
 
 
 
 
 
 

Does the Intel Xeon Phi processor fit HEP workloads? 

A Nowak, G Bitzes, A Dotti, A Lazzaro, S Jarp, P Szostek, L Valsan, M Botezatu, 
J Leduc 
Andrzej.Nowak@cern.ch, Georgios.Bitzes@cern.ch, Sverre.Jarp@cern.ch, 
Pawel.Szostek@cern.ch (CERN openlab, Geneva, Switzerland) 

 

Abstract. This paper summarizes the five years of CERN openlab’s efforts focused on the 
Intel Xeon Phi co-processor, from the time of its inception to public release. We consider the 
architecture of the device vis a vis the characteristics of HEP software and identify key 
opportunities for HEP processing, as well as scaling limitations. We report on improvements 
and speedups linked to parallelization and vectorization on benchmarks involving software 
frameworks such as Geant4 and ROOT. Finally, we extrapolate current software and hardware 
trends and project them onto accelerators of the future, with the specifics of offline and online 
HEP processing in mind. 

1.  Introduction 
The High Energy Physics (HEP) community has always wanted “unlimited” amounts of CPU power 
for its computing, in particular for data mining and simulation, which are two of the main computing 
tasks linked to an experiment. Online triggering and offline reconstruction, the two other main tasks, 
also require a lot of processing but are more tied directly to the number of events produced by the 
online trigger function. 

The FORTRAN programs used to be relatively limited in size – 10’000 lines was the standard at 
the time of Rubbia’s Nobel-Prize-winning experiment in the early 80s. Today, the programs have 
developed into complex C++ software frameworks representing millions of lines. The most compute-
intensive parts depend on efficient execution on control-flow-based sections. Take the example of 
simulation. The control-flow varies constantly based on random numbers. Is the current particle an 
electron? Is it inside liquid argon (as material) and a polycone (as geometric shape)? Is the particle 
about to annihilate and produce other particles? A simulation program moves “forward” randomly 
based on the values of random numbers used to decide what kind of physics processes are allowed to 
happen. 

In the search for the most cost-effective solution, HEP moved from supercomputer and mainframes 
(in the 80s) to powerful RISC workstations and servers in the 90s. In the mid-90s PC technology had 
matured considerably. This style of computing has lasted until today and the Worldwide LHC 
Computing Grid (WLCG) is almost exclusively based on two-socket commodity PC servers 
interconnected via high-speed (1Gb and 10Gb Ethernet). 

In spite of this total reliance on commodity technology (even for world-class supercomputers) 
some high performance users started to move to accelerators, in particular to GPGPUs. Initially the 
emphasis was made on single-precision (SP) floating point, which is more than good enough for most 
graphics applications and some scientific ones, such as those from the financial world, but not for the 
common HEP applications which overwhelmingly depend on DP. The reasons are partly historical, 
but partly related to the complexity of existing algorithm implementations, which cannot be 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052024 doi:10.1088/1742-6596/513/5/052024

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

sufficiently verified in single precision – even today some are advising a move to quad precision. 
Many prototypes of simpler algorithms exist in single precision, and are slowly spreading through the 
community. Things gradually changed when more and more graphics cards started appearing with 
acceptable DP performance, which could run existing software without major modifications. This fact 
led the CERN openlab team collaborating with Intel to prick up their ears when it was known (in 
2008) that Intel was working on an accelerator card, named “Larrabee”. The obvious question was 
whether a new move was in preparation. 

2.  The history of Intel MIC at CERN openlab 
“Larrabee” was initially discussed with Intel Labs, who expressed the hope that several sciences 

would find this architecture promising, given its flexibility. The many-core architecture came with a 
promise of simpler, individual cores with higher throughput per mm2 (or watt). Although the CPU 
itself was rather ancient (based on a Pentium design, the P54C), a brand-new vector design had been 
introduced. In spite of the fact that HEP had not had much success with vectors in the past, the 
flexibility of this new design was intriguing: a large number of vector registers as well as separate 
mask registers for optimizing different control-flow for each vector element.  

Simulator runs as well as a comprehensive review of the architecture helped steer towards the 
needs of HEP programs. Our review put the finger on HEP’s need for good DP floating-point in 
general and for good hardware support for several important mathematical functions, such as square 
root, but also exponentials, logarithms, and several trigonometric functions. 

The first card appeared in openlab in 2009 and represented one of the first cards to be used outside 
of Intel and the world of graphics. Shortly later, the name was changed to “Knights Ferry” (KNF) and 
the decision had been made to put the emphasis on high-performance (and high-throughput) 
computing. The project was still very secret at this point. 

Ever since its inception the operating system on the card was FreeBSD, but it was immediately 
clear to the openlab team that a Linux version would be much more practical. The request was quickly 
made to Intel and a year later they started shipping the cards with an adapted version of Linux. Since 
KNF was still heavily biased towards SP floating-point the decision was made to port a Trackfitting 
code that was developed by the CBM community [2][3] for the CBM experiment, and also usable by 
other heavy-ion experiments, such as ALICE in LHC. This port was very successful (see Table 2) and 
led to a customer testimonial in 2010 at the ISC conference where Intel made the world-wide 
announcement of the commercial availability of these (now called) co-processors in the form of a 
“Knights” family, also called the “Many Integrated Cores” (MIC) architecture. 

2nd generation “Knights Corner” (KNC) cards started appearing in openlab about a year ago and 
form the hardware basis for this paper. What has to be kept in mind is that the results reflect a certain 
number of limitations still inherent in the initial design, as seen from the viewpoint of HEP. The 
micro-architecture is still based on the Pentium P54C (in-order) design and there is little main memory 
for multiple processes. The next version of the family, “Knights Landing” or KNL, will lift all these 
limitations and we are therefore optimistic that the work performed in CERN openlab, jointly with the 
LHC experiments and the EU Marie Curie Actions FP7 “ICE-DIP” project, will pay off past 2015. 

3.  The architecture 
Like its predecessor, the KNC carries a number of changes with respect to mainstream architectures. 
These are briefly discussed in the sub-sections that follow. 

3.1.  Core architecture and count 
A single KNC core is based on an in-order, 2-way superscalar x86 architecture codenamed P54C, 
derived from the Intel Pentium series of processors. It features a range of improvements discussed 
below. Clock frequencies of production models vary between 1.05-1.25 GHz. Each core features 32kB 
data and instruction L1 caches, and access to a large, coherent, shared L2, in which each core has 
512kB assigned. Loads to L2 are hardware prefetched, but loads to L1 are not and may have to be 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052024 doi:10.1088/1742-6596/513/5/052024

2



 
 
 
 
 
 

handled by software prefetch instructions on some workloads to avoid frequent L2 accesses. A bi-
directional 512-bit ring bus interconnects the cores. A similar design also interconnects cores and the 
GPU unit on newer mainstream Xeon models. 

A further modification to take note of is the issue unit – a single hardware thread can issue 
instructions only every other cycle, but a single core can issue an instruction every cycle. Therefore at 
least two hardware threads are needed to keep a core busy every cycle. 

An interesting development is the core count, which reaches 61 in top-bin KNC models. This 
architectural feature alone takes the device straight into the many-core domain and imposes strict 
parallelism requirements on prospective workloads. 

3.2.  Hardware multi-threading 
Another major improvement over the classic P54C core is the addition of hardware threading. The 
KNC core is the first x86 design to be 4-way multi-threaded – a decision that is a consequence of a 
design that requires multiple simultaneously running threads to be throughput efficient. Unlike GPUs, 
however, these hardware threads can carry entirely separate streams of execution without performance 
penalties. The implementation is similar to mainstream x86 Xeon processors, where some on-chip 
resources are statically partitioned, some are dynamically shared and some are replicated between 
threads. Overall, top-bin models can run a total of 244 hardware threads. 

3.3.  Vector units 
In parallel to scalar units and registers, new vector units and registers were added, capable of handling 
512-bit vectors. Standard data types include 64-bit doubles (8 per vector), 32-bit floats (16) and 32-bit 
integers (16). Overall, the vector architecture is augmented with respect to mainstream Intel 
processors, with support for masking/predication (8 registers), 3-way operands, gathers, scatters, 
permutes and fused multiply-add. The main advantage of masking can be experienced in control flow 
statements, since upon encountering a masked element the processing units will not read the data 
source, perform any operation or write to the destination. 

As in other architectures, unaligned vector loads will require two instructions and should be 
avoided. In addition, not all mathematical functions are fully implemented in hardware, and not all are 
equally supported in single and double precision variants. Table 1, shown by Victor Lee from Intel at 
IDF2013, shows the throughput of several math functions. The lack of fast support for functions like 
log, exp or atan2 has implications for HEP code, as measured on an early multi-threaded Geant4 
prototype (Figure 1), where they consumed 80% of math time – much more than on a Xeon processor. 

 

 
Table 1. KNC hardware support for math functions. 

 

 
Figure 1. KNC math function profile in an early multi-

threaded Geant4 prototype. 

3.4.  Memory and platform interface 
“Knights Corner” exists only in a PCI form factor, which imposes known PCI limitations encountered 
with other accelerators, such as GPUs and FPGA cards. Memory is implemented through on-board 
GDDR5, limited to 16GB in the most advanced models. Host memory can be mapped and accessed as 
well, although with the usual PCI penalties. 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052024 doi:10.1088/1742-6596/513/5/052024

3



 
 
 
 
 
 

4.  Programmability and software 

4.1.  System environment, porting, compilers and software 
Internally, the KNC runs a simplified on-board Linux distribution, whose system files are accessible to 
the user only in a limited manner. KNC devices can run binaries in two modes: either native, where 
the binary runs directly on the card, or offload, where the binary runs on the host and parts of the 
computation are offloaded to the co-processor. Binaries compiled for standard x86 systems will not 
run directly. Recent compilers from Intel (13.1 and later) feature the KNC as a target for cross-
compilation. The GNU Compiler Collection is not available by default or as a package, but there are 
efforts to port it to the co-processor. 

It should be noted that many open source packages are not ready for cross-compilation, which 
sometimes makes porting a complicated business. Such is for example the case of the SPEC 
benchmark suite, which relies heavily on perl and a range of other dependencies. That was also the 
case with early multi-threaded Geant4 prototypes, which depended on several packages that were not 
ready for porting. A later port using newer software packages went much more smoothly, albeit with 
the usual caveats of cross-compilation still present. Table 2 shows the approximate time related to the 
porting of several workloads, the evolution of which is discussed in this paper. 

 
Table 2. Approximate porting and tuning times by benchmark. 

 LOC 1st port time New ports Tuning 

Track Fitter (TF) < 1’000 days N/A 2 weeks 

Maximum Likelihood Fit (MLFit) 3’000 < 1 day < 1 day weeks 

Multi-threaded Geant4 prototype (MTG4) 2’000’000 1 month < 1 day < 1 week 

 
In ideal scenarios, it was sufficient to adapt the workload to the peculiarities of the Intel compiler. 

In less fortunate cases, it was necessary to either re-implement architecture-specific elements of the 
workload – such as pinning, vectorization, cache management – or to revise the build system. 

4.2.  A note on programming languages 
On the one hand, the KNC, being an x86-based system, supports a wide range of commonly used 
programming languages, in particular C, C++ and Fortran. Mainstream compiler support also enables 
many commonly used technologies and runtimes such as OpenMP, MPI, TBB and Cilk+. On the other 
hand, commonly used idioms or language features might not provide optimal performance because of 
architectural differences. The programmer must therefore worry about adapting software to the 
underlying architecture, in particular in cases where language abstractions obscure architectural 
peculiarities of the platform. 

Subjectively, the Intel MIC and its software ecosystem seem to provide greater accessibility to 
performance than other accelerators and co-processors, but much work still remains to be done on this 
front so that the average programmer can have all on-chip transistors within reach. 

4.3.  Datacenter integration 
Current KNC devices feature an Ethernet over PCI interface, as well as libraries for direct messaging 
between KNC cards and the host, also implemented over PCI. By default, the device appears as a 
private IP interface visible from the host. The Ethernet bridge eases integration into the datacenter, 
allowing standard IP-based services to work. As a result, the KNC can access NFS-based filesystems, 
where workloads can be stored without consuming on-board GDDR5 memory through a virtual 
filesystem (as was the case in the “Knights Ferry”). Finally, there are no openly available platform 
management features other than power consumption monitoring. 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052024 doi:10.1088/1742-6596/513/5/052024

4



 
 
 
 
 
 

5.  Benchmarks and performance studies 
Since 2008, openlab co-developed and ported a range of standard physics benchmarks to the 
“Knights” platforms. Originally, these were three representatives of HEP programs, covering 
Simulation (the Multi-Threaded Geant4 prototype), Analysis (MLFit/RooFit), and Online Processing 
(ALICE/CBM trackfitter). In recent years, as the platform became available to more and more users, 
openlab collaborators had the opportunity to develop new workloads or updated versions of previously 
used benchmarks. In the sub-sections below we report on the results of performance studies with such 
workloads. 

The KNC card used was a production unit equipped with 61 cores running at 1.24GHz, with 16 GB 
GDDR5 memory. The compiler used was ICC 14.0.0, except where specified otherwise. 

5.1.  HEPSPEC06 
Derived from the industry standard SPEC CPU2006 benchmark, the well-known HEPSPEC06 is a 
HEP-specific benchmark restricted to a single-threaded, non-vectorized C++ subset of SPECINT and 
SPECFP. Overall, clearly a bad fit for the MIC architecture (and hopeless for GPUs), but 
representative of many complex HEP workloads. Since the benchmark is single threaded, it must be 
run in one instance per core and consumes considerable amounts of memory. On the KNC system, it 
was not possible to exceed 32 simultaneous instances. In addition, we found irregularities in the soplex 
program, and therefore did not include its results in the geometric mean reported. The compiler used 
was a MIC-enabled branch of GCC 4.7. 

Compiling HEPSPEC06 for MIC required a particular effort. The benchmark is delivered with a set 
of tools that have to be built before the actual compilation of workloads begins. Our first approach was 
to cross-compile the whole software package and then perform execution on the card. Since the build 
script is carrying out validation tests on the resulting binaries, it was not possible to finish this process 
without introducing some changes. The second approach, more demanding at first sight, was to move 
the whole build process onto the card. This in turn forced the usage of a MIC-enabled branch of GCC, 
as well as the compilation of the whole GNU toolchain for the Intel Xeon Phi architecture. A few 
adjustments in the build scripts and environmental variables were still needed. 

The HEPSPEC06 score per KNC core (excluding soplex) was measured to be between 1.75 and 
1.80, with linear scaling throughout. A core fully loaded with four hardware threads yields a score of 
3.48. The total score for 32 cores was 57.7, which would extrapolate to approximately 110 at a full 
load of 61 cores. Continuing this extrapolation, one could expect 244 threads to achieve a score of 
approximately 140-210. This result can be roughly compared to a score of 119 on a 3.1 GHz quad-
core Haswell workstation, obtained using GCC 4.8.1. In conclusion, it is a good result, especially 
considering that SPEC workloads (modeling production HEP software [4]) are not particularly fit for 
vectorization. 

5.2.  Next-generation multi-threaded Geant4 prototype (Simulation) 
In this test we ran Geant4 [5][6], version 9.6-ref09a (released end of September 2013), which is an 
internal development version of Geant4 in preparation for version 10.0 (to be released in December 
2013). The next major release will include event-level parallelism via multi-threading [7]: after the 
geometry and physics processes have been initialized, threads are spawned and events are simulated in 
parallel. To reduce memory footprint the read-only memory parts of the simulation are shared among 
threads. Memory increase for each additional thread has been measured to be in the order of 40-70 
MB, depending on the application – as reported elsewhere at CHEP 2013. 

We used the "ParFullCMS" application as a benchmark, which has been developed by the Geant4 
collaboration and earlier optimized by openlab. The application uses realistic CMS experiment 
geometry expressed in GDML format [8], where highly energetic (50 GeV) negatively charged pions 
are shot in random directions inside the detector. The recommended HEP physics list (FTFP_BERT) 
is used for simulating the interaction of particles with matter. Tracking in a solenoidal magnetic field 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052024 doi:10.1088/1742-6596/513/5/052024

5



 
 
 
 
 
 

is also included. No digitization of energy deposits is performed since this strongly depends on the 
experimental framework software and we are interested in evaluating the performance of Geant4 itself. 

Performance is measured by keeping the workload of each thread constant (weak scaling) and 
measuring the time they spend in the event loop. Results are preliminary. 

  
Figure 2: Parallel Geant4 prototype scalability on KNC (preliminary results) 

Number of threads 1 2 4 8 10 12 16 24 30 60 120 180 240 
Events/second 0.06 0.12 0.23 0.46 0.58 0.70 0.95 1.40 1.77 3.49 5.04 5.65 5.88 

Scaling 1.0 2.0 3.9 8.0 10.1 12.2 16.4 24.1 30.6 60.4 87.1 97.6 101.6 
Table 3: Parallel Geant4 prototype scalability on KNC (preliminary results) 

The runtime remains constant as we increase the number of threads (and thus the workload) until we 
reach the number of physical cores (61), which demonstrates 100% efficiency as the workload 
increases with the number of threads (Figure 2 and Table 3). With all 244 logical processors being 
active, the total throughput reached 5.9 events per second. This results is a little bit better than a 
single-socket, 8-thread “Haswell” workstation at 3.1 GHz, nearly equivalent to a dual-socket 16-thread 
“Nehalem” platform at 2.26GHz, but less than half of the performance of a dual-socket “Ivy Bridge” 
system at 2.4 GHz with 48 threads. SMT provided a 69% improvement in throughput. 

5.3.  Parallel MLFit and the modernized MLFit kernel (Analysis) 
The fundamental benchmark used in this test is a vectorized and threaded prototype of the RooFit 
package from ROOT [9], commonly used in HEP for maximum likelihood fits. It has been described 
on several occasions by Alfio Lazzaro, in particular in [10] and [11]. In its calculations, the workload 
makes heavy use of the exp() function and is memory-bandwidth intensive. Speedup measured on the 
KNC is presented in Table 4. 

Table 4: MLFit speedup on KNC 

Number of threads 1 2 4 8 16 30 60 119 180 240 
Speedup 1.00 1.99 3.80 7.41 14.39 23.88 44.06 55.18 55.48 55.72 
Runtime 566.6 284.7 149.1 76.5 39.4 23.7 12.9 10.3 10.2 10.2 

 
Internal data block size (with a standard blocking approach) has a considerable impact on 

performance, with large blocks (10’000) performing 15% better than smaller ones (1’000) – the results 
were gathered using the better performing value. Vectorization (vs. no-vec) provides a benefit of 4.8x 
on a single core, which diminishes to 2.7x under a full 240 thread load. The results for SMT scaling 
and an absolute architecture comparison (with vectorization) are shown in Figure 3 and Figure 4, 
respectively. In terms of absolute performance on this workload, the KNC was roughly comparable to 
a dual socket “Ivy Bridge” server with 2x12 physical cores running at 2.4 GHz. Given the similarity in 
efficiency, a symmetric processing model would likely be more appropriate for such workloads. 
 

0
1000
2000
3000
4000
5000

0 50 100 150 200 250

Ru
nt

im
e 

(s
ec

on
ds

) 

Number of threads 

0.6
0.8

1
1.2
1.4
1.6
1.8

0 50 100 150 200 250

SM
T-

ad
ju

st
ed

 
Ef

fic
ie

nc
y 

Number of threads 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052024 doi:10.1088/1742-6596/513/5/052024

6



 
 
 
 
 
 

 
Figure 3: MLFit SMT scaling on KNC (higher is 

better) 

 
Figure 4: MLFit runtime on three x86 systems in seconds; 

SMT on; lower is better 

 
A kernel of the MLFit application has been extracted by Vincenzo Innocente from CERN, who 

applied a series of advanced optimizations, successfully challenging the original tradeoffs and 
assumptions. While more detail of this work is described in [12], the benchmark exhibits improved 
scalability, reaching over 90x in a “sweet spot” around 180 threads, as shown in Figure 5. 

 
Figure 5: MLFit kernel scaling on KNC 

5.4.  The evolved Trackfitter (online workload) 
Since 2008, openlab has been collaborating with the GSI institute on a novel track fitting benchmark 
for the ALICE experiment. The workload has been since modernized by Ivan Kisel, Igor Kulakov and 
Maksym Zyzak of GSI [2][3] and ported to the Vc library developed by Matthias Kretz [13]. The 
workload is a vectorized Kalman filter, used in a track fitting algorithm. The results for a modernized 
version of the benchmark using OpenMP are reported in Table 6. The speedup between a double 
precision x87 variant and a single precision packed variant reached a staggering 14x, close to the ideal 
16x. In a direct non frequency-scaled comparison, the KNC card tested performed 11% better than a 
standard dual socket “Ivy Bridge” server running at 2.4 GHz and 3.5x better than a “Haswell” based 
desktop running at 3.1 GHz. 

5.5.  Performance – observations and summary 
Performance numbers obtained demonstrate that in order to reach competitive throughput, two 
conditions must be met: the workload must be threaded and it must be vectorized. Without 
vectorization and a move from double to single precision, a factor of 14x in performance can be left on 
the table (see Table 5). 

1.00 

1.45 
1.61 1.63 

1.00 
1.25 1.26 1.26 

0.00

0.50

1.00

1.50

2.00

1 2 3 4

Ef
fic

ie
nc

y 

Number of threads/core 

SMT Scaling on 1 core
SMT Scaling with full load

10.2 8.8 

31.2 

0
5

10
15
20
25
30
35

KNC, 1.24
GHz, 244
threads

"Ivy Bridge"
server, 2.4

GHz, 48
threads

"Haswell"
desktop, 3.1

GHz, 8
threads

M
LF

it 
ru

nt
im

e 
(s

) -
 lo

w
er

 is
 

be
tt

er
 

0

20

40

60

80

100

0 50 100 150 200 250

Sc
al

in
g 

Threads 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052024 doi:10.1088/1742-6596/513/5/052024

7



 
 
 
 
 
 

 
At the same time, for vectorization to work well, the issue units should be kept busy every cycle, 

which implies running at least two threads per core. Benefits of the 3rd and 4th hardware thread were 
minor in most cases, and more pronounced in the case of workloads bound by instruction flow and 
branches as opposed to data flow. 

6.  Conclusions 
Several of openlab’s suggestions have made it into the final KNC product: amongst others, native 
mode is a key feature, compilers and important math functions have noticeably improved, system 
connectivity is now very good, the OS changed to Linux and the OSS ecosystem is growing. All of the 
workloads initially co-developed have been contributed to the community and, as a result, have seen 
further evolution steps. The story does not end here, however. Various groups, such as the HEP 
Concurrency Forum, have taken vectorization in their sights and are actively progressing to build next-
generation prototypes of HEP software, such as Geant-V. 

It will be very interesting to follow the evolution of the “Knights” family devices. It is already 
apparent that next-generation units will feature a new core and separate socket options (which was 
another strong openlab suggestion), which will improve on one of the greatest weaknesses of the Intel 
MIC: accessibility. CERN openlab will continue to actively collaborate with the physics community 
on workload optimization and development, and will keep actively monitoring developments in the 
hardware domain. 

7.  Acknowledgements 
We thank our colleagues for the extensive help they provided us with during our work with the 
prototypes and production units of the MIC co-processors. We thank Xin Dong, John Apostolakis and 
Gene Cooperman for their support of the multi-threaded Geant4 prototype. We thank Vincenzo 
Innocente for a kernelized variant of the MLFit workload. We thank Ivan Kisel, Maksim Zyzak, Igor 
Kulakov and Volker Lindenstruth from GSI for their work on the ALICE/CBM trackfitter.  

Last but not least, we are indebted to our Intel colleagues for their continued, long-term support: 
Klaus-Dieter Oertel, Jeff Arnold, Hans Pabst, Georg Zitzlsberger, Hans-Joachim Plum and Ralf 
Ratering from the engineering side, Joe Curley, Herbert Cornelius and Claudio Bellini from the 
business side, Pradeep Dubey and Victor Lee from the Parallel Computing Lab, as well as many others 
that we had the privilege to work with over the past 5 years. 

Finally, we thank the EU FP7 “ICE-DIP” project, #316596, for support in disseminating this work. 

References 
[1]  Jarp S, Simmins A, Yaari R and Tang H 1995 PC as physics computer for LHC? 
[2]  Kisel I, Kulakov I and Zyzak M Parallel Implementation of the KFParticle Vertexing 
Package for the CBM and ALICE Experiments Computing in High Energy and Nuclear Physics 2012 
[3]  Kisel I, Kulakov I and Zyzak M Parallel Algorithms for Track Reconstruction in the CBM 
Experiment Computing in High Energy and Nuclear Physics 2012 

Table 5: Overview of results: [us] or speedup (KNC measurements) 

x87 singleVc OpenMP 213 
threads (max) 

SP vector to DP 
scalar speedup 

OpenMP to SP 
vector speedup 

OpenMP to 
DP scalar 
speedup 

11.587 0.811 0.0098 14.2x 82.7x 1182x 
 

Table 6: Real fit time per track [us] – scalability by thread count (rounded to the last presented digit) 

1 2 4 8 16 32 48 61 91 122 152 183 213 244 
0.812 0.413 0.207 0.104 0.052 0.026 0.018 0.014 0.012 0.010 0.010 0.010 0.010 0.010 

 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052024 doi:10.1088/1742-6596/513/5/052024

8



 
 
 
 
 
 

[4]  Nowak A, Jarp S and Lazzaro A 2012 The future of commodity computing and many-core 
versus the interests of HEP software J. Phys. Conf. Ser. 396 052058 
[5]  Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, et al 2003 Geant4—a 
simulation toolkit Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. 
Equip. 506 250–303 
[6]  Allison J, Amako K, Apostolakis J, Araujo H, Dubois P A, et al 2006 Geant4 developments 
and applications Nucl. Sci. IEEE Trans. 53 270–8 
[7]  Dong X, Cooperman G and Apostolakis J 2010 Multithreaded Geant4: Semi-automatic 
Transformation into Scalable Thread-Parallel Software Euro-Par 2010 - Parallel Processing Lecture 
Notes in Computer Science ed P D’Ambra, M Guarracino and D Talia (Springer Berlin Heidelberg) pp 
287–303 
[8]  Chytracek R, Mccormick J, Pokorski W and Santin G 2006 Geometry Description Markup 
Language for Physics Simulation and Analysis Applications IEEE Trans. Nucl. Sci. 53 2892–6 
[9]  Brun R and Rademakers F 1997 ROOT — An object oriented data analysis framework 
Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 389 81–6 
[10]  Lazzaro A 2011 Implementing parallel algorithms for data analysis in ROOT/RooFit 
(Workshop on Future Computing in Particle Physics 2011) 
[11]  Jarp S, Lazzaro A, Nowak A and Leduc J 2012 Evaluation of the Intel Sandy Bridge-EP 
server processor (http://cds.cern.ch/record/1434748/files/CERN_openlab-
Evaluation_of_the_Intel_Sandy_Bridge-EP_server%20processor.pdf) 
[12]  Innocente V 2013 Concurrency in the minimization of unbinned Log-Likehood (Forum on 
Concurrent Programming Models and Frameworks) 
[13]  Kretz M and Lindenstruth V 2012 Vc: A C++ library for explicit vectorization Softw. Pr. 
Exp. 42 1409–30 
 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 052024 doi:10.1088/1742-6596/513/5/052024

9


	3.1.   Core architecture and count
	3.2.   Hardware multi-threading
	3.3.   Vector units
	3.4.   Memory and platform interface
	4.1.   System environment, porting, compilers and software
	4.2.   A note on programming languages
	4.3.   Datacenter integration
	5.1.   HEPSPEC06
	5.2.   Next-generation multi-threaded Geant4 prototype (Simulation)
	5.3.   Parallel MLFit and the modernized MLFit kernel (Analysis)
	5.4.   The evolved Trackfitter (online workload)
	5.5.   Performance – observations and summary



