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Abstract. A sector of the current theoretical physics, even called “extreme physics”, deals
with topics concerning superstring theories, multiverse, quantum teleportation, negative energy,
and more, that only few years ago were considered scientific imaginations or purely speculative
physics. Present experimental lines of evidence and implications of cosmological observations
seem on the contrary support such theories. These new physical developments lead to
informational limits, as the quantity of information, that a physical system can record,
and computational limits, resulting from considerations regarding black holes and space-time
fluctuations. In this paper I consider important limits for information and computation resulting
in particular from string theories and its foundations.

1. Introduction
Many of the fundamental limits on information processing derive from physics, in particular
from thermodynamics, relativity, quantum mechanics and the following unified theories, like
string theories. Recent physically motivated computing paradigms like reversible computing
and quantum computing may help for same aspects, but in every case they remain subject to
some basic limits. Computers are physical systems, therefore the physical laws establish their
operativity. In particular, the speed with which a physical device can process information is
limited by its energy and the amount of information which it can process by the number of
degrees of freedom possessed. These physical limits of computation appear depending from
important physical constants, the speed of light c, the quantum scale h̄, and the gravitational
constant G [1]. The so called “Extreme Physical Information”, seen as an extension of the
information theory, includes much theoretical physics and it has been used to derive some
fundamental laws not only in the sectors of physics, but also for biology, chemistry, economics.
The holographic principle is a property of string theories and quantum gravity declaring that the
description of a volume of space can be thought as encoded on the region boundary, of preference
a light-like boundary. Through this theory the entire universe can be seen as a 2-D information
structure ”painted” on the cosmological horizon, such that the 3 observed dimensions result to
be a description at macroscopic scales and low energies. Therefore the 3-D universe could be
totally equivalent to alternative quantum fields and physical laws “painted” on a big and distant
surface [2]. The physics of black holes suggests credibility to this theory; studies about black
holes have showed that the maximum entropy or information content of a space region is defined
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by its surface area and not by its volume. In particular, a hole with a horizon area A has A/4
units of entropy, with the Planck area, approximately 10− 66 cm2, the fundamental quantum
unit of area. The holographic principle shows the complete equivalence between two universes
with different dimensions and obeying different physical laws. From a theoretical viewpoint
this property has been demonstrated mathematically for 5-D anti-de Sitter spacetimes and the
corresponding 4-D boundary, considering the 5-D universe recorded like a hologram on the 4-D
surface. As example, a black hole in the 5-D spacetime appears equivalent to hot radiation on
the hologram; the hole and the radiation have the same entropy even if the physical origin of
the entropy is completely different. Theoretical studies suggested also that a black hole with
appropriate properties can serve as a basis for a description of string theory [3].

2. Informational limits
Entropy is measurable in bits, if considered as information. The total quantity of bits is related
to the total degrees of freedom of matter/energy. Considering a given volume, there is an upper
limit to the density of information in relation to all the particles costituting the matter in that
volume. The fundamental difference between the thermodynamic entropy of physics and the
Shannon’s information entropy regards the units of measure; the former is expressed in units of
energy divided by temperature, the latter in bits of information.
By information theory, the maximal information IMAX of a system, obtainable knowing the
details of its state, is given by:

IMAX = SMAX/KB ln 2 (1)

with KB the Boltzmann constant. If this information collapses into a black hole, the resulting
black hole has an entropy SBH related to SMAX as:

IMAX KB ln 2 = SMAX < SBH <
KB A

4L2
PL

(2)

with LPL the Planck length. From relation (2) it follows:

IMAX <
A

4L2
PL ln 2

. (3)

The important bound (3) was deduced by ’t Hooft (1993) and Susskind (1995). Previously, in
1981, Bekenstein had reasoned in this way: putting an information content of overall radius R
and total mass-energy E into a black hole, it is possible to obtain the bound:

IMAX <
2π RE

h̄ c ln 2
. (4)

The bound (4) does not contain the gravitational constant G and for simple closed systems
it can also be derived from quantum statistical considerations without considering black holes
[4]. Numerically, it requires that 1 cm3 of ordinary material holds no more than ≈ 1038 bits.
The statistical mechanics allows the computation of the entropy of its molecules, apparently
ignoring the atomic and subatomic deeper degrees of freedom of matter as contributions to
the total entropy; but “de facto” all atomic and subatomic particles gravitate. This is one of
the interesting peculiarities of black hole thermodynamics with respect to detailed aspects of
physical systems. The thermodynamics of black holes allows therefore to deduce important
limits on the density of entropy or information in a lot of circumstances.
Of interest for the contest is important to remember two important bound: the holographic
bound and the universal entropy bound. The holographic bound explains how much information
can be contained in a specific space region. Let’s consider an approximately spherical matter
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distribution contained within a surface of area A; the matter is induced to collapse to form a
black hole. The black hole’s area must be smaller than A, so its entropy must be less than A/4.
For the fact that entropy cannot decrease, it follows that the original distribution of matter also
must carry less than A/4 units of entropy or information.
The universal entropy bound establishes how much information can be carried by a mass m of
diameter D. For its derivation we can imagine that a capsule of matter falls in a black hole of
about the same dimension. The size of the black hole increases and this gives a limit on how
much entropy is contained in the capsule. This limit is tighter than the holographic bound,
except the case in which the density of the capsule is about the same with respect to the black
hole (in this case the two bounds become equivalent).
The information content of a big quantity of computer chips increases in proportion with the
occuped volume. Continuing to add chips, we must stop when the information exceeds the
holographic bound, which depends on the surface area. The “breakdown” will occur when the
huge quantity of chips collapses to form a black hole [5].

3. Computational limits and quantum fluctuations of space-time
The laws of quantum mechanics and gravitation lead to physical bounds on computation and
on precision of clocks; the same laws control also the quantum fluctuations of space-time. The
limits regard the speed of computation v and the memory space I of a simple computer. These
evaluations hold also for the so-called “simple clocks”, intending for “simple” that a separation
of components of a clock is not involved (and itself in relation to “simple computer”). These
bounds are saturated for black holes, which, for some aspects, may be regarded as the ultimate
simple computers and ultimate simple clocks [6,7]. It is possible to use quantum mechanics to
find fundamental limits on any system with mass m that serves as a time-registering device. For
a given T and t, with T the total running time over which a simple clock can remain accurate
and t the smallest time interval with the clock capable of resolving, the lower bound on m will
be [8]:

m ≥ h̄

c2 t

(
T

t

)
. (5)

It is possible to obtain also an upper bound considering the general relativity. Suppose a simple
light-clock consisting of two parallel mirrors, everyone with mass m/2, and with a beam of light
bouncing between them. The separation d between the mirrors must satisfy the relation d ≤ c t
for resolving a time interval of the order of t, and d is necessarily larger than the Schwarzschild
radius Gm

/
c2. These two requirements permit to find the upper bound on m:

t ≥ Gm

c3
. (6)

A bound on the speed of computation v of any information processor [9] is obtainable considering
the mean input power P = mc2

/
T . Eq. (5) and the fastest possible processing frequency

v = 1/t imply:

v2 ≤ mc2

h̄ T
=

P

h̄
. (7)

Eqs. (5) and (6) lead to a relation between T and t :

T ≤ t

(
t

tPL

)2

(8)
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with tPL the Planck time. If we consider now that the ratio T/t (maximum step number of
information processing), is (except constant factors) the amount of information I recordable by
the computer, it is possible to write a limit for the memory space I of a simple computer:

I ≈ T

t
≤ 1

(v tPL)2
≈ h̄

P t2PL

. (9)

The combination of Eqs. (7) and (9) is very interesting:

I v2 ≤ 1

t2PL

=
c5

h̄ G
≈ 1086

/
s2 , (10)

because of its independence from mass, size, and details of the simple computer. This expression
(valid for simple computers) unites together the concepts of information, gravity, and quantum
uncertainty. This bound is realized in particular for black holes [10]. Considering that at short
distance scales the space-time is foamy, the same physics underlies the foaminess of space-time,
the limits to computation, and clock precision. The bound given from Eq. (10) is saturated for
black holes, with both v and I bounds saturated, confirming the conceptual importance of black
holes as the simplest and most fundamental constructs of space-time.
The experimental research, in particular in the gravitational-wave interferometer field, can sure
help these theoretical aspects providing confirmations or denials.

4. Computational capacity of the universe
It is possible to quantify the amount of information processing performed by the Universe,
considered as a whole, since the big bang. The Universe has the capacity to perform a maximum
of IUNIV ≤ 10122 (10123 considering all the constant factors like 2π, etc. . . ) elementary quantum
logic operations on ≈ 1090 bits registered in quantum fields, considering t ≈ 1010yr the age of
the Universe. If we consider a closed Universe, the previous numbers represent the amount of
elementary logic operations (ops) and bits available in the entire Universe; if on the contrary the
Universe is open, and of infinite extension, then the numbers give the amount of computation
performed within the event horizon [2].
The previous information limit can be derived looking at the link between physics and
information, discovered by Bekenstein (1973) and Hawking (1975), when they applied quantum
mechanics to black holes. They have found that an uncharged and not rotating black hole has
entropy S given by:

S =
4πKB GM

2

h̄ c
=

KB

4L2
PL

A (11)

with M and A respectively mass and area of the black hole horizon. Seeing the entropy as a
measure of the information I (or lost information) through the relation S = KB ln 2 I, Eq.
(11) binds the total information content of a space region to the surface area including such
volume. The idea to associate entropy and information with the area of the horizon has been
soon enlarged to include all the event horizons, not only those that surround a black hole.

5. Black hole computation
Supposing to perform a high speed serial computation, a way can be to compress the computer
dimensions to reduce the time of sending signals. ”Smallering” the computer, for fixed values
of energy, the density to its inside increases, requesting the ”exploration” of different regimes
of the high energy physics. At first we find the weak unification scale, therefore that of great
unification; when the linear dimensions of the computer are near to its Schwarzschild radius,
the Planck scale is reached. To such scale both gravitational and quantum effects become
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important; the Compton wavelength of a particle of mass m, λC = 2π h̄/mc, is of order of its
Schwarzschild radius RS = 2mG

/
c2. A theory of quantum gravity unification or a superstring

theory is required.
Although it is not possible to know the exact bit number recordable from a computer of the
mass of 1 Kg confined in the volume of 1 litre, it is possible to know the exact bit number
recordable from a computer of 1 Kg which has been compressed to the dimension of a black hole
[11]. Using Page’s results in relation to the mechanism of black holes evaporation [12], the time
needed for a black hole to evaporate is given by:

tEV AP =
m3G2

3 h̄ c4C
, (12)

where C is a constant depending on the number of particles kinds with mass smaller than
KB T , with T the black hole temperature. In the interval 10− 100 of such kinds, C is of order
of 10− 3 − 10− 2 and this implies a lifetime around ≈ 10− 19s for a black hole of 1 Kg of, during
which the black hole can treat around 1032 operations on its 1016 bits. The effective massless
particle number at Hawking temperature for a black hole of 1 Kg is greater than 100. The
Schwarzschild radius of a computer of 1 Kg results to be RS = 1.485 · 10− 27m. Therefore, it
is possible to evaluate the information quantity stored in a black hole through the relation:

I =
4πm2G

h̄ c ln 2
. (13)

For a computer of 1 Kg in the black hole limit, relation (13) gives I = 3.827 · 1016 bits, from
which follows N = 5.426 · 1050 ops/s.

6. Velocity, memory space, relativistic effects
An interesting evaluation concerns the calculation of the computational capacity of a computer
that we could call ”extreme” or ”ultimate”. The actual netbooks have a mass of order of 1 Kg.
We consider therefore a mass of 1 Kg and look for a limit regarding the speed of such a device.
An elementary logic operation in a time ∆ t requires an average energy given by:

E ≥ π h̄

2 ∆t
⇒ N =

1

∆t
≈ 2E

π h̄
. (14)

For a mass of 1 Kg, E = mc2 ∼= 8.987 · 1016 J and consequently N = 5.426 · 1050 ops/s.
A real computer operates much slower, because a lot of energy constitutes the mass of particles
of which it is composed, leaving only a very small fraction for logical execution; mereover a
conventional computer employs many degrees of freedom (billions of electrons) to record a single
bit.
Thermodynamics and statistical mechanics provide also a fundamental limit to the quantity of
performing information bits through the use of an energy quantity confined in a given volume.
A system with N accessible states can record log2 N bits of information. The accessible state
number W of a physical system is also related to its thermodynamic entropy S = KB ln W .
The quantity of information recordable from a physical system, i.e the total number of available
memory space bits is given by:

I =
S (E, V )

KB ln 2
, (15)

with S (E, V ) the thermodynamic entropy of a system with energy E confined in a volume V.
It is possible to estimate this entropy considering the volume occupied by the computer as set
of elementary particles modes with average total energy E. Let’s assume as conserved quantities
the angular momentum and the electric charge, considered equal to zero. Encapsulating the
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number of kinds of particles/antiparticles, the polarization number and the particle statistics
into a single quantity r, it is possible to write the entropy as function of energy:

S =
4

3
KB

(
π2 r V

30 h̄3 c3

)1/4

E3/4 . (16)

Assuming entropy and energy dominated by black hole radiation consisting of photons, we have
r = 2. For a computer of 1 Kg mass confined in a 1 litre volume, we find: S ∼= 2.04 · 108 J/K;
I ∼= 2.13 · 1031 bits [13].
With the increase of clock speed, also relativistic effects appear. The combination of relativistic
and quantum effects in the logical circuits needs the use of relativistic quantum mechanics and
quantum field theory. An important relativistic effect in quantum computation concerns the
impossibility to locate an electron in a volume less than that characterized by the Compton
wavelength of the electron. This implies that the time required by the light to cross such small
distance, ≈ 10− 21s, represents a minimum time for a logic process involving electrons, and
therefore a working maximum frequency of order of 1021Hz. At such frequency, the energy-
time Heisenberg relation involves voltage values going beyond the threshold of production of
e+ − e− pairs.
Estimating the power consumption of a quantum relativistic computer, we consider a device
working on a clock cycle of 10− 21 s and representing every bit through a single electron. From
Heisenberg relation we deduce:

∆E ∼= f h̄ = 1.06 · 10− 13 J . (17)

Supposing that the elementary circuit process involves 103 electrons, at the uncertainty limit
the power is given by the product of the number of electrons operating in parallel, times the
energy of every electron, times the frequency. The required power in this case results in:

P = Ne− · ∆E · f = 1.06 · 1011W . (18)

Since pratically the total of such power would go out of the computer in the form of gamma rays,
a lot of problems would sure rise. Among the fastest fundamental processes known today in
physics there is the creation or disintegration of the Z0 boson. Its average timelife is of order of
10− 26 s, corresponding to a frequency of 1026Hz. Therefore if we assume that a circuit cannot
operate in faster way, an ultimate limit to the computational speed is found. For the relativistic
effects, the electrons cannot be measured in times less than 10− 21 s. If electrons are used, the
maximum clock speed for an electronic circuit will be found in the range of 1021Hz [14].

7. Closing remarks
The dimensions of the elementary circuit constituents are becoming smaller and smaller. The
clock speed of computers is notably grown in the last years and it can well fit to an exponential
growth. A huge progress has been done in the simulation of the material properties on computers
and these applications accelerate manufacturing new, better devices. Quantum mechanics,
together with the elementary properties of matter and radiation, has become fundamental for
the future of computers and computation. This implies that the ”ultimate computer” might
necessarily incorporate the principles of relativistic quantum physics. A quantum computer
allows a best understanding not only of subatomic world, but it also deeply penetrates the
meaning of computation. Perhaps a final theory might be concerned not with fields and
spacetime, but rather with information exchanged among physical processes. If so, the vision of
information as stuff of the world would find a complete embodiment.
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