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Abstract

In this survey we review the state of art in Lorentzian holonomy theory. We explain the
recently completed classification of connected Lorentzian holonomy groups, we describe
local and global metrics with special Lorentzian holonomy and some topological proper-
ties, and we discuss the holonomy groups of Lorentzian manifolds with parallel spinors as
well as Lorentzian Einstein metrics with special holonomy.
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1 Introduction
The holonomy group of a semi-Riemannian manifold (M,g) is the group of all parallel
displacements along curves which are closed in a fixed point x ∈ M. This group is a Lie
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subgroup of the group of orthogonal transformations of (TxM,gx). The concept of holon-
omy group was probably first successfully applied in differential geometry by E. Cartan
[C25], [C26a], [C26b], who used it to classify symmetric spaces. Since then, it has proved
to be a very important concept. In particular, it allows to describe parallel sections in
geometric vector bundles associated to (M,g) as holonomy invariant objects and therefore
by purely algebraic tools. Moreover, geometric properties like curvature properties can be
read off if the holonomy group is special, i.e., a proper subgroup of O(TxM,gx). One of
the important consequences of the holonomy notion is its application to the ’classification’
of special geometries that are compatible with Riemannian geometry. For each of these
geometries an own branch of differential geometry has developed, for example Kähler ge-
ometry (holonomy U(n)), geometry of Calabi-Yau manifolds (SU(n)), hyper-Kähler ge-
ometry (Sp(n)), quaternionic Kähler geometry (Sp(n) ·Sp(1)), geometry of G2-manifolds
or of Spin(7)-manifolds. In physics there is much interest in semi-Riemannian manifolds
with special holonomy, since they often allow to construct spaces with additional super-
symmetries (Killing spinors). The development of holonomy theory has a long history.
We refer for details to [Bry96], [Bry99] and [Be87].

Whereas the holonomy groups of simply connected Riemannian manifolds are com-
pletely known since the 50th of the last century, the classification of holonomy groups for
pseudo-Riemannian manifolds is widely open, only the irreducible holonomy representa-
tions of simply connected pseudo-Riemannian manifolds are known ([Ber55], [Ber57]).
The difficulty in case of indefinite metrics is the appearance of degenerate holonomy in-
variant subspaces. Such holonomy representations are hard to classify.

The holonomy groups of 4-dimensional Lorentzian manifolds were classified by physi-
cists working in General Relativity ([Sch60], [Sh70]), the general dimension was long
time ignored. Due to the development of supergravity and string theory in the last decades
physicists as well as mathematicians became more interested in higher dimensional Lorent-
zian geometry. The search for special supersymmetries required the classification of
holonomy groups in higher dimension. In the beginning of the 90th, L. Berard-Bergery
and his students began a systematic study of Lorentzian holonomy groups. They disco-
vered many special features of Lorentzian holonomy. Their groundbreaking paper [BI93]
on the algebraic structure of subgroups H ⊂ SO(1,n−1) acting with a degenerate invariant
subspace was the starting point for the classification. T. Leistner ([L03], [L07]) completed
the classification of the (connected) Lorentzian holonomy groups by the full description
of the structure of such H ⊂ SO(1,n− 1) which can appear as holonomy groups. It re-
mained to show that any of the groups in Leistner’s holonomy list can be realized by a
Lorentzian metric. Many realizations were known before but some cases were still open
until A. Galaev [G05] finally found a realization for all of the groups.

The aim of this review is to describe these classification results and the state of art
in Lorentzian holonomy theory. In section 2 we give a short basic introduction to holon-
omy theory and recall the classification of Riemannian holonomy groups. In section 3
the algebraic classification of (connected) Lorentzian holonomy groups is explained. Sec-
tion 4 is devoted to the realization of the Lorentzian holonomy groups by local metrics,
which completes the classification of these groups. Section 5 deals with global aspects
of Lorentzian holonomy theory. First we describe Lorentzian symmetric spaces and their
holonomy groups. After that we discuss the holonomy group of Lorentzian cones and
a construction of Lorentzian metrics with special holonomy on non-trivial torus bundles.
Furthermore, we describe a class of examples of geodesically complete resp. globally
hyperbolic Lorentzian manifolds with special holonomy. We close the section with some
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results on topological properties of Lorentzian manifolds with special holonomy. In sec-
tion 6 we consider the relation between holonomy groups and parallel spinors, derive
the Lorentzian holonomy groups which allow parallel spinors and discuss a construction
of globally hyperbolic Lorentzian manifolds with complete Cauchy surfaces and parallel
spinors. The final part deals with Lorentzian Einstein manifolds with special holonomy.
We describe their holonomy groups and the local structure of the metrics.

2 Holonomy groups of semi-Riemannian manifolds
Let (M,g) be a connected1 n-dimensional manifold with a metric g of signature2 (p,q),
and let ∇g be the Levi-Civita connection of (M,g). If γ : [a,b]→M is a piecewise smooth
curve connecting two points x and y of M, then for any v ∈ TxM there is a uniquely deter-
mined parallel vector field Xv along γ with initial value v:

∇gXv

dt
(t) = 0 ∀ t ∈ [a,b], Xv(a) = v.

Since the Levi-Civita connection is metric, the parallel displacement

Pg
γ : TxM −→ TyM

v 7−→ Xv(b)

defined by Xv is a linear isometry between (TxM,gx) and (TyM,gy). In particular, if γ is
closed, Pg

γ is an orthogonal map on (TxM,gx). The holonomy group of (M,g) with respect
to x ∈M is the Lie group

Holx(M,g) := {Pg
γ : TxM → TxM | γ ∈Ω(x)} ⊂ O(TxM,gx),

where Ω(x) denotes the set of piecewise smooth curves closed in x. If we restrict ourself
to null homotopic curves, we obtain the reduced holonomy group of (M,g) with respect to
x ∈M:

Hol0x(M,g) := {Pg
γ : TxM → TxM | γ ∈Ω(x) null homotopic } ⊂ Holx(M,g).

Hol0x(M,g) is the connected component of the Identity in the Lie group Holx(M,g). Hence,
the holonomy group of a simply connected manifold is connected. The holonomy groups
of two different points are conjugated: If σ is a smooth curve connecting x with y, then

Holy(M,g) = Pg
σ ◦Holx(M,g)◦Pg

σ− .

Therefore, we often omit the reference point and consider the holonomy groups of (M,g)
as class of conjugated subgroups of the (pseudo)orthogonal group O(p,q) (fixing an or-
thonormal basis in (TxM,gx)).
If π : (M̃, g̃)→ (M,g) is the universal semi-Riemannian covering, then

Hol0x̃(M̃, g̃) = Holx̃(M̃, g̃)' Hol0π(x̃)(M,g).

1In this paper all manifolds are supposed to be connected.
2In this paper p denotes the number of −1 and q the number of +1 in the normal form of the metric. We call

(M,g) Riemannian if p = 0, Lorentzian if p = 1 < n and pseudo-Riemannian if 1 ≤ p < n . If we do not want to
specify the signature we say semi-Riemannian manifold.
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For a semi-Riemannian product (M,g) = (M1,g1)× (M2,g2) and (x1,x2) ∈M1×M2, the
holonomy group is the product of its factors

Hol(x1,x2)(M,g) = Holx1(M1,g1)×Holx2(M2,g2).

An important result, which relates the holonomy group to the curvature of (M,g), is
the Holonomy Theorem of Ambrose and Singer. We denote by Rg the curvature tensor
of (M,g). Due to the symmetry properties of the curvature tensor, for all x ∈ M and
v,w ∈ TxM the endomorphism Rg

x(v,w) : TxM → TxM is skew-symmetric with respect to
gx, hence an element of the Lie algebra so(TxM,gx) of O(TxM,gx). Let γ be a piecewise
smooth curve from x to y and v,w ∈ TxM. We denote by (γ∗Rg)x(v,w) the endomorphism

(γ∗Rg)x(v,w) := Pg
γ− ◦Rg

y
(
Pg

γ (v),Pg
γ (w)

)◦Pγ ∈ so(TxM,gx).

The Lie algebra of the holonomy group is generated by the curvature operators (γ∗Rg)x,
more exactly, the Holonomy Theorem of Ambrose and Singer states:

Theorem 2.1 (Holonomy Theorem of Ambrose and Singer) The Lie algebra of the ho-
lonomy group Holx(M,g) is given by

holx(M,g) = span
{

(γ∗Rg)x(v,w)
∣∣∣ v,w ∈ TxM ,

γ curve with initial point x

}
.

This Theorem provides a tool for the calculation of the holonomy algebra of a manifold
which determines the connected component Hol0x(M,g) of the holonomy group. There-
fore it is the starting point in the classification of holonomy groups. It is enough to de-
scribe holonomy groups of simply connected manifolds, whereas the description of the
full holonomy group in the general case is a much more complicated problem.

Another important property of holonomy groups is stated in the following holonomy
principle, which relates parallel tensor fields on M to fixed elements under the action of
the holonomy group.

Theorem 2.2 (Holonomy Principle) Let T be a tensor bundle on (M,g) and let ∇g be
the covariant derivative on T induced by the Levi-Civita connection. If T ∈ Γ(T ) is a
tensor field with ∇gT = 0, then Holx(M,g)T (x) = T (x) , where Holx(M,g) acts in the
canonical way on the tensors Tx. Contrary, if Tx ∈Tx is a tensor with Holx(M,g)Tx = Tx,
then there is an uniquely determined tensor field T ∈ Γ(T ) with ∇gT = 0 and T (x) = Tx.
T is given by parallel displacement of Tx, i.e., T (y) := P∇g

γ (Tx) , where y ∈M and γ is a
curve connecting x with y.

The holonomy group Holx(M,g) acts as group of orthogonal mappings on the tangent
space (TxM,gx). This representation is called the holonomy representation of (M,g), we
denote it in the following by ρ . The holonomy representation ρ : Holx(M,g)→O(TxM,gx)
is called irreducible if there is no proper holonomy invariant subspace E ⊂ TxM. ρ is called
weakly-irreducible, if there is no proper non-degenerate holonomy invariant subspace
E ⊂ TxM. To be short, we say that the holonomy group resp. its Lie algebra is irreducible
(weakly irreducible), if the holonomy representation has this property. If (M,g) is a Rie-
mannian manifold, any weakly irreducible holonomy representation is irreducible. In the
pseudo-Riemannian case there are weakly irreducible holonomy representations which ad-
mit degenerate holonomy invariant subspaces, i.e., which are not irreducible. This causes
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the problems in the classification of the holonomy groups of pseudo-Riemannian mani-
folds.
For a subspace E ⊂ TxM we denote by

E⊥ = {v ∈ TxM | gx(v,E) = 0} ⊂ TxM

its orthogonal complement. If E is holonomy invariant, then E⊥ is holonomy invariant as
well. If E is in addition non-degenerate, then E⊥ is non-degenerate as well and TxM is the
direct sum of these holonomy invariant subspaces:

TxM = E⊕E⊥.

For that reason we call weakly-irreducible representations also indecomposable (meaning,
that they do not decompose into the direct sum of non-degenerate subrepresentations). A
semi-Riemannian manifold (M,g) is called irreducible if its holonomy representation is
irreducible. (M,g) is called weakly-irreducible or indecomposable if its holonomy repre-
sentation is weakly-irreducible.

If the holonomy representation of (M,g) has a proper non-degenerate holonomy in-
variant subspace, then the reduced holonomy group decomposes into a product of groups.
Moreover, the manifold itself spits locally into a semi-Riemannian product. More exactly:

Theorem 2.3 (Local Decomposition Theorem) Let E ⊂ TxM be a k-dimensional proper
non-degenerate holonomy invariant subspace, then the groups

H1 := {Pg
γ ∈ Hol0x(M,g) | (Pg

γ )|E⊥ = IdE⊥} and

H2 := {Pg
γ ∈ Hol0x(M,g) | (Pg

γ )|E = IdE }

are normal subgroups of Hol0x(M,g) and

Hol0x(M,g)' H1×H2.

Moreover, (M,g) is locally isometric to a semi-Riemannian product, i.e., for any point
p ∈ M there exists a neighborhood U(p) and two semi-Riemannian manifolds (U1,g1)
and (U2,g2) of dimension k and (n− k), respectively, such that

(U(p),g)
isometric' (U1,g1)× (U2,g2).

The local decomposition of (M,g) follows from the Frobenius Theorem. If E ⊂ TxM is a
non-degenerate, holonomy invariant subspace, then

E : y ∈M −→ Ey := Pg
σ (E)⊂ TyM,

where σ is a piecewise smooth curve from x to y, is an involutive distribution on M, the
holonomy distribution defined by E. The maximal connected integral manifolds of E are
totally geodesic submanifolds of M, which are geodesically complete if (M,g) is so. The
manifolds (U1,g1) and (U2,g2) in Theorem 2.3 can be chosen as small open neighborhood
of p in the integral manifold M1(p) of the holonomy distribution E defined by E and the
integral manifold M2(p) of the holonomy distribution E ⊥ defined by E⊥, respectively,
with the metric induced by g. If (M,g) is simply connected and geodesically complete,
(M,g) is even globally isometric to the product of the two integral manifolds (M1(p),g1)
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and (M2(p),g2). Now, we decompose the tangent space TxM into a direct sum of non-
degenerate, orthogonal and holonomy invariant subspaces

TxM = E0⊕E1⊕ . . .⊕Er,

where Holx(M,g) acts weakly irreducible on E1, . . . ,Er and E0 is a maximal subspace
(possibly 0-dimensional), on which the holonomy group Holx(M,g) acts trivial. Applying
the global version of Theorem 2.3 to this decomposition we obtain the Decomposition
Theorem of de Rham and Wu ([DR52], [Wu64]).

Theorem 2.4 (Decomposition Theorem of de Rham und Wu) Let (M,g) be a simply
connected, geodesically complete semi-Riemannian manifold. Then (M,g) is isometric
to a product of simply connected, geodesically complete semi-Riemannian manifolds

(M,g)' (M0,g0)× (M1,g1)× . . .× (Mr,gr),

where (M0,g0) is a (possibly null-dimensional) (pseudo-)Euclidian space and the factors
(M1,g1), . . . ,(Mr,gr) are indecomposable and non-flat.

Theorem 2.4 reduces the classification of reduced holonomy groups of geodesically
complete semi-Riemannian manifolds to the study of weakly irreducible holonomy rep-
resentations. This classification is widely open, but the subcase of irreducible holonomy
representations is completely solved. First of all, let us mention that the holonomy group
of a symmetric space is given by its isotropy representation.

Theorem 2.5 Let (M,g) be a symmetric space, and let G(M)⊂ Isom(M,g) be its transvec-
tion group. Furthermore, let λ : H(M) −→ GL(Tx0M) be the isotropy representation of
the stabiliser H(M) = G(M)x0 of a point x0 ∈M. Then,

λ (H(M)) = Holx0(M,g).

In particular, the holonomy group Holx0(M,g) is isomorphic to the stabilizer H(M) and,
using this isomorphism, the holonomy representation ρ is given by the isotropy represen-
tation λ .

Therefore, the holonomy groups of symmetric spaces can be read off from the classi-
fication lists of symmetric spaces, which describe the pair (G(M),H(M)) and the isotropy
representation λ . For irreducible symmetric spaces these lists can be found in [Be87],
chapter 10, in [He01] and in [Ber57]. In order to classify the irreducible holonomy rep-
resentations, the classification of the non-symmetric case remains. This was done by
M. Berger in 1955 (cf. [Ber55]. He proved that there is only a short list of groups which
can appear as holonomy groups of irreducible non-locally symmetric simply connected
semi-Riemannian manifolds. This list is now called the Berger list. The Berger list of
Riemannian manifolds is widely known. There appear only 6 special holonomy groups
and due to the holonomy principle (cf. Theorem 2.2) each of these groups is related to a
special, rich and interesting geometry, described by the corresponding parallel geometric
object.

Theorem 2.6 (Riemannian Berger list) Let (Mn,g) be an n-dimensional, simply con-
nected, irreducible, non-locally symmetric Riemannian manifold. Then the holomomy
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group Hol(M,g) is up to conjugation in O(n) either SO(n) or one of the following groups
with its standard representation:

n holonomy group special geometry
2m≥ 4 U(m) Kähler manifold
2m≥ 4 SU(m) Ricci-flat Kähler manifold
4m≥ 8 Sp(m) Hyperkähler manifold
4m≥ 8 Sp(m) ·Sp(1) quaternionic Kähler manifold

7 G2 G2-manifold
8 Spin(7) Spin(7)-manifold

The Berger list for pseudo-Riemannian manifolds is given in the following Theorem.

Theorem 2.7 (Pseudo-Riemannian Berger list) Let (M,g) be a simply connected, irre-
ducible, non-locally symmetric semi-Riemannian manifold of signatur (p,q). Then the
holonomy group of (M,g) is up to conjugation in O(p,q) either SO0(p,q) or one of the
following groups with its standard representation:

dimension signatur holonomy group
2m≥ 4 (2r,2s) U(r,s) und SU(r,s)
2m≥ 4 (r,r) SO(r,C)
4m≥ 8 (4r,4s) Sp(r,s) und Sp(r,s) ·Sp(1)
4m≥ 8 (2r,2r) Sp(r,R) ·SL(2,R)
4m≥ 16 (4r,4r) Sp(r,C) ·SL(2,C)
7 (4,3) G∗

2(2)
14 (7,7) GC2
8 (4,4) Spin(4,3)
16 (8,8) Spin(7,C)

As one easily sees, this list does not contain a group in Lorentzian signature. This reflects a
special algebraic fact concerning irreducibly acting connected subgroups of the Lorentzian
group O(1,n−1) (cf. [DO01]).

Theorem 2.8 If H ⊂O(1,n−1) is a connected Lie subgroup acting irreducibly onR1,n−1,
then H = SO0(1,n−1).

The proofs of the basic Theorems stated in this section can be found in [Sa89], [Jo00],
[B09]. We refer to [Sa89] and [Jo00] also for constructions of Riemannian manifolds with
special holonomy.

3 Lorentzian holonomy groups - the algebraic classifica-
tion
In this section we will describe the algebraic classification of the reduced holonomy groups
of Lorentzian manifolds.

In dimension 4 there are 14 types of Lorentzian holonomy groups which were disco-
vered by Schell [Sch60] and Shaw [Sh70]. We will not recall this list here, besides to the
original papers we refer to [H93], [HL00], [Be87] chap. 10, [GL08]. In the following we
will consider arbitrary dimension.
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Due to Theorem 2.4 and Theorem 2.8 the Decomposition Theorem for Lorentzian mani-
folds can be formulated as follows:

Theorem 3.1 Let (N,h) be a simply connected, geodesically complete Lorentzian mani-
fold. Then (N,h) is isometric to the product

(N,h)' (M,g)× (M1,g1)× . . .× (Mr,gr),

where (Mi,gi) are either flat or irreducible Riemannian manifolds and (M,g) is either

1. (R,−dt2),

2. an irreducible Lorentzian manifold with holonomy group SO0(1,n−1) or

3. a Lorentzian manifold with weakly irreducible holonomy representation which ad-
mits a degenerate invariant subspace.

Since the holonomy groups of the Riemannian factors are known, it remains to classify
the weakly irreducible Lorentzian holonomy representations which admit an invariant de-
generate subspace.
Let (M,g) be a weakly irreducible, but non-irreducible Lorentzian manifold, and let x∈M.
Then the holonomy representation ρ : Holx(M,g)→ O(TxM,gx) admits a degenerate in-
variant subspace W ⊂ TxM. The intersection V := W ∩W⊥ ⊂ TxM is a holonomy invariant
light-like line. Hence the holonomy group Holx(M,g) lies in the stabilizer O(TxM,gx)V of
V in O(TxM,gx). Let us first describe this stabilizer more in detail3.
We fix a basis ( f1, , . . . , fn) in TxM such that f1 ∈V and

(
gx( fi, f j)

)
=




0 0 1
0 In−2 0
1 0 0


 ,

identify (TxM,gx) with the Minkowski space and and write the elements of O(TxM,gx) as
matrices with respect to this basis. The stabilizer of the isotropic line R f1 ⊂ R1,n−1 is a
semidirect product and given by the matrices

O(1,n−1)R f1 =
(
R∗×O(n−2)

)
nRn−2

=








a−1 xt − 1
2 a‖x‖2

0 A −aAx
0 0 a




∣∣∣∣∣∣

a ∈ R∗
x ∈ Rn−2

A ∈ O(n−2)



 .

The Lie algebra of O(1,n−1)R f1 is

so(1,n−1)R f1 =
(
R⊕ so(n−2)

)
nRn−2

=








α yt 0
0 X −y
0 0 −α




∣∣∣∣∣∣

α ∈ R
y ∈ Rn−2

X ∈ so(n−2)



 .

3The connected component of the stabilizer O(1,n−1)R f1 ⊂ O(1,n−1) of a light-like line R f1 is isomorphic
to the group of similarity transformation of the Euclidian space Rn−2, i.e., to the group generated by translations,
dilatations and rotations of Rn−2. Therefore, in some papers this group is denoted by Sim(n−2).
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Let us denote a matrix in the Lie algebra so(1,n−1)R f1 by (α,X ,y) (in the obvious way).
The commutator is given by

[(α,X ,y),(β ,Y,z)] =
(
0, [X ,Y ],(X +α Id)z− (Y +β Id)y

)
,

which describes the semi-direct structure. In particular, R, Rn−2 and so(n−2) are subal-
gebras of so(1,n−1)R f1 . Now, one can assign to any subalgebra h ⊂ so(1,n−1)R f1 the
projections prR(h), prRn−2(h) and prso(n−2)(h) onto these parts. The subalgebra

g := prso(n−2)(h)⊂ so(n−2)

is called the orthogonal part of h. g is reductive, i.e. its Levi decomposition is given by
g = z(g)⊕ [g,g], where z(g) is the center of g and the commutator [g,g] is semi-simple.

The first step in the classification of weakly irreducible holonomy representations
is a result due to L. Berard-Bergery and A. Ikemakhen (cf. [BI93]), who described
the possible algebraic types of weakly irreducibly acting subalgebras h of the stabilizer
so(1,n−1)R f1 =

(
R⊕so(n−2)

)
nRn−2. A geometric proof of this result was later given

by A. Galaev in [G06a].

Theorem 3.2 Let f1 ∈ R1,n−1 be a light-like vector in the Minkowski space and let

h⊂ so(1,n−1)R f1 = (R⊕ so(n−2))nRn−2

be a weakly-irreducible subalgebra of the stabilizer of R f1 in so(1,n−1). We denote by
g := prso(n−2)(h) ⊂ so(n−2) the orthogonal part of h. Then h is of one of the following
four types:

1. h = h1(g) := (R⊕g)nRn−2.

2. h = h2(g) := g nRn−2.

3. h = h3(g,ϕ) :=
{(

ϕ(X),X +Y,z
) | X ∈ z(g), Y ∈ [g,g], z ∈ Rn−2

}
,

where ϕ : z(g)→ R is a linear and surjective map.

4. h = h4(g,ψ) :=
{(

0,X +Y,ψ(X)+ z
) | X ∈ z(g), Y ∈ [g,g], z ∈ Rk

}
,

where Rn−2 = Rm⊕Rk , 0 < m < n−2,
g⊂ so(Rk),
ψ : z(g)→ Rm linear and surjective.

In the following we will refer to theses cases as the Lie algebras h of type 1 - type 4.
The types 1 and 2 are called uncoupled types, the types 3 and 4 coupled types, since the
so(n−2)- part is coupled by ϕ and ψ with the R- and the Rn−2-part, respectively.

Theorem 3.2 reduces the classification of Lorentzian holonomy algebras to the de-
scription of the orthogonal part g = prso(n−2) hol(M,g). First, let us look at the geo-
metric meaning of g. Let V ⊂ T M be the holonomy distribution, defined by R f1 ⊂
TxM. The orthogonal complement V ⊥ ⊂ T M is parallel as well and contains V . Hence,
(V ⊥/V , g̃, ∇̃g) is a vector bundle of rank (n− 2) on M equipped with a positive defi-
nite bundle metric g̃, induced by g, and a metric covariant derivative ∇̃g, induced by the
Levi-Civita-connection of g. It is not difficult to check, that the holonomy algebra of
(V ⊥/V , ∇̃g) coincides with g:
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Proposition 3.1 ([L03]) Let (M,g) be a Lorentzian manifold with a parallel light-like
distribution V ⊂ T M. Then,

holx(V
⊥/V , ∇̃g) = prso(n−2) holx(M,g).

Moreover, the different types of holonomy algebras translate into special curvature prop-
erties of the light-like hypersurface of M, defined by the involutive distribution V ⊥. For
details we refer to [Bez05].

Thomas Leistner studied the orthogonal part of hol(M,g) and obtained the following
deep result, cf. [L03], [L07].

Theorem 3.3 Let (Mn,g) be a Lorentzian manifold with a weakly irreducible but non-
irreducible holonomy group Hol0(M,g). Then the orthogonal part g = prso(n−2)(hol(M,g))
of the holonomy algebra is the holonomy algebra of a Riemannian manifold.

Leistner’s proof of this Theorem is based on the observation of a special algebraic property
of the orthogonal part g of a Lorentzian holonomy algebra. It is a so-called weak Berger
algebra - a notion, which was introduced and studied by T. Leistner in [L02a] (see also
[L03], [L07], [G05]). We will explain this notion here shortly.
Let g ⊂ gl(V ) be a subalgebra of the linear maps of a finite dimensional real or complex
vector space V with scalar product 〈·, ·〉. Then we consider the following spaces

K (g) := {R ∈ Λ2(V ∗)⊗g | R(x,y)z+R(y,z)x+R(z,x)y = 0},
B(g) := {B ∈V ∗⊗g | 〈B(x)y,z〉+ 〈B(y)z,x〉+ 〈B(z)x,y〉= 0}.

The space K (g) is called the space of curvature tensors4 of g. B(g) is called space of
weak curvature tensors of g. Now, let g be an orthogonal Lie algebra, i.e., g⊂ so(V,〈·, ·〉).
Then any curvature tensor R of g satisfies in addition the symmetry properties

〈R(x,y)u,v〉 = −〈R(x,y)v,u〉,
〈R(x,y)u,v〉 = +〈R(u,v)x,y〉.

Hence, for each R ∈K (g) and x ∈V we have R(x, ·) ∈B(g).
A Lie algebra g⊂ gl(V ) is called Berger algebra if there are enough curvature tensors to
generate g, i.e., if

g = span{R(x,y) | x,y ∈V, R ∈K (g)}.
An orthogonal Lie algebra g ⊂ so(V,〈·, ·〉) is called weak Berger algebra if there are
enough weak curvature tensors to generate g, i.e., if

g = span{B(x) | x ∈V, B ∈B(g)}.
Obviously, every orthogonal Berger algebra is a weak Berger algebra. For an Euclidian
space V , the Bianchi identity defining B(g) is used to prove the following decomposition
property of the space of weak curvature tensors B(g):

Proposition 3.2 Let V be an Euclidian space and let g⊂ so(V ) be a weak Berger algebra.
Then V decomposes into orthogonal g-invariant subspaces

V = V0⊕V1⊕ . . .⊕Vs,

4This notation is motivated by the fact, that the condition which defines K (g) is just the Bianchi identity for
the curvature tensor R∇

x of a torsion free covariant derivative ∇.
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where g acts trivial on V0 (possibly 0-dimensional) and irreducible on Vj, j = 1, . . . ,s.
Moreover, g is the direct sum of ideals

g = g1⊕ . . .⊕gs, (1)

where g j acts irreducible on Vj and trivial on Vi if i 6= j. g j ⊂ so(Vj) is a weak Berger
algebra and B(g) = B(g1)⊕ . . .⊕B(gs).

Now, let (M,g) be a Lorentzian manifold with holonomy group Holx(M,g). From the
Ambrose-Singer Theorem 2.1 it follows that the holonomy algebra holx(M,g)⊂ so(TxM,gx)
is a Berger algebra. Moreover, looking more carefully at the curvature endomorphisms one
obtains:

Proposition 3.3 Let (Mn,g) be a Lorentzian manifold with a weakly irreducible but non-
irreducible holonomy group Hol0x(M,g). Then the orthogonal part g = prso(n−2)(holx(M,g))
of the holonomy algebra is a weak Berger algebra on an Euclidean space. Hence it de-
composes into a direct sum of irreducibly acting weak Berger algebras.

Using representation and structure theory of semi-simple Lie algebras, T. Leistner proved
the following central Theorem which implies Theorem 3.3.

Theorem 3.4 Any irreducible weak Berger algebra on an Euclidian space is the holon-
omy algebra of an irreducible Riemannian manifold.

All together we obtain the following classification Theorem for Lorentzian holonomy
groups.

Theorem 3.5 (The connected holonomy groups of Lorentzian manifolds) Let (M,g) be
an n-dimensional, simply connected, indecomposable Lorentzian manifold. Then either
(M,g) is irreducible and the holonomy group is the Lorentzian group SO0(1,n− 1), or
the holonomy group lies in the stabilizer SO0(1,n− 1)V = (R+×SO(n− 2))nRn−2 of
a light-like line V . In the second case, let G′ ⊂ G ⊂ SO(n− 2) be the closed subgroups
with Lie algebras g′ := [g,g] ⊂ g := prso(n−2) holx(M,g) ⊂ so(n− 2), respectively. Then
G⊂ SO(n−2) is the holonomy group of a Riemannian manifold and Holx(M,g) is of one
of the following types:

1. (R+×G)nRn−2.

2. GnRn−2.

3. L ·G′nRn−2, where L⊂R×SO(n−2) is the connected Lie group with Lie algebra
l := {(ϕ(X),X ,0) | X ∈ z(g)} for a surjective linear map ϕ : z(g)→ R.

4. L̂ ·G′nRn−2−m, where L̂ ⊂ SO(n− 2)nRm is the connected Lie-group with Lie
algebra l̂ := {(0,X ,ψ(X)) | X ∈ z(g)} for a surjective linear map ψ : z(g)−→ Rm.

4 Local realization of Lorentzian holonomy groups
In this section we will show, that any of the groups in the list of Theorem 3.5 can be
realized as holonomy group of a Lorentzian manifold.

Lorentzian metrics with holonomy group of uncoupled type 1 and 2 are rather easy to
construct:
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Proposition 4.1 Let (F,h) be a connected (n−2)-dimensional Riemannian manifold, and
let H ∈C∞(R×F×R) be a smooth function such that the Hessian of H(0, ·,0) ∈C∞(F)
is non-degenerate in x ∈ F. Then the holonomy group of the Lorentzian manifold (M,g)

M := R×F×R , g := 2dvdu+H du2 +h, (2)

where v,u denote the coordinates of the R-factors, is given by

Hol(0,x,0)(M,g) =

{
Holx(F,h)nRn−2 i f ∂H

∂v = 0,

(R+×Holx(F,h))nRn−2 i f ∂ 2H
∂v2 6= 0.

This Theorem can be proved by direct calculation of the group of parallel displacements
(cf. for example [B09], chap. 5). It is more difficult to produce metrics with the holonomy
groups of coupled types 3 and 4.

The basic observation for constructing local metrics is the existence of adapted coor-
dinates for Lorentzian manifolds with special holonomy, called Walker coordinates. Let
(M,g) be a Lorentzian manifold with holonomy group acting weakly irreducible, but non-
irreducible. Then, as we know from the previous section, there exists a 1-dimensional
parallel light-like distribution V ⊂ T M. Locally, the distribution V is spanned by a recur-
rent light-like vector field ξ , where a vector field ξ on (M,g) is called recurrent if there is
a 1-form ω such that

∇gξ = ω⊗ξ .

A.G. Walker ([Wal50]) proved the existence of adapted coordinates in the presence of a
parallel light-like line.

Proposition 4.2 (Walker coordinates) Let (M,g) be an n-dimensional Lorentzian mani-
fold with a parallel light-like line V ⊂ T M. Then around any point p ∈ M there are
coordinates (U,(v,x1, . . . ,xn−2,u)) such that g|U has the form

g|U = 2dvdu+2
n−2

∑
i=1

Aidxidu+H du2 +
n−2

∑
j,k=1

h jkdx jdxk, (3)

where Ai, h jk are smooth functions of x1, . . . ,xn−2,u and the function H depends smoothly
on the coordinates v,x1, . . . ,xn−2,u.

In these coordinates ∂
∂v generates the distribution V and ∂

∂v ,
∂

∂x1
, . . . , ∂

∂xn−2
generate V ⊥.

The vector field ∂
∂v is parallel if H does not depend on v. We call a metric of the form

(3) a Walker metric. The metrics (2) are special cases of Walker metrics, the holonomy
group in this example is produced by the function H and the Riemannian metric h. In the
following construction due to A. Galaev (cf. [G06b], [GL08]), the functions H and Ai in
the Walker metric (3) are used to produce the holonomy groups in Theorem 3.5.

We consider the situation as described in section 3. Let g⊂ so(n−2) be the holonomy
algebra of a Riemannian manifold. We will describe a Walker metric g of the form (3) on
Rn, such that hol0(Rn,g) is of the form h1(g), h2(g), h3(g,ϕ) and h4(g,ψ), respectively,
as described in Theorem 3.2. As we know, Rn−2 has a decomposition into orthogonal
subspaces

Rn−2 = Rn0 ×Rn1 × . . .×Rns , (4)
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where g acts trivial on Rn0 and irreducible on Rn1 , . . . ,Rns and g spits into a direct sum of
ideals

g = g1⊕ . . .⊕gs,

where gi ⊂ so(ni) are holonomy algebras of irreducible Riemannian manifolds. Now, let
(e1, . . . ,en−2) be an orthonormal basis of Rn−2 adapted to the decomposition (4). We
choose weak curvature endomorphisms QI ∈ B(g), I = 1, . . . ,N, which generate B(g).
Note that QI(ei) = 0 for i = 1, . . . ,n0.

Let ϕ : z(g)→ R and ψ : z(g)→ Rm ⊂ Rn0 be surjective linear maps. We extend ϕ
and ψ to g by setting ϕ|[g,g] = 0, ψ|[g,g] = 0 and define the numbers:

ϕIi :=
1

(I−1)!
ϕ(QI(ei)) (5)

ψIi j :=
1

(I−1)!

〈
ψ(QI(ei)),e j

〉
Rn−2

, (6)

where I = 1, . . . ,N, i = n0 +1, . . . ,n−2, j = 1, . . . ,m. Then, one can realize any connected
Lorentzian holonomy group by a Walker metric with polynomals as coefficients in the
metric (3).

Theorem 4.1 ([G06b]) Let h ⊂ so(1,n− 1) be one of the Lie algebras h1(g), h2(g),
h3(g,ϕ), h4(g,ψ) in the list of Theorem 3.2, where g = prso(n−2) h ⊂ so(n− 2) is the
holonomy algebra of a Riemannian manifold. We consider the following Walker metric g
on Rn:

g = 2dvdu+2
n−2

∑
i=1

Aidxidu+H du2 +
n−2

∑
i=1

dx2
i ,

where the functions Ai are given by

Ai(x1, . . . ,xn−2,u) :=
N

∑
I=1

n−2

∑
k,l=1

1
3(I−1)!

〈
QI(ek)el +QI(el)ek,ei

〉
Rn−2

xkxluI ,

and the function H(v,x1, . . . ,xn−2,u) is defined in the following list, corresponding to the
type of h:

h H

Type 1: h1(g) = (R⊕g)nRn−2 v2 +
n0
∑

i=1
x2

i

Type 2: h2(g) = gnRn−2
n0
∑

i=1
x2

i

Type 3: h3(g,ϕ) 2v
N
∑

I=1

n−2
∑

i=n0+1
ϕIixiuI−1 +

n0
∑

k=1
x2

k

Type 4: h4(g,ψ) 2
N
∑

I=1

n−2
∑

i=n0+1

m
∑
j=1

ψIibxix juI−1 +
n0
∑

k=m+1
x2

k

.

Then, h is the holonomy algebra of (Rn,g) with respect to the point 0 ∈ Rn.
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The proof of this Theorem uses that g is analytic. In this case, the holonomy algebra
hol0(Rn,g) is generated by the curvature tensor and its derivatives in the point 0 ∈ Rn.
One calculates for the derivatives of the curvature tensor R:

prso(n−2)

[(
∇I−1

∂u
R
)

0 (∂xi ,∂u)
]

= QI(ei),

prR
[
R0 (∂v,∂u)

]
=

1
2

∂ 2H
(∂v)2 (0),

prR
[(

∇I−1
∂u

R
)

0 (∂xi ,∂u)
]

=
1
2

∂ I+1H
∂v∂xi(∂u)I−1 (0),

prRn−2

[(
∇I−1

∂u
R
)

0 (∂xa ,∂u)
]

=
1
2

n0

∑
j=1

∂ I+1H
∂xa∂x j(∂u)I−1 (0) · e j.

Hereby I = 1, . . . ,N, i = n0 + 1, . . . ,n and a = 1, . . . ,n0. The first formula describes the
only non-vanishing orthogonal parts of the curvature tensor and its derivatives in 0 ∈ Rn.
Since g is a weak Berger algebra and {QI | I = 1, . . . ,N} generate B(g), the orthogonal
part of hol0(Rn,g) coincide with g. The inclusion Rn0 ⊂ hol0(Rn,g) follows from the last
formula, the proof that Rn1 , . . . ,Rns ⊂ hol0(Rn,g) uses the fact, that gi acts irreducible on
Rni . The R-part in hol0(Rn,g) is generated by H, as the second and third formula show.

Recently, Ya. V. Bazaikin ([Ba09]) constructed coupled holonomy groups of type 3
and 4 using Walker metrics on M := R×F×R of the form

g := 2dvdu+ Hdu2 +2A¯du+h, (7)

where (F,h) is a Riemannian manifold, A is an 1-form on F and H is a function on M.
Moreover, he discussed causality properties, in particular global hyperbolicity of such
metrics (see also section 5).

Finally, let us discuss Lorentzian manifolds (M,g) with the abelian and solvable re-
duced holonomy group

Hol0(M,g) =
{
Rn−2

R+nRn−2.

A Lorentzian manifold is called a pp-wave, if it admits a light-like parallel vector field ξ
and if its curvature tensor R satisfies

R(X1,X2) = 0 for all X1,X2 ∈ ξ⊥. (8)

A Lorentzian manifold is called a pr-wave, if it admits a light-like recurrent vector field
ξ and if the curvature tensor satisfies (8). There are several equivalent conditions to (8),
for which we refer to [L06a]. A pp-wave resp. a pr-wave is locally isometric to (Rn,gH),
where gH is the Walker metric

gH = 2dvdu+Hdu2 +
n−2

∑
i=1

dx2
i

and, in case of a pp-wave, the function H = H(v,x1, . . . ,xn−2,u) does not depend on v .

Proposition 4.3 ([L06a][L06b]) Let (M,g) be a Lorentzian manifold with a light-like
parallel (resp. recurrent) vector field. Then (M,g) is a pp-wave (resp. pr-wave) if and only
if its holonomy group Hol0(M,g) is contained in the abelian subgroupRn−2⊂ SO(1,n−1)
(resp. the solvable subgroup R+nRn−2 ⊂ SO(1,n−1)).
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5 Global models with special Lorentzian holonomy
In the previous section we showed that any Lorentzian holonomy group can be realized
by a local metric which is polynomial in the coordinates. In this section we will discuss
some global constructions.

5.1 Lorentzian symmetric spaces
In the Riemannian case, the holonomy list is divided into the symmetric and the non-
symmetric case. In Lorentzian signature, this distinction plays no essential role, since there
are only few isometry classes of simply connected indecomposable Lorentzian symmetric
spaces. We will shortly discuss these spaces and their holonomy groups.

Let (Mn,g) be a Lorentzian symmetric space. One has the following structure result:

Theorem 5.1 ([CW70]) Let (Mn,g) be an indecomposable Lorentzian symmetric space
of dimension n≥ 2. Then the transvection group of (Mn,g) is either semi-simple or solv-
able.

We call a symmetric space solvable or semi-simple if its transvection group has this prop-
erty. First we describe the solvable Lorentzian symmetric spaces.

Let λ = (λ1, . . . ,λn−2) be an (n− 2)-tupel of real numbers λ j ∈ R\{0} and let us
denote by Mn

λ the Lorentzian space Mn
λ := (Rn,gλ ), where gλ is the Walker metric

gλ := 2dvdu+
n−2

∑
i=1

λix2
i du2 +

n−2

∑
i=1

dx2
i . (9)

If λ π = (λπ(1), . . . ,λπ(n−2)) is a permutation of λ and c > 0, then Mn
λ is isometric to

Mn
cλ π

. A direct calculation shows, that the space Mλ is geodesically complete and its
curvature tensor is parallel. Hence the pp-wave Mλ is a Lorentzian symmetric space.
These symmetric spaces were first described by M. Cahen and N. Wallach and are called
now Cahen-Wallach-spaces. From Proposition 4.1 follows that the holonomy group of
Mλ is the abelian subgroup Rn−2 ⊂ (R+×SO(n−2))nRn−2. The transvection group of
Mλ is solvable. For a description of this group we refer to [Ne03].

Theorem 5.2 ([CW70], [CP80]) Let (Mn,g) be an indecomposable solvable Lorentzian
symmetric space of dimension n ≥ 3. Then (Mn,g) is isometric to Mn

λ /Γ , where λ ∈
(R\{0})n−2 and Γ is a discrete subgroup of the centralizer Zλ of the transvection group
of Mλ in its isometry group.

For the centralizer Zλ M. Cahen and Y. Kerbrat proved:

Theorem 5.3 ([CK78]) Let λ = (λ1, . . . ,λn−2) be a tupel of non-zero real numbers.

1. If there is a positive λi or if there are two numbers λi,λ j such that λi
λ j
6∈ Q2, then

Zλ ' R and ϕ ∈ Zλ if and only if ϕ(v,x,u) = (v+α,x,u), α ∈ R.

2. Let λi =−k2
i < 0 and ki

k j
∈Q for all i, j ∈ {1, . . . ,n−2}. Then ϕ ∈ Zλ if and only

if
ϕ(v,x,u) = (v+α,(−1)m1x1, . . . ,(−1)mn−2 xn−2,u+β ),

where α ∈ R, m1, . . . ,mn−2 ∈ Z and β = mi·π
ki

for all i = 1, . . . ,n−2.
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Next, let us describe the semi-simple Lorentzian symmetric spaces. We denote by
Sn

1(r) the pseudo-sphere

Sn
1(r) :=

{
x ∈ R1,n | 〈x,x〉1,n =−x2

1 + x2
2 + . . .+ x2

n+1 = r2}

and by Hn
1 (r) the pseudo-hyperbolic space

Hn
1 (r) :=

{
x ∈ R2,n−1 | 〈x,x〉2,n−1 =−x2

1− x2
2 + x2

3 + . . .+ x2
n+1 =−r2}

with the Lorentzian metrics induced by 〈·, ·〉1,n and 〈·, ·〉2,n−1, respectively. Sn
1(r) and

Hn
1 (r) are semi-simple symmetric spaces of constant sectional curvature with full holon-

omy group SO0(1,n−1). Moreover,

Theorem 5.4 ([CL90], [Wo84]) Let (Mn,g) be an indecomposable semi-simple Lorent-
zian symmetric space of dimension n ≥ 3. Then (Mn,g) has constant sectional curvature
k 6= 0. Therefore, it is isometric to Sn

1(r)/{±I} or Sn
1(r) if k = 1

r2 > 0, or to a Lorentzian
covering of Hn

1 (r)/{±I} if k =− 1
r2 < 0.

5.2 Holonomy of Lorentzian cones
Cone constructions are often used to reduce a geometric problem on a manifold to a holon-
omy problem of the cone over that manifold. For example, C. Bär ([Ba93]) used this
method to describe all Riemannian geometries with real Killing spinors. Other applica-
tions can be found in [BJ10], chapter 2, and in [M09b]. It is a classical result of S. Gal-
lot ([Ga79]) that the holonomy group of the cone over a complete Riemannian manifold
(N,h) is either irreducible or (N,h) has constant sectional curvature (which implies that
the cone is flat). In the pseudo-Riemannian situation this is not longer true. The pseudo-
Riemannian case was recently studied in [AC09]. We will describe the results of this
paper for the Lorentzian cases here. There are two types of Lorentzian cones, the time-
like cone C−(N,h) over a Riemannian manifold (N,h) and the space-like cone C+(N,h)
over a Lorentzian manifold (N,h):

Cε(N,h) := (R+×N , gε = ε dt2 + t2h), ε =±1.

First, let us illustrate the difference to the Riemannian case with two examples.

1. Let (F,r) be a complete Riemannian manifold of dimension at least 2 which is not
of constant sectional curvature. Then the Lorentzian manifold

N := R×F , h :=−ds2 + cosh2(s)r

is complete and not of constant sectional curvature, and the holonomy representation
of its space-like cone C+(N,h) decomposes into proper non-degenerate invariant
subspaces.

2. Let (F,r) = (F1,r1)× (F2,r2) be a product of a flat and a non-flat complete Rieman-
nian manifold. Then the Riemannian manifold

N := R×F , h := ds2 + e−2sr

is complete and its time-like cone C−(N,h) is non-flat and has a light-like parallel
vector field as well as a non-degenerate proper holonomy invariant subspace.
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The structure of geodesically complete simply connected manifolds with non-irreducible
Lorentzian cone is described in the following Theorem.

Theorem 5.5 ([AC09]) Let (N,h) be a geodesically complete, simply connected Rieman-
nian or Lorentzian manifold of dimension at least 2 with the corresponding Lorentzian
cone Cε(N,h), ε =±1.
1. If the holonomy representation of the cone Cε(N,h) is decomposable, then

Holx(N,h) = SO0(TxN,hx).

If (N,h) is Riemannian (i.e. ε = −1), then (N,h) has either constant sectional curvature
ε or is isometric to the product

(R+×N1×N2 ,−εds2 + cosh2(s)h1 + sinh2(s)h2),

where (Ni,hi) are Riemannian manifolds and (N2,h2) has constant curvature −ε or di-
mension≤ 1. If (N,h) is a Lorentzian manifold (i.e. ε = 1), then the same result is true on
each connected component of a certain open dense set of N.
2. If the holonomy representation of Cε(N,h) is indecomposable but non-irreducible, then
the cone admits a parallel light-like vector field.
If (N,h) is a Riemannian manifold, then (N,h) is isometric to

(R×F,−εds2 + e−2sr),

where (F,r) is a complete Riemannian manifold, and the holonomy group of the cone is
given by

Hol(C−(N,h)) = Hol(F,r)nRdimF .

If (N,h) is a Lorentzian manifold, the same result is true for any connected component of
a certain open sense set of N.

Note, that a compact pseudo-Riemannian manifold need not to be geodesically complete.
A stronger result hold for compact manifolds (N,h).

Theorem 5.6 ([M09b]) Let Cε(N,h) be the Lorentzian cone over a compact connected
Riemannian or Lorentzian manifold (N,h). Then the holonomy representation of Cε(N,h)
is indecomposable.

In [AC09] and [M09a] Theorem 5.6 is proved under the additional assumption, that (N,g)
is geodesically complete. It was first shown, that decomposability implies that (N,h) has
constant sectional curvature ε . Since there are no compact de Sitter spaces, (N,h) has
to be Riemannian with flat, but non-simply connected cone. In [M09b], Proposition 4.1.,
V. Matveev and P. Mounoud gave a nice short argument using only the compactness of
(N,h) to show that the metric of a decomposable cone is definite.

5.3 Lorentzian metrics with special holonomy on non-trivial torus
bundles
In this section we describe a construction of Lorentzian metrics with special holonomy on
non-trivial torus bundles which is due to K. Lärz ([La10a], [La11]). The basic idea is to
consider Lorentzian metrics on S1-bundles which look like a Walker metric (see section
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4). For that, let (N,hN) be a Riemannian manifold, ω ∈ H2(N,Z) and π : M → N the
S1-bundle with c1(M) = ω . For any closed 2-form ψ on N representing ω in the de Rham
cohomology, there is a connection form A : T M→ iR on M with curvature dA =−2πiπ∗ψ
(see e.g. [B09]). For a smooth function f ∈C∞(M) and a nowhere vanishing closed 1-form
η on N we consider the following Lorentzian metric on M

g := 2iA ¯π∗η + f · (π∗η)2 +π∗hN . (10)

The vertical fundamental vector field ξ of the S1-action on M is light-like. Using that η is
closed, one obtains for the covariant derivative of ξ

∇g
Zξ =−ξ ( f ) ·η(

dπ(Z)
) ·ξ , Z ∈ X(M).

This shows that the vertical tangent bundle V := Rξ ⊂ T M is a parallel distribution, and
that ξ is parallel iff f is constant on the fibres of π . Moreover, if ξ ( f ) 6= 0, the distribution
V does not contain a parallel vector field. Hence, the holonomy representation of (M,g)
has an invariant light-like vector resp. line.
First, let us mention that there are special cases of this construction where M is totally
twisted, i.e., where M is not homeomorphic to Y ×R or Y × S1. Thereby, M can be
compact as well as non-compact (cf. [La10a]).
Here we will consider a special case of this construction, where a 1-dimensional factor
splits up: We take N := B×L, with a 1-dimensional manifold L, η := du, where u is the
coordinate of L, and ω ∈ H2(B,Z). Then M = M̃×L, where π̃ : M̃ → B is the S1-bundle
on B with 1. Chern class ω . Now, let Ã be a connection form on M̃, h a Riemannian metric
on B and f a smooth function on M. Then the metric (10) has the special form

g := g f ,Ã,h := 2iÃ¯du+ f ·du2 + π̃∗h.

We call (M,g f ,Ã,h) a manifold of toric type over (B,h)5. One can use this construction to
produce Lorentzian manifolds with non-trivial topology and holonomy group

Hol(M,g) =
{

GnRn−2

(R+×G)nRn−2 ,

where G is one of the groups SO(n− 2), U(m), SU(m) or Sp(k). The horizontal lift
T B∗ ⊂ T M of T B with respect to Ã is isomorphic to the vector bundle V ⊥/V . Looking
at the parallel displacement along the horizonal lifts of curves in B, one can check that
Hol(B,h) ⊂ Hol(V ⊥/V , ∇̃g). The projection G := prO(n−2) Hol(M,g) ⊂ O(n− 2) coin-

cides with Hol(V ⊥/V , ∇̃g). Hence, to ensure that the holonomy group Hol(V ⊥/V , ∇̃g)
is not larger then Hol(B,h), the bundle V ⊥/V has to admit an additional ∇̃g-parallel
structure corresponding to the group G is question. This is possible for appropriate classes
ω ∈H2(B,Z) defining the topological type of the S1-bundle M̃→B and appropriate closed
2-forms ψ representing ω and defining the connection form Ã. We quote some of the re-
sults of K. Lärz.

Theorem 5.7 ([La10a], [La11]) With the notations above and a sufficient generic func-
tion f in every case, we have:

5Note, that if L = S1, M is a torus bundle with one trivial direction
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1. Let (B,h) be an (n− 2)-dimensional Riemannian manifold such that Hol(B,h) =
SO(n−2). If (M,g f ,Ã,h) is of toric type over (B,h), then

Hol(M,g f ,Ã,h) =
{

SO(n−2)nRn−2 f fibre-constant on P̃
(R+×SO(n−2))nRn−2 otherwise.

2. Let (B2m,h,J) be a compact, simply connected, irreducible Kähler manifold with
c1(B,J) < 0 and let h be its Kähler-Einstein metric. Then, for any Hodge class ω ∈
H1,1(B,Z) := Im

(
H2(B,Z)→ H2(B,C)

)∩H1,1(B,J),

Hol(M,g f ,Ã,h) =
{

U(m)nR2m f fibre-constant on P̃
(R+×U(m)nR2m otherwise.

3. Let (B2m,J,h) be a Calabi-Yau manifold, i.e., a compact Kähler manifold with holon-
omy group SU(m). Choose ω ∈ H1,1(B,Z) and a harmonic representative ψ ∈ ω which
in the case L = S1 has integer values under the dual Lefschetz operator. Then

Hol(M,g f ,Ã,h) =
{

SU(m)nR2m f fibre-constant on P̃
(R+×SU(m)nR2m otherwise.

4. Let (B4k,J) be a holomorphic symplectic manifold with b2 ≥ 4 and Picard number
ρ(B,J) = b2 − 2. Then there exists an irreducible hyperkähler structure (B,J,J2,J3,h)
with Kähler class in H2(B,Q) and 0 6= ω ∈H1,1(B,J)∩H1,1(B,J2)∩H2(M,Z). Let ψ ∈ω
be a harmonic representative. Then

Hol(M,g f ,Ã,h) =
{

Sp(k)nR4k f fibre-constant on P̃
(R+×Sp(k))nR4k otherwise.

For a proof we refer to [La10a] and [La11]. There one can also find lots of concrete
examples of the type described in the Theorem. In particular, this methods allows to
construct spaces with disconnected holonomy groups.

Another bundle construction was considered by T. Krantz in [K10]. He studied S1-
bundles π : M → N over Riemannian manifolds (N,h) with Lorentzian Kaluza-Klein met-
rics on the total space of the form

g := A¯A+π∗h,

where A is a connection form on M. In this case the fibre is time-like. Hereby, a parallel
light-like distribution on (M,g) can occur only if the S1-bundle admits a flat connection.

5.4 Geodesically complete and globally hyperbolic models
The bundle construction in section 5.3 produces compact as well as non-compact Lorent-
zian manifolds with special holonomy. Moreover, this bundle construction gives us com-
plete compact examples: Let T n−1 be the flat torus with standard coordinates (x1, . . . ,xn−2,u)
and take η := du and ψ := dx1 ∧ du. Consider the S1-bundle π : M → T over T defined
by c1(M) = [ψ], a connection form A on M with curvature dA =−2πiπ∗ψ and a smooth
function f on T . Then the Lorentzian metric

g := 2iA¯du+( f ◦π +1)du2 +
n−2

∑
i=1

dx2
i
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on M is a geodesically complete and, if f is sufficient generic, (M,g) is indecomposable
with abelian holonomy algebra Rn−2 (cf. [La10a], Cor. 5.3.).

Examples of non-compact geodesically complete Lorentzian manifolds with special
holonomy of type 2 can be found in papers of M. Sanchez, A. M. Candela and J. L. Flores
(see [CFS03], [FS03]). These authors studied geodesics as well as causality properties for
Lorentzian manifolds (M,g) of the form

M = R×F×R , g = 2dvdu+H(x,u)du2 +h, (11)

where (F,h) is a connected (n− 2)-dimensional Riemannian manifold and H is a non-
trivial smooth function. They call such manifolds general plane-fronted waves (PFW). As
we know from Proposition 4.1, if H is sufficient generic in a point, the holonomy group
of the general plane-fronted wave is Hol(M,g) = Hol(F,h)nRn−2.

Proposition 5.1 ([CFS03]) A general plane-fronted wave (11) is geodesically complete
if and only if (F,h) is a complete Riemannian manifold and the maximal solutions s →
x(s) ∈ F of the equation

∇F ẋ(s)
ds

=
1
2

(gradF H)(x(s),s) (12)

are defined on R.

Equation (12) is studied in several cases. For example, if H = H(x) is at most quadratic,
i.e., if there is a point x0 ∈ F and constants r > 0 and C > 0 such that

H(x)≤C d(x,x0)2 for all x ∈ F with d(x,x0)≥ r,

where d(x,x0) denotes the geodesic distance on (F,h), then the solutions of (12) are de-
fined on R. More on this subject can be found in [CFS03].

Another property, which is of special interest in Lorentzian geometry and analysis, is
global hyperbolicity. A Lorentzian manifold is called globally hyperbolic if it is connected
and time-oriented and admits a Cauchy surface, i.e., a subset S which is met by each
inextendible time-like piecewise C1-curve exactly once. For an introduction to this kind of
Lorentzian manifolds, its relevance and equivalent definitions we refer to [BE96], [MS08],
[BGP07], [Pf09]. In [BS05], A. Bernal and M. Sánchez proved a characterization of
globally hyperbolic manifolds which is very useful for geometric purposes.

Proposition 5.2 ([BS05]) A Lorentzian manifold is globally hyperbolic if and only if it is
isometric to

(R×S, g =−βdt2 +gt), (13)

where β is a smooth positive function, gt is a family of Riemannian metrics on S smoothly
depending on t ∈ R, and each {t}×S is a smooth space-like Cauchy hypersurface in M.

Under special conditions a general plane-fronted wave is globally hyperbolic.

Proposition 5.3 ([FS03]) A general plane-fronted wave (11) is globally hyperbolic if (F,h)
is complete and if the function −H(x,u) is subquadratic at spacial infinity, i.e., if there is
a point x0 ∈ F and continious functions C1(u)≥ 0, C2(u)≥ 0, p(u) < 2 such that

−H(x,u)≤C1(u)d(x,x0)p(u) +C2(u) for all (x,u) ∈ F×R.

In [Ba09] Y. V. Bazaikin constructed globally hyperbolic metrics of the more general
form (7) and gave examples with holonomy of type 3 and 4. In section 6.1 we will discuss
globally hyperbolic metrics with complete Cauchy surface and parallel spinors.
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5.5 Topological properties
In [La10b] and [La11], Kordian Lärz studied topological properties of Lorentzian man-
ifolds with special holonomy using Hodge theory of Riemannian foliations. We will
briefly describe his results. Let (M,g) be a time-oriented Lorentzian manifolds with a
1-dimensional parallel light-like distribution V ⊂ T M. Then there is a global recurrent
vector field ξ ∈ Γ(V ). In [La10b], a Lorentzian manifold is called decent, if the vector
field ξ can be chosen such that ∇X ξ = 0 for all X ∈ ξ⊥. Now, fix a vector field Z on M
satisfying

g(Z,Z) = 0 and g(ξ ,Z) = 1,

and denote by S ⊂ T M the subbundle S := span(ξ ,Z)⊥. Using the vector field Z we can
define a Riemannian metric gR on M by

gR(ξ ,ξ ) := 1, gR(Z,Z) := 1, gR(ξ ,Z) := 0, gR
|S×S := g|S×S, span(ξ ,Z)⊥gRS.

Let L be the foliation of M in light-like curves given by the parallel line V ⊂ T M and
let L ⊥ be the foliation of M in light-like hypersurfaces given by the parallel subbundle
V ⊥ ⊂ T M. If (M,g,ξ ) is a decent spacetime, the Riemannian metric gR is bundle-like
with respect to the foliation (M,L ⊥). Moreover, if L⊥ is a leaf of L ⊥, then gR

|T L⊥×T L⊥

is bundle like with respect to (L⊥,L|L⊥) as well. Then, an application of Hodge theory
and Weitzenböck formula for the twisted basic Hodge-Laplacian of Riemannian foliations
yields the following result:

Proposition 5.4 ([La10b], [La11]) Let (M,g) be a decent spacetime and suppose that the
foliation L ⊥ of M contains a compact leaf L⊥ with Ric(X ,X) ≥ 0 for all X ∈ T L⊥. Let
b1(M) be the first Betti number of M.

1. If M is compact, then 1≤ b1(M)≤ dimM.

2. If M is non-compact and all leaves of L ⊥ are compact, then 0≤ b1(M)≤ dimM−1.

Moreover, if Ricq(X ,X) > 0 for some q∈ L⊥ and all X ∈ Sq, the bounds are 1≤ b1(M)≤ 2
and 0≤ b1(M)≤ 1, respectively.

Explicit examples show, that the bounds for the 1. Betti number in Proposition 5.4
are sharp. If the foliation L ⊥ of M admits a compact leaf with finite fundamental group,
the holonomy algebra of (M,g) can only be of type 1, 2 or 3 (cf. Theorem 3.2), where
the orthogonal part g has an additional property. In special situations estimates for higher
Betti numbers are possible (cf. [La10b], [La11]).

6 Lorentzian manifolds with special holonomy and addi-
tional structures

6.1 Parallel spinors
Now, let us consider a semi-Riemannian spin manifold (M,g) of signature (p,q) with
spinor bundle S und spinor derivative ∇S. We suppose in this review, that spin manifolds
are space-and time-oriented. For a detailed introduction to pseudo-Riemannian spin ge-
ometry and the formulas for the spin representation see [B81] or [BK99]. In spin geometry
one is interested in the description of all manifolds which admit parallel spinors, i.e., with
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spinor fields ϕ ∈ Γ(S) such that ∇Sϕ = 0. This question is closely related to the holonomy
group of (M,g), since the existence of parallel spinors restricts the holonomy group of
(M,g). Let us explain this shortly. The spinor bundle is given by S = Q×(Spin(p,q),κ) ∆p,q,
where (Q, f ) is a spin structure of (M,g) and κ : Spin(p,q)→GL(∆p,q) denotes the spinor
representation in signature (p,q). Furthermore, let λ : Spin(p,q)→ SO(p,q) denote the
double covering of the special orthogonal group by the spin group. We consider the holon-
omy group Holx(M,g) of (M,g) as a subgroup of SO(p,q) (by fixing a basis in TxM).
Using, that the spinor derivative is induced by the Levi-Civita connection, the holonomy
principle gives:

Proposition 6.1 1. If (M,g) admits a non-trivial parallel spinor, then there is an em-
bedding ι : Hol(M,g) ↪→ Spin(p,q) such that λ ◦ ι = IdHol(M,g). Moreover, there exists a
vector v ∈ ∆p,q such that ι(Hol(M,g))⊂ Spin(p,q)v, where Spin(p,q)v denotes the stabi-
lizer of v under the action of the spin group. On the other hand, if there is an embedding
ι : Hol(M,g) ↪→ Spin(p,q) such that λ ◦ ι = IdHol(M,g), then (M,g) admits a spin structure
whose holonomy group is ι(Hol(M,g)). Moreover, if there is a spinor v ∈ ∆p,q such that
ι(Hol(M,g))⊂ Spin(p,q)v, than (M,g) admits a non-trivial parallel spinor field.
2. If (M,g) is simply connected, then there is a bijective correspondence between the
space of parallel spinors and the kernel of the action of the subalgebra λ−1∗ (hol(M,g))⊂
spin(p,q) on ∆p,q:

{ϕ ∈ Γ(S) | ∇Sϕ = 0} 1:1⇐⇒ {v ∈ ∆p,q | λ−1
∗ (hol(M,g))v = 0}.

Using this Proposition, one can easily check which groups in the holonomy list allow the
existence of parallel spinors. Let us first recall the results for Riemannian manifolds.

Theorem 6.1 Let (M,g) be a Riemannian spin manifold of dimension n ≥ 2 with non-
trivial parallel spinor. Then (M,g) is Ricci-flat and non-locally symmetric. If (M,g)
is irreducible and simply connected, the holonomy group is one of the groups SU(m) if
n = 2m ≥ 4, Sp(k) if n = 4k ≥ 8, G2 if n = 7, or Spin(7) if n = 8, with its standard
representation.

The list of holonomy groups in Theorem 6.1 was found by McK. Wang ([W89]). A list
of the holonomy groups of irreducible, non-simply connected Riemannian spin manifolds
with parallel spinors can be found in [SM00].

The situation in the Lorentzian case is a bit different. First of all, note that there are
non-Ricci-flat as well as symmetric Lorentzian manifolds which admit parallel spinors.
For example, let us consider the symmetric Cahen-Wallach spaces Mλ := (Rn,gλ ) (cf.
section 5.1, formula (9)). The Ricci-curvature of Mλ is given by

Ric(X) =−
n−2

∑
j=1

λ j ·gλ

(
X ,

∂
∂v

)
· ∂

∂v
, X ∈ X(Mλ ).

If λ 6= (λ , . . . ,λ ), i.e., if Mλ is not locally conformally flat, then the space of parallel
spinors on Mλ is 2[n/2]−1-dimensional (cf. [B00]).
Now, let us consider a Lorentzian spin manifold (M,g). Since (M,g) is time- and space-
oriented, there is an indefinite hermitian bundle metric 〈·, ·〉 on the spinor bundle S such
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that

〈X ·ϕ,ψ〉 = 〈ϕ,X ·ψ〉,
X(〈ϕ,ψ〉) = 〈∇S

X ϕ,ψ〉+ 〈ϕ,∇S
X ψ〉

for all vector fields X and spinor fields ϕ ,ψ . If ϕ is a spinor field, the vector field Vϕ
defined by

g(X ,Vϕ) =−〈X ·ϕ,ϕ〉
is future-directed and causal, i.e., g(Vϕ ,Vϕ)≤ 0. Moreover, Vϕ has the same zeros as ϕ .

Proposition 6.2 Let (M,g) be a Lorentzian spin manifold with a non-trivial parallel
spinor field ϕ . Then the vector field Vϕ is parallel and either time-like or light-like. More-
over, the Ricci-tensor of (M,g) satisfies

Ric(X) ·ϕ = 0 , X ∈ X(M).

Therefore, the Ricci-tensor is totally isotropic6 and the scalar curvature of (M,g) vanishes.

Proposition 6.2 shows that the holonomy representation of a Lorentzian spin manifold
with a parallel spinor acts trivial on a time-like or a light-like 1-dimensional subspace.
Since a product of spin manifolds admits a parallel spinor if and only if its factors admit
one, we obtain from the Decomposition Theorem of de Rham and Wu (Theorem 2.4):

Proposition 6.3 Let (M,g) be a simply connected, geodesically complete Lorentzian spin
manifold with non-trivial parallel spinor ϕ . Then (M,g) is isometric to the product

(R,−dt2)× (M1,g1)× . . .× (Mk,gk) if Vϕ is time-like

or (N,h)× (M1,g1)× . . .× (Mk,gk) if Vϕ is light-like,

where (M1,g1), . . . , (Mk,gk) are flat or irreducible Riemannian spin manifolds with a
parallel spinor and (N,h) is a weakly irreducible, but non-irreducible Lorentzian spin
manifold with a parallel spinor.

Let us now consider a weakly irreducible Lorentzian spin manifolds (M,g) with par-
allel spinor. For small dimension, by studying the orbit structure of the spinor modul,
R. Bryant [Bry00] and J. Figueroa-O’Farrill [F00] proved

Proposition 6.4 The maximal stabilizer groups of a spinor v ∈ ∆1,n−1 with a light-like
associated vector under the spin representation are

n≤ 5 : 1nRn−2

n = 6 : Sp(1)nR4

n = 7 : (Sp(1)×1)nR5

n = 8 : SU(3)nR6

n = 9 : G2nR7

n = 10 : Spin(7)nR8 and SU(4)nR8

n = 11 : (Spin(7)×1)nR9 and (SU(4)×1)nR8.

6This means Ric(T M)⊂ T M is a totally isotropic subspace.
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Next, we explain the results of T. Leistner ([L02b], [L03]), who was able to determine
all possible holonomy algebras of a weakly irreducible Lorentzian spin manifold (M,g)
admitting a non-trivial parallel spinor using his holonomy classification. Since there is a
parallel light-like vector field on (M,g), the holonomy algebra hol(M,g) is of type 2 or 4,
in particular, hol(M,g) ⊂ so(n− 2)nRn−2. In order to determine hol(M,g), one has to
calculate the subalgebra λ−1∗ (hol(M,g))⊂ spin(1,n−1) and the space

{v ∈ ∆1,n−1 | λ−1
∗ (hol(M,g))v = 0},

see Proposition 6.1. LetR1,n−1 =R f1⊕Rn−2⊕R fn be the decomposition of the Minkowski
space as in section 3. We can identify the spinor moduls

∆1,n−1 = ∆n−2⊗∆1,1,
v = v1⊗u1 + v2⊗u2,

where (u1,u2) is a basis of ∆1,1 = C2 and the Clifford multiplication with the isotropic
vectors f1 and fn and with x ∈ Rn−2 is given by

f1 · (v1⊗u1 + v2⊗u2) =
√

2v1⊗u1

fn · (v1⊗u1 + v2⊗u2) = −
√

2v2⊗u2

x · (v1⊗u1 + v2⊗u2) = (−x · v1)⊗u1 +(x · v2)⊗u2.

For the covering map λ one calculates

λ−1
∗ (so(n−2)nRn−2) = spin(n−2)+{x · f1 | x ∈ Rn−2} ⊂ spin(1,n−1).

If h⊂ so(n−2)nRn−2 acts weakly irreducible, there is a non-trivial vector x ∈Rn−2∩h.
Hence,

{v ∈ ∆1,n−1 | λ−1
∗ (h)v = 0}= {v2⊗u2 | v2 ∈ ∆n−2 with λ−1

∗ (g)v2 = 0},

where g = prso(n−2) h is the orthogonal part of h. In view of Proposition 3.3, Theorem
3.4 and Proposition 6.1 this shows, that the orthogonal part g of the holonomy algebra
hol(M,g) of a Lorentzian manifold with parallel spinor (together with its representa-
tion) coincides with the holonomy representation of a Riemannian manifold with parallel
spinors. By Theorem 6.1, this representation splits into a trivial part and irreducible fac-
tors, which can be the standard representations of su(m), sp(k), g2 or spin(7). These Lie
algebras have trivial center. In particular, hol(M,g) can not be of type 4. We obtain finally

Theorem 6.2 ([L03]) Let (M,g) be an indecomposable, simply connected Lorentzian man-
ifold with non-trivial parallel spinor. Then the holonomy group is

Hol(M,g) = GnRn−2,

where G⊂ SO(n−2) is a product of Lie groups of the form {1} ⊂ SO(n0), SU(m), Sp(k),
G2 or Spin(7) and the representation of G on Rn−2 is the direct sum of the standard
representations of these groups.

The calculation of the spinor derivative of a general plane-fronted wave (11) shows
easily, that such waves admit parallel spinors if and only if the Riemannian manifold
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(F,h) admits such, and the number of independent parallel spinors on (M,g) is the same
as on (F,h).

R. Bryant discussed local normal forms for pseudo-Riemannian metrics with parallel
spinors in small dimension n≤ 11 (cf. [Bry00]). For the special case of abelian holonomy
group Hol0(M,g) = Rn−2 we know already the local normal form of such a metric. g is
locally isometric to (Rn,gH) with

gH = 2dvdu+H du2 +
n−2

∑
i=1

dx2
i ,

where H = H(x1, . . . ,xn−2,u) is an arbitrary smooth function. In view of Theorem 6.2
or Proposition 6.4 this is the only possible normal form for indecomposable Lorentzian
manifolds with parallel spinors in dimension n ≤ 5. For local metrics in dimension 6 ≤
n ≤ 11 we refer to [Bry00], [F00], [F99], [H04], [BCH09], [BCH08], [CFH09] and the
references therein.
We will address here to a global problem, namely to the question, whether one can realize
the holonomy groups GnRn−2 which allow a parallel spinor by a globally hyperbolic
manifold with complete Cauchy surface. In [BM08] we proved:

Theorem 6.3 Any Lorentzian holonomy group of the form

GnRn−2 ⊂ SO(1,n−1),

where G⊂ SO(n−2) is a product of Lie groups of the form {1} ⊂ SO(n0), SU(m), Sp(k),
G2 or Spin(7) with its standard representations, can be realized by a globally hyperbolic
Lorentzian manifold (Mn,g) with a complete Cauchy surface and a non-trivial parallel
spinor.

For the proof we use the characterization (13) of globally hyperbolic manifolds by Bernal
and Sanchez and ideas from the paper [BGM05] of C. Bär, P. Gauduchon and A. Mo-
roianu, who studied the spin geometry of generalized pseudo-Riemannian cylinders. First,
we consider a special kind of spinor fields. Let (M0,g0) be a Riemannian spin manifold
with a Codazzi tensor A, i.e., with a symmetric (1,1)-tensor field satisfying

(∇g0
X A)(Y ) = (∇g0

Y A)(X) for all vector fields X , Y .

A spinor field ϕ on (M0,g0) is called A-Codazzi spinor if

∇S
X ϕ = iA(X) ·ϕ for all vector fields X . (14)

If A is uniformally bounded, we denote by µ+(A) the supremum of the positive eigenvalues
of A or zero if all eigenvalues are non-positive, and by µ−(A) the infimum of the negative
eigenvalues of A or zero if all eigenvalues are non-negative.

Proposition 6.5 Let (M0,g0) be a complete Riemannian spin manifold with a uniformally
bounded Codazzi tensor A and a non-trivial A-Codazzi spinor. Then the Lorentzian cylin-
der

C := I×M0 , gC :=−dt2 +(1−2tA)∗g0,

with the interval I = ((2µ−(A))−1,(2µ+(A))−1) is globally hyperbolic with complete
Cauchy surface and with a parallel spinor.
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In order to obtain such cylinders, we have to ensure the existence of Codazzi spinors (14).
Using our classification of Riemannian manifolds with imaginary Killing spinors ([B89]),
we obtain:

Proposition 6.6 Let (M0,g0) be a complete Riemannian manifold with an A-Codazzi
spinor and let all eigenvalues of the Codazzi tensor A be uniformally bounded away from
zero. Then (M0,g0) is isometric to

(R×F , (A−1)∗(ds2 + e−4sgF)),

where (F,h) is a complete Riemannian manifold with parallel spinors, and A−1 is a
Codazzi-tensor on the warped product (R×F,ds2 + e−4sgF).
Vice versa, let (F,h) be a complete Riemannian manifold with parallel spinors and a Co-
dazzi tensor T which has eigenvalues uniformally bounded from below. Then there is a
Codazzi tensor B on the warped product

M0 = R×F , gwp = ds2 + e−4s gF

with eigenvalues uniformally bounded away from zero. Moreover, B−1 is a Codazzi tensor
on (M0,g0 := (B−1)∗gwp), the Riemannian manifold (M0,g0) is complete and has B−1–
Codazzi spinors.

A Codazzi tensor B on a warped product

M0 = R×F , gwp = ds2 + f (s)2 gF

with properties mentioned in Proposition 6.6 can be constructed from a Codazzi tensor T
on (F,gF) in the following way. We set

B :=
(

b · Id 0
0 E

)

with respect to the decomposition T M = R⊕T F , where b is a function depending only
on s and E is given by

E(s) =
1

f (s)

(
T +

∫ s

0
b(σ) ḟ (σ)dσ · IdF

)
.

This yields a construction principle for globally hyperbolic manifolds with complete Cauchy
surface and special holonomy.

Proposition 6.7 ([BM08]) Let (F,gF) be a complete Riemannian manifold with parallel
spinors and a Codazzi tensor T with eigenvalues bounded from below. Then there are
Codazzi tensors B on (R×F,ds2 + e−4sgF) with eigenvalues uniformally bounded away
from zero. Let

C(F,B) := I×R×F , gC :=−dt2 +(B−2t)∗(ds2 + e−4sgF).

Then

1. (C,gC) is globally hyperbolic with a complete Cauchy surface, it admits a parallel
light-like vector field as well as a parallel spinor.
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2. If (F,h) has a flat factor, then C(F,B) is decomposable.

3. If (F,h) is (locally) a product of irreducible factors, then C(F,B) is weakly irre-
ducible and

Hol0(0,0,x)(C,gC) = (B−1 ◦Hol0x(F,gF)◦B)nRdimF .

Our construction is based on the existence of Codazzi tensors on Riemannian manifolds
with parallel spinors. Let us finally discuss some examples for that.

Example 1. On the flat space Rk the endomorphism TR
k

h ,

TR
k

h (X) := ∇R
k

X (grad(h)) = X(∂1h, . . . ,∂kh),

is a Codazzi tensor for any function h on Rk, and every Codazzi tensor is of this form. In
this case the cylinder C(F,B) is flat for any Codazzi tensor B on the warped product that
is constructed out of T as described above.

Example 2. Let (F1,gF1) be a complete simply connected irreducible Riemannian spin
manifold with parallel spinors and (F,gF) its Riemannian product with a flat Rk. Then
(F,gF) is complete and has parallel spinors. Let B be a Codazzi tensor on the warped
product R×e−2s F constructed out of the Codazzi tensor λ IdF1 +TR

k

h of F , where TR
k

h is
taken from Example 1. Then the cylinder C(F,B) is globally hyperbolic with complete
Cauchy surface, it is decomposable and has the holonomy group

Hol(F1,gF1) n R
dimF1 .

Example 3. Let us consider the metric cone

(Fn−2,gF) := (R+×N,dr2 + r2gN),

where (N,gN) is simply connected and a Riemannian Einstein-Sasaki manifold, a nearly
Kähler manifold, a 3-Sasakian manifold or a 7-dimensional manifold with vector product.
Then (F,gF) is irreducible and has parallel spinors (but fails to be complete). Furthermore,
T := ∇F ∂r is a Codazzi tensor on (F,gF). The cylinder C(F,B), where the Codazzi tensor
B is constructed out of T as described above, has the holonomy group

Hol(C,gC)' GnRn−2,

where

G =





SU((n−2)/2) if N is Einstein-Sasaki
Sp((n−2)/4) if N is 3-Sasakian
G2 if N is nearly Kähler
Spin(7) if N 7-dimensional with vector product.

Example 4. Let (F,gF) = (F1,gF1)×·· ·× (Fk,gFk) be a Riemannian product of simply
connected complete irreducible Riemannian manifolds with parallel spinors. Let T be the
Codazzi tensor T = λ1 IdF1 + · · ·+λk IdFk and B constructed out of T as described above.
Then C(F,B) is globally hyperbolic with complete Cauchy surface, it is weakly irreducible
and the holonomy group is isomorphic to

(
Hol(F1,gF1)×·· ·×Hol(Fk,gFk)

)
n RdimF .
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Example 5. Eguchi-Hansen space. Eguchi-Hansen spaces are complete, irreducible
Riemannian 4-manifolds with holonomy SU(2). They have 2 linearly independent parallel
spinors. Any Codazzi tensor on a Eguchi-Hansen space has the form T = λ · Id for a
constant λ .

6.2 Einstein metrics
In the final section we want to discuss recent results concerning Lorentzian Einstein spaces
with special holonomy. As a first example let us look at the general plane-fronted wave
(11). The Ricci tensor of such metric is given by

Ric = RicF − 1
2

∆F H ·du2.

Hence, for any Ricci-flat Riemannian manifold (F,h) and any family of harmonic func-
tions H(·,u) on F , the general plane-fronted wave (11) is Ricci-flat with special holonomy.

Now, let (M,g) be a Lorentzian Einstein-space with Einstein constant Λ:

Ric = Λ ·g.

We suppose, that (M,g) admits a 1-dimensional parallel light-like distribution, i.e., that
the holonomy group is contained in (R∗×O(n−2))nRn−2. First we discuss the possible
holonomy groups for such Einstein metrics. After that we review some results concern-
ing the local structure of such metrics. We follow the papers of G. Gibbons and N. Pope
([GiP08], [Gi09]) as well as the results of T. Leistner and A. Galaev ([GL08], [GL10],
[G10c].
Recall, that an irreducible Riemannian manifold with holonomy algebra different from
so(n) and u(n/2) is Einstein. The determination of the possible holonomy algebras for
Lorentzian Einstein spaces is based on a detailed study of the space of curvature endomor-
phisms K (h) of a weakly irreducible subalgebra h⊂ (R⊕ so(n−2))nRn−2, which one
can find in the papers of A. Galaev ([G05], [G10c], [G10a]).

Theorem 6.4 Let (M,g) be a weakly-irreducible, but non-irreducible Lorentzian Einstein
manifold. Then its holonomy algebra hol(M,g) is of type 1 or type 2.
1. If (M,g) is Ricci-flat, then the holonomy algebra is either (R⊕ g)nRn−2 and in the
decomposition (1) of the orthogonal part g at least one of the ideals gi ⊂ so(ni) coincides
with one of the Lie algebras so(ni), u(ni/2), sp(ni/4)⊕sp(1) or with a symmetric Berger
algebra, or the holonomy algebra is gnRn−2 and each ideal gi ⊂ so(ni) in the decompo-
sition of g coincides with one of the Lie-algebras so(ni), su(ni/2), sp(ni/4), g2 ⊂ so(7),
spin(7)⊂ so(8).
2. If (M,g) is an Einstein space with non-zero Einstein constant Λ, then the holonomy
algebra is (R⊕g)nRn−2, g has no trivial invariant subspace and each ideal gi ⊂ so(ni)
in the decomposition of g is one of the Lie algebras so(ni), u(ni/2), sp(ni/4)⊕sp(1) or a
symmetric Berger algebra.

We remark that contrary to the Riemannian situation, any of the holonomy algebras in
Theorem 6.4 can be realized also by non-Einstein metrics.

Now, let us look at the local structure of a Lorentzian Einstein metric with a parallel
light-like line and dimension at least 4. As we know from section 4, locally such metric
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is a Walker metric. Around any point p ∈ M there are coordinates (U,(v,x1, . . . ,xn−2,u)
such that

g|U = 2dvdu+H du2 +2A(u)¯du+h(u), (15)

where h(u) = hi j(x1, . . . ,xn−2,u)dxidx j is an u-depending family of Riemannian metrics,
H is a smooth function on U and A(u) = Ai(x1, . . . ,xn−2,u)dxi is a u-depending family of
1-forms on U . Of course, the Einstein condition imposes conditions on the data A, H and
h in the Walker metric. These conditions were derived by Gibbons and Pope in [GiP08].

Theorem 6.5 ([GiP08]) Let (M,g) be a Lorentzian manifold with a parallel light-like line
and assume that (M,g) is Einstein with Einstein constant Λ. Then the function H in the
Walker metric (15) has the form

H = Λv2 + vH1 +H0, (16)

where H1 and H0 are smooth functions on U which do not depend on v, and H0, H1, A(u)
and h(u) satisfy the following system of differential equations:

∆H0− 1
2

F i jFi j−2Ai∂iH1−H1∇iAi +2ΛAiAi−2∇iȦi

+
1
2

ḣi jḣi j +hi jḧi j +
1
2

hi jḣi jH1 = 0,

∇ jFi j +∂iH1−2ΛAi +∇ jḣi j−∂i(h jkḣ jk) = 0,

∆H1−2Λ∇iAi +Λhi jḣi j = 0,

Rici j = λhi j.

Hereby i, j,k run from 1 to n−2, the dot denotes the derivative with respect to u and ∂i the
derivative with respect to xi, ∆ is the Laplace-Beltrami operator for the metrics h(u) and
Fi j = ∂iA j−∂ jAi are the coefficients of the differential of the 1-form A(u). Conversely, any
Walker metric (15) satisfying these equations is an Einstein metric with Einstein constant
Λ.

In [GL10] Galaev and Leistner simplified this system of equations. They proved that
one can always find Walker coordinates (15) with A(u) = 0. Moreover, using the special
form of the curvature endomorphisms K ((R⊕so(n−2))nRn−2) and the condition (16),
they were able to show that for an Einstein manifold there exist Walker coordinates with
A(u) = 0 and H0 = 0, and furthermore, if Λ 6= 0 one can choose Walker coordinates with
A(u) = 0 and H1 = 0. If the Einstein manifold admits not only a parallel light-like line,
but a parallel light-like vector field, then by Theorem 6.4 the Einstein constant Λ is zero.
In [GiP08] one can find a lot of concrete Lorentzian Einstein metrics with a parallel light-
like line, which are of physical relevance (time-dependent multi-center solutions). The
case of 4-dimensional Einstein spaces was previously discussed for example in [KG61a],
[KG61b], [GT01]. More concrete solutions in dimension 4 are obtained in [G10b].

References
[AC09] Alekseevsky, D., Cortés, V, Galaev, A., Leistner, T.: Cones over pseudo-

Riemannian manifolds and their holonomy. J. Reine Angew. Math. 635, 23–69
(2009)

29



[Ba93] Bär, C.: Real Killing spinors and holonomy. Comm. Math. Phys. 154 (3), 509–
521 (1993)

[BGM05] Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-
Riemannian and spin geometry. Math. Zeitschrift 249, 545–580 (2005)
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