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Introduction

The discovery of the bottom quark in 1977 at the Tevatron Collider
triggered the search for its partner in the third fermion isospin doublet, the
top quark, which was discovered 18 years later in 1995 by the CDF and
D/0 experiments during the Tevatron Run I. By 1990, intensive efforts by
many groups at several accelerators had lifted to over 90GeV/c2 the lower
mass limit, such that since then the Tevatron became the only accelerator
with high-enough energy to possibly discover this amazingly massive quark.
After its discovery, the determination of top quark properties has been one of
the main goals of the Fermilab Tevatron Collider, and more recently also of
the Large Hadron Collider (LHC) at CERN. Since the mass value plays an
important role in a large number of theoretical calculations on fundamental
processes, improving the accuracy of its measurement has been at any time a
goal of utmost importance.

Predominantly produced in tt̄ pairs at the Tevatron through strong interac-
tions in pp̄ collisions, the top quark mass was measured for the first time by
CDF with a value of 176± 13GeV/c2, showing that this particle was by far
the heaviest known elementary particle. This has raised many questions on
whether the top quark may play a special role in the Standard Model (SM), in
particular in the electroweak symmetry breaking. Due to the huge mass and
the very short lifetime (∼ 5× 10−25 s), about 6 times shorter than the strong
interaction timescale, the top quark decays weakly before hadronization into
a W boson and a b quark , giving the chance to study the properties of a bare
quark. Top quark pair events are thus characterized by the decay of their two
final state W bosons. This leads the tt̄ pairs to generate the experimental
signatures of two jets associated with the hadronization of the bottom quarks
and either a single lepton (e, µ, τ), one undetected neutrino and two light
quark jets (lepton+jets channel), or four light quark jets (all-jets channel), or
two leptons (ee, eµ, µµ, eτ , µτ , ττ) and two undetected neutrinos (dilepton
channels). Up to now, because of its difficult experimental signatures the τ
lepton was not exploited in the mass studies.
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Different approaches have been followed by the Tevatron experiments to
determine the top quark mass. A very powerful technique is the Matrix
Element (ME) method which determines the likelihood of observing an event
under both tt̄ and background hypotheses. The hypotheses are determined
from the entire kinematic information associated to every single event by
integrating the matrix element of the process over the multidimensional
phase space describing the final state. For a given sample of selected events,
the parameters to be measured are then determined as those values that
maximize the overall likelihood. The superior statistical sensitivity of this
method, with respect to other methods based on distribution-fitting, is due
to the completeness of the information exploited in each event.

Since the top quark mass is a fundamental parameter of the SM, the CDF
Collaboration has decided to make a major effort in order to produce its
most precise measurement as a "legacy" of the experiment. A number of
improvements over previous measurements are still possible as mentioned
below, noticeably comparing the signal candidates not only to the signal
expectation, but also to the expectation of the dominant background process
(W + jets), whose SM matrix element is now made available to the Collabora-
tion. This thesis provides an overview of the preparatory studies to the final
CDF measurement of the top quark mass. We investigate the lepton+ jets
channel with the full integrated luminosity of Run II (9.0 fb−1). Our analysis
uses the ME method to calculate a tt̄ likelihood as a bi-dimensional function
of the assumed top mass mt and ∆JES. ∆JES parametrizes the uncertainty
in our knowledge of the jet energy scale. It is a shift applied to all jet energies
in units of the jet-dependent systematic error. By introducing this parameter
into the likelihood, we can use as a constraint the known W mass to deter-
mine the optimal ∆JES and thereby reduce the final systematic error on the
measured top quark mass. For the first time in CDF analyses, we include
the background ME modeling in the likelihood integration, with an expected
significant reduction of the systematic error of the final result.

The massive calculations required by this double ME method imposed to
develop an unconventional, less time-consuming, integration method over the
phase space of the events kinematics. In order to evaluate the multidimen-
sional integrals, we employ the "Quasi-Monte Carlo" technique, based on
deterministic sequences generated by choosing points approximately equally
spaced in the integration space, such that equal phase space volumes contain
approximately equal number of points. This technique significantly reduces
the time required to integrate an event, allowing us to reduce greatly the inte-
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gration time needed to reach the required precision. It also imposes extensive
studies to make sure that no bias is introduced relative to a standard MC
calculation.

The present thesis describes in detail the contributions given by the can-
didate to the massive preparation work needed to make the new analysis
possible, during her 8 months long stay at Fermilab. These include selection
of the candidates within looser cuts than in the past, estimate of the ex-
pected number of signal and background events, evaluation of the acceptance,
model comparison of the final validation plots, optimization of the integration
method and of its systematic error, and more as described in chapters 4 to 7.
Chapter 1 gives a brief introduction of top quark physics. Some previous
mass measurements, as well as the refinements introduced in our analysis, are
discussed.
Chapter 2 contains the description of the Tevatron accelerator complex and
the CDF II detector.
Chapter 3 describes the reconstruction of the physical objects on which the
event analysis relies.
The event selection is described in Chapter 4, where the complete list of
the selection requirements and the estimation of the sample composition are
presented, as well as the comparison between model and data.
Chapter 5 explains the ME method in detail, examining each part of the
likelihood expression, and Chapter 6 deals with the Quasi-MC integration
employed in the analysis.
In Chapter 7 the current status of the analysis and the future steps required
to perform the measurement are described. Preliminarily to the final analysis
of real data, future studies will include a calibration procedure and evalua-
tion of systematic errors by means of pseudo-experiments. The goal of the
measurement is to reach a total error of about 0.6GeV/c2, about 20% less
than the present error of the world-averaged mass value. The candidate is
planning to contribute from a distance to this final part of the measurement.



Chapter 1

Top Physics

1.1 The Standard Model
The theories and discoveries of thousands of physicists since the 1930s

have resulted in a remarkable insight into the fundamental structure of matter:
everything in the Universe is found to be made from a few basic building
blocks called fundamental particles, governed by four fundamental forces.
Our best understanding of how these particles and three of the forces are
related to each other is encapsulated in the Standard Model (SM) of particle
physics. Developed in the early 1970s, it has successfully explained almost
all experimental results and precisely predicted a wide variety of phenomena.
Over time and through many experiments, the SM has become established as
a well-tested physics theory.

According to the SM [66], all matter is built by a small number of funda-
mental spin 1

2
particles called fermions : six quarks and six leptons. For each

of the various fundamental constituents, its symbol and its electric charge in
unit of elementary charge e of the electron are given in Table 1.1.

The leptons which carry integral electric charge include electron e, muon
µ and tau lepton τ . The neutral leptons are called neutrinos, denoted by the
generic symbol ν. A different flavor of neutrino is paired with each flavor of
charged lepton, as indicated by the subscript.

The quarks carry fractional charges, of +2
3
|e| or −1

3
|e|. In Table 1.1 the

quark masses increase from left to right, just as they do for the leptons.
And, just as for the leptons, the quarks are grouped into pairs, representing
three generations. Particles in higher generations (having higher masses) are
unstable; in order to observe and study these particles, we need to produce
them via collisions with other stable particles. The quark type or flavor is

9
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denoted by a symbol: u for up, d for down, s for strange, c for charmed, b
for bottom and t for top. While leptons exist as free particles, quarks seem
not to do so. It is a peculiarity of the strong forces between the quarks that
they can be found only in combinations, not individually. This phenomenon
is known as confinement. The combinations of quarks are called hadrons
and are categorized into two families: baryons, made of three quarks, and
mesons, made of one quark and one antiquark. The u and d quarks are the
fundamental two constituents of nucleons like protons and neutrons (baryons).
The electron is the most prominent lepton, as nucleons and electrons form
atoms and thus the world as we see and feel it.

Table 1.1: The three generations of fundamental fermions. The charge is quoted in
units of the absolute value of the electron charge.

Generation
I II III

Particle Flavor Charge

Quarks u c t +2
3

d s b -1
3

Leptons e µ τ -1
νe νµ ντ 0

All experimentally observed phenomena can be described by interactions
between fermions in terms of four fundamental forces: gravity, electromagnetic,
weak and strong forces. The SM includes just three of these interactions. In
fact, despite a strong theoretical effort to formulate a universal theory in
which all the interactions are included, currently the gravitational interaction
does not take its place in the model. In the SM, all particles are described
as fields, and forces are interpreted as the exchange of mediator particles
between interacting fermions. The force carriers are referred to as gauge
bosons and are spin-1 particles. The five gauge bosons, summarized in Table
1.2, are the W± and Z (carriers of the weak force), the photon (carrier of
the electromagnetic force) and the gluon (carrier of the strong force). The
graviton, supposed to be the mediator of the gravitational interaction with
spin-2, can not be considered as elementary particle. In fact the quantum
theories with tensor interactions, like quantum gravity with a spin-2 graviton,
are not renormalizable. An additional neutral scalar boson is necessary to
explain electroweak symmetry breaking, i.e., the observation of non-zero



CHAPTER 1. TOP PHYSICS 11

masses of the W± and Z bosons. This is the Higgs boson, the last particle
predicted by the SM, recently discovered at LHC (Large Hadron Collider,
CERN) by the ATLAS and CMS experiments [5][15], after twenty years of
long direct searches at the LEP (Large Electron-Positron collider at CERN)
and at the Tevatron collider.

Table 1.2: SM gauge bosons: mediators of the fundamental forces between interact-
ing elementary particles.

Gauge boson Interaction Mass [GeV] Charge [Q
e
] Spin

Gluon, g Strong 0 0 1
Photon, γ Electromagnetic 0 0 1

W± Weak 80.4 ±1 1
Z0 Weak 91.2 0 1

The SM unifies the weak and electromagnetic forces into a single elec-
troweak interaction. The addition of Quantum Chromodynamics (QCD),
which describes the strong interactions, completes the model. The result-
ing framework is a gauge theory, that possesses invariance under a set of
local transformations, i.e., transformations whose parameters are space-time
dependent, based on the gauge group SU(3)× SU(2)× U(1), where SU(3)
represents the strong force, and the SU(2)× U(1) symmetry describes the
electroweak interactions.

The development of the unified theory started in the 1950’s by extending
the gauge invariance of the electromagnetism, a well-known example of gauge
theory, to the weak interaction. In order to respect the gauge invariance
it was necessary to introduce a set of massless vector fields. The difficulty
was that the weak interactions are known to be short range, mediated by
very massive vector bosons (W± and Z), whereas the fields of the theory
were required to be massless in order to preserve gauge invariance. The
apparent paradox was solved by the application of the Higgs mechanism. This
is a prescription for breaking the gauge symmetry spontaneously. In this
scenario one starts with a theory that possesses the required gauge invariance,
but where the ground state of the theory is not invariant under the gauge
transformations. The breaking of the invariance arises in the quantization of
the theory, whereas the Lagrangian only contains terms which are invariant.
One of the consequences of this is that the gauge bosons acquire a mass and
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the theory can thus be applied to weak interactions. The remaining step was
to apply the ideas of gauge theories to the strong interaction by introducing
QCD. In this theory the quarks possess an internal property called colour
and the gauge transformations are local transformations between quarks of
different colours. The gauge bosons of QCD are the gluons [71].

The weak force is unique among the forces in the SM as it is the only
interaction which can change the flavor of quarks. In the SM, in fact, the
quark mass eigenstates (physical states) do not take part as pure states in
weak interactions. The unitary transformation connecting the bases of mass
and weak eigenstates is represented by the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. By convention, the quarks with charge +2

3
(u, c and t) are

chosen to be pure states, and flavor mixing is described in terms of a 3× 3
matrix operating on the d, s and b quark states [66][3]:d′s′

b′

 = VCKM

ds
b

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 (1.1)

While the d, s and b states are eigenstates of the weak Hamiltonian, the new
states d′, s′ and b′ are physical states with well defined mass. The CKM
matrix describes the amplitude of the mixing between quark flavors mediated
by the W boson. The matrix element Vij is the factor attached to a vertex
containing a W boson, an up-type quark i, and a down-type quark j. The
terms in the CKM matrix are complex, and the matrix is required to be
unitary in the SM; traditionally, the matrix is parameterized by three mixing
angles and a CP-violating phase. All the properties of weak quark interaction
are codified inside the CKM matrix.

In Figure 1.1 [72] a schematic depiction of the SM is shown.

1.2 Top quark phenomenology
The discovery of the bottom quark in 1977 [52] set in motion the search

for its partner in the third fermion isospin doublet. Experimental lower limits
on the top mass slowly increased from a few GeV1 until the top quark was
observed and its mass was directly measured at the Tevatron by CDF and
D/0 experiments 18 years later [8][19]. Since its discovery in 1995, the top
quark has remained in the focus of particle physics research. With a mass of

1Here and in the following we are going to use natural units.
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Figure 1.1: The SM of elementary particles, with the three generations of matter,
gauge bosons in the fourth column, and the Higgs boson in the fifth [72].

mt = 173.34± 0.27± 0.71 GeV [21] 2, it is by far the heaviest of all known
quarks. This has posed many questions whether the top quark may play a
special role in the SM, in particular in the electroweak symmetry breaking.

Top quark phenomenology is driven by its large mass. Being heavier than
a W boson, it is the only quark that decays semi-weakly, i.e., into a real
W boson and a b quark, with a very short lifetime. Quarks and gluons
created in high energy collisions cannot exist individually, because of color
confinement, but they combine with other quarks and antiquarks to form
hadrons. The process of the formation of hadrons out of quarks and gluons
is called hadronization. Due to its very short lifetime, the top quark decays
before hadronization can occur. In addition, it is the only quark whose Yukawa
coupling to the Higgs boson is order of unity. Its exclusive feature provides a
unique laboratory where our understanding of the strong interactions, both
in the perturbative and non perturbative regimes, can be tested. An accurate
knowledge of its properties (mass, couplings, production cross section, decay
branching ratios, etc.) can bring key information on fundamental interactions
at the electroweak breaking scale and beyond [32].

2This is the current resulting combination of the latest top mass measurements performed
by the CDF and D/0 at the Tevatron and by ATLAS and CMS at the LHC [32].
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Figure 1.2: Some of the Feynman diagrams that contribute to tt̄ production,
through annihilation of quarks (left diagram) and fusion of gluon (central and right
diagrams).

1.2.1 Top quark production

In hadron collisions, top quarks are produced dominantly in pairs through
the strong processes qq̄ → tt̄ and gg → tt̄, which can be calculated in pertur-
bative QCD. Figure 1.2 illustrates some of the leading order (LO) diagrams
that contribute to the tt̄ production. Approximately 85% of the production
cross section at the Tevatron (

√
s = 1.96 TeV) is from qq̄ annihilation, with

the remainder from gluon-gluon fusion, while at LHC energies, about 90% of
the production is from the latter process at

√
s = 14 TeV (≈ 80% at

√
s = 7

TeV). This is due to the different dependence on collision energy of quark and
gluon structure functions at the appropriate momenta for generating the top
quark mass.

In hadron collisions the hard scattering takes place between protons and
(anti-)protons (pp̄ collisions at the Tevatron, pp collisions in the case of LHC).
According to the SM, the proton is made up of three valence quarks, a sea of
virtual quarks and antiquarks (sea quarks) that surround them, and gluons
which bind them together. Since the proton cannot be treated perturbatively,
only the hard scattering process between partons is considered. The remaining
partons are treated as spectators.

The tt̄ production process is explained by the parton model of the hard
scattering process: two partons, one of each colliding (anti-)proton, take part
in the interaction, carrying momentum fractions x1, x2 of the incoming hadron
momenta. These fractions are unknown on an event-by-event basis. The
probability density fi(xi, Q2) for a parton with flavor i to participate in the
hard scattering interaction with momentum fraction xi and factorization scale
Q2 is referred to as the Parton Distribution Function (PDF). The shapes of
the PDFs are extracted from global QCD fits at next-to-leading order (NLO)
from data. Given the PDFs, the total cross section of a process pApB → p1p2

can be approximated by summing over all possible parton interactions and
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Figure 1.3: Example Feynman diagrams for single top quark production at LO
QCD. From left to right: t-channel production as flavor excitation and as W -gluon
fusion, s-channel production, tW -channel production.

weighting each by its probability:

σ =
∑
A,B

∫
dxAdxBfA(xA, Q

2)fB(xB, Q
2) σ̂(pApB → p1p2). (1.2)

The cross section is calculated at next-to-next-to leading order (NNLO).
Assuming a top quark mass of 173.3 GeV, close to the Tevatron+LHC average,
the resulting theoretical prediction of the top quark pair cross section at
the Tevatron at

√
s = 1.96 TeV is σtt̄ = 7.16+0.11+0.17

−0.20−0.12 pb, where the first
uncertainty is from scale dependence and the second from the PDFs [32].

The pair production cross section measurement, obtained by combin-
ing six measurements of the inclusive top quark pair production cross sec-
tion from data collected with the CDF and D/0 detectors, returns the value
σtt̄ = 7.60 ± 0.41 pb for a top quark mass of mt = 172.5 GeV [12]. The
data correspond to integrated luminosities of up to 9.0 fb−1. This result is in
good agreement with the theoretical prediction.

Top quarks can also be produced singly via the electroweak interaction.
There are three possible channels of single-top production: s-channel, t-channel
and associated tW production, as illustrated in Figure 1.3. These mecha-
nisms lead to a smaller cross section. Approximate NNLO cross sections
are calculated for the various single-top production channels given an input
top mass. For mt = 173 GeV in pp̄ collisions at

√
s = 1.96 TeV the cross

section obtained is 1.04+0.00
−0.02±0.06 pb for t-channel and 0.523+0.001+0.030

−0.005−0.028 pb for
s-channel production [59]. The production in Wt channel results negligible
at the Tevatron.

In our analysis we will measure the top quark mass studying pair production.
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1.2.2 Top quark decay

In the SM the top quark decay rates in down-type quaks (d, s, b) are
proportional to the |Vt(d,s,b)|2, the squared CKM matrix element that relates
the top and the down-type quark. The lower generation terms Vtb and Vts
being very small, the unitarity of the CKM matrix constrains the |Vtb| element
to be very close to unity. A recent measurement of the magnitude of the
top-to-bottom quark coupling has been obtained from the combination of
CDF and D/0 results in the measurement of cross sections for single-top quark
production [13], returning the value |Vtb| = 1.02+0.29

−0.31. Consequently, being
|Vtd| and |Vts| of the order of 10−3 and 10−4 respectively, the fraction of top
quark decay branching ratios is:

R =
B(t→ Wb)

B(t→ Wq)
=

|Vtb|2

|Vtd|2 + |Vts|2 + |Vtb|2
≈ 1. (1.3)

In other words, the top quark decays into a W boson and a b quark (tt̄ →
W+bW−b̄) nearly 100% of the time.

Due to this property and to the large mass, the top quark appears to have
a large width. The LO width is:

Γ0
t =
|Vtb|2GFm

3
t

8π
√

2
(1.4)

where GF is the Fermi coupling constant and mt refers to the top quark pole
mass which will be discussed in the next section 1.2.3. Assuming the b quark
to be massless and neglecting higher order terms, the total decay width Γt at
NLO of the top quark can be approximated as

Γt = Γ0
t

(
1− m2

W

m2
t

)(
1 + 2

m2
W

m2
t

)[
1− 2αs

3π

(
2π2

3
− 5

2

)]
, (1.5)

where mW is the mass of W boson and αs the strong coupling parameter,
running with the energy scale Q2, αs(Q2). In the top quark phenomenology αs
is typically taken at the highest point where it is experimentally determined,
i.e. the Z pole mass mZ = 91GeV. The width for a value of mt = 173.3 GeV
is 1.35 GeV. Thus, the top width is significantly larger than the typical QCD
scale ΛQCD ≈ 200 MeV. As a result, the top lifetime τt ≈ 0.5×10−24 s is much
smaller than the typical time for formation of QCD bound state hadrons
τQCD ≈ 3 × 10−24 s. Therefore, the top quark decays before top-flavored
hadrons or tt̄-quarkonium bound states can form.

The final states for the pair production process can be divided into classes
depending on the decays of the two W bosons in the event. Evidently, the
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quarks produced in W decays are not observed as such, but they hadronize
producing jets of particles which are subsequently observed and measured in
the detector.

Different experimental signatures of the tt̄ decay are classified as follows:

• Dilepton events, where bothW bosons decay into an eν or µν final state,
are characterized by two energetic, isolated leptons, two energetic b jets,
and two undetected neutrinos. Neutrinos escape direct detection but
their presence can be inferred by an excess of missing transverse energy
(MET) in the event. Because of the presence of two high-energy leptons,
this analysis channel provides the cleanest signature and offers a good
signal-to-background ratio. However, occurring in ∼ 7% of cases (this
is the value of the branching ratio obtained including τ leptons coming
fromW decays), it has the lowest branching ratio. Furthermore, because
of the two neutrinos, the kinematics of the event are underconstrained.

• Fully hadronic events, where both W bosons decay hadronically. The
signature is six jets, two of which are b jets, and no significant missing
transverse energy. Though this channel enjoys ∼ 55% of the decay rate
and allows for the full reconstruction of the event kinematics, it is the
most difficult to study because of the large QCD multijet background.
Therefore sophisticated techniques are necessary to improve the signal
to background ratio.

• Lepton+Jets events, where one W boson decays hadronically and the
other into an eν or µν final state, are characterized by an energetic
isolated lepton, four energetic jets, and missing transverse energy from
one undetected neutrino. With only one neutrino, the event can be
kinematically reconstructed. This analysis channel accounts for ∼ 38 %
(τ events included) of the decay rate while providing a distinct experi-
mental signature through the isolated lepton.

Particular attention is required for τ events, where at least one W boson
decays into a τν final state. In fact, while W → lνl decays, with l = e
or µ, result in unambiguous experimental signatures, the case W → τντ is
more complicated as tau leptons decay in a variety of ways. Depending on
its decay, the τ lepton can be identified as a narrow jet, an isolated track,
or an electron or muon. Two energetic b jets, missing transverse energy,
and the decay products from the second W boson complete the topology.
Explicit identification of τ leptons is a major challenge at hadron colliders.
However, events in which a τ decays into an electron or muon will appear in
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the electron/muon+jets signal samples. Top quark pairs decay modes and
their branching ratios are illustrated in Figure 1.4.

Our measurement is performed in the lepton+jets channel, as it offers the
best balance between a clean signature and a good branching ratio. We also
include the cascade decay of W → τν and τ → eν or τ → µν.

Figure 1.4: The graphic represents all the tt̄ decay modes. The areas are proportional
to the branching ratios [67].

1.2.3 Top quark mass

Unlike the leptons, quarks are confined inside hadrons and are not observed
as physical particles. Quark masses therefore cannot be measured directly, but
must be determined indirectly through their influence on hadronic properties.
Any quantitative statement about the value of a quark mass must make careful
reference to the particular theoretical framework that is used to define it. For
example, in the overall fit of electroweak measurements the top quark mass
needs to be expressed in the MS renormalization scheme [33][58]. What is
being measured in tt̄ production experiments is the Monte Carlo-defined mass
with whatever Monte Carlo (MC) is used to measure it, because the top mass
is always determined from the data through the fit of some mass-dependent
MC prediction. For typically used parton-shower MC generators, this mass is
close to the pole mass rather than the "bare" mass defined in a renormalization
scheme such as the MS one. The pole mass is defined by analogy with the
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mass definition used in most QED calculations. Conceptually, one imagines
taking the particle to infinity and measuring its classical mass in isolation.
Even though this cannot be physically done for a quark in QCD, one can
give an operational definition at any finite order of perturbation theory, with
the mass parameter defined as the real part of the position of the pole in the
complex momentum space:

i

/p−mpole

. (1.6)

1.3 Previous Top Mass Measurements and Mo-
tivations

The last world combination of measurements of the top quark mass has
been performed in 2014 between the results of CDF and D/0 at the Tevatron
and the ATLAS and CMS experiments at the LHC. The resulting combined
measurement, with a precision of 0.4%, is [21]

mt = 173.34± 0.27(stat)± 0.71(syst)GeV. (1.7)

Figure 1.5 summarizes the input measurements and the results of the combi-
nation. However, this scenario is now incomplete because it does not include
two more recent and very precise results:

mt(D/0) = 174.98± 0.58(stat)± 0.49(syst)GeV (1.8)

mt(CMS) = 172.44± 0.13(stat)± 0.47(syst)GeV (1.9)

The top mass value in (1.8) is the latest result obtained by D/0 using matrix
element technique and jet energy scale in situ calibration in lepton+jets final
states of the full Run II sample [20]. The second mass value, displayed in
(1.9), is the result based on the proton-proton data recorded by the CMS
experiment at the LHC at

√
s = 8 TeV, in the combined lepton+jets, all-jets

and dilepton decay channels, by using the ideogram method [14]. These
results represent the most precise measurements ever obtained for the top
quark mass. However, there is a significant discrepancy between them. With
this new top mass measurement, CDF aims at improving considerably the
systematic uncertainty as well as the statistical weight of the events and the
statistics itself, exploiting the full CDF Run II dataset. Hopefully, the new
measurement will help solving the current tension between the two latest
measurement listed above.
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Figure 1.5: Input measurements and result of their combination, compared (lowest
lines) to Tevatron combined and LHC combined mt values. The red lines correspond
to the statistical uncertainty while the blue lines show the total uncertainty. While
in the Tevatron experiments the statistical error dominates, at the LHC the error
is still mostly systematic.

Over and above this motivation, there are important reasons because
experimentalists pay specific attention and spend much effort in measuring
the top mass with very high precision. The large value of mt implies a large
coupling to the Higgs boson. The top quark Yukawa coupling yt = mt/v
where v ∼ 246 GeV is the vacuum expectation value of the Higgs field, is
close to unity. Because of this observation, it has often been speculated that
the top quark may play a special role in the electroweak symmetry breaking,
either in the context of the Higgs model, or invoking alternative mechanisms
through which elementary particles acquire mass. The top quark appears in
higher order loop diagrams of the electroweak theory, which implies that mt

is a crucial parameter in this theory. Precise measurements of mt provide,
together with other parameters of the electroweak theory, in particular the
mass of the W boson mW , indirect constraints on the mass of the Higgs
boson. All together, the value of the top mass plays an important role in
precision physics of the Higgs sector. Some of the lowest order diagrams that
link mt, mW and mH are shown in Figure 1.6.

The most recent mH measurements indicate a good agreement between
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Figure 1.6: Lowest order diagrams that correlate mt, mW and mH .

predicted and observed mass values, as shown in Figure 1.7 [1]. In this plot,
the diagonal gray lines indicate the predicted value of the Higgs mass, given
those of theW boson and top quark and various electroweak parameters (such
as coupling constants, mixing angles, CP phases, and other quark masses).
The horizontal and vertical green bands indicate the 1-standard deviation (σ)
confidence regions of the measured W boson and top quark masses; the oval
green contours cover 1σ and 2σ confidence areas for the joint W boson and
top quark masses. The blue contours are 1σ and 2σ confidence areas for the
W boson and top quark masses as predicted from electroweak parameters and
the measured mass of the Higgs boson. The remarkable agreement between
the experimental measurements and the predictions indicates a profound
solidity of the SM.

Besides its potential role in electroweak symmetry breaking, the top quark
plays an important role in many scenarios for new physics beyond the SM.
This constitutes one of the main motivations for the top quark physics today’s
program at the LHC. Several models predict the existence of new particles
which decay predominantly into top quark pairs. Therefore, it is attractive to
search for resonances in the top quark pair invariant mass distribution. New
particles may also be produced in top quark decays.

1.4 A New CDF Top Mass Measurement
In this context, a new CDF top mass measurement is inserted. CDF

has completed its program of top mass measurements with the template
method (see section 5.12 for a brief description of the method) using the
full luminosity in all four channels (dilepton, lepton+jets, MET+jets, all-
jets), with a remarkable total precision of the average result close to 0.7%.
With the new measurement we are going to exploit all the advantages of the
Matrix Element method, which is the most powerful tool available for such
measurement, as widely explained in the following chapters of this thesis. We
use the full Run II dataset collected by CDF between 2001 and 2011 (9.0 fb−1),
looking at the lepton+jets final states. This channel has been already used in
the previous CDF template measure with the full luminosity [9], returning
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Figure 1.7: The masses of the top quark, W boson, and Higgs boson are related
by the SM. In this plot, the diagonal gray lines indicate the predicted value of the
Higgs mass, given those of the W boson and top quark. The horizontal and vertical
green bands indicate 1σ confidence regions of the measured W boson and top quark
masses; the oval green contours cover 1σ and 2σ confidence areas for the joint W
boson and top quark masses. The blue contours are 1σ and 2σ confidence areas for
the W boson and top quark masses as predicted from electroweak parameters and
the measured mass of the Higgs boson.

the value mt = 172.85± 0.71(stat)± 0.85(syst) GeV.

We use as a reference for our analysis the previous CDF top mass measure-
ment performed on a dataset of 5.6 fb−1 of integrated luminosity by using
the Matrix Element method, with a resulting value mt = 173.0± 0.9(stat)±
0.9(syst) GeV. However, in our analysis we introduce several upgrades:

• beyond the increase of the integrated luminosity, we include new sample
categories like the untagged category and loose category, i.e., reduced
pT jet cut category (which will be explained in chapter 4), to improve
the statistics of the measurement;

• we include for the first time in CDF analyses the background Matrix
Element modeling in the likelihood integration (this is the main and
the most complex improvement of the analysis);

• we are going to obtain smaller systematic uncertainties on the final
measurement by introducing several new signal and background MC
modeling, as well as new detector modeling.



Chapter 2

Experimental Setup

2.1 The Tevatron Acceleration Complex
The Tevatron [25][24] was a circular particle accelerator in the United

States, located at the Fermi National Accelerator Laboratory (FNAL, also
known as Fermilab), just east of Batavia, Illinois, which operated from 1983
until the end of September 2011. The Tevatron was a synchrotron where
proton-antiproton (pp̄) collisions were accelerated and stored at a center-
of-mass energy of

√
s = 1.96 TeV. The final proton and antiproton beams

were the result of a complex acceleration system which involved different
stages, spanning from proton and antiproton production, their acceleration
and transfer across different sub-systems, to their actual collision in designated
interaction points. The interaction points were located at the optics points B/0,
where the Collider Detector at Fermilab (CDF) was situated and D/0, where
the homonymous detector was located. A schematic view of the Tevatron
acceleration chain is shown in Figure 2.1.

2.1.1 Proton Source

The Proton Source consists of the Pre-Accelerator, the Linac, and the
Booster. The Pre-Accelerator [24] is a Cockcroft-Walton electrostatic chamber
in which H− gas is produced by electron-capturing by hydrogen ionization.
H− ions are accelerated by a positive voltage to a kinetic energy of 750 KeV
and injected through a transfer line to the linear accelerator, the Linac. The
Linac [28] accelerates H− ions from 750 keV to 400 MeV. The Booster is
the next level of acceleration. At the booster entrance, the electrons are
stripped-off the H− ions leaving bare protons to enter the accelerator.

The Booster [27] is a synchrotron of 75 m radius where protons are
accelerated to 8 GeV and transferred into the Main Injector.

23
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Figure 2.1: Layout of the Fermilab accelerator complex. Protons (black arrow) are
accelerated at the Cockcroft-Walton, Linac, Booster, Main Injector and finally at
the Tevatron. The anti-protons (grey arrow) from the anti-proton source are first
accelerated at the Main Injector and then at the Tevatron.



CHAPTER 2. EXPERIMENTAL SETUP 25

At the end of the acceleration process in the main injector, the proton high
energy shot ("batch") is a sequence of 84 bunches containing approximately
6× 1010 protons each, distant from each other by 18.9 ns.

2.1.2 Main Injector

The Main Injector (MI) [29] is a circular synchrotron seven times the
circumference of the Booster and slightly more than half the circumference of
the Tevatron. In its normal use during when the Tevatron was in operation,
it accelerated 8 GeV protons from the Booster to either 120 GeV or 150 GeV,
depending on their destination. When used to inject into the Tevatron, the
final beam energy was 150 GeV. When used to produce antiprotons, the final
energy was 120 GeV. As well as accepting protons from Booster, the MI could
also accept antiprotons back from the Recycler and accelerate them to 150
GeV for the injection in the Tevatron. Protons extracted from the Booster
were collected in bunches, as well as antiprotons coming from the Recycler.
Thirty-six bunches accelerated by the MI were needed to fill the Tevatron
with protons and antiprotons.

2.1.3 Antiproton Source

The Antiproton Source [26] was a very expensive component of the Teva-
tron Collider complex. Considering that no other research program with
antiproton beams could justify the cost of maintaining it in operation, it was
shut down together with the Tevatron collider. At present, the only program
exploiting antiproton beams of very low energy is continued at CERN.

The Antiproton Source was composed by three main parts: the Target
Station, the Debuncher, and the Accumulator. To produce antiprotons, 120
GeV proton beams with an intensity up to ∼ 1012 are steered onto a nickel
target. The collisions created a wide range of secondary particles, among
which are antiprotons, that are produced with an efficiency of about 18 p̄/106 p.
Downstream of the target station is located the collection lithium lens module,
in which a solenoidal magnetic field focuses the negative secondaries. The
purpose of the pulsed dipole magnet following the lens is to select 8 GeV
negative charged particles and to force them towards the Debuncher, where
the momentum spread is reduced using stochastic and momentum cooling.
The Debuncher and Accumulator were small rings sharing the same tunnel.
Single shots were received and cooled in the small acceptance Debuncher ring
and transferred in the Accumulator where large current could be stored. The
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8 GeV stores were further stochastically cooled as needed before transferring
into the Recycler.

2.1.4 The Recycler Ring

When the collected antiprotons had saturated the Accumulator acceptance
(∼ 6× 1011 antiprotons), they were transferred to the Recycler [30]. It was
a fixed 8 GeV kinetic energy storage ring, located in the MI tunnel directly
above the MI beamline. The role of the Recycler ring was to allow storing
a much larger current than that accepted by the Accumulator, and thereby
increasing further the collider luminosity. When the maximum antiproton
current was available in the Recycler, the 8 GeV beam was transferred to the
MI, accelerated to 150 GeV and injected in the Tevatron, where a proton beam
of the same energy circulating in the opposite direction had been previously
stored.

2.1.5 Tevatron Ring

The Tevatron [31] was the last stage of the Tevatron accelerator chain.
The Tevatron was a 1 km radius synchrotron able to accelerate the incoming
150 GeV beams from MI to 980 GeV (Tevatron Run II), providing a center
of mass energy of 1.96 TeV. The proton and antiproton beams circulated in
opposite directions in the same beam pipe. The beam was steered by 774
superconducting dipole magnets and focused by 240 quadrupole magnets
with a maximum magnetic field of 4.2 Tesla. The employment of massive
superconducting magnets, installed for the first time in an accelerator complex,
required cryogenic cooling and consequently a large scale production and
distribution of liquid helium. During Run II (after 2001) the Tevatron operated
with 36 on 36 stored bunches. The antiprotons were injected after the protons
had already been loaded. When the Tevatron loading was complete, the
beams were accelerated to the maximum energy and data taking could start.

2.1.6 Collider Performance

The luminosity and the available center-of-mass energy are the two pa-
rameters that express the capability of colliding charged particle beams to
produce new particles and quantify the performance of colliders. The center-
of-mass energy defines the accessible phase space for the production of final
state particles and at the Tevatron was

√
s = 1.96 TeV. Luminosity measures

the instantaneous rate of beam-beam interactions at the collision points,
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normalized to the interaction cross section. An approximate expression for it
in terms of the incoming beam intensities and sizes is given by:

L ≈ NBNpNp̄f

2π(σ2
p + σ2

p̄)
(2.1)

where NB is the number of bunches, Np and Np̄ are the number of proton
and antiproton per bunch, f is the bunch revolution frequency, σp and σp̄ are
the effective widths of the beams. Making σp and σp̄ smaller and Np and Np̄

larger results in larger rate of collisions.

In the period between 2001 and 2011, several improvements were applied to
Tevatron collider complex. The Tevatron performance history of this period
(see Figure 2.2a), shows that the peak luminosity has grown from L ≈ 8×1030

cm−2s−1 to L ≈ 430× 1030 cm−2s−1. The Tevatron program was terminated
on September 30, 2011. The data collected by the experiments is proportional
to the "integrated luminosity" during the runs, i.e. the time integral of the
instantaneous luminosity, L =

∫
Ldt. The Tevatron integrated luminosity

has greatly progressed over the years too (see Figure 2.2b). During the Run
II the Tevatron delivered 12 fb−1 of integrated luminosity per experiment,
about 85% of which was collected by the CDF and D/0 detectors. The rate of
the Tevatron luminosity progress was one of the fastest among high energy
colliders. The continued Tevatron luminosity increase was mainly due to a
larger number of antiprotons being available with the introduction of the
electron cooling technique [62] in the Recycler, which in turn was the result
of a continuous and dedicated effort of hundreds of experts to optimize and
improve antiproton accumulation and cooling. The antiproton stochastic
and electron cooling methods were not invented at Fermilab, but they were
perfected to a degree not achieved anywhere else in the world.
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(a) Graphic of Tevatron peak luminosity since the start of RunII (2001–2011).

(b) Weekly and total integrated luminosity over Tevatron Run II.

Figure 2.2: Luminosity performance at Tevatron as a function of time.
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2.2 The CDF II Detector

Figure 2.3: End view of the CDF II detec-
tor.

Experimental results rely heavily
on accurate understanding of the de-
tector. Two aspects are critical: the
identification of objects that make
up each signature, and the under-
standing of the calibration and resolu-
tion of the detector. The objects for
which CDF has a good understand-
ing of the efficiencies and fake-rates
are those for which tracking is essen-
tial: electrons, muons, and photons
(no track observed in the tracker), all
in the central region. Similarly, the
energy scale and resolutions of the
calorimeters are well understood in
the central region, where the mag-
netic spectrometer provides essential
help in calibrating the calorimeters.
The CDF II detector (ref [10] and fig-

ure 2.3), operating from 2001 to 2011, was a general-purpose particle detector
with a cylindrical layout and azimuthal and forward-backward symmetry. An
isometric view of the detector is shown in Figure 2.4. CDF II was composed of
several specialized subsystems arranged in concentric layers, each one aimed
at performing a specific task. The subsystems are listed below.

• The tracking system comprises three silicon microstrip trackers (Layer00,
SVXII and ISL) and an open-cell drift chamber (COT) inside a su-
perconducting solenoid, that provides a constant 1.4 T magnetic field
parallel to the beam direction, with the purpose of bending into helices
the trajectories of charged particles to allow the determination of their
momentum and charge.

• The Time of Flight system (TOF), located inside the magnet solenoid
just outside the COT, for measuring the time of flight of long-living
particles and for determining the mass of charged particles with momenta
up to 2 GeV.

• The calorimeter system, with the purpose of measuring the energy
of charged and neutral showering particles.
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Figure 2.4: Isometric view of the CDF II detector. The main components are
indicated.

• The muon chambers and scintillators, used to track and identify
muons, that pass through the calorimeters interacting as minimum-
ionizing-particles (m.i.p.).

• The luminosity monitors, for the instantaneous luminosity measure-
ment, necessary to derive cross section from event yields.

2.2.1 The Detector Coordinate System

CDF II employs a right-handed Cartesian coordinate system with origin
at the B/0 interaction point, assumed coincident with the center of the drift
chamber. The positive z-axis lies along the nominal beam-line pointing
toward the proton direction (east). The (x, y) plane is perpendicular to
either beams, with positive y-axis pointing vertically upward and positive
x-axis in the horizontal plane of the Tevatron, pointing radially outward with
respect to the center of the ring. Longitudinal refers to components along the
z-axis, and transverse refers to components perpendicular to the z-axis. Since
the colliding beams of the Tevatron are unpolarized, the resulting physical
observations are invariant under rotations around the beam line axis. Thus,



CHAPTER 2. EXPERIMENTAL SETUP 31

a cylindrical (r, φ, z) coordinate system is particularly convenient to describe
the detector geometry, where

r =
√
x2 + y2 and φ = tan−1 y

x
(2.2)

where φ = 0 is chosen in the x direction. In the Tevatron collisions the
longitudinal momentum of the colliding partons is unknown on an event-by-
event basis. To describe the direction of a produced particle it is customary
to use a variable invariant under ẑ boosts as a unit of relativistic phase space,
instead of the polar angle θ. This variable is the rapidity defined as

Y =
1

2
ln

[
E + p cos θ

E − p cos θ

]
, (2.3)

where (E, ~p) is the energy-momentum four-vector of the particle. Under a ẑ
boost to an inertial frame with velocity β, the rapidity of a particle transforms
linearly, according to Y → Y

′ ≡ Y + tanh β−1, therefore Y is invariant since
dY = dY

′ . However, a measurement of rapidity still requires a detector with
accurate particle identification capabilities because of the mass term entering
E. Thus, for practical reasons, in the approximation that the mass of the
particle is negligible, it is preferred to substitute Y with the pseudorapidity η,
which converges to the definition of rapidity in the ultra-relativistic limit and
is defined as:

η = − ln

[
tan

θ

2

]
. (2.4)

Other convenient variables used are the transverse component of the mo-
mentum pT = p sin θ, the transverse energy, ET = E sin θ, and the angular
distance ∆R, invariant under longitudinal boosts, defined as

∆R =
√

∆φ2 + ∆η2. (2.5)

∆R defines a cone around a single particle and it is a very important parameter
in the jet reconstruction algorithm.

2.2.2 The Tracking System

Three-dimensional charged particle tracking is achieved through an inte-
grated system consisting of three silicon inner sub-detectors and a large outer
drift-chamber, all contained in a superconducting solenoid, producing 1.41
T magnetic field. A schematic view of the tracking systems is illustrated in
Figure 2.5.
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Figure 2.5: The CDF II tracker layout showing the different sub-detector systems.

The silicon detectors provide a precise determination of the track impact
parameter, the azimuthal angle and the z coordinate at production, whereas
the drift chamber has excellent resolution on the transverse momentum, φ
and η. The combined information of the tracking detectors provides very
accurate measurements of the helical paths of charged particles inside the
detector.

The Silicon Tracker [53] is composed of three main parts. The core of the
silicon detector is the Silicon VerteX detector SVXII. It is a fine resolution
silicon micro-strip vertex detector which provides five three-dimensional
samplings of tracks with full pseudorapidity coverage in the |η| ≤ 2 region. The
SVXII has a cylindrical geometry coaxial with the beam, and its mechanical
layout is segmented in three 32 cm axial sections (barrels) × twelve 30◦
azimuthal sectors (wedges) × five equally-spaced radial layers. A small
overlap between the edges of adjacent azimuthal sectors helps wedge-to-
wedge alignment. Sensors in a single layer are arranged into independent
longitudinal read-out units, called ladders. A pictorial view of the innermost
silicon trackers is illustrated in Figure 2.6. This detector provides position
information with a 12 µm resolution, allowing more determination of the
trajectories and identification of decay-vertices displaced from the beam-line.
The SVXII has an outer and an inner extension.
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Figure 2.6: Schematic illustration of the three instrumented mechanical barrels of
SVXII (a) and of the cross-section of a SVXII barrel in the (r,φ) plane (b).

The outer extension, i.e., the Intermediate Silicon Layers (ISL), is a
silicon tracker providing a single (double at forward angles) three-dimensional
measurement in the central region, at intermediate radial distance from the
drift chamber. The ISL allows efficient linking between tracks reconstructed
in the drift chamber and hits detected in the SVXII, and extends the track
finding at pseudorapidities 1 ≤ |η| ≤1, where the chamber coverage is limited.

The inner extension, i.e., the Layer00 (L00), is a light-weight silicon layer
placed on the beam-pipe. It recovers the degradation in resolution of the
reconstructed vertex position due to multiple scattering on the SVXII read-out
electronics and cooling system, installed within the tracking volume. Being
so close to the beam, L00 allows to reach a resolution of ≈ 25 − 30µm on
the impact parameter of tracks of moderate pT , providing a powerful tool to
identify long-lived hadrons containing a b quark.

The Central Outer Tracker (COT) [54] is a multi-wire, open-cell drift
chamber, lying outside the silicon detector, which provides charged particle
tracking up to r = 137 cm in the central pseudorapidity region |η| ≤ 1. The
COT contains 96 sense wire layers that are grouped in eight superlayers, as
inferred from the end plate section shown in Figure 2.7. Each superlayer
is divided in φ into supercells, and each supercell has 12 sense wires and a
maximum drift distance that is approximately the same for all superlayers.
Therefore, the number of supercells in a given superlayer scales approximately
with the radius of the superlayer. The entire COT contains 30240 sense wires.
Approximately half the wires run along the z direction (axial wires), the other
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half are strung with a small (2 degrees) stereo angles with respect to the z
direction (stereo wires). The combination of the axial and stereo information
allows to measure the z positions and a three- dimensional reconstruction of
tracks.

The COT is filled with an argon-ethane mixture (50:50); the drift time of
ionization electrons produced by particles crossing the chamber is < 100 ns.
The central tracker provides a resolution on the track transverse momentum of
σpT /p

2
T ' 0.01 [GeV]−1. The hit position resolution in the r−φ plane is about

140 µm. Tracking algorithms are used to reconstruct particle trajectories
(helices) that best fit to the observed hits. The reconstructed trajectories are
referred to as tracks. Particle momentum and charge are determined from
the bending of tracks in the magnetic field.

Figure 2.7: Section of the COT end plate. For each superlayer is given the total
number of supercells, the wire orientation (axial or stereo), and the average radius.
The enlargement shows the sense and field slot geometry in detail. Dimensions are
in cm.

2.2.3 The Time of Flight system

The CDF II capability of identifying charged hadrons is expanded at low
momenta by the Time of Flight detector (TOF) [51]. By measuring the arrival
time (t) of a charged particle with respect to the bunch-crossing time, the

TOF infers the mass of the particle according to the relation m = p
c

√
c2t2

L2 − 1,
where the momentum p and the path length L are precisely measured by
the tracking system. A cylindrical array of 216 scintillating bars, oriented
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along the beam axis, is installed between the outer surface of the COT and
the cryostat of the superconducting solenoid. Long attenuation-length and
fast rise-time scintillator, along with accurate calibrations, ensure a measured
time resolution of σt ≈110 ps.

2.2.4 Calorimeters

The CDF calorimetric system has been designed to measure energy and
approximate direction of neutral and charged particles leaving the tracking
region. In particular, it is devoted to jet reconstruction and it is also used
to measure the missing energy associated to neutrinos. Particles hitting the
calorimeter can be divided into two classes according to their interaction
with matter: electromagnetically interacting particles, such as electrons and
photons, and hadronically interacting particles, such as mesons or baryons
produced in hadronization processes. To detect these two classes of particles,
two different calorimetric parts were employed: the inner electromagnetic and
the outer hadronic section. The calorimetric subsystems provide pseudora-
pidity coverage up to |η| ≤ 3.6, and are segmented in η − φ sectors, called
towers, projected towards the geometrical center of the detector. Each tower
consists of alternating layers of passive material and scintillator tiles. The
signal is read out via wavelength shifters (WLS) integrated in the scintillator
and the light from WLS is carried through light guides to photomultiplier
tubes. The energy E measured in a given tower is the sum of the energy
deposited in the electromagnetic calorimeter and in the hadronic calorimeter
corresponding to that tower, E = EEM +EHAD. The depth of the calorimeter
is measured in radiation lengths X0 for the electromagnetic calorimeters [32].
For the hadronic calorimeters, the depth is measured in interaction lengths λ
[32]. The calorimetric system is subdivided into three regions, central, wall
and plug, in order of increasing pseudorapidity, with the following naming
convention: Central Electromagnetic (CEM), Central Hadronic (CHA), Wall
Hadronic (WHA), Plug Electromagnetic (PEM) and Plug Hadronic (PHA).
A quadrant view of the calorimetry system is shown in Figure 2.8.

CEM It is segmented in η×φ = 0.11× 15◦ projective towers, called wedges,
consisting of alternate layers of lead and scintillator, while the CHA and
WHA, whose geometric tower segmentation matches the CEM one, use iron
layers as radiators. Two position detectors are embedded in each wedge of
CEM: a proportional chamber named CPR (Central Pre-Radiator) located
just in front of the CEM (from the interaction point), and a Proportional strip
detector (CES) located at the expected shower maximum 7X0 into the tower.
The interaction of particles with the solenoid and tracking material before
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Figure 2.8: Quadrant view of the CDF calorimeter showing the electromagnetic
(CEM, PEM) and hadronic compartments (CHA, WHA, PHA).

entering the calorimeter results in soft shower profiles that are measured in
the CPR. The CES is a two-dimensional shower profile detector made of
wires running along the z direction and strips orthogonal to them. It provides
valuable information used in the identification of electrons and photons, as
illustrated in section 3.1.

The energy resolution of each segment of the calorimeter for a single parti-
cle has been measured using a test beam of electrons and can be parametrized
as:

σET

ET
=

a√
ET

+ b, (2.6)

where the first term a comes from sampling fluctuations and photostatistics
of PMTs and the constant term b comes from the residual errors in the
inter-calibration between the different towers and the non-uniform response
of the calorimeter. For the CEM [47], the energy resolution parameters of
high-energy electrons and photons are a = 14%[GeV]1/2 and b = 2%. Charged
pions were used to evaluate the energy resolution in the hadronic calorimeters.
Approximate resolution parameters for the CHA are a = 50%[GeV]1/2 and
b = 3%, and for the WHA a = 75%[GeV]1/2 and b = 4% [50].

The Plug Calorimeter The plug calorimeter covers the pseudorapidity
region 1.1 ≤ |η| ≤ 3.6. Both electromagnetic and hadronic sectors are
divided in 12 concentric regions each segmented in 48 or 24 (for η < 2.1
or η > 2.1 respectively) projective towers. As in the central calorimeter,
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there is the PEM and the PHA. Projective towers consist of alternating
layers of absorbing material (lead and iron for electromagnetic and hadronic
sectors respectively) and scintillator tiles. Resolution parameters for the plug
calorimeter, measured on a test beam, are a = 16%[GeV]1/2, b = 1% for the
PEM [49], and a = 80%[GeV]1/2, b = 5% for the PHA [39].

2.2.5 The Muon Detector

The CDF muon detector system [40] (Figure 2.4) consists of drift chambers
and scintillator counters, and covers a pseudorapidity range up to |η| ≤ 1.5.
The muon subsystems are located in the outer part of the CDF II detector.
This detector is organized in four subdetectors:

CMU The central muon detector (CMU) is located right outside the CHA
behind ∼ 5 nuclear interaction absorption lengths λ0 of detector material. It
covers the pseudorapidity range |η| ≤ 0.68. It is composed of a barrel with
inner and outer radii ri = 347 cm and ro = 396 cm respectively, containing
4 drift tube layers sectioned by wedge matching the CHA towers. Each
tube operates in proportional mode, with a maximum drift time of 0.8 µs.
The transtube multiple scattering resolution is 12/(p[GeV]) cm and the
longitudinal resolution is δz ' 10 cm.

CMP The central muon upgrade detector (CMP) is located outside the
CMU behind ∼ 8λ0 of detector material that includes additional 60 cm thick
steel slabs. The CMP contains four layers of rectangularly arrayed drift tubes.
The rapidity extension of the CMP detector is the same of CMU. The muons
detected in this region are required to record hits in both CMU and CMP in
order to improve the signal-to-background ratio. These muons are thus called
CMUP muons. The CMP gas operation mode is proportional, the maximum
drift time is 1.4 µs and it has a transtube multiple scattering resolution of
15/(p[GeV]) cm. A layer of scintillators mounted onto the outside surface of
the CMP provides timing information with a resolution of 1-2 ns.

CMX The central muon extension detector (CMX) consists of conical
sections facing toward the interaction point behind 6-9 λ0 of detector material.
The CMX system extends the central muon detector pseudorapidity coverage
in the region 0.65 ≤ |η| ≤ 1.0. The CMX detector contains two folds of 4
layers of rectangular drift tubes. The transtube multiple scattering resolution
is 13/(p[GeV]) cm and the longitudinal position resolution is δz ' 14 cm.
Two layers of scintillators provides timing information.
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IMU The intermediate muon detector (IMU) is shielded by iron toroids
at small angles, behind 6.2-20 λ0 of material, depending on the rapidity. It
consists of two barrels which extends the CDF geometric muon acceptance
in the pseudorapidity range 1.0 ≤ |η| ≤ 1.5. It contains four layers of
proportional drift tubes, with a maximum drift time of 0.8 µs. The transtube
multiple scattering resolution is 13-25/(p[GeV]) cm and the longitudinal
position resolution is δz ' 16.5 cm. Three layers of scintillators are mounted
to provide timing information. The η, φ coverage of the muon detectors is
shown in Figure 2.9.

Figure 2.9: Coverage in η and φ of the muon detector system. The shape is not
regular because of the obstruction by structural elements.

2.2.6 Cherenkov Luminosity Counters

CDF measures the collider luminosity with a coincidence between two
arrays of Cherenkov counters, the CLC [35], placed around the beam pipes
on the two detector sides. They are located inside the endplug calorimeters,
in the forward and backward regions 3.7 ≤ |η| ≤ 4.7. Cherenkov counters are
arranged around the beam pipe in three concentric cones with 16 counters
each and pointing to the center of the interaction region. The counters
measure the average number of interactions per bunch crossing µ, which is
used to provide a measurement of the instantaneous luminosity L:

µ · f = σpp̄ · L. (2.7)
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Here, σpp̄ is the fraction of the total pp̄ inelastic cross section accepted by
the monitors, as computed in dedicated MC simulations, and f is the bunch
crossing rate of the Tevatron. The pp̄ accepted inelastic cross section at√
s = 1.96 TeV is σpp̄ ≈ 60 mb [35]. This value has been extrapolated from

the measurement at
√
s = 1.8 TeV. The integrated luminosity is measured

with a systematic uncertainty of 5.8%.

2.2.7 CDF Trigger System

At hadron colliders the collision rate is much higher than the rate at which
data can be stored on tape. Tevatron bunches were separated by 396 ns,
leading to a crossing rate of 2.5 MHz, while the maximum tape writing speed
was ∼ 100 events per second. The role of the trigger is to efficiently select
the most interesting physics events. Events selected by the trigger system are
saved permanently on a mass storage and subsequently reconstructed offline.
The CDF trigger system had a three-level architecture, each level provides a
rate reduction sufficient to allow processing in the next level with minimal
dead time. Figure 2.10 shows a schematic representation of the CDF data
acquisition system. The final decision taken by each level is based on a set
of programmable conditions that increase in complexity and selectivity until
eventually data elaboration becomes possible.

Level 1 (L1) is constituted by a specialized hardware, providing a raw
reconstruction of physics objects. The L1 system is organized in three
parallel streams that take prompt information from different detectors and
feed them to the Global Level 1 decision unit. The first stream uses the
information provided by the eXtremely Fast Tracker (XFT), a powerful
hardwired algorithm designed to feed the COT tracking information to the
L1 system. The returned tracks are extrapolated to the calorimeter wedges
and to the muon chambers. The second stream takes information from the
calorimetric system. The third stream collects the information coming from
the muon chambers, matching it with the XFT tracks.

At Level 1 the rate of accepted data is strongly reduced: about 97% of
the events are rejected reducing the 2.53 MHz rate to < 50 KHz.

Level 2 (L2) uses the partial reconstruction of physics objects to make
a decision, exploiting the data collected from L1 and from electromagnetic
calorimeter. It is organized in two streams: the first one is based on a
hardware processor which collects information from calorimeters while the
second, simultaneously, is based on a processor that find tracks in the silicon
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Figure 2.10: Schematic representation of the CDF II trigger and data acquisition
systems.

vertex detector. The total latency of L2 is 21 µs while the output event rate
input to L3 is 300 Hz.

Level 3 (L3) is a software-based trigger that runs on a LINUX farm of com-
mercial computers where the events are fully reconstructed using C++ code.
The information coming from L2 is addressed to the EVent Builder (EVB)
which process the event using algorithms similar to the offline reconstruction.
The final decision to accept an event is based on a series of features of interest
for the physics process under study. Exit rate after L3 was variable, with an
average rate of 50 Hz and a peak of 120 Hz.

Top Events Triggers There are three different top event triggers used for
collecting lepton+jets candidates. The CEM trigger selects high-ET electrons
in CEM, the CMUP trigger selects high-pT muons in CMU and CMP, and



CHAPTER 2. EXPERIMENTAL SETUP 41

the CMX trigger selects high-pT muons in CMX. Specifically, the CEM
trigger requires, at L1, a COT track with pT > 8 GeV pointing to a CEM
tower with ET > 8 GeV and a ratio of electromagnetic to hadronic energy
Ehad/Eem < 0.125. At L2, the calorimeter clustering is performed, and the
requirement is a cluster with ET > 16 GeV matched to a pT > 8 GeV track.
Finally, at L3, the final reconstructed energy of the electron is required to pass
ET > 18 GeV with a matching track of pT > 9 GeV. The Ehad/Eem < 0.125
requirement is also enforced at L2 and L3. The CMUP trigger requires, at L1,
a track with pT > 4 GeV matched to a stub in CMU and CMP hits consistent
with the observed CMU hits. No additional requirements are made at L2; L3
requires a final reconstructed COT track of pT > 18 GeV matched to stubs
in CMU and CMP. The CMX trigger operates very similarly, but requires a
track of pT > 8 GeV at L1 matched to a CMX stub.

The top event triggers used for the lepton+jets channel are used for the
dilepton candidates as well. In the full hadronic channel and in the MET+jets
channel, jet and MET triggers are used, respectively.

The events accepted by the trigger are written on fast-access disks to allow
a real-time data collection, grouped in run numbers. All the manipulations
on the data are done off-line and are referred as data handling. An important
phase is the so called production, where the physics objects such as leptons,
vertices and jets are reconstructed using algorithms that use the most up-to-
date detector calibration and the best measured beamlines. The processed
data are organized into data sets that are the basis for the physics analyses.
Several run numbers are grouped in run periods, each one corresponding a
data taking period with similar characteristics.

The CDF collaboration has defined a list of standard data-quality require-
ments a run has to satisfy to be considered "good"; those runs are collected
in the so-called Good Run List (GRL). All CDF analysis must conform to it.
Furthermore, many specific good run lists, dedicated to analyses based on
different subdetectors status, have been developed by different groups. Which
list is the most suitable for a certain analysis depends on the subdetectors it
uses.
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Physics Object Reconstruction

Our analysis studies of tt̄ production characterized by a lepton+jets event
topology composed by a charged lepton, either an electron or a muon or a
tau, a neutrino and a variable number of jets, including jets coming from b
quarks that must be identified.
After an event has been accepted online, a full event reconstruction is per-
formed offline. From raw data collected by the detector, high level objects
(tracks, vertices, calorimetric clusters) are reconstructed and combined to
provide information on the events final state.

3.1 Electron Reconstruction
Electrons are identified by requiring a track matched to an energy cluster

in the calorimeter with an appropriate shower profile. Depending on which
part of the calorimeter system the cluster belongs to, the electrons are divided
in Central (CEM) and Plug (PEM) electrons. In our analysis we only use
CEM electrons which are reconstructed from electromagnetic clusters in
the central calorimeter, covering a region in pseudorapidity up to |η| ≤ 1.0.
Additional selection criteria applied to identify CEM electrons are listed below
and summarized in Table 3.1. The particle 4-momentum is reconstructed
assuming massless electrons.

• To be accepted as a tight CEM electron, the electron must have |η| ≤ 1.0
and ET > 20 GeV matched to a COT track passing various track quality
cuts.

• To further reject showers from hadrons, the primary simple electron
selection cut applied to the ratio between the energy deposited in the
hadronic calorimeter and the energy deposit in the electromagnetic one

42
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is tightened to Ehad/Eem < 0.055 + 0.00045 · ET/GeV. The additional
linear term accounts for the fact that higher-energy electrons will leak
more energy into the hadronic calorimeter.

• The ratio of the calorimeter energy to the COT track momentum, E/p
(= ET/pT ), is required to be at most 2.0 if ET < 100 GeV. (Above 100
GeV this cut becomes unreliable and is not used.)

• Lshr, a variable describing the match of the lateral profile shape to the
expected shape for electrons derived from test-beam data, must be <
0.2.

• A χ2 comparison is used to compare the shape of the profile measured
in the Central Electromagnetic Strip chamber (CES) to the expected
profile and χ2

stripes < 10.0 is required.

• The distances between the extrapolated COT track and the position
of the CES cluster, ∆x in the r − φ plane and ∆z in the r − z plane,
are required to satisfy −3.0 cm < Q ·∆x < 1.5 cm and |∆z| < 3.0 cm,
where Q is the sign of the charge.

• Electrons produced by photon conversions are rejected searching for a
close track of opposite sign, ∆(xy) < 2 mm, and ∆ cot θ < 0.04, where
∆(xy) is the distance in the r − φ plane at the point where the tracks
are parallel. If such a track is found, the electron is assumed to come
from a pair production and is rejected.

• To identify the electron as coming from a W decay (as opposed to a
decay of a heavy-flavor hadron), the electron is required to be isolated
from other sources of energy in the calorimeter. This is enforced by
measuring the additional energy in a cone of radius ∆R = 0.4 around
the electron; the ratio of this additional energy to the electron energy
must be less than 0.1.

3.2 Muon Reconstruction
Muons pass through the entire CDF detector, in great majority with an

energy release of a minimum ionizing particle (m.i.p.) in the calorimeters.
They leave hits in the outer muon chambers. A muon is reconstructed starting
from a track in the COT and adding track segments (stubs) formed with hits in
the muon drift chambers. Many reconstruction categories exist, some of them
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Table 3.1: Selection requirements applied for CEM electron identification.

Parameter Requirement

ET > 20 GeV
|η| < 1.0
Ehad/Eem < 0.055 + 0.00045 · E/GeV
E/p < 2.0 if ET < 100 GeV
Lshr < 0.2
Q ·∆x > −3.0 cm and < 1.5 cm
|∆z| < 3.0
χ2
strips < 10.0

Conversions Rejected
Isolation <0.1

require the muons to have hits in one muon detector subsystem. Since CMP
covers the same |η| range as CMU, muons in this region are required to record
hits in both CMU and CMP in order to improve the signal-to-background
ratio. These muons are thus called CMUP muons. Loose muons pass the
general track quality and isolation cut but they don’t produce additional drift
chamber stubs. Muon categories utilized for our analysis are: CMX, CMUP
and loose muons.

The cuts used to identify muons are listed below and summarized in Table
3.2.

• To be identified as a tight CMUP or CMX muon, pT > 20 GeV and
|η| < 1.0 cuts are required.

• The energy deposited in the calorimeter is required to be consistent
with a m.i.p.. This is enforced by requiring Eem < 2 GeV and Ehad < 6
GeV for muons having pT < 100 GeV and Eem < 2+( pT

GeV−100) ·0.0115
GeV and Ehad < 6 + ( pT

GeV − 100) · 0.0280 for muons with pT > 100 GeV.

• The distance |∆x| between the extrapolated COT track and the stub
in the muon chambers is required to be < 3.0 cm in CMU, < 5.0 cm in
CMP, and < 6.0 cm in CMX.

• For CMP and CMX, the extrapolated tracks are also required to lie
at least 3 cm away along the wire axis from the edges of the muon
chambers to avoid chamber edge effects.
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• Muons originating from cosmic rays are identified and rejected by an
algorithm which looks for tracks passing through the detector and
rejected.

• Like electrons, an isolation cut of < 0.1 is applied to the muon to require
it to come from W decay.

Table 3.2: Selection requirements applied for muon identification.

Parameter Requirement

ET > 20 GeV
|η| < 1.0
Eem < 2 +max(0, (p− 100) · 0.0115) GeV
Ehad 6 +max(0, (p− 100) · 0.028) GeV
|∆xCMU | < 3.0 cm
|∆xCMP | < 5.0 cm
|∆xCMX | < 6.0 cm
Distance from z-axis edge > 3.0 cm
Cosmic rays Rejected
Isolation < 0.1

3.3 Jet Reconstruction
Jets are frequently produced in the parton interactions at hadron colliders.

They arise from the complex physical process of hadronization that evolves
a color-charged parton into a collimated set of final state colorless hadrons,
photons and leptons. By measuring the energy of a jet, we can thus get an
estimate of the energy of the parton which originated it; this process involves a
series of corrections to the measured ("raw") jet ET . However, this introduces
several significant sources of systematic uncertainties, which in turn results
in a potentially large source of uncertainty in our final measurement.

Jets are identified using a jet clustering algorithm known as JetClu [37];
briefly, JetClu identifies seed towers in the calorimeter with an energy of at
least 1 GeV and adds groups of clusters in the electromagnetic and hadronic
calorimeters within a cone of radius ∆R = 0.4 to the seed, where ∆R =√

∆η2 + ∆φ2. The centroid of the jet is then calculated by summing the η
and φ positions of the towers weighted by their ET and a new list of towers
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around the new center is calculated; this process is repeated iteratively until
it converges. These measurements provide a resolution of approximately
σ(ET ) ≈ 0.1 · ET + 1.0 GeV.

The four-momentum assigned to a jet must be corrected to account for
detector defects and reconstruction algorithm imperfections. In order to
convert the measured transverse jet energy into the transverse energy of the
partons, a set of corrections to the measured jet energy (raw energy) has been
developed [34]. There are a total of five levels of corrections, numbered 1
through 7 (levels 2 and 3 correspond to corrections which are no longer used).

Pseudorapidity-dependent correction (L1) Level 1 accounts for non-
uniformities in calorimeter response along η, primarily arising from the central
crack at η = 0 where the two halves of the calorimeter meet on a support
structure. This correction is obtained by studying the pT balancing in dijet
events, where one jet is required to be in the best region of the central
calorimeter, 0.2 < |η| < 0.6, and assuming that the pT of the two jets (events
with additional hard radiation are rejected) should balance, as expected in a
perfect detector.

Multiple interactions correction (L4) The number of interactions oc-
curring during beam bunch crossings follows a Poisson distribution whose
mean increases with instantaneous luminosity. L4 accounts for the different
calorimeter occupancy as a function of the number of pp̄ interactions occur-
ring in the same bunch crossing. The number of interactions is measured
by the number of vertices along the beamline, or z-vertices. This correction
is obtained by taking random data ("minimum bias") and measuring the
amount of energy in a randomly-selected cone in the central calorimeter region
0.2 < |η| < 0.6 as a function of the number of observed z-vertices in the event.

Absolute energy scale corrections (L5) The absolute correction (L5)
is designed to convert the measured jet energy into the energy of the particles
inside the jet cone, accounting for the nonlinear response of the calorimeter.
This correction is derived by using pythia MC [70] dijet events and comparing
particle jets at generator level (before they are passed through the detector
simulation), with calorimeter jets, as obtained from the detector simulation.

Underlying event (L6) and out-of-cone (L7) corrections L6 and L7
are not actually used in defining the jet energies in our measurement, but we
need to take into account the systematic uncertainties introduced by neglecting
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Figure 3.1: Systematic uncertainties on the measurement of jet energies as a function
of jet pT for central jets.

these corrections. Reconstructed jet energies in hard pp̄ interactions may
contain contributions from particles created by interactions involving other
partons in the colliding hadrons (spectator interactions) or by gluons from
initial state radiation in the hard interaction. These contributions are called
underlying event. On the other hand, a fraction of the parton energy may be
lost outside the jet cone because of final state gluon radiation, fragmentation
at large angles relative to the jet axis or low pT particles bending in the
magnet field. L6 and L7 average contribution are obtained in simulations
using pythia and herwig [41] MC dijet samples.

The systematic uncertainties for these corrections are summarized in Figure
3.1. The total uncertainty is approximately 3% for high-pT jets and it can
reach 10% for lower-pT jets; if taken directly as a systematic on our final
measurement, this would be by far our largest single source of uncertainty.
However, since we use events which contain a W boson decaying to hadrons,
we can use the known mass of the W boson to obtain an additional constraint
to the jet energy scale (JES) in our measurement. This technique is discussed
further in section 5.6.
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3.4 Missing Transverse Energy Reconstruction
Since for neutrinos the probability of interacting in the detector material is

negligible, they escape detection causing an energy imbalance in the observed
event. The transverse energy vector must be null in the final state as it is in
the initial state of the events, and can serve to sense escaping neutrinos. The
missing transverse energy is defined as follows:

~/ET = −
∑
i

Ei
T n̂i (3.1)

where Ei
T is the transverse energy measured in the i-th tower of the calorimeter

and n̂i is the projection of the versor pointing from the event vertex to the
i-th calorimeter tower in the plane perpendicular to the beam axis. This raw
measurement is corrected twice. As muons deposit a small fraction of their
energy in the calorimeter, if isolated high-pT muons are found in the event
the average ionization energy deposited by the muon in the calorimeter is
subtracted and replaced by the muon ~pT . The /ET is also corrected to take
into account the corrections applied to the ET of jets in the event.

3.5 Secondary Vertex Identification
Jets arising from b quark hadronization and decay are present in a wide

range of physics processes, including top quark decays. The ability to ac-
curately identify b jets is fundamental in reducing the large background to
identified b jets from gluon jets, light-flavor quarks (u, d, s) and from c
quark fragmentation. Characteristic features of b quarks initiated jets are the
relatively large mass, high track multiplicity, and high pT of decay products
with respect to b-flight direction, and long lifetime of the heavy flavor hadrons.
These features are used to develop algorithms that allow distinguishing b
jets from those produced by light-flavor quarks and gluons. In particular the
B-hadrons, coming from the hadronization of b quarks, have long natural
lifetimes (∼ 1.5 ps) and in top decays are sufficiently energetic to travel few
mm before decaying (cτ ≈ 450µs). The tagging algorithms take advantage
of this property and identify a point displaced from the primary vertex with
tracks of large impact parameter (d0). The CDF silicon tracker described in
section 2.2.2 is primarily designed for this purpose. The algorithm employed
at CDF is called Secondary Vertex Tagger (SecVtx).

The SecVtx Algorithm [65] Tagging is performed for all jets with |η| <
2.4 in an event. The algorithm searches for secondary vertices using the tracks
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within the jet cone. The usable tracks must satisfy the following requirements:

• pT > 0.5 GeV;

• |d0| < 0.15 cm and |d0/σd0| > 2.0, where d0 is the impact parameter
relative to the beam axis and σd0 its uncertainty;

• |z0 − zPV | < 2.0 cm, where z0 represents the z-coordinate of the track
and zPV the primary vertex coordinate;

• have more than a minimum number (depending on track reconstruction
quality and position) of hits in the silicon detector;

• be confirmed in the COT.

If there are at least 2 tracks with the above requirements the jet is called
taggable. Then, the algorithm tries to reconstruct a secondary vertex with at
least three tracks of pT > 0.5 GeV, of which one must have pT > 1.0 GeV, or
a vertex with at least two tracks of pT > 1.0 GeV. If a secondary vertex is
found the jets is tagged and a bi-dimensional decay length Lxy is calculated
as the projection in the r − φ plane of the SecVtx vector (going from the
primary vertex to the secondary one) into the jet axis, as illustrated in Figure
3.2. A jet is considered tagged if Lxy > 7.5σLxy , where σLxy , the uncertainty
on Lxy, is in average approximately 190 µm.

In order to measure the efficiency of the tagging algorithm for tt̄ events, a
two-step strategy is used. First, the tagging efficiency is measured in a sample
enriched in heavy flavor; specifically, events with two back-to-back jets are
selected, where one of the jets is required to contain a low-pT electron. We
assume that the electron is produced by the decay of a heavy-flavor hadron,
and so the other jet is also likely to originate from a heavy-flavor parton.
Then, we can measure the tagging efficiencies in data and MC. Because the
MC does not model the secondary vertex tagging precisely, there is a scale
factor between the data and MC efficiencies of approximately 0.92 [65] . The
tagging efficiencies for jets in tt̄ data can then be estimated by multiplying
the tagging efficiencies obtained from tt̄ MC by this scale factor.
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Figure 3.2: W+jets candidate event with two secondary vertices tagged by SecVtx.
The /ET direction, a muon track, a prompt track and tracks from the secondary
vertices are shown.
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Event Selection

4.1 Lepton+jets topology
As mentioned in section 1.2.2, the top quark decays almost exclusively into

a W boson and a b quark. The final states of the tt̄ system are determined by
the independent decays of the two W bosons produced in the t and t̄ decays.
W boson can decay either leptonically into any charged lepton-neutrino pair
of the same family (with nearly family-independent branching ratio), or
hadronically into a pair of the two lower mass quark doublets.

Even though the fully hadronic channel (where both bosons decay hadron-
ically) offers a good branching ratio, it suffers from a large QCD background
of multijet states. Measurement of the top properties in the dilepton chan-
nel (where both bosons decay leptonically) is complicated by the two non-
observable neutrinos in the final state. Also, even if the request of two leptons
makes the signal over background ratio very large (even more so when the lep-
tons have different flavor, e-µ events), this channel suffers from low statistics
at the Tevatron1. The single-lepton final states (usually named lepton+jets
and characterized by one W decaying leptonically and the other one decaying
hadronically), involving either electrons or muons or tau leptons, can be
fully reconstructed from the experimental observables and are best suited for
measurements such as the top mass. Due to the presence of a lepton in the
final state, QCD background affects less this channel if compared to the full
hadronic one, still retaining a relatively large number of signal events.

For these reasons we perform our measurements selecting the lepton+jets
final states where one W decays leptonically into an electron (e) or a muon

1The statistical limitation of the dilepton channel is not an issue at the LHC, where the
top production cross section is two order of magnitude higher than the cross section at the
Tevatron and the instantaneous luminosity is higher too.
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(µ) plus a neutrino (ν), including the cascade decay of W → τν and τ → eν
or τ → µν, and the other W decays hadronically into a pair of jets.

Figure 4.1 shows a typical lepton+jets final state tt̄→ b(lν)b̄(qq̄′).

Figure 4.1: A typical lepton+jets event coming from the tt̄ decay.

4.2 Event Signature
The signature of the lepton+jets events is constituted by a high pT charged

lepton, large missing transverse energy /ET and at least four jets.
In particular, we select either one isolated CEM electron with ET > 20

GeV and pseudorapidity |η| ≤ 1.0 or one isolated muon with pT > 20GeV and
|η| ≤ 0.68 in the case of muon observed in CMUP detector, or 0.65 ≤ |η| ≤ 1.0,
in the case of muon detected in CMX. We also include loose muons, those
which pass the general track quality and isolation cut but don’t produce
additional stub in the outer muon chambers. We recall here that a lepton is
considered isolated when (ptotT −plT )/plT < 0.1, where ptotT is the total transverse
momentum (energy) and plT is the lepton transverse momentum (energy) for
muon (electron) in a cone of radius ∆R = 0.4 with axis along the direction of
the lepton.

We also require the presence of large missing transverse energy, accounting
for the escaping neutrino coming from the leptonic W decay: /ET > 20 GeV.

Jets are reconstructed by using the JetClu cone algorithm [37] with a
cone of ∆R = 0.4. Jets are required to have ET > 20 GeV and |η| ≤ 2.0,
defining the tight jets, or ET > 12 GeV and |η| ≤ 2.4, defining loose jets. Jets
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originating from b quarks are identified (tagged) using the SecVtx algorithm
[65]. All jet variables are scaled by a factor which accounts for level 5 jet
corrections, as described in chapter 3.

We divide the sample of candidate lepton+jets events into sub-samples
based on the number of identified b jets, no b-tagged jet (0-tag), one b-tagged
jet (1-tag), and two or more b-tagged jets (2-tag). In the 0-tag events, we
require exactly four tight jets. In the 1-tag and 2-tag events, three tight jets
and at least one additional jet (tight or loose) are required. We divide the
1-tag and 2-tag samples into sub-samples based on the number of tight jets
and call the "tight" sub-sample the one requiring exactly four tight jets and
"loose" the one consisting of the remaining events passing selection (events
with 3 tight jets and at least one loose jet and events with more than four
tight jets).

Thus the analysis uses five categories: 0-tag, 1-tagL, 1-tagT, 2-tagL,
and 2-tagT, where L and T subscripts represent loose and tight selection,
respectively. The selection requirements are summarized in Table 4.1.

By introducing the sub-samples of 0-tag and loose categories, we consider-
ably increase the number of tt̄ candidate events with respect to the previous
Matrix Element measurement [11] which used only tight categories with a
smaller integrated luminosity (5.6 fb−1).

The event selection applied in our analysis is the same used by the last top
mass measurement [9] performed with the template method (briefly discussed
in section 5.12). However, we apply different additional cuts in the selection,
as explained in section 4.5.

4.3 Background
There are several non-tt̄ processes which can mimic the signature of the

signal of interest, and thus need to be considered as potential background.

W+jets The main contribution to the physical background in the lep-
ton+jets decay channel stems from events in which a W boson is produced
together with a number of hadronic jets. Such processes have large cross
section and the leptonic W decay can mimic a single lepton tt̄ event if the
jets are at least four. This background can be divided into W +HF (heavy
flavor), i.e. W + bb̄, W + c and W + cc̄, and W + LF (light flavor). As
W + HF contains a real W and a correct b-tag, it is an unavoidable back-
ground source. However, the production of real heavy flavor is relatively low,
so this background source does not overwhelm our signal. In W + LF a W
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Table 4.1: Selection requirements depending on the number of identified b jets and on
the number of tight and loose jets.

0-tag 1-tagT 1-tagL 2-tagT 2-tagL

Lepton ET [GeV] > 20 > 20 > 20 > 20 > 20
Lepton |η| 0− 1 0− 1 0− 1 0− 1 0− 1

/ET [GeV] 20 20 20 20 20

Leading 3 jets ET [GeV] 20 20 20 20 20
Leading 3 jets η 0− 2 0− 2 0− 2 0− 2 0− 2

4th jet ET [GeV] > 20 > 20 > 12 > 20 > 12
4th jet η 0− 2 0− 2 0− 2.4 0− 2 0− 2.4

Extra jets ET [GeV] < 20 Any loose Any loose Any loose Any loose
or ≥ 1 tight or ≥ 1 tight

boson is produced in association with jets not containing heavy flavor, but
one of the jets is mistagged as a b jet. The amount of this background may
be dependent on the mistag performance of our tagging algorithm.

QCD There is also a background of non-W multi-jet events. Occasionally
jets can release a leptonic signature in the detector because:

• jets may be misidentified as electrons if the energy deposits in the
electromagnetic calorimeter are unusually high: these jets are called
"fake" electrons;

• secondary electrons can arise from hadron weak decays inside jets and
may happen to survive the isolation cut.

Since QCD events are produced in much greater quantities thanW -containing
events, this background is potentially a very large source. However it is reduced
significantly by the selection cuts.

There are other sources of background, which represent a smaller contribu-
tion but should still be taken into account.

Single top These events contain a real W boson and at least one real b
quarks, but the cross section is lower for single top production with respect
to tt̄ production. These events also need at least one other high-energy jet to
mimic the tt̄ signature, so these are a relatively smaller contribution.
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Diboson (WW , WZ, ZZ) In a WW event, one W can decay leptonically
and the other hadronically. In WZ events the Z can decay in two charged
lepton, with one lepton unobserved, and the W can decay hadronically or
the W decays leptonically and the Z decays hadronically. In ZZ events, a
Z boson can decay hadronically, while the other decays leptonically. Like
single top, these events require extra jets, coming from initial or final state
radiation, to mimic the tt̄ signature and therefore they have a relatively small
cross section.

Z+jets Similarly to W + jets, processes with a leptonically decaying Z
boson and associated hadronic jets may fake a semileptonic signal.

4.4 Monte Carlo Samples
For signal as well as for background events, we use a variety of Monte

Carlo (MC) simulated sample in constructing and evaluating our method. In
order to model transfer functions and matrix element, and to calculate the
acceptance (see chapter 5 for details), we use tt̄ signal samples generated by
pythia [70] at leading-order (LO), in the range of top masses between 155GeV
and 195GeV. For the calibration procedure (see chapter 7 for explanation)
we use tt̄ samples accurate at next-to-leading-order (NLO), simulated by
using powheg [64] with the parton showering performed by pythia. Since
the calibration step needs high accuracy, we use a NLO generator and we
also enlarge the range of masses used in this procedure with respect to the
previous analysis [11] by producing additional MC tt̄ samples with top mass
in the range 157.5GeV to 187.5GeV.

MC samples for background are produced by several generators, as listed
below.

• We use alpgen [48] and pythia, respectively to simulate and shower
both W + jets and Z + jets events. These samples are generated with
a specific number of partons in the matrix element; for instance, the
W + bb̄ contribution includes samples with W + bb̄+ 0p, W + bb̄+ 1p,
and W + bb̄+ ≥ 2p, where p indicates partons. In order to get the total
W + bb̄ contribution, we must add up these three subsamples. With
respect to the previous analysis, we produce additional MC samples for
W + jets (inclusive in leptons) with low parton pT cutoff, pT > 5 GeV,
in order to produce the W + jets transfer functions, that were never
used before, and thus cover the low pT part of the phase space on which
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the matrix element of W + jets background has to be integrated over
(see chapter 5).

• The single top samples are simulated with a top mass of 172.5GeV
using the MadGraph/MadEvent [46] package along with pythia
for the parton shower and hadronization.

• For modeling diboson events we use pythia.

As MC is not able to adequately model the non-W QCD background, we
use out-of-signal regions ("sidebands") of our tt̄ data sample. Specifically,
we select events from the electron and muon data using the same selection
requirements as for the tt̄ sample, except that we require the lepton to fail the
isolation requirement discussed in section 4.2, i.e. we require isolation ≥ 0.2
instead of isolation ≤ 0.1.

Since we have specific needs for our analysis we create our own minintuple
ROOT files, starting from the topntuples2 of the signal and background
located in SAM, the CDF database which stores all MC samples produced
for CDF analyses. Minintuples are simplified data formats consistent with
our ME analysis code.

4.5 Selected Sample Composition
As mentioned above, a certain fraction of the events passing our selection

cuts will not be true tt̄ events, but rather background. Since the background
events do not contain any useful information on the top mass (the single
top events, of course, do contain some information but are still not useful if
reconstructed as tt̄ events), it is necessary to adopt a strategy to minimize
their effect on the reconstructed top mass, so we need to know the expected
contributions of each of the above background types to the overall observed
total. For the determination of the selected sample composition we refer to a
widely used method known in internal CDF terminology as Method II For
You (Method II in the following) [44]. This method was originally developed
for the tt̄ cross section measurement [6], where precise background knowledge
is very important. The procedure is used to calculate the normalization
of processes in the SecVtx tagged lepton+jets data sample. The basic
principle of Method II is to use MC simulation to estimate the background
contributions from sources where the MC is well understood and models
the data well; for channels where the MC is known not to model the data

2The topntuple is the standard ROOT ntuple format used by CDF for top quark
analysis.
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contributions well, it employs a data-based approach (see reference [44] for
details).

Since we exploit the same dataset used by the previous CDF template
analysis [9] and we apply the same basic selection, we don’t need to run
Method II, but we can refer to the results previously obtained and collected
in pre-existing tables [57] which fit our sample. To be precise, in our analysis
we use a slightly different Good Run List (GRL, introduced in section 2.2.7).
As a result the total integrated luminosity corresponds to 9.0 fb−1, while the
previous template measurement exploited a slightly smaller dataset of 8.7 fb−1.
Therefore the numbers in Method II tables should be scaled according to
this. The Method II results consist of several estimates. For each background
subsample the number of expected events is derived for each jet multiplicity
(1 to 5 tight jets) and each tagged category (0-tag, 1-tag and 2-tag). Also,
since the trigger and lepton identification (lepton ID) efficiencies depend on
different subdetectors, the estimates are given for each lepton category (CEM
electrons, CMUP muons, CMX muons, loose muons).

The number of expected events has to be corrected by an efficiency term
of additional cuts applied beyond the basic cuts shown in Table 4.1. As
additional selection in our analysis we just apply QCD veto, based on the
algorithm that rejects a non-W event if it has /ET < 30GeV and if the
azimuthal angle between ~/ET and the leading jet direction is < 0.5 or > 2.5
radiants. However, we found that too many signal events are rejected for
2-tag events even though background rejection is small. This is because we
already achieve very good signal-to-background ratio in the 2-tag sample.
Therefore we apply the QCD multijet background rejection only for 0-tag
and 1-tag events.

The cut efficiency is calculated as the ratio between the sum of the weight
of the events after the cut and the sum of weights before cut, where the
event weight is the product between the trigger efficiency, the lepton ID scale
factor and the integrated luminosity. The number of expected events for
each background is evaluated by multiplying the Method II estimate and the
cut efficiency, and adding up numbers obtained for each subdetector. For
the signal events estimation, pythia sample with mt = 172.5GeV is used.
In order to evaluate the number of observed events we just account those
events which pass the basic selection requirements and the QCD veto for each
category. The sample composition is shown in Table 4.2.
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Table 4.2: Expected and observed sample composition.

0-tag 1-tagL 1-tagT 2-tagL 2-tagT

Wbbbar 125.6 177.1 82.2 27.3 17.0
Wccbar 384.8 112.9 52.5 4.1 2.6
Wc 186.7 66.8 25.9 2.3 1.3

W+light j 1580.9 170.7 77.2 2.9 1.9
Z+jets 169.4 25.2 13.7 2.0 1.3

single top 13.9 16.5 8.2 6.7 4.6
Diboson 166.3 31.0 17.9 2.7 1.8
QCD 623.2 119.9 60.3 60.3 6.3

Total Bkg 3250.8 720.1 337.9 49.0 36.8

ttbar 959.7 998.6 1086.3 331.3 425.5

Expected total 4210.5 1718.7 1424.2 380.3 462.3
Observed 4474 1711 1434 365 375

In general, we observe a good agreement between the number of total
expected events and the number of observed events. Only in the 2-tagT
category we note a substantial difference of ∼ 20%: in this case the number
of expected events exceeds the number of observed events. On the contrary
in 0-tag sample the number of expected events is mildly smaller than the
number of observed events. The total signal-to-background ratio, obtained
by summing up the overall signal and background and calculating the ratio,
is Sig/Bkg ∼ 1/1.

In order to verify the correctness of the method used to evaluate the sample
composition, we apply to our samples the same additional cuts of the previous
template analysis and we make a cross check with their results. Our results
are in good agreement with the previous analysis, excepting for the QCD
sample estimation which is differently modeled in the two analysis. The
previous template analysis models QCD by using anti-electron sample [43],
whereas we use the inverted isolation cut described above.

The signal-to-background ratio obtained by applying the same cuts of the
previous analysis is Sig/Bkg ∼ 2/1 showing that in our analysis (Sig/Bkg ∼
1/1), where we apply only the QCD veto as additional cut, the background is
larger, mostly for 0-tag and 1-tag categories. However, to improve Sig/Bkg
we shall apply an additional cut on the final likelihood.
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4.6 Validation of Data
Since this analysis is necessarily reliant on MC simulation, we made a large

number of validation plots, to show that the observed features of our data
agree well with the MC. This work was essential to prove the soundness of
the analysis and was a significant part of my own effort. The plots illustrated
in the following pages show some quantities of interest plotted for the data
against MC events of the samples described in section 4.4. The tt̄ signal
sample used here is the pythia sample with mt = 172.5GeV. The MC
distributions of each sample are normalized with the number of expected
events obtained in section 4.5 and summarized in Table 4.2.

Every set of plot contains the specific kinematic distribution of each category,
in order: 0-tag, 1-tagT, 1-tag-L, 2-tagT, 2-tagL.

• Figure 4.2 shows the distribution of the lepton transverse momentum
pT . The comparison between data and MC for 0-tag sample shows
some disagreement in the shape of the distributions. In the first row
of figure 4.2 the distribution of 0-tag sample (top left) is compared
to the distribution obtained by removing the QCD background and
rescaling data with the number of background events (top right). The
latter shows a better agreement between data and MC, indicating that
the modeling of the QCD background should be refined. This item is
currently under discussion.

• Figure 4.3 shows the distributions of the lepton pseudorapidity.

• Figure 4.4 shows the distributions of the quantity HT which represents
the scalar sum of transverse energies in the event, HT = El

T + /ET +∑
jetsE

jet
T , where El

T is the transverse energy of the lepton, /ET the
scalar missing energy, and Ejet

T the transverse energy of the jet. Even
though HT cut is applied in many analysis, we don’t use HT since it
has a top mass dependent distribution.

• In Figure 4.5 the distribution of the missing transverse energy /ET is
shown. For 0-tag and 1-tag the distribution has a peak corresponding
to /ET = 30GeV. This is due to the QCD veto applied for events with
/ET < 30GeV.

• The distributions in Figure 4.6 represent the transverse momentum of
the b-jets. If we can’t reconstruct the b-jets from the secondary-vertex
tagging algorithm we exploit the results of the kinematic reconstruction
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performed by the previous template analysis [9]. The template analysis
is based on the reconstruction of some specific top quark mass estimator.
Every selected event is subjected to a kinematic fit, and the jet-parton
assignment that yields the best χ2 for a tt̄ hypothesis is chosen to
compute the estimator of the top quark mass. In particular, the jets
showing the best χ2 under the b-flavor hypothesis are considered as
b-jets [55].

• In Figures 4.7 and 4.8 the distributions in transverse energy and in
pseudorapidity of the first four jets are reported.

• The last set of plots in Figure 4.9 shows the distribution of the transverse
mass of the W boson defined as MW

T = 1
c2

√
2 · El

T · /ET · (1− cosφlν),
where φlν is the angle between the lepton and the /ET vector in the
transverse plane.

In general, a good agreement between data and MC simulations is observed
in all categories, excepting the 2-tagT category in which we notice that data
undershoot MC simulations. The reason is that the MC distributions are
normalized by the number of expected events which are not in good agreement
with the number of observed events in data, as shown in Table 4.2. For the
same reason in 0-tag category, data overshoot mildly the MC distributions.
However, the ME method is insensitive to the absolute normalization of the
various categories and sensitive to the shapes of the distributions which seem
to be in good agreement in almost every case, excepting in the lepton pT
distribution.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Comparison of lepton pT between data and MC for events passing our
selection cuts.



CHAPTER 4. EVENT SELECTION 62

(a)

(b) (c)

(d) (e)

Figure 4.3: Comparison of lepton η between data and MC for events passing our
selection cuts.
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(a)

(b) (c)

(d) (e)

Figure 4.4: Comparison of HT between data and MC for events passing our selection
cuts.
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(a)

(b) (c)

(d) (e)

Figure 4.5: Comparison of /ET between data and MC for events passing our selection
cuts.
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(a)

(b) (c)

(d) (e)

Figure 4.6: Comparison of pT for the b-jets between data and MC for events passing
our selection cuts.
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(a)

(b) (c)

(d) (e)

Figure 4.7: Comparison of ET for the first four jets between data and MC for events
passing our selection cuts.
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(a)

(b) (c)

(d) (e)

Figure 4.8: Comparison of η for the first four jets between data and MC for events
passing our selection cuts.
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(a)

(b) (c)

(d) (e)

Figure 4.9: Comparison of MW
T between data and MC for events passing our

selection cuts.



Chapter 5

Matrix Element Method

5.1 Introduction to the Matrix Element Method
The Matrix Element (ME) method is a powerful tool in experimental

particle physics, especially at hadron colliders, as it provides a superior
statistical sensitivity in the extraction of important parameters of the Standard
Model. The key concept of the ME method is to build an event probability
assuming two processes, one signal and one background, starting from the
entire kinematic information associated to every single selected event. The
increased statistical sensitivity of this method with respect to other methods
based on distribution fitting, like the widely used template methods, is due to
the completeness of the information exploited in each event. This represents
the fundamental difference with respect to methods which are sensitive only
to one or more distributions of a whole set of events, where each event enters
with the same weight. Moreover, the computation of the matrix element
checks the full kinematics of the event, as opposed to exploiting information
from only a few variables.

The ME method was first suggested by K.Kondo [60] with the purpose to
exploit at best the full picture of the 4π detectors to give overall picture of
individual events. The method was then applied in practice in the pioneering
Run I measurement of the top quark mass by the D/0 collaboration [16] at
the Tevatron. Since then the ME method has been used in studies of top
quark properties as well as of b-physics at the Tevatron. It was applied in
the measurement of the W helicity [17] and in the search for single top quark
production [7][18]. A notable recent application has been in the study of the
Higgs process H → ZZ∗ → 4l, where the ME method, in the form of the
"MELA" approach, was used in the Higgs discovery by CMS experiment [14].

69
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The method can in principle be used for any measurement, with the
largest gain compared to cut based analysis techniques expected for processes
involving intermediate resonances and leading to many particle final states.
In general, the ME method, as well as other techniques, can be used to
determine several unknown parameters (theoretical parameters describing the
physics processes measured as well as experimental parameters describing the
detector response) at the same time in one measurement, thus also allowing
for a reduction of systematic uncertainties. Our measurement in tt̄ events
containing one leptonic and one hadronic W decay exploits the known W
mass to constrain the energy scale for jets and significantly reduce the main
systematic uncertainty of early measurements of the top quark mass. Together
with the top quark mass, a simultaneous additional measurement of the jet
energy scale can be thus incorporated naturally in the ME method.

The superior sensitivity of the ME technique is achieved by taking into
account the full topological and kinematic information in a given event, and
determining the probabilities Psig(y|a) that an observed event is a signal
event, where y is a vector describing the parameters of the tt̄ generation model,
inferred from detector response, and a is the vector of model parameters. Even
though we call y "observed" quantity, it is usually a product of sophisticated
event reconstruction procedure which involves pattern recognition, tracking,
clustering of jets, kinematic fitting and so on. In the context of the top mass
measurement, the parameter set a includes mt and ∆JES shift relative to the
nominal jet energy scale.

The method can be generalized to encompass background by considering
the probability density for an event to coming from background, Pbkg(y|b),
where b parameter is referred just to ∆JES.

In the specific context of our analysis, assuming two non-interfering pro-
cesses, tt̄ signal and W + jets background, the probability distribution per
event is defined as

Pev(y|mt,∆JES ) = A(y)[fPsig(y|mt,∆JES ) + (1− f)PWjets(y|∆JES )]
(5.1)

where A(y) term accounts for acceptance and efficiencies and f is the signal
fraction which has to be determined by calibration with simulated measure-
ments (“pseudo-experiments”). We would consider f as a function of mt and
∆JES if we want to take into account different expected sample composition
for different mt and ∆JES values. In Equation 5.1 Psig describes the probabil-
ity density for tt̄ production and PWjets describes the probability density for
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W + jets production which represents the dominant background contribution.
We don’t explicitly take into account other backgrounds in Pev(y|mt,∆JES).
These small backgrounds will be included in the pseudoexperiments and
therefore will be accounted for by some smearing of the W + jets probability
function.

For a given sample of N selected events, the parameters to be measured are
determined as those values that maximize the likelihood which is constructed
at each grid point in (mt,∆JES) in the measurement space Y from the product
of the individual Pev values according to:

L(Y |mt,∆JES ) =
N∏
i=1

Pev(yi|mt,∆JES ) (5.2)

Usually, instead of maximizing the likelihood itself, one minimizes the
negative logarithm of the likelihood

− lnL(Y |mt,∆JES ) = −
N∑
i=1

lnPev(yi|mt,∆JES ). (5.3)

Obtaining a consistent mt estimate is guaranteed by an important property
of the Breit-Wigner shape of the top quark mass distribution (which limits
the mt resolution that can be achieved in a single even by a perfect detector):
the slope of its log-likelihood is bounded. This means that a contaminating
event inconsistent with the model can only make a finite contribution to
the determination of top quark mass. To give an idea that this is not
always the case, let us consider the determination of the mean when the
density is Gaussian. In this case, the maximum likelihood analysis leads to the
conclusion that the optimal value of the mean should be determined by simply
averaging all observations. In this circumstance even a single observation
not described by the model (many standard deviations away from the "real"
mean) can give arbitrarily large contributions to the average. On the contrary,
if the ME analysis does not employ the narrow width approximation for the
top quark, the maximum likelihood estimate of mt is guaranteed to be robust
and can tolerate certain deficiencies in the background modeling [33].

The Matrix Element Method can be understood as an application of the
Bayesian principle of integrating over all unobserved degrees of freedom with
a well motivated informative prior provided by the Standard Model theory.
In fact, if we perfectly knew all the variables related to the particles involved
in a tt̄ event, with the exception of the quantity of interest, it would be
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straightforward to evaluate the matrix element for tt̄ production and decay
for a variety of possible mt and thus build a likelihood curve of observing
that event in the detector as a function of mt. The reality is very different
indeed, as we don’t perfectly know the variables involved in the processes
because they are obtained by measurements that are always subject to errors
and sometimes impossible. What we can do is to integrate over all of the
unknown variables, making use of appropriate prior reflecting our knowledge
of the expected values of the variables, related through the transfer functions
to the known quantities measured in the detector. The prior is provided
by the full dynamical model of tt̄ production and decay, defined in the 32-
dimensional phase space of two initial and six final state particles, as predicted
by the Standard Model. This adopted dynamical model is the leading order
expression of the theory. Corrections for higher order effects are applied after
a calibration of the method. In a similar way W + 4jets events are treated.
Hence our mass measurement is valid only under the assumption that the
properties of the top quark (and W + 4jets) are correctly described by the
Standard Model.

The main components of the prior are the matrix element and the phase
space terms: for this reason the technique is referred to as the “Matrix Element
Method”. The main components of the matrix element are the propagators
for top quark and W boson which lead to the characteristic Breit-Wigner
shape of the mass distributions.

5.2 Signal Probability
The probability density for tt̄ production to yeld a given set of partonic

final state four-momenta x in the hard scattering of two partons with four-
momenta q1 and q2 is proportional to the differential cross section dσ of the
corresponding process, given by

dσqq̄,gg→tt̄(x,mt) =
(2π)4|Mqq̄,gg→tt̄|2

2gµνq
µ
1 q

ν
2

dΦ(x) (5.4)

where Mqq̄,gg→tt̄ denotes the matrix element of the tt̄ production through
quark-antiquark annihilation and gluon-gluon fusion and the subsequent
decay in lepton+jets channel qq̄, gg → tt̄→ b(lν)b̄(qq̄′), gµν is the tensor of
the Minkowski metric, and dΦ(x) is an infinitesimal element of the phase
space for the eight particles in the tt̄ production and decay process [20].

To obtain the differential cross section in pp̄ collisions, the expression in
Eq.5.4 is convoluted with the corresponding probability distributions for all
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possible flavor combinations of the colliding quark and antiquark, as well as
the probability distribution of incoming gluons, yielding

dσpp̄→tt̄(x,mt) =
∑
gg,

qq̄ flav

∫
dq1dq2f(q1)f(q2) dσqq̄,gg→tt̄ (5.5)

where f(q1) and f(q2) are the Parton Distribution Functions (PDFs) describ-
ing the momenta q1 and q2 carried by the incoming partons.

In general, the set y of measured four-momenta is not identical to the
set of corresponding partonic variables x because of finite detector resolution
and the evolution of quarks into jets. This is taken into account through the
transfer function (TF) W (y|x,∆JES), representing the probability density
to observe detector response y given the parton level momentum x and a
JES shift ∆JES. Thus, the probability to observe a given reconstructed tt̄
event characterized by y is obtained through a convolution with the TF in
the calculation of the differential cross section

dσpp̄→tt̄(y|mt,∆JES) =

∫
x

dx dσpp̄→tt̄(x|mt)×W (y|x,∆JES). (5.6)

The probability distribution to observe a tt̄ event with a set of kinematic
quantities y in the detector is given by

Psig(y|mt,∆JES ) =
dσpp̄→tt̄(y|mt,∆JES)

σpp̄→tt̄,acc(mt,∆JES)
(5.7)

where the total cross section for tt̄ production observed in the detector, defined
as

σpp̄→tt̄,acc(mt,∆JES) =

∫
y

dyA(y)dσpp̄→tt̄(y|mt,∆JES) (5.8)

ensures that A(y)Psig is normalized to unity, where A(y) is a term that
accounts for the fraction of events that gets detected and passes the selection
cuts.

Using the previous equations, the probability distribution to observe a tt̄
event with four-momenta y in the detector can be written explicitly as

Psig(y|mt,∆JES ) =
1

σpp̄→tt̄,obs
×
∑
gg,

qq̄ flav

∫ [
dq1dq2f(q1)f(q2)

× (2π)4|Mqq̄,gg→tt̄|2

2gµνq
µ
1 q

ν
2

×W (y|x,∆JES)× dΦ(x)
]
.

(5.9)
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5.3 Background Probability
The probability for W + jets production, PWjets, can be calculated in a

similar way as the signal probability Psig by replacing the tt̄ matrix element
Mqq̄,gg→tt̄ by a W + jets matrix element Mqq̄→Wjets:

PWjets(y|∆JES ) =
1

σpp̄→W+jets,obs(∆JES)

×
∑
quark

flavours

∫ [
dq1dq2f(q1)f(q2)

× (2π)4|Mqq̄→Wjets|2

2gµνq
µ
1 q

ν
2

×W (y|x,∆JES)× dΦ(x)
]
.

(5.10)

The fact that we involve just the W + jets processes in the calculation of
the likelihood L(Y |mt,∆JES), excluding all the other backgrounds, reflects
an incompleteness of the model. However the method works well with a
small contamination by events not described by the model. An incomplete
background likelihood, indeed, will lead to a shift of the measured top quark
mass value (apart from an increased statistical uncertainty); the shift will in
general depend on the top quark mass itself and on the fraction of events
in the sample that are not accounted for in the overall likelihood. The shift
is determined in the final calibration procedure in which we will map the
mt values into the MC mass inputs, and the uncertainties are obtained by
studying pseudo-experiments. When a background term is omitted in the
event likelihood, the situation will not be qualitatively different from that in
an analysis that includes this term in the likelihood [38].

In the following sections we are going to explain in more detail the main
factors of the signal and background probability expressions.

5.4 Matrix Element
The matrix element is, obviously, the fundamental part of the method

used in this analysis. For signal production, it is the amplitude for production
and decay of heavy tt̄ pairs in hadronic collisions. We use the matrix element
expression developed by Kleiss and Stirling [68] which includes both the
process of annihilation qq̄ → tt̄ and the gluon-gluon fusion gg → tt̄, as well
as the complete spin correlations in the decay tt̄→ b(lν)b̄(qq̄′).
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As far as the matrix element for W + jets production is concerned, there is
a fundamental difference with respect to the signal matrix element: even at
leading order, hundreds of Feynman graphs are needed to describe electroweak
W + jets production, leading to more complicated (and expensive in terms
of processing time) algorithms employed in the computation. The W + jets
matrix element is calculated at leading order as implemented in MadGraph
5 program [45]. MadGraph is a tool for automatically generating tree-level
matrix elements at given phase space points for High Energy Physics processes.
Before employing MadGraph, we have been using the vecbos program
[36] in developing the matrix element for W + jets production. We decided
to switch to MadGraph, due to some problems in vecbos related to the
convergence of the integration and compiler, as described in the next chapter.

5.5 Parton Distribution Functions
The Parton Distribution Functions f(qi) of the proton (antiproton) are

a necessary input to almost all theory predictions for hadron colliders. The
parton density function gives the probability of finding in the (anti)proton a
parton i with a specific flavor carrying a fraction qi of the proton momentum.
Cross section are calculated by convoluting the parton level cross section with
the appropriate PDFs. We use the CTEQ5L leading order PDFs [42], with
appropriate weights to account for q, q̄ and g contributions.

5.6 Jet Energy Scale Parameter
The jets originating from the fragmentation of quarks and gluons are

the most common and complicated final state objects produced at hadron
colliders. Several correction factors are developed to estimate the original
parton energy from the observed jet energy in the calorimeter. The CDF jet
energy corrections are divided into different levels to accommodate different
effects that can distort the measured jet energy, as different response of
the calorimeter, non-linear calorimeter response to the deposited energy,
un-instrumented regions of the detector, energy released into the jet cone
from overlapping (spectator) interactions, and jet energy radiated outside
the pre-defined jet cone. According to these corrections, the jet energy scale
parameter (JES ) relates the transverse momentum of a jet observed inside
the jet cone, pT,jet, to the transverse momentum of the contained particles,
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pT,MC :

pT,MC = JES · pT,jet1 (5.11)

Several significant sources of uncertainties are introduced on the jet energy
scale determination. Since the lepton+jets signature contains at least four
jets in the final state and our measurement technique makes explicit use of the
jet transverse momenta, imperfect calibration and corrections of the detector
jet energy scale would result in a potentially large source of uncertainty in
our measurement of the top quark mass. Therefore, instead of converting
the uncertainty of the jet energy scale in our top mass measurement by the
common way, i.e. shifting the jets by their uncertainty and measuring the
resulting difference in the top mass, we calibrate the jet energy scale in situ
making use of the fact that the hadronically decaying W boson daughters
should form a final state whose invariant mass is consistent with the known
W boson mass and width. The constraint of MW = 80.4 GeV is imposed by
integrating overW boson masses using a Breit-Wigner prior. This allows us to
constrain the jet energy scale and convert the JES systematic uncertainty into
a smaller statistical uncertainty. We describe the likelihood as a function of
∆JES and top mass parameters. The common ∆JES for all jets (determined
from data) automatically tunes the likelihood to reproduce the W peak
correctly, as there is a strong peak in the tt̄ matrix element due to the W
propagator.

In our top mass measurement, JES is related to the fractional systematic
uncertainty from prior calibration, σjet, by

JES = 1 + ∆JES · σJES(pT,jet) (5.12)

where ∆JES is a pT -independent nuisance parameter and σJES(pT,jet) is the
pT -dependent systematic uncertainty. For instance, ∆JES = 1 means that all
jets are shifted upwards by 1σ, an amount that will be different for jets of
different energy.

5.7 Transfer Functions
The transfer functions W (y|x,∆JES) are one of the most important

component of any matrix element analysis, as they connect the parton-level
quantities x appearing in the matrix element with the reconstructed quantities

1This is inverse to the standard JES convention used by CDF publications. We shall
stick to it during the analysis and return to the standard convention when computing the
final likelihood.
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observed in our detector. The total transfer function used in the probability
calculation in Eq.5.9 can be in general split up into a product of single transfer
functions for each object observed by detector. However, we only apply our
transfer functions to the jets because we assume that the lepton momentum
is well measured in our detector (in these circumstances the transfer function
for lepton momentum is described by a delta function). Also the /ET related
to neutrino is not used in defining event probabilities, since it does not carry
sufficient information. This is the equivalent of setting the transfer function
for /ET to the unity.

In developing the jet transfer functions, it is necessary to take into account
the ambiguity in assigning measured jets to partons from tt̄ decay. Since at
LO there are four jets in the final state, all 4!=24 jet-parton assignments are
considered. The inclusion of b-tagging information provides improved identifi-
cation of the correct jet-parton assignments through appropriate weights wi.
In addition we factorize the transfer function into separate momentum and
angular parts as follows:

W (y|x,∆JES) =
24∑
i=1

wi
[
W (pt,jet|pt,part)W (ηjet, φjet|ηpart, φpart)

]
, (5.13)

where jet subscripts indicate the jet quantities and the part subscripts the
parton quantities. This is important, because the response of the detector to
jets is different at different polar angles, and so are the transfer functions.

Starting from MC events, we derive the transfer functions, matching the
jets to the partons by means of algorithms that correlate the direction of the
primary to the jet axis, and then building the distributions. The angular
transfer function is built as the probability distribution of ∆η and ∆φ, the
differences between the η and φ of the jet and the parton. A sample angular
transfer function is shown in Figure 5.1 [61].

For the momentum transfer function, basically, we need to solve Eq. 5.11
for unknown quantity pT,jet, making use of the definition in Eq. 5.12. Once
obtained pT,jet from the known quantities pT,MC and ∆JES, we can build the
distribution of pT ratio u =

pT,jet

pT,part
, where pT,part is the transverse momentum

of the parton that initiates the corresponding MC jet. In Figure 5.2 an
example of momentum transfer function is shown [61].
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Figure 5.1: Sample angular transfer function as a function of ∆η and ∆φ (in
radians) [61].

5.8 Normalization
Equations 5.8 and 5.9 show that the normalization of the signal probability

is guaranteed by the inclusion of the total tt̄ production cross section along
with the acceptance factor. The integral of the product between these terms,
defining σpp̄→tt̄,acc (Equation 5.8), represents an approximation of the cross
section observed in the detector, which is practically impossible to compute
in advance. In this sense, the acceptance that we use in the definition
of the likelihood is not the conventional acceptance used in cross section
measurements.

The tt̄ cross section is not constant as a function of mt. Therefore we add
to the cross section a weight factor N(mt), which is calculated with a leading
order integration over the phase space, including all the components of the
probability function (see Eq. 5.9), except for the transfer function.
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Figure 5.2: Sample momentum transfer function as a function of the pT ratio
u =

pT,jet

pT,part
and the parton pT [61].

5.9 Acceptance
The purpose of calculating the acceptance term A(mt,∆JES) for the ME

integration consists in normalizing the event probability over the observed
variables, as a function of mt and ∆JES, rather than by event counting.
For the tt̄ acceptance calculation we use MC events generated by pythia
in the range of top mass between 155 GeV and 195 GeV. We build the
acceptance separately for the untagged, single-tagged and double tagged
samples, separately for tight and loose categories, as described in Chapter 4.

We define the acceptance as the ratio between the number of selected events
in the specific category and the number of the total lepton+jets generated
events:

A(mt,∆JES) =
Nsel

Ngen

. (5.14)

Although this is the usual definition of the acceptance, we don’t compute it
in the conventional way, as we impose conditions such as jet-parton matching,
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usually forbidden in the definition of the conventional acceptance, where
the denominator should be fully unbiased. In addition to electron+jets and
muon+jets events, the number of generated events considered in the definition
of the acceptance includes also τ + jets events. Both the count for generated
events and the count for selected events require matching between the first
four jets and the corresponding assigned partons. The algorithm used for the
matching is based on a cone method: for each primary parton we search for
the closest jet within ∆R < 0.4, where ∆R =

√
∆η2 + ∆φ2.

To evaluate the number of selected events we apply to the generated events
the selection cuts described in Table 4.1 and the additional requirement of
matching between the reconstructed leptons and the generated leptons. Here,
we deal separately with each category, taking into account the additional
separation between leptons identified as τ and non-τ leptons. The reason is
that we need to integrate separately the event probability in the two cases
because the convergency of the integral is different as well as the uncertainties
obtained: consider that the final state observed in the detector due to a
τ + jets event includes at least one additional neutrino and more objects.
Therefore the event probability for such events has to be integrated over a
wider phase space and consequently the calculation of the related acceptance
term is needed.

The acceptance term is then calculated for each category varying mt in the
range 155-195 GeV with steps of 1 GeV and ∆JES between -3 and +3 with
spacing of 0.2. In Figure5.3 the acceptance calculated for the untagged tight
category is shown.

The value of the acceptance is given in percentage. The relative acceptance
error, that is not shown in the current plot, is evaluated by propagating the
errors associated to the numerator and denominator defining the acceptance
term. It results to be of the order of ∼ 1%.

Note that the acceptance increases as the JES shift decreases. Indeed,
according to Eq. 5.12, JES increases with ∆JES and consequently, given Eq.
5.11, the detector PT,jet decreases for fixed PT,MC .

In Figure 5.4 some one-dimensional projections of the acceptance for the
0-tag tight category are illustrated. The first row shows the acceptance for
l + jets final states with l 6= τ : the acceptance is calculated as a function of
∆JES fixing the top mass value to 172 GeV (top left plot), and as a function
of mt with fixed ∆JES = 0 (top right plot). The second row shows the same
plots for l + jets final states with l = τ . The acceptance decreases in the
second case because of the cut applied on the final lepton momentum and
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Figure 5.3: Acceptance for 0-tag tight category with l 6= τ as a function of mt and
∆JES .

this reduction implies also more fluctuations. What we detect in the case
of tau leptons, in fact, is either an electron or a muon coming from the τ
decay, therefore these secondary leptons are in general less energetic than the
primary one and a smaller number of them will pass the selection.

Two similar projections of the acceptance evaluated for 2-tag tight category
and l 6= τ are shown in Figure 5.5. Even in this case we notice a reduction of
the acceptance value with respect to the 0-tag case because of the more strict
requirement of two b-tagged jets.
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Figure 5.4: One-dimensional projections of the acceptance for 0-tag tight category.
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5.10 Integration variables
We have 32 variables available to describe the kinematics of a tt̄ production

and decay, four for each of the two incoming partons and six final state
objects: two light quarks, two b quarks, one lepton and one neutrino. The
number of independent variables is reduced by introducing some constraints
and assumptions. Four of these dimensions are eliminated by energy and
momentum conservation, and four more by taking the charged lepton, neutrino,
and initial parton masses as known. In addition, we assume that the lepton
momentum is perfectly measured, and we neglect the transverse momenta of
the initial partons so that we model only the transverse momentum of the
total tt̄ system. This leaves a total of 19 dimensions over which the integral
must be evaluated2. We then select the following 19 variables:

• M2
t,lep and M2

t,had, the squares of the masses of the top quarks on the
hadronic and leptonic decay channel;

• M2
W,lep and M2

W,had, the squared mass of the leptonic and hadronic W s;

• β = lnpq
pq̄
, the logarithm of the ratio of the magnitude of the light quark

momenta from the hadronic side decay;

• ~pT (tt̄), the transverse momentum of the tt̄ system;

• m1...4, the masses of the four partons that initiate the jets in the final
state;

2Note that in the case of τ lepton decays we have an additional integration dimension
due to the charged lepton momentum.
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• η1...4 and φ1...4, the angles of the four partons that initiate the jets.

After the reduction of dimensions, the integral still remains a complicated
work. Moreover, the integrand has a complex structure because of the
resonant nature of t and W , and its efficient evaluation requires a highly
nontrivial phase space sampling scheme. In most of the previous analyses it
has been necessary to introduce additional assumption in order to speed up
the convergence of the integration procedures. These additional and often
imperfect assumptions cause an inevitable loss of resolution in the result. In
this analysis we employ an improved integration technique, named Quasi-
Monte Carlo (Quasi-MC) technique [63], that allows us to integrate over
the wide phase space without significantly increasing the computation time
required to evaluate the likelihood, resulting in an improved mass resolution.

5.11 Phase Space
The integration of the event probability is performed over the differential

phase space dΦ(x). According to the Fermi’s golden rule the differential phase
space of the tt̄→ b(lν)b̄(qq̄′) decay written down in terms of the four-momenta
of the particles involved, is proportional to

4∏
i=1

d3~pidEi
(2π)3

· d3~pl
(2π)32El

· d3~pν
(2π)32Eν

(5.15)

Here, ~pi and Ei represent the three-momentum and energy of the four outgoing
quarks of the decay, l and ν subscripts are referred to the lepton and neutrino
respectively. The difference between terms referred to lepton and neutrino,
and the one referred to partons comes from the fact that, as previously
specified, the lepton and neutrino masses are taken as constants, while the
parton masses are allowed to vary in our integral. Moreover, because of
our previous assumption that the lepton momentum is well measured, the
integration over pl is eliminated. We can also rewrite the three-momenta in
terms of their magnitude pi and angles Ωi:

4∏
i=1

p2
i dpidΩidEi

(2π)3
· d3 ~pν

(2π)32Eν
(5.16)

At this point, by introducing the Jacobian matrix, the transformation from
p1 . . . p4, θ1 . . . θ4, φ1 . . . φ4, E1 . . . E4, pνx, pνy, pνz into the variables actually
used in our integration has to be performed.



CHAPTER 5. MATRIX ELEMENT METHOD 85

Quasi-MC integration is used for 18 of the 19 variables available. The
leptonic W mass M2

W,lep requires special treatment to avoid phase space
singularities. Specifically, when considering the allowed values of the squared
leptonic W mass M2

W,lep vs the neutrino z-momentum pνz, the Jacobian for
transforming between these two variables goes to zero at a point, and so, since
the Jacobian is in the denominator, the integrand becomes infinite. Similarly,
using pνz as the integration variable will also fail in some cases. To avoid
these problems, the integration code switches between the two integration
variables as necessary and the integration is performed over a fixed grid [61].

5.12 Advantages of the Matrix Element Method
As already mentioned, the Matrix Element is not the only method used

in analyzing collision data for the purpose of measuring top quark mass. In
particular, in addition to the ME Method, another fundamental technique
has been widely used by the Tevatron experiments in top mass analysis: the
template method.

Template Method In the template method, simulated distributions are
constructed for a chosen quantity (estimator) sensitive to the physics observ-
able under study, the top mass. Both signal and background distribution are
constructed from MC samples, using a number of discrete values of mt. Often
the jet energy scale is included as the second parameter. These MC derived
distributions are called "templates". Any measured quantity in the event that
is correlated with the mass of the decaying top quark can be used as estimator
in the analysis. One example is the reconstructed top mass with the best χ2

from the kinematic fit mreco
t as well as the dijet mass from the hadronically

decaying W [9]. In all cases, it is mandatory to understand at best the top
quark mass dependence of the adopted parameter. Then these template
distributions are fitted to functions that interpolate between different input
values of the physics observable, fixing all other parameters of the functions.
In the final step a likelihood fit to the observed data distribution is used to
obtain the value for the physics observable that best describes the data.

Both the matrix element and the template technique have been exploited
in the top mass measurement in a variety of distinct approaches, with both
complementary and competing features. In each approach several issues have
to be considered and addressed in a consistent manner. Some of these issues
are the choice of the tt̄ final state, the event sample selection, the degree to
which the method depends on the calibration of the jet energy scale. Also the
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ambiguity of assigning jets to the tt̄ decay has to be considered, as well as the
problem of choosing a correct set of jets when the number of jets observed
exceeds the number of strongly interacting partons produced in the leading
order perturbation theory.

Based on these considerations, the most convenient method of analysis is
choosen.

ME technique has generally proven to be the most precise method available
to measure the top mass. As explained in the previous sections, in the ME
method, for each selected event, the likelihood to observe it is calculated as a
function of the assumed top quark mass. To this end, all possible reactions
yielding final states that could have led to the observed event are considered.
An integration is performed over all possible momentum configurations of
the final state particles for all relevant reactions. Since the full topology of
the event is exploited, the Matrix Element approach offers several important
advantages over all other data analysis schemes [74]:

• The theoretical assumptions about the process under study (parton
distribution function, matrix element, transfer functions) are incorpo-
rated into the data analysis in the most efficient manner. In the limit
where all the quantities and functions in the event probability expression
are known with perfect accuracy, by the Neyman-Pearson Lemma, the
likelihood is an optimal test statistic [22].

• Some widely used data analysis methods, like the template technique,
introduce implicit assumptions about the shape of detector resolution
functions. In particular methods based on χ2 minimization (used in
kinematic fitting) assume Gaussian measurement errors, and the effect
of this assumption on the quality of statistical modeling cannot be
quantified within the χ2-based method itself. There is no such inherent
restriction on the ME approach; very detailed and precise detector
models can be usefully employed.

• Maximization of the likelihood L(a ) =
∏
Pev(yi|a) results in an

efficient (in the statistical sense) estimate of the parameter a. Straight-
forward profiling or marginalization of the likelihood can be utilized in
case some of the a dimensions are not of interest and can be treated
as nuisance parameters. In effect, systematic uncertainties (which are
nothing else but the uncertainties due to imprecisely known values of
nuisance parameters) are calculated on the event-by-event basis and,
therefore, each event contributes into the overall parameter estimate
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with an optimal weight which takes into account both statistical and
systematic uncertainty.

Hence, if it can be implemented, the ME method should be the most
sensitive analysis possible. Despite all the advantages mentioned, the matrix
element approach is not necessarily the obvious first choice among various high
energy data analysis techniques. A practical challenge associated with the use
of the ME technique is that the likelihood calculated is only an approximation
of the true likelihood. This situation arises because of finite detector resolution,
corrections to the fixed-order matrix element, and neglected information.
Therefore, to properly calibrate the applied method, one is forced to perform
a large number of pseudo-experiments which can be very expensive from the
standpoint of computing time.



Chapter 6

Integral Computation

6.1 Integration Framework
The integration for our analysis is performed through a complex computa-

tion framework consisting in three main parts organized in a hierarchy: one
director, one or more masters and several workers. The director coordi-
nates the master and the workers. The workers run on the FermiGrid and
are responsible for the actual integration. At a start, the worker interrogates
the director which directs it to an available master. The master provides the
worker with an event to process. The worker executes the integration and
sends the event back to the master to be stored. The process is iterated till
completion of the project.

A project is a set of files to be run by a single director with a given
configuration set for the integration, defining the matrix elements, the transfer
functions, the range of the grid to scan over, the convergence target and so
on.

The integration for a single event ends when one of the following three
conditions is reached:

• the maximum allowed time to process one event;

• the maximum number of integration points;

• the required integration precision.

For the signal probability the integration is performed on a grid consisting
of 61 points in 0.1 σ intervals in ∆JES from -3.05 to 3.05 σ, and 40 points in 1
GeV intervals in mt included in the range 155-195 GeV. For the W + jets we
must study only the dependence on ∆JES, which is done in the same range
and step-spacing as for the signal.

88
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Figure 6.1: Examples of output of the two different integrations of signal (a) and
background (b).

In Figure 6.1 typical outputs from the two integrations for a signal event
and a background event are shown. The bi-dimensional plot on the left shows
the output of the tt̄ probability integration, the one-dimention plot on the
right shows the output of the W + jets integration.

A significant effort was required to devise how to compute the integral
with an optimal precision in a reasonable amount of time, as explained in the
next section 6.2.

6.2 Quasi-Monte Carlo Integration
In our analysis we use Quasi–Monte Carlo (Quasi-MC) integration tech-

nique which significantly reduces the time required to integrate an event,
allowing us to reduce the number of assumptions made and correspondingly
improving the precision and accuracy of our result.

The most common method used for performing integration in physics
problem is MC integration, based on sequences of random or pseudo-random
numbers. Pseudo-random sequences typically exhibit statistical randomness
while being generated by an entirely deterministic causal process. Such a
process is easier to produce than a genuinely random one, and has the benefit
that it can be used again and again to produce exactly the same numbers.
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Quasi-random sequences are a deterministic alternative to random or
pseudo-random sequences for use in MC methods, and it is proved that
using such sequences for evaluating multidimensional integrals provides lower
error and improved convergence. Quasi-random sequences are generated by
choosing points approximately equally spaced in the integration space, such
that equal phase space volumes contain approximately equal number of points.

What we can do in general to evaluate the integral of a function f is
approximating it with the average of the function evaluated at a set of points
x1...xN : ∫

[0,1]s
f(~x) ≈ 1

N

N∑
i=1

f(~xi). (6.1)

Here N is the number of integration points. Since we are integrating over
the s-dimensional hypercube [0, 1]s, each ~xi is a vector of s elements, corre-
sponding to the 18 dimensions1 of the phase space in our case. The difference
between Quasi-MC and MC is the way the xi are chosen. Pseudo-random
sequences used by MC methods are characterized by the property of uni-
formity, so that contiguous sub-sequences are uniformly spread throughout
the cube [63]. However the use of pseudo-random sequences leads naturally
to the configuration in which some regions of phase space have more points
than average and some regions have fewer points than average. This fact
suggests that using more uniformly distributed sequences may produce better
results. Therefore Quasi-MC uses low-discrepancy sequences, in which equal
subvolumes of the integration space contain as close to equal numbers of
points as possible [61]. Figure 6.2 uses two-dimensional projection of a random
sequence and of a low-discrepancy sequence to demonstrate the fundamental
difference between the two classes of sequences.

Discrepancy is a measure of non-uniformity of the sequence of points
placed in the hypercube. Specifically, the most widely used definition of
discrepancy is the star discrepancy defined as [4]

D∗N(x1...xN) = sup
0≤vj≤1,
j=1,...,s

∣∣∣∣∣ 1

N

N∑
i=1

s∏
j=1

10≤xji≤1 −
s∏
j=1

vj

∣∣∣∣∣ (6.2)

where N is the number of integration points. In other words, for every
subset E of [0, 1]s, we divide the number of points in E by N and take the
absolute difference between this quotient and the volume of E. The maximum
difference is the star discrepancy D∗N .

1We recall that Quasi-MC integration is used for 18 of the 19 variables available, as
explained in the previous chapter 5.
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(a) (b)

Figure 6.2: Two-dimensional projection of the first 1024 points in a random sequence
(a) and a low-discrepancy Sobol sequence [4].

A sequence x1, .., xN is a low-discrepancy sequence if, for any N > 1,

D∗N(x1...xN) ≤ c (s) · (lnN)s

N
, (6.3)

where the constant c (s) depends only on the problem dimension s. The
Koksma-Hlawka inequality states that for Quasi-MC integration of a function
f the integration error ε is bounded by

|ε| =

∣∣∣∣∣
∫

[0,1]s
f(~x) − 1

N

N∑
i=1

f(~xi)

∣∣∣∣∣ ≤ D∗NV (f) (6.4)

where V (f) is the variation of the function f [63]. The result is a more rapid
convergence of the Quasi-MC integration compared to Pseudo-Monte Carlo
(Pseudo-MC). In fact the expected uncertainty of Pseudo-MC integration
decreases as 1√

N
, for N →∞, whereas the error of the Quasi-MC integration

is proportional to (lnN)s

N
.

6.3 Study of the precision of the integration
Before applying the Quasi-MC method it is necessary to check the precision

of a Quasi-MC calculation of the likelihood. This is done by comparing the
results with a Pseudo-MC, which provides an undoubtedly sound method.
Note that the main property of Pseudo-MC is its robustness. In statistics
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a model is claimed as robust if it still provides insight to a problem despite
having its assumptions altered or violated. Pseudo-MC accuracy depends on
only the crudest measure of the complexity of the problem. As a function
of the number N of the points in the integration domain, the integration
converges at a rate O(N−1/2) that is independent on the dimension of the
integral. Basically Pseudo-MC gives an answer that is always qualitatively
correct, but the price is its extremely slow convergence. Consequently, using
once for always an accurate pseudo-random calculation, we can then switch
to Quasi-MC method to study how close the integral becomes to the precise
solution calculated with Pseudo-MC, with the advantage of a more rapid
convergence. We perform such a study both for the integration of the signal
probability and for the W + jets probability separately. This is how the
Quasi-MC precision is investigated in the following.

In order to check if the built-in precision determination algorithm of our
integrations works correctly with Pseudo-MC we can study the distribution of
the pull δi, defined as the difference between the result xi of the ith integration
and the mean µ divided by the estimated uncertainty σi:

δi =
(xi − µ)

σi
(6.5)

If a variable xi is generated repeatedly with a Gaussian distribution of mean
µ and width σi, the pull will be distributed as a standard Gaussian with
mean zero and unit width. Thanks to the central limit theorem, this simple
property can be applied in a wide range of situations from hypothesis testing
to parameter estimation, where pulls provide evidence for various forms of
bias and allow discovering possible errors. In the majority of cases, one
expects the pull distribution to be a standard Gaussian. One thus needs to
confirm that it is centered at zero, has unit width, and has no long tails. If
this is not the case, one may need to look at the measurement setup, the
experimenter’s assumptions, etc [23]. In order to built such a distribution we
run the integration using a large number of integration points.

The pull distribution is obtained by processing the same set of events
several times (∼ 10) with different sequence of pseudo-random points, so that
they have some statistical spread. We take the results for a specific ∆JES

value (and top mass value too in the case of tt̄ integration) and we use the
mean of these results as the "true" value of the integral related with the
selected ∆JES and mt. The difference between a single result and the mean,
divided by the estimated uncertainty assigned to the likelihood, that is the
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Figure 6.3: Pull distribution related to the tt̄ integration.

standard deviation (RMS ) 1√
N
, is the needed pull. The pull distribution is

built by repeating the procedure for each input value of ∆JES and mt. In
Figure 6.3 is shown the distribution obtained by integrating the tt̄ probability
in 214 points.

With the same procedure we build the pull distribution with the W+jets
results. In doing this, we encountered a number of problems that caused
a significant amount of extra-work for this thesis work, as described in the
following. As can be seen in Figure 6.4 (a), at a first check the pull distribution
resulted skewed with a long tail on the left. This fact suggested a problem
in our model. We ran again this study with the matrix element calculation
(made by vecbos program [36]) turned off to find that the pull distribution
looked more reasonable, as shown in Figure 6.4 (b), even if mildly skewed
with a tail on the left, evidence of underestimated errors.

This result proved, as introduced in section 5.4, an evident problem in
evaluating W+jets matrix element by using vecbos, a computing program
developed in 1990’s with the specific purpose to evaluate fully differential
cross sections for the W+jets final state at the Tevatron.

An additional check on this issue is provided by the study of the integral
convergence. As explained in section 6.2 the integral of a function f is
approximated by the average of the function itself:

1

N

N∑
i=1

f(~xi). (6.6)

We expect to observe this quantity converging to a flat line as the number of
integration points N increases. Using matrix element extracted from vecbos,
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Figure 6.4: Pull distributions for W+jets integration.

we found instead that for some events the integration was returning diverging
values, as shown in Figure 6.5(a).

Analyzing the vecbos matrix element, we found that the transverse
momentum of the W+4jets system was not necessarily null when the momenta
of the beam partons were set to zero. This evident violation of four-momentum
conservation has been overtaken by boosting the final state particles into the
system in which the total transverse momentum of the W+4jets is zero. After
fixing the vecbos matrix element the mean of the integrand looks like a flat
line for each event, as shown in Figure 6.5(b).

Nevertheless, after fixing the kinematic problem, a new complication
related to vecbos matrix element appeared: vecbos produces very different
results under different compilers even if the kinematic inputs are the same.
Since it was not obvious to understand which compiler, if any, was producing
the correct result, we switched to a different matrix element performer,
MadGraph [45], a more recent framework that aims at providing all the
elements necessary for Standard Model phenomenology, such as the matrix
element calculation.

The pull distribution built for the integration with the new MadGraph
matrix element calculation included, is fitted with a Gaussian and reported
in Figure 6.6. The result of the fit (Mean = −0.0354, Sigma = 0.9272),
attached on the plot, confirms that the distribution is now centered at zero,
has a width ∼ 1 and has regular tails.
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Figure 6.5: Mean of the integrand as a function of the number of integration points.
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Figure 6.6: Pull distribution related to theW+jets integration with the MadGraph
matrix element.

6.4 Calibration of Quasi-MC error
As mentioned in sections 6.2, the accuracy of the Quasi-MC method

increases faster with computing time than that of the (Pseudo-)MC method.
However the error associated to the Quasi-MC integration is not known. What
we only know is an upper bound on the error, defined by the Koksma-Hlawka
inequality in Equation 6.4, i.e. |ε| ≤ D∗NV (f). However it is not easy to
evaluate this quantity since it involves computing V (f), which is typically
defined in terms of integrals of partial derivatives of f . We determine the
error bound as the product between a discrete Fast Fourier Transform of the
integrand and a fudge factor to be calibrated. For a complete treatment on
the subject see [56]. The calibration of the error bound is a fundamental
step for the purpose of our analysis as the integration is terminated when
the desired tolerance is reached. The required error bound determines the
minimum number of integration points to be used in the computation.

For a given function f , if we define our estimator În(f) using n data points,
one has:

În(f) = µ+ ε(n), (6.7)
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where µ = I(f) is the expectation of f , and limn→∞ ε(n) = 0. If we have an
upper bound on the error |ε(n)| ≤ ε(n), then it is true that

|Î2n(f)− În(f)| = |ε(2n)− ε(n)| ≤ ε(2n)− ε(n). (6.8)

Thus, one first check in calibrating the error bound is ensuring that inequality
6.8 is satisfied within a certain percentage. Otherwise, error bounds are
underestimated.

In addition, our interest is to have error bounds that decrease as fast as
the real error. Otherwise, if the error bound decreases slower, we would be
too conservative or, in the opposite case where the error bound decreases
faster, with n large enough, one would find |ε(n)| ≤ ε(n), which would be
wrong by definition. Assuming that the real error |ε(n)| is of the form of
Cn−α, we can estimate the value of α doing a regression on the quantity
|Î2n(f)− În(f)|. If we force ε(n) to have the same convergence rate as the
real error, we should see that |Î2n(f)− În(f)| and ε(2n)− ε(n) share the same
exponential convergence rate. [69]

In order to calibrate the Quasi-MC error bound we need to tune some
parameters in such a way that the main requests are satisfied. Figure 6.7
shows an example on how the calibration looks like for a case where we
know the exact solution and integration error (this is not the real case). The
blue solid line represents the real error of the integration, whereas the red
solid is the error bound to be calibrated. Blue stars indicate |Î2n(f)− În(f)|,
the quantities that we actually can evaluate, and the red stars represent
ε(2n)− ε(n), that is what we can measure with our error bounds and that
can be compared to the blue stars. Dashed lines are the regressed lines for
the real errors and error bounds and α values are the estimated convergence
rates found doing a regression of the form Cn−α. Note that for a Pseudo-MC
integration α = −0.5. To verify the inequality 6.8, the red lines should always
be above the blue lines. A correct error bound requires in addition that the
slopes of the solid lines are the same.

The plots shown in Figure 6.7 are derived from a 10-dimensional quadratic
"toy" integrand function. The top plot shows a wrongly calibrated error
estimation, the bottom plot represents how the correctly calibrated error
bound should appear. In the real case we do not know anything about the real
error (blue solid line), so that in the calibration we have to use the estimates
represented by the stars in Figure 6.7. We can thus impose the calibration
requirements on these quantities: red stars should be above blue stars and
the two quantities should have similar convergence rates.
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(a) Example of a wrong calibration of the error bound. (The signifi-
cance of the symbols is explained in the text).

(b) Example of a correct calibration of the error bound. (The signifi-
cance of the symbols is explained in the text).

Figure 6.7: Calibration of the Quasi-MC error bound.

Depending on the required tolerance, inequality 6.8 might not be satisfied
for the considered number of integration points. The more stricht our require-
ments are, the more expensive we are in terms of number of integration points
needed in the calculation and consequently in terms of computation time.

6.5 Optimization of the integration process
In principle we could require any high accuracy in the integration, but

imposing an excessively strict target precision would be prohibitively time-
consuming. In fact the number of points used in the integration increases
with the precision required. Moreover the execution time of the integration
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appears to be proportional to the integration grid size, as it is intuitively
expected. The main parameters that define the grid size are the following:

• The number of integration points to use in the integration process.

• The number of points in the leptonic W mass grid. As explained in
chapter 5, the W mass grid is separated from the rest of the phase space
due to the presence of singularities (i.e., the relevant Jacobian in the
integrand denominator has a zero).

• The number of values of ∆JES parameter for which the likelihood should
be evaluated.

By varying the main parameters separately we can study how the timing
of the integration changes. This study can be done both for Pseudo-MC
integration and for Quasi-MC one, to see how much is the gain in using
Quasi-MC method and to finally tune the optimal configuration in terms of
precision, complexity (number of points) and time of the computation.

In Figure 6.8 is shown the variation of the processing time per event as a
function of the different grid parameters, in tt̄ signal probability integration,
calculated with the Pseudo-MC.
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Figure 6.8: Study of the speed of the integration as a function of grid size parameters.

These plots are obtained by varying one parameter at a time. The plot on
the left side is obtained by fixing the number of leptonic W mass grid to 10
(and the number of ∆JES set to 31) and the one in the middle by fixing the
MC points to 1024 (number of ∆JES to 31). For the plot on the right side
the number of ∆JES steps changes whereas the other parameters are fixed
as in the previous cases. From this preliminary study we can conclude that
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the execution time per event is proportional to the product of the number of
MC points and the number of W mass scan points and exhibits only a mild
dependence on the number of ∆JES steps.

To get some idea on the CPU load, i.e. how expensive integrating one
event is, if we suppose to run the integration with ∼ 1000 MC points, ∼ 10
W mass scan points and 31 ∆JES points, the time required to integrate a
single event with the Pseudo-MC tt̄ integration is ∼ 100 seconds/event.

The same study should be made for the W + jets integration and then
for the final likelihood integration which will include both the signal and
background probability calculation. A similar study for the Quasi-MC inte-
gration should prove how all-together the convergence time is improved over
Quasi-MC by using Pseudo-MC.

Making use of these preliminary studies, we will eventually find a tradeoff
between the precision desired for the likelihood determination and the required
computational time.



Chapter 7

Next Steps

7.1 Top Mass Extraction
To obtain the measurement of the top mass mt and the jet energy scale

shift ∆JES, we need to calculate the signal+background combined likelihood
for each data event passing the selection requirements described in section
4.2. Given the ensemble of events, the total log-likelihood is then computed
by summing the log-likelihoods of the individual events:

lnL(Y |mt,∆JES ) =
N∑
i=1

lnPev(yi|mt,∆JES ). (7.1)

The maximum (minimum, in case of negative likelihood) of the 2-dimensional
likelihood returns the simultaneous measurement of the top mass and JES.
From the JES result we can verify how consistent the top mass measurement
is with the standard CDF JES. This is essential to know in order to validate,
with some tolerance, the systematic uncertainties of the top mass measurement.
If the resulting JES is consistent with the standard CDF jet energy scale, in
order to yield a top mass measurement with higher statistical precision, we can
consider ∆JES as a nuisance parameter that should be eliminated. Nuisance
parameters can be usually eliminated either by profiling or by marginalization.

The profiling procedure consists in maximizing the likelihood with respect
to the nuisance parameter for each given value of the parameter of interest.
In other words L(Y |mt,∆JES) is maximized over ∆JES for each value of mt,
generating the profile likelihood Lp(mt).

Marginalization is instead a Bayesian method that requires introducing a
prior distribution π(∆JES) for the nuisance parameter which takes into account
its uncertainty. Then we obtain the marginalized likelihood by integrating
the full likelihood over the prior: Lm(mt) =

∫
L(mt,∆JES) π(∆JES) d∆JES.

101
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There are certain merits to either approach, and both are common in
scientific literature.

After reducing the 2-dimensional curve to a unidimensional likelihood, we
can then extract the measured mass and uncertainty from this curve. The
measured mass mmeas is simply determined by the position of the peak of
the likelihood curve, while the uncertainty is determined by the standard
technique of descending one-half unit of log-likelihood from this peak.

As a final step, we can determine ∆JES parameter, in order to reduce the
systematic uncertainty on the jet energy scale. We can perform the ∆JES

measurement in exactly the same way of the top mass, eliminating mt using
either profile or marginalization method and extracting a measured ∆JES

and uncertainty from the peak of the profiling or marginalized likelihood.

In measurements which use in situ JES calibration, the top mass re-
sult is always correlated to the JES: mt and ∆JES should be reported
together and the statistical uncertainty on the top mass should be reported
as "statistical+JES" uncertainty.

7.2 Validation with Pseudo-Experiments
Before we can perform a measurement on the data, it is necessary to test

our technique on samples with known top masses so that we can verify that
it returns correct top mass values and uncertainties for those values. If this
is not the case, we have to calibrate the method to appropriately correct
these measured values. Several tests must performed with simulated events
generated under the assumptions used in the ME method, i.e. using the same
PDF set, matrix element, and transfer function.

A pseudo-experiment (PE) emulates a measurement performed on data
and consists of events drawn from MC samples for signal and background
processes with known values of mt and ∆JES [38]. The contribution of each
sample to the total has to reflect its expected contribution described in section
4.5. An ensemble of several PEs is performed for each input mt and ∆JES

value. The range of assumed values is chosen in a wide interval around the
expected values of the parameters: we vary mt in the range 155-195 GeV
with steps of 1 GeV and ∆JES between -3 and +3 with spacing of 0.2. For
a given top mass and ∆JES, we need to perform ∼ 1000 PEs. The number
of MC events available in our sample is not infinitely large and we may run
out of MC events distinct between PEs. This problem can be overcome by
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using again the same events according to a random shuffling method called
bootstrap, which guarantees that the PEs remain statistically independent,
although using the same physics information from the MC [2].

For a single PE we are going to extract a measured mass and uncertainty.
Taking the results from all ensembles, the following informations are obtained:

• The relation between the expected (mean) measurement values and the
corresponding true input values, i.e. the bias defined as 〈mmeas〉−mtrue.
It is expected that the method yields unbiased results if the ME method
reflects the properties of the events.

• The distribution of measurement uncertainties as a function of input
parameter values.

• To test that the measured uncertainties describe the actual measurement
uncertainty, the deviation of the measurement value mmeas from the
true value mtrue is divided by the measured uncertainty σ in each PE.
This deviation defines the pull :

pull =
mmeas −mtrue

σ
. (7.2)

The standard deviation (RMS) of the distribution of these deviations is
referred to as pull width w.

A perfect analysis, for which all features of the events are accommodated
in the method, would have a bias of 0, indicating that it correctly measures
the input mass, and w = 1, indicating that it correctly estimates its own
uncertainties. However, imperfections in the analysis mean that these condi-
tions are not exactly satisfied. By measuring the bias and pull width on MC
samples, however, we can use these measured quantities to calibrate our data
analysis so that we can correctly measure the top mass and its uncertainty.

The necessary steps for the calibration of our top mass analysis are briefly
described below:

• Using pure tt̄ MC samples with different top masses we select events in
which the four leading jets are matched to quarks produced in tt̄ decays.
On these samples we should get the slope of the reconstructed top mass
as a function of input mt close to 1 and pull width close to 1 as well.
Also, we can change JES and reconstruct it back. This might require
adjusting the tt̄ cross section and efficiency functions.
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• We have to check that we can reconstruct JES correctly from W + jets
events by changing ∆JES in MC. This verifiesW+jets transfer functions
and efficiency as a function of JES.

• We need also to calibrate the relative coefficient for the W + jets
density. If the density for tt̄ is Psig(y|mt,∆JES ) and the density for
W + jets is PWjets(y|∆JES ), then we need to determine the coefficient
c in equation:

Pev(y|mt,∆JES ) = f ·Psig(y|mt,∆JES ) + (1−f) · c ·PWjets(y|∆JES ),
(7.3)

where f is the fraction of tt̄ events in the sample. We can approach
this calibration by using a sample which consists only of "matched" tt̄
events and W + jets. For this sample, we should be able to reconstruct
correctly both input mt and f . It should be sufficient to perform this
calibration only for ∆JES = 0.

• Finally we deal with the construction of the full mt and JES mapping
function using the complete tt̄ and background MC for a number of
input mt and ∆JES values.

7.3 Systematic Uncertainties
For the measurement, the uncertainties in the properties of the full sim-

ulation used for the calibration have to be accounted for by systematic
uncertainties on the measurement result. Furthermore, any defect of the MC
simulations used to setup the method, cannot be caught by the calibration.
Therefore we have to take into account several sources of uncertainty.

Systematic uncertainties arise, indeed, from three sources: modeling of the
physics processes for tt̄ production and background, modeling of the detector
performance and uncertainties in the method itself. There are two different
types of systematics. The first is where we can associate the uncertainty with
a well defined 1σ uncertainty in a given parameter. In this case, we vary
that parameter by its uncertainty and measure the resulting change in the
top mass. The second is where we do not have a well defined 1σ shift in a
parameter. In this case, we generate a number of alternatives which we hope
cover the space of possibilities and take the largest difference between the
nominal mass and the various alternatives as our systematic shift.
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A brief introduction to the main sources of systematic uncertainties for our
analysis is given below.

7.3.1 Signal and Background Modeling

The top quark decay properties are well known in the SM, including
the subsequent decay of the W boson into partons, since these decays are
governed by the weak interaction and the top quark does not hadronize.
Furthermore, the mass, width, and branching fractions of the W are known
precisely and the associated uncertainties can be neglected. In contrast,
significant uncertainties do arise from the production of the tt̄ pair (modeling
of the PDFs and of initial-state radiation) and the formation of final-state
jets (final-state radiation, fragmentation, and hadronization modeling) [55].

ISR and FSR Radiation off the incoming and outgoing partons may affect
the top quark mass measurement. Such radiation changes the kinematics of
the tt̄ decay products in the final state; for example, the transverse momentum
of the tt̄ system is not zero when initial-state radiation (ISR) takes place.
Final state radiation (FSR) changes the momenta of the tt̄ decay products
and thus affects the signal probability assigned to an event. Also, ISR and
FSR may lead to jets which can be misidentified as tt̄ decay products. ISR
and FSR are governed by the same equations and are modeled in the shower
evolution in the MC simulation.

Fragmentation Related to the FSR are the formation of jets in the final
state and the spectra of hadrons within the jets. The fragmentation and
hadronization of b quark jets is particularly important. In situ calibration of
the jet energy scale can largely absorb the dependence on the modeling of
light (u, d, s, c) quark jets. Simulations based on different fragmentation and
hadronization models may predict different average energy fractions contained
within the reconstructed jet. This leads to an uncertainty on the relation
between jet and parton energies and thus on the measured top quark mass.

Underlying Event In principle, particles produced from the remnants of
the colliding hadrons may contribute energy to the jets reconstructed in the
detector. It is therefore necessary to measure the average contribution and
subtract it from the jet energies. The resulting uncertainty is small and
usually it is included in the jet energy scale uncertainty.
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Color Reconnection One important effect to consider is the color recon-
nection (CR) occurring in events with multiple hard subcollisions due to color
string formations between final partons from independent hard scatterings.
This effect can modify the final state in the tt̄ process. The effect of CR is
subject to theoretical uncertainties and is accounted for differently in different
MC codes. The difference induced on the reconstructed top quark mass mea-
sures the associated systematic error. We assign a CR systematic uncertainty
to our measurement because our benchmark MC for the signal (pythia) does
not take CR into account. Using powheg samples (which accounts for CR),
thus allows to reduce the systematic uncertainties.

Pile Up Multiple hadron interaction (also known as pile up) represents the
systematic associated with our modeling of multiple pp̄ interactions in a single
event. The number of primary vertices in the pp̄ collision depends on the
instantaneous luminosity during the data-taking runs. Our corrections are
computed in simulations which depend on run luminosity, where the event pile
up generates a run-dependent number of reconstructed event vertices. The
difference from the number of vertices observed in the actual data monitors
the associated systematic errors.

The run-dependent CDF MC set used in earlier measurements was not
produced with the same run list as the data (was covering shorter time periods
and thus lower instantaneous luminosities, with fewer primary vertices than
the data). For our analysis we have MC samples produced with the final run
lists, covering all luminosities, so the pile-up systematic uncertainty will also
be reduced.

b-jet energy scale We have assumed that the JES is the same for all jets.
However, there is an additional uncertainty arising from differences between
b and light jets. It is possible to identify three sources of uncertainty: one is
due to the uncertainty on the semileptonic decay ratio; the second is related
to the uncertainty in the b-fragmentation modeling; the last one is due to
uncertainty in the calorimeter response. Since the charged particle fraction
and momentum spectrum of b-jets is different from that of light jets, the
calorimeter response may be different.

PDFs Our analysis uses parton distribution functions giving the probability
distribution for the momentum of the incoming partons. Naturally, there
is some uncertainty in the determination of these PDFs, which results in a
systematic uncertainty in our measurement.
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7.3.2 Modeling of Detector Response

The dominant error in the top quark mass measurement is due to un-
certainties in the detector response. Despite the possibility of in situ JES
calibration, the absolute jet energy scale uncertainty still dominates the world
average.

Residual JES Even if in our analysis we apply in situ calibration, only
one overall jet energy scale factor is determined. Any discrepancy between
data and simulation other than such a global scale difference leads to an
additional uncertainty on the top quark mass, which is however much smaller
than that arising from the overall absolute calibration. Uncertainties on
residual |η| and pT dependencies of the jet energy scale are taken from the
external calibration. Additionally, although our jets are only corrected to
level 5, we need to account for the systematic uncertainties in all levels of the
jet corrections.

Event Selection Uncertainties in the event selection efficiency, notably
energy-dependent effects, can lead to systematic effects on the top quark
mass. For example, uncertainties on the trigger selection can introduce a bias
on the selected sample propagating to the top quark mass result. Similarly,
the b-tagging efficiencies are determined from the data and should be varied
within their uncertainty in order to determine the residual systematic error.

Lepton pT There is also a systematic uncertainty on the lepton energy
scale, although it is much simpler than the uncertainty for the jet energy
scale.

7.3.3 Measurement Method

The calibration of the measurement method depends slightly on the tt̄
fraction in the selected event sample. The uncertainty on this fraction leads
to a systematic error on the top quark mass. Furthermore, since we use the
calibration results to correct our final measurement, any uncertainty in these
results naturally translates into an uncertainty on the top mass. Experience
from previous analyses indicates that uncertainties of this type usually are
not dominant.

In order to evaluate the contribution of each uncertainty source, we make use
of appropriate MC simulations. In the present work we are going to produce
custom samples, additional to those of previous CDF analyses, with the aim
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to improve the estimate of the overall uncertainty. This is a fundamental
point of our analysis, since our main purpose is to reduce the uncertainties
and reach a total error of about 0.6 GeV, about 20% less than the present
error of the world-averaged mass value.



Conclusions

Since the top quark mass is a fundamental parameter of the SM, the CDF
Collaboration has decided to make a major effort in order to produce its most
precise measurement as a "legacy" of the experiment. We expect that the
new CDF top mass measurement will contribute clearing the existing tension
between the latest D/0 result [20] and CMS result [14] which are supposed to
be the most precise measurements ever obtained for the top quark mass but
are rather inconsistent with each other. Hopefully a new very precise result
may have a key role in the future world combination of the top quark mass
measurements.

This thesis presents the current status of the analysis focusing on the
contributions given by the candidate to the long preparation work needed to
perform the measurement.

We investigate the lepton+jets channel with the full integrated luminosity
of Run II (9.0 fb−1). Our analysis uses the Matrix Element method to calculate
a tt̄ likelihood as a bi-dimensional function of the assumed top mass mt and of
∆JES. ∆JES parametrizes the uncertainty in our knowledge of the jet energy
scale. By introducing this parameter into the likelihood, we can use as a
constraint the known W mass to determine the optimal ∆JES and thereby
reduce the final systematic error on the measured top quark mass.

For the first time in CDF, we include the background ME modeling in the
likelihood integration. The massive calculations required by this double ME
method imposed to develop an unconventional integration method over the
phase space of the events kinematics. In order to evaluate the multidimensional
integrals, we employ the Quasi-Monte Carlo technique, which significantly
reduces the time required to integrate an event.

With respect to the previous CDF top mass analysis performed using the
ME method [11], we augment the statistics by including new event categories
and adopting wider cuts, and employ upgraded MC codes and detector
modeling. With these improvements we expect to significantly reduce the
systematic error of the final result.

Preliminarily to the final analysis of real data, future studies will include

109
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the calibration procedure by means of pseudo-experiments and the production
of new MC samples for the evaluation of systematic errors. The goal of the
measurement is to reach a total error of less than 0.5%. The candidate is
planning to contribute from a distance to the final part of the measurement.



Bibliography

[1] 2016. url: http : / / project - gfitter . web . cern . ch / project -
gfitter/Standard_Model/.

[2] R. Barlow. “Application of the bootstraps resampling technique to par-
ticle physics experiments”. In: Manchester Part. Phys. MAN/HEP/99/4
(2000). url: http : / / www . hep . manchester . ac . uk / preprints /
manhep99-4.ps.

[3] N. Cabibbo, L. Maiani, and O. Benhar. Introduzione alle teorie di gauge.
Editori Riuniti, 2016.

[4] J. Cheng and M. J. Druzdzel. “Computational Investigation of Low-
Discrepancy Sequences in Simulation Algorithms for Bayesian Networks”.
In: arXiv:1301.3841 (2000). url: http://arxiv.org/pdf/1301.
3841v1.pdf.

[5] ATLAS Collaboration. “Observation of a new particle in the search
for the Standard Model Higgs boson with the ATLAS detector at
the LHC”. In: Phys. Rev. Lett. B716 (2012), pp. 1–29. url: http:
//arxiv.org/abs/1207.7214.

[6] CDF Collaboration. “Measurement of the tt̄ production cross section
in pp̄ collisions at

√
s=1.96TeV using kinematic fitting of b-tagged

lepton+jet events”. In: Phys. Rev. D 71, 072005 (2005).

[7] CDF Collaboration. “Observation of Electroweak Single Top-Quark
Production”. In: Phys. Rev. Lett. 103 (2009).

[8] CDF Collaboration. “Observation of Top Quark Production in pp̄ Col-
lisions with the Collider Detector at Fermilab”. In: Phys. Rev. Lett.
74.2626 (1995). url: http://arxiv.org/pdf/hep-ex/9503002v2.
pdf.

[9] CDF Collaboration. “Precision Top-Quark Mass Measurement at CDF”.
In: Phys. Rev. Lett. 109.152003 (2012). url: http://arxiv.org/pdf/
1207.6758v1.pdf.

111

http://project-gfitter.web.cern.ch/project-gfitter/Standard_Model/
http://project-gfitter.web.cern.ch/project-gfitter/Standard_Model/
http://www.hep.manchester.ac.uk/preprints/manhep99-4.ps
http://www.hep.manchester.ac.uk/preprints/manhep99-4.ps
http://arxiv.org/pdf/1301.3841v1.pdf
http://arxiv.org/pdf/1301.3841v1.pdf
http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7214
http://arxiv.org/pdf/hep-ex/9503002v2.pdf
http://arxiv.org/pdf/hep-ex/9503002v2.pdf
http://arxiv.org/pdf/1207.6758v1.pdf
http://arxiv.org/pdf/1207.6758v1.pdf


BIBLIOGRAPHY 112

[10] CDF Collaboration. “The CDF II Detector Technical Design Report”.
In: Fermilab Publication FERMILAB-PUB-96/390-E (1996).

[11] CDF Collaboration. “Top Quark Mass Measurement in the Lepton +
Jets Channel Using a Matrix Element Method and in situ Jet Energy
Calibration”. In: Phys.Rev.Lett. 105.252001 (2010). url: http://arxiv.
org/pdf/1010.4582v2.pdf.

[12] CDF Collaboration and D0 Collaboration. “Combination of measure-
ments of the top-quark pair production cross section from the Tevatron
Collider”. In: Phys. Rev. D 89, 072001 (2014). url: http://arxiv.
org/abs/1309.7570.

[13] CDF Collaboration and D0 Collaboration. “Tevatron Combination of
Single-Top-Quark Cross Sections and Determination of the Magnitude
of the Cabibbo-Kobayashi-Maskawa Matrix Element Vtb”. In: Phys. Rev.
Lett. 115, 152003 (2015). url: http://arxiv.org/abs/1503.05027.

[14] CMS Collaboration. “Measurement of the top quark mass using proton-
proton data at

√
s = 7 and 8 TeV”. In: arXiv:1509.04044 (2015). url:

http://www.arxiv.org/abs/1509.04044.

[15] CMS Collaboration. “Observation of a new boson at a mass of 125
GeV with the CMS experiment at the LHC”. In: Phys. Rev. Lett. B 716
(2012), p. 30. url: http://arxiv.org/abs/1207.7235.

[16] D0 Collaboration. “A precision measurement of the mass of the top
quark”. In: Nature 429 (2004), pp. 638–642.

[17] D0 Collaboration. “Helicity of the W boson in lepton + jets tt̄ events”.
In: Phys. Lett. B 617.1 (2005).

[18] D0 Collaboration. “Observation of Single Top-Quark Production”. In:
Phys. Rev. Lett. 103 (2009).

[19] D0 Collaboration. “Observation of the Top Quark”. In: Phys. Rev. Lett.
74.2632 (1995). url: http://arxiv.org/abs/hep-ex/9503003.

[20] D0 Collaboration. “Precision measurement of the top quark mass in
lepton+jets final states”. In: arXiv:1501.07912v2 (2015). url: http:
//arxiv.org/pdf/1501.07912v2.pdf.

[21] ATLAS/CDF/CMS/D0 Collaborations. “First combination of Tevatron
and LHC measurements of the top-quark mass”. In: LHC/Tevatron note
(2014). url: http://arxiv.org/abs/1403.4427.

[22] G. Cowan. Statistical Data Analysis. Oxford Science Publications, 1998.

http://arxiv.org/pdf/1010.4582v2.pdf
http://arxiv.org/pdf/1010.4582v2.pdf
http://arxiv.org/abs/1309.7570
http://arxiv.org/abs/1309.7570
http://arxiv.org/abs/1503.05027
http://www.arxiv.org/abs/1509.04044
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/hep-ex/9503003
http://arxiv.org/pdf/1501.07912v2.pdf
http://arxiv.org/pdf/1501.07912v2.pdf
http://arxiv.org/abs/1403.4427


BIBLIOGRAPHY 113

[23] L. Demortier and L. Lyons. “Everything you always wanted to know
about pulls”. In: CDF/ANAL/PUBLIC/5776 (2002). url: http://
physics . rockefeller . edu / luc / technical _ reports / cdf5776 _
pulls.pdf.

[24] Fermilab Accelerator Division. “Accelerator Concepts”. In: (2010). url:
http://operations.fnal.gov/rookie_books/Concepts_v3.6.pdf.

[25] Fermilab Accelerator Division. “Run II hand book”. In: (2003). url:
http://www-ad.fnal.gov/runII/index.html.

[26] Fermilab Accelerator Division. “The Antiproton Source rookie book”.
In: (2011). url: http://operations.fnal.gov/rookie_books/Pbar_
v2.2.pdf.

[27] Fermilab Accelerator Division. “The Booster rookie book”. In: (2009).
url: http://operations.fnal.gov/rookie_books/Booster_V4.1.
pdf.

[28] Fermilab Accelerator Division. “The Linac rookie book”. In: (2006). url:
http://operations.fnal.gov/rookie_books/LINAC_RB_v2_3.pdf.

[29] Fermilab Accelerator Division. “The Main Injector rookie book”. In:
(2010). url: http://operations.fnal.gov/rookie_books/Main_
Injector_v1.1.pdf.

[30] Fermilab Accelerator Division. “The Recycker Ring rookie book”. In:
(2010). url: http://operations.fnal.gov/rookie_books/Recycler_
RB_v1.42.pdf.

[31] Fermilab Accelerator Division. “The Tevatron rookie book”. In: (2009).
url: http://operations.fnal.gov/rookie_books/Tevatron_v2.3.
pdf.

[32] K.A. Olive et al. (Particle Data Group). “Review of particle physics”.
In: Chin. Phys. C 38.090001 (2014 and 2015 update). url: http:
//pdg.lbl.gov.

[33] A. Barbaro Galtieri et al. “Precision measurement of the top quark
mass from the Tevatron in the pre-LHC era”. In: Rept. Prog. Phys. 75.5
(2012). url: http://arxiv.org/abs/1109.2163.

[34] A. Bhatti et al. “Determination of the Jet Energy Scale at the Collider
Detector at Fermilab”. In: Nucl. Instrum. Methods A.566 (2006), p. 375.
url: https://arxiv.org/pdf/hep-ex/0510047v1.pdf.

[35] D. Acosta et al. “The performance of the CDF Luminosity Monitor”.
In: Nucl. Instrum. Methods A.494 (2002), pp. 57–62. url: http://www-
cdf.fnal.gov/~konigsb/instr02.ps.

http://physics.rockefeller.edu/luc/technical_reports/cdf5776_pulls.pdf
http://physics.rockefeller.edu/luc/technical_reports/cdf5776_pulls.pdf
http://physics.rockefeller.edu/luc/technical_reports/cdf5776_pulls.pdf
http://operations.fnal.gov/rookie_books/Concepts_v3.6.pdf
http://www-ad.fnal.gov/runII/index.html
http://operations.fnal.gov/rookie_books/Pbar_v2.2.pdf
http://operations.fnal.gov/rookie_books/Pbar_v2.2.pdf
http://operations.fnal.gov/rookie_books/Booster_V4.1.pdf
http://operations.fnal.gov/rookie_books/Booster_V4.1.pdf
http://operations.fnal.gov/rookie_books/LINAC_RB_v2_3.pdf
http://operations.fnal.gov/rookie_books/Main_Injector_v1.1.pdf
http://operations.fnal.gov/rookie_books/Main_Injector_v1.1.pdf
http://operations.fnal.gov/rookie_books/Recycler_RB_v1.42.pdf
http://operations.fnal.gov/rookie_books/Recycler_RB_v1.42.pdf
http://operations.fnal.gov/rookie_books/Tevatron_v2.3.pdf
http://operations.fnal.gov/rookie_books/Tevatron_v2.3.pdf
http://pdg.lbl.gov
http://pdg.lbl.gov
http://arxiv.org/abs/1109.2163
https://arxiv.org/pdf/hep-ex/0510047v1.pdf
http://www-cdf.fnal.gov/~konigsb/instr02.ps
http://www-cdf.fnal.gov/~konigsb/instr02.ps


BIBLIOGRAPHY 114

[36] F. A. Berends et al. “On the production of a W and jets at hadron
colliders”. In: Nucl. B.357 (1991), pp. 32–64. url: http://inspirehep.
net/record/300269.

[37] F. Abe et al. “Topology of three-jet events in pp̄ collisions at
√
s = 1.8

TeV”. In: Phys. Rev. D.45 (1992), p. 1448.

[38] F. Fiedler et al. “The Matrix Element Method and its Application to
Measurements of the Top Quark Mass”. In: Nucl. Instrum. Meth. A.624
(2010), pp. 203–218. url: http://arxiv.org/abs/1003.1316.

[39] G. Apollinari et al. “Shower maximum detector for the CDF plug
upgrade calorimeter”. In: Nucl. Instrum. Methods A.412 (1998), p. 512.

[40] G. Ascoli et al. “CDF central muon detector”. In: Nucl. Instrum. Methods
A.268 (1988), p. 33.

[41] G. Corcella et al. “HERWIG 6.5: an event generator for Hadron Emis-
sion Reactions With Interfering Gluons (including supersymmetric
processes)”. In: JHEP (2001).

[42] H. L. Lai et al. “Global QCD”. In: Eur. Phys. J. C 12.375 (2000). url:
http://arxiv.org/pdf/hep-ph/9903282v3.pdf.

[43] H.S. Lee et al. “Top quark mass measurement in the Lepton+Jets
channnel using 8.7fb−1 data”. CDF Note 10749. 2012.

[44] J. Adelman et al. “Method II For You”. CDF Note 9185. May 2006.
url: http://www-cdf.fnal.gov/cdfnotes/cdf9185_Method_II_
For_You.pdf.

[45] J. Alwall et al. “MadGraph 5: Going Beyond”. In: JHEP 1106 (2011),
p. 128. url: http://arxiv.org/abs/1106.0522.

[46] J. Alwall et al. “MadGraph MadEvent v4: The NewWeb Generation”. In:
JHEP 0709.028 (2007). url: http://arxiv.org/pdf/0706.2334v1.
pdf.

[47] L. Balke et al. “The CDF Central Electromagnetic Calorimeter”. In: Nucl.
Instrum. Methods A.267 (1988), p. 272. url: http://inspirehep.net/
record/22817/files/fermilab-pub-87-172-E.pdf?version=1.

[48] M. L. Mangano et al. “ALPGEN, a generator for hard multiparton
processes in hadronic collisions”. In: JHEP 0307.001 (2003). url: http:
//arxiv.org/pdf/hep-ph/0206293v2.pdf.

[49] M.Albrow et al. “The CDF plug upgrade electromagnetic calorimeter:
test beam results,” in: Nucl. Instrum. Methods A.480 (2002), p. 524.

http://inspirehep.net/record/300269
http://inspirehep.net/record/300269
http://arxiv.org/abs/1003.1316
http://arxiv.org/pdf/hep-ph/9903282v3.pdf
http://www-cdf.fnal.gov/cdfnotes/cdf9185_Method_II_For_You.pdf
http://www-cdf.fnal.gov/cdfnotes/cdf9185_Method_II_For_You.pdf
http://arxiv.org/abs/1106.0522
http://arxiv.org/pdf/0706.2334v1.pdf
http://arxiv.org/pdf/0706.2334v1.pdf
http://inspirehep.net/record/22817/files/fermilab-pub-87-172-E.pdf?version=1
http://inspirehep.net/record/22817/files/fermilab-pub-87-172-E.pdf?version=1
http://arxiv.org/pdf/hep-ph/0206293v2.pdf
http://arxiv.org/pdf/hep-ph/0206293v2.pdf


BIBLIOGRAPHY 115

[50] S. Bertolucci et al. “The CDF Central and Endwall Hadron Calorime-
ter”. In: Nucl. Instrum. Methods A.267 (1988), p. 301. url: http:
//inspirehep.net/record/251409/files/fermilab-pub-87-174-
E.pdf?version=1.

[51] S. Cabrera et al. “The CDF Time of Flight Detector”. In: FERMILAB-
Conf-03/404-E (2004). url: http://lss.fnal.gov/archive/2003/
conf/fermilab-conf-03-404-e.pdf.

[52] S.W. Herb et al. “Observation of a Dimuon Resonance at 9.5 GeV in
400-GeV Proton-Nucleus Collisions”. In: Phys. Rev. Lett. 39.252 (1977).
url: http://inspirehep.net/record/120368/files/pub-77-058-
EXP.pdf?version=1.

[53] T. Aaltonen et al. “Operational experience, improvements, and per-
formance of the CDF Run II silicon vertex detector”. In: Nuclear In-
struments and Methods in Physics Research A.729 (2013), pp. 153–181.
url: http://arxiv.org/pdf/1301.3180v3.pdf.

[54] T. Affolder et al. “CDF Central Outer Tracker”. In: Nucl. Instrum. Meth
A.526 (2004), pp. 249–299. url: http://www.phy.ncu.edu.tw/~syu/
papers/NIMA526.249.pdf.

[55] F. Fiedler. “Precision Measurements of the Top Quark Mass”. PhD
thesis. Ludwig-Maximilians-Universitat Munchen, 2007. url: http:
//arxiv.org/pdf/1003.0521v1.pdf.

[56] F.J.Hickernell and L.A.Jiménez Rugama. “Reliable adaptive cubature
using digital sequences”. In: R. Cools, D. Nuyens (eds.) Monte Carlo
and Quasi-Monte Carlo Methods (2014). url: http://arxiv.org/
pdf/1410.8615v1.pdf.

[57] CDF Internal. Method II For You Tables. url: http://www-cdf.fnal.
gov/~hslee/internal/M24U/P38/.

[58] F. Jegerlehner. “On the difference between the pole and the MS masses
of the top quark at the electroweak scale”. In: Phys. Lett. B (2012).
url: http://arxiv.org/pdf/1212.4319v2.pdf.

[59] N. Kidonakis. “Differential and total cross sections for top pair and
single top production”. In: arXiv:1205.3453 (2012). url: https://
arxiv.org/pdf/1205.3453v1.pdf.

[60] K. Kondo. “Dynamical Likelihood Method for Reconstruction of Events
with Missing Momentum”. In: J. Phys. Soc. Jap. 57, 4126 57.12 (1988),
pp. 4126–4140.

http://inspirehep.net/record/251409/files/fermilab-pub-87-174-E.pdf?version=1
http://inspirehep.net/record/251409/files/fermilab-pub-87-174-E.pdf?version=1
http://inspirehep.net/record/251409/files/fermilab-pub-87-174-E.pdf?version=1
http://lss.fnal.gov/archive/2003/conf/fermilab-conf-03-404-e.pdf
http://lss.fnal.gov/archive/2003/conf/fermilab-conf-03-404-e.pdf
http://inspirehep.net/record/120368/files/pub-77-058-EXP.pdf?version=1
http://inspirehep.net/record/120368/files/pub-77-058-EXP.pdf?version=1
http://arxiv.org/pdf/1301.3180v3.pdf
http://www.phy.ncu.edu.tw/~syu/papers/NIMA526.249.pdf
http://www.phy.ncu.edu.tw/~syu/papers/NIMA526.249.pdf
http://arxiv.org/pdf/1003.0521v1.pdf
http://arxiv.org/pdf/1003.0521v1.pdf
http://arxiv.org/pdf/1410.8615v1.pdf
http://arxiv.org/pdf/1410.8615v1.pdf
http://www-cdf.fnal.gov/~hslee/internal/M24U/P38/
http://www-cdf.fnal.gov/~hslee/internal/M24U/P38/
http://arxiv.org/pdf/1212.4319v2.pdf
https://arxiv.org/pdf/1205.3453v1.pdf
https://arxiv.org/pdf/1205.3453v1.pdf


BIBLIOGRAPHY 116

[61] P. J. Lujan. “Precision Measurement of the Top Quark Mass in the
Lepton + Jets Channel Using a Matrix Element Method with Quasi–
Monte Carlo Integration”. PhD thesis. Harvard University, 2000. url:
http://www-cdf.fnal.gov/thesis/cdf9908_plujan_thesis.pdf.

[62] D. Mohl. “Physics and technique of stochastic cooling”. In: Phys. Reports
58 (1980).

[63] W.J. Morokoff and R. E. Caflisch. “Quasi-Monte Carlo Integration”. In:
Journal of computational physics 122 (1995), pp. 218–230.

[64] P. Nason. “A New Method for Combining NLO QCD with Shower
Monte Carlo Algorithms”. In: JHEP 0411.040 (2004). url: http://
arxiv.org/pdf/hep-ph/0409146v1.pdf.

[65] C. Neu. “CDF b-tagging: Measuring Efficiency and False Positive
Rate”. In: Proceeding Of Science (2006). url: http://pos.sissa.
it/archive/conferences/024/015/TOP2006_015.pdf.

[66] D. H. Perkins. Introduction to High Energy Physics. Cambridge Univer-
sity Press, 2000.

[67] D0 public page. Useful Diagrams of Top Signals and Background. url:
http://www-d0.fnal.gov/Run2Physics/top/top_public_web_
pages/top_feynman_diagrams.html.

[68] R.Kleiss and W.J.Stirling. “Top quark production at hadron colliders:
some useful formulae”. In: Z.Phys.C-Particle and Fields 40 (1988),
pp. 419–423.

[69] L.A.Jimenez Rugama. MTM3 elog, entries n. 79, 80, 84, 85. url:
http://tdpc681.fnal.gov:8080/MTM3/.

[70] T. Sjöstrand, L. Lönnblad, and S. Mrenna. “PYTHIA 6.2 Physics
and Manual”. In: Computer Physics Commun 135.238 (2001). url:
http://arxiv.org/pdf/hep-ph/0108264v1.pdf.

[71] T. Teubner. “The Standard Model”. In: Lecture presented at the School
for Experimental High Energy Physics Students Somerville College,
Oxford (2009). url: http://www.ppd.stfc.ac.uk/ppd/resources/
pdf/standardmodel09.pdf.

[72] Wikipedia the free encyclopedia. Standard Model. url: https://en.
wikipedia.org/wiki/Standard_Model.

[73] I. Volobouev. “JES-Related Transfer Function Details”. In: CDF Internal
(2014). url: http://tdpc681.fnal.gov:8080/MTM3/150629_151347/
tf_details.pdf.

http://www-cdf.fnal.gov/thesis/cdf9908_plujan_thesis.pdf
http://arxiv.org/pdf/hep-ph/0409146v1.pdf
http://arxiv.org/pdf/hep-ph/0409146v1.pdf
http://pos.sissa.it/archive/conferences/024/015/TOP2006_015.pdf
http://pos.sissa.it/archive/conferences/024/015/TOP2006_015.pdf
http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_feynman_diagrams.html
http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_feynman_diagrams.html
http://tdpc681.fnal.gov:8080/MTM3/
http://arxiv.org/pdf/hep-ph/0108264v1.pdf
http://www.ppd.stfc.ac.uk/ppd/resources/pdf/standardmodel09.pdf
http://www.ppd.stfc.ac.uk/ppd/resources/pdf/standardmodel09.pdf
https://en.wikipedia.org/wiki/Standard_Model
https://en.wikipedia.org/wiki/Standard_Model
http://tdpc681.fnal.gov:8080/MTM3/150629_151347/tf_details.pdf
http://tdpc681.fnal.gov:8080/MTM3/150629_151347/tf_details.pdf


BIBLIOGRAPHY 117

[74] I. Volobouev. “Matrix Element Method in HEP: Transfer Functions, Ef-
ficiencies, and Likelihood Normalization”. In: arXiv:1101.2259v1 (2011).
url: http://arxiv.org/pdf/1101.2259v1.pdf.

http://arxiv.org/pdf/1101.2259v1.pdf

	Acknowledgments
	Introduction
	Top Physics
	The Standard Model
	Top quark phenomenology
	Top quark production
	Top quark decay
	Top quark mass

	Previous Top Mass Measurements and Motivations
	A New CDF Top Mass Measurement

	Experimental Setup
	The Tevatron Acceleration Complex
	Proton Source
	Main Injector
	Antiproton Source
	The Recycler Ring
	Tevatron Ring
	Collider Performance

	 The CDF II Detector
	The Detector Coordinate System
	The Tracking System
	The Time of Flight system
	Calorimeters
	The Muon Detector
	Cherenkov Luminosity Counters
	CDF Trigger System


	Physics Object Reconstruction
	Electron Reconstruction
	Muon Reconstruction
	Jet Reconstruction
	Missing Transverse Energy Reconstruction
	Secondary Vertex Identification

	Event Selection
	Lepton+jets topology
	Event Signature
	Background
	Monte Carlo Samples
	Selected Sample Composition
	Validation of Data

	Matrix Element Method
	Introduction to the Matrix Element Method
	Signal Probability
	Background Probability
	Matrix Element
	Parton Distribution Functions
	Jet Energy Scale Parameter
	Transfer Functions
	Normalization
	Acceptance
	Integration variables
	Phase Space
	Advantages of the Matrix Element Method

	Integral Computation
	Integration Framework
	Quasi-Monte Carlo Integration
	Study of the precision of the integration
	Calibration of Quasi-MC error
	Optimization of the integration process

	Next Steps
	Top Mass Extraction
	Validation with Pseudo-Experiments
	Systematic Uncertainties
	Signal and Background Modeling
	Modeling of Detector Response
	Measurement Method


	Conclusions
	Bibliography



