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1. INTRODUCTION 

The internal structure of a proton is often studied by doing the 

deep inelastic leptonic scattering experiments.l However, since the 

gluon does not carry an electromagnetic or a weak charge, it cannot 

interact directly with leptonic probes. To probe the gluon structure 

directly, we must resort to gravitational deep inelastic scattering 

processes. It is true that such experiments are unlikely to be carried 

out in the foreseeable future, but a Gedanken experiment of this kind 

is useful to resolve theoretical questions concerning gluon structures 

and distributions.2 The present paper consists of a generalization of 

such an analysis of Ref. 2, to include in our present considerations all 

the structure functions, both from polarized and from unpolarized beams 

and targets. 

Our original motivation for carrying out such an analysis is the 

following. In a previous paper,3 we discussed how the total helicity 

AG carried by the gluons inside a nucleon target affects the first 

moment of the flavor-singlet part of the deep inelastic electron 

scattering structure function vG1. We concluded that AG appears in 

this moment together with $Aq, the total helicity carried by the quarks 

inside the nucleon, in the combination AqG E Aq+(as/4a)(2y)AG, where y 

is a quantity that depends on how in detail the renormalization of the 

operator a 
5 

(x) is carried out. Here a 5 
is the Pontryagin current,4 

which is an axial vector operator of the gluon fields that corresponds 

to AG when operator product expansion method is applied. 

The mathematical reason for such a combination can be traced to the 

the fact that the operator ag(x), is not gauge invariant, and thus cannot 
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be present in an operator product expansion. Its occurrence in deep 

inelastic scattering, via the gauge-invariant diagonal matrix element 

<a6 64 >, must thus be absorbed into the quark degrees of freedom. This 

corresponds to the physical statement that any gluon in the problem 

actually resides in the cloud around the quark, at least as far as this 

moment of vG1 is concerned. In this way, the necessity of a separate 

occurrence of AG, or the operator a,(x), is thereby avoided. 

One reason why this evasion mechanism is tenable is that in deep 

inelastic scattering by a lepton, gluons interact with photons only in 

order c1 
S’ 

and in the same order, the quark can also acquire a gluon 

cloud. If we were to carry out deep inelastic graviton scattering, when 

gluons interact with gravitons in order (as)', then the cloud mechanism 

would no longer be a possible evasion mechanism. How then is it possible 

to absorb the contribution of a 
5 

(x) to this graviton process into the 

quarks so that the operator a,(x) effectively does not occur in the 

expansion of the product of two stress-energy-momentum tensor operator 

evv(x)? In short, how does a,(x) evade being seen? 

We shall show in Sec. IV that in this gravitational case, an 

evasion mechanism is not necessary because <a 
5 

(x)> does not even enter 

in the inclusive reactions. First, ePv(x) contains one more derivative 

than the current operator Ju(x), thus giving it a tendency to yield only 

higher than the first moments of the gluon distribution. This prevents 

<ag(x)> from entering all but onto structure function. On the other 

hand, there is a structure function which is xAG(x) in the parton model. 

AG(x) is a polarized gluon distribution function, whose first moment 

corresponds to the operator a,(x). However, the calculation shows that 
1 

the Wilson coefficient of the first moment J AG(x,e2)dx is zero in the 
0 
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leading 'order, that is, the operator a 
5 

(x) which corresponds to the 

first moment does not appear in Wilson expansion of two 0 

at least in the leading order. 
?JV 

products 

Section II contains kinematical discussions for deep inelastic 

graviton scattering on nucleon targets. Parton model results are given 

in Sec. III. In Sec. IV, Wilson expansion formalism is discussed. How 

polarized and unpolarized gluon distributions maybe probed in these 

Gedanken experiments can be seen in the resulting formulae. How the 

presence of <at(x)> is avoided is also discussed there. Finally, Sec. V 

contains a conclusion and Appendix A contains a kinematical calculation 

necessary in carrying out the Wilson expansion discussions. 

II. KINEMATICS 

The stress-energy-momentum tensor etlv is given by2 

where 

and 

8 pv = ezv + eG lJV 

e~vGd = ii(x) yu Vu q(x) 

e;+) = G;$d GtV(x) - i gpv(G;&a) (3) 

(1) 

(2) 

are respectively the quark and gluon components of the tensor. The 

operator Vu operating on the quark fields q(x) and q(x) is defined to be 

vu = 2 v - igt,Bz(x) 1-y (4) 

where ta is the usual SU(3) color matrix and B:(x) is the gluon field. 
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Symmetrikation over 1-1 and v is understood in the definition of Oq 
VU' 

The operator Ga is defined by 
liv 

G:JX) = a,, B:(X) -au B;(x)+gCabcBi(X) B:(X) . (5) 

The stress-energy-momentum tensor is a conserved tensor, 

ace epv(x> = 0 -9 (6) 

and it can be divided into a spin two traceless part 8 (2) 
w and a spin 

zero part el(lt) 

y)(x) = ei<) (x) + eiuo) cx) 

( 

a a 

6::) (x) = f gpv - -.JE! 

a2 > 

e" cx) 

Thus 

emJ 
u (x) = 0 

ev(x> = e(O) (x) 
u 

and 

a’-’ eC2) Frv w = 0 

(7) 

(8) 

, (9) 

, (10) 

. (11) 

The total cross section for a graviton of momentum q to scatter 

on a polarized nucleon target of momentum P, mass M, and spin vector S 

is given by the tensor 

W uv Kx(S) 5 21T2 
/ 

eiqx 
, ~We~v(x) eKA(o)IP,s>d4x . (12) 

In obvious notations, the decomposition (7) induces a decomposition in W: 
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First consider the decomposition of W (22) 
FIV,Kh in terms of the structure 

functions Fi: 

8 

(14) 

In terms of the following quantities: 

(15) 

F 1-I 3 p’qs?J - q*sp 1-I 
each of which is orthogonal to q, and the following conventional 

notations, 

EuvaB E [wx8] ; Eo123 = 1 

%M 
B"CB E [DvBC] , etc. , 

the eight independent tensor in (14) can be taken to be: 

KX 

,c2> 
lJV,KA ux UK !.lK 

(16) 

(17) 

(18) 
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= zFIKivh+ EFLhEKV - $ ‘jJV ‘Kx (19) 

*(4) 
W,Kh = i$~,[V~~s]+ $FK[~xqs] + P,PX[VK@] + p,ijA[UKqs] 

+$ g 
{ 

l.Iv FK bwl + gvv i, [msl 

- gKx Fu [WqS] - gKx Fv [W’qS]} ~J$;)Kx(S) (20) , 

Ac5) 
IIV,KA 

= A;&(;) = P*q A;:;,, - q*S{FpFK[vIqP] 

+ p’ p’ [vii@] + $i!,[VK@] + P,F&lKC@]} 
V K 

(21) 

(22) 

A@) 
).lV,Kii = 

iIIV{~K[~Pqs] + ~A[Kp@]} - iKA{Fp[vpqs] + Fv[~pqs]) * 

(24) 

Every Ah:),, satisfies (9) and (ll), viz., it is traceless and 
, 

orthogonal to q. Furthermore, as a consequence of time reversal in- 

variance, we can check explicitly that 

W 
pV,KX@) = wKx,&s) * 

(25) 
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The tensors A (UA(3) are present already in unpolarized scattering, as 

no S is involved, but the structure functions F4-F8 can be measured only 

with polarized beam and targets. Of these four, A (4) and A(6) contain S, 

thus F4 and F6 are similar to Gl in electron deep inelastic scattering, 

and can thus be obtained when the nucleon spin is polarized parallel to 

its direction of motion. In contrast, A (5) , A(7) and A(8) all vanish if 

S is replaced by P, thus F5, F7 and F8 are similar to G2 in electron deep 

inelastic scattering, and can be measured only when the nucleon spin is 

polarized perpendicular to its direction of motion.3 

That there are eight independent amplitudes in W (22) can best be 

seen in the helicity representation W (22) 
bs,ar ' where b,s,a,r refer to the 

final graviton, final nucleon, initial graviton, and initial nucleon 

helicities, respectively. Because total cross section involves only the 

forward amplitude, helicity is conserved: 

b-s = a-r . (26) 

Time reversal and parity invariance also demand 

W bs,ar , = 'ar bs 
(27) 

W bs,ar = "-b-s -a-r , 

where n is some suitable phase factor. Using (26)-(27), the independent 

helicity amplitudes are (bs,ar) = (2$,1%),(2%,1-%),(2-%,2-%),(l%,l%), 

(1~,0-~),(1-~,1-~>,(04,0~>,(0~,-1,-s), and there are eight of them. 

The independent amplitudes and structure functions for W (20) , w(02) 

and W(") are: 



(28) 
wm) =F (11) 

FIV,Kx 11 AJIV,KA 

A@) 
uV,K?i = 

(FK[APqS] + iiJKW1) 

- + FJlJPqsl 

(29) 

A(“) g g 
pV,Kh = l.lV Kx 

(20) = ww) They correspond to the helicity amplitudes Wol/ ok 2) 
oh 03- , 

w(20) (00) 
-1-'5,015 

= $2) 
-1 , 4. , and Wo+,04 . The tensors A (10) 2;n; A(ll) are 

25 

unpolarized but the tensor A (9) is linear in S. Moreover, A(') vanishes 

if S is replaced by P, so Fg acts like G 2 in electron deep inelastic 

scattering. Finally, we can also check from (29) that Eq. (25) remains 

valid. 

III. PARTON MODEL 

It is straightforward to compute the structure functions Fi defined 

in (14) and (28). From (l)-(3), and (12), we let 

Hi - Ki Fi (30) 

then 
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Hl = x 4[dx) +4(x) +G(x,] 

H2 = x 2[dd +4(x) +4G(x)] 

H3 = G(x) 

H4 = x 

H6 = x AG(x) 

Hi = 0 (i=5,7-11) 

provided the normalization factors Ki are chosen to be 

Kl = - q2/2 

K2 = -8 

K3 = - g/q2 

K4 = - 2q2/iM 

(31) 

(32) 

K6 = - 8/iM . 

In Eq. (31), 

f f 

q(x) = c[ q. 
i=l 

l+(x) +qi-(x)] 9 Gcx) = Fl[ii+Cx) +qi-(X)] (33) 

are the distribution functions for quarks and antiquarks with momentum 

fraction x, of any flavor i and carrying either + or - helicity. 

Similarly, G(x) is the gluon distribution function. The polarized 

quark, antiquark, gluon distribution functions are denoted by %Aq, %A; 
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and AG respectively. For example, 

f 

M(x) = qi+(x) - qi- <x>3 ' (34) 

The structure function Hl is given in Ref. 2 where it is called xS. 

It measures x3 times the total momentum density carried by all the 

partons. Similarly, the structure function H3 measures the gluon 

density and H4 measures x3 times the parton total helicity distribution. 

IV. WILSON EXPANSION 

We start with the tensor 

i ,,v,Kx E 2n2ild4x eiqx(P,S/T(Buv(x) OK,(O)) iP,S) 

11 

-c = 7, A;:)Kh : 2 gi B;;)Kh . 
i=l , i=l , 

Whose discontinuity produces the cross sectional tensor W in (12): 

W 
pV,Kx = - iDisc(ijuv,rl) (36) 

(35) 

Making an operator product expansion of the product of two e's, the 

tensor G can be written as 

n 

where Q2 = -q2 > 0. 
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The tensors A (9 and B(i) in (35) are related by 

. (38) 

The factors Ki for i = l-4,6 are defined in Eq. (32). We shall now 

define the rest to be: 

2 K7 = - 2q /iM 

K8 = - q4/iM 

(39) 

K9 = K4 

K10 = K2 

K1l = K3 

In order to write down and compute V in a somewhat compact form, 

it is convenient to rewrite the tensors A (3 and B(i) so that their 

explicit dependences on q,P,S are factored out. We thus write, for 

. 1 = 1,2,3,10,11, 

(40) 

where bi, ei, fi are integers listed in Table I. For i = 4-8, we let 

‘;:‘,A = (Q2)-bi t;:‘KA;ul...‘ei;Vl.. .Vf , , 

(41) 
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In Eq. (40) [Eq. (41)1 the tensor t is of rank 4+ei+fi (4+ei+fi+1) 

symmetric respectively in all the 1-1 and all the v indices, and is in- 

dependent of P, q and S. 

For later purposes, we would need to know what happens if we inter- 

change S with one of the P's in (41). The resulting tensors A', defined 

-b 
A' 

W ,KA 
= Q2 ( > t 

UV,KX;~l...Ue;Vl...Vf 5 , 

X (+ 5 SVk ;r Pv')Pi : KB;v,Kh 
k=l j=l 

j#k 

are computed in Appendix A. The result is: 

g’ ci> o 
UV,Kh = 

(i = 6,7) 

B’ c4) 
FIV,KA 

= 1 Bc4) 
4 lJV,Kx 

+ xBII($ + 2 B;t)KX + x~B;~)~~ 
, , , 

Bd5) = 1 (5) 
W,Kl - -? ‘pV,KX 

(42) 

(43) 

B’w = 1 (8) 
?JV,Kx - z ‘vV,Kh 

B’ (‘1 
pV,KX = 

_ .i. B(‘) 
2 UV,Kh 

We also need to know what happens to A (i> and ,(i> if the S inside 

is replaced by P. Denoting the resulting tensors by A 11(i) and B11(i), 

we have by definition 
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Then 

= KB;: KX . 
, 

(i = 5,7,8,9) - 

B1w) = _ q2 ?JV,Kl 2xq*s 
B(6) 

?JV,KX + XB;:)Kh) , 

(44) 

(45) 

. 

Now we are ready to write down V of Eq. (37). To avoid too long 

a formula, we shall divide V into the sum of unpolarized and polarized 

parts. Then we may write 

Va 
l-W+?Jl. l .V, 

(unpolarized) = 
1 1 z .  

*= - 
,  - 

11 (Ki)-‘(Q21mbi (4’ 

’ $:)Kh 1-I 
l$ Oa 

; l”‘~ei~vl”‘vfi 2 a p, +l...un;Vl...Vf 
(46) , 

i i 

vW,Kh;l-ll* - 'V, 
(polarized) = ,F, ( Ki)-1(Q2)-bi ( <ri 

- - 
a 

’ $:)Kh ).I , ; l”‘uei;vl.*.vfi,S 

. 1 
I 

$. RaS 
' 4M a ~II, +l...!Jn;vl...vf + ?i 

i i i 
+l.. .pn;vl.. . .Vf 

i 

(47) 
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N ’ 

where C and 6 are the Wilson coefficients. The operator Oa is a tensor 

operator symmetric and traceless in all its indices. Its nucleon matrix 

element has the form 

( I P,S oa 
a1.. .a,p~~) = =;( .jl Pclk - t-s) 

l 

(48) 

The operators R aS and R aA are pseudotensor operatars; the former is 

symmetric and traceless in all its indices, and the latter is anti- 

symmetric in the first two indices and is symmetric and traceless in 

the rest of the indices. Their nucleon matrix elements may be written 

as 

= 4M AF; - traces (49) 

aA 
al...aR -s P 

a2 "1 

To proceed with the calculation, let us ignore the trace terms in 

(48)-(50) because they give rise to corrections down by powers of QL. 

Then using (37), (38), (40), (46) and (48), we get 

i TV Kh(unpolarized) = ~ 'F,y, 
, 

c E;n F;ni($niB;:)KA 
n a i=l-3,10-11 

(51) 

where the values of 

!2 ni 
= n-e.+fi 

1 

m ni =n-e. 1 

(52) 
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are given in Table I. Thus 

ii = ~~~(~~i F;ni zn (i = l-3,10-11) . (53) 
n a 

Similarly, 

ii 'CC x (LFi 
pv, dp"larized) = TT n a i=4-g x - 

x 
1 

EinA~ini Bit)rX [. , 
+ fiBGifix + mni(P.q)-'(S=q)B::':~~ 

, 

. 
+ EinnFini B 

L 
(0 - 6iB;it;A - (1 - $) a B11(i)]) P-q FIV,KX (54) ?Jv ,KX 

where bi =0, if fi=O, and 6i=l, if fi#O. Using (43), (45) and Table 1, 

we get 

(57) 

(5% 

(59) 

(60) 
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In Eqs.'(53)-(60), n must be taken to be 2 e.. Thus m 20 and in these 1 ni 

equations the powers of l/x are always non-negative. Since the rank of 

R aS is R ni+l = mni +fi+l 1 fi+l, the axial vector gluon operator 

aS at3 a6 (x> = R5 (x) = ~~~~~~ Ga C (x> B:(x) - t Cabc B; (4 B; (d B;(x)] 

(61) 

mentioned in the Introduction may enter only when mni= 0 and fi= 0. 

This happens only when i= 6 and n= 3. Whether this operator enters 

effectively is therefore a question whether the Wilson coefficient Czn 

for a=G and n= 3 may be taken to be zero or not. From (53)-(60), this 

coefficient affects only H6, thus it is this structure coefficient that 

we should study for a resolution of the question of evasion of a,(x) 

mentioned in the Introduction. 

The explicit forms of the operators Oa, R aS and R aA are well known5 

but are not relevant for our purpose here. We shall only need to know 

that they are normalized in such a way that Fa, AFG, cSFG are unity for 

all R when the nucleon states in (48)-(50) are replaced by free quark 

(for a=q) and gluon states (for a=G). Similarly, we shall take AFq 

and 6Fq to be % when the nucleon is replaced by a free quark. 

With this normalization, we may now calculate the Wilson coefficient 

in the parton model approximation. To do that we make use of the result 

of Sec. III and the connection between G and W in Eq. (36). 

Crossing symmetry for ij I.lv 
, 
Ich demands that 

(62) 

Combined with the time-reversal-invariance relation (25), we see that Hi, 
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as a function of x = Q*/2P*q, is symmetric in x for i = l-4,6,8-11 and 

is antisymmetric for i = 5,7. 

We start with the parton relation for Hl given in Eq. (31). If we 

examine the calculation leading to Eq. (31), we can see that strictly 

speaking, the expression for Hl should be written as 

H1 = x 
P 

C4 f+x)[q(S)+i(S) +Gff)] y . (63 

From (36) and the crossing symmetry, we conclude that 

ii, = f--“[-& + &][q(5) +;K) +G(S)] F 

= $ ii0 ($++3[qC,, +&E) +G(S)] dS . (64) 
m= n 

” m even 

We may now compare this with (53). From Table I for i=l, we see that 

m nl =n-8rmandR nl = ti4. Thus in the parton approximation 

1 

2Fa ? m+4 q,m+8 = + i(5)] dC 

(65) 

G 
1 

-1 
2Fm+4 cG,m+8 = s 5 m+3 G(S) dS 

0 

In particular, if we choose the target to be a free quark, instead of 

a nucleon, then q(C) = &(6-l), and also F zLt4 = 1 by the normalization 

we agreed on. Thus in the parton approximation 

(m even) 

. (66) 

(m odd) 
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Since the Wilson coefficient is independent of the target, we conclude 

that for a nucleon target in the parton approximation 

1 

FL4 = 
/ [ 

cmf3 q(E) +G(c)] dS , (m even> . 
0 

Similarly 

-1 
cG,m+8 = l (m even) 

2 G,m+8 = O 

(67) 

(68) 

(m odd) 

and 

1 
G 

Fm+4 = J 
5 m+3 G(S) dS , (m even) . (69) 

0 

Thus we may interpret Fz and measuring the R+l moment of parton distri- 

bution of type a.2 

The calculation for other structure function Hi (i > 1) is similar. 

All xk factors in (31) are to be interpreted as x5 k-l . We obtain thus 

in the parton approximation 

m even " 

m even - 

'4 = +- $o($$ti2[+q(C) + +A;i(E) + AG(c)] d{ 
0 m even 

(70) 

(71) 

(72) 
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(73) 

m even v 

On comparing with (53)) (55)-(60)) we may obtain as in the HI case, 

expression for the Wilson coefficients, F a, AFa and 6Fa, in the parton 

approximation. Again we may interpret AFa, 6Fa a&the moments of the 

longitudinally and transversely polarized parton distributions for type 

a partons. Since the anomalous dimensions for the operators Oa, R 
aS 

, 

RaA are known, 5 we may also easily obtain the Q2-variation of these 

distribution functions in the leading log approximation. The result 

is the same as those obtained from leptonic deep inelastic scattering 

and we shall not repeat them here. 

Comparing Eq. (73) with Eq. (57), we obtain 

1 
J SnAG(S) dS = 

0 ii 'Zn+3 ATFt -I- (n+l) I? an+3 AFZ 

- E4 
an+3 6FE ' i 

n=even . 

In the leading logarithm approximation the quark's operators do not 

contribute, and in n = 0 case the operator R aA does not contribute. 

Only the operator a 
5 

contributes. The calculation (zeroth order in 

running coupling constant) shows that 

(74) 

(75) 

Therefore, the operator a< does not exist in Wilson expansion of the 

product of two stress-energy-momentum tensors at least in the leading 



-21- 

order. In order to obtain the first moment (n= 0) we have to use 

analytic continuation in n complex plane. 

v. CONCLUSION 

We have studied in this paper the kinematics, the parton model, 

and the Wilson expansion for deep inelastic gravtitional scattering 

on a nucleon target. Both the polarized and the unpolarized cases have 

been studied. There are altogether five unpolarized and six polarized 

structure functions. Of these, eight are associated with spin 2 

gravitons; spin 0 gravitons, say, coming from the tract anomaly, enter 

into the remaining three. 

In the parton approximation, Eq. (31), Hl can be considered as 

generalization of the flavor singlet part of Wl and W2 in leptonic deep 

inelastic scattering, and H4 is the generalization of Gl in the same. 

In either structure function gluons enter in the graviton case but not 

in the leptonic case. But like the corresponding structure functions in 

the leptonic case, Hl is related to the sum of distributions of all those 

partons that interact with the probe, and H4 is related to the sum of 

helicity distributions of all those partons that interact with the probe. 

We have discussed the kinematics and the formalism of Wilson expan- 

sion, but we have not carried out explicitly any hitherto uncalculated 

QCD corrections. We have also discussed in Sec. IV how the axial vector 

gluon operator a<(x) is evaded in the present process. 



-22- 

ACKNOWLEDGEMENTS 

This work was largely carried out when one of us (B.A.L.) visited 

McGill University. This work is supported in part by the National 

Science and Engineering Research Council of Canada and the Quebec 

Department of Education, as well as by the Department of Energy, 

contract DE-AC03-76SF00515. 



-23- 

APPENDIX A 

We compute in this Appendix A' (0 defined in (42), which by 

definition is obtained from A (3 by interchanging S and one of the 

P's in Eq. (41). 

To do so, it is convenient to derive some kinematical formulas 

first. If we let 

% 
1 3 S - % q = 2 allvaBSVqaqB 

1-I 
4 lJ 4 

then from (15) 

(A. 1) 

(A. 2) 

Furthermore, if we let 

- - 
5 =s-s'pp 

11 1-I p2 ?J 

(A.3) 

klJ = [?lPqS] = cui?qSJ 

then q, F, S, k are mutually orthogonal. Thus 

P2 q2 i 
u = CMWI 

(A-4) 

P2cvXqS] = FAkv-FvkX . 

We are now ready to compute A'. If we replace S in the following 

vectors by P, then 

(A.51 

If we replace P in the following vectors by S, then 
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Using these rules, we get the following from Eqs. (20)-(24) 

AT c4) 
?JV ,Kh =2 ptc '(g P + ifK~p)[vxqP~ + (11 -V) + (K - 1) + h) - (VA) 

-- : [i$v~K[@qs~ + ~&[KPqSl - (W> - (Kx)] (A.7) 

A’ c5) = 1 (5) 
w ,KX - -?; AvV,Kx 

A’(6) = 0 
W ,KA 

A’ c7) = 
FIV,KA - ‘;?KA , 

A’(8) = 1 (8) 
lJV,KA - z AllV,KX 

A’ tg) = 1 (9) 
FIV,KA - 7 AuV,KX 

. 

As for A' (4) we need the following considerations: 

- - 
s = 

?J 
[$qk] -+- = Pv 

F2 

(A. 8) 

(A. 9) 

(A.lO) 

(A.ll) 

(A.12) 

From (A.3) and (A-4)) 

. (A.13) 

Moreover 

C&k1 C-W'] = q2[(i&p2 -$,~V)kh-($,XP2-$~X)kv] . (A.14) 

Thus 
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- - 

After adding to (A.15) terms corresponding to (P-V), (K-X), and 

(IX)++ (VA), (A.151 becomes 

1 
2 ( SpFr + sKPFI)Q.GiqP] + (11 -V) + (K-x) + (jlK) -++ (Vh) 

-V) + (K-h) + (UK)- (VA> 
> 

+ jfjguh - p)evkK -FKkv),+ (p++v> + (K-A) + (W)- (Vi)/ 

+ (ivv - F)cFKk,+P,tK) - (& - ~)(",5+~vk,) . (A.161 

Substituting into (A.7) finally yields the result 

A’ c4) = 
!.lV,Kx 

-1 AC81 F2 (6) 
2~2 uV,KA - -if- AllV ,K?l 

+ 2 At4) 
4 uV,KX 

P*q A;:‘,, - Ag,,,l 
, 3 

1 AC3) 2 A(6) =-- 
2jj2 pV,Kii - 2 ?lV,Kh + 4 ~2~2 [ 1 2 (p*d2 $dKx , + “q AC51 
-2 2 pV,Kx 

. (A.17) 
pq 
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In the Bjorken limit, we may take 

F2 = - q2/4x2 

where 

x = - q2/2P*s 

Thus we may write (A.17) as 

(A.18) 

(A.19) 

A’ c4) = 2x2 AC81 
FLV,Ki 

(A.20) 
, , 

q 
2 !lV,Kii 

+ -$ A;;',, + t A;4jK;\ + % A;;',, . 
, q 

'Using (28)-(39) we get 

B’ t4) 
?JV,Kx 

= 1 j3c4) 
4 l lV,KX 

+ xB;;)~~ + 2 B;;jKX + x~BY(~),~ 
, , , 

(A.21) 

which is the form quoted in Eq. (43) in the text. 
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TABLE I 

Table of integers used in the definition of the tensor A G-1 in 

Eqs. (38) and (39) and of the integers in Eq. (52). 

- 

i b i e. ni m 
1 fi ni 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

4 8 

3 6 

2 4 

2 5 

2 6 

1 3 

1 4 

3 7 

2 5 

3 6 

2 4 

4 

3 

0 

1 

4 

2 

2 

0 

n-4 n-8 

n-4 n-6 

n-4 n-4 

n-3 n-5 

n-3 n-6 

n-3 n-3 

n-3 n-4 

n-3 n-7 

n-3 n-5 

n-4 n-6 

n-4 n-4 


