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Präambel

Ich bestätige, dass es sich bei der hier vorgelegten Dissertation um eine Origi-
nalarbeit handelt, die von mir selbstständig angefertigt und abgefasst wurde.
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Abstract. The majority of the experimental knowledge about QCD observables
is contained in the excited hadron spectrum. The present thesis provides an ab-
initio, non-perturbative determination of the excited meson and baryon spectrum,
using the lattice regularization of QCD. We use a Hybrid Monte Carlo algorithm to
generate seven ensembles with two flavors of dynamical Chirally Improved quarks.
The advantages of the improved action lie in small discretization effects and frequent
tunneling of topological sectors, reducing autocorrelation. The pion masses are in
the range of 250 to 600 MeV, the results are extrapolated to the physical pion
mass. Three further ensembles are generated to investigate finite volume effects and
to perform the infinite volume limit for specific observables. The strange hadron
spectrum is accessed using partial quenching for the strange quark. The variational
method is applied to access excited states and also to investigate the content of
the physical states. The latter applies in particular to the approximate C-parity of
strange mesons, the singlet/octet mixing of Λ baryons and the octet/decuplet mixing
of Σ and Ξ baryons. The construction of interpolators is discussed for specific
cases. In some baryon channels, Fierz identities force point-like interpolators to
vanish exactly. We show that interpolators can be constructed nevertheless and
propose two strategies, based on quark smearing and the Rarita-Schwinger condition,
respectively. In general, our results compare nicely with experiment, and we even
predict some new states and allow for insights concerning the content of the physical
states. Part of the work has been published in [1–6], and further publications are in
preparation.
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Zusammenfassung. Aus dem Experiment wissen wir, dass fast alle Hadro-
nen angeregte Zustände sind. Die vorliegende Dissertation liefert eine ab-initio,
nicht-perturbative Bestimmung des angeregten Meson- und Baryonspektrum unter
Verwendung der Gitter-Regularisierung von QCD. Mit Hilfe eines Hybrid Monte
Carlo Algorithmus werden sieben Ensembles mit zwei dynamischen Chirally Im-
proved Quarks erzeugt. Die Vorteile der verbesserten Wirkung liegen in kleinen
Diskretisierungseffekten und häufigem Tunneln der topologischen Sektoren, was eine
geringe Autokorrelation zur Folge hat. Die Pionmassen in der vorgelegten Arbeit
liegen im Bereich von 250 bis 600 MeV, die Resultate werden zur physikalischen Pion-
masse extrapoliert. Drei weitere Ensembles für unterschiedliche Gittergrößen werden
erzeugt um Effekte des endlichen Volumens zu untersuchen und um den Limes zu
unendlichem Volumen für bestimmte Observablen durchzuführen. Strange Quarks
werden durch Partial Quenching eingeführt. Mit Hilfe der sogenannten Variations-
methode studieren wir angeregte Zustände und erforschen den Inhalt der physikalis-
chen Zustände. Insbesondere untersuchen wir die C-Parität von strange Mesonen,
das Mischen von Singlet und Oktett in Λ Baryonen und das Mischen von Oktett
und Dekuplet in Σ und Ξ Baryonen. Die Konstruktion von Interpolatoren wird
explizit für bestimmte Fälle diskutiert. In einigen Baryon Kanälen erzwingen Fierz-
Identitäten ein exaktes Verschwinden von punktförmigen Interpolatoren. Wir zeigen,
dass dennoch Interpolatoren konstruiert werden können, und schlagen zwei Strate-
gien dafür vor, welche sich auf ausgedehnte Quarkquellen bzw. die Rarita-Schwinger
Bedingung stützen. Im Allgemeinen zeigen unsere Resultate gute Übereinstimmung
mit dem Experiment. Darüber hinaus können wir auch einige Vorhersagen machen
und finden Einblicke in den Inhalt der physikalischen Zustände. Teile der Arbeit
wurden in [1–6] publiziert, und weitere Publikationen sind in Vorbereitung.
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Chapter 1

Introduction

The proton is known as a part of the nuclei since 1919, when Rutherford showed
that oxygen can be produced by shooting alpha-particles at a target of nitrogen. In
the following decades, many further “elementary particles” were discovered, which
lead to the so-called “particle zoo” [7]. To understand this extensive list of particles,
it was conjectured in 1964 that the proton itself is not an elementary particle, but
a bound state of quarks [8, 9]. A new force binding the quarks was introduced and
called strong interactions, with gluons being the transmitter of this force. A quantum
gauge field theory with three different kinds of charges (colors) was suggested in
1973, named Quantum Chromodynamics (QCD) [10]. This theory has only very few
parameters, can be formulated in a very compact and elegant way, and is expected
to predict the proton and the entire hadronic part of the particle zoo.

However, despite the beauty of the theory, one encounters tremendous difficulties
when trying to calculate predictions for Nature. An analytic solution is not found
so far and hope disappears that it will ever be. The traditional instrument to deal
with a quantum field theory, perturbation theory in the coupling, fails to describe
the generation of hadrons, the bound states of quarks. The origin of its failure lies in
its crucial dependence on small couplings, whereas strong interactions show a strong
coupling at the typical scale of hadrons.

There was significant progress in understanding QCD through the development of
Chiral Perturbation Theory, which is an expansion in low momenta and small quark
masses [11,12]. It was found that most of the proton mass is generated dynamically
through strong interactions. One mechanism of dynamical generation of masses has
been known already since 1961 and relies on dynamical symmetry breaking [13,14].
However, all those approaches do not use quarks and gluons as fundamental degrees
of freedom, but start from an effective description which ignores the gauge symmetry
of color.

In 1974, the lattice regularization of QCD was introduced by Kenneth G. Wil-
son [15]. So far, it provides the only known way to perform ab-initio calculations
starting from quarks and gluons. Furthermore, it is assumed to provide an inter-
acting constructive quantum field theory in four dimensions with a rigorously valid
mathematical foundation. However, any calculation of observables in lattice QCD
requires a profound theoretical setup, sophisticated algorithms and extensive com-
puter resources. Concerning the theoretical setup, for example chiral symmetry is

1



2 Chapter 1. Introduction

an obstacle, since it is broken by the discretization of spacetime explicitely [16]. This
causes serious concerns, since it impedes the dynamical breaking of chiral symmetry
which contributes significantly to the mass generation of hadrons.

Using renormalization group methods, it was observed in 1981 that a solution
might be Dirac operators obeying a non-linear relation, the so-called Ginsparg-
Wilson (GW) condition [17]. By now we know several Dirac operators obeying that
condition. One of them, the overlap operator [18, 19], has an explicit construction
based on a domain-wall approach [20, 21] in the limit of infinite extent of a fifth
dimension. Another formulation, the perfect action, is formally exact [22], but
can be constructed only approximately [23]. Finally it was found that there exists
an exact version of chiral symmetry on the lattice, which, however, is much more
complicated than its continuum counterpart [24]. Thus, Dirac operators supporting
exact chiral symmetry on the lattice are numerically expensive to construct but
they also show nice properties like protection from additive mass renormalization or
automatic O(a) improvement. In general, simulations with dynamical GW-fermions
are about two orders of magnitude more expensive than simulations with the simple,
improved Wilson fermions.

The so-called Chirally Improved (CI) Dirac operator, used in this work, is an
approximate solution of the Ginsparg-Wilson equation [25, 26]. It is constructed
by inserting a formal parameterization of the Dirac operator in the GW-equation
and solving it after truncation. This fermion action has been investigated and used
extensively in simulations by the BGR-collaboration [1–6,25–48]. It was found that
at least in quenched simulations the discretization errors of order O(a2) for baryon
masses are small [29] and that renormalization constants behave similar to an exact
chirally symmetric action [33]. The numerical costs are between the one of improved
Wilson and exact GW-actions, which is adequate considering the improved chiral
properties.

The present thesis focuses on the excited hadron spectrum obtained from two
flavors of dynamical Chirally Improved quarks. The main motivation for this work
lies in the fact that most of the experimental knowledge about QCD observables is
contained in the excited hadron spectrum. Thus, an ab-initio calculation of them
starting only from the QCD Lagrangian is highly desirable. Only in recent years
there have been lattice calculations with dynamical quark masses close to their phys-
ical values, most calculations still rely on extrapolations from unphysically heavy
quarks. A reliable determination of the excited states still remains a hard challenge.

We present results for ground states as well as for excited states of mesons and
baryons, making use of the variational method [49,50]. We generate seven ensembles
with pion masses in the range of 250 to 600 MeV. Motivated by leading order Chiral
Perturbation Theory, the extrapolation to the physical pion mass is performed using
a fit linear in the pion mass squared. In addition to the light (dynamical and
valence) quarks we also consider another, heavier valence (strange) quark and include
the strange mesons and baryons in our analysis. Whenever accessible, we extract
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information about the content of states from the variational analysis. This applies
for example to the Dirac content, the approximate C-parity of strange mesons,
the singlet/octet mixing of Λ baryons and the octet/decuplet mixing of Σ and Ξ
baryons. The construction of interpolators is discussed for specific cases. Due to
limited computational resources, we do not perform a continuum limit. This may be
justified considering the small discretization errors of the used action. Non-negligible
finite volume effects are expected in some of our ensembles. These are discussed for
specific observables using lattices of different volumes. Part of the work has already
been presented in [1–6], and further publications are in preparation.

Recent results on light and strange hadron spectroscopy with focus on excited
states following different approaches can be found in [51–71]. Recent proceeding
articles related to plenary talks about hadron spectroscopy on the lattice are found
in [72,73].

In continuum quantum field theory there has been recent progress in investiga-
tions of the hadron spectrum using truncations of the Schwinger-Dyson equations,
the Bethe-Salpeter equation and the Fadeev equation, as well as effective field the-
ories (see for examples Refs. [74–84]).

All results for the hadron spectrum presented in this work refer to the discrete
spectrum of the Hamiltonian. Very recently, there is also significant progress in
determining properties of resonances in the infinite system from simulations using
finite lattices. Corresponding results are found in [85–96]. Methods for determining
resonance parameters from finite lattices have been introduced and discussed in
[97–107].

Finally, we stress that the present thesis discusses only the implications of the
QCD Lagrangian with two light mass-degenerate quarks on a finite lattice. Elec-
troweak dynamics, isospin breaking corrections, further sea quarks and discretization
effects are neglected. We discuss finite volume effects for specific observables but we
do not determine properties of resonances in the infinite system.

This thesis is organized as follows. We briefly introduce the continuum formu-
lation of QCD in Chapter 2. Some important aspects of the lattice regularization
of QCD are reviewed in Chapter 3. Next, the setup of our simulation is detailed
in Chapter 4. Chapter 5 briefly discusses the properties of the simulation. The
scale and low energy parameters are determined in Chapter 6. The results for the
meson and baryon spectrum in finite lattices are presented in Chapters 7 and 8,
respectively. Finite volume and other systematic effects are discussed in Chapter 9.
Finally, we conclude in Chapter 10. Appendix A includes details about the Chirally
Improved Dirac operator. Discussion and tables of meson and baryon interpolators
are found in Appendices B and C, respectively. Tables with energy levels and χ2 of
fits are collected in Appendix D.
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Chapter 2

QCD in the Continuum

Quantum Chromodynamics (QCD) is the quantum field theory describing the in-
teraction of quarks and gluons [10]. It is very rich in phenomena, asymptotically
free, and a number of arguments suggest that it is a strictly confining theory, even
though a rigorous proof is yet missing. The interaction is determined by the gauge
symmetry principle with the color gauge group SU(3). This means that at each
space-time point, there is a local symmetry transformation with eight local param-
eters, describing rotations in an internal color space.

While the first formulation of a quantum field theory used the canonical quan-
tization of fields, the functional integral representation became popular in recent
decades. In this formalism, the fields are represented by numbers, not by operators.
Nevertheless, with an abuse of notation, we will use the notion of operator as well,
switching between the two pictures occasionally.

In the functional integral, the central object is the partition sum Z, obtained by
integrating over all fields with a weight factor given by the action. For QCD, this
reads

Z =

∫

D
[

Aµ
]

D
[

ψ
]

D
[

ψ̄
]

ei
R

d4xL[Aµ,ψ,ψ̄] , (2.1)

where Aµ is the gauge field, ψ (ψ̄) the quark (antiquark) field, and D[.] the integra-
tion measure of the respective fields. L is the QCD Lagrangian density (which will
be referred to just as Lagrangian), given by

L[Aµ, ψ, ψ̄] =

Nf
∑

f=1

ψ
(f)

(x)
[

iγµDµ(x)−m(f)
]

ψ(f)(x)

− 1

2g2
tr
[

Fµν(x)Fµν(x)
]

(2.2)

Dµ(x) = ∂µ − iAµ(x)
Fµν(x) = i

[

Dµ(x),Dν(x)
]

= ∂µAν(x)− ∂νAµ(x) + i
[

Aµ(x), Aν(x)
]

, (2.3)

where f denotes the flavor and matrix/vector notation is used for color and spinor
components. γµ are the Dirac matrices, m(f) are the quark masses and g is the
QCD coupling constant. Since SU(3) is a non-abelian Lie group, the commutator in
Eq. (2.3) does not vanish, giving rise to gluonic self-interaction already at tree-level.

5
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In general, the integral Eq. (2.1) is divergent for several reasons. Due to the
gauge symmetry, the integral over the fields contains infinitely many gauge copies
with the same physical content. This can be overcome by fixing the gauge. However,
on a finite lattice with a compact gauge group, the integral over the copies converges.
If one is interested in gauge-invariant observables only, one can calculate them on
the lattice without fixing the gauge. This path is pursued in the present work.

Further divergencies appear from the quantum fluctuations in interacting quan-
tum field theories. The solution to this problem was found in regularization of the
functional integral combined with a renormalization of the parameters of the La-
grangian. The parameters show a scale dependence, a prominent representative of
which is the running coupling. In this way, the quantum fluctuations create a scale
for the theory, which lies at the heart of the dynamical mass generation of hadrons.

For a long time, perturbation theory was the standard tool to investigate quan-
tum field theories. However, from simple models, it is expected that the mech-
anism of mass generation is intrinsically non-perturbative. Thus, one needs non-
perturbative tools when trying to discuss hadrons using quarks and gluons as ele-
mentary degrees of freedom. The lattice is a non-perturbative regulator, which is
introduced in the next Chapter.

Finally, we stress that chiral symmetry is an important property of QCD. Many
features, like the appearance of Nambu-Goldstone bosons or the mass generation
of hadrons, are expected to be strongly related to spontaneous chiral symmetry
breaking [13,14,108,109]. In the present work, we use a discretization of the Dirac
operator with improved chiral properties. The resulting action is used to investigate
the dynamical mass generation of hadrons in various channels.



Chapter 3

QCD on the Lattice

In this chapter, we briefly review the fundamental properties of lattice field theory.
In Section 3.1, its first formulation is introduced. Secion 3.2 discusses physics and
symmetries on the lattice and finally also the connection to physical observables.

3.1 The Lattice Regulator

The lattice was introduced as a regulator for the ultraviolet divergencies in quantum
field theories by Kenneth G. Wilson [15]. Euclidean spacetime is discretized by
defining a minimum distance, the lattice spacing a. Consequently, there is a hard
momentum cutoff and the Poincaré group is broken to a discrete subgroup. There
are further consequences, which will be discussed later. By now, there is a number
of excellent books on lattice field theory [110–118].

An important feature of lattice gauge theory is that the construction is such that
the gauge symmetry is preserved. This is achieved by putting the quarks on the
sites of the lattice, while identifying the gluons with the links connecting these sites
(see Figure 3.1). The gluons are group-valued objects and identical to the gauge-
transporters, which allow for a construction of spatially extended gauge-invariant
terms.

The continuum theory is recovered by taking the continuum limit of the lattice
theory. Due to asymptotic freedom of QCD, the continuum limit is obtained by
sending the coupling to zero: g → 0. However, the rigorous proof of existence of
this limit is still missing.

A senseful lattice gauge action can be obtained by a näıve discretization of the
continuum gauge action (see Eq. (2.2)). The resulting Wilson gauge action reads

SG =
β

3

∑

n

∑

µ<ν

Re tr
[1− Uµν(n)

]

, (3.1)

with the inverse coupling β = 6/g2, the plaquette

Uµν(n) = Uµ(n)Uν(n+ µ̂)Uµ(n + ν̂)†Uν(n)† , (3.2)

and the gauge fields U , color indices being implicit. µ̂ denotes a vector in µ direction
with the length of one lattice unit. The näıve discretization of the fermion action,

7



8 Chapter 3. QCD on the Lattice

Gluon Quarks

a

Figure 3.1: The lattice regulator. Quarks sit on the sites, gluons on the links. The
green curves represent the closed boundary conditions and a denotes the lattice
spacing.

however, runs into the so-called doubling problem. Quantizing a theory with one
fermion in four Euclidean dimensions, one ends up with a total of sixteen fermions.
This doubling is related to the fermionic dispersion relation and chiral symmetry, ex-
pressed in the celebrated No-Go Theorem for regularizing chiral fermions by Nielson
and Ninomiya [16]. The doublers can be removed by adding the Wilson-term, which
consequently breaks chiral symmetry explicitely. The resulting Wilson fermion ac-
tion reads

SF = a4
∑

n,m

∑

f

ψ
(f)

(n)D(f)(n,m)ψ(f)(m) , (3.3)

with the quarks ψ, antiquarks ψ, and the Wilson Dirac operator

D
(f)
W (n,m) =

(

m(f) +
4

a

)

δn,m −
1

2a

±4
∑

µ=±1

(

1− γµ
)

Uµ(n) δn+µ̂,m , (3.4)

where f denotes the flavor, γ−µ ≡ −γµ are Dirac matrices, and color and spinor
indices are implicit.

The Wilson action is only one of many possible lattice actions, which are all
expected to lie in the same universality class, i.e., to make the same predictions for
physical observables as a → 0. Including further terms in the action, it is possible
to improve the scaling behavior and to reduce discretization errors. The Symanzik
improvement program [119,120] provides a systematic tool for this goal. Symanzik
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effective theory is a continuum theory with a parametrization of discretization ef-
fects. This parametrization can be influenced by tuning the construction of the lat-
tice operators. In particular, lattice operators can be improved by including higher
dimensional terms, with coefficients such that the parametrization of discretization
effects in Symanzik effective theory approaches zero. In principle, improvement is
possible to arbitrary order. However, experience shows that the additional costs due
to improvement are of the same order of magnitude as the savings stemming from
simulating at coarser lattices. Therefore, in most cases, one is satisfied with O(a)
improvement, leaving only the smaller O(a2) discretization errors. Another reason
is that O(a2) improvement is rather difficult to achieve in the fermionic sector, since
it requires evaluations corresponding to tetraquark operators.

3.2 Physics on the Lattice

In this section, we discuss discretized physics and its connection to continuum
physics. Section 3.2.1 investigates chiral symmetry on the lattice, in Section 3.2.2,
the issue of Poincaré symmetry is explored. Finally, Sections 3.2.3 and 3.2.4 deal
with the relation between lattice physics and continuum phenomenology.

3.2.1 Chiral Symmetry

As already mentioned in Chapter 2, chiral symmetry is a very important property
of QCD. Unfortunately, on the lattice, chiral symmetry is intimately connected with
the appearance of doublers [16]. In the continuum limit, chiral symmetry is well
recovered. Nevertheless, at presence, lattice simulations are performed at lattice
spacings far from the continuum limit, where the symmetry is absent.

However, also at finite lattice spacing, an exact chiral symmetry can be estab-
lished on the lattice, provided the Dirac operator obeys the non-linear Ginsparg-
Wilson (GW) equation [17]

Dγ5 + γ5D = aD γ5D . (3.5)

The corresponding lattice chiral symmetry transformation then reads [24]

ψ′ = eiαγ5Ti(1− a
2
D)ψ , ψ

′
= ψeiαTi(1− a

2
D)γ5 , (3.6)

with generators Ti and a parameter α. In the continuum limit, this transformation
converges to the usual chiral symmetry transformation. Note that the symmetry
transformation involves the Dirac operator and therefore is different on different
gauge configurations.

Several exact and approximate solutions to Eq. (3.5) have been found. The
first ansatz for chiral symmetry on the lattice was to introduce a fifth dimension,
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such that in the effective theory of the four-dimensional subspace a chiral symmetry
appears [20,21]. In actual simulations this is only an approximate solution, since it
becomes exact only in the limit of an infinite extent of the fifth dimension. This limit
has been performed analytically, leading to the overlap operator [18, 19], of which
an explicit construction is known. Perfect fermions have been introduced using the
renormalization group [22]. Formally, they solve the GW equation exactly, but only
an approximate version can be constructed explicitely [23]. The Chirally Improved
Dirac operator [25] is another approximate solution and will be discussed in detail
in Section 4.1.

3.2.2 Poincaré Symmetry

The lattice breaks the Poincaré group to a discrete subgroup with a finite num-
ber of irreducible representations (irreps). The discrete translational group nicely
converges to its continuum version. In particular, the number of irreducible repre-
sentations, the Fourier modes, become dense and thus span a continuous space in
the limit a→ 0.

The discretization of the rotational group SU(2) leads to its subgroup 2O, which
is the universal covering of the octahedral (also called cubic) group O. Most con-
tinuum irreducible representations (all spins J ≥ 2) become reducible when the
symmetry is restricted to this subgroup. The resulting irreducible representations
and their coupling to the continuum spin states have been worked out [121], given
in Table 3.1. These irreducible representations are completely independent of the

Irrep of 2O Dim. of irrep Continuum spin J

A1 1 0,4...
A2 1 3,6...
E 2 2,4,5...
T1 3 1,3,4,5...
T2 3 2,3,4,5...

G1 2 1
2 ,

7
2 ,

9
2 ,

11
2 ...

G2 2 5
2 ,

7
2 ,

11
2 ...

H 4 3
2 ,

5
2 ,

7
2 ,

9
2 ,

11
2 ...

Table 3.1: Irreducible representations (irreps) of the rotational group 2O on the
lattice, given in the first column. Their dimension and the lowest continuum spin
states they couple to are given in the second and third column, respectively.

lattice spacing. Consequently, the continuum irreducible representations (spin) are
not recovered in a trivial way as we take a→ 0.

However, each spin state has a unique degeneracy pattern of the lattice irreps.
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This is obvious from the different dimensionality of the irreps. Following all energy
levels of the theory to the continuum limit, there is thus, in principal, a way to
uniquely assign a continuum spin to a given lattice state, by analyzing the degeneracy
of different lattice irreps. Unfortunately, this procedure does not work in practice.
The spectrum of QCD is too rich, and, presently, the statistics of the simulations
too weak, to allow for a precise statement about degeneracies of the energy levels.
Recently, there is also another, more pragmatic suggestion for spin assignment [122].
One constructs several operators in the same lattice irrep with different spin in
the näıve continuum limit. Their different couplings to a considered state, and in
particular the continuum limit of these couplings can be interpreted as information
about the spin content of the state.

In the present work, we construct only interpolators with a näıve continuum
limit of the smallest spin for a given lattice channel. Correspondingly, all results
are expected to assign to the smallest continuum spin in each given lattice channel.
Nevertheless, contributions from higher spin states cannot be excluded and appear
in particular at large lattice spacings.

3.2.3 Observables and Euclidean Correlators

In quantum field theory, many observables are extracted from correlation functions.
In the Euclidean formulation (obtained from the Minkowskian theory after Wick-
rotation to imaginary time) and at zero temperature, a correlator of two operators
Ô1, Ô2, behaves as a sum of exponentials

〈Ô2(t)Ô1(0)〉 =
∑

n

〈0|Ô2|n〉〈n|Ô1|0〉e−tEn , (3.7)

which can easily be shown by insertion of a complete set of eigenstates |n〉 of the
Hamiltonian. En denote eigenvalues of the Hamiltonian, t denotes Euclidean time.
In the functional integral approach, this correlator is given by

〈Ô2(t)Ô1(0)〉 =
1

Z

∫

D
[

U
]

D
[

ψ̄, ψ
]

e−SG[U ]e−SF [ψ,ψ̄,U ]O2(t)O1(0) , (3.8)

where SG and SF are the gauge and the fermion action, and the gluon and (anti)quark
fields are integrated over. Note that the right hand side of this equation is expressed
in a language without operators. Due to the simple Grassmannian calculus, the
fermionic integration can be carried out analytically. Consider, for instance, an
isovector meson correlator of the simple interpolator Ô = dΓu, then fermionic inte-
gration yields

〈Ô(t)Ô†(0)〉 = ± 1

Z

∫

D
[

U
]

e−SG[U ][det(D)]nf tr
[

D−1(0, t)ΓD−1(t, 0)Γ
]

,

(3.9)
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where the sign depends on the choice of Γ, and nf is the number of mass-degenerate
flavors (simulation of non-mass-degenerate dynamical flavors is possible but not
considered in this work). This expression can be evaluated numerically on the lattice.
The integration over the gauge fields is performed using Monte Carlo methods, where
the gauge action and the fermion determinant enter the importance sampling (see
Section 4.2). The remaining trace over the quark propagators is calculated on each
configuration.

Finally, the energy levels En and overlap factors 〈n|Ô|0〉 are obtained from a
fit according to Eq. (3.7). A sophisticated method to extract excited states will be
discussed in Section 4.3.5. We stress that since the time t is accessible only in lattice
units a, also the energy levels can be extracted only in units of 1/a in the first place.

3.2.4 Setting the Scale

In lattice simulations, all observables are dimensionless. Thus, one input observable
is needed to set the scale, which then enters all dimensionful predictions from the
lattice. In general, the scale is not defined a priori in renormalizable quantum field
theories. In pure gauge theory there is a one-to-one mapping of this scale to the
only one parameter, the running coupling.

Doing light and strange hadron spectroscopy, under the assumption of isospin
symmetry, three parameters enter the simulation: the light quark mass parameter
ml, the strange quark mass parameter ms and the inverse coupling β. Therefore,
three inputs from experiment are needed to make predictions at the physical point.

In general, varying the three parameters, one obtains a three-dimensional hy-
persurface. The physical point is one point lying in this hypersurface, which can be
found by intersecting the hypersurface with a curve. In some cases a much easier
procedure is available, given by setting one parameter after the other. This will be
discussed in more detail in Sections 4.4.1 and 6.



Chapter 4

Setup of the Simulation

In this chapter, the setup of our simulation is described. In Section 4.1, we discuss
the lattice action of choice. Section 4.2 introduces the numerical evaluation of the
functional integral using Monte Carlo techniques. Then, in Section 4.3, several
common methods of hadron spectrosopy are presented. Finally, Section 4.4 discusses
the connection of lattice results to Nature, with emphasis on hadron phenomenology.

4.1 Action

4.1.1 The Improved Gauge Action

As already discussed, discretization effects can be reduced following Symanzik’s im-
provement program [119,120]. In the gauge sector, some constraints on the improved
action can be relaxed if only spectral quantities are of interest. This simplifies the
construction and reduces computational costs, leading to the Lüscher-Weisz gauge
action [123,124], which is used in all simulations discussed in this thesis,

SG = −β1

∑

pl

1

3
Re tr Upl − β2

∑

re

1

3
Re tr Ure − β3

∑

tb

1

3
Re tr Utb . (4.1)

Upl is the standard plaquette, Ure is a planar rectangular (2× 1)-plaquette and Utb

is a closed loop of length 6 along the edges of a 3-cube, called twisted bent (see
Figure 4.1). β1 is the independent leading gauge coupling. The couplings β2 and β3

can be determined from tadpole-improved perturbation theory [125]. Using

u0 =

(

1

3
Re Tr 〈Upl〉

)1/4

, α = − 1

3.06839
log u4

0 , (4.2)

one obtains

β2 =
β1

20u2
0

(1 + 0.4805α) , β3 =
β1

u2
0

0.03325α . (4.3)

In principle, u0 is a function of the expectation value of the plaquette, and thus
the parameters β2 and β3 themselves are expectation values of the simulation. This
requires a self-consistent calculation of these couplings. In practice one makes an

13
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Figure 4.1: The three kinds of Wilson loops entering the Lüscher-Weisz gauge action.
Red: plaquette; green: rectangular; blue: twisted bent.

educated guess for the assumed plaquette u0, which is compared with the expectation
value in the end. Deviations from the guess mean non-optimum improvement. In
all our simulations, we observed only small deviations, and we kept the assumed
plaquette constant along the Monte Carlo timeseries for each generated ensemble.

4.1.2 The Chirally Improved Dirac Operator

The Chirally Improved Dirac (DCI) operator [25, 26] is an approximate solution to
the Ginsparg-Wilson (GW) equation [17]. The most simple discretization of the
covariant derivative (which enters the Dirac operator) is given by

1

2

[

(Uµ(n)δn+µ̂,m − Uµ(n− µ̂)−1δn−µ̂,m
]

. (4.4)

However, respecting all symmetries, one can add many further terms, which may
improve the action when the coefficients are chosen properly. Following this idea,
one starts with the most general ansatz for a Dirac operator,

Dnm =

16
∑

α=1

Γα
∑

p∈Pα
m,n

cαp
∏

l∈p
Ul δn,m+p , (4.5)

where for each element of the Clifford algebra Γα, p is a path connecting the points
n,m. Pαm,n is the set of all considered paths p, and cαp are coefficients. This ansatz
is plugged into the GW equation

Dγ5 + γ5D = aD γ5D .
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Figure 4.2: The paths (connected to the center site) entering the Chirally Improved
Dirac operator. We choose a trunctation to maximum path lengths of four lattice
units. The coefficients to the paths are found in Appendix A. (Figure take from [1].)

Since this is an quadratic equation, comparison of the coefficients leads to an alge-
braic set of coupled equations. Restrictions for the coefficients come from the lattice
symmetries and γ5-hermiticity. In principle, exact chiral symmetry is achievable
if one takes into account all possible terms. In practice, the system in truncated,
and the equations can be solved numerically. The quality of chiral improvement of
course depends on the chosen truncation. We limit ourselves to a maximum path
length of four lattice units. The paths and coefficients used are found in Appendix
A and depicted schematically in Figure 4.2.

In principle, the coefficients in the parametrization could be optimized for each
gauge coupling and quark mass value with respect to chiral symmetry. However,
defining the setup this way, the predictive power of the simulation is weakened,
and, furthermore, complications arise when different sets of gauge ensembles are
compared. Therefore, we decided to use the same paths and coefficients in all our
dynamical runs, which means that the bare Dirac operator is the same in all discussed
ensembles. Cleary, the drawback of this strategy is weaker chiral improvement. This
is for example observed in the appearance of additive mass renormalization. To be
able to make a statement about quark masses though, we determine the PCAC
(partially conserved axial current) mass, also called AWI (axial Ward identity) mass
for each ensemble.

Link smearing (to be discussed in Section 4.3.1) is a well-known simple technique
to improve the action. We define our Dirac operator as product of one level of stout
smearing [126] with the truncated sum of Eq. (4.5). This operator product thus
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includes some further paths which are not part of the bare DCI.

4.2 Monte Carlo Integration of the Functional Integral

In this section we discuss the numerical integration of the gauge fields using Monte
Carlo techniques. First, the general ideas are introduced in Section 4.2.1. Next, we
discuss the issue of generating gauge configurations for dynamical QCD in Section
4.2.2. Finally, numerical improvements are considered in Section 4.2.3.

4.2.1 Generating Gauge Configurations

In continuum quantum field theory one encounters a very high-dimensional func-
tional integral. The measure of the fields is non-vanishing only for very rough fields.
To be specific, only continuous non-differentiable fields contribute to the integral.
On the other hand, all those rough configurations have infinite action, which means
a vanishing Boltzmann factor. This is a typical case of entropy and action drawing
in opposite directions. What looks weird at first sight (and indeed complicates a
rigorous construction of the integral), becomes more clear from the point of view of
Lebesgue’s integral.

When defining the action as part of the measure, D′[.] = D[.]e−S[.], one obtains a
meaningful measure for classes of field configurations, at least on a finite lattice. This
point of view naturally leads to the concept of importance sampling. The weight
factor of the configurations, e−S , is not treated at the level of observables, but
rather already in the process of generating the field configurations. Among others,
this is one reason why Monte Carlo methods are very efficient for high-dimensional
integrals such as the functional integral.

Pure SU(N) gauge theory can be simulated with standard Monte Carlo tech-
niques, such as heat bath [127] or overrelaxation [128, 129]. Including dynamical
fermions, however, complicates the simulation significantly. The most primitive
ansatz, considering the fermion determinant as an observable, does not respect the
idea of importance sampling well enough. The weight factors of the quenched and
the dynamical theory differ significantly, and hence the important configurations of
pure gauge theory differ too much from the important dynamical configurations.
Therefore this approach needs very high statistics and is not pursued in practice.
Including the fermion determinant as a weight factor in importance sampling, it has
to be real and non-negative. γ5-hermiticity (obeyed by DCI) forces the determinant
to be real. When taking an even number of mass-degenerate fermions (nf=2 in this
thesis), [detD]2 is non-negative and thus ensures a valid probability weight.

This leaves the problem of numerical evaluation of the determinant squared.
In the functional integral, fermions are represented by Grassmann numbers. Their
anti-commutation property makes them extremely inappropriate for numerical sim-
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ulations. This problem can be overcome by the analogy of fermionic and bosonic
Gaussian integrals. The fermion determinant can be rewritten as a Gaussian integral
of pseudofermions with the inverse Dirac operator [130]. These pseudofermions have
the same spin quantum numbers as the physical fermions, but obey Bose-Einstein
statistics. Due to the spin-statistics theorem they therefore cannot have any physical
meaning, they only serve as a numerical technique.

Since the inverse Dirac operator is a highly non-local operator, simple local
update propositions are computationally expensive, as they require to calculate the
global change of the action. Simple global updates, on the other hand, lead to
large changes in the action and thus to a bad Metropolis acceptance rate. Hence,
conventional Monte Carlo techniques show a weak performance for generating gauge
configurations with dynamical quarks.

4.2.2 The Hybrid Monte Carlo Algorithm

The state-of-the-art method for full QCD on the lattice is the Hybrid Monte Carlo
algorithm (HMC) [131]. The central idea is to use the action to make a sophisticated
global update proposition, which causes only a small change of the Boltzmann factor.
In fact, one would like to have a Boltzmann factor which is constant along the update
trajectory up to numerical deviations. Exactly such a kind of property is held by a
constant of motion in classical Hamiltonian evolution.

Consider a classical Hamiltonian H, given by a sum of a kinetic and a potential
term,

H[q, p] = V [q] +
1

2
p2 , (4.6)

where p is the canonical momentum to q, and the potential V is independent of p.
Then the classical equations of motion read

ṗ = −∂H
∂q

= −∂V
∂q

(4.7)

q̇ =
∂H

∂p
= p . (4.8)

The Hamiltonian is itself a constant of motion along the evolution, which is often
called molecular dynamics trajectory.

Let us now use this property for QCD simulations [131, 132]. As already dis-
cussed, we rewrite the fermion determinant using pseudofermions φ. For two mass-
degenerate flavors of quarks, the total action S then reads

S[U, φ] = SG[U ]− φ†(DD†)−1φ , (4.9)

where D = D[U ] is the Dirac operator. φ can be easily updated using a Gaussian
distributed χ and φ = Dχ.
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When augmenting the functional integral with a decoupling Gaussian integral of
dummy variables P ∈ su(3), observables can be written as

〈O〉U =

∫

D[U, φ]e−S[U,φ]O[U ]
∫

D[U, φ]e−S[U,φ]
(4.10)

=

∫

D[U, φ, P ]e−S[U,φ]− 1
2
tr[P 2]O[U ]

∫

D[U, φ, P ]e−S[U,φ]− 1
2
tr[P 2]

(4.11)

= 〈O〉U,P (4.12)

Now we interpret the total action S as the potential term and P as the canonical
momentum to the gauge field U . If we then pursue the classical evolution in a
fictitious Monte Carlo time according to the Hamiltonian

H = S[U, φ] +
1

2
tr[P 2] , (4.13)

H is a constant of motion and at the same time the Boltzmann factor which deter-
mines the acceptance probability in the Metropolis step. Thus, an exact integration
of the Hamiltonian evolution would yield an acceptance rate of 100%. The devia-
tions due to the inexact numerical integration of the molecular dynamics trajectory
are compensated for in the Metropolis step, decreasing the accceptance rate.

Considering the principal requirements for an algorithm to ensure a generation of
ensembles which are representative for the measure of the integral, one finds that the
HMC algorithm is reversible and preserves the integration measure. Ergodicity can
be proved for sufficiently small trajectory lengths τ . Thus, ergodicity can be ensured
by choosing τ ∈ [0, τmax] randomly for each trajectory [133]. In practice, however,
one usually considers fixed τ , as ergodicity is expected to hold also for large τ even
if this cannot be proven. The technicalities of using the HMC algorithm together
with the Chirally Improved Dirac operator are discribed in [37].

Autocorrelation is a delicate issue in Markov chains. Only astronomically large
upper bounds for the exponential autocorrelation time can be proven rigorously.
Autocorrelation should thus be investigated a posteriori having the data at hand,
however, in QCD in most cases the Monte Carlo time series available are not long
enough to allow for such an analysis. In particular approaching the continuum limit,
observables related to topology are known to cause a severe critical slowing down
[134]. Furthermore, the HMC algorithm was found to be non-renormalizable, which
complicates the analysis of its scaling behavior towards the continuum limit [135].
Suggestions for improving the algorithm in several respects are discussed in the
following section.

4.2.3 Numerical Improvements for the HMC Algorithm

A prominent improvement of performance is achieved with the domain-decomposition
HMC [136]. The idea is to have the ultraviolet modes frozen most of the time, up-



4.3. Methods in Hadron Spectroscopy 19

dating only the “active links”. Another recent proposal makes use of field transfor-
mations, with the aim of solving the long standing problem of critical slowing down
in the continuum limit [137]. Unfortunately, at least the leading order of the field
transformation does not suffice for this goal [138]. Yet another suggestion is to use
open boundary conditions to circumvent topological barriers [139].

Many further improvements have been proposed, and most of them work well for
simple actions, like Wilson improved. Since the Chirally Improved Dirac operator is
built from paths up to a length of four, we have to restrict ourselves to techniques
which are almost independent of the form of the Dirac operator.

We use Hasenbusch mass preconditioning [140], where the pseudofermion action
is split into several parts by introducing np species of pseudofermions. This way
the small and the large eigenvalues of the Dirac operator can be separated. We use
np = 2 in all simulations. Furthermore, we make use of the chronological inverter
by minimal residue [141] and a mixed-precision inverter [142] for the Dirac operator.
Some of the ensembles have been generated using a higher order Omelyan integrator
[143] and a multiple timescale integration [144,145].

Still, numerical problems arise when the determinant is close to zero, which leads
to the so-called exceptional configurations. Non-physical large quark masses or fine
lattice spacings are ways to avoid this problem. Another possibility is to use a chiral
Dirac operator, obeying the Ginsparg-Wilson equation exactly. This restricts its
eigenvalues to the Ginsparg-Wilson circle and impedes fluctuations close to zero.
The chiral improvement is thus one of the reasons why we can go down to pion
masses of 250 MeV at comparably rough lattices (a ≈ 0.13 fm).

4.3 Methods in Hadron Spectroscopy

In this section we introduce common methods in hadron spectroscopy. Link smear-
ing is discussed in Sections 4.3.1, quark smearing in Section 4.3.2. Interpolator
construction is detailed in Section 4.3.4. Finally, methods to extract excited states
are discussed in Section 4.3.5.

4.3.1 Link Smearing

On the lattice, gauge covariant construction of non-local objects, e.g., the discretized
derivative operator, is done using the link variables as gauge transporters. As already
discussed in Section 4.1.2, taking the shortest path is not the only possibility to
produce gauge covariant objects. One can take a sum over all possible paths between
given sites with suitable coefficients, as long as the relevant symmetries are respected.
The application of link smearing is equivalent to the inclusion of further paths. From
this point of view, the idea of link smearing is similar to the one of Symanzik’s
improvement program [119,120], easier to implement, but less systematic.
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Figure 4.3: The concept of link smearing. The “fat” link (red path, rhs), is a
weighted average of the “thin” link (red path, lhs) and the staples (green and further
paths).

The link smear operator maps the gauge field to the smeared gauge field (see
Figure 4.3). All links are averaged with their neighboring links in a particular way.
The original ones are called “thin”, the smeared ones “fat” links. The link smear
operator is combined with other operators to improve their properties. One applica-
tion is to build the action with fat links to reduce its discretization effects. Another
application arises when one is interested only in observables which are dominated by
infrared physics, such as hadron masses. Constructing hadron interpolators with fat
links leads to a reduction of ultraviolet fluctuations, but does not affect the expo-
nential long range behavior. This can improve the signal-to-noise ratio considerably.

Several smearing recipes have been constructed, all of them average the thin link
Uµ(n) with its staple

Sµ(n) =
∑

ν 6=±µ
Uν(n)Uµ(n + ν̂)Uν(n+ µ̂)† . (4.14)

Now we briefly introduce the smearing recipes used in this work, denoting the fat
link as Vµ:

APE Smearing

The APE procedure was the first formulated smearing technique [146]:

Vµ(n) = PSU(3)

[

(1− α)Uµ(n) +
α

6
Sµ(n)

]

, (4.15)

with one weighting parameter α. In general, the sum of several Lie group elements
is itself not an element of the Lie group. Thus a gauge covariant projection back to
the group SU(3) is needed, given by

PSU(3) : A→ B = max
B∈SU(3)

Re tr (BA†) . (4.16)
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Stout Smearing

Stout smearing uses the projector to the Lie algebra [126]:

Vµ(n) = eαPsu(3)[Sµ(n)Uµ(n)†]Uµ(n) (4.17)

P
su(3)[M ] =

1

2
(M −M †)− 1

6
1tr(M −M †) . (4.18)

The crucial property of this procedure is that differentiability of the fat link Vµ is
preserved. This allows the use of stout smearing as part of the Dirac operator in
the HMC algorithm.

HYP Smearing

HYP smearing was originally formulated as a recipe which extends the concept of
APE to the hypercube to improve locality properties of the operator [147]. This is
done in three steps:

Ūµ,νσ(n) = PSU(3)

[

(1− α3)Uµ(n) +
α3

2

∑

ρ6=±(µ,ν,σ)

Sρ(n)
]

Ũµ,ν(n) = PSU(3)

[

(1− α2)Uµ(n) +
α2

4

∑

σ 6=±(µ,ν)

S̄σ(n)
]

Vµ(n) = PSU(3)

[

(1− α1)Uµ(n) +
α1

6

∑

ν 6=±µ
S̃ν(n)

]

, (4.19)

where S̄ is the staple built from Ū , and S̃ from Ũ .

Extensions, further recipes and discussion of smearing are found in [148–154]. As
already mentioned in Section 4.1.2, we include one level of stout smearing in the defi-
nition of the Dirac operator to improve the action. The parameter of stout smearing
is adjusted such that the expectation value of the plaquette is maximized, yielding
α = 0.165 [126]. The use of smearing in the construction of interpolators will be
discussed in Section 4.3.4.

4.3.2 Quark Smearing

Hadron correlation functions include traces of quark propagators D−1 (see, e.g.,
Eq. (3.9)). So far, on realistic lattice sizes, the full inverse Dirac operator is too huge
for actual numerics. Thus, in actual calculations, the Dirac operator is inverted on
particular quark sources. Point sources are a possible choice, but it was found that
extended quark sources improve the signal and also allow for a larger operator basis
in the variational method. In each ensemble, we use three different kinds of sources:
narrow, wide and a (P-wave like) derivative source. In the following, we describe
the method of choice in detail and afterwards briefly introduce alternative methods.
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Jacobi Smearing

Gauge covariant sources can be constructed using Jacobi smearing [155, 156]. A
point-like source is smeared out by applying a polynomial of the hopping term in
the spatial directions,

Sκ,K =

K
∑

k=0

κkHkS0 ,

H(n,m) =

±3
∑

i=±1

Ui(n)δ(n + î,m) , (4.20)

where S0 denotes the point source. The parameters κ and K are tuned for each
ensemble such that the resulting source shape is approximately Gaussian. Narrow
(wide) sources will be denoted by quark subscripts n (w) in the remainder of this
work.

The derivative sources, S∂i
, are obtained by applying the covariant difference

operators on the wide source, Sw [40],

Pi(n,m) = Ui(n)δ(n + î,m)− Ui(n− î)†δ(n − î,m)

S∂i
= PiSw , (4.21)

where î is one of the spatial directions. In the following, derivative sources are
indicated by the subscript ∂i of the quark field.

Stochastic All-to-all Methods

There are other approaches to calculate an expression for the quark propagators.
The conventional Jacobi smearing is not convenient for the evaluation of, e.g., dis-
connected diagrams, which unavoidably appear in the isoscalar channels and in
transition processes with altering quark number. All-to-all methods seem to be
necessary for this task. As already mentioned, a complete inversion of the Dirac op-
erator overcharges our capacities. Hence, stochastic estimators have been developed
to solve this problem [157]. The central idea is to approximate the unity operator by
an ensemble of noise vectors. This can be used to approximate the all-to-all quark
propagator in the limit of infinitely many noise vectors,

D−1(n,m)i,jα,β = lim
N→∞

N
∑

r=1

ψi,αr (n)ηj,βr (m)† . (4.22)

Here ηr are the noise vectors to start with and the ψr fulfillDψr = ηr. The additional
noise for the inversion can always be chosen to be less than the noise of the Monte
Carlo integration. The method can be improved using dilution of the noise vectors
and exact treatment of the low-lying modes of the Dirac operator.



4.3. Methods in Hadron Spectroscopy 23

Distillation

The distillation method makes use of the observation that only the lowest modes of
the three dimensional covariant lattice Laplace operator ∇2 contribute significantly
to Gaussian shaped sources [158]. This is obvious when using a definition of the
quark smear operator which satisfies (the chosen sign convention differs from [158])

Sσ,nσ(t) =

(

1− σ∇2(t)

nσ

)nσ
nσ→∞−−−−→ e−σ∇

2(t) . (4.23)

The exponential suppression can be replaced by a projection to the lowest modes.
This projector is the distillation operator

�(t) = V (t)V †(t) , (4.24)

where V (t) is the rectangular matrix of the lowest eigenmodes of the Laplacian.
The distillation operator is used to build quark sources. Next the Dirac operator is
inverted on those sources and afterwards projected to the lowest eigenmodes, which
yields the “perambulators”

τα,β(t
′, t) = V †(t′)D−1

α,β(t
′, t)V (t) . (4.25)

The crucial advantage of distillation is that it allows to concentrate on the low
modes of the theory, and simultaneously to benefit from properties typical for exact
all-to-all methods:

• The whole timeslice contributes. This improves statistics and allows for a
momentum projection at the sources. Furthermore, evaluation of disconnected
diagrams becomes fairly efficient.

• Factorization allows to compute the perambulators as propagators and to
choose the particular form of the interpolators in the end.

• The factorization also allows to construct sequential propagators by gluing
perambulators, and thus simplifies the calculation of three-point functions.

The main drawback of the method is that the number of eigenmodes needed grows
linearly with the spatial volume in lattice points. This problem can be overcome
with the introduction of stochastic estimator techniques in the subspace of the lowest
modes [71,159]. Another generalization of the algorithm is to include a function of
the eigenvalue of the Laplacian in the distillation operator. This can be chosen
to force a weighting inside the subspace in favor of the very low modes. Another
drawback of the method is that many inversions have to be computed and stored,
which demands lots of computer time and disk space.
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4.3.3 Inverting the Dirac Operator

Briefly, we want to mention how the Dirac operator is inverted on the prepared
sources. The inversion is performed iteratively, by solving

G = D−1S , DG = S , (4.26)

for G, where S is the given quark source. Many tools have been developed for this
task, like versions of the conjugate gradient [160, 161] or the deflation algorithm
[162,163].

4.3.4 Interpolator Construction

As discussed in Section 3.2.3, observables are extracted from correlation functions of
operators. The operators which create hadronic states from the vacuum are called
interpolators. The quark sources are combined with elements of the Clifford algebra
to construct gauge invariant interpolators with definite quantum numbers. In each
channel, we construct several interpolators in order to be able to extract excited
states using the variational method (to be introduced in Section 4.3.5). Clearly,
the interpolators should show good overlap with the low-lying physical states. One
popular technique to reduce contamination of ultraviolet modes is given by link and
quark smearing, introduced in Sections 4.3.1 and 4.3.2.

Throughout all simulations discussed in this thesis, one level of stout and three
levels of spatial HYP smearing are applied. Several levels of HYP smearing have
been investigated, where it was found that most observables show the best signal in
case of three levels. The parameters of stout smearing are chosen the same way as
in the case of the Dirac operator. The parameters of the spatial HYP smearing have
been varied, monitoring the minimum and the average value of the plaquette, partly
following arguments of [147, 151]. The maximum values of these observables are
not located at the same choice of parameter. We decided to choose the parameters
in between, such that both the average and the minimum plaquette are close to
maximum. This results in α1 = 0.8 and α2 = 0.4, where α1 is the parameter in the
last step of the smearing procedure, where the center link is smeared.

These fat links are then used to perform quark smearing, creating the sources.
We shift the center positions of the quark sources for subsequent configurations
in order to decrease statistical correlation of the data. Finally, the interpolators
at the sink are projected to zero momentum. For sufficiently many configurations,
translational invariance is restored and only zero momentum states contribute to the
hadron correlation functions. We compute connected diagrams only, and therefore
focus on isovector mesons, strange mesons, and baryons in this work. The issue of
many-particle states will be discussed in Section 4.4.2. We list all used interpolators
in Appendices B and C.
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Meson Interpolators

Concerning mesons, this work focuses on isovector and strange mesons, since the
used method is suited for connected diagrams only. Some few isoscalars will be
discussed, with the systematic error of neglecting disconnected diagrams. A general
bilinear meson interpolator can be written as

OM = λab qa S
(1)† Γi S

(2) qb . (4.27)

The implicit sum builds irreducible representations of the gauge symmetry, of flavor
symmetry and of Lorentz symmetry using the Clebsch-Gordan coefficients λab. Γi are
possible Dirac matrices and q, q̄ denote Grassmann numbers representing quarks.
The quarks can have particular distribution functions, induced by the smearing
operators S, which may include any number of derivatives. We now discuss the
construction of meson interpolators to ensure good quantum numbers I, S and JPC .

Isospin and strangeness are determined through the symmetrization of the flavors
and the chosen quark mass in the Dirac operator.

Spin and parity are determined by the choice of the Dirac matrix and the spatial
distribution of the quarks. Using spatially isotropic sources, such as the Gaussian
ones without displacement, the quantum numbers of meson interpolators are com-
pletely determined by their Dirac matrix. In the continuum, this restricts them to
a few (non-exotic) channels of spin 0 and 1. Recall that the discretization leads to
a finite number of irreducible representations of the Lorentz group, as discussed in
Section 3.2.2. Therefore, on the lattice, spatially isotropic sources restrict mesons to
the channels A1 and T1. In principle, these irreps couple to higher spins in the con-
tinuum limit as well (see Table 3.1). However, the näıve continuum limit of spatially
isotropic interpolators remains restricted to spin 0 and 1. This strongly influences
the overlap of the interpolator with the physical states, such that coupling to other
(higher) spin states is suppressed at small lattice spacings.

To access higher spin states, and to enlarge the basis of operators, we consider
the direct product of spinor and spatial structure in the language of group theory.
The decomposition to the irreducible representations then leads to interpolators with
definite quantum numbers [122,164–167]. We realize a non-trivial spatial structure
by using the derivative sources, which transform according to the lattice irreducible
representation T1. The only non-trivial resulting decomposition in the continuum
and on the lattice looks (at zero momentum):

continuum: 1 ⊗ 1 = 0 ⊕ 1 ⊕ 2 (4.28)

lattice: T1 ⊗ T1 = A1 ⊕ T1 ⊕T2 ⊕ E , (4.29)

where 2 = T2 ⊕ E in the continuum limit. (4.30)

For the investigation of physical spin 2 states, we thus can construct T2 as well as E
interpolators on the lattice. Furthermore, we are able to investigate exotic channels
(however, the signals are found to be very weak in most cases).
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In general, C-parity is a good quantum number only for chargeless states, which
applies, e.g., to the Iz = 0 components of isovector mesons. However, in the case
of exact flavor symmetry, each multiplet shares only a single correlation function.
This degeneracy is a consequence of the symmetry and related to a cancelation
of disconnected diagrams. Accordingly, C-parity can be effectively assigned to the
entire multiplet, and in case of exact SU(3) flavor symmetry even to strange mesons.
Breaking SU(3) flavor symmetry towards the physical point, C-parity remains an
approximate symmetry for strange mesons. The associated quantum numbers are
not restored and states are allowed to mix different C-parity. We discuss the C-
parity content of the strange mesons and the mixing towards the physical point for
several channels. For this purpose, the interpolators have to be constructed such to
respect C-parity in the limit of exact flavor symmetry. In general, this requires a
symmetrization with respect to the quark smearing. The necessity depends on the
chosen order of the derivative operator and Jacobi smearing in the construction of
the derivative sources. The derivation is carried out in Appendix B.1. The meson
interpolators are listed in Appendix B.2, indicating also the effective C-parity.

Another approach to realize non-isotropic interpolators is given by the use of dis-
placed quark sources [166]. Leaving the constraint of bilinearity allows for tetraquark
operators, which are discussed for example in [168].

Baryon Interpolators

A general 3-quark baryon interpolator can be written as

OB = λabc Γ1 S
(1) qa

[

(S(2) qb)
T Γ2 S

(3) qc

]

, (4.31)

where the implicit sum takes care for color antisymmetrization, flavor symmetriza-
tion and Lorentz symmetrization with the Clebsch-Gordan coefficients λabc. In con-
trast to mesons, each interpolators has now two Dirac matrices (Γ1,Γ2). Again,
q are Grassmann numbers representing quark fields and S are smearing operators.
For the construction of baryon interpolators we use only Gaussian smeared quark
sources (n, w). We now discuss the construction of baryon interpolators to ensure
good quantum numbers I, S and JP .

As for mesons, isospin and strangeness are determined through the symmetriza-
tion of the flavors and the chosen quark mass in the Dirac operator. We consider
the nucleon in the octet, ∆ and Ω in the decuplet representation. In case of Λ, we
take into account singlet and octet representations. In case of Σ and Ξ, we consider
octet and decuplet representations.

The Lorentz quantum numbers spin and parity are completely determined by the
chosen Dirac matrices and the spin of the quarks, due to the isotropic sources. We
construct interpolators which transform according to the lattice irreducible represen-
tations G1 and H, with the näıve continuum limits of spin 1/2 and 3/2, respectively.
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Definite parity is obtained using the parity projection operator. Spin 3/2 is obtained
using the Rarita-Schwinger projector. For details, see Appendix C.1.

Since a baryon is built from three valence quarks, there are 23 = 8 possible
smearing combinations. In case of exact flavor symmetry, Fierz identities can yield
relations among them. In the spin 1/2 channels of the nucleon, Λ (singlet and
octet), Σ and Ξ (octet and decuplet) we use three different Dirac structures. In the
spin 1/2 channels of ∆ and Ω, an open Lorentz index is summed at the level of the
interpolators. In case of all spin 3/2 interpolators, the open Lorentz index (after spin
projection) is summed after taking the expectation value of correlation functions.
All our baryon interpolators are listed in Appendix C.2. Partly, the construction
of interpolators follows previous work with the Chirally Improved Dirac operator in
quenched QCD [35]. Partly, the construction follows [169, 170]. The construction
of further interpolators is discussed in the following. Other approaches to baryon
interpolator construction, using derivative operators or displacements can be found,
e.g., in [166].

Sidestepping the Fierz Identities

Considering point-like operators, the number of independent interpolators for a given
channel is restricted by the Pauli principle (see, e.g., [171]). The corresponding Fierz-
transformations can be used to show that some interpolators are linearly dependent,
and some even vanish exactly [169, 170]. In particular, there are no non-vanishing
point-like interpolators in the ∆ spin 1/2 and Λ singlet 3/2 channels, according to
reference [169].

In the present work, we propose two strategies to construct interpolators nev-
ertheless. First, note that the Fierz identities also hold for extended isotropic in-
terpolators, as long as all involved quarks come with the same smearing operator.
However, the identities are invalidated if different quark smearing operators enter
the interpolator. This allows for additional independent interpolators, albeit with
a possibly weakened signal due to the approximate Fierz identities. This strategy
is pursued to construct the Lambda spin 3/2 singlet interpolators used in this work
(see Appendix C.2). In fact, we find that using different smearing for the quarks,
the signal of these interpolators is of the same magnitude as the one of other inter-
polators. We conclude that such interpolators are relevant for hadron spectroscopy,
and we will find that they contribute significantly to low-lying physical states.

The same strategy can be followed to build ∆ spin 1/2 interpolators, however, we
propose yet another construction. An interpolator with correct quantum numbers
of this channel is given by [169]

O
J= 1

2
∆ = ǫabc γµγ5ua

(

uTb C γµ uc
)

, (4.32)

where C is the charge conjugation matrix and summation over repeated indices is
understood. Using Fierz transformations, one can show that in the case of local
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fields, this interpolator is identical to zero. As already discussed, different smearing
widths are a possibility to make it non-vanishing, nevertheless. However, there is
also another way, to be discussed now. A simple Rarita-Schwinger field for the ∆
channels reads

ORS∆,µ = ǫabc ua
(

uTb C γµ uc
)

. (4.33)

In general, Rarita-Schwinger fields have overlap with both, spin 1/2 and 3/2 states.
Thus they need to be projected in order to have definite spin. The Rarita-Schwinger
equation is a transversal condition for the projected spin 3/2 field (see, e.g., [172]).
Hence, at zero momentum, the projector to spin 3/2 annihilates the time component
of the field. Thus the µ = 0 component of the (non-projected) Rarita-Schwinger
field has overlap with spin 1/2 only. Consequently, this term has already spin as a
good quantum number. The parity of this term is reversed compared to the µ 6= 0
components, therefore we have to include an additional γ5 matrix for the quark ua
outside the brackets.

The so obtained interpolator is equivalent to the µ = 0 term of the sum denoted in
Eq. (4.32). We conclude that the sum can be decomposed into the µ = 0 term and the
purely spatial sum, which yields two separate interpolators, which both have good
quantum numbers by themselves. In the case of identical smearing of all involved
quark fields, Fierz identities are valid and hence these two interpolators coincide
up to a sign. Using different quark smearing, however, they become independent.
We use the spatial sum to define the interpolator for the ∆ spin 1/2 channel. The
same line of arguments applies to the nucleon spin 1/2 channel, where we include
the corresponding µ = 0 term as third interpolator.

4.3.5 Extracting Excited States

As already mentioned in Chapter 1, the majority of experimental knowledge lies in
data on resonances. In Nature, the resonances can decay and are described by the
continuous spectrum of the Hamiltonian. This will be briefly reviewed in Section
4.4.2. In a finite system, the spectrum becomes discrete and the eigenvalues of the
Hamiltonian contain information about the resonances in the infinite system [97,173].
In the present thesis, the low-lying spectrum of the finite system is determined. This
discrete spectrum is compared with experimental data on resonances in the infinite
system.

In principle, all energy levels are contained in the Euclidean correlators, as dis-
cussed in Section 3.2.3. Thus, the excited spectrum can be expracted by performing
a multi-exponential fit to the hadron correlators. For example, the first excited
energy level can be obtained by fitting two exponentials at large time separations,

〈O(t)|O†(0)〉 = A0e
−tE0 +A1e

−tE1 +A2e
−tE2 + . . .

t→∞
= A0e

−tE0 +A1e
−tE1 +O(e−t∆E) , (4.34)



4.3. Methods in Hadron Spectroscopy 29

where O is a hadron interpolator, Ai are overlap coefficients, t denotes time, Ei the
energy levels and ∆E is the distance to the first neglected energy level. This simple
approach has the drawback of introducing a high number of fit parameters, which
results in a weak stability of the fit. We briefly introduce a strategy to improve the
stability in this approach and afterwards discuss the method which is used in the
present work in detail.

Bayesian Methods

The usual χ2-criterion of the fit can be augmented by a function of the fit parameters,
the minimum of which is located at the expected values of them [174–176]. This
stabilizes the fit but introduces a bias, however, the amount of it is adjustable. A
possible application is to fit in the first place only the ground state at large time
separations. Then the result is used as a bias for a fit with more exponential functions
at shorter times. Experience tells that this method needs good statistics.

The Variational Method

Currently, the state-of-the-art method to extract excited states energy levels from
the lattice is the variational method [49, 50, 177, 178]. The basic idea is to choose
interpolators O(t) such that the coefficients Ai of the lower-lying states vanish. If we
are interested in the first excitation, this means to consider the subspace orthogonal
to the ground state |E0〉,

〈O⊥|E0〉(t)|O
†
⊥|E0〉(0)〉 = 0 · e−tE0 +A1e

−tE1 +A2e
−tE2 + . . .

t→∞
= A1e

−tE1 +O(e−t∆E) . (4.35)

This separation in orthogonal subspaces can be achieved in a very convenient way
by a diagonalization procedure. Given a set of N interpolators Oi with matching
quantum numbers, one can compute all cross-correlations between them, obtaining
the correlation matrix

Cij(t) = 〈0|Oi(t)O†
j(0)|0〉 . (4.36)

The spectral decomposition of this matrix is in general given by (for t ≥ 0)

Cij(t) =

∞
∑

α=1

vα∗i vαj e−tEα (4.37)

vαj = 〈α|O†
j(0)|0〉

H|α〉 = Eα|α〉
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where H is the Hamiltonian of the theory. One can show that for t → ∞ the
eigenvalues λ of the correlation matrix behave as

λα(t) = cαe
−tEα

[

1 +O(e−t∆Eα)
]

, (4.38)

where ∆Eα is the distance of Eα to other spectral values Eβ. However, approaching
large t, usually the signal of the correlation matrix becomes bad before the error
term in Eq. (4.38) becomes negligible.

In practice, a superior method is given by considering the generalized eigenvalue
problem [50]

C(t)ψ = λ(t, t0)C(t0)ψ , (4.39)

where t0 is fixed and small. Again, the eigenvalues behave as Eq. (4.38), but with
the crucial difference that the amplitudes cα and the coefficients of the subleading
exponentials are different. One finds that cα ≈ et0Eα and the other coefficients sup-
pressed, such that the leading term in Eq. (4.38) dominates already at intermediate
t, where the signal is still sufficiently strong.

This can be shown considering the finite-dimensional truncated correlation ma-
trix

C
(0)
ij (t) =

r<∞
∑

α=1

vα∗i vαj e−tEα , (4.40)

with r and all |α〉 such that the correlation matrix C(t) is well approximated. The
corresponding eigenvalues of the generalized eigenvalue problem obey

λ0
α(t, t0) = e−(t−t0)Eα (4.41)

exactly. Writing C = C0 + C1 and treating C1 as a small perturbation, one can
show that

λα(t, t0) ∝ e−(t−t0)Eα

[

1 +O(e−(t−t0)∆Eα)
]

, (4.42)

where again ∆Eα is the distance of Eα to other spectral values Eβ. In the inter-
val t0 ≤ t ≤ 2t0, the error term is even furtherly constrained with ∆Eα being the
distance of Eα to spectral values EN+β associated with states neglected due to the
finite number N of interpolators [178].

Loosely speaking, the concept of the method is to offer a basis of convenient in-
terpolators, wherefrom the system chooses the linear combinations closest to the
low-lying physical eigenstates. Obviously, the number of interpolators should be
large enough to provide good overlap with the physical states. Furthermore, they
should have only little overlap with each other and with the higher modes of the
theory, in order to reduce contamination from highly excited states. In actual cal-
culations, at some point, including more interpolators unfortunately increases the
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statistical noise in the diagonalization. Thus, in practice, one truncates the correla-
tion matrix to a subset. Usually, the optimal choice is to include only a few (3 to 8)
interpolators which show good overlap with the low physical modes.

As additional benefit, the variational method can provide information about the
content of the physical states (see, e.g., [179, 180]). The eigenvectors represent the
linear combinations of the given interpolators which are closest to the considered
physical states at each time slice. This will be used, e.g., to discuss the singlet/octet
content of Lambda states.

4.4 From the Lattice to Nature:

Hadron Phenomenology

Actual simulations are performed at finite lattice spacings, unphysical quark masses
and in finite volumes. To make predictions for Nature, one thus has to approach
physical quark masses, and to perform the continuum and the infinite volume limit.
In addition to this threefold of limits, there is a crucial difference between the theory
in a finite box and in the infinite system. In the finite box, the Hamiltonian has
a purely discrete spectrum, whereas in the infinite system the spectral density is
mainly continuous and includes decaying resonances. In the infinite volume limit,
the discrete spectrum becomes denser and denser in the inelastic region and finally
approaches the continuous spectrum.

We first discuss the threefold of limits in Section 4.4.1, and afterwards deal with
the issue of the energy spectrum in finite and infinite systems in Section 4.4.2.

4.4.1 Determining and Approaching the Physical Point

First of all, the physical point has to be defined. In light and strange hadron
spectroscopy, there are three parameters: the gauge coupling, the light and the
strange quark mass parameter. Hence, three observables are chosen as input from
experiment. In this work, we choose the Sommer parameter, the pion mass and
the Ω mass. Since only dimensionless observables can be extracted from lattice
simulations, one of the input observables serves to set the scale. This scale enters
all dimensionful predictions from the lattice. In principle, the other parameters
could be tuned until all input observables exactly match their physical values in
Nature. Actual QCD simulations, however, are very expensive, and thus one has
to rely on some extrapolation (or interpolation) scheme to approach the physical
point defined by the input observables. In this way, the input observables define an
extrapolation scheme for all other observables. After this extrapolation, the results
correspond to a simulation with physical parameters but still on a finite lattice.
Therefore, a continuum limit and an infinite volume limit are necessary as well.
Due to asymptotic freedom of QCD, the continuum limit is defined by sending the
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coupling to zero. The infinite volume limit needs the volume in lattice units to grow
faster than the lattice spacing shrinks. While in principle the parameters can be
chosen such that the input observables match experimental data, the continuum and
the infinite volume limit always have to be performed a posteriori.

In any case, theoretical guidance concerning the fit forms is highly desirable
in order to have the systematic errors of the extrapolations at least partly under
control. The extrapolations can be chosen following different paths in parameter
space. Particular properties, such as disentanglement of different effects or additional
symmetry properties, may characterize some of the paths. Alternatively, an entire
(hyper)surface can be fitted to perform several or even all extrapolations at once.

In this work, we extrapolate to the physical product of the pion mass and the
Sommer parameter, where we use the Sommer parameter to define the lattice spacing
(see Section 6.1). Afterwards, we tune the strange quark mass parameter to match
the Ω mass approximately (see Section 6.2). The continuum limit is omitted, since
only small O(a2) discretization effects are expected for the used improved action,
and because of considerable computational expenses. Finally, finite volume effects
are discussed for specific observables (see Section 9).

Finite volume effects for massive quantum field theories are discussed, e.g.,
in [97–99, 173]. Chiral Perturbation Theory is the established tool to deal with
extrapolation towards lighter pion masses [11, 12], but can also be used to discuss
finite volume effects (see, e.g., [181, 182]). A recent review about Chiral Perturba-
tion Theory on the lattice is found in [183]. Discussion based on Chiral Unitary
Theory is found, e.g., in [82,184–186]. The systematics of discretization effects have
been treated in the Symanzik Improvement Program [119, 120]. We remark that
non-analytic functional forms cannot be excluded [187], in which case control over
the systematic errors of the extrapolation would be lost.

4.4.2 Energy Spectra in Finite and Infinite Systems

In an infinite system, a bound state is distinguished from a scattering state through
the absence of any continuous open index (see, e.g., [188]). The continuous spectral
density is a non-trivial function of the energy, which directly relates to the existence
of unstable resonances. In scattering theory, a resonance shows up as a pole of
the T matrix which is shifted to the lower-half complex plane by −iΓ/2. This
corresponds to a state whose probability decays like exp(−Γt). In a unitary theory,
assuming the resonance being narrow, one finds that the resonance is well described
by Breit-Wigner form [189]. For a single resonance the contribution to the T matrix
is proportional to

T (E) ∝ iΓ

E − ER + iΓ/2
, (4.43)

which leads to the characteristic resonant peak of the cross section at the energy
ER with a width equal to the decay rate Γ. The properties of a resonance are also
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contained in the overall phase shift δ of the scattering matrix near the resonance,

tan δ(E) = − Γ/2

E − ER
. (4.44)

Within an energy range of order Γ around ER, the phase shift δ jumps by a factor
of π. The resonant peak of the total cross section is located at δ = π/2.

In a finite box, the Hamiltonian has a purely discrete spectrum, and all states are
stable. Nevertheless, there are states which are more or less localized, allowing for
an interpretation in terms of bound states or stationary scattering states in the box.
In general, the states will be admixtures of both, which is related to the absence of
particle number conservation. However, in many cases the state will be dominated
by one type, which can be identified in the variational analysis if one- and many-
particle interpolators are included in the basis. Furthermore, the dependence of the
energy levels on the pion mass and on the volume can yield useful information.

At first sight, the resonance parameters Γ and δ are absent on finite lattices.
However, it was found that the information is encoded in the volume dependence
and avoided level crossings of the spectrum [97–99]. To avoid the computational
costs of several simulations at different lattice volumes, the resonance parameters
can also be extracted from the momentum dependence of the spectrum [100,101].

Due to limited computational resources, no resonance parameters are extracted
in this work. We compute the low-lying spectrum of the Hamiltonian on the finite
lattice using single hadron interpolators only. Since the number of particles is not
a good quantum number in quantum field theory, in general, these interpolators
should have overlap with all states in the given channel. However, the “many-
particle” states were found to be suppressed by factors O(1/L3) [190, 191], which
comes on top of the generic suppression of the excited states. We also observe
weak coupling to “many-particle” states, and miss, e.g., the state dominated by ππ
scattering in the ρ channel (see Section 7.2.2). Many-particle interpolators will be
necessary in order to observe all states. For such attempts, see, e.g., [168,192–195].

Neglecting further interactions of the hadronic bound states, the energy level
E(A,B) for two free hadrons reads

E [A(~p), B(−~p)] =

[

√

m2
A + |~p|2 +

√

m2
B + |~p|2

]

[1 +O(ap)] . (4.45)

The hadrons A and B have back-to-back momenta if the whole state is projected
to zero momentum. In the infinite volume limit, there is a continuum of scattering
states. In a finite box, the momentum ~p can take only discrete values, determined
by the boundary conditions, a~p = 2π(nx, ny, nz)/L. In the S-wave, the lowest 2-
particle state level thus shows vanishing relative momentum. In the P- and D-wave,
the lowest 2-particle state level has a momentum of order O(2π/aL).

We discuss signals of scattering states in our data in Sections 7 and 8. A possi-
bility to shed some light on the nature of the state is to monitor the eigenvectors of
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Eq. (4.39) of the state when varying parameters of the simulation. Ideally, one com-
pares the eigenvectors for several dynamical simulations, but also partially quenched
data can yield some information. Since effects from partial quenching can shift the
energy level, corresponding results may also allow to extract further information
about the state.



Chapter 5

Simulation Properties

In this chapter, we present some properties of the simulation. The setup of the
simulation is detailed in Section 5.1, afterwards Monte Carlo time histories and
algorithm properties are briefly discussed in Section 5.2.

5.1 Details of the Simulation

We use the Lüscher-Weisz improved gauge action and the Chirally Improved Dirac
operator (DCI) to generate a total of ten ensembles with two dynamical mass-
degenerate light quarks. The pion masses lie in the range from 250 to 600 MeV,
the lattice spacings in the range of 0.13 to 0.14 fm, according to the definition to
be discussed in Section 6.1. The bare parameters of the simulation and the lattice
spacings are collected in Table 5.1. The pion masses and (non-renormalized) quark
AWI-masses are found in Table 6.2.

The main part of the calculation is performed using seven ensembles with lattices
of size 163 × 32, a linear size of roughly 2.2 fm (see Sections 6, 7 and 8). The other
three ensembles are of different sizes and are used to discuss finite volume effects
in Section 9. Finite volume effects are expected to be negligible for the Sommer
parameter, and surprisingly, in the present work the pion mass is compatible with a
flat volume dependence for the volumes considered. Hence, we choose to simplify the
setup and use the same lattice spacings and pion masses irrespective of the lattice
volumes. For a more detailed discussion, see Section 9.

A leading order chiral fit is performed to extrapolate the observables to the
physical pion mass (see Sections 4.4 and 6). A continuum limit is left out due to
limited computer resources, which can be partly justified considering small O(a2)
corrections experienced in quenched simulations using the same action [29]. Finite
volume effects are discussed in Section 9.

The Lüscher-Weisz improved gauge action and the Chirally Improved Dirac op-
erator are detailed in Section 4.1. For the gauge action, we use an assumed average
plaquette of u0 = 0.45 for all ensembles. The parameters of the Dirac operator have
been tuned on quenched configurations and are listed in Appendix A. We have cho-
sen to use these parameters for all ensembles. This affects the chiral properties of
the Dirac operator, however, a separate tuning of the parameters for each ensembles

35
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would weaken the predictive power. Further details and discussions concerning the
HMC algorithm are found in [37,41,48].

set βLW m0 ms configs. L3 × T [a4] mπL a [fm]

A50 4.70 -0.050 -0.020 200 163 × 32 6.40 0.1324(11)
A66 4.70 -0.066 -0.012 200 163 × 32 2.72 0.1324(11)
B60 4.65 -0.060 -0.015 300 163 × 32 5.72 0.1366(15)
B70 4.65 -0.070 -0.011 200 163 × 32 3.38 0.1366(15)
C64 4.58 -0.064 -0.020 200 163 × 32 6.67 0.1398(14)
C72 4.58 -0.072 -0.019 200 163 × 32 5.11 0.1398(14)
C77 4.58 -0.077 -0.022 300 163 × 32 3.74 0.1398(14)

LA66 4.70 -0.066 -0.012 97 243 × 48 4.08 0.1324(11)
SC77 4.58 -0.077 -0.022 600 123 × 24 2.81 0.1398(14)
LC77 4.58 -0.077 -0.022 153 243 × 48 5.61 0.1398(14)

Table 5.1: Parameters of the simulation: Ten ensembles are generated, their names
given in the first row. We show the gauge couplings βLW , the light quark mass
parameter m0, the strange quark mass parameter ms, the number of configurations
analyzed (“configs.”) and the volume L3 × T in lattice units. The dimensionless
product of the pion mass with the spatial extent of the lattice, mπL, enters finite
volume corrections. We also give the dimensionful lattice spacing a according to the
definition discussed in Section 6.1. The three ensembles LA66, SC77 and LC77 are
separated from the others by a horizontal line, since they are used only in Section
9 for a discussion of finite volume effects. The pion masses and quark AWI-masses
are found in Table 6.2.

5.2 Monte Carlo Time Histories

After equilibration, every fifth configuration is selected for analysis. We show the
Monte Carlo (MC) time history for the pion mass of ensembles A50, C77, B70 and
A66 in Figure 5.1. No significant autocorrelation is observed, however, we stress
that for a rigorous determination of the autocorrelation much more statistics would
be necessary. The strong peaks arise naturally towards smaller pion masses through
enhanced statistical fluctuations and do not imply serious concerns. In fact, large
values of the pion mass usually go along with a cheap inversion of the Dirac operator.
Small pion masses correspond to exceptional configurations, which are suppressed in
dynamical simulations, as long as small steps are chosen in the numerical integration
of the molecular trajectory.

Autocorrelation of topological quantities is known to be particularly problem-
atic in QCD simulations with chiral Dirac operators and at small lattice spacings.
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However, at the used simulation parameters, we observe frequent tunneling and an
approximately Gaussian distribution of the topological sectors. We show the MC
history and a histogram for the topological sectors for ensemble C77 in Figure 5.2.

For Dirac operators fulfilling the Ginsparg-Wilson condition exactly, the eigen-
values lie on a unit circle centered at one. In case of approximate solutions, like the
DCI operator, the distribution of the eigenvalues deviates from the circle. We show
the smallest 150 eigenvalues of 20 configurations of ensemble A50 in Figure 5.3, left
hand side. Figure 5.3, right hand side, shows a histogram for the minimal real part
of the eigenvalues of 100 configurations. The deviations from the GW-circle are
predominantly towards larger eigenvalues and small eigenvalues are suppressed.

The eigenvalues of the Dirac operator are also important for the stability of
the algorithm. Small eigenvalues come with a small weight factor and are thus
suppressed. However, there occurrence is enhanced for finite step sizes in the nu-
merical integration of the HMC trajectory. In those cases, the conjugate gradient
(CG) solver for the fermion force needs many more iterations to achieve the desired
precision. One finds that the reciprocal number of needed CG steps is related to
the smallest eigenvalue of D†D and that the distribution is approximately Gaus-
sian [142]. It was claimed that the algorithm setup is safe if the mean µ of 1/NCG

is much larger than the standard deviation σ, at least by a factor of three [196].
We show the distribution of 1/NCG for the three ensembles with the smallest pion
masses in Figure 5.4. We find µ/σ > 5 in all cases and conclude that the algorithm
setup is safe with respect to small eigenvalues of the Dirac operator.
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Figure 5.1: Monte Carlo time history for the dimensionless pion mass amπ (here:
measured on each individual configuration of the sequence) for ensembles A50, C77,
B70 and A66. The red horizontal lines denote the average values. No significant
autocorrelation is observed. The strong peaks arise naturally towards smaller pion
masses through enhanced statistical fluctuations. (Figure taken from [48].)
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Figure 5.2: Monte Carlo time history (lhs) and histogram (rhs) for the topological
sector ν for 200 configurations of ensemble C77. Note the frequent tunneling of the
algorithm. (Figure taken from [41].)
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Figure 5.3: Smallest 150 eigenvalues λ of the Dirac operator of 20 configurations of
ensemble A50 (lhs) and histogram for the smallest real parts of λ of 100 configura-
tions of A50 (rhs). The deviations from the GW-circle are predominantly towards
larger eigenvalues. (Figure taken from [41].)
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Figure 5.4: Normalized histogram of reciprocal number of conjugate gradient steps
needed for the ensembles with the smallest pion masses: A66, B70 and C77. A fit to a
Gaussian distribution is included. The ratio of the mean and the standard deviation
µ/σ is larger than five in all cases, indicating a safe algorithm setup. (Figure taken
from [48].)
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Chapter 6

Scale and Low Energy Parameters

We discuss the delicate issue of setting the scale and extrapolation to the physical
pion mass in Section 6.1. In our approach, the strange quark mass can be set
afterwards, which is described in Section 6.2. The axial vector Ward-Takashi identity
is used to extract running current quark masses in Section 6.3. Finally, pseudoscalar
decay constants are dealt with in Section 6.4. This chapter has substantial overlap
with reference [5].

6.1 Scale

In our earlier work [4] we had analyzed configurations at one quark mass parameter
for three values of the gauge coupling. There, we used the lattice spacing derived
from the static quark potential with a Sommer parameter r0,exp = 0.48 fm. Now we
have two or three quark mass parameters for each gauge coupling and can attempt an
extrapolation to the physical point or the chiral limit for each value of the coupling.
The latter extrapolation would be relevant for the parameters of Chiral Perturbation
Theory (ChPT), which we will not attempt to extract here.

We use two approaches to set the scale. In the first one we determine y ≡ a/r0
from the static quark potential separately for each ensemble, as discussed in [41,197].
We then study the dependence of this quantity on the measured values of x ≡ (amπ)

2

(cf., Figure 6.1). The physical values are obtained along

y =

√
x

mπr0
. (6.1)

For each of the three gauge couplings we then perform a linear fit in x and obtain
the physical value where the extrapolations intersect Eq. (6.1) with (mπr0)exp =
137MeV × 0.48 fm = 0.3332. (We use the average of charged and neutral pion
masses.) From this one reads off the lattice spacing a. Table 6.1 gives the resulting
value in the row labeled (π, r0)phys. The value in the chiral limit is obtained as usual
from a/r0 where amπ = 0.

The other approach is to replace y = a/r0 by mass values like amN or amρ.
Since the ρ is unstable for small enough pion mass, there will be threshold effects.
In our parameter range we find no coupling to the (P-wave) ππ sector yet and a

41
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Figure 6.1: Setting the scale with the Sommer parameter and the pion mass as
input at the physical point. The green (long-dashed) line is the curve Eq. (6.1). The
solid and short-dashed lines represent the extrapolation of our lattice data. Their
intersections with the green line define the lattice constants a.

A B C

(π, r0)phys 0.1324(11) 0.1366(15) 0.1398(14)
(π, r0)chiral 0.1314(12) 0.1356(17) 0.1387(15)
(π, ρ)phys 0.1330(44) 0.1378(50) 0.1400(29)

Table 6.1: Lattice spacing in physical units derived for ensembles of type A (β = 4.7),
B (β = 4.65), C (β = 4.58) (cf., Table 5.1) by the methods discussed in the text.
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linear extrapolation intersecting with y =
√
xmρ/mπ gives the values of the lattice

spacing in Table 6.1 compatible with the results of the first method, but with larger
errors.

Throughout this thesis we will use the values obtained from the definition de-
noted by (π, r0)phys in Table 6.1.

6.2 Setting the Strange Quark Mass

In this two-flavor simulation we use the partial quenching approximation to access
the strange hadron spectrum, i.e., we consider the strange quark as a valence quark
only. In view of results with full strange quark dynamics (e.g., [198]) we find, at least
for the ground states, no noticeable difference in the mass range considered here. In
each ensemble the strange quark mass parameter ms is set by identifying our result
for the Ω baryon positive parity ground state energy level with the physical Ω(1672).
These parameters are found in Table 5.1.

For this definition we use r0,exp = 0.48 fm in each ensemble, differing from the
(in Section 6.1) discussed method to set the overall scale. Since the two different
definitions agree at physical pion masses, this method is consistent at the physical
point, but results have to be taken with care at unphysically large pion masses.

6.3 Axial Ward Identity Quark Mass

The so-called axial Ward identity (AWI) mass (or PCAC mass) is determined from
the asymptotic (i.e., plateau of the) ratio of the unrenormalized correlators

2mAWI =
cA
cP

〈0|∂tA−
4 (~p = 0, t) X(0)|0〉

〈0|P−(~p = 0, t)X(0)|0〉 , (6.2)

where P− = d̄γ5u, A
−
4 = d̄γ4γ5u, and X is an interpolator with the quantum num-

bers of the pion, usually P+ or A+. The constants cA(s) and cP (s) denote the lattice
factors relating the smeared interpolators to the lattice point-like interpolators (not
to be confused with the renormalization constants Z relating lattice point operators
to the continuum renormalization scheme). They are obtained from the ratio of
correlators from smeared to point sources [41].

The relation to the renormalized quark mass needs the renormalization factors
for the pseudoscalar and axial currents,

m(r) =
ZA
ZP

mAWI . (6.3)

Table 6.2 gives the values of mAWI and mπ for the ensembles studies. (Values for
the renormalization constants have been derived in [199,200].)
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Set a [fm] amπ mπ [MeV] amAWI mAWI [MeV]

A50 0.1324(11) 0.3997(14) 596(5) 0.03027(8) 45(1)
A66 0.1324(11) 0.1710(48) 255(7) 0.00589(40) 9(1)
B60 0.1366(15) 0.3568(15) 516(6) 0.02356(13) 34(1)
B70 0.1366(15) 0.2111(38) 305(6) 0.00836(23) 12(1)
C64 0.1398(14) 0.4163(18) 588(6) 0.02995(20) 42(1)
C72 0.1398(14) 0.3196(18) 451(5) 0.01728(16) 24(1)
C77 0.1398(14) 0.2340(27) 330(5) 0.01054(19) 15(1)

Table 6.2: Pion masses and (non-renormalized) quark AWI-masses for the different
sets of gauge configurations.

6.4 Decay Constants

The pseudoscalar decay constant describes the coupling to weak decays. It can be
extracted from the asymptotic behavior of the correlation between the pseudoscalar
or the time components of the axial interpolators.

c2A Z
2
A 〈A−

4 (~p = 0, t)A+
4 (0)〉 ∼ mπ F

2
π e−mπt ≡ c e−mπt . (6.4)

The coefficient then gives

Fπ = 2mAWI cP ZA

√

c

m3
π

, (6.5)

and equivalently for the kaon FK .
The dependence of the pion decay constant on the quark mass can be described

by Chiral Perturbation Theory. Up to 1-loop order one finds [201]

Fπ = Fπ,0 −m
2Σ0

16π2F 3
π,0

ln

(

m
2Σ0

Λ2
4F

2
π,0

)

. (6.6)

Here, Fπ,0 and Σ0 refer to the pion decay constant and the quark condensate in the
chiral limit m→ 0 and Λ4 is a low energy constant. The corresponding expressions
including the 2-loop order can be found in [202,203].

The renormalization factor ZA cancels in the ratio FK/Fπ. We show this ratio
in Figure 6.2 where we assume a lattice spacing of 0.135 fm (the average of our
values for the scheme (π, r0)phys) and a physical pion mass of 139.57 MeV. The
extrapolation of our data to that point gives

FK/Fπ = 1.215(41) , (6.7)

which fully covers the experimental value 1.197(9) [7].
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Figure 6.2: The ratio of the pseudoscalar decay constants FK/Fπ is plotted against
m2
π (in dimensionless units) for each set of gauge configurations. The full black line

is a fit of the data using the relevant expressions for numerator and denominator; the
shaded area indicates the error band. The magenta cross indicates the experimental
value [7]. (Figure taken from [5].)
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Chapter 7

Results for the Meson Spectrum

This chapter presents our results for the meson spectrum. First, we briefly review
the cornerstones of the analysis in Section 7.1. Then, the isovector light mesons
are discussed in Section 7.2 and the strange mesons in Section 7.3. Neglecting
disconnected diagrams, isoscalar mesons are investigated in Section 7.4. Finally,
we summarize the results for the meson spectrum in Section 7.5. This chapter has
significant overlap with reference [5].

7.1 Analysis Flow

The gauge configurations are generated according to Sections 4.1 and 4.2. Inter-
polating fields are constructed following Section 4.3 and Appendix B.1, listed in
Appendix B.2. We consider different subsets of the interpolators to construct sev-
eral correlation matrices, and apply the variational method, which is detailed in
Section 4.3. There are some subtleties in this procedure, to be discussed in the
following.

In the limit of infinitely high statistics, the choice of the interpolators becomes
irrelevant. All interpolators couple to the low lying physical states, which then
determine the correlation functions at large time separations. However, in practice,
this coupling may be weak and the time range of a reliable signal short. Thus, for
a good signal-to-noise ratio, it is important to select a few interpolators which do
have good overlap with the low lying physical states.

Another possible systematic influence comes from choosing the value of t0 in the
variational method and the fit range for the generalized eigenvalues. We use t0 = 1a
throughout. In principle, the impact of that choice can be estimated by choosing
several values of t0 and varying the fit range. For the final fit one should then choose
a window where this impact is negligible. However, in practice the corresponding
choices are restricted by the given signal-to-noise ratio for coarse lattices and weak
signals.

The energy levels are obtained from exponential fits to the eigenvalues in a range
of t-values where the eigenvalues and eigenvectors are compatible with an asymptotic
behavior. Typically that plateau extends from t = 2a or 3a up to t = 6a to 12a. In
some cases the eigenvalues are close to each other and their order changes from one
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timeslice to another and also changes randomly over the set of configurations. This
complicates the exponential fits to the eigenvalues and the automatic attribution of
the eigenvectors to physical eigenstates. In such situations we use scalar products of
eigenvectors at a given timeslice with the eigenvectors at the preceding timeslice to
sort the eigenvalues according to their corresponding physical states. This procedure
becomes more reliable towards finer lattice spacings. For subsets of configurations
(in the jackknife analysis) the eigenvectors are contracted with the average of the
vectors at the same timeslice.

The lattice spacing and the physical point are defined as described in Sections
4.4 and 6. Finally, all energy levels are extrapolated towards the physical point as a
function of the pion mass squared. The notions of “chiral extrapolation” and “chiral
fit” will be used loosely as synonyms for the extrapolation towards physical pion
masses. In the plots we also show the corresponding 1σ error band (dashed curves).
The number of energy levels shown is always less than the number of interpolators
chosen for the diagonalization. The χ2 per degree of freedom (d.o.f.) for the chiral
fits of all energy levels are collected in the Tables D.1, D.2 and D.3 All figures
showing energy levels versus the pion mass squared follow the same convention for
the legend, which is detailed once in the caption of Figure 7.1.

7.2 Isovector Light Mesons

7.2.1 Scalars

π : I(JPC = 1(0−+): For the first excitation in the pion channel (see Figure 7.1),
the set of operators (1,2,17) is used in all ensembles (see Table B.1). The corre-
sponding effective mass plateaus are rather short, increasing the uncertainty of the
extracted mass. Due to the finiteness of the lattice, the back-running pion limits
the possible fit range for the first excitation [40,41,195], in particular at small pion
masses. Nevertheless, masses can be extracted and the chiral extrapolation hits the
experimental π(1300) within 1σ.

a0 : I(JPC = 1(0++): In reference [4] three (A50, B70 and C77) of the seven en-
sembles have been analyzed, with less statistics than in the present work. Partially
quenched data was used to argue that the signal in the 0++ channel probably has
significant contributions from the S-wave scattering state πη2, where η2 is the pseudo
Goldstone boson of the U(1)A symmetry in two flavor QCD. In the present work
we analyze only fully dynamical data (except for the strange sector). Our results
are now compatible with the experimental ground state a(980) within 1σ and with
the first excitation a(1450) within 2σ (see Figure 7.1). However, the channel still
poses some difficulties. The plateau is rather short and there remains some am-
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Figure 7.1: Energy levels for light scalar mesons: 0−+ (π): Only the first excited
energy level is shown (lhs), the ground state pion mass squared defines the abscissa.
0++ (a0): Energy level for the observed ground state and first excitation (rhs). Here
and in other figures, circles denote results from ensembles of type A (β = 4.70),
squares denote results from ensembles of type B (β = 4.65), diamonds denote results
from ensembles of type C (β = 4.58) (see Table 5.1) and stars denote experimental
values [7].

biguity in choosing the fit range, leading to a systematic error. In addition, the
results depend on the chosen set of interpolators. We show results from subsets of
(1,4,10,12,13). In ensemble B60, the excitation signal was not good enough to be
fitted. The extrapolations of the ground state levels agree for the different choices
of interpolators.

However, in particular the ground state energy level of ensemble A66 deviates
when changing the set of interpolators. The result becomes unexpectedly light, most
pronounced in the case of the set (10,12,13), though the corresponding effective mass
plateaus look stable. Indeed, this point lies below the (theoretical) πη2 threshold
and could indicate a scattering state signal. It could also signal a severe finite
size effect for this case in A66, this will be discussed in a forthcoming publication.
Nevertheless, except for this point, the results are compatible with the experimental
states.

In Figure 7.2(a) we show the eigenvectors for the ground state for three ensembles
covering the whole range of pion masses presented. They are fairly consistent with
each other and not supporting the notion of a change in the physics of the ground
state over that range. Figure 7.2(b) shows the eigenvalues and effective masses of
ground state and first excited energy level for the ensemble with smallest pion mass
(A66).
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Figure 7.2: Subfig. (a): Eigenvector components of the ground state of the light
scalar meson channel (1(0++)) of ensembles A50, C77 and A66 (top to bottom).
Interpolator (4) (only gaussian sources) dominates, while contributions of the other
interpolators (one or two derivatives) is found to be particularly relevant at heavy
pions. Nevertheless, the eigenvectors are very similar over the whole range of pion
masses (250 to 600 MeV) and only evolve smoothly. Subfig. (b): Eigenvalues (top)
and effective masses (bottom) for the light scalar meson channel (1(0++)) of ensemble
A66, ground state and first excitation.

7.2.2 Vectors

ρ : I(JPC = 1(1−−): The ρ(770) comes out nicely as usual (see Figure 7.3). The
first and second excitation are extracted using the set (1,8,12,17,22), where the
second excitation is not stable in A66. These excitations are very close to one
another, making the chiral extrapolations less reliable. The pattern of energy levels
would allow a crossover of eigenstates but the eigenvectors do not confirm this.
Therefore, we extrapolate the results to the physical point according to the näıvely
assumed level ordering, neglecting a possible crossover. The results are compatible
with the experimental ρ(1450) and ρ(1570 or 1700) within error bars (for a discussion
on the latter excitation see [7]).

We find no obvious indication for a coupled ππ P-wave channel. As discussed
earlier [4, 61] this may be due to weak coupling. By including two pion interpola-
tors one can derive a scattering phase shift from the modification of the observed
energy levels close to the resonance (see, e.g., [93]). Such a study needs inclusions
of disconnected graphs, which are not accessible to us: The necessary propagator
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Figure 7.3: Energy levels for light vector mesons: 1−− (ρ) (top left); 1−+ (π1) (top
right); 1++ (a1) (bottom left); 1+− (b1) (bottom right); for discussion we refer to
the text.

calculation is numerically too costly for CI fermions.

π1 : I(JPC = 1(1−+): The quantum numbers 1−+ cannot be obtained with isotropic
quark sources only. Thus, this channel is not accessible by simple quark models, and
it is commonly referred to as exotic. Due to the weak signal, the set of operators
has to be optimized in each ensemble separately, taking one or two interpolators
of (9,11,14,16,21,24). This way, energy levels can be extracted, albeit with sizeable
error bars. The chiral extrapolation hits the experimental π1(1400), but is also com-
patible with the π1(1600) (see Figure 7.3). In some of the ensembles we get the best
signal using interpolators which are nonzero only due to the definition in Eq. (B.29)
and discussed there. This may be related to the “exotic” property of this channel.

a1 : I(JPC = 1(1++): The signal in the pseudovector meson channels is usually
bad compared to the pion and the ρ channels. Nevertheless, the ground state and
a first excitation can be identified. The ground state is extracted using the single
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Figure 7.4: Energy levels for light tensor mesons: 2−− (ρ2) in both representations
T2 (lhs) and E (rhs).
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Figure 7.5: Energy levels for light tensor mesons: 2−+ (π2) in representation T2.

interpolator (1). For the first excitation the set has to be optimized in each ensemble
separately, taking subsets of three interpolators out of (1,2,4,13,15,17). Some of the
plateaus tend to move towards smaller masses at large time separations. However,
as far as possible, long fit ranges are chosen. The chiral extrapolations hit the
experimental a1(1260) and the a1(1640) within error bars (see Figure 7.3).

b1 : I(JPC) = 1(1+−): In the 1+− channel, the ground state plateau is more stable
than in its positive C-parity partner channel (a1). Using the single interpolator (6),
a mass with comparatively small error bar is obtained. The chiral extrapolation
comes out too high compared to the experimental b1(1235) (see Figure 7.3).

7.2.3 Tensors

The continuum representation for spin 2 decomposes into the irreducible represen-
tations T2 and E on the lattice. These interpolators are orthogonal, thus masses can
be extracted in each of them separately. In the continuum limit, the results should
agree, however, at finite lattice spacings they can show different discretization ef-
fects. We extract the energy levels separately and compare the corresponding chiral
extrapolations.
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Figure 7.6: Energy levels for light tensor mesons: 2++ (a2) in both representations
T2 (lhs) and E (rhs).

ρ2 : I(JPC = 1(2−−): In many of the spin 2 channels the signal is weak and fits
can be performed only for some of the seven ensembles. In particular this is the
case in the 2−− channel (see Figure 7.4). We use the single interpolator (2) in T2

(see Table B.7) and (2) in E (see Table B.5). The effective masses are noisy, the
fitted plateaus are rather short, with only 2 d.o.f. in the fits. Nevertheless, the chiral
extrapolations of the T2 and E ground state masses agree with each other and also
with the experimental ρ2(1940) mass. Hence, our results are compatible with this
state, which is omitted from the summary table of [7].

π2 : I(JPC) = 1(2−+): In the 2−+ channel (Figure 7.5), interpolator (6) is applied
in T2. The extrapolation to the physical point is compatible with the experimental
π2(1670) (within 1 resp. 1.5σ). The signal for representation E (not shown) is too
weak to be reliable.

I(JPC) = 1(2+−): We studied this channel for completeness but the signals were
inconclusive and did not allow to extract an energy level.

a2 : I(JPC) = 1(2++): In the 2++ channel (Figure 7.6), we use interpolator (2) in
T2 (see Table B.8) and (2) (respectively (6) for A66) in E (see Table B.6). Some of
the plateaus are unexpectedly light, however, that might be statistical fluctuation.
The chiral extrapolations of the T2 and E ground state masses agree and both match
the experimental a2(1320) mass within error bars. The χ2/d.o.f. of the chiral fit of
T2 is larger than three (see Table D.1), where the major contribution stems from
ensemble A66. Finite volume effects could be responsible for the significant deviation
of this particular value.

7.3 Mesons with Strange Valence Quarks

In 2-flavor simulations, strange hadrons can be studied by including the strange
quark just as a valence quark. The corresponding quantum field theory is not well
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defined, the probability distribution of physical observables is not anymore strictly
non-negative. Nevertheless, since the strange quark is heavy compared to the light,
dynamical quarks, observables can be measured and regarded as predictions includ-
ing systematic errors. We stress that even though light hadrons are well defined in
2-flavor simulations, they also show the systematic error of neglecting strange sea
quarks when the results are compared to experiment. From this point of view, the
predictive power of strange valence hadrons is not significantly below the one of light
hadrons in 2-flavor simulations. The strange quark mass parameter is set in each en-
semble such that the Ω(1672) is reproduced (always assuming that r0,exp = 0.48 fm)
(see Section 6.2).

In contrast to isovector light mesons, C-parity is no good quantum number
for I = 1/2 strange mesons due to the non-degeneracy of the light and strange
quark mass. At unphysically large pion masses, however, C-parity is approximately
restored (see discussion in Section 4.3.4). Our interpolators (see Appendix B) are
constructed such that C-parity is a good quantum number in the limit of degenerate
quark masses. Therefore, by monitoring the eigenvectors of the variational method,
we can learn about the C-parity content of the states.

Since excited states are always more difficult to deal with than ground states, this
raises the demands on the variational method. In some cases it is therefore suggestive
to separate the channels according to C-parity. At our largest pion masses, around
600 MeV, one expects C-parity to be almost restored. Approaching the physical
point, C-parity is violated stronger and stronger, and the corresponding mixing
of interpolators is expected to become increasingly important. To investigate this
mixing, we include all possible interpolators in the correlation matrix, but we also
analyze separately the sectors with given C-parity. The advantage of the second
approach is a clearer distinction of the energy levels, where some come in the [C =
+1] sector, some in the [C = −1] sector. In the combined correlation matrix we see
both sets, but due to the increased noise, fewer levels can be reliably determined. We
discuss this point in the subsequent channels. Our results for the dominant C-parity
assignments agree qualitatively with [66]. Here we also discuss the corresponding
mixing, which is accessible due to our lighter pion masses.

7.3.1 Scalars

K : I(JP) = 1/2(0−): In the strange 0− channel, interpolator (1) is used for the
ground state, which extrapolates close to the experimental kaon (see Figure 7.7).
The χ2/d.o.f. of the chiral fit is larger than four (see Table D.2), which indicates
that due to the tiny statistical errors the systematic errors (e.g., of setting the
strange quark mass) become visible. For the excited state, we use the set (1,2,8,17),
its linear extrapolation towards the physical point agrees with the experimental
K(1460) within error bars. Hence we can confirm this state (which is omitted from
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Figure 7.7: Energy levels for strange scalar mesons: I(JP ) = 1/2(0−) (K) (lhs);
and I(JP ) = 1/2(0+) (K0) (rhs). For the second case, the S-wave scattering state
πK for zero and minimum non-zero relative momentum is indicated for all ensembles
using crosses. The chiral fits are omitted for clarity.

the summary table of [7]). In this channel we use only 0−+ interpolators, since the
signal of the exotic 0−− interpolators is too weak, and the corresponding energy
levels lie too high.

K0 : I(JP) = 1/2(0+): The strange scalar channel 0+ is as peculiar as its light
multiplet partners. The K∗

0 (800) (also called κ) is a very broad resonance (with a
width of more than 80% of its mass) and is omitted from the summary table of [7]
due to its unclear nature.

Using interpolator (13) alone (not shown), the chiral extrapolation almost hits
the presumed center of the resonance. To apply the variational method, we use
the set (10,12,13) and include also (1,4) in the basis at small pion masses. We
observe that at light pion masses the effective masses tend to decrease at large time
separations, which may be a signal for contributions of a scattering state. Like in
most cases, we choose a large fit range (e.g., 8 timeslices in A66). The results are
compatible with the K∗

0 (800) and the K∗
0 (1430), but also with the S-wave scattering

state πK (see Figure 7.7). The χ2/d.o.f. of the chiral fit of the ground state is larger
than 8 (see Table D.2), which is again interpreted as indication for systematic errors,
probably related to scattering states. Here we use only 0++ interpolators, the signal
of the exotic 0+− interpolators is too weak.

7.3.2 Vectors

K∗ : I(JP) = 1/2(1−): Considering the strange JP channels as mixing of JP+ and
JP−, one can use information from the corresponding light JPC channels to speculate
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(a) I(JP ) = 1/2(1−) (K∗): Energy levels from in-
terpolators restricted to C ≈ +1.

0 0.1 0.2 0.3 0.4

mπ
2
 [GeV

2
]

0

0.5

1

1.5

2

2.5

3

m
as

s 
[G

eV
]

K*

(b) I(JP ) = 1/2(1−) (K∗): Energy levels from in-
terpolators with both types of C-parities.

Figure 7.8: Energy levels for strange vector mesons: I(JP ) = 1/2(1−) (K∗). Sub-
fig. (a): Analysis restricted to [C ≈ +] interpolators. Note that the experimental
ground state is missed in this case. Subfig. (b): Both types of C-parities included.
For discussion we refer to the text.

about the dominating C-parity in the low-lying states of the strange JP channel.
Based on that analogy, in the scalar channels one expects dominance of positive
C-parity, which is confirmed by our results. In the vector channels, however, both
C-parities are expected to contribute to the measurable low-lying states. Looking at
the experimental states in the corresponding light meson channels ρ(770), π1(1300),
ρ(1450) and ρ(1570 or 1700), one expects that the K∗(892) is an (almost) pure 1−−

state, while mixing could become important for K∗(1410) and K∗(1680).
We first discuss sets of purely negative C-parity interpolators. Taking interpola-

tors (1,8,12,17,20), we extract a ground state and up to two excitations. The chiral
extrapolation of the ground state hits the experimental K∗(892) nicely , which is
clearly an (almost) pure [C ≈ −] state. The excitations are a bit high compared to
the experimental K∗(1410) and the K∗(1680). The overall picture is very similar to
the one of the analysis with the full basis, which is discussed later.

Considering only 1−+ interpolators, the chiral extrapolation hits the K∗(1680)
(see Figure 7.8, left hand side). This suggests that mixing is important at least for
the K∗(1680).

Finally, taking the set (1,8,9,12,16,20,21), both types of C-parities are included
in the variational method. In this analysis, the three lowest states are dominated by
[C ≈ −] interpolators, where even for the excitations the mixing is compatible with
zero. A slight mixing is observed in ensemble A66, however, the signal is very weak,
and the corresponding energy levels cannot be extracted reliably. One might wonder
why we do not see a significant contribution of [C ≈ +] interpolators to at least one
of the excitations. A possible interpretation is that the mixing is indeed weak in this
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Figure 7.9: Strange vector mesons I(JP ) = 1/2(1+) (K1): Results for the energy
levels are shown left hand side. The corresponding eigenvectors for the ground state
and the first excitation for the lightest pion mass (A66) are shown right hand side.
Interpolators (1,2,17) have [C ≈ +], (6) has [C ≈ −]. Note the dominance of positive
(negative) C-parity in the ground state (first excitation). Note furthermore that
there is some mixing in both states, which is allowed by the breaking of C-parity
towards light pion masses. At our largest pion masses, this mixing is suppressed
strongly.

channel at all simulated pion masses and that there is a further state, dominated by
[C ≈ +], which is not clearly identified in the full analysis. The chiral extrapolations
of the excitations come out a bit high compared to the experimental K∗(1410) and
K∗(1680) (see Figure 7.8, right hand side), suggesting that simulations at smaller
pion masses and with higher statistics are necessary in order to reliably describe the
mixing of different C-parities and to be able to obtain the K∗(1410).

K1 : I(JP) = 1/2(1+): Looking at the experimental states in the corresponding
light meson channels a1(1260), b1(1235) and a1(1640), mixing is expected already
for the lowest states K1(1270), K1(1400) and K1(1650).

Employing pure [C ≈ +] sets of interpolators, the chiral extrapolation of the
ground state ends up between the K1(1270) and the K1(1400). The first excitation
hits the K1(1650) within error bars. From pure [C ≈ −] interpolators only a ground
state can be extracted, the chiral extrapolation of which agrees with the K1(1400).

Allowing for both types of C-parity, three states can be extracted when the
set of interpolators is optimized in each ensemble. The chiral extrapolations are
compatible with K1(1270), K1(1400) and K1(1650) (see Figure 7.9, left hand side).
Since the splitting of K1(1270) and K1(1400) is rather small, it is hard to make a
statement about its increase towards smaller pion masses. This is worsened by the
fluctuation of the plateau points. However, the eigenvectors indeed show stronger
mixing approaching the physical point (see Figure 7.9, right hand side), which is
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Figure 7.10: The eigenvectors for I(JP ) = 1/2(2−) (K2) for the ground state and
the first excitation for the lightest pion mass (A66) are shown. Interpolators (2,5)
have [C ≈ −], (6) has [C ≈ +]. Note the dominance of positive (negative) C-parity
in the ground state (first excitation). Note furthermore that there is significant
mixing in both states, which is allowed by the breaking of C-parity towards light
pion masses. At our largest pion masses, this mixing is suppressed. The mixing
pattern is similar in representation E (not shown).

usually accompanied by a more pronounced splitting. At simulated pion masses,
K1(1270) and K1(1650) are dominated by [C ≈ +], K1(1400) by [C ≈ −] interpo-
lators. Our results confirm the existence of K1(1650) (omitted from the summary
table of [7]), which is dominated by positive C-parity in our analysis.

7.3.3 Tensors

K2 : I(JP) = 1/2(2−): In the spin 2 channels, investigation of the mixing becomes
more complicated, since the signal is often weak already for the ground state. From
the light meson states π2(1670), π2(1880) and the (not established) ρ2(1940), one
could expect a dominance of [C ≈ +] interpolators in the ground state. So far,
K2(1580) is omitted from the summary table of [7], the lowest established states in
this channel are K2(1770) and K2(1820).

Restricting the basis to negative C-parity, we use interpolator (2) as in the
corresponding light channel. In both T2 and E, the chiral extrapolation is compatible
with K2(1770) and K2(1820). For positive C-parity, using interpolator (6) in T2 and
(8) in E, the chiral extrapolations are again compatible withK2(1770) andK2(1820).

To take into account both C-parities, the set (2,5,6) (resp. (3,4,5,6) in C72) is
chosen in T2 and (2,5,8) in E. The two lowest eigenvalues are very close and have to
be sorted according to the eigenvectors. The eigenvectors of T2 are shown in Figure
7.10. We observe that the ground (excited) state is dominated by positive (negative)
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(a) Energy levels for I(JP ) = 1/2(2−) (K2).
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(b) Energy levels for I(JP ) = 1/2(2+) (K∗
2 ).

Figure 7.11: Energy levels for strange tensor mesons. Subfig. (a) shows I(JP ) =
1/2(2−) (K2) in both representations T2 and E. Subfig. (b) shows I(JP ) =
1/2(2+) (K∗

2 ) in both representations T2 and E. Chiral fits are suppressed for clarity.

C-parity. However, there is significant mixing in both states, which appears to be
the strongest mixing of all channels considered. Strong mixing is also observed in
representation E. The chiral extrapolations are compatible with the experimentally
established K2(1770) and K2(1820) (compare Figure 7.11, left hand side) and do not
confirm the K2(1580), which is omitted from the summary table of [7]. However,
increasing mixing towards lighter pion masses could still change the slope of the
chiral extrapolation.

K∗
2

: I(JP) = 1/2(2+): No experimental state is known in the light-quark 2+−

channel. In the light 2++ channel, the lowest states are a2(1320), a2(1700) and
a2(1950), of which the latter two are not established. In the strange 2+− channel
the lowest experimental states are K∗

2 (1430) and the (not established) K∗
2 (1980).

The signal of negative C-parity interpolators is weak here, thus we restrict our
analysis to positive C-parity interpolators. Interpolator (2) (Table B.8) is used in
T2 and interpolator (2) (Table B.6) in E to extract a ground state mass. In both
lattice channels, the chiral extrapolation hits the experimental K∗

2 (1430) nicely (see
Figure 7.11, right hand side).
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Figure 7.12: Energy levels for isoscalar vector mesons φ: I(JPC) = 0(1−−)

7.4 Isoscalar Light Mesons

φ : I(JPC) = 0(1−−): In principle, correlation functions of isoscalar mesons in-
clude connected and disconnected diagrams. The low lying isoscalar φ mesons de-
cay mainly into kaons, thus one expects that these states are dominated by strange
quarks (Zweig rule). Since disconnected diagrams are dominated by loops of light
sea quarks, it is reasonable to assume that the φ mesons are dominated by connected
(strange) diagrams. We extract φ meson masses evaluating only these connected di-
agrams, albeit with the systematic error of neglecting the disconnected diagrams.
We use the same set of operators as in the light isovector 1−− (ρ) channel (see
Section 7.2.2) to extract three energy levels.

The ground state mass extrapolates to a value very close to the experimental
φ(1020) mass (see Figure 7.12), which confirms our choice of the strange quark mass
parameters. The extrapolation of the excited states ends up significantly higher
than the experimental φ(1680). Since the first excitation ρ(1450) in the light isovec-
tor channel is reproduced nicely, one may conclude that the neglected disconnected
diagrams play a more important role for the φ(1680) compared to the φ(1020). The
lattice irreducible representation T1 couples to continuum spins 1 and 3 (among
others). The extrapolations of the first and second excitation are indeed both com-
patible with the spin 3 state φ3(1850). However, all our interpolators in this chan-
nel have a näıve continuum limit of spin 1, which indicates that the matching with
φ3(1850) is probably an accident.

f2 : I(JPC) = 0(2++): As in the φmeson channel, the experimental decay channels
of the isoscalar light meson f2 suggest dominance of connected diagrams. We use
the same interpolators as in the isovector 2++ (a2) channel. The results of T2 and



7.5. Summary of the Results for the Meson Spectrum 61

0 0.1 0.2 0.3 0.4

mπ
2
 [GeV

2
]

0.5

1

1.5

2

m
as

s 
[G

eV
]

f
2
:T

2

0 0.1 0.2 0.3 0.4

mπ
2
 [GeV

2
]

0.5

1

1.5

2

m
as

s 
[G

eV
]

f
2
:E

Figure 7.13: Energy levels for isoscalar tensor mesons f2: I(JPC) = 0(2++) in
representations T2 (lhs) and E (rhs).

E agree (see Figure 7.13), but their chiral extrapolations are in better agreement
with the f ′2(1525) than with the f2(1430). The latter needs confirmation and is
not listed in the summary table of [7]. It is unclear if inclusion of the neglected
disconnected diagrams would yield the f2(1430) or if the ground state of the theory
is the established f ′2(1525).

7.5 Summary of the Results for the Meson Spectrum

In this chapter, the results for the meson spectrum from our simulation have been
presented. Figure 7.14 shows the results after extrapolation to physical pion masses
compared to experimental values [7]. The results are in general in good agreement
with experiment. As discussed in more detail in Sections 7.2 and 7.3, we do not see
any clear indications of scattering states, which probably show only little overlap
with the one-particle interpolators used in this work. Exceptions are the strange 0+

channel and the light isovector 0++ channel at small quark masses, where our signal
is also consistent with a two-particle scattering state.

The strange meson channels 1−, 1+ and 2− have been investigated with respect
to their approximate C-parity. In the 1− channel, the three lowest states seem to be
dominated by negative C-parity, while positive C-parity was shown to contribute to
a state in the vicinity of the second excitation. The low-lying states in the 1+ channel
support level ordering obeying alternating C-parity dominance, where some mixing
of different C-parity is found towards light pion masses. The 2− channel shows
strong mixing towards light pion masses and the ground state (first excitation) is
dominated by positive (negative) C-parity.
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Figure 7.14: Energy levels for isovector light mesons (lhs) and strange and isoscalar
mesons (rhs). All values are obtained by chiral extrapolation linear in the pion mass
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lines indicate poor evidence, according to [7]. The statistical uncertainty of our
results is indicated by bands of 1σ, that of the experimental values by boxes of 1σ.
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poor χ2/d.o.f. of the chiral fits (see Tables D.1, D.2 and D.3).



Chapter 8

Results for the Baryon Spectrum

This chapter presents our results for the baryon spectrum. First, we present light
baryons in Section 8.1. Then, strange baryons are discussed in Section 8.2. Finally,
we summarize the results for the baryon spectrum in Section 8.3.

8.1 Results for Light Baryons

8.1.1 Nucleons

N : I(JP) = 1/2(1/2+): The nucleon spin 1/2+ ground state is the lightest bary-
onic bound state of QCD. We use interpolators covering three Dirac structures and
different levels of quark smearing, (1,2,9,10,19,20) (see Appendix C), to extract four
states. Let us first discuss the ground state. The leading order chiral extrapolation
yields an energy level around 10% larger than the experimental N(939)∗∗∗∗ (see Fig-
ure 8.1). Here and in the following, the stars as superscript of experimental states
denote the level of quality classified by [7]. The deviation may be caused by system-
atic errors like finite volume effects, which will be discussed in Chapter 9. Within
the finite basis used in the variational method, the ground state is dominated by the
first Dirac structure, with a contribution of the third one. We stress that (at least for
pairwise different quark smearing) all Dirac structures used generate independent
field operators which are not related by Fierz transformations (see Section 4.3.4).

The first excitation in the nucleon channel, N(1440)∗∗∗∗ , the “Roper resonance”,
is famous because it is lighter than the ground state in the corresponding nega-
tive parity channel. This “reverse level ordering” is contrary to the predictions of
most simple quark models (see, e.g., [204, 205]). However, in our simulation, the
first excitation is about 500 MeV higher than the experimental Roper, and supports
conventional level ordering with alternating parity. We briefly discuss some possi-
ble systematic effects which may cause this deviation. First of all, finite volume
effects could shift the energy level up. This may be enhanced for this state, since in
quark models it is considered as a radial excitation, which implies an enlarged size.
Unfortunately, the signal of the eigenvalues is weak and the fit range short, which
complicates a reliable analysis of finite volume effects. On the other hand, possi-
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Figure 8.1: Energy levels for nucleon spin 1/2+ (lhs) and 1/2− (rhs).
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Figure 8.2: Eigenvectors for nucleon spin 1/2− ground state (bottom) and first
excitation (top), ensemble A50 (lhs) and B70 (rhs). Note the different composition
of the states at the different pion masses. Details are discussed in the text.
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Figure 8.3: Energy levels for nucleon spin 3/2+ (lhs) and 3/2− (rhs).
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bly the used interpolators do not couple strongly enough to the Roper resonance.
Finally, the discrete energy levels of the P-wave scattering state πN also could influ-
ence the situation dramatically by mixing and avoided level crossings. Comparing
to the corresponding quenched simulations [35], the results in the nucleon positive
parity channel do not deviate significantly. Our data are also in agreement with
quenched and dynamical results from other groups (e.g., [57,59,61]). Towards phys-
ical pion masses, the first excitation was reported to bend down significantly [62],
however, still all results from the lattice are closer to the N(1710)∗∗∗ than to the
Roper resonance N(1440)∗∗∗∗.

After chiral extrapolation, we obtain two close excitations within roughly 1800-
2000 MeV. One of those has a χ2/d.o.f. of the chiral fit of larger than three (see
Table D.4), which suggests a non-linear dependence on m2

π. However, a chiral fit
incorporating only data with pion masses below 350 MeV misses the experimen-
tal Roper resonance as well. In several of our ensembles, the excited energy levels
overlap within error bars. Related to this, the order of states is not the same in
all ensembles. At light pion masses, the first excitation is dominated by a linear
combination of interpolators of the second Dirac structure; the second excitation
is dominated by the first Dirac structure, with some contribution from the third
one. Towards heavier quark masses, this level ordering interchanges. This supports
a picture of level crossing between the first and second excitation in the range of
pion masses simulated. The linear combination of interpolators with different quark
source widths at light pion masses is compatible with the picture of a radial exci-
tation. This behavior seems to be stable as long as the basis is not truncated too
strongly.

N : I(JP) = 1/2(1/2−): In general, we find somewhat low energy levels in the
negative parity baryon channels, compared to experiment. This is also true for the
nucleon spin 1/2− channel. We use again the set of interpolators (1,2,9,10,19,20),
and find that the ground state comes out too low and the chiral extrapolation of
the first excitation hits the experimental ground state (see Figure 8.1). A possible
explanation can be formulated as follows. In Nature, the S-wave state πN (neglecting
the interaction energy) lies below the one-particle ground state N(1535)∗∗∗∗ in the
nucleon negative parity channel. This may also hold at some of the simulated pion
masses, e.g., in ensemble A66 or even in C77. Increasing the pion mass further, the
scattering state becomes heavier than the 1-particle state. This suggests a (avoided)
level crossing of the two states. Indeed, our results on energy levels are compatible
with such a picture. In [4] we analyzed only a subset of the configurations available
in this work. We argued that the eigenvectors give no indication for a level crossing
in the range of pion masses between roughly 300 and 600 MeV. In the present work,
we can monitor the eigenvectors down to pion masses of 250 MeV. Furthermore,
we use a larger basis, albeit at the cost of introducing additional noise. Note that
we use the same quark smearing structures for different Dirac structures, such that
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the eigenvectors give information about the content of the state without the need of
additional normalization of the interpolators. We find indeed a significant change
in the eigenvectors towards the physical point. The eigenvectors are shown for
ensembles A50 and B70 in Figure 8.2. In particular, the ground state is dominated
by interpolator (2) (χ1) around mπ = 300 MeV, and by interpolator (10) (χ2) above
mπ = 500 MeV. For the first excitation, interpolator 10 contributes stronger at
lighter pion masses compared to heavier ones. This trend is observed also in the
other ensembles and at partially quenched data. However, while the change in the
content of the states is obvious, it does not directly support a (avoided) level crossing.
The reason is the different relative sign of the interpolators, as easily inspected from
Figure 8.2. Further discussion is postponed to a forthcoming publication.

N : I(JP) = 1/2(3/2+): In the nucleon spin 3/2+ channel, only two states are
known experimentally: The N(1720)∗∗∗∗ and the N(1900)∗∗, where the latter needs
confirmation. We use interpolators (1,4,5), respectively (1,2,3,4) in A66 and B70.
The signal is rather noisy and the effective mass plateaus appear to drop towards
large time separations. Sizeable deviations from the chiral fit are observed in en-
sembles B70 and C77. Nevertheless, the chiral extrapolation of the ground state
agrees well with the experimental N(1720)∗∗∗∗ (see Figure 8.3). The first excitation
overshoots the N(1900)∗∗ by about 2σ, which thus cannot be confirmed.

N : I(JP) = 1/2(3/2−): In this channel, experimentally, N(1520)∗∗∗∗ andN(1700)∗∗∗

are established, while N(2080)∗∗ needs confirmation. Using interpolators (1,2,3,4),
three states can be extracted in our simulation (see Figure 8.3). The ground state
extrapolates to a value between the N(1520)∗∗∗∗ and the N(1700)∗∗∗, the first exci-
tation to the N(2080)∗∗ and the second comes out even higher.

8.1.2 Delta Baryons

∆ : I(JP) = 3/2(1/2+): Experimentally, the ground state ∆(1750)∗ still needs
confirmation, while ∆(1910)∗∗∗∗ is well established. In our simulation, using inter-
polators (1,4,5), we find two states, where the second eigenvalue decays slower than
the first one. The resulting crossing of the eigenvalues complicates the analysis.
However, the plateaus can be fitted and energy levels extracted, albeit with sizeable
error bars. The chiral extrapolation of the ground state is compatible with both
∆(1750)∗ and ∆(1910)∗∗∗∗ , the first excitation comes out higher (see Figure 8.4).
The interpolators for this channel are constructed following Section 4.3.4.

∆ : I(JP) = 3/2(1/2−): In the negative parity channel, ∆(1620)∗∗∗∗ is estab-
lished, while ∆(1900)∗∗ needs confirmation. Using interpolators (1,2,3,4), we ex-
tract two states in this channel. The chiral extrapolation of the ground state hits
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Figure 8.4: Energy levels for ∆ spin 1/2, positive (lhs) and negative parity (rhs).
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Figure 8.5: Energy levels for ∆ spin 3/2, positive (lhs) and negative parity (rhs).
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the experimental ∆(1620)∗∗∗∗ within 1.2σ (see Figure 8.4). ∆(1900)∗∗ is hit nicely,
however, the associated error bar is too large to claim confirmation of this state.

∆ : I(JP) = 3/2(3/2+): The ∆(1232)∗∗∗∗ is the lowest resonance of all spin 3/2
baryons. We find a good signal of two states, the chiral extrapolations of which both
come out too high compared to the experimental ∆(1232)∗∗∗∗ and the ∆(1600)∗∗∗

(see Figure 8.5). Finite volume effects are a possible origin of the discrepancy, which
will be discussed in Chapter 9. Note that the partially quenched data of this channel
are used to set the strange quark mass parameter (see Section 6.2).

∆ : I(JP) = 3/2(3/2−): We find a good signal in the ∆ spin 3/2− channel in all
seven ensembles (see Figure 8.5). However, as in some other negative parity baryon
channels, the chiral extrapolation of the ground state comes out low compared to
experiment. The results for the first excitation are inconclusive, the χ2/d.o.f. of
the chiral fit is larger than three.

8.2 Results for Strange Baryons

8.2.1 Lambda Baryons

Λ : I(JP) = 0(1/2+): The Λ baryons have isospin zero, which can be realized
from singlet or octet representations. While these are orthogonal at the SU(3)f
symmetric point, they are allowed to mix towards the physical point. We use the set
of interpolators (1,2,11,20,25,26,33,34,43), which includes different Dirac structures
for both singlet and octet flavor structures. We extract four states, and find that
after extrapolation to the physical point our lowest energy level agrees nicely with
the experimental Λ(1116)∗∗∗∗ . Our first excitation matches Λ(1810)∗∗∗ , but is also
compatible with Λ(1600)∗∗∗ within 2σ. The chiral fit of the second excited energy
level shows a χ2/d.o.f. around four (see Table D.4). The cause lies probably in
the closure of the eigenvalues and corresponding difficulties of extracting energy
levels and assigning them to states. Analyzing the eigenvectors, we find that in
our simulation the ground state is dominated by octet interpolators of the first and
third Dirac structure, which agrees with a quark model calculation [206]. In contrast
to the quark model, in our simulation the first excitation is dominated by singlet
interpolators of the first Dirac structure, and the second and third excitation are
again dominated by octet interpolators.

Λ : I(JP) = 0(1/2−): The Λ spin 1/2− channel is highly interesing for several
reasons. First, the experimental Λ(1405)∗∗∗∗ marks the lowest energy level among
all negative parity baryons. So far, lattice simulations have problems to identify this
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Figure 8.6: Energy levels for Λ spin 1/2, positive (lhs) and negative parity (rhs).
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Figure 8.7: Eigenvectors for Λ spin 1/2− ground state and first excitation for
ensemble B70. The ground state is dominated by singlet χ3 interpolators. The
first and the second excitation are dominated by octet interpolators. We want to
emphasize that small but non-negligible mixing of singlet and octet is observed.
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Figure 8.8: Energy levels for Λ spin 3/2, positive (lhs) and negative parity (rhs).
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Figure 8.9: Eigenvectors for Λ spin 3/2+ ground state and first excitations for
ensemble A66. We emphasize the domination of singlet interpolators for the first
excitation. Such interpolators are non-vanishing only for broken Fierz identities,
which is realized by the use of different quark smearing widths (see Section 4.3.4).
Furthermore, we remark that small but non-negligible mixing of singlet and octet is
observed.
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Figure 8.10: Eigenvectors for Λ spin 3/2− ground state and second excitations for
ensemble B70. We emphasize the domination of singlet interpolators for the second
excitation. Such interpolators are non-vanishing only for broken Fierz identities,
which is realized by the use of different quark smearing widths (see Section 4.3.4).
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state (see, e.g., [60]), only one group claims to isolate it (see [207]). Furthermore, it
is conjectured from Chiral Unitary Theory that it may have a double-pole structure
(see, e.g., [7]). We apply different sets of interpolators and fit ranges and find some
related deviation of the energy levels. We stress that our basis is large compared
to other studies, in particular we include three types of Dirac structures for both
singlet and octet interpolators. The analysis appears to be complicated because
of nearby eigenvalues and early onsets of noise. Nevertheless, we can extract four
energy levels, shown in Figure 8.6 for interpolators (2,3,10,18,26,27,34,42). We find
that the ground state energy level agrees with the experimental Λ(1405)∗∗∗∗ within
1σ, a double-pole structure is not observed. The first and second excited energy
level agree with the experimental Λ(1670)∗∗∗∗ and Λ(1800)∗∗∗ , respectively. Note,
however, the sizeable χ2/d.o.f. of the chiral fits, larger than four (see Table D.5),
indicating systematic effects which are not under control. We show the eigenvec-
tors of the lowest two states in Figure 8.7 for ensembles B70 using interpolators
(1,2,11,20,25,26,33,34,43). In our simulation, the ground state is dominated by sin-
glet χ3 interpolators, including some contribution from χ2 and χ1. The first and
second excitation are dominated by octet interpolators, including contribution from
all three Dirac structures. The singlet/octet level ordering agrees with quark model
calculations [206]. The corresponding mixing is smaller in our simulation, however,
it can be expected to increase towards physical pion masses. A more thorough dis-
cussion of this channel, considering different interpolators and fit ranges and finite
volume effects will be presented in a forthcoming publication.

Λ : I(JP) = 0(3/2+): In the Λ spin 3/2+ channel, the Particle Data Group lists
only one resonance, Λ(1890)∗∗∗∗ . For symmetric quark fields, singlet interpolators
vanish exactly due Fierz identities. We use different quark smearing widths in order
to invalidate the Fierz identities and construct singlet interpolators nevertheless, as
discussed in Section 4.3.4. We use interpolators (2,9,10,16), including singlet and
octet, to extract three states.

Analyzing the eigenvectors, we find that the level ordering is not the same in
all ensembles. We trace the eigenvectors along the different ensembles to perform a
chiral fit of all three states, and name them according to their ordering at the physical
point. The extrapolation of the ground state hits the experimental Λ(1890)∗∗∗∗

nicely (see Figure 8.8). Within the finite basis used, this state is dominated by
octet interpolators. We show the eigenvectors of the ground state and the first
excitation of ensemble A66 in Figure 8.9. The first excitation shows a strong chiral
slope, approaching the ground state energy level towards physical quark masses.
The corresponding χ2/d.o.f. of the chiral fit is larger than four (see Table D.4). The
eigenvectors indicate a non-negligible mixing of singlet and octet interpolators at our
lightest pion mass. Such mixing effects can increase towards lighter pion masses,
complicating the functional dependence on m2

π. This is a possible origin of the large
χ2/d.o.f. Assuming an enhanced chiral curvature towards physical quark masses,
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our data are also compatible with a picture of level crossing of the two lowest states.
This would imply a singlet ground state in this channel. The second excitation
lies a bit higher and is dominated by octet interpolators, including small singlet
contributions. Finally we want to emphasize the importance of singlet interpolators
for the low lying states in this channel, even though those interpolators are vanishing
exactly for symmetric point-like quark fields.

Λ : I(JP) = 0(3/2−): In the negative parity channel, the resonances Λ(1520)∗∗∗∗ ,
Λ(1690)∗∗∗∗ and Λ(2325)∗ are known experimentally, where the first two are estab-
lished. We use interpolators (2,9,10,16), including singlet and octet, to extract three
states (see Figure 8.8). The level ordering differs in some of the ensembles, and,
again, tracing of the eigenvectors defines the chiral fit for all three states, named
according to their ordering at the physical point. We find fairly stable signals and
χ2/d.o.f. of the chiral fits of order one (see Table D.5), encouraging the chosen assign-
ment of the states. The extrapolation of the ground state energy level is compatible
with the Λ(1690)∗∗∗∗ , and both excitations extrapolate to the Λ(2325)∗. A possible
reason for the mismatch with the experimental ground state would be that the used
interpolators do not couple strongly enough to this state, such that it is effectively
hidden from our simulation. On the other hand, mixing of singlet and octet may
increase towards physical quark masses, inducing a non-linear dependence on m2

π.
With a significant chiral bending down, the obtained energy levels could reproduce
the experimental ones. We show the eigenvectors of ensemble B70 in Figure 8.10.
The two lowest states are dominated by octet, the second excitation by singlet in-
terpolators. Some mixing of singlet and octet is found in particular for the two
excitations. This singlet/octet level ordering is in contrast to quark models which
predict a singlet dominance for the ground state [206].

8.2.2 Sigma Baryons

Σ : I(JP) = 1(1/2+): The Σ(1189)∗∗∗∗ ground state marks one of the lowest en-
ergy levels of the spin 1/2 baryons. At the SU(3) flavor symmetric point, the octet
and decuplet irreducible representations are orthogonal. Towards physical quark
masses, SU(3)f is broken and hence octet and decuplet are allowed to mix. We use
the set (1,2,9,10,25,26), which includes octet with Dirac structures χ1 and χ2 and
decuplet interpolators in the basis. Four states can be extracted from our simula-
tions. The ground state signal is fairly good and the chiral extrapolation arrives very
close to the experimental Σ(1189)∗∗∗∗ (see Figure 8.11). The first excitation comes
out too high compared to the experimental Σ(1660)∗∗∗. The energy levels of the
second and third excitations appear close to the first excitation in our simulations.
Note the poor χ2/d.o.f. of the chiral fit of the second excitation, being larger than
four (see Table D.4), which suggests a non-linear dependence on m2

π.
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Figure 8.11: Energy levels for Σ spin 1/2, positive (lhs) and negative parity (rhs).
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Figure 8.12: Eigenvectors for Σ spin 1/2− ground state and first excitation (lhs) and
second and third excitation (rhs) for ensemble B70. Note the dominance of decuplet
interpolators for the second excitation, which is a low lying state (see Figure 8.11).
Details are discussed in the text.

0 0.1 0.2 0.3 0.4

mπ
2
 [GeV

2
]

0

0.5

1

1.5

2

2.5

3

3.5

4

m
as

s 
[G

eV
]

Σ 3/2
+

0 0.1 0.2 0.3 0.4

mπ
2
 [GeV

2
]

0

0.5

1

1.5

2

2.5

3

3.5

4

m
as

s 
[G

eV
]

Σ 3/2
-

Figure 8.13: Energy levels for Σ spin 3/2, positive (lhs) and negative parity (rhs).
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Monitoring the eigenvectors, we analyze the octet/decuplet content of the states.
Within the finite basis employed, the ground state and the first excitation are
strongly dominated by octet χ1. Of the second and third excitation, one is domi-
nated by decuplet and the other one by octet χ2 interpolators. The mixing of octet
and decuplet interpolators is found to be negligible in the range of pion masses con-
sidered. As we will see, this holds for most Σ and Ξ observables discussed in this
work.

Σ : I(JP) = 1(1/2−): In the Σ spin 1/2 negative parity channel, the Particle Data
Group lists two low nearby states, Σ(1620)∗∗ and Σ(1750)∗∗∗, and one higher lying
resonance, the Σ(2000)∗. Of those, only Σ(1750)∗∗∗ is established. Again the set
of interpolators (1,2,9,10,25,26) is used to extract four states from our simulations.
We find three low nearby states, all of which extrapolate close to the experimen-
tal Σ(1620)∗∗ and Σ(1750)∗∗∗ (see Figure 8.11). Hence, our results confirm the
Σ(1620)∗∗ and Σ(1750)∗∗∗ and even suggest the existence of a third low lying res-
onance. Note, however, that there may be significant contribution from the NK̄
scattering state. The eigenvectors of all four states are shown for ensemble B70 in
Figure 8.12. Within the employed basis, the ground state is dominated by octet χ2,
the first excitation by octet χ1, the second excitation by decuplet and the third exci-
tation by octet χ1 interpolators. We want to emphasize the existence of a low lying
state in this channel which is dominated by decuplet interpolators. This result also
agrees with a quark model calculation [206]. Again, the mixing of octet and decuplet
interpolators appears to be negligible in the range of pion masses considered.

Σ : I(JP) = 1(3/2+): The Particle Data Group lists Σ(1385)∗∗∗∗, Σ(1840)∗ and
Σ(2080∗∗), where only the lighter one is established. We use interpolators (2,3,10,11,12)
to extract four energy levels (see Figure 8.13). The chiral extrapolations come out a
bit high compared to the experimental values. Investigating the eigenvectors, we find
that the lowest two states are strongly dominated by decuplet, the second excitation
by octet and the third excitation again by decuplet interpolators.

Σ : I(JP) = 1(3/2−): In this channel, Σ(1580)∗, Σ(1670)∗∗∗∗ and Σ(1940)∗∗∗ are
known experimentally, where the lightest one needs confirmation. Using interpo-
lators (2,3,10,11,12) we can extract four states. We find two low lying states and
two higher excitations (see Figure 8.13). In general, the corresponding energy levels
are high compared to experiment, thus not confirming the Σ(1580)∗. However, the
mixing of octet and decuplet might increase towards light pion masses, complicating
the chiral extrapolation. Analyzing the eigenvectors, we find that of the two low
lying states, one is dominated by octet and the other one by decuplet interpolators.
Also, of the third and fourth state, one is dominated by octet and the other one by
decuplet interpolators. Compared to the other Σ channels, there appears a mea-
surable mixing of octet and decuplet interpolators. We remark the importance of
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Figure 8.14: Energy levels for Ξ spin 1/2, positive (lhs) and negative parity (rhs).
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Figure 8.15: Energy levels for Ξ spin 3/2, positive (lhs) and negative parity (rhs).

decuplet interpolators for low-lying states in this channel, which is in contrast to
quark model calculations [206].

8.2.3 Xi Baryons

Ξ : I(JP) = 1/2(1/2+): Experimentally, only one resonance Ξ(1322)∗∗∗∗ is known
in the Ξ spin 1/2+ channel. We use interpolators (1,2,9,10,25,26) to extract four
states. The ground state shows a fairly clean signal and its chiral extrapolation
hits nicely the Ξ(1322)∗∗∗∗ (see Figure 8.14). The three excitations come out much
higher, where the results at the lightest pion mass suggest a significant chiral cur-
vature towards physical pion masses. This is also expressed in the poor χ2/d.o.f.,
which is larger than five for the second excitation (see Table D.4). Analyzing the
eigenvectors, we find that within the finite basis used the ground state and the first
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Figure 8.16: Eigenvectors for Ξ spin 3/2− ground state and first excitation are
shown for ensemble C77. Note the non-negligible mixing of octet and decuplet
interpolators. Details are discussed in the text.

excitation are strongly dominated by octet χ1. Of the third and the fourth exci-
tation, one is dominated by decuplet and the other one by octet χ2 interpolators.
The mixing of octet and decuplet interpolators is found negligible in the range of
simulated pion masses.

Ξ : I(JP) = 1/2(1/2−): No state is known in the Ξ spin 1/2− channel experimen-
tally, and no low-lying state identified in quark models, either [206]. Nevertheless,
using interpolators (1,2,9,10,25,26), we find a total of four states in our simulations
(see Figure 8.14). Of those, three are low lying and extrapolate to 1.7-1.9 GeV. Note
the poor χ2/d.o.f. larger than three of the corresponding three chiral extrapolations
(see Table D.5). The fourth state appears rather high at 2.7-2.9 GeV, but shows a
nice χ2/d.o.f. of order one. The eigenvectors tell that the ground state is dominated
by octet χ2, the first excitation by octet χ1, the second excitation by decuplet and
the third excitation again by octet χ1 interpolators. We emphasize the existence
of a low lying state in this channel which is dominated by decuplet interpolators,
analogous to the Σ spin 1/2 negative parity channel.

Ξ : I(JP) = 1/2(3/2+): In this channel, one state, Ξ(1530)∗∗∗∗, is experimentally
known and well established. We use interpolators (2,3,10,11,12) to extract four
states from our simulation. All four states show a stable signal, and the ground
state energy level nicely extrapolates to the experimental Ξ(1530)∗∗∗∗ (see Figure
8.15). The second and third energy levels appear to be rather close to each other and
are compatible with a level crossing picture within pion masses of 300 to 500 MeV.
Within the finite basis used, the ground state is dominated by decuplet interpolators,
which agrees with quark model calculations [206]. At light pion masses, the first
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Figure 8.17: Energy levels for Ω spin 1/2, positive (lhs) and negative parity (rhs).

excitation is dominated by octet and the second by decuplet interpolators. The
third excitation is again dominated by decuplet interpolators.

Ξ : I(JP) = 1/2(3/2−): The Particle Data Group lists one state, Ξ(1820)∗∗∗,
which is expected to be dominated by octet interpolators according to quark model
calculations [206]. Using interpolators (2,3,10,11,12), we extract four energy levels
in this channel. We find two low lying states, the energy levels of which extrapolate
close to the experimental Ξ(1820)∗∗∗ (see Figure 8.15). Analyzing the eigenvectors,
we find that of the two low lying states, one is dominated by octet and the other
one by decuplet interpolators. The third state is dominated by octet and the fourth
state by decuplet interpolators. Compared to the other Ξ channels, there appears
a measurable mixing of octet and decuplet interpolators. We show the eigenvectors
of the two low lying states in Figure 8.16.

8.2.4 Omega Baryons

Ω : I(JP) = 0(1/2+): Experimentally, the Ω baryons have been investigated only
roughly. No state is identified in the Ω spin 1/2+ channel. Using the interpolators
(1,4,5), the same as in the corresponding ∆ channel, we find two states, whose
energy levels are close for all simulated pion masses (see Figure 8.17). Both predicted
resonances lie in the region of 2.2 to 2.6 GeV, where systematic effects are neglected.

Ω : I(JP) = 0(1/2−): Again, there is no experimental experience in the spin 1/2+

channel of the Ω baryons. We extract two states, where the excitation comes with
some noise. The chiral extrapolation of the ground state predicts a resonance around
2 GeV (see Figure 8.17), systematics not considered. Note the corresponding poor
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Figure 8.18: Energy levels for Ω spin 3/2, positive (lhs) and negative parity (rhs).

χ2/d.o.f., larger than four (see Table D.5). The main contribution stems from the
light energy level of ensemble C72. Since this behavior is not systematically observed
in other channels, we assume the deviation to be due to statistical fluctuations.

Ω : I(JP) = 0(3/2+): The Ω(1672)∗∗∗∗ is known experimentally to very high ac-
curacy. This is one of the reasons why this state is often used to define the strange
quark mass parameters. This path is also pursued in our setup. However, the de-
termination of the parameters has been performed along a different scheme of scale
setting. Thus, the results shown here for the ground state serve as an additional
cross check for the final setup of the simulation. The ground state energy level
extrapolates close to the experimental Ω(1672)∗∗∗∗ , but undershoots it slightly (see
Figure 8.18). The corresponding χ2/d.o.f. is around two (see Table D.4). Half of it
is contributed by ensemble A66. Comparing to other observables including valence
strange quarks, we find that indeed the strange quark mass of ensemble A66 could
be slightly too light. However, a thorough discussion is difficult since also other
systematics enter. We will provide some further discussion including finite volume
effects in Chapter 9.

Ω : I(JP) = 0(3/2−): There is no experimental experience in the Ω spin 3/2−

channel. We find two states, both with a fairly good signal, in our simulations. The
chiral extrapolation of the ground state energy level predicts a resonance slightly
above 2 GeV (see Figure 8.18).

8.3 Summary of the Results for the Baryon Spectrum

In this chapter, the results for the baryon spectrum from our simulation have been
presented. Figure 8.19 shows the results after extrapolation to physical pion masses
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Figure 8.19: Energy levels for positive parity (lhs) and negative parity baryons (rhs).
All values are obtained by chiral extrapolation linear in the pion mass squared. Hor-
izontal lines or boxes represent experimentally known states, dashed lines indicate
poor evidence, according to [7]. The statistical uncertainty of our results is indicated
by bands of 1σ, that of the experimental values by boxes of 1σ. The strange quarks
are implemented in the partial quenching approximation. Grey symbols denote a
poor χ2/d.o.f. of the chiral fits (see Tables D.4 and D.5).

compared to experimental values [7]. In general, the results are in good agreement
with experiment. As an example, our result for the ground state in the Λ spin 1/2−

channel is compatible with the experimental Λ(1405)∗∗∗∗ . However, we find that
the excitations appear fairly high, in particular in positive parity channels. Finite
volume effects on one hand and scattering states on the other hand could be the
underlying reasons for the deviations from experiment. Both and other types of
systematic effects will be partly addressed in Chapter 9.

Fierz identities impose restrictions on the basis of interpolators. In some spe-
cific channels, these identities force point-like interpolators to vanish exactly. In
Section 4.3.4 we showed that interpolators can be constructed nevertheless. These
interpolators are used in particular for the ∆ spin 1/2 and the Λ singlet spin 3/2
channels.

Using the variational analysis, we investigated the singlet/octet content of the
low-lying Λ channels and find an increasing mixing towards physical pion masses.
Furthermore, we find that singlet interpolators couple strongly to the low-lying Λ
spin 3/2 channels, which is impressive in view of their vanishing for point-like quarks
due to Fierz identities. The Σ and Ξ channels have been investigated with respect
to their octet/decuplet content. In general, the mixing is found to be essentially
negligible in the range of pion masses considered. A bit surprisingly, in both the Σ
and Ξ spin 1/2− channels, three near-by low-lying states appear in our simulation. In
each channel, one of those three states is dominated by decuplet interpolators. Our
results thus suggest that decuplet interpolators are important also for the low-lying
spin 1/2 spectrum.
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Chapter 9

Finite Volume and

Other Systematic Effects

This chapter discusses finite volume and other systematic effects of our results. First,
we give an overview of possible sources of systematic errors in Section 9.1. The
theoretical background of finite volume effects is introduced in Section 9.2. Section
9.3 discusses a possible volume dependence of the scale setting scheme applied in
this work. Then, finite volume effects of the meson and baryon spectrum are dealt
with in Sections 9.4 and 9.5. Finally, we conclude on finite volume effects in Section
9.6.

9.1 Possible Sources of Systematic Errors

First of all, let us collect the possible sources of systematic errors encountered in
this work.

• Discretization effects are not investigated quantitatively. They are assumed to
be small, because of the improved action and smeared operators.

• The autocorrelation of the Monte Carlo data is not analyzed rigorously due to
limited statistics. However, we observe frequent tunneling of the topological
charge, indicating a fairly small autocorrelation of the Markov chain.

• The simulation includes only two light sea quarks. If the effect of the dynamical
strange quark on the scale setting is similar as on other observables, the effect
could cancel out approximately in dimensionful predictions.

• Isospin breaking and electroweak corrections (and gravitation) are assumed to
be negligible at the statistical accuracy available in this work.

• The dependence of hadron energy levels on the pion mass squared is in general
non-linear, in contrast to the fit form used. This might become important in
particular in case of enhanced mixing of operators and avoided level crossings
towards physical quark masses. We discuss this point for observables where
such effects are expected.

81
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• In the previous chapters, the spectrum of the QCD Hamiltonian in a box with
a linear size of approximately Ls = 2.2 fm was discussed. In this chapter, we
will investigate the finite volume effects and extrapolate to infinite volume.

• With respect to the actual full basis, only a small set of one-particle interpola-
tors is used. If the overlap with physical states is weak, the asymptotic region
of the eigenvalues is covered by noise. This is expected to hold in particular
for “two-particle states”, which are not identified in this work. In addition
to the choice of interpolators, also the value of t0 in the variational analysis
and the chosen fit range systematically enter the predictions. This is partly
addressed in this chapter together with the discussion of finite volume effects.
In particular for the excited states, the signal dives into noise early, and thus
the visible part of the asymptotic region of the eigenvalues is rather short. For
single ensembles it is then hard to judge if there is really a (one) physical state
associated with the exponential behavior seen in the eigenvalues. At this point
we benefit strongly from the total of ten independent ensembles. We interpret
to observe a signal of a physical state if the signal is consistent in most of the
ensembles.

• Spin is not a good quantum number on the lattice. However, the used in-
terpolators are constructed to have overlap predominantly with only one spin
channel in the continuum limit. Possible mixing with other spin channels is
discussed whenever it is expected to be non-negligible.

• Finally, deviations of the used experimental value of the Sommer parameter,
r0,exp = 0.48 fm, enter linearly all dimensionful quantities calculated in this
work. The value is expected to lie within 0.46 fm ≤ r0,exp ≤ 0.50 fm, which
implies a region of uncertainty of 4% for all dimensionful observables.

9.2 Finite Volume Generalities

Resonance properties were briefly accounted for in Section 4.4.2. For bound states
in large volumes, there are two leading mechanisms of finite volume effects. Firstly,
the spectral density of scattering states depends on the volume and distorts the
bound state spectrum through avoided level crossings. This mechanism is very
important towards very large volumes and also for the determination of resonance
properties [97, 99]. However, the volumes used in the present work allow only for
a low spectral density of scattering states in the low energy spectrum. This kind
of finite volume effect is thus discussed only qualitatively for particular observables.
Secondly, a virtual pion cloud exchange with the mirror image, a so-called “pion
wrapping around the universe” causes an exponential correction to the energy level
of the hadron [173]. This mechanism can be discussed to higher orders in Chiral
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Perturbation Theory [181,182]. Here we follow a fit form successfully applied in [198],

Eh(L) = Eh(L =∞) + ch(mπ)e
−mπL(mπL)−3/2 , (9.1)

where Eh is the energy level of the hadron at linear size L of the lattice. It was
suggested that ch(mπ) = ch,0m

2
π, which implies two fit parameters for each observ-

able: Eh(L =∞) and ch,0. The parameter ch,0 is shared among different ensembles,
which we exploit to make combined fits. We remark that the fit form used is a fairly
simple one, however, considering the small number of different volumes, we have to
rely on a fit form which uses only few parameters. Other fit forms are assumed to
yield compatible results within statistical uncertainty.

Due to the exponential behavior, finite volume effects are expected to become
non-negligible for mπL . 4. This region is entered in particular towards small
pion masses. Eq. (9.1) is valid only for asymptotically large volumes, power-like
corrections are expected for mπL . 3 and already earlier for higher excitations. We
generated a larger volume for set A66 and a smaller and a larger volume for C77. All
these ensembles show 2.7 < mπL < 4, where the pion cloud exchange should have a
measurable effect described by Eq. (9.1). To discuss finite volume effects, we apply
Eq. (9.1) separately to each observable. The data of sets A66 and C77 are used to
perform a combined fit, and the resulting parameters are used to extrapolate the
data of all ensembles (for that observable) to infinite volume. Finally, the results
are extrapolated to the physical point.

9.3 Volume Dependence of the Scale Setting
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Figure 9.1: Volume dependence of the pion mass. Left hand side results of interpo-
lator 1, right hand side results of interpolator 4 shown. In both cases, the fit range
for the eigenvalues starts at t = 6a.

The scale enters all dimensionful observables, thus we first focus on finite volume
effects of the scale. The procedure to set the scale chosen in this work makes use
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Figure 9.2: Systematic error of the pion mass. We show the dimensionless pion
mass amπ for different choices of interpolators and fit ranges, labelled on the x-axis.
E.g., (1,6) denotes interpolator 1 and a fit range for the eigenvalues from t = 6a to
the onset of noise. For each set of interpolator and fit range, results for small to
large lattices are shown from left to right, the corresponding infinite volume limit
rightmost. The volume extrapolation is always performed using a combined fit for
the A66 and C77 data.

of the Sommer parameter and the pion mass. We discuss finite volume effects and
other possible systematic influence on these two observables and finally the impact
on the overall scale.

The pion mass is expected to follow a volume dependence according to Eq. (9.1).
However, our data do not show a clear volume dependence at all. In Figure 9.1,
we show the volume fit for sets A66 and C77 for interpolator (1) (lhs) and (4)
(rhs). In both cases, the combined fit yields a small but negative coefficient for
the extrapolation, which means an increase in mass towards infinite volume. This
behavior is in contradiction to any expectation from theory. In order to remove
other possible sources of systematic errors, we consider different interpolators and
fit ranges for the eigenvalues. Some of the corresponding results are shown in Figure
9.2. For each set of interpolator and fit range, results for small to large lattices
are shown from left to right, and the corresponding infinite volume extrapolation is
found rightmost. For set A66, the results from the two volumes are compatible in all
cases. For set C77, the result from the Ls = 16a ensemble lies systematically below
the values of the other two ensembles with smaller and larger volumes. The deviation
is around three percent, translating into roughly 1% for (amπ)

2, which enters the
scale setting procedure and any chiral extrapolation. This low value is apparently
responsible for the negative coefficient of the volume fit. However, even if we exclude
this point, the volume dependence is still very flat. Furthermore, the results in the
infinite volume limit are fairly independent of the choice of interpolators and fit
ranges.
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Figure 9.3: The Sommer parameter r0/a versus the linear size of the lattice L/a.
The data would be compatible with a decrease of the Sommer parameter towards
infinite volume. However, we follow the expectation from theory and assume a flat
volume dependence.

Before concluding on the effects of the pion mass on the scale, we briefly comment
also on the volume dependence of the Sommer parameter. The Sommer parameter
characterizes the static quark potential at intermediate scales (≈ 0.5 fm). It is
calculated using Wilson loops, excluding explicitely contractions with mirror images
from the (anti)periodic boundary conditions. For these reasons, it is expected to be
fairly independent of the volume. We show the results for r0/a for the ensembles
with different volumes of the sets A66 and C77 in Figure 9.3. The results would
be compatible with a decrease towards infinite volume, however, due to the reasons
given above, we assume a flat volume dependence in the region considered.

Now we want the discuss the effect on the scale. In any case, we assume the
Sommer parameter to be independent of the volume. In order to estimate the
systematic error, we consider two different scenarios. First, we assume the pion
mass to be independent of the volume, which is compatible with our results. In
this case, we simply augment the fit of Figure 6.1 with the results for the ensembles
with other volumes, shown in Figure 9.4, left hand side. In the second scenario,
we extrapolate the pion mass to infinite volume, using for definiteness the data of
Figure 9.1, left hand side. The corresponding Sommer parameter is given by the
average over the ensembles with different volumes. The resulting fit of scenario two
is shown in Figure 9.4, right hand side. We find that the resulting scales of the two
scenarios are in surprisingly good agreement and furthermore also agree with the
scale determined from Ls = 16a data only (see Figure 6.1). In order to simplify the
setup of the simulation, we thus continue to use the scale determined in Section 6.1
also for ensembles with other volumes. Note that the introduced systematic error
estimated from the choice of interpolators, fit range for the eigenvalues and the
volume extrapolation is in the magnitude of the statistical error. Since in general
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Figure 9.4: Setting the scale in the infinite volume limit. Lhs: Figure 6.1 is aug-
mented with data from ensembles of different volumes for sets A66 and C77. The
Sommer parameter and the pion mass are assumed to be independent of the volume.
Rhs: Here, the pion masses of A66 and C77 are extrapolated to infinite volume fol-
lowing Figure 9.1 (lhs). In both scenarios the scale obtained is in good agreement
with the scale obtained solely from 163 × 32 lattices, according to Section 6.1.

the impact of the statistical uncertainty of the scale on dimensionful observables is
negligible compared to other sources of uncertainty, we conclude that this holds also
for the impact of the systematic error.

In principle, the volume dependence of the strange quark mass parameter can
be discussed in the same way. This would require only a volume analysis of the Ω
spin 3/2+ ground state energy level. However, we prefer to discuss several observ-
ables which include strange valence quarks, and conlude on the strange quark mass
parameter only afterwards.

9.4 Volume Dependence of Meson Energy Levels

In this section, we discuss finite volume effects of the meson energy levels. A sys-
tematic discussion requires a good signal and also at least partly control over other
systematic errors. Many observables, in particular excited energy levels, show a
fairly weak signal. As a consequence, the fit range is usually short, and hence ad-
ditional systematic effects are difficult to quantify. For these reasons, we focus on
observables with a good signal where finite volume effects may be non-negligible.
This is the case in particular for the ground states of pseudoscalar and vector meson
channels. The pion was already discussed in Section 9.3. Now we investigate the
strange mesons K (0−) and K∗ (1−). We remark that only some of the systematic
errors are discussed and that there may be other significant systematic errors as
well, which become visible in particular for high statistical accuracy.
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9.4.1 Strange Scalar Mesons
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Figure 9.5: Systematic error of the strange meson K (0−) mass, analogous to Figure
9.2. “A” denotes interpolator (1), “B” denotes (4). For each set of interpolator
and fit range, results for small to large lattices are shown from left to right, the
corresponding infinite volume limit rightmost.

Our result for the K (0−) ground state energy level in the finite box of roughly
2.2 fm is a bit higher than the experimental Kaon around 495 MeV (see Figure 7.7).
We apply different sets of interpolators and fit ranges for the eigenvalues in order to
estimate the corresponding systematic error. We show results and infinite volume
extrapolations for interpolators A=(1) and B=(4) and different fit ranges in Figure
9.5. The overall picture matches the expectation. The energy level becomes lighter
towards larger volume and partly also towards later starting points for the fit of
the eigenvalues. The results of the small lattices tend to become unstable towards
late starting points of the fit, if the fit range becomes too short. Except for those
understood discrepancies, the deviations associated with different interpolators and
different fit ranges are well bounded and not larger than the statistical error.

We observe some small but non-negligible finite volume effects in set A66, but
essentially none in set C77. For definiteness, we choose interpolator (1) and the fit
range to start from tmin = 6a, and note that the corresponding systematic error
is of the order of the statistical uncertainty. We use the fitted parameters of the
volume dependence of sets A66 and C77 to extrapolate the results of all ensembles
to infinite volume. Finally, we extrapolate to the physical point, shown in Figure
9.6. We obtain mK=504(4) MeV, which is very close to the experimental Kaon.
However, the deviation is larger than the statistical uncertainty. The χ2/d.o.f. of
the chiral fit is larger than four, similar as for the fit in the finite box. This is
possibly related to the choice of the strange quark mass parameter.
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Figure 9.6: Energy levels for the strange mesons mK (0−) (lhs) and mK∗ (1−) (rhs)
in the infinite volume limit. After infinite volume extrapolation ((A,6) of Figure 9.5
resp. Figure 9.7), we extrapolate to physical pion masses. We obtain mK=504(4)
MeV and mK∗=865(9) MeV, which are both compatible with experiment within few
percent. Note, however, that the deviation is larger than the statistical uncertainty.

9.4.2 Strange Vector Mesons

We show the results and infinite volume extrapolations for K∗ (1−) using interpo-
lators A=(1,5) and B=(8) and different fit ranges in Figure 9.7. The finite volume
effects appear to be much larger than for the K (0−) ground state. For definite-
ness, we choose interpolators (1,5) and tmin = 6a, and note that the corresponding
systematic error is similar to or somewhat smaller than the statistical uncertainty.
Again, we use the fitted parameters of the volume dependence of sets A66 and C77
to extrapolate the results of all ensembles to infinite volume. The extrapolation
to the physical point is shown in Figure 9.6. We obtain mK∗=865(9) MeV, which
deviates from the experimental K∗ by about 2-3%. The χ2/d.o.f. of the chiral fit
improves a bit compared to the one in the finite box (see Table D.6).

9.5 Volume Dependence of Baryon Energy Levels

In this section, we discuss finite volume effects of the baryon energy levels. Again,
we focus on observables with a good signal where non-negligible finite volume effects
can be expected. This is the case in particular for the ground states of the positive
parity baryon channels.
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Figure 9.7: Systematic error of the strange meson K∗ (1−) mass, analogous to Figure
9.2. “A” denotes interpolators (1,5), “B” denotes (8). For each set of interpolator
and fit range, results for small to large lattices are shown from left to right, the
corresponding infinite volume limit rightmost.

9.5.1 Nucleon

The nucleon spin 1/2+ ground state shows a very clean signal. Our result for the
finite box of roughly 2.2 fm deviates significantly from experiment (see Figure 8.1).
We apply the sets of interpolators A=(1,2,9,10,19,20) and B=(3,4,10,11,19,20). Fur-
thermore, we consider different starting values for the fit range for the eigenvalues.
The results for the different ensembles and the corresponding infinite volume ex-
trapolations are shown in Figure 9.8. Note that the result for (B,7) of ensemble A66
lies outside the plotted region. We conclude that for small volumes late starts of the
fit have to be avoided.

We find a fairly strong dependence of the nucleon energy level on the lattice
volume. For definiteness, we choose the set of interpolators A and tmin = 5a and the
corresponding infinite volume extrapolation, which is shown explicitely in Figure
9.9. After infinite volume extrapolation of all ensembles with the extrapolation
parameters for A66/C77, we extrapolate to the physical pion mass, shown in Figure
9.10 (lhs). Our final result is mN = 954(16) MeV, which hits the experimental
N(939)∗∗∗∗ nicely within 1σ.

9.5.2 Delta Baryons

We show results and infinite volume extrapolations for different sets of interpolators
and different fit ranges for the ∆ spin 3/2+ ground state in Figure 9.11. Compared to
the nucleon, the fit ranges of the eigenvalues are short, correspondingly, the results
tend to fluctuate a bit more. The volume dependence appears to be the strongest
of all observables considered. For definiteness, we choose the set of interpolators
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Figure 9.8: Systematic error of the nucleon mass, analogous to Figure 9.2. “A”
denotes set of interpolators (1,2,9,10,19,20), “B” denotes (3,4,11,12,19,20). For each
set of interpolator and fit range, results for small to large lattices are shown from
left to right, the corresponding infinite volume limit rightmost.

A and tmin = 5a and the corresponding infinite volume extrapolation, and note
that the systematic error of the order of the statistical error, or somewhat larger.
After infinite volume extrapolation of all ensembles, we extrapolate to the physical
pion mass, shown in Figure 9.10. Our final result is m∆ = 1268(32) MeV, which
hits the experimental ∆(1232)∗∗∗∗ within roughly 1σ. We remark that the energy
level appears low in ensemble A66 compared to other ensembles. This worsens
the χ2/d.o.f. of the chiral fit (see Table D.6), but improves the comparison with
experiment.

9.5.3 Lambda Baryons

We show results and infinite volume extrapolations for different sets of interpolators
and different fit ranges for the Λ spin 1/2+ ground state in Figure 9.12. For defi-
niteness, we choose the set of interpolators A and tmin = 5a and the corresponding
infinite volume extrapolation, and note that the systematic error is again of the
order of the statistical error. After infinite volume extrapolation of all ensembles,
we extrapolate to the physical pion mass, shown in Figure 9.13, left hand side. Our
final result is mΛ = 1112(14) MeV, which hits the experimental Λ(1116)∗∗∗∗ nicely.

9.5.4 Sigma Baryons

In the Σ spin 1/2+ channel we apply the sets of interpolators A=(1,2,9,10,25,26) and
B=(2,3,10,11,19,20,26,27) and different fit ranges to discuss the volume dependence
of the ground state (see Figure 9.14). The volume dependence is found to be of
comparable size like the one of the nucleon ground state energy level. Towards late
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Figure 9.9: Volume dependence of the nucleon mass for the set of interpolators
(1,2,9,10,19,20) and tmin = 5a ((A,5) of Figure 9.8).

fit ranges, the results start to scatter, nevertheless, the results are conclusive and
the systematic error is of the order of the statistical one. We choose interpolators A
and tmin = 6a, and show the results in the infinite volume limit in Figure 9.13, right
hand side. Our final result is mΣ = 1156(15) MeV, which deviates slightly from the
experimental Σ around 1190 MeV. The χ2/d.o.f. is of order two (see Table D.6),
which is sizeable compared to the nucleon and Λ channels and possibly related to
the mismatch with experiment.

9.5.5 Xi Baryons

We consider the sets of interpolators A=(1,2,9,10,25,26) and B=(2,3,10,11,19,20,26,
27) and different fit ranges to discuss the volume dependence of the Ξ spin 1/2+

ground state (see Figure 9.15). Again, the results are conclusive, and the systematic
error is well bounded. We choose interpolators A and tmin = 6a, and show the results
for infinite volume in Figure 9.16, left hand side. Our final result is mΞ = 1273(12)
MeV, deviating from the experimental Ξ around 1317 MeV. Again, the discrepancy
may be related to the χ2/d.o.f. of order two (see Table D.6).

9.5.6 Omega Baryons

The Ω mass was used in the first place to define the strange quark mass parame-
ter. We consider different sets of interpolators and fit ranges of the eigenvalues to
estimate the corresponding systematic error. Figure 9.17 shows some of the cor-
responding results. Here, we choose for definiteness interpolators (1,3,4) and a fit
range starting from tmin = 4a, and note that the corresponding systematic error
appears to be somewhat smaller than the statistical one. We extrapolate the energy
levels of all ensembles to infinite volume and finally to the physical point, shown in
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Figure 9.10: Energy levels for the nucleon spin 1/2+ (lhs) and ∆ spin 3/2+ (rhs) in
the infinite volume limit. After infinite volume extrapolation ((A,5) of Figure 9.8
resp. Figure 9.11), we extrapolate to physical pion masses. We obtain mN=954(16)
MeV and m∆=1268(32) MeV, which both match the experimental values within
roughly 1σ.

Figure 9.16, right hand side. We obtain mΩ = 1620(14) MeV, which deviates signif-
icantly from the experimental Ω(1672)∗∗∗∗ . Again, the discrepancy may be related
to the χ2/d.o.f. of order two (see Table D.6), and the issue of setting the strange
quark mass through identification of mΩ independently for each finite lattice.

9.6 Summary

In this chapter, we discussed systematic effects which may appear in our simula-
tion. First, possible sources of systematic errors were collected and discussed in a
qualitative manner. Then, we investigated quantitatively the volume dependence
of the scale setting scheme applied in this work. We found very good agreement of
the scale after infinite volume extrapolation with the scale defined in the finite box,
using 163×32 lattices only. A bit surprisingly, the pion mass shows no clear volume
dependence in our simulations.

For several observables, we discussed the dependence on the choice of interpola-
tors, on the fit range for the eigenvalues and finally also on the volume. In general,
the systematic error stemming from the choice of interpolators and the fit range is
of the order of the statistical uncertainty, as long as sensible choices are made. The
finite volume effects appear to be significant for nucleon, ∆ and Σ, moderate for
Λ, Ξ and K∗ (1−), and fairly mild for Ω and K (0−) ground state energy levels in
our simulation. We give an overview of the determined energy levels at physical
pion masses in the infinite volume limit in Figure 9.18. We find that in particular
the results for the nucleon, ∆ and Λ ground state energy levels agree nicely with
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Figure 9.11: Systematic error of the ∆ spin 3/2+ mass, analogous to Figure 9.2. “A”
denotes set of interpolators (1,4,5), “B” denotes (1,5,8). For each set of interpolator
and fit range, results for small to large lattices are shown from left to right, the
corresponding infinite volume limit rightmost.

experiment within roughly 1σ. In general, the determined energy levels in the in-
finite volume limit agree well with experiment with only a few percent deviation.
However, because of the high statistical accuracy of the considered observables, in
several cases this deviation is already significantly larger than the statistical uncer-
tainty. This can be understood by noting that systematic errors become more and
more significant with increasing accuracy. We remark that taking into account the
systematic error stemming from the choice of interpolators and the fit range for the
eigenvalues, also K (0−) and Σ are well compatible with experiment.

A possible origin of the deviation of strange hadron energy levels from experiment
lies in the choice of the strange quark mass parameter. This reasoning is appealing
in particular considering the energy levels of K∗(1−), Ξ and Ω, which come out
too low in our simulation compared to experiment. However, this conjecture is
not supported by our results for Λ, which agrees with experiment, and K (0−),
which comes out too high. We stress again that the systematic errors related to the
choice of the interpolators and the fit range together with the statistical uncertainty
already cover a significant part of the deviation. Further systematic errors, which are
not estimated quantitatively, could explain the remaining part. We conclude that
in general our results in the infinite volume limit compare nicely with experiment,
where occasional small deviations are expected to stem from systematic effects which
cannot be identified uniquely.
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Figure 9.12: Systematic error of the Λ spin 1/2+ mass, analogous to Figure 9.2. “A”
denotes set of interpolators (2,3,10,18,26,27,34,42), “B” denotes (3,11,18,27,34). For
each set of interpolator and fit range, results for small to large lattices are shown
from left to right, the corresponding infinite volume limit rightmost.
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Figure 9.13: Energy levels for the Λ spin 1/2+ (lhs) and Σ spin 1/2+ (rhs) ground
state in the infinite volume limit. After infinite volume extrapolation ((A,5) of
Figure 9.12), resp. (A,6) of Figure 9.14), we extrapolate to physical pion masses.
We obtain mΛ=1112(14) MeV, which hits the experimental Λ(1116)∗∗∗∗ nicely, and
mΣ=1156(15) MeV, which is a bit low.
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Figure 9.14: Systematic error of the Σ spin 1/2+ mass, analogous to Figure 9.2. “A”
denotes set of interpolators (1,2,9,10,25,26), “B” denotes (2,3,10,11,19,20,26,27). For
each set of interpolator and fit range, results for small to large lattices are shown
from left to right, the corresponding infinite volume limit rightmost.
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Figure 9.15: Systematic error of the Ξ spin 1/2+mass, analogous to Figure 9.2. “A”
denotes set of interpolators (1,2,9,10,25,26), “B” denotes (2,3,10,11,19,20,26,27). For
each set of interpolator and fit range, results for small to large lattices are shown
from left to right, the corresponding infinite volume limit rightmost.
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Figure 9.16: Energy levels for Ξ spin 1/2+ (lhs) and Ω spin 3/2+ (rhs) ground
states in the infinite volume limit. After infinite volume extrapolation ((A,6) of
Figure 9.15, resp. (B,4) of Figure 9.17), we extrapolate to physical pion masses. We
obtain mΞ=1273(12) MeV and mΩ=1620(14) MeV, which both are low compared
to experiment.
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Figure 9.17: Systematic error of the Ω spin 3/2+ mass, analogous to Figure 9.2. “A”
denotes set of interpolators (1,5,8), “B” denotes (1,3,4). For each set of interpolator
and fit range, results for small to large lattices are shown from left to right, the
corresponding infinite volume limit rightmost. For definiteness we choose (B,4).



9.6. Summary 97

0 0

0.5 0.5

1 1

1.5 1.5

2 2

2.5 2.5

3 3

m
as

s 
[G

eV
]

0
-

K

1
-

K*

J
P
=1/2

+

N Λ Σ Ξ

J
P
=3/2

+

∆ Ω
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is indicated by bands of 1σ. Grey symbols denote a poor χ2/d.o.f. of the chiral fits
(see Table D.6).
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Chapter 10

Summary and Conclusion

This thesis provides an ab-initio, non-perturbative determination of the excited me-
son and baryon spectrum, using the lattice regularization of QCD. The variational
method is applied to improve the signal of ground states and also to access excited
states. Several interpolators are constructed for each channel, where also deriva-
tive operators are included to extend the basis and to have access to spin two and
exotic mesons. In case of some specific baryon channels, Fierz identities force point-
like interpolators to vanish exactly. We show that interpolators can be constructed
nevertheless and propose two strategies, based on quark smearing and the Rarita-
Schwinger condition, respectively. Finally, the variational method is used to explore
the content of the physical states.

We use a Hybrid Monte Carlo algorithm to generate seven ensembles with two
flavors of dynamical Chirally Improved quarks. The improved action is computa-
tionally expensive, however, its advantages lie in small discretization effects and
frequent tunneling of topological sectors, reducing autocorrelation. The pion masses
are in the range of 250 to 600 MeV, the results are extrapolated to the physical pion
mass. Three further ensembles on larger and smaller lattices are generated in order
to investigate finite volume effects and to perform the infinite volume limit. The
strange hadron spectrum is accessed using partial quenching for the strange quark.
The scale is set using the Sommer parameter and the pion mass at the physical
point.

In general, we find good agreement with experiment for many ground states and
also for several excited energy levels. Some of the results deviate from experiment,
however, not all systematic effects have been account for. In particular, the excited
states still deserve a lot of continuing research. The corresponding statistical errors
are often large, and, even worse, some systematic errors are not yet under control.
A full systematic treatment of the excited states will need multi-particle interpola-
tors, high statistics for all extrapolations and finally a phase shift analysis for the
resonances embedded in the spectral density. Despite these difficulties, already in
our limited approach we obtain many interesting results, some of which we want to
highlight at this point.

We reproduce and confirm many of the experimentally known resonances, and
even predict some new ones. Figures 7.14 and 8.19 show the results for mesons
and baryons in a finite box of roughly 2.2 fm after extrapolation to physical pion
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masses compared to experimental values from [7]. As an example, we determined the
ground state in the Λ spin 1/2− channel and find agreement with the experimental
Λ(1405) within statistical uncertainty. We investigated the singlet/octet content of
low-lying Λ states and also the octet/decuplet content of Σ and Ξ observables. In
particular, we find that singlet interpolators couple strongly to the low-lying Λ spin
3/2 channels, which is impressive in view of their vanishing for point-like quarks
due to Fierz identities. In both the Σ and Ξ spin 1/2− channels, we find a total
of three low-lying states, compatible with an approximate threefold degeneracy.
Furthermore, in each channel, one of the three states is dominated by decuplet
interpolators, which demonstrates that decuplet interpolators are important also for
the low-lying spin 1/2 spectrum.

We investigated the strange meson channels 1−, 1+ and 2− with respect to
their approximate C-parity. In the 1− channel, the three lowest states seem to be
dominated by negative C-parity. The low-lying 1+ states show alternating C-parity
dominance, and also some mixing of the interpolators. The 2− channel shows strong
mixing towards light pion masses, the ground state being dominated by positive
C-parity, the first excitation by negative C-parity.

We discussed finite volume and other systematic effects considering the scale
setting scheme and hadron energy levels. The scale as well as the pion mass show a
very flat volume dependence in our simulation. In general, the determined hadron
energy levels at physical pion masses in the infinite volume limit agree well with
experiment with only a few percent deviation, an overview is shown in Figure 9.18.
We find that in particular the results for the nucleon, ∆ and Λ ground state energy
levels agree nicely with experiment within roughly 1σ. Taking into account the
systematic error stemming from the choice of interpolators and the fit range for the
eigenvalues, also further observables are well compatible with experiment.

The finite volume discussion will be extended to further channels in a forthcoming
publication. For further studies we suggest to include a dynamical strange quark in
the simulation, and to construct multi-particle interpolators to finally extract the
phase shift of the resonances.



Appendix A

The Chirally Improved Dirac Operator

This thesis discusses exclusively dynamical simulations using the Chirally Improved
Dirac operator (DCI) [25,26]. We shall now explicitely give the paths and coefficients
used in the construction. We repeat the ansatz given in Eq. (4.5),

Dnm =
16
∑

α=1

Γα
∑

p∈Pα
m,n

cαp
∏

l∈p
Ul δn,m+p ,

where for each element of the Clifford algebra Γα, p is a path connecting the points
n,m. Pαm,n is the set of all considered paths p, and cαp are coefficients. Plugging
this ansatz into the Ginsparg-Wilson equation leads to a set of algebraic equations,
which can be solved numerically after truncation. In our simulation, we restrict the
paths to a maximal length of four, all of which are given in Table A.1.

The parameters of the Dirac operator have been tuned following reference [26].
In order to approach physical pion masses and the continuum limit, the bare quark
masses and the gauge coupling have to be varied. Following this path in theory space,
the parameters of the Dirac operator according to optimum chiral symmetry vary as
well. However, a repeated fine-tuning of these parameters for each ensemble would
weaken the predictive power significantly. This is why we decided not to repeat the
tuning but take the same parameters for the Dirac operator in all ensembles. Note
that chiral symmetry is restored in the continuum limit in any case.
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Coeff. Name Value Path shape γ Multiplicity

1 s1 1.481599252 [ ] 1 1
2 s2 −0.05218251439 [i] 1 8
3 s3 −0.01473643847 [i, j] 1 48
5 s5 −0.002186103421 [i, j, k] 1 192
6 s6 0.002133989696 [i, i, j] 1 96
8 s8 −0.003997001821 [i, j,−i] 1 48
10 s10 −0.0004951673735 [i, j, k, l] 1 384
11 s11 −0.0009836500799 [i, j,−i, k] 1 384
13 s13 0.007529838581 [i, j,−i,−j] 1 48
14 v1 0.1972229309 [i] γi 8
15 v2 0.008252157565 [i, j] γi 96
17 v4 0.005113056314 [i, j, k] γi 384
18 v5 0.001736609425 [j, i, k] γi 192
32 t1 −0.08792744664 [i, j] γiγν 48
33 t2 −0.002553055577 [i, j, k] γiγj 384
34 t3 0.002093792069 [i, k, j] γiγj 192
36 t5 −0.005567377075 [i, j,−i] γiγj 48
46 t15 −0.003427310798 [j, i,−j,−i] γiγj 48
51 p1 −0.008184103136 [i, j, k, l] γ5 384

Table A.1: Coefficients for the Chirally Improved Dirac operator used in all simu-
lations, taken from [41]. The path shapes are given symbolically, e.g., [i, j] denotes
a path in i-direction and then in j-direction (i 6= j). The γ-matrices (5-th column)
are also permuted as described in more detail in [26].



Appendix B

Meson Interpolators

In this chapter we discuss all meson interpolators used in this work. First, Section
B.1 discusses the construction of meson interpolators for good C-parity quantum
number. Then, Section B.2 lists all meson interpolators used in this work.

B.1 C-Parity of Meson Interpolators

In this section, we discuss the construction of meson interpolators to obtain good
C-parity quantum numbers. Subsection B.1.1 introduces the general setup, next
Gaussian interpolators are discussed in Subsection B.1.2. Interpolators including a
derivative operator are treated in Subsection B.1.3, finally the case of non-vanishing
momentum is investigated in Subsection B.1.4.

B.1.1 General Considerations

C-parity is the symmetry of operators under charge conjugation. Clearly, this sym-
metry can be rigorously valid only for chargeless operators. For isovector mesons, we
thus consider the Iz = 0 component. However, a simple calculation shows, that for
mass-degenerate quarks the Iz = 0 component yields the same correlation functions
as the Iz = ±1 components,

tr
[

OIz=0(t)O
†
Iz=0(0)

]

= tr
[

OIz=±1(t)O
†
Iz=±1(0)

]

. (B.1)

This is because of a cancelation of disconnected diagrams which happens in the
case of good isospin symmetry. Because of this identity we use the term “C-parity”
loosely also for charged operators. Furthermore, we talk about “approximate C-
parity” in the context of non degenerate quark masses. The symmetry transforma-
tion is given be the rules

ψ(n)
C−→ C−1ψ(n)T (B.2)

ψ(n)
C−→ −ψ(n)TC (B.3)

Uµ(n)
C−→ Uµ(n)∗ = Uµ(n)†T . (B.4)
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Here and in the following we use matrix/vector notation for Dirac and color indices.
The charge conjugation matrix C acts on Dirac indices only and is defined by

CγµC
−1 = −γTµ . (B.5)

We define cΓ as

CΓµC
−1 ≡ cΓΓTµ . (B.6)

In the chiral representation one finds

C = iγ2γ4 , C = −CT . (B.7)

Now, before going into details of constructing operators, let us discuss a very
general property of symmetry transformations R which square to unity (R2 = 1).
For operators A,B, which transform as

A
R−→ B, and thus B

R−→ A , (B.8)

we find that A ± B are eigenstates of R with quantum numbers s = ±1. This
symmetrization is used for many interpolators, to be discussed in more detail in the
following. Note that in case of A = ±B one of the two symmetrizations yields a
vanishing interpolator.

B.1.2 C-Parity at Zero Momentum: Gaussian Interpolators

All analysis performed in this work considers interpolators with vanishing momen-
tum. The case of non-vanishing momentum will be discussed in Subsection B.1.4
for completeness. Here we start with the simplest non-trivial case, given by inter-
polators involving Gaussian quark smear operators S. First we have to clarify the
transformation behavior of the smearing operator under charge conjugation. In this
work, Jacobi smearing is used, defined in Eq. (4.20). We find that the effect on the



B.1. C-Parity of Meson Interpolators 105

hopping term is transposition,

H(n,m) =

±3
∑

i=±1

Ui(n)δ(n + î,m) (B.9)

C−→
±3
∑

i=±1

Ui(n)†T δ(n + î,m) (B.10)

=

±3
∑

i=±1

U−i(n+ î)T δ(n + î,m) (B.11)

=

±3
∑

i=±1

U−i(m)T δ(n,m− î) (B.12)

=

±3
∑

i=±1

Ui(m)T δ(n,m+ î) (B.13)

= HT (m,n) . (B.14)

And thus also (all indices suppressed)

S
C−→ ST . (B.15)

For the subsequent calculations we switch to a notation where also the spacetime
dependence is expressed using index notation whenever it is convenient. We consider
a one flavor meson interpolator with Gaussian quark fields and an arbitrary Dirac
structure Γ. Under charge conjugation we find that, using summation convention
for all repeated indices,

ψn′S
(1)
n′,nΓS

(2)
n,m′ψm′

C−→
(

−ψTn′C
)

S
(1)T
n,n′ ΓTS

(2)T
m′,n

(

Cψ
T
m′

)

(B.16)

= −ψTn′S
(1)T
n,n′ cΓΓTS

(2)T
m′,nψ

T
m′ (B.17)

= cΓψm′S
(2)
m′,nΓS

(1)
n,n′ψn′ (B.18)

= cΓψn′S
(2)
n′,nΓS

(1)
n,m′ψm′ . (B.19)

In the last line we renamed the summation indices. Obviously, this interpolator has
a good quantum number of cΓ if S(1) = S(2). In general, however, symmetrization
is need to construct interpolators with a good C-parity quantum number,

O = ψn′Γ
[

S
(1)
n′,nS

(2)
n,m′ ± cΓS(2)

n′,nS
(1)
n,m′

]

ψm′ (B.20)

C−→ ±O (B.21)

The generalization to two flavor interpolators is straightforward.
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B.1.3 C-Parity at Zero Momentum: Derivatives

The definition of the derivative source smear operator was given in Eq. (4.21). Its be-
havior under charge conjugation is calculated analogously to the one of the hopping
term. One finds transposition and sign flipping,

Pi(n,m) = Ui(n)δ(n + î,m)− U−i(n)δ(n − î,m) (B.22)

= −P †
i (m,n) (B.23)

Pi(n,m)
C−→ −P Ti (m,n) . (B.24)

In the literature one often finds the convention
−→
D = P and

←−
D = P †, the difference

lying only in normalization. Now, consider charge conjugation for a one flavor meson
interpolator including a derivative,

ψn′S
(1)
n′,nΓP

i
n,mS

(2)
m,m′ψm′

C−→ (−ψTn′C)S
(1)T
n,n′ Γ

T (−P T )im,nS
(2)T
m′,mC

−1ψ
T
m′

= −cΓψnS
(2)
n′,nP

i
n,mΓS

(1)
m,m′ψm′ (B.25)

= cΓψnS
(2)
n′,n(P

†)in,mΓS
(1)
m,m′ψm′ . (B.26)

The last step uses Eq. (B.23), which corresponds to a partial integration in the
continuum formulation. We find that this interpolator has a good quantum number
of −cΓ if S(1) = S(2). In general, however, symmetrization is needed again for good
C-parity quantum numbers. For clarity we suppress now all indices, obtaining

O = ψΓ
[

S1PS2 ± cΓS2P †S1
]

ψ (B.27)

C−→ ±O . (B.28)

In this expression, the derivative operator P † in the second term can be seen as P
“acting to the left”. This has advantages in numerics, if the derivative cannot be
applied after inverting the Dirac operator.

Note that if S(1) = S(2), no symmetrization is necessary for a good C-parity
quantum number, which means that the opposite quantum number cannot be re-
alized with the given interpolator. The corresponding symmetrization yields an
interpolator which is identical to zero. This is circumvented in the present work by
considering a different order of operators in the definition of the interpolators,

O = ψΓ
[

S1S2P ± cΓP †S2S1
]

ψ , (B.29)

which remains non-vanishing even if S1 = S2, since [P, S] 6= 0. Obviously, this choice
makes a symmetrization mandatory for a good quantum number. This commutator
can be seen as introducing additional pieces of paths in the combined smearing
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operator, which means changed weights of the existing paths and a few new paths.
Numerically, we find that the corresponding correlators are of the same magnitude
as others and yield consistent signals. Hence, this asymmetric definition enlarges the
basis of operators to some extent. In particular some exotic channels can be accessed
this way already with fewer derivatives. Numerically, this asymmetric definition of
the interpolators is implemented by first applying the Gaussian smearing operator
on a point source and only afterwards applying the derivative operator.

B.1.4 C-Parity for Non-Zero Momentum

For non-zero momentum, the space dependence of the momentum projection oper-
ator can cause some complications for interpolators including derivative operators.
Let us first discuss interpolators in the continuum,

−→
Dµ =

−→
∂ µ + iAµ(x) (B.30)

←−
Dµ =

−→
D†
µ (B.31)

Aµ(x)
C−→ −ATµ (x) , (B.32)

where the overhead arrow denotes the direction in which the derivative has to be
applied. Charge conjugation of a simple one flavor interpolator reads, suppressing
the space dependence of the fields,

∫

d3xei~p·~xψΓ
(−→
Dµψ

) C−→ cΓ

∫

d3xei~p·~x
(

ψ
←−
Dµ

)

Γψ . (B.33)

Again, we can construct good quantum numbers by symmetrization. Note that
partial integration would yield a term proportional to the momentum.

Now consider the same calculation on the lattice, which is the generalization of
Eq. (B.26),

ψn′S
(1)
n′,ne

i~p·~nΓP in,mS
(2)
m,m′ψm′

C−→ cΓψn′S
(2)
n′,n(P

†)in,mΓei~p·~mS(1)
m,m′ψm′ (B.34)

ψn′S
(1)
n′,ne

i~p·~nΓS(2)
n,mP

i
m,m′ψm′

C−→ cΓψn′(P †)in′,nS
(2)
n,mΓei~p·~mS(1)

m,m′ψm′ . (B.35)

The second line differs from the first one just by the order of the derivative and the
Gaussian smearing operator. The case of p = 0 produces the known result. For
p 6= 0, however, we observe that the momentum projection on the right hand side
has a wrong argument (m) compared to the original expression (n). This appears
due to a renaming of the indices, which is necessary to match the quark fields of the
original expression. To still achieve good C-parity quantum numbers, we have to
take into account also the momentum projection operator when symmetrizing. This
yields interpolators of the kind (following Eq. (B.35))

O = ψn′Γ
[

S
(1)
n′,ne

i~p·~nS(2)
n,mP

i
m,m′ ± cΓ(P †)in′,nS

(2)
n,mei~p·~mS(1)

m,m′

]

ψm′ . (B.36)
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Comparing with the discussion in the continuum, one might expect that ignoring the
momentum projection operator in the symmetrization leads to discretization errors.
This is indeed true and can be verified by applying the Kronecker deltas inside the
derivative on the momentum projection operator. Now we follow Eq. (B.34), since
Eq. (B.35) would introduce additional factors of [P, S]. We find

(P †)in,mei~p·~m =
[

δm+î
n U †i

m − δm−î
n U †−i

m

]

ei~p·~m (B.37)

= ei~p·~n
[

ei~p·̂iδm+î
n U †i

m − e−i~p·̂iδm−î
n U †−i

m

]

(B.38)

= ei~p·~n
[

eiapiδm+î
n U †i

m − e−iapiδm−î
n U †−i

m

]

(B.39)

= ei~p·~n
[

δm+î
n U †i

m − δm−î
n U †−i

m

]

+O(a) (B.40)

= ei~p·~n(P †)in,m +O(a) , (B.41)

where in the second to the last line we expanded the exponentials inside the brackets
to identify the discretization errors. Finally we remark that further symmetrization
may be necessary for other quantum numbers.

B.2 Meson Interpolator Tables

The construction of meson interpolators is discussed in Sections 4.3.4 and Appendix
B.1. In the tables for meson interpolators (Table B.1 to B.8), the two quark fields
are labeled by a and b. These are placeholders for light (u, d) or strange (s) quarks.
The indices n, w and ∂i correspond to the smearings narrow, wide and derivative,
respectively. γi are the spatial Dirac matrices, γt is the Dirac matrix in time direc-
tion. ǫijk is the Levi-Civita symbol, Qijk are Clebsch-Gordon coefficients, where all
elements are zero except Q111 = 1√

2
, Q122 = − 1√

2
, Q211 = − 1√

6
, Q222 = − 1√

6
and

Q233 = 2√
6
.
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#0− Interpolators C

1 anγ5bn +
2 anγ5bw + awγ5bn +
3 anγ5bw − awγ5bn −
4 awγ5bw +

5 anγtγ5bn +
6 anγtγ5bw + awγtγ5bn +
7 anγtγ5bw − awγtγ5bn −
8 awγtγ5bw +

9 a∂i
γiγ5bn + anγiγ5b∂i

+
10 a∂i

γiγ5bn − anγiγ5b∂i
−

11 a∂i
γiγ5bw + awγiγ5b∂i

+
12 a∂i

γiγ5bw − awγiγ5b∂i
−

13 a∂i
γiγtγ5bn + anγiγtγ5b∂i

−
14 a∂i

γiγtγ5bn − anγiγtγ5b∂i
+

15 a∂i
γiγtγ5bw + awγiγtγ5b∂i

−
16 a∂i

γiγtγ5bw − awγiγtγ5b∂i
+

17 a∂i
γ5b∂i

+

18 a∂i
γtγ5b∂i

+

Table B.1: Meson interpolators for JP = 0−. The first row shows the number, the
second shows the explicit form of the interpolator. In the last column the C parity is
given, which is only an approximate quantum number in the case of differing quark
masses. Horizontal dashed lines separate different Dirac structures.
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#0+ Interpolators C parity

1 anbn +
2 anbw + awbn +
3 anbw − awbn −
4 awbw +

5 a∂i
γibn + anγib∂i

−
6 a∂i

γibn − anγib∂i
+

7 a∂i
γibw + awγib∂i

−
8 a∂i

γibw − awγib∂i
+

9 a∂i
γiγtbn + anγiγtb∂i

−
10 a∂i

γiγtbn − anγiγtb∂i
+

11 a∂i
γiγtbw + awγiγtb∂i

−
12 a∂i

γiγtbw − awγiγtb∂i
+

13 a∂i
b∂i

+

Table B.2: Same as Table B.1, now for JP = 0+.
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#1− Interpolators C

1 anγkbn −
2 anγkbw + awγkbn −
3 anγkbw − awγkbn +
4 awγkbw −
5 anγkγtbn −
6 anγkγtbw + awγkγtbn −
7 anγkγtbw − awγkγtbn +
8 awγkγtbw −
9 a∂k

bn + anb∂k
+

10 a∂k
bn − anb∂k

−
11 a∂k

bw + awb∂k
+

12 a∂k
bw − awb∂k

−
13 a∂k

γtbn + anγtb∂k
−

14 a∂k
γtbn − anγtb∂k

+
15 a∂k

γtbw + awγtb∂k
−

16 a∂k
γtbw − awγtb∂k

+

17 a∂i
γkb∂i

−
18 a∂i

γkγtb∂i
−

19 a∂k
ǫijkγjγ5bn + anǫijkγjγ5b∂k

+
20 a∂k

ǫijkγjγ5bn − anǫijkγjγ5b∂k
−

21 a∂k
ǫijkγjγ5bw + awǫijkγjγ5b∂k

+
22 a∂k

ǫijkγjγ5bw − awǫijkγjγ5b∂k
−

23 a∂k
ǫijkγjγtγ5bn + anǫijkγjγtγ5b∂k

−
24 a∂k

ǫijkγjγtγ5bn − anǫijkγjγtγ5b∂k
+

25 a∂k
ǫijkγjγtγ5bw + awǫijkγjγtγ5b∂k

−
26 a∂k

ǫijkγjγtγ5bw − awǫijkγjγtγ5b∂k
+

Table B.3: Same as Table B.1, now for JP = 1−.
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#1+ Interpolators C

1 anγkγ5bn +
2 anγkγ5bw + awγkγ5bn +
3 anγkγ5bw − awγkγ5bn −
4 awγkγ5bw +

5 a∂k
γ5bn + anγ5b∂k

+
6 a∂k

γ5bn − anγ5b∂k
−

7 a∂k
γ5bw + awγ5b∂k

+
8 a∂k

γ5bw − awγ5b∂k
−

9 a∂k
γtγ5bn + anγtγ5b∂k

+
10 a∂k

γtγ5bn − anγtγ5b∂k
−

11 a∂k
γtγ5bw + awγtγ5b∂k

+
12 a∂k

γtγ5bw − awγtγ5b∂k
−

13 a∂i
γkγ5b∂i

+

14 ǫijka∂k
γjbn + ǫijkanγjb∂k

−
15 ǫijka∂k

γjbn − ǫijkanγjb∂k
+

16 ǫijka∂k
γjbw + ǫijkawγjb∂k

−
17 ǫijka∂k

γjbw − ǫijkawγjb∂k
+

18 ǫijka∂k
γjγtbn + ǫijkanγjγtb∂k

−
19 ǫijka∂k

γjγtbn − ǫijkanγjγtb∂k
+

20 ǫijka∂k
γjγtbw + ǫijkawγjγtb∂k

−
21 ǫijka∂k

γjγtbw − ǫijkawγjγtb∂k
+

22 anγkγtγ5bn −
23 anγkγtγ5bw + awγkγtγ5bn −
24 anγkγtγ5bw − awγkγtγ5bn +
25 awγkγtγ5bw −
26 a∂i

γkγtγ5b∂i
−

Table B.4: Same as Table B.1, now for JP = 1+.
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#2−E Interpolators C

1 Qijkā∂k
γjγtγ5bn +Qijkānγjγtγ5b∂k

−
2 Qijkā∂k

γjγtγ5bn −Qijkānγjγtγ5b∂k
+

3 Qijkā∂k
γjγtγ5bw +Qijkāwγjγtγ5b∂k

−
4 Qijkā∂k

γjγtγ5bw −Qijkāwγjγtγ5b∂k
+

5 Qijkā∂j
γ5b∂k

+

6 Qijkā∂j
γtγ5b∂k

+

7 Qijkā∂k
γjγ5bn +Qijkānγjγ5b∂k

+
8 Qijkā∂k

γjγ5bn −Qijkānγjγ5b∂k
−

9 Qijkā∂k
γjγ5bw +Qijkāwγjγ5b∂k

+
10 Qijkā∂k

γjγ5bw −Qijkāwγjγ5b∂k
−

Table B.5: Same as Table B.1, now for JP = 2−E.

#2+E Interpolators C

1 Qijkā∂k
γjbn +Qijkānγjb∂k

−
2 Qijkā∂k

γjbn −Qijkānγjb∂k
+

3 Qijkā∂k
γjbw +Qijkāwγjb∂k

−
4 Qijkā∂k

γjbw −Qijkāwγjb∂k
+

5 Qijkā∂k
γjγtbn +Qijkānγjγtb∂k

−
6 Qijkā∂k

γjγtbn −Qijkānγjγtb∂k
+

7 Qijkā∂k
γjγtbw +Qijkāwγjγtb∂k

−
8 Qijkā∂k

γjγtbw −Qijkāwγjγtb∂k
+

9 Qijkā∂j
b∂k

+

10 Qijkā∂j
γtb∂k −

Table B.6: Same as Table B.1, now for JP = 2+E.
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#2−T2
Interpolators C

1 |ǫijk|ā∂k
γjγ5bn + |ǫijk|ānγjγ5b∂k

+
2 |ǫijk|ā∂k

γjγ5bn − |ǫijk|ānγjγ5b∂k
−

3 |ǫijk|ā∂k
γjγ5bw + |ǫijk|āwγjγ5b∂k

+
4 |ǫijk|ā∂k

γjγ5bw − |ǫijk|āwγjγ5b∂k
−

5 |ǫijk|ā∂k
γjγtγ5bn + |ǫijk|ānγjγtγ5b∂k

−
6 |ǫijk|ā∂k

γjγtγ5bn − |ǫijk|ānγjγtγ5b∂k
+

7 |ǫijk|ā∂k
γjγtγ5bw + |ǫijk|āwγjγtγ5b∂k

−
8 |ǫijk|ā∂k

γjγtγ5bw − |ǫijk|āwγjγtγ5b∂k
+

Table B.7: Same as Table B.1, now for JP = 2−T2.

#2+T2
Interpolators C

1 |ǫijk|ā∂k
γjbn + |ǫijk|ānγjb∂k

−
2 |ǫijk|ā∂k

γjbn − |ǫijk|ānγjb∂k
+

3 |ǫijk|ā∂k
γjbw + |ǫijk|āwγjb∂k

−
4 |ǫijk|ā∂k

γjbw − |ǫijk|āwγjb∂k
+

5 |ǫijk|ā∂k
γjγtbn + |ǫijk|ānγjγtb∂k

−
6 |ǫijk|ā∂k

γjγtbn − |ǫijk|ānγjγtb∂k
+

7 |ǫijk|ā∂k
γjγtbw + |ǫijk|āwγjγtb∂k

−
8 |ǫijk|ā∂k

γjγtbw − |ǫijk|āwγjγtb∂k
+

Table B.8: Same as Table B.1, now for JP = 2+T2.



Appendix C

Baryon Interpolators

In this Chapter, we discuss all baryon interpolators used in this work. In Section
C.1 we briefly review the construction of baryon correlation functions with respect
to parity and the projection of Rarita-Schwinger fields to definite spin. Finally, all
baryon interpolators used in this work are listed in the tables of Section C.2.

C.1 Generalities

All interpolators are projected to definite parity using the projector

P± =
1

2
(1± γt) . (C.1)

The resulting correlation matrices of positive and negative parity (±),

C±
ij (t) = ±Z±

ij e
−tE± ± Z∓

ij e
−(T−t)E∓

, (C.2)

are combined to the correlation matrices

C(t) =
1

2

(

C+(t)− C−(T − t)
)

, (C.3)

which are then used in the variational method.
All Rarita-Schwinger fields (spin 3/2 interpolators of Table C.1) are projected to

definite spin 3/2 using the continuum formulation of the Rarita-Schwinger projector
[172]

P 3/2
µν (~p) = δµν −

1

3
γµγν −

1

3p2
(γ · p γµpν + pµγνγ · p) . (C.4)

C.2 Baryon Interpolator Tables

The construction of baryon interpolators is discussed in Section 4.3.4. The resulting
baryon interpolators, used in this work, are detailed in Tables C.1, C.2 and C.3.
Table C.1 shows the flavor structure for all interpolators. For the spin 1/2 channels

of nucleon, Σ, Ξ and Λ, we use three different Dirac structures χ(i) = (Γ
(i)
1 ,Γ

(i)
2 ), (i =

1, 2, 3), listed in Table C.2. Details about the quark smearings in the interpolators
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are found in Table C.3. The naming convention of all baryon interpolators is deter-
mined by Tables C.2 and C.3. In the Λ channels, singlet and octet interpolators are
collected in one set. We assign to the first octet interpolator the number after the
last singlet interpolator, and continue to count for the remaining octet interpolators.
In the Σ and Ξ channels, the same holds for octet and decuplet interpolators.
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Spin Flavor channel Name Interpolator
1
2 Nucleon N

(i)
1/2 ǫabc Γ

(i)
1 ua

(

uTb Γ
(i)
2 dc − dTb Γ

(i)
2 uc

)

1
2 Delta ∆1/2 ǫabc γiγ5ua

(

uTb C γi uc
)

1
2 Sigma octet Σ

(8,i)
1/2 ǫabc Γ

(i)
1 ua

(

uTb Γ
(i)
2 sc − sTb Γ

(i)
2 uc

)

1
2 Sigma decuplet Σ

(10,i)
1/2 ǫabc γiγ5ua

(

uTb C γi sc − sTb C γi uc
)

1
2 Xi octet Ξ

(8,i)
1/2 ǫabc Γ

(i)
1 sa

(

sTb Γ
(i)
2 uc − uTb Γ

(i)
2 sc

)

1
2 Xi decuplet Ξ

(10,i)
1/2 ǫabc γiγ5sa

(

sTb C γi uc − uTb C Γi sc
)

1
2 Lambda singlet Λ

(1,i)
1/2 ǫabcΓ

(i)
1 ua(d

T
b Γ

(i)
2 sc − sTb Γ

(i)
2 dc)

+ cyclic permutations of u, d, s
1
2 Lambda octet Λ

(8,i)
1/2 ǫabc

[

Γ
(i)
1 sa(u

T
b Γ

(i)
2 dc − dTb Γ

(i)
2 uc)

+ Γ
(i)
1 ua(s

T
b Γ

(i)
2 dc)− Γ

(i)
1 da(s

T
b Γ

(i)
2 uc)

]

1
2 Omega Ω1/2 ǫabc γiγ5sa

(

sTb C γi sc
)

3
2 Nucleon N

(i)
3/2 ǫabc γ5 ua

(

uTb Cγ5γi dc − dTb Cγ5γi uc
)

3
2 Delta ∆

(i)
3/2 ǫabc ua

(

uTb C γi uc
)

3
2 Sigma octet Σ

(8,i)
3/2 ǫabc γ5 ua

(

uTb Cγ5γi sc − sTb Cγ5γi uc
)

3
2 Sigma decuplet Σ

(10,i)
3/2 ǫabc ua

(

uTb Cγi sc − sTb Cγi uc
)

3
2 Xi octet Ξ

(8,i)
3/2

ǫabc γ5 sa
(

sTb Cγ5γi uc − uTb Cγ5γi sc
)

3
2 Xi decuplet Ξ

(10,i)
3/2 ǫabc sa

(

sTb Cγi uc − uTb Cγi sc
)

3
2 Lambda singlet Λ

(1,i)
3/2 ǫabcγ5ua(d

T
b Cγ5γisc − sTb Cγ5γidc)

+ cyclic permutations of u, d, s
3
2 Lambda octet Λ

(8,i)
3/2 ǫabc

[

γ5sa(u
T
b Cγ5γidc − dTb Cγ5γiuc)

+ γ5ua(s
T
b Cγ5γidc)− γ5da(s

T
b Cγ5γiuc

]

3
2 Omega Ω

(i)
3/2 ǫabc sa

(

sTb C γi sc
)

Table C.1: Baryon interpolators: Flavor structure. The possible choices for the

Dirac matrices Γ
(i)
1,2 in the spin 1/2 channels are listed in Table C.2. All interpolators

are projected to definite parity according to Eq. (C.1). All spin 3/2 interpolators
include the Rarita-Schwinger projector, according to Eq. (C.4), which is suppressed
for clarity in the table. C denotes the charge conjugation matrix, γi the spatial
Dirac matrices and γt the Dirac matrix in time direction. Spin 1/2 and spin 3/2
channels are separated by a dashed line. Summation convention applies for repeated
indices, and in the case of spin 3/2 observables, the open Lorentz index (after spin
projection) is summed after taking the expectation value of correlation functions.
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i Γ
(i)
1 Γ

(i)
2 Numbering of associated interpolators

N1/2,Λ
1
1/2,Σ

8
1/2,Ξ

8
1/2 Λ8

1/2,Σ
10
1/2,Ξ

10
1/2

1 1 Cγ5 1-8 25-32
2 γ5 C 9-16 33-40
3 i1 Cγtγ5 17-24 41-48

Table C.2: Baryon interpolators: Dirac structures used for the spin 1/2 nucleon, Λ,
Σ and Ξ interpolators, according to Table C.1. The naming convention for associated
interpolators in the different channels is given as well. The subscripts denotes the
spin, the superscripts the flavor irreducible representation.

quark Numbering of associated interpolators
smearing ∆1/2,∆3/2,Ω1/2,Ω3/2, Λ8

3/2, N1/2,Λ
1
1/2, Λ8

1/2,

types N3/2,Λ
1
3/2,Σ

8
3/2,Ξ

8
3/2 Σ10

3/2,Ξ
10
3/2 Σ8

1/2,Ξ
8
1/2 Σ10

1/2,Ξ
10
1/2

(nn)n 1 9 1,9,17 25,33,41
(nn)w 2 10 2,10,18 26,34,42
(nw)n 3 11 3,11,19 27,35,43
(nw)w 4 12 4,12,20 28,36,44
(wn)n 5 13 5,13,21 29,37,45
(wn)w 6 14 6,14,22 30,38,46
(ww)n 7 15 7,15,23 31,39,47
(ww)w 8 16 8,16,24 32,40,48

Table C.3: Baryon interpolators: Quark smearing types and naming convention
for the interpolators in the different channels. The subscripts denotes the spin,
the superscripts the flavor irreducible representation. The brackets in the first row
symbolize the diquark. Due to Fierz identities, some of the interpolators may be
linearly dependent.



Appendix D

Details of Fits and Results

In this chapter we collect further details concerning fits and results. The enegy
levels and the χ2/d.o.f. of the fits in m2

π of light isovector, strange and isoscalar
mesons are listed in Tables D.1, D.2 and D.3, respectively. The enegy levels and
the χ2/d.o.f of the fits in m2

π of positive and negative parity baryons are found in
Tables D.4 and D.5, respectively. The enegy levels and the χ2/d.o.f of the fits in
m2
π after extrapolation to infinite volume are found in Table D.6. Possible origins

of poor χ2/d.o.f. larger than three are discussed in the main text.
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Light meson Energy level [MeV] χ2/d.o.f.

0−+ 1407(103) 8.25/5
0++ 976(70) 12.38/5
0++ 1689(103) 6.70/4
1−− 772(13) 4.65/5
1−− 1528(115) 2.79/5
1−− 1733(143) 2.51/4
1−+ 1370(260) 3.78/5
1+− 1347(26) 8.12/5
1++ 1238(33) 9.62/5
1++ 1754(103) 4.91/5
2−−(T2) 1849(222) 3.77/2
2−−(E) 1965(183) 2.16/3
2−+(T2) 1745(96) 5.06/5
2−+(E) 1889(139) 8.96/4
2++(T2) 1399(66) 16.51/5
2++(E) 1379(60) 6.03/5

Table D.1: Energy levels at the physical point and corresponding χ2/d.o.f. for the
chiral fits of the isovector light meson energy levels reported in this work. Sources
of large χ2/d.o.f. (≥ 3) are discussed in the text.
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Strange meson Energy level [MeV] χ2/d.o.f.

0− 509(4) 20.83/5
0− 1434(64) 6.94/5
0+ 884(36) 41.53/5
0+ 1323(81) 6.92/5
1− 896(9) 7.20/5
1− 1633(89) 1.57/3
1− 1919(69) 1.05/3
1+ 1339(20) 3.90/5
1+ 1409(17) 6.76/5
1+ 1709(109) 2.56/5
2−(T2) 1750(54) 5.31/5
2−(T2) 1909(52) 2.21/5
2−(E) 1870(75) 1.51/4
2−(E) 1956(71) 1.17/4
2+(T2) 1452(51) 7.28/5
2+(E) 1392(58) 5.68/5

Table D.2: Same as Table D.1, but for strange mesons.

Isoscalar meson Energy level [MeV] χ2/d.o.f.

1−− 994(8) 6.51/5
1−− 1857(53) 7.30/5
1−− 1987(40) 1.41/5
2++(T2) 1581(29) 12.89/5
2++(E) 1578(24) 7.28/5

Table D.3: Same as Table D.1, but for isoscalar mesons.
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Baryon: I(JP ) Energy level [MeV] χ2/d.o.f.

N : 1/2(1/2+) 1000(18) 2.16/5
N : 1/2(1/2+) 1848(120) 3.61/5
N : 1/2(1/2+) 1998(59) 18.31/5
N : 1/2(1/2+) 2543(280) 1.96/3
∆ : 3/2(1/2+) 1751(190) 1.58/5
∆ : 3/2(1/2+) 2211(126) 1.15/5
Λ : 0(1/2+) 1140(14) 3.30/5
Λ : 0(1/2+) 1809(94) 4.63/5
Λ : 0(1/2+) 2113(54) 20.07/6
Λ : 0(1/2+) 2139(68) 1.50/5
Σ : 1(1/2+) 1216(15) 6.94/5
Σ : 1(1/2+) 2069(74) 3.41/5
Σ : 1(1/2+) 2149(66) 20.37/5
Σ : 1(1/2+) 2335(63) 2.09/5
Ξ : 1/2(1/2+) 1303(13) 8.31/5
Ξ : 1/2(1/2+) 2178(48) 7.51/5
Ξ : 1/2(1/2+) 2231(44) 26.53/5
Ξ : 1/2(1/2+) 2408(45) 10.37/5
Ω : 0(1/2+) 2350(63) 4.14/5
Ω : 0(1/2+) 2481(51) 4.35/5

N : 1/2(3/2+) 1773(91) 8.35/5
N : 1/2(3/2+) 2298(191) 3.79/5
∆ : 3/2(3/2+) 1344(27) 6.13/5
∆ : 3/2(3/2+) 2204(82) 6.23/5
Λ : 0(3/2+) 1914(72) 5.80/5
Λ : 0(3/2+) 2061(138) 23.04/5
Λ : 0(3/2+) 2483(111) 4.26/5
Σ : 1(3/2+) 1471(23) 2.52/5
Σ : 1(3/2+) 2194(81) 4.78/5
Σ : 1(3/2+) 2250(79) 7.05/5
Σ : 1(3/2+) 2468(67) 4.22/5
Ξ : 1/2(3/2+) 1553(18) 3.78/5
Ξ : 1/2(3/2+) 2228(40) 6.99/5
Ξ : 1/2(3/2+) 2398(52) 7.03/5
Ξ : 1/2(3/2+) 2574(52) 4.26/5
Ω : 0(3/2+) 1642(17) 10.86/5
Ω : 0(3/2+) 2470(49) 8.14/5

Table D.4: Same as Table D.1, but for positive parity baryons. The horizontal
dashed line separates spin 1/2 and spin 3/2 baryons.
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Baryon: I(JP ) Energy level [MeV] χ2/d.o.f.

N : 1/2(1/2−) 1406(49) 6.51/5
N : 1/2(1/2−) 1539(69) 8.72/5
N : 1/2(1/2−) 1895(128) 6.35/5
N : 1/2(1/2−) 1918(211) 5.94/5
∆ : 3/2(1/2−) 1454(140) 11.16/5
∆ : 3/2(1/2−) 1914(322) 3.24/5
Λ : 0(1/2−) 1447(46) 6.55/5
Λ : 0(1/2−) 1611(53) 22.93/5
Λ : 0(1/2−) 1767(41) 31.18/5
Λ : 0(1/2−) 2473(182) 13.56/5
Σ : 1(1/2−) 1603(38) 7.45/5
Σ : 1(1/2−) 1718(58) 12.78/5
Σ : 1(1/2−) 1730(34) 10.79/5
Σ : 1(1/2−) 2478(104) 11.94/5
Ξ : 1/2(1/2−) 1716(43) 19.10/5
Ξ : 1/2(1/2−) 1837(28) 20.25/5
Ξ : 1/2(1/2−) 1844(43) 15.75/5
Ξ : 1/2(1/2−) 2758(78) 5.61/5
Ω : 0(1/2−) 1944(56) 20.48/5
Ω : 0(1/2−) 2716(118) 8.58/5

N : 1/2(3/2−) 1634(44) 14.75/5
N : 1/2(3/2−) 1982(128) 7.40/5
N : 1/2(3/2−) 2296(129) 9.59/5
∆ : 3/2(3/2−) 1570(67) 4.01/5
∆ : 3/2(3/2−) 2373(140) 17.97/5
Λ : 0(3/2−) 1729(32) 2.39/5
Λ : 0(3/2−) 2205(106) 3.97/5
Λ : 0(3/2−) 2382(86) 6.48/5
Σ : 1(3/2−) 1861(26) 6.33/5
Σ : 1(3/2−) 1736(40) 2.25/5
Σ : 1(3/2−) 2394(74) 9.73/5
Σ : 1(3/2−) 2297(122) 3.90/5
Ξ : 1/2(3/2−) 1906(29) 3.12/5
Ξ : 1/2(3/2−) 1894(38) 3.19/5
Ξ : 1/2(3/2−) 2497(61) 8.53/5
Ξ : 1/2(3/2−) 2426(73) 7.60/5
Ω : 0(3/2−) 2049(32) 7.32/5
Ω : 0(3/2−) 2755(67) 5.68/5

Table D.5: Same as Table D.1, but for negative parity baryons. The horizontal
dashed line separates spin 1/2 and spin 3/2 baryons.



Hadron I(JP ) Energy level [MeV] χ2/d.o.f.

K 1/2(0−) 504(4) 23.26/5
K∗ 1/2(1−) 865(9) 5.31/5

N 1/2(1/2+) 954(16) 2.26/5
Λ 0(1/2+) 1112(14) 4.44/5
Σ 1(1/2+) 1156(15) 11.78/5
Ξ 1/2(1/2+) 1273(12) 11.93/5
∆ 3/2(3/2+) 1268(32) 8.67/5
Ω 0(3/2+) 1620(14) 11.26/5

Table D.6: Same as Table D.1, but for hadrons after the infinite volume extrapola-
tion. The horizontal dashed line separates mesons and baryons.
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[153] S. Dürr, Logarithmic link smearing for full QCD, arXiv:0709.4110.

[154] P. J. Moran, P. O. Bowman, D. B. Leinweber, A. G. Williams, and J. B.
Zhang, Impact of stout-link smearing in lattice fermion actions,
arXiv:0910.2781.

[155] S. Gusken et al., Nonsinglet axial vector couplings of the baryon octet in
lattice QCD, Phys. Lett. B227 (1989) 266.

[156] C. Best et al., Pion and rho structure functions from lattice QCD, Phys. Rev.
D56 (1997) 2743–2754, [hep-lat/9703014].

[157] J. Foley et al., Practical all-to-all propagators for lattice QCD, Comput.
Phys. Commun. 172 (2005) 145–162, [hep-lat/0505023].

[158] Hadron Spectrum Collaboration, M. Peardon et al., A novel quark-field
creation operator construction for hadronic physics in lattice QCD, Phys.
Rev. D80 (2009) 054506, [arXiv:0905.2160].

[159] J. Bulava, An Improved Variance Reduction Technique for Stochastic
All-to-All Quark Propagators in Lattice QCD Spectrum Computations. PhD
thesis, Mellon College of Science at Carnegie Mellon University, 2009.

[160] R. Barrett et al., Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, Philadelphia, 1994.

[161] W. Press, S.A.Teukolsky, W.T.Vetterling, and B.P.Flannery, Numerical
Recipes in C, 2nd Ed. Cambridge University Press, Cambridge New York,
1999.

[162] A. Stathopoulos and K. Orginos, Computing and deflating eigenvalues while
solving multiple right hand side linear systems in Quantum Chromodynamics,
arXiv:0707.0131.
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[181] G. Colangelo, S. Dürr, and C. Haefeli, Finite volume effects for meson masses
and decay constants, Nucl. Phys. B721 (2005) 136–174, [hep-lat/0503014].

[182] G. Colangelo, A. Fuhrer, and C. Haefeli, The pion and proton mass in finite
volume, Nucl. Phys. Proc. Suppl. 153 (2006) 41–48, [hep-lat/0512002].

[183] H. Wittig, Low-energy particle physics and chiral extrapolations,
arXiv:1201.4774.
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Der größte Dank geht an meine liebe Frau Anna, der ich meine Dissertation
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