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1. Introduction

Since the original works of Deser, Jackiw and ’t Hooft [1,2], 
three dimensional gravity has attracted attention. Despite having 
no propagating degrees of freedom, the BTZ black-hole solution 
[3,4] and the quantization of the theory by Witten [5] are its highly 
non-trivial trademarks. These features seem to be rooted in the 
fact that the Einstein–Hilbert (EH) Lagrangian with cosmological 
constant can be written (up to a boundary term) as a Chern–
Simons (CS) three-form. Therefore, three-dimensional gravity cor-
responds to an off-shell quasi-invariant gauge theory (for AdS, dS 
or Poincaré depending on the cosmological constant). The locally 
supersymmetric extension of Einstein gravity in three dimensions 
was carried out by Deser and Kay in Ref. [6]. Regarding the CS for-
mulation, three-dimensional supergravity arises very naturally in 
the case of negative [7] and vanishing [8,9] cosmological constant. 
However, there is still the possibility of having other families of 
supergravity theories containing gauge groups larger than the su-
persymmetric AdS or Poincaré groups [10–12]. This is particularly 
interesting because symmetries enhancements usually invokes new 
generators in the Lie algebra. Subsequently, this requires the in-
clusion of extra gauge fields in the gauge potential, giving rise to 
non-minimal couplings of “matter” fields with geometry in such a 
way that gauge invariance is preserved.

The purpose of this work is to analyze the construction 
of three-dimensional CS supergravity theories whose symmetry 
groups are obtained by an S-expansion of the N = 1 supersym-
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metric AdS algebra osp(1|2) ⊗ sp(2). The S-expansion method 
[13,14] is a powerful tool in order for obtaining new Lie algebras 
starting from a given one. Moreover, it provides the associated in-
variant tensors of the expanded algebra in a simple way. Since the 
invariant tensor is an essential ingredient in the construction of 
gauge theories and in particular of CS (super)gravities, it is a wel-
comed feature.

The application of S-expansion methods in the context of su-
pergravity was first introduced in [15] and subsequently in [16] as 
an attempt to describe the low energy regime of M-Theory. More 
recently, a wide range of theories of S-expanded (super)gravities 
have been studied in different contexts, and with different moti-
vations (see for instance [17–20] and references therein). Also, in 
Ref. [21], three-dimensional gravity is constructed using the semi-
simple extension of the Poincaré algebra [22,23] as a gauge sym-
metry. The Lie algebra behind this symmetry can be obtained as a 
S-expansion of AdS algebra so(d − 1, 2).

This article is organized as follows: In section 2, the super-
symmetric extension of the three-dimensional AdS-Lorentz al-
gebra is written. In section 3, we review the general proper-
ties of the S-expansion method. Also, it is explicitly shown that 
three-dimensional AdS-Lorentz superalgebra corresponds to a S-
expansion of the AdS superalgebra. The components of the invari-
ant tensor are worked out. In section 4 we extend the notion of 
S-expansion to Casimir operators and the invariant operators asso-
ciated to the expanded superalgebra are constructed. Section 5 is 
devoted to the analysis of three-dimensional AdS-Lorentz CS super-
gravity. Field equations and symmetry transformations are worked 
out. In section 6 we compute stationary solutions and its Killing 
spinors equation are found. Finally, section 7 concludes this paper 
with some remarks and future developments.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://doi.org/10.1016/j.physletb.2018.10.066
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:ofierro@ucsc.cl
mailto:fizaurie@udec.cl
mailto:pasalgad@udec.cl
mailto:ovaldivi@unap.cl
https://doi.org/10.1016/j.physletb.2018.10.066
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.10.066&domain=pdf


O. Fierro et al. / Physics Letters B 788 (2019) 198–205 199
2. AdS-Lorentz superalgebra

In Ref. [23] the semi-simple extension of the Poincaré algebra 
iso(d − 1, 1), generated by Lorentz rotations { Jab} and translations 
{Pa}, has been carried out by the inclusion of a second-rank ten-
sor generator {Zab}. Interestingly, this Lie algebra enhancement 
is isomorphic to the direct sum of the AdS and Lorentz algebra 
so(d − 1, 2) ⊕ so(d − 1, 1) in any dimension. More recently, it has 
been shown in Refs. [21,24] that the so called AdS-Lorentz alge-
bra can be obtained as a S-expansion of the AdS algebra and its 
Inönü–Wigner contraction leads to the Maxwell algebra. The super-
symmetric extension in four-dimensions has been also considered 
in Refs. [25,26]. Remarkably, both algebras, pure bosonic and su-
persymmetric, are semi-simple in contrast to the (super) Poincaré 
algebras.

In this work we are interested in the N = 1 AdS-Lorentz su-
peralgebra in three-dimensions, which is defined by the following 
commutation relations:

[ Ja, Jb] = εabc J c , [Za, Zb] = εabc Z c ,

[ Ja, Pb] = εabc P c , [Pa, Pb] = εabc Z c ,

[ Ja, Zb] = εabc Z c , [Za, Pb] = εabc P c ,

[Pa, Q α] = − 1
2 (�a Q )α , [Za, Q α] = − 1

2 (�a Q )α ,

[ Ja, Q α] = − 1
2 (�a Q )α ,

{
Q α, Q β

} = (�aC)αβ

(
P a + Za

)
,

(2.1)

where Ja denote the generators of the Lorentz subalgebra so(2, 1), 
Pa the translations, Za are a new set of non-abelian genera-
tors, and Q α the supercharges. Lorentz indices a, b, ... = 0, 1, 2 are 
raised and lowered with the Minkowski metric ηab , εabc is the 
three-dimensional Levi-Civita symbol. Greek indices α, β... = 0, 1
are raised and lowered by the charge conjugation matrix C , and �a

denote the 2 × 2 gamma matrices representation (see Appendix A
for spinor conventions).

In the following section, we show that the (super)AdS-Lorentz 
algebra (2.1) can be derived as an application of the S-expansion 
procedure.

3. Abelian semigroup expansion

The Lie algebra expansion procedure was introduced for the 
first time in Ref. [27], and subsequently studied in Refs. [28,29]. 
In this expansion method, we must consider the Maurer-Cartan 
forms on the group manifold. Some of the group parameters are 
rescaled by a factor λ, and the Maurer–Cartan forms are expanded 
as a power series in λ. The series is finally truncated in such a way 
that the closure of the expanded algebra is assured.

In Refs. [13,14,30] a natural outgrowth of the power series ex-
pansion method was proposed. The idea is to start with a Lie 
algebra g and to combine it with the binary product structure of 
an abelian semigroup S in order to define a new Lie algebra. This 
new algebra is known in general as a S-expanded algebra. In fact, 
from [13, Theorem 3.1], it is possible to prove that the direct prod-
uct S × g retains Lie algebra structure (see also [27,28,31]). The 
most relevant cases are provided when subalgebras of S ×g can be 
systematically extracted. For instance, any Lie algebra can be writ-
ten as a direct sum of subspaces g = ⊕

p∈I V p , where I is a set 
of indices. The subspace structure of the algebra can be analyzed
defining a mapping i : I × I → 2I such that the Lie algebra g can be 
written as 

[
V p, Vq

] ⊂ ⊕
r∈i(p,q)

Vr . Now, whenever the semigroup S

admits a decomposition S = ⋃
p∈I S p , satisfying the resonant con-

dition S p ·Sq ⊂ ⋂
r∈i Sr , then it follows that SR = ⊕

p∈I S p × V p

(p,q)
is a subalgebra of S × g [13, Theorem 4.2]. The procedure is prac-
tical because the subspace structure is arbitrary, but we use it in 
order to codify our physicist’s intuition on the meaning of the sym-
metry (e.g. a subspace corresponds to Lorentz transformations, an-
other to AdS boosts, etc.). Thus, using the S-expansion it is possible 
to find bigger symmetries in a simple way, and to do this preserv-
ing some valuable structure from a physical point of view. Without 
it, constructing bigger symmetries requires long and careful work 
regarding the closure of Jacobi’s identity (or the self-consistency of 
d2 = 0 when working with Maurer–Cartan forms).

The S-expansion procedure has already been used in differ-
ent contexts with different motivations. For instance, the so called 
Bm-algebras [17] (also known as generalized Poincaré algebras), 
were constructed from the AdS-algebra and a particular semi-
group1 denoted by S(N)

E = {λα}N+1
α=0 . Moreover, in Ref. [24] the so-

called AdS-Lorentz algebra so (d − 1,1) ⊕ so (d − 1,2) [22,23,25] is 
obtained by means of the S-expansion procedure with a semi-
group2 denoted by S(N)

M = {λα}N
α=0. This later algebra is related 

to the so called Maxwell algebra [32,33] via a contraction process 
[34].

Another interesting application is in the context of non-
relativistic algebras. Recently, in Ref. [35] it was shown that it 
is possible to obtain the non-relativistic versions of both general-
ized Poincaré algebras and generalized AdS-Lorentz algebras. These 
were called generalized Galilean type I and type II, denoted by GBn
and GLn respectively. It seems likely that new non-relativistic CS 
gravity theories may be constructed following a similar procedure 
as the one presented in Ref. [36]. Its symmetries would correspond 
to deformations of the symmetries of the Newton–Cartan formu-
lation of Newtonian gravity. This problem will be addressed in the 
near future.

3.1. S-expansion and the AdS superalgebra

In this section we construct the three-dimensional AdS-Lorentz 
superalgebra as a S-expansion of the AdS superalgebra g =
osp (2|1) ⊗ sp (2), given by the commutation relations[

J̃a, J̃ b

]
= εabc J̃ c ,

[
P̃a, Q̃ α

]
= − 1

2

(
�a Q̃

)
α

,[
P̃a, P̃b

]
= εabc J̃ c ,

[
J̃a, Q̃ α

]
= − 1

2

(
�a Q̃

)
α

,[
J̃a, P̃b

]
= εabc P̃ c ,

{
Q α, Q β

} = (�aC)αβ

(
J̃ a + P̃ a

)
.

(3.1)

Let us start by choosing the following subspace decomposition

g = V 0 ⊕ V 1 ⊕ V 2 , (3.2)

where V 0 = Span
{

J̃a

}
, V 1 = Span

{
Q̃ α

}
and V 2 = Span

{
P̃a

}
. This 

decomposition obeys the following structure

[V 0, V 0] ⊂ V 0 , [V 0, V 1] ⊂ V 1 , [V 0, V 2] ⊂ V 2 ,

[V 1, V 1] ⊂ V 0 ⊕ V 2 , [V 1, V 2] ⊂ V 1 , [V 2, V 2] ⊂ V 1 .

(3.3)

At this point it is convenient to apply the S-expansion resonance 
theorem using (3.3) and a specific semigroup S(2)

M . A similar treat-

1 This semigroup is endowed with the multiplication rule λα ·λβ = λα+β when 
α + β ≤ N + 1; and λα ·λβ = λN+1 otherwise.

2 This semigroup is endowed with the multiplication rule λα ·λβ = λα+β when 
α + β ≤ N; and λα ·λβ = λα+β−2[(N+1)/2] otherwise.
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ment was carried out in Ref. [21] for the bosonic sector. Let 
S(2)

M = {λ0, λ1, λ2} be an abelian semigroup with multiplication law

λα ·λβ =
{

λα+β, if α + β � 2
λα+β−2 if α + β > 2

(3.4)

or equivalently

λ0 λ1 λ2
λ0 λ0 λ1 λ2
λ1 λ1 λ2 λ1
λ2 λ2 λ1 λ2

(3.5)

A particular partition for the semigroup S(2)

M is given by

S(2)
M = S0 ∪ S1 ∪ S2 ,

= {λ0, λ2} ∪ {λ1} ∪ {λ2} , (3.6)

where the subsets {Si}i=0,1,2 obey

S0·S0 ⊂ S0 , S0·S1 ⊂ S1 , S0·S2 ⊂ S2 ,

S1·S1 ⊂ S0 ∩ S2 , S1·S2 ⊂ S1 , S2·S2 ⊂ S0 .
(3.7)

Comparing (3.7) with (3.3), one finds that the resonant condi-
tion [13, Theorem 4.2] is satisfied. Therefore, a subalgebra

GR = W0 ⊕ W1 ⊕ W2 , (3.8)

can be extracted with

W0 ≡ S0 × V 0 = Span
{
λ0 J̃a, λ2 J̃a

}
, (3.9)

W1 ≡ S1 × V 1 = Span
{
λ1 Q̃ α

}
, (3.10)

W2 ≡ S2 × V 2 = Span
{
λ2 P̃a

}
, (3.11)

which corresponds in this case to the minimal AdS-Lorentz Lie su-
peralgebra. In fact, computing commutation relations[

λ0 J̃a, λ0 J̃ b

]
= λ0

[
J̃a, J̃ b

]
= λ0εabc J̃ c ,[

λ2 P̃a, λ2 P̃b

]
= λ2

[
P̃a, P̃b

]
= λ2εabc P̃ c ,[

λ0 J̃a, λ2 J̃ b

]
= λ2

[
J̃a, J̃ b

]
= λ2εabc J̃ c ,[

λ0 J̃a, λ1 Q̃ α

]
= λ1

[
J̃a, Q̃ α

]
= −λ1

2

(
�a Q̃

)
α

,[
λ2 J̃a, λ2 J̃ b

]
= λ2

[
J̃a, J̃ b

]
= λ2εabc J̃ c ,[

λ2 J̃a, λ1 Q̃ α

]
= λ1

[
J̃a, Q̃ α

]
= −λ1

2

(
�a Q̃

)
α

,[
λ0 J̃a, λ2 P̃b

]
= λ2

[
J̃a, P̃b

]
= λ2εabc P̃ c ,[

λ2 P̃a, λ1 Q̃ α

]
= λ1

[
P̃a, Q̃ α

]
= −λ1

2

(
�a Q̃

)
α

,[
λ2 J̃a, λ2 P̃b

]
= λ2

[
J̃a, P̃b

]
= λ2εabc P̃ c ,{

λ1 Q̃ α,λ1 Q̃ β

}
= λ2

{
Q̃ α, Q̃ β

}
= λ2 (�aC)αβ

(
J̃a + P̃a

)
,

(3.12)

and renaming generators according to

Ja ≡ λ0 J̃a , Za ≡ λ2 J̃a ,

P ≡ λ P̃ , Q ≡ λ Q̃ ,
(3.13)
a 2 a α 1 α
Fig. 1. AdS-Lorentz superalgebra as resonant subalgebra of S(2)
M × g.

it is straightforward to check that GR = W0 ⊕ W1 ⊕ W2 corre-
sponds to (2.1). This way, the AdS-Lorentz superalgebra is a reso-
nant subalgebra of S(2)

M × g. In order to get a better intuition about 
the S-expansion and resonant subalgebra procedure, it is helpful to 
use a diagram as shown in Fig. 1. Subspaces of g are represented 
in vertical axis while S(2)

M elements are placed in horizontal axis. 
Colored regions corresponds to the resonant subalgebra G with re-
spect to S(2)

M × g.

3.2. Invariant tensors

The problem of finding all the invariant tensors associated to a 
given Lie algebra is, to the best of our knowledge, not completely 
understood. From the physical point of view, this limitation has di-
rect impact on the construction of topological theories of gravity 
such as CS. However, as we will see below, there are complemen-
tary S-expansion theorems which allow us to find the invariant 
tensors and consequently the Casimir operators. These are easily 
constructed in terms of the invariants of the original algebra and 
the semigroup structure.

For the current case, recall the invariants of the AdS superalge-
bra g = osp (2|1) ⊗ sp (2) ,〈

J̃a J̃b

〉
= μ̃ηab ,

〈
J̃a P̃b

〉
= ν̃ηab ,

〈
P̃a P̃b

〉
= μ̃ηab ,〈

P̃a Q̃ α

〉
= 0 ,

〈
J̃a Q̃ α

〉
= 0 ,

〈
Q̃ α Q̃ β

〉
=2

(
ν̃ − μ̃

)
Cαβ ,

(3.14)

where μ̃ and ν̃ are arbitrary real constants. Following [13, The-
orem 7.1 and 7.2] it is direct to show that the invariant tensor 
associated to the AdS-Lorentz superalgebra has the following com-
ponents

〈 Ja Jb〉 = μ1ηab , 〈Pa Pb〉 = μ0ηab ,

〈 Ja Zb〉 = μ0ηab ,
〈
Q α Q β

〉 = 2 (ν0 − μ0)Cαβ ,

〈 Ja Pb〉 = ν0ηab , 〈 Ja Q α〉 = 0 ,

〈Za Zb〉 = μ0ηab , 〈Za Q α〉 = 0 ,

〈Za Pb〉 = ν0ηab , 〈Pa Q α〉 = 0 ,

(3.15)

where

μ1 ≡ α1μ̃ , μ0 ≡ α0μ̃ , ν0 ≡ α0ν̃ , (3.16)

are redefinitions for arbitrary real constants.3 In what follows, we 
make use of (3.15) for the construction of the S-expanded Casimir 
operators. We have to notice that one of the three constants in 
(3.15) can always be reabsorbed in a global multiplicative constant. 
Therefore, we can expect only two independent Casimir operators.

3 α0 and α1 appear through [13, Theorem 7.1].
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4. Casimir operators and the AdS-Lorentz superalgebra

In order to find the Casimir operators for the AdS-Lorentz su-
peralgebra, one needs to specify the Casimir operators of the orig-
inal g = osp (2 |1 ) ⊗ sp (2) superalgebra. Since g is semi-simple, it 
has a nondegenerate Killing metric

kAB = STr (T A T B) = 〈T A T B〉 (4.1)

which can be read from (3.14). Here, {T A} with A = 1, . . . , dimg, 
denote the generators of g. In this way, assuming nonvanishing 
and μ̃ �= ν̃ real constants, the inverse components4 of kAB are the 
following:

kab = μ̃(
μ̃2 − ν̃2

)ηab , kaḃ = − ν̃(
μ̃2 − ν̃2

)ηab ,

kȧḃ = μ̃(
μ̃2 − ν̃2

)ηȧḃ , kaα = 0 ,

kȧα = 0 , kαβ = − 1

2
(
μ̃ − ν̃

)Cαβ .

(4.2)

We look for Casimir operators of degree two C = C AB T A T B , where 
C AB are given by the components of the symmetric invariant ten-
sor 〈T A T B〉. Using (3.14) and the generators of g, direct calculation 
shows

C = kAB T A T B , (4.3)

= 1(
μ̃2 − ν̃2

) [
μ̃

(
J̃ a J̃a + P̃ a P̃a + 1

2
Q̃ α Q̃ α

)

+ ν̃

(
− P̃ a J̃a − J̃ a P̃a + 1

2
Q̃ α Q̃ α

)]
. (4.4)

From eq. (4.4), one clearly sees that the AdS superalgebra has two 
independent Casimir operators

C1 = J̃ a J̃a + P̃ a P̃a + 1

2
Q̃ α Q̃ α ,

C2 = − P̃ a J̃a − J̃ a P̃a + 1

2
Q̃ α Q̃ α . (4.5)

4.1. AdS-Lorentz Casimir operators

Following Ref. [21], the Casimir operator for a S-expanded Lie 
algebra is defined by

CS−exp = mαβ C AB T(A,α)T(B,β) , (4.6)

where T(A,α) = λα T A denote the expanded generators and mαβ

is the inverse of the matrix mαβ = αγ Kαβ
γ . Here αγ denote ar-

bitrary constants and Kαβ
γ codifies the semigroup product law 

trough the definition

Kαβ
γ =

{
1, when λαλβ = λγ ,

0, otherwise.
(4.7)

4 Doted latin indices are running along the AdS-Boosts 
{

P̃a

}
.

In the case of S(2)

M , the Kαβ
γ are given by

K 0
αβ =

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ , K 1

αβ =
⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ ,

K 2
αβ =

⎛
⎝0 0 1

0 1 0
1 0 1

⎞
⎠ .

(4.8)

Therefore, the metric mαβ for S(2)

M corresponds to

mαβ = αγ Kαβ
γ =

⎛
⎝α0 α1 α2

α1 α2 α1
α2 α1 α2

⎞
⎠ , (4.9)

and its inverse mαβ reads

mαβ = 1

det mαβ

×
⎛
⎝ α2

2 − α2
1 0 − (

α2
2 − α2

1

)
0 α2 (α0 − α2) −α1 (α0 − α2)

− (
α2

2 − α2
1

) −α1 (α0 − α2) α0α2 − α2
1

⎞
⎠ ,

(4.10)

where the constants α0, α1 and α2 must satisfy

detmαβ = (α0 − α2)
(
α2

2 − α2
1

)
�= 0 . (4.11)

Using (4.5), (4.10) in (4.6) and defining

α ≡ α2α0 − α2
2 ,

β ≡ α2α0 − α2
1 ,

we get two independent S-expanded Casimir operators for the 
AdS-Lorentz superalgebra,

CS−exp 1 = 1

2
Q̄ Q − J 2 + 2

(
J a Za − J a Pa

)
,

CS−exp 2 = J 2 + Z 2 + P 2 − 2
(

J a Za − J a Pa + Za Pa
)

. (4.12)

5. Chern–Simons supergravity

We are interested in a supergravity theory which is invariant 
under an expanded AdS symmetry, such that it contains the EH 
term, the exotic gravitational CS term, plus cosmological constant 
as a certain limit. A type of symmetry fulfilling these conditions is 
precisely the minimal AdS-Lorentz superalgebra.

The fundamental field we consider is the one-form gauge po-
tential A = Aa

μdxμ ⊗ Ta , taking values in the Lie algebra (2.1)

A = 1



ea Pa + ωa Ja + σ a Za + 1√



ψ̄ Q . (5.1)

Here ea(x) is the vielbein, 
 is a constant length parameter, ωa(x)
the spin connection and ψα(x) is a spin 3/2 gravitino. Moreover, 
the one-form σ a(x) will be referred to as the Lorentz gauge field 
since, as it will be shown later, it transforms as a vector under 
local Lorentz transformations.

In principle, it suffices to use the connection eq. (5.1) in the 
canonical CS action functional [37]

S(2+1)
cs [A] = κ

4π

∫ 〈
A ∧

(
dA + 2

3
A ∧ A

)〉
(5.2)
M3
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to have the AdS-Lorentz supergravity theory. However, in order to 
gain some physical intuition on the Lagrangian terms, it is conve-
nient to use the subspace separation method (SSM). The applica-
bility of the method relies on considering the CS (2n + 1)-form as 
a particular case of a transgression form [38]. Following Ref. [30], 
we write the triangle equation

Q(2n+1)
A2←A0

= Q(2n+1)
A2←A1

+Q(2n+1)
A1←A0

+ dQ(2n)
A2←A1←A0

, (5.3)

which decompose the transgression form as a sum of two trans-
gressions depending on an intermediate connection, where each 
transgression is defined by

Q(2n+1)

A← Ā
= (n + 1)

1∫
0

dt
〈(

A − Ā
) ∧ F n

t

〉
(5.4)

with Ft = dAt + At ∧ At and At = (
A − Ā

)
t + Ā. The last term in 

eq. (5.3) is given by

Q(2n)

A← Ā← Ã
= n (n + 1)

1∫
0

dt

t∫
0

ds
〈(

A − Ā
) ∧

(
Ā − Ã

)
∧ F n−1

st

〉

(5.5)

where Fst = dAs,t + As,t ∧ As,t and As,t = (
A − Ā

)
s +

(
Ā − Ã

)
t + Ã

(see Ref. [39, Chapter 2 and 3] for further details).
The SSM embodies the following steps:

1. Split the superalgebra into p + 1 subspaces g = V 0 ⊕ ... ⊕ V p .
2. Write the connection as a sum of pieces valued on every sub-

space A = a0 + ... + ap , Ā = ā0 + ... + āp with ai, ̄ai ∈ g for 
i = 0, 1, ..., p.

3. Evaluate the triangle equation (5.3) with the connections writ-
ten in terms of pieces valued in every subspace

A0 = Ā , A1 = a0 + ... + ap−1 , A2 = A . (5.6)

4. Repeat step 3 for the transgression Q(2n+1)
A1←A0

and so on.

For the present case, n = 1 and the AdS-Lorentz algebra splits 
into subspaces g = V 0 ⊕ V 1 ⊕ V 2 ⊕ V 3 with

V 0 = Span { Ja} , V 1 = Span {Za} ,

V 2 = Span {Pa} , V 3 = Span {Q α} .
(5.7)

Using the intermediate connections

A0 = 0 , (5.8)

A1 = ω , (5.9)

A2 = σ + ω , (5.10)

A3 = e + σ + ω , (5.11)

A4 = ψ̄ + e + σ + ω , (5.12)

with

ω = ωa Ja , σ = σ a Za , e = 1



ea Pa , ψ̄ = 1√



ψα Q α , (5.13)

and applying (5.3) recursively, we find5

5 In what follows we omit the wedge symbol “∧” in order to have shorter ex-
pressions.
Q(3)
A4←A3

= 1



(ν0 − μ0)

[(
1



ea + σ a

)(
ψ̄�aψ

) − 2ψ̄Dψ

]
,

(5.14)

Q(3)
A3←A2

= μ0


2

[
ea T a + εabceaσ bec

]

+ ν0




[
εabcea

(
σ bσ c + 1

3
2
ebec

)
+ 2ea

(
Ra + Dσ a)] ,

(5.15)

Q(3)
A2←A1

= μ0

[
σa

(
2Ra + Dσ a) + 1

3
εabcσ

aσ bσ c
]

, (5.16)

Q(3)
A1←A0

= μ1

[
ωadωa + 1

3
εabcω

aωbωc
]

, (5.17)

Q(2)
A4←A3←A0

= 0 , (5.18)

Q(2)
A3←A2←A0

= ν0



ea (ωa + σa) , (5.19)

Q(2)
A2←A1←A0

= μ0σ
aωa , (5.20)

where

T a = dea + εa
bcω

bec , Dσ a = dσ a + εa
bcω

bσ c ,

Ra = dωa + 1
2εa

bcω
bωc , Dψ̄ = dψ̄ − 1

2ωa
(
ψ̄�a

)
.

(5.21)

Since Q(3)
A4←A0

=L(3)
cs (A), the CS Lagrangian can be read by col-

lecting (5.14)–(5.20)

L(3)
cs = κ

ν0




[
εabcea

(
σ bσ c + 1

3
2
ebec

)
+ 2ea

(
Ra + Dσ a)

+
(

1



ea + σ a

)(
ψ̄�aψ

) − 2ψ̄Dψ

]

+ κμ0

[
σa

(
2Ra + Dσ a) + εabcσ

a
(

1


2
ebec + 1

3
σ bσ c

)

+ 1


2
ea T a − 1


2

(
ea + σ a) (ψ̄�aψ

) + 2



ψ̄Dψ

]

+ κμ1

[
ωadωa + 1

3
εabcω

aωbωc
]

+ d
[ν0



ea (ωa + σa) + μ0σ

aωa

]
. (5.22)

The resulting supergravity Lagrangian is composed by three dif-
ferent sectors, each one controlled by the value of the coupling 
constants (coming from the S-expanded invariant tensors (3.16)), 
multiplied by the level of the theory κ which is related to New-
ton’s constant G . The EH term appears in the first line of eq. (5.22), 
and therefore ν0 can be normalized to one. In the critical point 
ν0 = μ0 of the space of parameters, the theory decouples from 
fermions. This is a natural consequence of the form of the invari-
ant tensor (3.15). The Mielke–Baekler model [40] is recovered at 
this critical point in the σ → 0 limit.

5.1. Field equations

Extremization of the action functional S[A] = ∫
M3

L(3)
cs gives rise 

to the equations of motion. Alternatively, in the case of nonde-
generacy, i.e., when all the coupling constants are nonvanishing 
and ν0 �= μ0, the field equations are more easily obtained through 
F = dA + A ∧ A = 0. Using eq. (5.1) and (2.1), direct calculations 
shows
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T a − 1

2

(
ψ̄�aψ

) + εa
bcσ

bec = 0 , (5.23)

Ra = 0 , (5.24)

Dσ a − 1

2


(
ψ̄�aψ

) + 1

2
εa

bc

(
σ bσ c + 1


2
ebec

)
= 0 , (5.25)

Dψ̄ − 1

2

(
1



ea + σ a

)(
ψ̄�a

) = 0 . (5.26)

Interestingly, the geometries characterized by the e.o.m are Lorentz 
flat. In addition, the presence of the Lorentz gauge fields σ a are 
source for the super-torsion T̂ a = T a − 1

2

(
ψ̄�aψ

)
, as it can be seen 

from eq. (5.23). In the limit σ a → 0, solutions are described by 
constant torsion Ta = εabcebec , flat Lorentz curvature Ra = 0, and 
covariantly constant spinors ∇ψ̄ = Dψ̄ − 1

2

ea

(
ψ̄�a

) = 0. This is 
in contrast with the standard three-dimensional supergravity with 
AdS symmetry, in which solutions are Riemannian (torsionless) 
and constant Lorentz curvature.

5.2. Symmetry transformations

Under infinitesimal local gauge transformations, the one-form 
potential A = Aμdxμ transforms according to

δA = ∇� = d� + [A,�] , (5.27)

where

� = 1



ρa Pa + λa Ja + γ a Za + 1√



χα Q α (5.28)

is a zero-form gauge parameter. Using (2.1), (5.1) and (5.28) it is 
direct to show that

δea = Dρa − εa
bc

(
λb + γ b

)
ec − εa

bcσ
bρc + (

ψ̄�aχ
)

, (5.29)

δωa = Dλa , (5.30)

δσ a = Dγ a + εa
bcσ

b (
λc + γ c) + 1


2
εa

bcebρc + 1




(
ψ̄�aχ

)
,

(5.31)

δψ̄ = Dχ̄ − 1

2

(
1



ea + σ a

)
(χ̄�a)

+ 1

2

(
1



ρa + λa + γ a

)(
ψ̄�a

)
, (5.32)

where Dva = dva + εa
bcω

b vc for any zero-form parameter va with 
one Lorentz index, and Dχ̄ = dχ̄ − 1

2 ωa (χ̄�a) for any zero-form 
spinor χα . From eq. (5.31) is clear that the gauge field σ a trans-
forms as a vector under local Lorentz rotations. Moreover, gauge 
transformations (5.29)–(5.32) leave the CS Lagrangian (5.22) invari-
ant up to a closed form.

6. Solutions and Killing spinors

In supergravity, supersymmetric solutions are prescriptions for 
the bosonic fields of the theory such that they solve the equa-
tions of motion arising from its action. In principle, a solution 
need not be supersymmetric itself. A supersymmetric solution is 
defined as one which preserves a certain amount of the original 
supersymmetry. These are important when studying perturbative 
instabilities [41]. The standard calculation consists in embedding 
the bosonic theory into a supersymmetric one in such a way that 
the action remains stationary around a classical solution. In that 
case supersymmetry is, in general, enough to prove that this so-
lution defines a local energy minimum and therefore is perturba-
tively stable.
We now focus on finding solutions to the Killing-Spinor equa-
tion for the AdS-Lorentz superalgebra in three-dimensions. In order 
to do so, we find a BTZ-type solution in the case of zero gravitino. 
Moreover, we show that solutions around this classical configu-
ration reduces to those found in [42]. First we take ψ̄ = 0 in 
(5.23)–(5.26) and solve for the ansatz

ds2 = −N2dt2 + dr2

N2
+ r2 (

Nφdt + dφ
)2 (6.1)

with 
(
x0, x1, x2

) = (t, r, φ), N = N(r) and Nφ = Nφ(r). We choose 
the following ansatz for the vielbein ea(x) and the spin connection 
ωa(x)

e0 = Ndt , ω0 = V dt + Y dr + βV dφ ,

e1 = 1
N dr , ω1 = Ddt + W dr + βD dφ ,

e2 = r
(
Nφdt + dφ

)
, ω2 = Gdt + Hdr + βG dφ ,

(6.2)

where we have defined

V = √
D2 + G2 − β1 ,

W = GG ′+D D ′
V G + D H

G ,

Y = D ′+H V
G .

(6.3)

Here D(r), G(r) and H(r) are arbitrary functions of the radial co-
ordinate and β , β1 are arbitrary constants [43]. Using the field 
equations (5.23)–(5.26), in the case of zero gravitino ψ̄ = 0, we 
have

σ 0 = −V dt − Y dr + (N − βV )dφ ,

σ 1 = −Ddt −
(

W + Nφ

N

)
dr − βDdφ ,

σ 2 =
(

r

2 − G

)
dt − Hdr + (

rNφ − βG
)

dφ ,

(6.4)

where

N2 = −M + r2


2
+ J 2

4r2
, (6.5)

Nφ = − J

2r2
, (6.6)

being M and J are arbitrary real constants.
The Killing-spinor equation can be read from (5.32) when 

ψ̄ = 0. This means

dχ̄ − 1

2

(
ωa + 1



ea + σ a

)
(χ̄�a) = 0 . (6.7)

Inserting (6.2)–(6.6) into (6.7) we find

∂tχ
α − ε

2

χβ

[
N�0 + r

(
1



+ Nφ

)
�2

] α

β

= 0 , (6.8)

∂rχ
α + ε

2
χβ

[
1

N

(
Nφ − 1




)
�1

] α

β

= 0 , (6.9)

∂φχα − ε

2
χβ

[
r

(
1



+ Nφ

)
�2 + N�0

] α

β

= 0 , (6.10)

where ε = ±1, denotes the two nonequivalent gamma matrix rep-
resentation in three-dimensions. These equations are well known 
from [42]. Following a similar analysis as presented in Ref. [44], 
solutions to (6.8)–(6.10) are given by
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χ̄ = ξ̄ exp

(
ϑ+

[(
−M + J




)
�+ε + �−ε

]
�0

)(
z�+ε + 1

z
�−ε

)
(6.11)

with

z = (
N + r



+ rNφ

) 1
2 , ϑ± = 1

2

( t



± φ
)

,

�±ε = 1
2 (1 ± ε�1) , ξ̄ = constant spinor .

(6.12)

These expressions are only valid locally. In order to find glob-
ally defined killing spinor solutions, one needs to study their pe-
riodicity [42]. In fact, under φ → φ + 2π , there is a phase S =[(

−M + J



)
�+ε + �−ε

]
�0 which gets multiplied by 2π . Period-

icity occurs if S2 = 0, in which case there is no dependency on 
the angular coordinate φ, for different values of M and J . To con-
clude this section, we briefly discuss how exact supersymmetries 
for the zero-mass black hole M = 0 = J are obtained. The extremal 
M > 0, M = | J |/
, case can be treated similarly. In the zero-mass 
limit, the argument in the exponential of (6.11) is proportional to 
a nilpotent term (�0 + ε�2). This implies exp

(
ϑ+
2 (�0 + ε�2)

)
=

I + ϑ+
2 (�0 + ε�2). Moreover, the linear dependency of χ̄ in ϑ+

drops out of the solution due to ξ̄ is in the kernel of (�0 + ε�2). 
In fact, ξ̄ is an eigenvector of �1 and has the form ξ̄ = (1

ε

)
. Finally, 

since z = ( 2r


)

1
2 , we obtain

χ̄ =
(

2r




) 1
2

ξ̄ . (6.13)

Therefore, there are two killing spinors, one for each value of ε. For 
the extremal black hole, periodicity is only reached when ε = 1. 
This means that there is only one exact supersymmetry with z =(

2r



− M

r

) 1
2

and ξ̄ = (1
1

)
. The killing spinors for the generic black 

hole solution (6.11) are non periodic or anti-periodic, hence there 
is no exact supersymmetries in that case.

7. Discussion and future developments

In this work we have studied some aspects of the AdS-Lorentz 
superalgebra and the three-dimensional CS supergravity invari-
ant under such symmetry. Since the AdS-Lorentz superalgebra 
corresponds to the S-expansion of the N = 1 AdS superalgebra 
osp (2 |1 ) ⊗ sp (2), it allowed us to show some features of the pro-
cedure in a simple but non-trivial case.

Regarding the construction of the gauge supergravity theory, 
the essential ingredient is the invariant tensor. The S-expansion 
method provides the invariant tensors beyond the standard (su-
per)trace using Ref. [13, Theorems 7.1 and 7.2] and the Casimir 
operators following a treatment discussed in Ref. [21]. Using these 
invariants and the subspace separation method from Refs. [45,30], 
the CS three-form Lagrangian is written in terms of the Lorentz 
curvature and torsion. A new one-form gauge field has to be in-
troduced as a consequence of having the Za generator. This new 
Lorentz field σ a captures some of the features of the vielbein, 
namely, it transforms as a vector under representations of the 
Lorentz group and also interplay with the gravitino via super-
symmetry transformations. From the dynamical point of view, the 
Lorentz gauge field σ a is a source for the super-torsion T̂ a which 
makes it propagate in vacuum. Finally, an analytical stationary 
solution when the gravitino field is turned-off is discussed, and 
parallel Killing spinors around this background are computed. So-
lutions are shown to reduce the ones found in Ref. [42], which 
means that the supersymmetry properties of the BTZ-type black
hole presented in [43], are the same as the asymptotically AdS 
black holes of Einstein theory in three-dimensions.

We close with some brief discussion about possible applications 
of the AdS-Lorentz supergravity theory in three-dimensions. In the 
context of gauge/gravity dualities, in Ref. [46] it has been shown 
that imposing suitable boundary conditions, the three-dimensional 
AdS supergravity lead to an asymptotic symmetry algebra given 
by two copies of the super-Virasoro algebra with central charge. 
This is a purely asymptotic phenomenon since the emergence of 
the conformal group at infinity is not the isometry group of any 
background geometry in three-dimensions. In the same context, 
the flat limit of AdS supergravity is discussed in [47], where a 
consistent set of asymptotic conditions are found. The asymptotic 
symmetry algebra in this case is given by the super-bms3 alge-
bra with a central extension. Interestingly, in Ref. [48] it has been 
shown that the bms3 algebra can be obtained from the Virasoro 
by a S-expansion process. The analysis has been extended in such 
a way that new families of asymptotic symmetry algebras are con-
structed, all of them starting from the Virasoro one. As suspected, 
one of these new families corresponds to the asymptotic algebra of 
the CS theory for the Maxwell group [49], whose boundary dynam-
ics is described by an enlargement and deformation of the bms3
algebra with three independent central charges. Since the relation 
between Maxwell and AdS-Lorentz algebra is well understood, it 
is reasonable to expect that the asymptotic symmetries for AdS-
Lorentz CS theory can be obtained, following similar arguments as 
in [49]. This is work in progress and will be presented somewhere 
else. Finally, it would be interesting to extend previous discussion 
for studying the boundary dynamics of CS supergravity theories 
constructed using the supersymmetric extension of the Maxwell 
and AdS-Lorentz algebras.

Acknowledgements

This work was supported in part by the Chilean FONDECYT 
Projects No 3160437, 1150719, 1180681, and in part by the VRIIP-
Unap Grant No 039.428/2017. Also by UdeC through DIUC Grant 
No 217.011.056-1.0, and DINREG 19/2018 of the Dirección de In-
vestigación of the UCSC. We thank P. K. Concha, J. Díaz, N. Merino, 
E. K. Rodríguez, E. Rodríguez and R. Troncoso for enlightening dis-
cussions and helpful comments.

Appendix A. Majorana spinors

The minimal irreducible spinor in three dimensions is a two 
real component Majorana spinor. Every Majorana spinor satisfies a 
reality condition which can be established by demanding that the 
Majorana conjugate equals the Dirac conjugate

ψ̄ := ψ�C = −iψ��1 . (A.1)

Spinors carry indices ψα and gamma-matrices act on them in such 
a way that �aψ := (�a)

α
β ψα . In order to raise and lower indices, 

we introduce matrices (Cαβ), (Cαβ) related to the charge conjuga-
tion matrix, and we use the convention of raising and lowering in-
dices according to the NorthWest–SouthEast convention (↘). This 
means that the position of the indices should appear in that rela-
tive position as

ψα = Cαβ ψβ and ψα = ψβ Cαβ , (A.2)

which implies that

Cαβ Cγ β = δα
γ and Cβα Cβγ = δ

γ
α . (A.3)
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We choose the identifications in such a way that the Majorana con-
jugate ψ̄ is written as ψα . Comparing eq. (A.1) with eq. (A.2), one 
then finds (Cαβ) = C� and (Cαβ) = C−1.

References

[1] S. Deser, R. Jackiw, G. ’t Hooft, Three-dimensional Einstein gravity: dynamics of 
flat space, Ann. Phys. 152 (1) (1984) 220–235.

[2] S. Deser, R. Jackiw, Three-dimensional cosmological gravity: dynamics of con-
stant curvature, Ann. Phys. 153 (2) (1984) 405–416.

[3] M. Banados, C. Teitelboim, J. Zanelli, The black hole in three-dimensional 
space–time, Phys. Rev. Lett. 69 (1992) 1849–1851, arXiv:hep -th /9204099 [hep -
th].

[4] M. Banados, M. Henneaux, C. Teitelboim, J. Zanelli, Geometry of the (2 + 1)

black hole, Phys. Rev. D 48 (1993) 1506–1525, arXiv:gr-qc /9302012 [gr-qc], Er-
ratum: Phys. Rev. D 88 (2013) 069902.

[5] E. Witten, (2 + 1)-Dimensional gravity as an exactly soluble system, Nucl. Phys. 
B 311 (1988) 46–78.

[6] S. Deser, J.H. Kay, Topologically massive supergravity, Phys. Lett. B 120 (1983) 
97–100.

[7] A. Achucarro, P.K. Townsend, A Chern–Simons action for three-dimensional 
anti-De Sitter supergravity theories, Phys. Lett. B 180 (1986) 89.

[8] A. Achucarro, P.K. Townsend, Extended supergravities in d = (2 + 1) as Chern–
Simons theories, Phys. Lett. B 229 (1989) 383–387.

[9] P.S. Howe, J.M. Izquierdo, G. Papadopoulos, P.K. Townsend, New supergravities 
with central charges and Killing spinors in (2 + 1)-dimensions, Nucl. Phys. B 
467 (1996) 183–214, arXiv:hep -th /9505032 [hep -th].

[10] M. Banados, R. Troncoso, J. Zanelli, Higher-dimensional Chern–Simons super-
gravity, Phys. Rev. D 54 (1996) 2605–2611, arXiv:gr-qc /9601003.

[11] J.D. Edelstein, J. Zanelli, (Super-)gravities of a different sort, J. Phys. Conf. Ser. 
33 (2006) 83, arXiv:hep -th /0605186.

[12] F. Izaurieta, E. Rodríguez, On eleven-dimensional supergravity and Chern–
Simons theory, Nucl. Phys. B 855 (2012) 308–319, arXiv:1103 .2182 [hep -th].

[13] F. Izaurieta, E. Rodriguez, P. Salgado, Expanding Lie (super)algebras through 
Abelian semigroups, J. Math. Phys. 47 (2006) 123512, arXiv:hep -th /0606215
[hep -th].

[14] F. Izaurieta, E. Rodriguez, A. Perez, P. Salgado, Dual formulation of the Lie alge-
bra S-expansion procedure, J. Math. Phys. 50 (2009) 073511, arXiv:0903 .4712
[hep -th].

[15] J.D. Edelstein, M. Hassaine, R. Troncoso, J. Zanelli, Lie-algebra expansions, 
Chern–Simons theories and the Einstein–Hilbert Lagrangian, Phys. Lett. B 640 
(2006) 278–284, arXiv:hep -th /0605174 [hep -th].

[16] F. Izaurieta, E. Rodríguez, P. Salgado, Eleven-dimensional gauge theory for the 
M algebra as an Abelian semigroup expansion of osp(32|1), Eur. Phys. J. C 54 
(2008) 675–684, arXiv:hep -th /0606225.

[17] F. Izaurieta, P. Minning, A. Pérez, E. Rodríguez, P. Salgado, Standard general rel-
ativity from Chern–Simons gravity, Phys. Lett. B 678 (2009) 213–217, arXiv:
0905 .2187 [hep -th].

[18] P. Salgado, R.J. Szabo, O. Valdivia, Topological gravity and transgression holog-
raphy, Phys. Rev. D 89 (8) (2014) 084077, arXiv:1401.3653 [hep -th].

[19] P.K. Concha, O. Fierro, E.K. Rodríguez, P. Salgado, Chern–Simons supergravity 
in D = 3 and Maxwell superalgebra, Phys. Lett. B 750 (2015) 117–121, arXiv:
1507.02335 [hep -th].

[20] P.K. Concha, O. Fierro, E.K. Rodríguez, Inönü–Wigner contraction and D = 2 + 1
supergravity, Eur. Phys. J. C 77 (1) (2017) 48, arXiv:1611.05018 [hep -th].

[21] J. Diaz, O. Fierro, F. Izaurieta, N. Merino, E. Rodriguez, P. Salgado, O. Valdivia, A 
generalized action for (2 + 1)-dimensional Chern–Simons gravity, J. Phys. A 45 
(2012) 255207, arXiv:1311.2215 [gr-qc].

[22] D.V. Soroka, V.A. Soroka, Tensor extension of the Poincaré algebra, Phys. Lett. B 
607 (2005) 302–305, arXiv:hep -th /0410012.

[23] D.V. Soroka, V.A. Soroka, Gauge semi-simple extension of the Poincaré group, 
Phys. Lett. B 707 (2012) 160–162, arXiv:1101.1591 [hep -th].

[24] P. Salgado, S. Salgado, so(D − 1, 1) ⊗ so(D − 1, 2) algebras and gravity, Phys. 
Lett. B 728 (2014) 5–10.

[25] D.V. Soroka, V.A. Soroka, Semi-simple extension of the (super) Poincaré algebra, 
Adv. High Energy Phys. 2009 (2009) 234147, arXiv:hep -th /0605251.

[26] D.V. Soroka, V.A. Soroka, Semi-simple o(n)-extended super-Poincaré algebra, 
arXiv:1004 .3194 [hep -th].
[27] M. Hatsuda, M. Sakaguchi, Wess–Zumino term for the AdS superstring and 
generalized Inonu–Wigner contraction, Prog. Theor. Phys. 109 (2003) 853–867, 
arXiv:hep -th /0106114 [hep -th].

[28] J.A. de Azcárraga, J.M. Izquierdo, M. Picón, O. Varela, Generating Lie and 
gauge free differential (super)algebras by expanding Maurer–Cartan forms and 
Chern–Simons supergravity, Nucl. Phys. B 662 (2003) 185–219, arXiv:hep -th /
0212347.

[29] J.A. de Azcárraga, J.M. Izquierdo, M. Picón, O. Varela, Expansions of algebras and 
superalgebras and some applications, Int. J. Theor. Phys. 46 (2007) 2738–2752, 
arXiv:hep -th /0703017.

[30] F. Izaurieta, E. Rodriguez, P. Salgado, The extended Cartan homotopy formula 
and a subspace separation method for Chern–Simons theory, Lett. Math. Phys. 
80 (2007) 127–138, arXiv:hep -th /0603061.

[31] J.A. de Azcárraga, J.M. Izquierdo, M. Picón, O. Varela, Extensions, expansions, 
Lie algebra cohomology and enlarged superspaces, Class. Quantum Gravity 21 
(2004), S1375–1384 arXiv:hep -th /0401033.

[32] H. Bacry, P. Combe, J. Richard, Group-theoretical analysis of elementary parti-
cles in an external electromagnetic field. 1. The relativistic particle in a con-
stant and uniform field, Nuovo Cimento A 67 (1970) 267–299.

[33] R. Schrader, The Maxwell group and the quantum theory of particles in classi-
cal homogeneous electromagnetic fields, Fortschr. Phys. 20 (1972) 701–734.

[34] J. Lukierski, Generalized Wigner–Inonu contractions and Maxwell (super)alge-
bras, Proc. Steklov Inst. Math. 272 (2011) 1–8, arXiv:1007.3405 [hep -th].

[35] N. González, G. Rubio, P. Salgado, S. Salgado, Generalized Galilean algebras and 
Newtonian gravity, Phys. Lett. B 755 (2016) 433–438, arXiv:1604 .06313 [hep -
th].

[36] R. Andringa, E. Bergshoeff, S. Panda, M. de Roo, Newtonian gravity and the 
Bargmann algebra, Class. Quantum Gravity 28 (2011) 105011, arXiv:1011.1145
[hep -th].

[37] J. Zanelli, Lecture notes on Chern–Simons (super-)gravities, in: Proceedings, 
7th Mexican Workshop on Particles and Fields, MWPF 1999, Merida, Mexico, 
November 10–17, 1999, second edition: February 2008, arXiv:hep -th /0502193
[hep -th], 2005.

[38] P. Mora, R. Olea, R. Troncoso, J. Zanelli, Transgression forms and extensions 
of Chern–Simons gauge theories, J. High Energy Phys. 0602 (2006) 067, arXiv:
hep -th /0601081.

[39] O. Valdivia, Transgression Forms as Source for Topological Gravity and Chern–
Simons–Higgs Theories, PhD thesis, Heriot-Watt U., 2014, arXiv:1411.1780
[math -ph].

[40] E.W. Mielke, P. Baekler, Topological gauge model of gravity with torsion, Phys. 
Lett. A 156 (1991) 399–403.

[41] E. Witten, Search for a realistic Kaluza–Klein theory, Nucl. Phys. B 186 (1981) 
412.

[42] O. Coussaert, M. Henneaux, Supersymmetry of the (2 + 1) black holes, Phys. 
Rev. Lett. 72 (1994) 183–186, arXiv:hep -th /9310194 [hep -th].

[43] S. Hoseinzadeh, A. Rezaei-Aghdam, (2 + 1)-dimensional gravity from Maxwell 
and semisimple extension of the Poincaré gauge symmetric models, Phys. Rev. 
D 90 (8) (2014) 084008, arXiv:1402 .0320 [hep -th].

[44] P.D. Alvarez, P. Pais, E. Rodríguez, P. Salgado-Rebolledo, J. Zanelli, Supersym-
metric 3D model for gravity with SU (2) gauge symmetry, mass generation and 
effective cosmological constant, Class. Quantum Gravity 32 (17) (2015) 175014, 
arXiv:1505 .03834 [hep -th].

[45] F. Izaurieta, E. Rodriguez, P. Salgado, On transgression forms and Chern–Simons 
(super)gravity, arXiv:hep -th /0512014.

[46] M. Banados, K. Bautier, O. Coussaert, M. Henneaux, M. Ortiz, Anti-de Sitter/CFT 
correspondence in three-dimensional supergravity, Phys. Rev. D 58 (1998) 
085020, arXiv:hep -th /9805165 [hep -th].

[47] G. Barnich, L. Donnay, J. Matulich, R. Troncoso, Asymptotic symmetries and dy-
namics of three-dimensional flat supergravity, J. High Energy Phys. 08 (2014) 
071, arXiv:1407.4275 [hep -th].

[48] R. Caroca, P. Concha, E. Rodríguez, P. Salgado-Rebolledo, Generalizing the bms3

and 2D-conformal algebras by expanding the Virasoro algebra, Eur. Phys. J. C 
78 (3) (2018) 262, arXiv:1707.07209 [hep -th].

[49] P. Concha, N. Merino, O. Miskovic, E. Rodríguez, P. Salgado-Rebolledo, O. Val-
divia, Extended asymptotic symmetries of three-dimensional gravity in flat 
space, arXiv:1805 .08834 [hep -th].

http://refhub.elsevier.com/S0370-2693(18)30874-8/bib444553455231393834323230s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib444553455231393834323230s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib444553455231393834343035s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib444553455231393834343035s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616E61646F733A31393932776Es1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616E61646F733A31393932776Es1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616E61646F733A31393932776Es1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616E61646F733A313939326771s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616E61646F733A313939326771s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616E61646F733A313939326771s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib5769743838s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib5769743838s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib44657365723A313938327377s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib44657365723A313938327377s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib41636875636172726F3A31393837767As1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib41636875636172726F3A31393837767As1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib41636875636172726F3A31393839676Ds1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib41636875636172726F3A31393839676Ds1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib486F77653A313939357A6Ds1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib486F77653A313939357A6Ds1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib486F77653A313939357A6Ds1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616E68393661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616E68393661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib456465303662s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib456465303662s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A61313161s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A61313161s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A617572696574613A323030367A7As1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A617572696574613A323030367A7As1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A617572696574613A323030367A7As1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A617572696574613A323030396763s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A617572696574613A323030396763s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A617572696574613A323030396763s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4564656C737465696E3A323030367365s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4564656C737465696E3A323030367365s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4564656C737465696E3A323030367365s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A61303663s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A61303663s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A61303663s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A61303962s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A61303962s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A61303962s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib53616C6761646F3A323031346A6B61s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib53616C6761646F3A323031346A6B61s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib436F6E6368613A32303135776F61s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib436F6E6368613A32303135776F61s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib436F6E6368613A32303135776F61s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib436F6E6368613A323031367A6462s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib436F6E6368613A323031367A6462s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4469617A32303132s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4469617A32303132s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4469617A32303132s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib536F723034s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib536F723034s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib536F726F6B613A323031317463s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib536F726F6B613A323031317463s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib53616C6761646F3A32303134717161s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib53616C6761646F3A32303134717161s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib536F723036s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib536F723036s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib536F723130s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib536F723130s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib486174737564613A323030317070s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib486174737564613A323030317070s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib486174737564613A323030317070s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib6465417A3032s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib6465417A3032s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib6465417A3032s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib6465417A3032s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib6465417A3037s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib6465417A3037s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib6465417A3037s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A61303661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A61303661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A61303661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib6465417A3034s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib6465417A3034s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib6465417A3034s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616372793A313937307965s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616372793A313937307965s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616372793A313937307965s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib53636872616465723A313937327A64s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib53636872616465723A313937327A64s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4C756B696572736B693A323031306479s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4C756B696572736B693A323031306479s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib476F6E7A616C657A3A3230313678776Fs1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib476F6E7A616C657A3A3230313678776Fs1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib476F6E7A616C657A3A3230313678776Fs1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib416E6472696E67613A323031306974s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib416E6472696E67613A323031306974s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib416E6472696E67613A323031306974s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib5A616E656C6C693A323030357361s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib5A616E656C6C693A323030357361s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib5A616E656C6C693A323030357361s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib5A616E656C6C693A323030357361s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4D6F72303661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4D6F72303661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4D6F72303661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib56616C64697669613A323031347A6C61s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib56616C64697669613A323031347A6C61s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib56616C64697669613A323031347A6C61s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4D69653931s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4D69653931s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib57697474656E3A313938316D65s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib57697474656E3A313938316D65s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib436F757373616572743A313939336A70s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib436F757373616572743A313939336A70s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib486F7365696E7A616465683A32303134626C61s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib486F7365696E7A616465683A32303134626C61s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib486F7365696E7A616465683A32303134626C61s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib416C766172657A3A32303135627661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib416C766172657A3A32303135627661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib416C766172657A3A32303135627661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib416C766172657A3A32303135627661s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A613035s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib497A613035s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616E61646F733A313939387069s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616E61646F733A313939387069s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib42616E61646F733A313939387069s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4261726E6963683A32303134637761s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4261726E6963683A32303134637761s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4261726E6963683A32303134637761s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4361726F63613A323031376F6E72s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4361726F63613A323031376F6E72s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib4361726F63613A323031376F6E72s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib436F6E6368613A323031387A6562s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib436F6E6368613A323031387A6562s1
http://refhub.elsevier.com/S0370-2693(18)30874-8/bib436F6E6368613A323031387A6562s1

	Minimal AdS-Lorentz supergravity in three-dimensions
	1 Introduction
	2 AdS-Lorentz superalgebra
	3 Abelian semigroup expansion
	3.1 S-expansion and the AdS superalgebra
	3.2 Invariant tensors

	4 Casimir operators and the AdS-Lorentz superalgebra
	4.1 AdS-Lorentz Casimir operators

	5 Chern-Simons supergravity
	5.1 Field equations
	5.2 Symmetry transformations

	6 Solutions and Killing spinors
	7 Discussion and future developments
	Acknowledgements
	Appendix A Majorana spinors
	References


