by assumption, we must

have β strictly positive. This means βpd´mq “
ř

i αiqi, i.e. pd´mq P Kc.

This little result suggests there are three separate cases we should consider:

1. d´m P KV . By (C.21) s has no zero-modes. In fact, by looking at the degree

dS “ pm
a
´ daqna, (4.28)

we have dS ď 0 @n P K_V .

2. d´m P Kc but d´m R KV . In this case there exist n P K_V such that dS ą 0

and s has zero-modes. The half-twisted O model develops s-flat directions and

is therefore singular.

3. d ´ m R Kc. In this case s always has zero-modes, but by the result above,

together with the fact that a toric variety is compact if and only if the geometric

cone is strongly convex, the moduli space of instantons for the O model is

nevertheless compact.
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We can now summarize the set of conditions we are going to assume for our vanishing

theorem: there exists a nonsingular subcone KV Ď Kc such that the gauge charge

vectors for the fields pα and s satisfy

mα P KV @α , d´m P KV or d´m R Kc . (4.29)

4.4.2 A classical symmetry

For the remaining of this section we restrict our attention to models obeying the

conditions above. To proceed with the argument we need to construct a suitable

Up1qC subgroup of the symmetry group of the O model. Let us choose the charges

for the matter fields under this “classical” symmetry as

fields Pα Φi ΓI ΛA S Ξ

Up1qC 0 qCi QC
I 0 qCS QC

Ξ

(4.30)

while the gauge fields are invariant. This symmetry will be non-anomalous (before

twisting) if

ÿ

i

qai q
C
i ` pm

a
´ daqqCS “

ÿ

I

Qa
IQ

C
I ` pd

a
´ma

qQC
Ξ , (4.31)

for a “ 1, . . . , R.

The measure

First, let us look at the zero-mode contribution to the path integral measure. In

particular, we are going to focus only on the fermionic part of the measure. In fact,

the form of the maps (C.21), together with our assumption of compactness yield an

exact balance between holomorphic and anti-holomorphic bosonic zero-modes. It is

convenient to write the fermionic measure as

dµF “ dµGdµMdµS , (4.32)
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where the three factors correspond to the measure for the gauge, matter and spectator

fields respectively. From (C.20) it follows that the gauge measure is simply given by

dµG “
ź

a

dλ´,a . (4.33)

For the matter fields we have

fields χα χα ψi ψ
i

bundle K
1
2 bOp´dαq K

1
2 bOpdαq K bO p´diq O pdiq

# z.m. maxp0,´dαq “ ´dα maxp0, dαq “ 0 maxp0,´di ´ 1q maxp0, di ` 1q

(4.34)

where we used the fact that mα P KV implies dα ď 0, as well as

fields γI γI ηA ηA

bundle K
1
2 bO pDIq K

1
2 bO p´DIq K bO pDAq O p´DAq

# z.m. maxp0, DIq maxp0,´DIq maxp0, DA ´ 1q maxp0,´DA ` 1q

(4.35)

The matter measure then reads

dµM “
ź

α

dχα
ź

i|diě0

dψ
i ź

i|diă0

dψi
ź

I|DIě0

dγI
ź

I|DIă0

dγI
ź

A|DAą0

dηA
ź

A|DAď0

dηA , (4.36)

and it is easy to check that it is gauge-invariant.

Finally, for the spectators

fields ξ` ξ` ξ´ ξ´

bundle K
1
2 bO p´dSq K

1
2 bO pdSq K

1
2 bOp´dSq K

1
2 bOpdSq

# z.m. maxp0,´dSq maxp0, dSq maxp0,´dSq maxp0, dSq

(4.37)

Here we need to distinguish two cases, according to whether d´m P KV or d´m R Kc,

and we obtain

dµS “

#

dξ`dξ´ if dS ă 0 ,

dξ`dξ´ if dS ą 0 .
(4.38)
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Of course, if dS “ 0 we simply ignore this factor.

Now we can finally determine how the measure transforms under the symmetry

Up1qC defined above. The gauge measure is invariant, while for the matter factor we

obtain

qCpdµM q “
ÿ

i|diě0

pdi ` 1qqCi `
ÿ

i|diă0

p´di ´ 1qp´qCi q `
ÿ

I|DIě0

DIp´Q
C
I q `

ÿ

I|DIă0

p´DIqQ
C
I .

(4.39)

Finally, for the spectator measure in both cases of (4.38) we get

qCpdµSq “ dSpq
C
S `Q

C
Ξ q , (4.40)

Let us observe at this point that a very simple solution to (4.31) is given by

qCi “ QC
I “ qCS “ 1 , QC

Ξ “ 0 , (4.41)

where it is easy to verify that the equality holds by (4.12). Plugging these values

into the expressions above we find that the total fermionic zero-mode measure in

the twisted model transforms with charge qCpdµF q “ n, where we recall that n is

the number of one-dimensional cones of the fan ∆V for the toric variety V , and

in particular is strictly positive. Thus, the fermion zero-modes cause Up1qC to be

anomalous, and Cabc vanishes in the O model.

The superpotential couplings

Let us turn to the analysis of the superpotential couplings in the action. The relevant

Yukawa couplings are

LYuk

ˇ

ˇ

J“H“E“0
“ ´γIEI

,µλµ,` ` γ
IJIαχ

α
` ηAHA,jψ

j , (4.42)

where we have set σµ “ pα “ 0, as they have no zero-modes. We immediately see

that all couplings, when non-zero, have the following lower bounds on the charges

couplings γIEI
,µλµ,` γIJIαχ

α ηAHA,jψ
j

Up1qC ě 0 ě 2 ě 1

(4.43)
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In particular, we note that these values are all non-negative and therefore it is not

possible to absorb the zero-modes in excess in the measure by bringing down fermion

terms from the action. The correlator Cabc thus vanishes at all orders in the super-

potential couplings, which concludes the proof that instantons do not contribute to

the space-time superpotential in our class of models.

Note that we ignored the anti-holomorphic functions J, H and E in (4.42). This

is in fact legitimate since, as observed above, half-twisted correlators of Q`-closed

operators have a holomorphic dependence on J, H and E.

4.5 Outlook

In this chapter, we investigated the details of the elegant argument of [17] for the

absence of instanton corrections to the space-time superpotential in heterotic com-

pactifications based on (0,2) GLSMs. We have not been able to extend the argument

to the most general case.

The immediate question raised is: are some of these vacua in fact destabilized

by instantons? One clear way to resolve this would be to produce an argument

that holds in more generality. It is possible, however, that no such argument can

be found and that in fact instanton corrections do arise. One way to detect such

corrections would be an indirect approach, in which properties of the solution, such

as the dimension of the space of massless gauge-neutral scalar fields, are compared

at different limiting points in the moduli space. A more direct approach would be

to compute the instanton contributions explicitly. Perhaps the GLSM can provide

a framework within which these calculations, which have proved difficult in general,

are tractable.

On the other hand, we have now an extensive class of (0,2) models which are truly

conformally invariant. These can be used to explore the moduli space of (0,2) theories

without a (2,2) locus, extending recent work that has focused on deformations of
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(2,2) models [76, 5, 45]. In particular, one could look for special loci, e.g. good

hybrid models [27] or Landau-Ginzburg points and hope to learn something about

the structure of the resulting theories. In particular, hybrid models could be a

promising laboratory for explicit computations of worldsheet instantons, given the

simpler structure of rational curves on the lower dimensional base instead than on a

CY three-fold.

We have shown in Chapter 3 that other “bad” things can happen in (0,2) models

[26]. In particular, it is shown, in the context of Landau-Ginzburg models, that the

common assumption that accidental IR symmetries do not spoil the correspondence

between operators in the IR and the ones in the UV is not guaranteed in (0,2) models.

When this occurs, the structure of the conformal manifold is dramatically modified.

There is a priori no reason that would prevent the same phenomenon from happening

in a generic phase of a GLSM. For example, one could realize one of the “accidental”

LG theories as a phase of a GLSM and study how this pathology is realized in the

geometric phase. This could shed new light on the conditions for the data pM,Vq to

lead to consistent heterotic backgrounds.
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Appendix A

Hybrid geometry

A.1 An example

Let B “ P1 and take Y to be the total space of X “ Op´2q Ñ P1. We cover Y by

two patches Uu and Uv, with local coordinates pu, φuq and pv, φvq, respectively :

u “ v´1, φu “ v2φv on Uu X Uv “ C˚. (A.1)

The projection π : Y Ñ B is simply pu, φuq Ñ u and pv, φvq Ñ v in the two patches.

The transition function for σ “ σ1
uBu ` σ

2
uBφu , a section of TY , is

`

σ1
u σ2

u

˘

“
`

σ1
v σ2

v

˘

ˆ

´v´2 2vφv
0 v2

˙

. (A.2)

TY belongs to a family of rank 2 holomorphic bundles Vε Ñ Y with transition

function

`

σ1
u σ2

u

˘

“
`

σ1
v σ2

v

˘

Mε , Mε ”

ˆ

´v´2 2εvφv
0 v2

˙

. (A.3)

When ε “ 0 the bundle splits: Vε“0 “ π˚Op2q ‘ π˚Op´2q; more generally Vε is an

irreducible rank 2 bundle over Y .
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An example of a quasi-homogeneous superpotential depending on a parameter α

is

Wu “ pα ` u
8
qφ4

u , Wv “ pαv
8
` 1qφ4

v . (A.4)

Clearly Wu “ Wv on the overlap. Computing the gradient in the two patches, we

obtain

dWu “ 8u7φ4
udu` 4pα ` u8

qφ3
udφu , dWv “ 8αv7φ4

vdv ` 4pαv8
` 1qφ3

vdφv .
(A.5)

It is then easy to see that for α ‰ 0 we have dW´1p0q “ B. A more general

superpotential respecting the same quasi-homogeneity is

Wu “ Supuqφ
4
u , Wv “ Svpvqφ

4
v , (A.6)

where Su,v is the restriction of Σ P H0pB,Op8qq to Uu,v. The potential condition is

satisfied for generic choices of Σ.

We can see how the fibration affects the naive chiral ring Rp of the LG fiber theory

over a point p P B: dimRp jumps in complex co-dimension 1 but stays finite if the

potential condition is satisfied. In our example Ru “ t1, φu, φ
2
uu for u8`α ‰ 0, while

at the 8 special points R “ t1, φu, φ
2
u, φ

3
uu. If α “ 0 then the potential condition is

violated, and dimR0 “ 8.

A (0,2) deformation

Taking the left-moving bundle to be E “ Vε, we obtain a class of (0,2) theories. The

most general (0,2) superpotential that respects the same quasi-homogeneity as dW ,

J P ΓpE˚q, takes the form

Ju “

ˆ

Tupuqφ
4
u

4Supuqφ
3
u

˙

, Jv “

ˆ

Tvpvqφ
4
v

4Svpvqφ
3
v

˙

, (A.7)

where S and T are holomorphic functions constrained by Ju “ M´1
ε Jv when u ‰ v.

Su,v are restrictions of Σ as above, while Tu,v are given by

Tupuq “ ´ rΣ
ˇ

ˇ

ˇ

u
` 8εu´1

pSupuq ´ Sup0qq , Tvpvq “ rΣ
ˇ

ˇ

ˇ

v
` 8εv7Sup0q , (A.8)
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where rΣ P H0pB,Op6qq. The potential condition is satisfied for generic Σ and rΣ.

Setting ε “ 1 and Tu “ BuSu, we recover the (2,2) potential from above. On the

other hand, taking ε “ 0, we see that T is just given by restriction of holomorphic

sections of Op6q.

We can compare the number of holomorphic deformation parameters in the (2,2)

or (0,2) superpotentials. W depends on 9 holomorphic parameters specifying section

Σ. The more generic (0,2) superpotential J , on the other hand, depends on 16

parameters, independent of ε; as a check, we see that demanding that J is integrable

to W reduces the parameters to 9.

Metrics for Y and E

It is well known that Y admits an ALE Kähler Ricci-flat metric with Kähler poten-

tial 1

KCY “
?

1` L`
1

2
log

?
1` L´ 1

?
1` L` 1

, L ” 4φφp1` uuq2 . (A.9)

This is obviously well-defined with respect to the patching. To leading order in the

fiber coordinates, we find that up to irrelevant constants

KCY “ K `Op|φ|4q, K “ logp1` uuq ` p1` uuq2φφ . (A.10)

K leads to a complete non-Ricci-flat metric on X:

gX “

ˆ

guu guφ
gφu gφφ

˙

“

ˆ

p1` uuq´2 ` 2p1` 2uuqφφ 2uφp1` uuq

2uφp1` uuq p1` uuq2

˙

. (A.11)

To Op|φ|4q this agrees with the Kähler metric obtained by symplectic reduction from

C3.

1 Constructions of such metrics for line bundles over Pn´1, which generalize the classic work of
Eguchi and Hanson [46], go back to [32, 50]; [55] gives an elegant generalization for line bundles
over symmetric spaces. These are also the only explicitly known ALE metrics with SUpnq n ě 3
holonomy [60].
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We can also endow E with a Hermitian metric. In our example with E “ Vε, a

convenient choice is

pσ, τq ” σGτ , G “
ˆ

p1` uuq´2 ` 2εεp1` 2uuqφφ 2εuφp1` uuq

2εuφp1` uuq p1` uuq2

˙

. (A.12)

Setting ε “ 1, we obtain a Hermitian, in fact Kähler, metric on TY . Setting φ “ 0

we obtain the bundles restricted to B. As we might expect, TY |B “ Vε|B “ Op2q ‘

Op´2q.

The explicit Ricci-flat metric on Y is fairly complicated, and generalizations to

other spaces are typically not available. Fortunately, we do not need the explicit

form of the metric for our analysis: by construction the superpotential restricts low

energy field configurations to B, and the details of the metric on Y away from the

base become irrelevant to the IR physics.

A.2 Vertical Killing vectors

In this appendix we examine holomorphic vertical Killing vectors on Y and prove

that with our assumptions they act homogeneously on the fiber directions.

Let V “ V α B

Byα
` c.c. be an holomorphic vector field on Y , i.e. V α

,β
“ 0. Then

the Killing equation for a Kähler metric gαβ takes the form

BγpgαβV
α
q ` BβpgγαV

α
q “ 0 . (A.13)

Using the base/fiber decomposition yα “ puI , φiq, the hybrid metric has components

gIJ “ GIJ ` φhIJφ, giJ “ himJφ
m
, gI “ φmhmI , gi “ hi . (A.14)

Since V is vertical, we have V “ V i B
Bφi
` c.c., and a moment’s thought shows that

V ipu, φq transforms as a section of π˚pXq. In this case the Killing equation reduces

to

BγpgiβV
i
q ` BβpgγıV

ı
q “ 0 , (A.15)
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and decomposing it further along base/fiber directions leads to two non-trivial con-

ditions. First, from β, γ “ , k we obtain

BkV
i
` hiBV

ı

hkı “ 0 . (A.16)

Since h is φ-independent and BmV
ı

 “ 0, we conclude that

V i
“ Aikpuqφ

k
`Bi

puq, A
ı

k “ pA
i
kq
˚
“ ´hıiAki hkk . (A.17)

The latter restriction on A P H0pB,X b X˚q, combined with its holomorphy leads

to DJA “ 0. The remaining non-trivial conditions are obtained by taking β, γ “ J, k

in the Killing equation, and they lead to DJB “ 0 for B P H0pB,Xq.

So, we have learned that vertical automorphic Killing vectors are characterized

by covariantly constant sections A P ΓpX bX˚q and B P ΓpXq, with the additional

restriction

pAikq
˚
“ ´hıiAki hkk . (A.18)

In fact, we can always shift away the global section B by a redefinition of the φi;

moreover, for a generic choice of metric h the only solution for A is a diagonal anti-

Hermitian u-independent matrix; demanding LVW “ W will fix the eigenvalues (up

to an overall i) to be the charges qi.

A.3 A little sheaf cohomology

In this section we present some useful results for reducing sheaf cohomology on Y

to computations on the base B in the case that X “ ‘iLi. In order to compute Q0

cohomology we need an effective method to evaluate

H‚
rpY , π

˚
pEq b ^sTY b^tT ˚Y q, (A.19)

where E is some bundle (or more generally sheaf) on B, and r is the restriction to

fine grade r. Recall that the grading r P Zn assigns to every monomial
ś

i φ
ri
i grade
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r “ pr1, . . . , rnq; in particular φi has grade xi with pxiqj “ δij. Since Y is non-

compact the grade restriction is necessary to obtain a well-posed counting problem.

For instance, the structure sheaf OY clearly has infinite-dimensional cohomology

group H0pY ,OY q.

Graded cohomology of a pulled-back sheaf

Suppose s “ t “ 0 in (A.19). As we now show,

H‚
rpY , π

˚
pEqq » H‚

pB, E b Lrq, (A.20)

where Lr Ñ B is the line bundle Lr ” bipL
˚
i q
ri .

The proof follows from the basic geometry. First, to describe the line bundles

Li Ñ B, we work with a cover U “ tUau for B with local coordinates uIa in each

patch, so that on overlaps Uab ‰ H sections of Li satisfy

λibpubq “ λiapuaqg
i
abpuaq , (A.21)

where the giab are the transition functions defining the bundle Li. The sections σa of

a sheaf E Ñ B satisfy

σbpubq “ σapuaqGabpuaq , (A.22)

where the Gab are the transition functions for E , and sections of π˚pEq Ñ Y patch

as

σbpub, φbq “ σapua, φaqGabpuaq , (A.23)

with φib “ φiag
i
abpuaq . Since the transition functions for π˚pEq are identical to the

transition functions for E over B, at fixed grade (A.23) takes the form
ź

i

pφibq
riξbpubq “

ź

i

pφiaq
riξapuaqGabpuaq ðñ ξbpubq “ ξapuaqGabpuaq

ź

i

“

giabpuaq
‰´ri .

(A.24)

Hence the space of sections of π˚pEqr over Y is isomorphic to the space of sections

of E b Lr over B. The grading is compatible with Čech cohomology (i.e. with

defining chains for higher intersections Ua1¨¨¨ak and taking cohomology of the Čech

differential), and (A.20) holds.
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The tangent bundle

Having reduced the graded cohomology of a pull-back sheaf to a cohomology problem

on the base, we now turn to the tangent bundle. This is of course not in general the

pull-back of a sheaf from B, as we explictly saw in appendix A.1. However, TY fits

into a short exact sequence

0 // π˚pXq // TY // π˚pTBq // 0 . (A.25)

This is easy to see explicitly. In an open neighborhood Ua a vector field Σ takes the

form

Σa “ Va
B

Bua
` νa

B

Bφa
, (A.26)

and on overlaps Uab

Vb “ Va
Bub
Bua
, νb “ νagab ` φaLV gab , (A.27)

where gab are the transition functions for X. Hence, we see that a section ν of X

lifts to a section of TY with V “ 0, while a section of TY at φ “ 0 yields a section of

TB.

This short exact sequence can be decomposed with respect to the fine grading.

Working again in the case X “ ‘iLi, the transition functions for sections of TY can

be written explicitly as

pσ0
b , σ

1
b , . . . , σ

n
b q “ pσ

0
a, σ

1
a, . . . , σ

n
a q

¨

˚

˚

˚

˚

˚

˝

Bub
Bua

φ1
aBg

1
ab φ2

aBg
2
ab ¨ ¨ ¨ φnaBg

n
ab

0 g1
ab 0 ¨ ¨ ¨ 0

0 0 g2
ab ¨ ¨ ¨ 0

...
...

...
. . .

...
0 0 0 ¨ ¨ ¨ gnab

˛

‹

‹

‹

‹

‹

‚

. (A.28)

Hence, sections of TY also admit a fine grading, which we define

pΣqr ” pσ
0
r, σ

1
r`x1

, σ2
r`x2

, . . . , σnr`xnq . (A.29)

This means the short exact sequence for TY can be decomposed according to r as

0 // ‘ipπ
˚Liqr`xi

// pTY qr // pπ˚TBqr // 0 . (A.30)
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Using the induced long exact sequence on cohomology, together with (A.20), we can

evaluate H‚
rpY , TY q. Taking appropriate products one can generalize this result to

compute all desired cohomology groups in (A.19).

We should mention one small subtlety in grading the sections of TY : from (A.29)

we see that there can be non-trivial contributions for ri “ ´1. More precisely,

pTY qr “ 0 whenever any ri ă ´1 or ri “ rj “ ´1, and if a single ri “ ´1 we have

pTY qr “ pπ
˚Liqr`xi , (A.31)

in which case H‚
rpY , TY q “ H‚pB,Lrq.

Application to X “ Op´2q and B “ P1

In this case the grading is one-dimensional r “ prq, the grading bundle is Ls “

pOp´2q˚qs “ Op2sq, and for any r ě 0 the structure sheaf cohomology is

H0
r pY ,OY q “ H0

pB,Op2rqq » C2r`1 , Hq
r pY ,OY q “ 0, for q ą 0 . (A.32)

For the tangent sheaf the short exact sequence

0 // pπ˚Op´2qqr`1
// pTY qr // pπ˚Op2qqr // 0 (A.33)

leads to the long exact sequence in cohomology

��

0 // H0pB,Op2rqq // H0
r pY , TY q // H0pB,Op2r ` 2qq

H1pB,Op2rqq // H1
r pY , TY q // H1pB,Op2r ` 2qq // 0

(A.34)

At grade 0 we obtain

0 // C // H0
0 pY , TY q // C3

0 // H1
0 pY , TY q // 0 // 0

(A.35)
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Hence, H0
0 pY , TY q » C4, and H1

0 pY , TY q “ 0. More generally, for any non-negative

grade

H0
r pY , TY q “ H0

r pB,Op2rqq ‘H0
r pB,Op2r ` 2qq » C4r`4, H1

r pY , TY q “ 0 .
(A.36)

A note on horizontal representatives

In order to evaluate Q0 cohomology we needed to study the finely graded Dolbeault

cohomology of horizontal forms on Y valued in a holomorphic sheaf F . One might

wonder what is the relationship between these horizontal forms and more general

Dolbeault classes in H
p0,uq

B̄
pY ,Fq. In fact, every such class has a horizontal repre-

sentative, which is why our results on finely graded cohomology describe horizontal

Dolbeault cohomolgy as well. This is rather intuitive, since the fiber space is simply

Cn (or Cn{Γ for orbi-bundles), but for completeness we give a sketch of the proof.2

The statement is trivial at u “ 0, so we consider u “ 1. Let τ P ker B̄ X

Ωp0,1qpY ,OY q. In any patch Ua we have

τa “ ωaIdu
I
a ` σaıdφ

ı

a . (A.37)

We define ηapua, ua, φa, φαq via the line integral

ηα “

ż φa

0

dzıσaıpua, ua, φa, zq . (A.38)

Since B̄τ “ 0 implies σaı, “ σa,ı, the line integral does not depend on the choice

of contour from 0 to φ; moreover, a change of variables zı “ gıbay
ı in the integral

shows that ηa “ ηb on any Uab ‰ H, so that η patches to a function on Y . Therefore

τ 1 “ τ ´ B̄η is a (0,1) horizontal form, and a moment’s thought shows that B̄τ 1 “ 0

implies that it has a holomorphic dependence on the fiber coordinates.

One can generalize the argument to u ą 1 and more general holomorphic sheaf

2 This essentially follows the standard proof [30] that Hk
dRpRn,Rq “ 0 for k ą 0.
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F Ñ Y . The analogous construction yields η, a section of Ωp0,u´1qpY ,Fq, such that

τ 1 “ τ ´ B̄η is a horizontal representative of rτ s P H
p0,uq

B̄
pY ,Fq.

A.4 Massless spectrum of a (0,2) CY NLSM

In this appendix we apply the first-order techniques developed in section 2.4.3 to

marginal deformations of (0,2) NLSMs with CY target space B and a left-moving

SUpnq bundle V . We assume ch2pVq “ ch2pTBq and V is a stable bundle. This

ensures that the NLSM is conformally invariant to all orders in α1 perturbation

theory [96, 35]. Our techniques allow us to determine the massless spectrum to all

orders in α1. The results for the (R,R) sector and for the gauge-charged matter

are exactly the same as those obtained by a Born-Oppenheimer approach in [40].

However, the massless gauge-neutral chiral matter has to our best knowledge not

been studied directly in the NLSM. The first-order formulation of Q0 cohomology

turns out to be perfectly suited to this task and should be thought of as a first step

in systematically including any non-perturbative world-sheet effects.

In parallel with the analysis of the k “ 1 sector in section 2.5.2, we first list

the operators that can give rise to massless singlets. We need to slightly alter our

notation in comparison to the TB “ V analysis of section 2.5.2; just in this appendix

we use I, J, . . . for tangent/cotangent indices, while the α, β indices will refer to

sections of the left-moving bundle V and its dual V˚. We will continute to denote

the bosonic coordinates by y, y. Thus, χα (χα) transforms as a section of the pullback

of V (V˚). In particular, the χ kinetic term is

2πL Ą χαDzχ
α
“ χαpB̄zχ

α
` B̄zy

IAαIβχβq , (A.39)

where A is a HYM connection on V with traceless curvature F “ B̄A.

Using the connection, we can easily describe the full set of operators that can give

rise to gauge-netural massless states in the (NS,R) sector (we ignore the universal
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gravitino and dilatino states and drop the normal ordering):

O4
pzq “ Ψ4

IBy
I , O5`6

pzq “ Ψ5α
β χαχ

β
`Ψ6I

pρI ´AαIβχαχβq . (A.40)

As in our discussion of states in the k “ 1 sector we suppressed the expansion of each

of these in η; taking that into account the wavefunctions correspond to the following

bundles:

Ψ4
P Γp‘uΩ

p0,uq
pT ˚Bqq , Ψ5

P Γp‘uΩ
p0,uq

pEndVqq , Ψ6
P Γp‘uΩ

p0,uq
pTBqq .

(A.41)

These states are Q0 closed iff Ψ4, Ψ5 and Ψ6 are B̄-closed and

obspΨ6
q ` B̄Ψ5

“ 0 , (A.42)

where obspΨ6
uq is a (0,u+1) B̄-closed form valued in (traceless) endomorphisms of V

obspΨ6
q
α
βJ0¨¨¨Ju

” Ψ6I
rJ1¨¨¨Ju

Fα
J0sIβ

. (A.43)

Taking cohomology, robspΨ6
uqs P H

u`1pB,EndVq. As explained in [3], at u “ 1 this

is the Atiyah class [13]—an obstruction to extending infinitesimal complex structure

deformations of the base B to infinitesimal complex structure deformations of the

holomorphic bundle V Ñ B. Thus, our states fit into the complex

O4
0

Q0 // O4
1

Q0 // O4
2

Q0 // O4
3

O5
0

‘

O6
0

Q0 //
O5

1

‘

O6
1

Q0 //
O5

2

‘

O6
2

Q0 //
O5

3

‘

O6
3

(A.44)

Taking Q0 cohomology we find

0 H1pT ˚q 0 // H2pT ˚q 0

H0pEndVq
‘

H0pT q

obs0 //
H1pEndVq

‘

H1pT q

obs1 //
H2pEndVq

‘

H2pT q

obs2 //
H3pEndVq

‘

H3pT q
.

(A.45)
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For traceless EndV on the CY 3-fold B

H0
pB,EndVq “ H3

pB,EndVq “ 0 , H2
pEndVq » H1pB,EndVq , (A.46)

so that the complex reduces to

0 H1pT ˚q
0 // H2pT ˚q 0

0
H1pEndVq

‘

H1pT q

obs1 //
H2pEndVq

‘

H2pT q
0

(A.47)

The only Atiyah obstructions arise in H1pB, T q Ñ H2pB,EndVq, and hence there

are

h1
pT ˚q ` h1

pT q ` h1
pEndVq ´ dim ker obs1 (A.48)

massless gauge-neutral singlets.

The patient reader who has made it to this last appendix may perhaps be aware

that in a (0,2) NLSM with a tree-levelH-flux there are additional obstructions similar

to the H1pB, T q Ñ H2pB,EndVq map just discussed [81]. The B-field coupling will

alter the η equations of motion and lead to H-flux appearing in Q0 ¨ρ, and we expect

that including this contribution should reproduce the result of [81]. It would be

useful to check that in detail.
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Appendix B

Obstructions to marginal couplings

B.1 An F-term obstruction

In this section we give an example, taken from [11], that illustrates both D-term and

F-term obstructions to marginal couplings. The setting is a (2,2) LG orbifold (LGO)

compactification of the heterotic string with a superpotential

W “ X4
0 `X

4
1 `X

4
2 `X

8
3 `X

8
4 ` ψX0X1X2X3X4 ` ε∆W . (B.1)

Here ψ and ε are parameters and ∆W is a generic polynomial with q “ 1. Marginal

(2,0) deformations of the LGO correspond to massless E6-neutral space-time chiral

multiplets. We can compute the massless spectrum exactly as a function of the

complex parameters in the superpotential using the technique developed in [61].

This leads to the following results.

1. Setting ψ “ ε “ 0 leads to a Up1q4 right-moving Kac-Moody algebra and 298

marginal (2,0) deformations. We now turn on the (2,2)-preserving ψ and ε de-

formations and investigate what happens to the remaining (2,0) deformations.

From above we know that at worst the marginal (2,0) deformations can become

marginally irrelevant.
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2. With ψ ‰ 0 but ε “ 0 the Up1q4 symmetry is broken, and the number of

marginal (2,0) deformations is 298´ 4´ 6 “ 288. While 4 of the 10 marginally

irrelevant deformations are associated to the broken symmetries the 6 others

are not.

3. Finally, turning on ε ‰ 0 does not break any continuous symmetries, but the

number of marginal (2,0) deformations decreases to 288´ 6 “ 282.

Note however, that all the singlets lifted by F-terms correspond to twisted sectors

of the LGO. This is consistent with there being no F-term obstructions in pure LG

theories.

B.2 A D-term obstruction in a heterotic vacuum

Consider now the (2,2) quintic LG theory coupled to a free left-moving fermion with

W “

5
ÿ

i“1

ΓiJipΦq “
5
ÿ

i“1

ΓipΦ4
i ` ψ

ź

j‰i

Φjq ` Γ6
ˆ 0 . (B.2)

The interacting fields have their usual Up1qL charges qi “ 1{5 and Qi “ ´4{5, and

for ψ ‰ 0 there are no extra Up1q symmetries in addition to Up1qL ˆUp1qR ˆUp1q6,

where Up1q6 is the symmetry associated to the free Γ6. This flows to a conformal

field theory with r “ 4 and c “ 9, and we can now consider deformations of the IR

theory from the general perspective of deforming by chiral primary operators. In the

(2,2) theory we have a good understanding of the map between the IR chiral primary

marginal operators and the UV data, so we can identify the marginal deformations

of the IR theory with the space of possible W modulo field redefinitions. If we keep

Γ6 free, we find a 301–dimensional space of deformations.

We can also include deformations of the form Γ6J6, where J6 is some generic

degree 5 polynomial. Although these break the Up1q6 symmetry, they preserve the

central charge and the Up1qL ˆUp1qR quantum numbers of the fields. In particular,
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Γ6 has the quantum numbers of a free field. Including these J6 deformations yields

a 402-dimensional space of marginal deformations away from the (2,2) r “ 4 c “ 9

fixed point.

Are all of these 402 marginal deformations exactly marginal? While all of the 301

deformations of the Ji are truly marginal, the 101 extra deformations associated to

J6 ‰ 0 are marginally irrelevant. This is completely clear from the conformal pertur-

bation theory discussion we gave in the text. All of these break the Up1q6 symmetry,

and every symmetry-breaking coupling has the same sign of Up1q6 charge. Let us

now see how the same result is recovered from a heterotic space-time perspective.

Heterotic insights

The Z5 orbifold of the LG theory just described, combined with an appropriate

heterotic GSO projection leads to a well-understood heterotic vacuum: the LG point

in the moduli space of the quintic compactification with standard embedding. The

massless fields of the resulting space-time N=1 d “ 4 supergravity theory consist

of the supergravity multiplet, the axio-dilaton chiral multiplet, the e6‘ e8 vector

multiplets, 326 gauge-neutral chiral multiplets, and a e6 charged chiral spectrum

27 ‘ 27
‘101

. The 301 deformations of the Ji described above correspond to e6-

preserving marginal deformations in the untwisted sector of the orbifold. These

remain truly marginal for any value of the Kähler modulus (itself in a twisted sector),

and at large radius they are the 101 complex structure deformations of the CY

quintic, as well as 200 of the 224 deformations of the tangent bundle. As reviewed

in [77], there are many arguments for why these deformations are truly marginal.

The 101 deformations associated with the J6 couplings also have a simple space-

time interpretation: they correspond to sop10q-singlet components of the 27
‘101

.

Turning on these deformations corresponds to Higgsing e6 Ñ sop10q. This makes it

obvious that the deformations are marginally irrelevant. Under the decomposition
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of e6 Ą sop10q ‘ up1q, we have

27 “ 16´1{2 ‘ 101 ‘ 1´2 . (B.3)

The sop10q singlets all have charge ´2 under the broken up1q, and hence have a

D-term space-time potential. This is an example of a “D-term” obstruction to a

marginal coupling being exactly marginal.

Since the deformation only involves world-sheet fields in untwisted sector of the

orbifold, it is clear by the orbifold inheritance principle that this obstruction to

marginality lifts to the un-orbifolded quintic LG model and matches the confor-

mal perturbation theory result. In the orbifold theory it is possible to find exactly

marginal deformations that Higgs e6 Ñ sop10q [34], but they involve an interplay

between marginal couplings in twisted and untwisted sectors [77].
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Appendix C

GLSMs details

C.1 Linear model conventions

C.1.1 (0,2) superspace

We work in (0,2) superspace1 with coordinate x˘, θ`, θ
`

. The supercharges are given

by

Q` “
B

Bθ`
` iθ

`∇` , Q` “ ´
B

Bθ
`
´ iθ`∇` , (C.1)

where B` “ B{Bx` and ∇` is the covariant gauge derivative. We also have the

superderivatives

D` “
B

Bθ`
´ iθ

`∇` , D` “ ´
B

Bθ
`
` iθ`∇` . (C.2)

The non-trivial anti-commutation relations are

tQ`,Q`u “ ´2i∇` , tD`,D`u “ 2i∇` . (C.3)

C.1.2 Field content

There are two types of multiplets in the (0,2) models we consider in this work.

1 More details may be found in [94].
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1. Gauge fields multiplets. We have

Va,´ “ va,´ ´ 2iθ`λa,´ ´ 2iθ
`
λa,´ ` 2θ`θ

`
Da ,

Σµ “ σµ `
?

2θ`λµ,` ´ iθ
`θ
`
B`σµ , (C.4)

where a “ 1, . . . , R and µ “ 1, . . . ,m. The multiplets Σµ are neutral chiral

multiplets which in (2,2) theories 2 combine with the (0,2) gauge multiplets

into (2,2) gauge multiplets. The twisted chiral gauge invariant field strength is

defined as

Υa “ rD`,∇´s

“ iD`Va,´ ` θ`∇´va,`

“ ´2λa,´ ´ iθ
`
pDa ´ ifa,01q ´ iθ

`θ
`
B`λa,´ . (C.5)

2. Matter multiplets. Here we have bosonic chiral (anti-chiral) multiplets

Pα
“ pα `

?
2θ`χα ´ iθ`θ

`∇`pα , P
α
“ pα ´

?
2θ
`
χα ` iθ`θ

`∇`pα ,

Φi
“ φi `

?
2θ`ψi ´ iθ`θ

`∇`φi , Φ
i
“ φ

i
´
?

2θ
`
ψ
i
` iθ`θ

`∇`φ
i
,

S “ s`
?

2θ`ξ` ´ iθ
`θ
`∇`s , S “ s´

?
2θ
`
ξ` ` iθ

`θ
`∇`s , (C.6)

where α “ 1, . . . , k and i “ 1, . . . , n. We also have fermionic matter multiplets,

which we again divide into three groups

ΓI “ γI ´
?

2θ`GI
´ iθ`θ

`∇`γI ´
?

2θ
`
EI
pΦ,Σq ,

ΛA
“ ηI ´

?
2θ`FA

´ iθ`θ
`∇`ηA ´

?
2θ
`
EA
pP,Φ,Σq ,

Ξ “ ξ´ ´
?

2θ`K ´ iθ`θ
`∇`ξ´ , (C.7)

2 In (2,2) theories we have R “ m.
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as well as their complex conjugate

Γ
I
“ γI ´

?
2θ
`
G
I
` iθ`θ

`∇`γI ´
?

2θ`E
I
pΦ,Σq ,

Λ
A
“ ηI ´

?
2θ
`
F
A
` iθ`θ

`∇`ηA ´
?

2θ`E
A
pP ,Φ,Σq ,

Ξ “ ξ´ ´
?

2θ
`
K ` iθ`θ

`∇`ξ´ . (C.8)

Here the indices are I “ 1 . . . , N and A “ 1, . . . , L.

C.1.3 The action

Let us list the various terms that appear in the action for the (0,2) linear models we

consider in this work. We have the kinetic term for the gauge fields3

LG,K “
1

8e2

ż

d2θ` Tr ΥaΥa “
1

2e2

“

2iλa,´B`λa,´ `D
2
a ` f

2
a,01

‰

, (C.9)

as well as the kinetic term for the Σµ fields

LΣ,K “
i

2e2

ż

d2θ`Σµ∇´Σµ “
1

e2

“

B`σµB´σµ ` iλµ,`B´λµ,`
‰

. (C.10)

Then we have the kinetic terms for the various matter fields. These are given as

LΦ,K “
i

2

ż

d2θ`Φ
i∇´Φi

“
1

2

´

∇`φ
i∇´φi `∇´φ

i∇`φi
¯

` iψ
i∇´ψi

` i
?

2qai

´

ψ
i
λa,´φ

i
´ φ

i
λa,´ψ

i
¯

` qaiDaφ
i
φi ,

LΓ,K “
1

2

ż

d2θ`Γ
I
ΓI “ iγI∇`γI `G

I
GI
´ E

I
EI

´ γIEI
,jψ

j
´ γIEI

,µλµ,` ´ E
I

,jψ
j
γI ´ E

I

,µλµ,`γ
I , (C.11)

3 For simplicity, we have set equal all gauge coupling constants.
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and similarly

LP,K “
i

2

ż

d2θ`P
α∇´Pα

“
1

2
p∇`pα∇´pα `∇´pα∇`pαq ` iχα∇´χα

´ i
?

2ma
α

`

χαλa,´p
α
´ pαλa,´χ

α
˘

´ma
αDap

αpα ,

LΛ,K “
1

2

ż

d2θ`Λ
A

ΛA
“ iηA∇`ηA ` F

A
FA

´ E
A
EA

´ ηAEA
,jψ

j
´ ηAEA

,µλµ,` ´ E
A

,jψ
j
ηA ´ E

A

,µλµ,`η
A ,

LS,K “
i

2

ż

d2θ`S∇´S “
1

2
p∇`s∇´s`∇´s∇`sq ` iξ`∇´ξ`

` i
?

2pma
´ daq

`

ξ`λa,´s´ λa,´ξ`s
˘

` pma
´ daqDass ,

LΞ,K “
1

2

ż

d2θ`ΞΞ “ iξ´∇`ξ´ `KK . (C.12)

The Fayet-Iliopoulos terms action arises as a linear twisted superpotential for the

twisted chiral fields Υa

LF-I “
1
4

ż

dθ`Υaτ
a
ˇ

ˇ

θ
`
“0
` h.c. “ ´Dar

a
`
θa

2π
fa,01 , (C.13)

where τa “ ira ` θa{2π are the complexified F-I parameters. Finally, the matter

superpotential is a sum of three terms

LJ “ ´
1
?

2

ż

dθ`ΓIJIpP,Φq
ˇ

ˇ

θ
`
“0
` h.c. “ GIpαJIα ` γ

IpαJIα,jψ
j
` γIJIαχ

α
` h.c. ,

LH “ ´
1
?

2

ż

dθ`ΛAHIpΦq
ˇ

ˇ

θ
`
“0
` h.c. “ FAHA ` η

AHA,jψ
j
` h.c. ,

LS “ ´
1
?

2

ż

dθ`ΞS
ˇ

ˇ

θ
`
“0
` h.c. “ Ks` ξ´ξ` ` h.c. . (C.14)

The last term explicitly shows that all the excitations of the spectator fields are

massive and they do not affect the low energy physics. In (C.14) we implemented

the form for the superpotential (4.7).
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C.2 The half-twist

In order to probe for a background space-time superpotential W it is convenient to

half-twist the model, that is we twist by JH “ JR{2, where JR is the generator of the

right-moving R-symmetry. We implement this by redefining the Lorentz generator

JL as

J 1L “ JL ´ JR{2 . (C.15)

Explicitly, for the gauge fields we have

fields σµ σµ λ`,µ λ`,µ λ´,a λ´,a

JL 0 0 1
2

1
2

´1
2

´1
2

J 1L ´1
2

1
2

1
2

1
2

´1 0

(C.16)

while for the matter fields we have instead

fields pα pα φi φ
i

χα χα ψi ψ
i

JL 0 0 0 0 1
2

1
2

1
2

1
2

J 1L ´1
2

1
2

0 0 1
2

1
2

1 0

(C.17)

and

fields ηA ηA γI γI s s ξ` ξ` ξ´ ξ´

JL ´1
2

´1
2

´1
2

´1
2

0 0 1
2

1
2

´1
2

´1
2

J 1L ´1 0 ´1
2

´1
2

´1
2

1
2

1
2

1
2

´1
2

´1
2

(C.18)

In the twisted model the supercharge Q` becomes a worldsheet scalar. Q`-exact

operators will decouple from the correlators of Q`-closed fields, to which we restrict

our attention. In particular, the kinetic terms for all fields are Q`-exact up to a

topological term determined by the gauge bundle on the world-sheet Σ “ P1 via the

instanton numbers

na “ ´
1

2π

ż

fa,01 . (C.19)
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The integral over field configurations breaks up into a sum over topological sectors

indexed by na. For r P KV , these lie in K_V , and the classical action weights the

contribution of each sector by
ś

a q
na
a where qa “ e´2πra`iθa . Extracting this topo-

logical contribution we can perform the computation within each topological sector

semiclassically, and the path integral reduces to an integral over the zero modes of

the fields.

The space of zero modes to which the path integral reduces in each sector can be

represented as the space of (anti-) holomorphic sections of appropriate line bundles

over Σ. Explicitly, the gauge fields take values in

σa Ø K
1
2 σa Ø K

1
2

λ`,µ Ø K
1
2 λ`,µ Ø K

1
2

λ´,a Ø K λ´,a Ø O

(C.20)

where K “ Op´2q is the canonical bundle. For the matter fields we have instead

pα Ø K
1
2 bOpdαq pα Ø K

1
2 bOpdαq

φi Ø Opdiq φi Ø Opdiq

ψi Ø K bOp´diq ψ
i

Ø Opdiq

γI Ø K
1
2 bOpDIq γI Ø K

1
2 bOp´DIq

ηA Ø K bOpDAq ηA Ø Op´DAq

χα Ø K
1
2 bOp´dαq χα Ø K

1
2 bOpdαq

s Ø K
1
2 bO pdSq s Ø K

1
2 bO pdSq

ξ` Ø K
1
2 bO p´dSq ξ` Ø K

1
2 bO pdSq

ξ´ Ø K
1
2 bO p´dSq ξ´ Ø K

1
2 bO pdSq

(C.21)

where the various degrees are defined as

dα “ ´m
a
αna , di “ qai na , DI “ Qa

Ina , DA “ ´d
a
Ana , dS “ pm

a
´ daqna .

(C.22)

Note that it turned out to be convenient to use a hermitian metric on the appropriate

bundles on P1 to redefine some of the fields [64]. By examining the half-twisted action
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it is possible to show that the couplings τa as well as H, J and E only appear in

Q`-exact terms. One very important consequence of this for us is that in the half-

twisted theory, correlators of Q`-closed operators are holomorphic in J, H and E,

thus for the purpose of our computations we can set J “ H “ E “ 0.
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