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CHAPTER Ⅰ

Preamble

One of the oldest quests of mankind is to understand the world we are living in. A natural question,
in this respect, is to ask what the universe is made of. From Aristotle’s four roots fire, water, air and
earth, knowledge developed to Leucippus’ and Demokritus’ philosophy of the ατομος, the indivisible, to
the discovery of chemical elements in the 17th and to the theory of atoms in the 19th century. A shift
of paradigms occurred with the discovery of subatomic particles at the end of the 19th century, which
showed that the atoms were, in fact, not indivisible. The development of quantum theory at the beginning
of the 20th century was the true revolution, though. Einstein’s saying “I, at any rate, am convinced that He
does not throw dice” expresses what many could not believe at the time: the subatomic world is reigned
by chance and probability instead of determinism.
Nowadays, the fundamental building blocks of matter are understood to be elementary particles such as

the electron or the quarks. The development of quantum field theory in the 20th century provided the tools
to describe their properties, and how they interact. Uniting classical field theory, quantum theory and
special relativity, relativistic quantum field theories are among the most accurate theories ever conceived.
To this day, the most successful attempt to formulate a quantum field theory is the development of the

Standard Model of elementary particles in the 20th century. It describes all known elementary particles
and three of the four known forces of nature. The Standard Model answered many questions about the
building blocks of our universe, but it also raised new ones. One long-standing question has presumably
been answered recently: how do elementary particles acquire mass?
The answer to this question is connected with the existence of an elementary particle, the Higgs boson,

which was predicted in 1964. Particle physicists have been searching for it ever since. The Higgs boson
is the cornerstone of the Standard Model because it has the special role of being connected with the
mechanism that gives mass to the other particles: the Higgs mechanism. Furthermore, after the discovery
of the 𝜏 -neutrino in 2000, all particles predicted by the Standard Model except for the Higgs boson had
been found. Consequently, the discovery of a Higgs-like particle at CERN’s Large Hadron Collider (LHC)
in 2012 was regarded as the most important breakthrough for particle physics in decades. Measurements
seem to indicate that this particle is the Higgs boson, but some of its properties remain under study to this
day. This thesis contributes to this research: if the new particle is indeed the Higgs boson, it must decay
to 𝑏 quarks. Proving this is the goal of the searches presented in this work.

𝐻 →𝑏�̄� searches, however, are very challenging measurements at the Large Hadron Collider. They have
been attempted several times by the ATLAS [2–4] and CMS collaborations [5, 6] and also at the Tevatron,
but without finding conclusive evidence. In this thesis, I will therefore discuss how machine-learning
methods were introduced to the ATLAS search [1] for 𝐻 → 𝑏�̄� decays to improve the sensitivity – a
strategy pioneered here in Bonn [7].

1



Chapter Ⅰ Preamble

We will proceed as follows: in chapter Ⅱ, I will review some of the theoretical foundations of the
Standard Model, and discuss the importance of the Higgs boson. In chapter Ⅲ, I will discuss aspects of
particle physics at hadron colliders, and introduce the experimental tools: LHC and ATLAS. ChapterⅣ
is dedicated to the first ATLAS 𝐻 → 𝑏�̄� analysis that used machine learning, which received sizeable
contributions from the Bonn 𝐻 → 𝑏�̄� group. I will focus on final states with charged leptons, which I
worked on.
Chapter Ⅴ is dedicated to a 𝐻 → 𝑏�̄� analysis that explores concepts that could not be introduced to

the analysis published by ATLAS described in chapterⅣ. This second 𝐻 →𝑏�̄� analysis is based on the
ATLAS analysis, but the machine-learning part has been revised to reduce uncertainties of the ATLAS
analysis. This will be relevant for future 𝐻 →𝑏�̄� searches because with growing datasets, the reduction of
systematic uncertainties is the next big challenge in this search. In chapterⅥ, I will discuss the results of
measurements in ATLAS data recorded in 2012. The thesis concludes with a summary and an outlook to
future searches in the 𝐻 →𝑏�̄� channel in chapterⅦ.

2



CHAPTER Ⅱ

The Role of the Higgs Boson in the Standard
Model of Particle Physics

Ⅱ 1 Introduction

The StandardModel of particle physics [8–12] is the theory that summarises most of today’s understanding
of how elementary particles interact. It describes the effects of three forces of nature: electromagnetism,
the strong force and the weak force. The last fundamental force, gravity, is not part of the Standard Model.
Figure Ⅱ.1 shows the known elementary particles and their quantum numbers, which determine how the
forces act on the particles. The particles can be divided according to their spins ( 1), into matter particles
with spin 1

2 , the fermions, and force carriers with spin 1, the bosons.
Among the fermions, one finds three generations, also known as families. The first generation features

the lightest particles, which form the ordinary matter. Particles in the other families have identical
quantum numbers (and therefore the same properties), but higher masses than their counterparts in the
first generation. Due to the high masses, the members of the second and third generation are unstable,
and hence decay to particles of the first generation. The masses in figure Ⅱ.1 are given in the “natural
units” commonly used in particle physics. Setting the fundamental constants to one,

ℏ = 𝑐 = 𝑘B = 1,

quantities like energy, momentum, mass, temperature, inverse time and inverse length can be measured in
a unit of energy, the electronvolt:

[𝐸] = [𝑝] = [𝑚] = [𝑇 ] = [1
𝑡
] = [1

𝑑
] = eV = 1.60218×10−19 J .

This convention is widely used in particle physics since it simplifies many relations as, for example, the
relativistic energy-momentum relation:

𝐸2 = 𝑝2c2 + 𝑚2c4 → 𝑝2 + 𝑚2

The three fundamental forces are mediated by the bosons, which are therefore often called “force
carriers”. Each boson acts on a different kind of charge that determines whether fermions are subject to
the force: the quarks carry a colour charge ( ), and are thus subject to the strong interaction mediated by

1 Occasionally, colours in figures will be indicated by these coloured boxes in the text.
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FigureⅡ.1: Particles described by the Standard Model. Quantum numbers of the particles are indicated in coloured
boxes. Masses from the PDG [13]. (*) The third component of weak isospin is given for left-handed particles only,
since the weak interaction does not act on right-handed particles. For right-handed particles, the weak isospin is
always zero. Based on [14], updated and modified.

the gluons 𝑔. All electrically charged ( ) particles take part in the electromagnetic interaction mediated by
the photon 𝛾. All particles, except gluons and photons, also carry weak isospin ( ) and weak hypercharge,
and therefore take part in the weak interaction mediated by the 𝑊 and 𝑍 bosons. Gravity cannot be
described by the Standard Model. At the energy scales accessible for particle physics, gravity is weak,
though, and it can therefore be neglected.
The Standard Model is a theory with large predictive power, and has been tested extensively. Its success

stems from the fact that by imposing mathematical symmetries on Lagrange densities, it can predict the
interactions of bosons and fermions with remarkable accuracy. It has even predicted the existence of
several particles before any experimental evidence was at hand. Examples for particles predicted by the
Standard Model are:
• the gauge bosons 𝑊, 𝑍 and 𝑔,
• the heavier fermions 𝑐, 𝑏, 𝑡,
• the 𝜏 neutrino 𝜈u�
• and the Higgs boson.

The Higgs boson, which is the focus of this thesis, has a special role, because it is indicative of the
mechanism that gives mass to the Standard Model particles: the BEH mechanism. The confirmation
of its existence in 2012 was a milestone for the experimental tests of the Standard Model; particularly
because all the particles predicted by the Standard Model are now confirmed. As an example for how the

4



Ⅱ 1 Introduction

Standard Model predicts interactions, it will be shown in section Ⅱ 2 that photons are required to couple
to charged fermions if one imposes a gauge symmetry on the equations of motion of a fermion. Utilising
this concept will lead to the prediction of the Higgs boson and its interactions.
Despite its success, the Standard Model also has limitations. A non-exhaustive list of these includes: it

does not explain the role of gravity, why neutrinos have mass, or why the universe seems to be dominated
by dark matter and dark energy. Furthermore, the 19 parameters of the StandardModel cannot be predicted.
The Higgs mechanism, for instance, explains how particles acquire mass, but cannot predict the masses
themselves. The origin of the mass hierarchy shown in figure Ⅱ.1 is hence unknown. Furthermore, the
Standard Model does not have a strong-enough mechanism to favour matter over antimatter (CP-violation),
and the energy regime of the Higgs sector is surprisingly low in comparison to the energies where gravity
supposedly becomes important: the Planck mass (hierarchy problem). Those many questions that cannot
be answered by the Standard Model are good reasons for the existence of an underlying mechanism
that includes the Standard Model as an effective theory. Describing such a mechanism would require a
new theory of elementary particles, likely including also new particles and interactions. Although the
search for new physics is not the aim of this thesis, the measurement of Standard Model observables
is nonetheless interesting in this regard, as Standard Model observables might be affected by unknown
processes. Consequently, the topic of this thesis is not only to determine whether 𝐻 →𝑏�̄� decays exist,
but also to quantify their probability, that is, to measure the coupling, and compare it to the prediction of
the Standard Model.
This is achieved by measuring the probabilities of interactions. Any measurement of such probabilities

might provide insights into the validity of the Standard Model, and they are conveniently expressed using
the cross section. When scattering a beam of particles at a target, one can express the scattering rate
as

̇𝑁 = L ⋅ 𝜎, [𝜎] = m2 = 1×1028 b.

The Luminosity L is the number of particles per unit time and unit area, and 𝜎 is the cross section.
Cross sections in the quantum regime are usually measured in fractions of the unit barn. For colliding
beams of particles, one can relate the cross section to the probability of transitioning from the state |1, 2⟩,
which is formed by two initial particles 1 and 2, into some final state |3, … , 𝑛⟩. Such transitions are
described by the 𝑆 matrix: ⟨3, … , 𝑛| 𝑆 |1, 2⟩. Separating the 𝑆 matrix into 𝑆 = 1+ i 𝑇 and extracting
kinematic factors (factors that do not depend on the interaction), one can write down an expression for
the cross section in dependence of the invariant matrix element ℳ:

𝜎 = 𝒩
2𝐸12𝐸2 |𝑣1 − 𝑣2|

∫ |ℳ(𝑝1, 𝑝2 → 𝑝3, … , 𝑝u�)|2

× (2𝜋)4𝛿4(𝑝1 + 𝑝2 − 𝑝3 − … 𝑝u�) ×
u�

∏
u�=3

1
2𝐸u�

d3 ⃗𝑝u�

(2𝜋)3

(Ⅱ.1)

𝑝u� are the four-momenta of the particles, and 𝐸u� their energies. |𝑣1 − 𝑣2| is the relative velocity of
the beams as viewed from the laboratory frame, and 𝒩 is a normalisation factor to prevent double
counting when identical particles are participating. The 𝛿4-distribution ensures energy and momentum
conservation, d3 ⃗𝑝u� is an element of the phase space of possible final states. With a similar rule for particle
decays, the reactions of the known elementary particles can be described provided that the amplitudes ℳ
are known.
These amplitudes can be obtained using the “Feynman Rules”, which is a set of rules to translate

interactions permitted by the Standard Model to scattering amplitudes. To obtain the total probability of
an interaction, all possible transitions from the initial to the final state under consideration have to be

5



Chapter Ⅱ The Role of the Higgs Boson in the Standard Model of Particle Physics

evaluated. However, not all transitions are equally probable. This allows for the application of perturbation
theory, that is, to calculate the approximate total amplitude using a power series in a parameter 𝛼, the
coupling constant of an interaction, as long as 𝛼 ≪ 1. If 𝛼 is small, amplitudes only need to be evaluated
up to a specific order in 𝛼 because higher-order diagrams only account for very small corrections.

−u�u�u�u�
u�2−u�2

u�
√

4u�u�u�u�

u�
√

4u�u�u�u�

Figure Ⅱ.2: Feynman diagram
showing the scattering of fermions
via photon exchange.

Figure Ⅱ.2 shows a Feynman diagram describing the scattering of
two fermions via exchange of a photon. It is leading order (LO) in 𝛼.
For full details on the translation between diagrams and amplitudes, one
may refer to textbooks, for example [15, 16]. For this work, the most
interesting features of the Feynman rules are:
• Any vertex allowed by a Standard Model interaction can be part of
a Feynman diagram.

• At each vertex, conservation of four-momenta has to be ensured.
• Each vertex contributes to the amplitudes with a factor ∝ 𝑖𝑔, where

𝑔 is a coupling constant specific to the interaction of interest.
• For QED 𝑔 = √4𝜋𝛼QED ≈ 0.3, for QCD 𝑔 = √4𝜋𝛼u� ≈ 1.12.
In the present diagram, two vertices contribute with √𝛼QED each,
which is why the diagram Ⅱ.2 is leading order in 𝛼.

• Diagrams with more vertices contribute with lower amplitudes: while this diagram describes an
amplitude ∝ 𝛼 ≈ 1

137 , the amplitude of a diagram with four vertices would be ∝ 𝛼2 ≈ 5×10−5.
This would be next-to-leading order (NLO) in 𝛼.

• The evolution of particles between vertices is described by propagators ∝ u�
u�2−u�2 . These describe

how a particle of mass 𝑚 carries the four-momentum 𝑞 from one vertex to the next.
• If particles have properties like spin, colour, hypercharge, etc., extra factors have to be added to
vertices and propagators to ensure the conservation of these quantum numbers.

State-of-the-art cross-section calculations for a large range of processes include perturbative expansions
up to next-to-next-to-leading order (NNLO), or sometimes also N3LO in 𝛼s for QCD.

To study which interactions are allowed by the Standard Model, one can rely on the gauge principle: it
predicts interactions of the bosons and the fermions, which defines the set of allowed vertices used in
diagrams such as the one shown in figure Ⅱ.2. Cross sections and decay probabilities will be revisited in
section Ⅱ 5.

2 The couplings depend on the momentum u� that is transferred. The couplings given here are for rather high, LHC-like
momentum transfers of u�(100 GeV).
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Ⅱ 2 Gauge Invariance: The Central Guiding Principle of the
Standard Model
Our basic postulate is that it should be possible to generate strong, weak and electro-magnetic
interaction terms (with all their correct symmetry properties and also with clues regarding their
relative strengths), by making local gauge transformations on the kinetic-energy terms in the free
Lagrangian for all particles.

Salam, Ward, 1961 [17]

To explore the connection of gauge invariance and interactions, it is beneficial to use the Lagrangian
formalism. “Lagrangians”, the density of kinetic and potential energy of a particle, will be denoted with
ℒ. To generate the equations of motion, one uses the Euler-Lagrange equations. This will be demonstrated
in a moment for QED. For now, one may take as given the Lagrangians for free particles that lead to
the Klein-Gordon equation for spin-0 particles, the Dirac equation for spin-1

2 particles and the Proca
equation for spin-1 particles:

ℒK-G = 1
2

𝜕u�𝜙𝜕u�𝜙 − 1
2

𝑚2 𝜙2 (Ⅱ.2)

ℒDirac = i ̄𝜓𝛾u�𝜕u�𝜓 − 𝑚 ̄𝜓𝜓 (Ⅱ.3)

ℒProca = −1
4

𝐹 u�u�𝐹u�u� + 1
2

𝑚2
u� 𝐴u�𝐴u� (Ⅱ.4)

𝐹 u�u� ≡ 𝜕u�𝐴u� − 𝜕u�𝐴u� is the strength tensor of the electromagnetic field. The fields in the Lagrangians
assign operators to each point in space, and particles can be seen as excitations of these fields. The
Klein-Gordon field 𝜙 in equation (Ⅱ.2), for example, is the property of space-time to create a particle at
position 𝒙 as an excitation of the vacuum state |0⟩:

|𝒙u�u�⟩ = 𝜙(𝒙) |0⟩ = ∫ d3𝑝
(2𝜋)3

1
√2𝐸u�

(ei u�⋅u� 𝑎u� + e−i u�⋅u� 𝑎†
u�) |0⟩

= ∫ d3𝑝
(2𝜋)3

1
2𝐸u�

e−i u�⋅u� |𝒑⟩ .

The particle is a superposition of states |𝒑⟩ with defined momentum 𝒑 and energy 𝐸u� = √|𝒑|2 + 𝑚2,
which themselves are the result of creating particles:

|𝒑⟩ = √2𝐸u� 𝑎†
u� |0⟩ .

𝑎†
u� is the operator that creates a particle with momentum 𝒑 when acting on the vacuum state, and 𝑎u�
destroys such a particle.
The goal of the following sections is to generate the mass terms on the right-hand side of the Lagrangians

in equations (Ⅱ.2) to (Ⅱ.4), while simultaneously preserving gauge invariance. One solution to this problem
is the Higgs mechanism, which will be discussed in section Ⅱ 3. The discussion will mostly follow the
review of S. Novaes [18], complemented with aspects from P. Skands [19] and A. Djouadi [20].
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Ⅱ 2.1 𝑼(1) Gauge Symmetry and QED

To demonstrate why gauge symmetries are so important for the Standard Model, gauge transformations
will now be applied to a Dirac field. One finds that the photon must be the mediator of the electromagnetic
force. To do this, one may start with the Lagrangian of a free fermion, equation (Ⅱ.3), and take the mass
term as given. A global gauge (i.e. phase) transformation under the one-dimensional unitary group U(1)
would affect the fermion field in the following way:

𝜓 → 𝜓′ = e−i u� 11𝜓 𝛼 ∈ ℝ (Ⅱ.5)

The one-dimensional identity matrix 11 was added to the notation in order to emphasise that all elements
of Lie groups, which this gauge transformation is, can be written as 𝐸(𝜃1, … , 𝜃u�) = e−u�u�u�u�u� with 𝜃u�
being the parameters and 𝐺u� the generators of the group. A summation over indices appearing twice
is implied. Equation (Ⅱ.3) is invariant under this 𝑈(1) transformation, since the complex number eu�u�

commutes with all elements of the Lagrangian and ̄𝜓′𝜓′ = ̄𝜓eu�u�e−u�u�𝜓 = ̄𝜓𝜓. This is, however, only a
global gauge transformation. It becomes local if the value of 𝛼 depends on the space-time coordinate 𝑥 –
a much more restrictive assumption. In this case, the product rule has to be applied to e−u� u�(u�)𝜓 in the
first term of the Lagrangian:

ℒ′
u� = ℒu� + ̄𝜓𝛾u�𝜓 𝜕u�𝛼(𝑥) (Ⅱ.6)

Even though both global and local phase changes should not affect the physics described by this equation,
changes in 𝛼(𝑥) do affect the Lagrangian. In particular, if the phase 𝛼 would be allowed to vary with
time and be observable at any location ⃗𝑥, information could be transmitted faster than the speed of light
across the whole universe, violating the principle of causality. The solution to enforce gauge invariance is
to add a gauge field to the Lagrangian (Ⅱ.3):

ℒu� = i ̄𝜓𝛾u�𝜕u�𝜓 − 𝑚 ̄𝜓𝜓 − 𝑞 ̄𝜓𝛾u�𝜓 𝐴u� (Ⅱ.7)

This counter term is meant to cancel the extra term in equation (Ⅱ.6), and therefore it needs to be a
vector field. Usually, this is expressed using the covariant derivative 𝐷u�, since the covariant derivative is
invariant under gauge transformations. This leads to the more concise notation:

ℒu� = i ̄𝜓𝛾u�𝐷u�𝜓 − 𝑚 ̄𝜓𝜓,
where 𝐷u�𝜓 ≡ (𝜕u� + i 𝑞 𝐴u�)𝜓,

and 𝑞 is the charge of the fermion. To make this Lagrangian gauge invariant, the new field has to transform
in a way that exactly cancels the extra term in the transformed Lagrangian (Ⅱ.6):

𝐴u� → 𝐴u�
′ = 𝐴u� + 1

𝑞
𝜕u�𝑎(𝑥) (Ⅱ.8)

Taking the transformed Lagrangian (Ⅱ.6) and adding the transformed new field yields the desired gauge
invariance:

ℒu� → ℒ′
u� = i ̄𝜓𝛾u�𝜕u�𝜓 − 𝑚 ̄𝜓𝜓 + ̄𝜓𝛾u�𝜓 𝜕u�𝛼(𝑥) − 𝑞 ̄𝜓𝛾u�𝜓 𝐴u� − 𝑞 ̄𝜓𝛾u�𝜓 1

𝑞
𝜕u�𝛼(𝑥)

= ℒu�

To inspect the equations of motion described by the Lagrangian (Ⅱ.7), the Euler-Lagrange equation can

8



Ⅱ 2 Gauge Invariance: The Central Guiding Principle of the Standard Model

be applied, for example with respect to ̄𝜓:

𝜕u� ( 𝜕ℒ
𝜕(𝜕u�

̄𝜓)
) − 𝜕ℒ

𝜕 ̄𝜓
= 0

⇔ 𝜕u�(0) − i 𝛾u�𝜕u�𝜓 + 𝑚𝜓 + 𝑞𝛾u�𝜓𝐴u� = 0
⇔ (i 𝛾u�𝜕u� − 𝑞𝛾u�𝐴u� − 𝑚) 𝜓 = 0

This is the Dirac equation for a fermion in an electromagnetic field 𝐴u�. The postulation of local gauge
invariance therefore yields the equations of motion for a fermion in an electromagnetic field! Furthermore,
it predicts that the photon couples to charged fermions. The Lagrangian is, however, incomplete if it is
meant to describe the interaction of a fermion with a photon. It is missing the terms for the motion of
the photon field. The missing terms can be taken from the Proca-Lagrangian equation (Ⅱ.4) because this
equation describes the motion of free vector fields. The first term in the Proca-Lagrangian is invariant
under the gauge transformation (Ⅱ.8), but the mass term is not. Yet if 𝐴u� is massless, which is known to
be valid for the photon, gauge invariance is preserved. This yields the Lagrangian of QED:

ℒQED = i ̄𝜓𝛾u�𝜕u�𝜓 − 𝑚 ̄𝜓𝜓 − 1
4

𝐹 u�u�𝐹u�u� − 𝑞 ̄𝜓𝛾u�𝜓𝐴u� (Ⅱ.9)

Several properties of QED can be read off its Lagrangian (Ⅱ.9):

• The mass of the fermion can be extracted from the ̄𝜓𝜓 term and is 𝑚, as in the free Dirac Lagrangian
equation (Ⅱ.3). This is, of course, built into the theory, since the Dirac Lagrangian for a massive
fermion was taken as given. In section Ⅱ 4 one will find, though, that the Yukawa mechanism can
generate such terms in a gauge-invariant way.

• QED has exactly one interaction vertex connecting two fermion fields and the photon:

𝑓

̄𝑓
u� u�u�u�

𝛾

Note that this is the only vertex needed to create the diagram shown in figure Ⅱ.2. In fact, all Feynman
diagrams of QED can be generated now because this is the only possible vertex (the type of fermion
can change, though).

• Photons as the mediators of the electromagnetic force have to be massless in order to preserve gauge
invariance.

• The coupling of fermions to the photon is proportional to their charge: 𝑞 =
√

4𝜋 𝛼.

9
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Ⅱ 2.2 𝑺𝑼(3) Gauge Symmetry and QCD

As for the electromagnetic force, the theory of the strong interaction can be based on a gauge symmetry:
𝑆𝑈(3)u�. The subscript 𝐶 indicates that the symmetry is in the {𝑟, 𝑔, 𝑏} space, the colour charge carried
by quarks and gluons. The reason for not having a 𝑈(3)u� symmetry is group theoretical: a gluon is
a superposition of a colour and an anticolour state. For the direct product of such groups, one finds
3⊗ ̄3 = 8⊕1, an octet and a singlet of colour states. All states in the octet carry net colour charge, but the
state in the singlet would be colour neutral. It would therefore not be bound by the strong interaction, and
act as a free particle similar to the photon. Since such a particle is not known, the symmetry group must
be 𝑆𝑈(3), which has eight instead of nine states. The 𝑆𝑈(3) symmetry manifests in nature as particles
with colour charge behaving in the same way, regardless of their colour state. Viewed from outside, the
colours of quarks and gluons are completely hidden. The generators of the 𝑆𝑈(3) group are the eight
3x3 Gell-Mann 𝜆 matrices, such that an element of 𝑆𝑈(3) can be written as 𝐸(𝜃1, … , 𝜃8) = e−i u�u�u�u� .
This is identical to the definition in equation (Ⅱ.5), but the symmetry group had only one generator, the
one-dimensional unity matrix. The 𝜆 matrices do not commute, therefore 𝑆𝑈(3) is non-Abelian. This
makes the derivation of the gauge-invariant QCD Lagrangian more complicated than in the QED case
with only the 𝑈(1) symmetry. Details about gauge invariance with non-Abelian groups can be found
in [18]. The QCD Lagrangian reads:

ℒQCD = − 1
4

(𝜕u�𝐺u�
u� − 𝜕u�𝐺u�

u�)(𝜕u�𝐺u�
u� − 𝜕u�𝐺u�

u�) + ∑
u�,u�

̄𝑞u�
u� (𝑖𝛾u�𝜕u� − 𝑚u�)𝑞u�

u�

− 𝑔u�𝐺u�
u� ∑

u�
̄𝑞u�
u� 𝛾u�

1
2

(𝜆u�)u�u� 𝑞u�
u�

+ 𝑔u�
2

𝑓u�u�u�(𝜕u�𝐺u�
u� − 𝜕u�𝐺u�

u�)𝐺u�
u�𝐺u�

u� − 𝑔2
u�
4

𝑓u�u�u�𝑓u�u�u�𝐺u�
u� 𝐺u�

u�𝐺u�
u�𝐺u�

u�

(Ⅱ.10)

An inspection of the QCD Lagrangian leads to the following insights about QCD:

• The terms in the first line are the kinetic terms for the gluon fields 𝐺 and for the quarks 𝑞, in analogy
to the QED Lagrangian.

• The second line contains the analogue of the photon-fermion coupling that appeared in the Dirac
Lagrangian in equation (Ⅱ.7). As for the Dirac Lagrangian, interaction terms appear when the normal
derivative is replaced by the covariant derivative in the kinetic terms for the quark fields.

• For QCD, this only works if eight vector fields are added, corresponding to the eight generators of
SU(3). Therefore, 𝐺u�

u� in the middle line is summed over the entries 𝛼𝛽 of the 𝜆u� matrices, where
𝑎 = 1, … , 8. Each non-zero combination defines specific interactions mediated by gluons.

• The eight gluons of QCD are massless as photons are. A mass term of the form 1
2𝑚2

u�𝐹 u�
u�u�𝐹 u�u�

u�
with a generalised strength tensor 𝐹 would break gauge invariance, and can therefore not be in the
Lagrangian, unless 𝑚u� = 0.

• The interaction vertices of QCD are shown in figure Ⅱ.3.
Gluons interact with quarks via a QED-like vertex (left). The 𝜆-matrices in the second line of the
Lagrangian, however, only permit interactions where a gluon carries both the colour and the anticolour
state of the incoming quarks, as illustrated by the subscripts in the leftmost diagram.

• Unlike photons, gluons have three-point and four-point self-interaction vertices caused by the non-
Abelian nature of 𝑆𝑈(3) (middle and right vertex in figure Ⅱ.3). These can be attributed to the last
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𝑞u�1

̄𝑞u�2

𝑔u�1 ̄u�2

𝑔

𝑔

𝑔
𝑔

𝑔 𝑔

𝑔

Figure Ⅱ.3: Interaction vertices of QCD.

two terms in the Lagrangian, which arise because the strength tensor 𝐹u�u� needs to be generalised in
a non-Abelian group:

𝐹 u�
u�u� = 𝜕u�𝐺u�

u� − 𝜕u�𝐺u�
u� + 𝑔u�𝑓u�u�u�𝐺u�

u�𝐺u�
u�

𝑓u�u�u� are the structure constants of 𝑆𝑈(3). These ensure the conservation of the colour charge in the
gluon self-interaction vertices.

• The strength of all gluon couplings is given by 𝑔u� = √4𝜋𝛼s, the coupling constant of the strong
interaction.

Again, the requirement of local gauge symmetry in the Dirac Lagrangian yields a Lagrangian that
naturally includes massless gauge bosons, and predicts all interactions of these gauge bosons with fermions.
External knowledge that has to be added, though, is the fact that only quarks carry colour charge, and are
thus the only fermions taking part in the strong interaction.
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Ⅱ 2.3 Gauge Symmetries in Weak Interactions

It could be assumed that a strategy similar to the one used in the 𝑆𝑈(3) QCD instance would yield the
theory of weak interactions with the three gauge bosons 𝑊 +, 𝑊 −, 𝑍0. A suitable symmetry group with
three generators is 𝑆𝑈(2). However, applying this strategy yields massless gauge bosons, which is in
clear violation of experimental observations. The great achievement of Brout, Englert and Higgs was to
formulate a gauge-invariant, symmetric Lagrangian that would generate mass terms for the heavy gauge
bosons. This will be discussed in the next section because the application of gauge invariance in weak
interactions is complicated by another fact: weak bosons only interact with left-handed fermions and
right-handed antifermions. The chirality (“handedness”) of fermions is the eigenvalue of the 𝛾5 matrix,
and can be extracted from an arbitrary state using projection operators:

𝑃u� ≡ 1
2

(1 − 𝛾5) 𝑃u� ≡ 1
2

(1 + 𝛾5).

The fact that weak interactions only act on left-handed fermions and right-handed antifermions manifests
in the Lagrangian in the presence of the 𝑃u� projection operator. A weak current for left-handed fermions
can be expanded as:

̄𝜓u�𝛾u�𝜓u� = (𝜓†𝑃u�𝛾0) 𝛾u�𝑃u�𝜓 = ( ̄𝜓𝑃u�) 𝛾u�𝑃u�𝜓 = ̄𝜓𝛾u�𝑃u�𝑃u�𝜓 = ̄𝜓𝛾u� 1
2

(1 − 𝛾5)𝜓.

This gives rise to the term “𝑉 − 𝐴 structure” of weak interactions, since the last term transforms as a
vector (𝛾u�) minus an axial vector (𝛾u�𝛾5).
Fermion mass terms always are a product of left- and right-handed fields:

− 𝑚 ̄𝜓𝜓 = −𝑚 ̄𝜓(𝑃u� + 𝑃u�⏟⏟⏟⏟⏟
=1

)𝜓 = −𝑚 ̄𝜓𝑃 2
u�𝜓 − 𝑚 ̄𝜓𝑃 2

u�𝜓 = −𝑚 ̄𝜓u�𝜓u� − 𝑚 ̄𝜓u�𝜓u� (Ⅱ.11)

To apply the gauge principle, it must first be understood that quarks and leptons come in two states, as
far as the weak interactions are concerned: 𝑆𝑈(2)u� doublets (with weak isospin 𝑇 = 1

2 ), on which the
three gauge bosons act, and 𝑈(1) singlets with 𝑇 = 0 for the right-handed fermions:

(𝑞u�

𝑞u�)
u�

(𝜈ℓ
ℓ )

u�
≡ 𝐿 vs. 𝑞u�

u�, 𝑞u�
u�, ℓu� ≡ 𝑅 (Ⅱ.12)

Two shorthand notations 𝑅 and 𝐿 were defined here. Right-handed neutrino states are not part of the
Standard Model. Since right- and left-handed terms need to be mixed for the mass terms as shown in
equation (Ⅱ.11), neutrinos need to be massless in the Standard Model. As far as the Standard Model is
concerned, right-handed neutrinos, if they existed, would not interact with other particles, which renders
them undetectable.

Given the two symmetry groups 𝑆𝑈(2)u� and 𝑈(1), one needs to accommodate for the experimental
result that the 𝑆𝑈(2)u� symmetry is not exact. Neutral weak interactions have a small but non-vanishing
right-handed component; this hints at a contribution of the electromagnetic force, since the vector current
in the photon interaction term includes both right- and left-handed particles:

̄𝜓𝛾u�𝜓 = ̄𝜓u�𝛾u�𝜓u� + ̄𝜓u�𝛾u�𝜓u�

A product of the two symmetry groups was proven successful, accommodating the electromagnetic
component: 𝑆𝑈(2)u� ⊗ 𝑈(1). Now, local gauge invariance can be imposed, replacing the normal by the
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covariant derivative and introducing four vector fields, since one group has three, the other one generator:

𝑆𝑈(2)u� → 𝑊 1
u�, 𝑊 2

u�, 𝑊 3
u�

𝑈(1)u� → 𝐵u�

As for QCD, the strength tensor needs to be generalised, since 𝑆𝑈(2) is not Abelian. This gives rise to
self-interaction terms as for the gluons. With the shorthand notations 𝑅, 𝐿 from equation (Ⅱ.12), the
Lagrangian for leptons, for example, reads:

ℒleptons = �̄� i 𝛾u�𝜕u� 𝐿 + �̄� i 𝛾u�𝜕u� 𝑅

+ �̄� i 𝛾u� (i 𝑔
2

𝜏u�𝑊 u�
u� + i 𝑔′

2
𝑌 𝐵u�) 𝐿

+ �̄� i 𝛾u� ( i 𝑔′

2
𝑌 𝐵u�) 𝑅

Here, 𝜏u� are the Pauli matrices, the three generators of 𝑆𝑈(2), similar to the 𝜆 matrices as generators of
𝑆𝑈(3) in equation (Ⅱ.10). The operator 𝑌 is the hypercharge operator, which is the charge corresponding
to the 𝑈(1)u� symmetry. It can be seen as the generator of the 𝑈(1)u� group. The constants 𝑔 and 𝑔′ are
coupling constants, adjusting the relative strength of the two interactions, and they must be determined
experimentally. A summation over the three lepton generations is implied. The second and third lines
predict interactions between the leptons and bosons, which arise when gauge invariance under the product
group is postulated. As experiments have shown (“𝑉 − 𝐴 structure”), there is no interaction between the
𝑊 u� bosons and right-handed particles. The 𝐵 boson, however, ensures that right-handed particles also
take part in the electroweak interaction.
Rewriting the Lagrangian in the Weinberg, Glashow, Salam model and inserting the Pauli matrices,

different properties become visible:

ℒleptons = �̄� i 𝛾u�𝜕u� 𝐿 + �̄� i 𝛾u�𝜕u� 𝑅

− 𝑔
2

�̄� 𝛾u� ( 0 𝑊 1
u� − i 𝑊 2

u�
𝑊 1

u� + i 𝑊 2
u� 0 ) 𝐿

− (u�′

2 (�̄�𝛾u�𝑌 𝐿 + �̄�𝛾u�𝑌 𝑅), u�
2 �̄�𝛾u�( 1 0

0 −1 )𝐿) (cos(𝜃u� ) − sin(𝜃u� )
sin(𝜃u� ) cos(𝜃u� )) (𝐴u�

𝑍u�
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⎛⎜
⎝

𝐵u�
𝑊 3

u�

⎞⎟
⎠

(Ⅱ.13)

The off-diagonal elements in the second line of the equation allow for transitions between states in the
𝑆𝑈(2) doublets (ℓ ↔ 𝜈). These transitions change the charge of the particles. Therefore, the 𝑊 ± bosons
can be identified with the states:

𝑊 ±
u� = 1√

2
(𝑊 1

u� ∓ i 𝑊 2
u�). (Ⅱ.14)

As the third line of the Lagrangian comprises only neutral interactions, it can only be related to 𝑍0 bosons
and to photons. This is why the 𝐵u� and 𝑊 3

u� fields have been written as a mixture of 𝑍u� and 𝐴u� in
equation (Ⅱ.13). The Weinberg angle 𝜃u� determines this mixture. Since electromagnetic interactions
do not distinguish between left- and right-handed particles, the Weinberg angle needs to be chosen such
that the photon interacts with the left- and right-handed fields with equal strength. Furthermore, photons
need to be prevented from interacting with the neutrino component of u�

2 �̄�𝛾u�( 1 0
0 −1 )𝐿 in the third line of
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equation (Ⅱ.13), since photons do not interact with neutrinos. Given that 𝑌 𝐿 = −1𝐿 and 𝑌 𝑅 = −2𝑅,
this is achieved when

𝑔 sin(𝜃u� ) = 𝑔′ cos(𝜃u� ),

⇔ sin(𝜃u� ) = 𝑔′

√𝑔2 + 𝑔′2
, or

⇔ cos(𝜃u� ) = 𝑔
√𝑔2 + 𝑔′2

.

Writing out the 𝑅 and 𝐿 shorthands, and including the Weinberg angle, the neutral part of the Lagrangian
(Ⅱ.13) can be rearranged to3:

ℒNeutral
Leptons = −𝑔 sin(𝜃u� ) ̄ℓ𝛾u�ℓ 𝐴u�

− 𝑔
2 cos(𝜃u� )

∑
u�=u�u�,ℓu�,ℓu�

̄𝜓u�𝛾u�(𝑔u� − 𝑔u�𝛾5)𝜓u� 𝑍u�. (Ⅱ.15)

With the Gell-Mann-Nishijima relation:

𝑄 ≡ 𝑇3 + 1
2

𝑌 , (Ⅱ.16)

and by comparing to the QED Lagrangian (Ⅱ.9), the coupling constants of the gauge bosons can be read
off the Lagrangian:

𝑔u� ≡ 𝑇3 − 2𝑄 sin2(𝜃u� ) (Ⅱ.17)
𝑔u� ≡ 𝑇3 (Ⅱ.18)

𝑒 ≡ 𝑔 sin(𝜃u� ) (Ⅱ.19)

𝑇3 = 1
2𝜏3 is the operator for the 3rd component of isospin, which is understood to act only on the 𝑆𝑈(2)

doublets. For the 𝑈(1) singlets, it is zero. The second line of the Lagrangian (Ⅱ.15), the 𝑍0 interactions,
again shows the 𝑉 − 𝐴 structure of weak interactions.

A similar strategy can be employed to obtain the Lagrangian for quarks, but the hypercharges 𝑌
have to be adjusted to be compatible with the electric charges of the quarks: +2

3 for up- and −1
3 for

down-type quarks. Furthermore, one needs to include transitions between the quark families, the CKM
matrix [21, 22], such that heavy quarks can decay to light quarks mediated by 𝑊 ± bosons. Lastly, the
weak boson (self-)interaction terms are missing in the present discussion (they are included pictorially
in equation (A.2) on page 202 in the appendix). However, all particles are still massless at this point
(except for fermions, where mass terms have been deliberately put into the QED/QCD Lagrangians).
Therefore, this discussion will now focus on the Higgs mechanism, which solves the mass problem in a
gauge-invariant way.

3 For details see equation (A.1) on page 201 in appendix A 1
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Ⅱ 3 Gauge Symmetries and Boson Masses

Ⅱ 3.1 Spontaneous Symmetry Breaking and the Goldstone Theorem

ℜ(u�) ℑ(u�)

𝑉 (𝜙)

(a) Quartic potential with u�, u� > 0

ℜ(u�) ℑ(u�)

𝑉 (𝜙)

(b) The “Mexican Hat Potential”, u� < 0

Figure Ⅱ.4: Illustration of Spontaneous Symmetry Breaking (SSB). Shown are two symmetric quartic potentials
of the form u� u�2 + u� u�4. (a): u� and u� are positive. The ground state (blue) does not break the symmetry. (b): u�
is negative. The state with vanishing field u� = 0 (blue) is symmetric but unstable: a ball in such a potential will
roll into a random direction. The transition into one of the states with minimal energy (red) breaks the symmetry.
There is an infinite number of degenerate states of minimal energy.

Imposing local gauge invariance on free-particle Lagrangians demonstrated how gauge bosons interact
with fermions. The three fundamental forces (except gravity) can all be described using this technique. For
giving masses to particles, however, a new concept is necessary: spontaneous symmetry breaking (SSB).
This concept can be illustrated with the Lagrangian of a complex scalar field 𝜙 in a quartic potential:

ℒ = 1
2

𝜕u�𝜙†𝜕u�𝜙 − 1
2

𝜇2𝜙†𝜙 − 1
4

𝜆 (𝜙†𝜙)2 (Ⅱ.20)

The coefficients of the quartic potential are called 𝜇, 𝜆 following the usual conventions. In order for the
potential to be bounded, 𝜆 must be greater than zero, but 𝜇2 need not be. One can differentiate two cases:

1. 𝜇2 ≥ 0: The Lagrangian describes a scalar particle with mass 𝑚 = 𝜇. Note that the Lagrangian is
symmetric with respect to phase changes:

𝜙 → 𝜙′ = eu�u�𝜙

The potential of this Lagrangian is shown in figure Ⅱ.4(a). The ground state of this potential is
𝜙0 = 0.

2. 𝜇2 < 0: This potential is shown in figure Ⅱ.4(b): an interesting feature of this potential is the fact
that the ground state is not the state of vanishing field. Since the potential is symmetric with respect
to phase changes, there is in fact an infinite number of degenerate minima. If a ball was put into
such a potential, it could come to rest at any point of the well as shown for the red ball. Yet the
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ground state of this system can be only one of the degenerate states. Since the state of vanishing
field is unstable, and one of the ground states has to be occupied, the symmetry of the system is
said to be “spontaneously broken”.

One can assume the ground state (vacuum state) to be at ℑ(𝜙) = 0, without loss of generality:

𝑣 ≡ 𝜙0 = √−𝜇2

𝜆

The field can be reparametrised around this state, that is, one can shift the real part of the field by the
“vacuum expectation value” 𝑣, while the imaginary component remains unchanged:

𝜙 = 𝜙1 + i 𝜙2 → (𝜙1 − 𝑣) + i 𝜙2

Now the Lagrangian becomes:

ℒ = 1
2

𝜕u�𝜙†𝜕u�𝜙 − 1
2

(−2𝜇2) 𝜙2
1 − 𝜆𝑣 𝜙1(𝜙2

1 + 𝜙2
2) − 𝜆

4
(𝜙2

1 + 𝜙2
2)2 + 𝑐 (Ⅱ.21)

This is a Lagrangian of two scalar fields, a massive field 𝜙1 with 𝑚 = −2𝜇2 and a massless field 𝜙2,
a so-called “Goldstone boson”. The terms proportional to 𝜆 are interaction terms of the fields. If a
field is excited along the flat direction of the potential, the field is massless. The classical analogy is
that one does not need energy to move the red ball along the line of minimal potential. By contrast, the
field that corresponds to the direction where the potential rises is massive. Goldstone’s theorem [23]
states that when an exact symmetry is spontaneously broken, a massless scalar particle appears for each
broken generator. For the Lagrangian in equation (Ⅱ.20), 𝑈(1) was spontaneously broken: the potential
is 𝑈(1)-symmetric, but the vacuum state it occupies is not. Therefore, one Goldstone boson, 𝜙2, had to
appear. The more interesting result concerning the problem of massless Standard Model particles, though,
is the fact that a massive scalar particle appeared, and that the Lagrangian is still gauge-invariant. Indeed,
it is the first mass term generated in this discussion. The fermion mass terms seen before in section Ⅱ 2
were always assumed to be given. However, there is no experimental evidence of Goldstone bosons4.
One more concept is therefore necessary.

Ⅱ 3.2 The Higgs Mechanism

Although it was possible to generate a mass term without violating gauge-invariance, the Goldstone
mechanism is not the full solution to the mass problem: one needs to combine SSB and local gauge
invariance, so that the degrees of freedom appearing as Goldstone bosons transfer to the gauge bosons and
make themmassive. This is the essence of the Higgs mechanism, also called BEH or Englert-Brout-Higgs-
Guralnik-Hagen-Kibble mechanism, since it was proposed by Englert and Brout [24], Higgs [25–27],
Guralnik, Hagen and Kibble [28, 29]. As there are three massive weak gauge bosons and the massless
photon, one may start with four fields and break three generators to generate the mass terms. The
corresponding symmetry should be the symmetry group of electroweak interactions: 𝑆𝑈(2)u� ⊗ 𝑈(1)u� .
This can be achieved by introducing a scalar 𝑆𝑈(2) doublet with hypercharge 𝑌 = 1 and with complex
fields, that is, four degrees of freedom:

𝜙 ≡ (𝜙+

𝜙0)

4 Pions can be regarded as Goldstone bosons in QCD. They are, however, only pseudo-Goldstone bosons because pions have a
mass of 140 MeV.
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The superscripts indicate the electric charge of the states, which can be found by applying the charge
operator 𝑄 = 𝑇3 + u�

2 . As in section Ⅱ 2.3, a covariant derivative needs to be introduced to enforce gauge
invariance on the Lagrangian, and to generate interactions with the gauge bosons:

ℒ = 𝐷u�𝜙†𝐷u�𝜙 − 𝜇2𝜙†𝜙 + 𝜆 (𝜙†𝜙)2 (Ⅱ.22)

𝐷u� = 𝜕u� + i 𝑔𝜏u�
2

𝑊 u�
u� + i 𝑔′ 𝑌

2
𝐵u� (Ⅱ.23)

Given that the potential is symmetric, a particular minimum can be chosen, spontaneously breaking the
symmetry:

𝜙0 = 1√
2

(0
𝑣) with 𝑣 = √−𝜇2

𝜆
(Ⅱ.24)

Since the generator of 𝑈(1)em, 𝑄 = 𝑇3 + u�
2 , annihilates the vacuum state, which is electrically neutral,

this minimum preserves the 𝑈(1)em symmetry5. The remaining generators, which are broken when an
arbitrary vacuum state is occupied, will create massive gauge bosons. The number of broken/unbroken
generators matches the number of massive/massless gauge bosons described by the Standard Model.

Starting from the vacuum state 𝜙0, adding a field 𝐻 , and adding the exponentials of the generators
of 𝑆𝑈(2), the field 𝜙 can be written in terms of 𝑆𝑈(2) transformations. In this notation the Goldstone
bosons, which are just degrees of freedom of the 𝑆𝑈(2) symmetry, are visible:

𝜙 = ei u�u�
2

u�u�
u� (

0
u�+u�√

2
)

≈ 1√
2

(
1
2(𝜒2 + i 𝜒1)

𝑣 + 𝐻 − i 1
2𝜒3

) = 1√
2

( i
√

2𝜔+

𝑣 + 𝐻 − i 𝑧0)
(Ⅱ.25)

Only terms of linear order in the fields have been kept in the second line. The right-hand part of the
second line uses a suggestive notation that hints at the fact that the field can be written as 𝐻 , the Higgs
field, plus Goldstone bosons.

Since the Lagrangian (Ⅱ.22) is 𝑆𝑈(2)-symmetric, the parameters 𝜒u� can be chosen such that the
Goldstone bosons are eliminated from equation (Ⅱ.25). However, the Higgs field remains. This is called
“unitary gauge”. For this, a 𝑆𝑈(2) gauge transformation with 𝛼u� = 𝜒u�/𝑣 has to be performed, completely
cancelling all 𝜒u� contributions. The Lagrangian (Ⅱ.22) becomes:

ℒ = [(𝜕u� + i 𝑔𝜏u�
2

𝑊 u�
u� + i 𝑔′ 𝑌

2
𝐵u�) 𝑣 + 𝐻√

2
(0

1)]
2

− 𝜇2 (𝑣 + 𝐻)2

2
− 𝜆(𝑣 + 𝐻)4

4

A mass term similar to that from (Ⅱ.21) and self-interaction terms proportional to 𝜆 appear. Multiplying

5 It can be shown [18] that all generators that annihilate the vacuum state correspond to unbroken symmetries and a massless
boson. Postulating the preservation of the u�(1) symmetry while acting on the vacuum state yields:

ei u�u�u�0 ≈ (1 + i u�u�)u�0
!= u�0

⇔ u�u�0 = 0
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out the part [(𝑔𝜏3𝑊 3 + 𝑔′𝑌 𝐵)𝑣( 0
1 )]2, one can write:

ℒu�3+u� = 𝑣2

8
(𝐵u� 𝑊 3

u�) ( 𝑔′2 −𝑔𝑔′

−𝑔𝑔′ 𝑔2 ) ( 𝐵u�

𝑊 u�
3

)

Being quadratic in the fields, this equation describes the mass terms of the neutral bosons. Since the
matrix is symmetric, it can be diagonalised. This yields two eigenvalues:

0 = 𝑚u� and
1
2

𝑣2(𝑔2 + 𝑔′2)
4

= 1
2

𝑚2
u�

This matrix happens to be diagonalisable with a rotation by the Weinberg angle 𝜃u� . The mixing of 𝑊 3

and 𝐵 is such that the photon remains massless, preserving the 𝑈(1)em symmetry. One can thus rotate the
Lagrangian into the “mass eigenbasis”6, and write 𝑊 1,2 as 𝑊 ±, see equation (Ⅱ.14). All boson mass
terms can now be identified by inspecting the terms that are quadratic in the fields:

ℒ = 1
2

𝜕u�𝐻𝜕u�𝐻 + 1
2

𝑔2

4
(𝑣 + 𝐻)2 (2 𝑊 +

u� 𝑊 −u� + 1
cos2(𝜃u� )

𝑍u�𝑍u�) − 𝜇2 (𝑣 + 𝐻)2

2
− 𝜆(𝑣 + 𝐻)4

4

One obtains7:
𝑚u� = 𝑔𝑣

2

𝑚u� = 𝑔𝑣
2

1
cos(𝜃u� )

𝑚u� = √−2𝜇2 =
√

2𝜆𝑣
𝑚u� = 0

In its most expressive form, the Lagrangian therefore reads:

ℒ = 1
4

𝜆𝑣4

+ 1
2

𝜕u�𝐻 𝜕u�𝐻 − 1
2

𝑚2
u�𝐻2 − 𝑚2

u�
2𝑣

𝐻3 − 𝑚2
u�

8𝑣2 𝐻4

+ 1
2

𝑚2
u� (2 𝑊 +

u� 𝑊 u�−) (1 + 2
𝑣

𝐻 + 𝐻2

𝑣2 ) + 1
2

𝑚2
u� 𝑍u�𝑍u� (1 + 2

𝑣
𝐻 + 𝐻2

𝑣2 )

(Ⅱ.26)

The following points are worth noting:

• The postulate of a quartic potential for a scalar doublet of the form (Ⅱ.22), in conjunction with the
postulate of local gauge invariance and spontaneous symmetry breaking, generates mass terms and
interaction terms for the weak gauge bosons.

• Provided the quartic potential exists in nature, the corresponding “Higgs field” would have a non-zero
vacuum expectation value, equation (Ⅱ.24). It was determined using data about the Fermi constant
𝐺u� , which can be measured in muon decays [18]:

𝑣 = √−𝜇2

𝜆
= √

1√
2𝐺u�

≈ 246 GeV

6 Compare equation (Ⅱ.13) in section Ⅱ 2.3
7 The u� mass term in the Lagrangian has an additional factor of 2. It arises because there are mass terms for two u� particles:

2u� +
u� u� −u� = u�1u�u� u�

1 + u�2u�u� u�
2
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𝑊 ±
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𝑍
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Figure Ⅱ.5: Interaction vertices between gauge bosons and Higgs. All couplings are proportional to the squared
boson mass. The upper left and upper middle diagrams are the most important couplings for this work.

• The vacuum expectation value 𝑣 has units of mass, and is the only parameter of the Standard Model
that is not dimensionless. It also determines the mass scale of all bosons and fermions (see next
section). Why 𝑣 is 𝒪(100 GeV) is one of the unsolved problems of the Standard Model, called the
“hierarchy problem”. The name originates from the fact that the only other relevant mass scale is
significantly different from 𝑣: the Planck mass 𝑚u� = √ℏc

G ≈ 1.2×1019 GeV.
• An excitation of the Higgs field corresponds to creating a particle, the Higgs boson. Peter Higgs was
the first to postulate its existence, which lead to the name of the particle.

• As 𝑔 and 𝜆 are free parameters, the masses of 𝑊 , 𝑍 and 𝐻 cannot be predicted. The prediction
of the ratio 𝑚u� /𝑚u�, though, was a great success of the Standard Model. Even though 𝜆 is in
principle a free parameter, there are intervals for 𝜆 that are favoured by the Standard Model. A brief
discussion can be found in appendix A 2 starting on page 202. The Higgs mass measured at LHC,
𝑚u� = (125.09 ± 0.24) GeV [30], is right at the boundary of stability, where loop effects could
render 𝜆 negative, leading to an unstable quartic potential. If there were unknown particles preventing
this from happening, they would couple to the Higgs, and thus affect production cross sections or
branching fractions. Measuring cross sections and branching fractions – one of the goals of this thesis
– might therefore provide clues in the search for new physics.

• The Goldstone bosons predicted by the Goldstone theorem disappeared when a proper gauge trans-
formation was applied. This is in agreement with experimental data that show no signs of Goldstone
bosons.

• The degrees of freedom that would be carried by the Goldstone bosons are transferred to the 𝑊 ± and
𝑍 bosons: massless vector bosons can only have two spin states (𝑧-component): 𝑆u� = ±1. If they
become massive, they acquire also 𝑆u� = 0, preserving the number of degrees of freedom.

• Imposing SSB and local gauge invariance predicts all interactions of the Higgs boson with the gauge
bosons: Equation (Ⅱ.26) shows that the Higgs couples to pairs of 𝑊 or pairs of 𝑍 bosons and to itself
via a triple and quartic coupling.

• The couplings to the heavy gauge bosons and also the Higgs self couplings are proportional to the
squared mass of the bosons. The Higgs boson therefore couples most strongly to the heaviest particles.

• The quartic Higgs coupling and the coupling 𝑉 𝑉 𝐻𝐻 are suppressed with respect to the triple
couplings by 1

u� . The so-called “Higgs-Strahlung” diagrams (the upper left and upper middle diagrams
in figure Ⅱ.5) will therefore be the most important couplings for this work.
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Ⅱ 4 Yukawa Coupling and Fermion Masses
Despite the success for vector bosons, the Higgs mechanism cannot explain why fermions are massive.
Since directly adding mass terms to the Lagrangian breaks gauge invariance, a new concept is necessary:
Yukawa interactions [9, 31, 32]. Adding interactions between the Higgs doublet and fermions yields
massive fermions. The subset of the Yukawa Lagrangian for just one lepton generation reads:

ℒYukawa ⊃ −𝑦 ̄ℓu� (𝜙+

𝜙0)
†

(𝜈
ℓ)

u�
− 𝑦∗ (𝜈

ℓ)
†

u�
(𝜙+

𝜙0) ℓu� .

Note that it contains left- and right-handed terms, a necessary prerequisite for fermion mass terms. The
constant 𝑦 is a complex number, and determines the coupling strength. It can even be chosen real by
moving any phase into ℓu�. In unitary gauge, the Higgs doublet simplifies to 1√

2( 0
u�+u� ), equation (Ⅱ.25),

and the Lagrangian becomes:

ℒY ⊃ −𝑦 𝑣 + 𝐻√
2

[ ̄ℓu�ℓu� + ̄ℓu�ℓu�]

= −𝑚ℓ
̄ℓℓ − 𝑚ℓ

𝑣
𝐻 ̄ℓℓ

The fact that fermion mass terms have the structure 𝑅𝐿 + 𝐿𝑅 (equation (Ⅱ.11)) was used to arrive at the
second line. Neutrino mass terms are not possible, since a right-handed neutrino singlet is not part of the
Standard Model.

For quarks, the procedure is similar. For up-type quarks, one needs the conjugate doublet8:

(𝜙+

𝜙0) ≡ i 𝜏2 (𝜙−

𝜙0∗) = ( 𝜙0∗

−𝜙− )

Hence, the quark part of the Yukawa Lagrangian reads:

ℒu� ⊃ −𝑦u� (�̄� ̄𝑑)
u�

(𝜙+

𝜙0) 𝑑u� − 𝑦u� (�̄� ̄𝑑)
u�

( 𝜙0∗

−𝜙−) 𝑢u� + h.c.

In unitary gauge:
ℒu� ⊃ −𝑦u�𝑣√

2
̄𝑑𝑑 − 𝑦u�√

2
𝐻 ̄𝑑𝑑 − 𝑦u�𝑣√

2
�̄�𝑢 − 𝑦u�√

2
𝐻�̄�𝑢

8 This results from complex-conjugating an infinitesimal gauge transformation, like in equation (Ⅱ.25), and requiring that the
conjugated doublet transforms in the same way as the normal doublet.
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𝑓
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𝐻
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Figure Ⅱ.6: Interaction vertex between fermions and the Higgs boson.

Points worth noting are:

• Only because the Higgs field has a non-zero vacuum expectation value 𝑣, a Yukawa Lagrangian with
fermion mass terms can be constructed.

• This mechanism is fundamentally different from the mechanism that gives mass to the gauge bosons.
The observation of the Higgs boson is therefore not a proof that fermion masses are caused by the
Yukawa mechanism. The measurement carried out in this thesis therefore is a necessary complement
to measurements of the well-established Higgs-to-gauge-boson couplings.

• For each Yukawa mass term, a corresponding Higgs-fermion interaction is predicted, figure Ⅱ.6. The
strength of the coupling to fermions is completely determined by only two parameters: the fermion
mass and 𝑣. Therefore, if the fermion mass is known, one can predict the probability of the interaction
shown in figure Ⅱ.6. This is a very precise prediction, which naturally should be tested in order to
decide if Yukawa interactions generate the masses of fermions.

Mass terms for the other fermion generations can be added using the same strategy. The Yukawa couplings
𝑦 are free parameters, but can be calculated once the mass of a fermion is known. However, the Standard
Model cannot explain why the masses of the fermions follow the hierarchy shown at the beginning of this
chapter in figure Ⅱ.1.

The predictions regarding the Higgs couplings have to be tested. The aim of this work is to test three
different couplings, focussing on the Yukawa coupling to 𝑏 quarks in 𝐻 → 𝑏�̄� decays. 𝐻 → 𝑏�̄� is the
second-strongest Yukawa coupling, but the strongest that can be probed directly in decays: 𝐻 → 𝑡 ̄𝑡
decays are kinematically forbidden because the Higgs mass is lower than the top-quark mass. The other
two couplings that are accessible in the 𝐻 → 𝑏�̄� channel are the gauge coupling to the 𝑊 boson in
𝑊𝐻 production and the gauge coupling to the 𝑍 boson in 𝑍𝐻 production, see again figure Ⅱ.5. Other
production modes are more challenging because of high 𝑏-jet9 backgrounds at the LHC. The 𝑉 𝐻 →𝑉 𝑏�̄�
analysis therefore has to test all three couplings simultaneously. Before the 𝐻 → 𝑏�̄� analysis can be
discussed in more detail, though, a closer look at the properties of the Higgs boson is necessary.

9 A jet is a bundle of collimated particles, which are produced by outgoing quarks or gluons. This is a consequence of the fact
that the only free particles permitted by QCD have to be colourless. The formation of jets will be discussed in section Ⅲ 4.
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Ⅱ 5 The Higgs Boson

Ⅱ 5.1 Discovery

In July 2012, the ATLAS and CMS collaborations announced the discovery of a new particle that is
consistent with the Standard Model’s Higgs boson [33, 34]. The main results from the ATLAS publication
are shown in figure Ⅱ.7. Signs of the Higgs boson are visible
• in the invariant mass spectrum of four leptons, the blue contribution in (a),
• in the transverse mass distribution in the search for 𝐻 → 𝑊𝑊 decays, the red contribution in (b),
• and in the invariant mass spectrum of photon pairs, the peak in (c).
Figure Ⅱ.7(d) shows compelling statistical evidence for a new particle at a mass of 125 GeV. The insets

show:

(a) Exclusion limit. The upper limit at 95 % confidence level on the signal strength 𝜇, see item (c).
(b) 𝑝-value. The probability that Standard Model processes without Higgs contributions would yield

data that look equally or more “Higgs-like” than the measured data.
(c) Signal strength 𝜇. The processes of interest are referred to as “signal”. “Backgrounds” are other

known processes with similar signature. In a counting experiment, the number of observed events
can therefore be expressed in terms of the signal strength as:

𝑁total = 𝜇𝑆 + 𝐵,

where 𝑆 and 𝐵 are the expected numbers of signal and background events. Background-only
Standard Model processes would therefore yield 𝜇 = 0, whereas Higgs signal plus background
processes yield 𝜇 = 1.

All three metrics in figure Ⅱ.7(d) show that the observed data are incompatible with the background-only
hypothesis, and that a particle with a mass of 125 GeV has been found. Details on these metrics will be
discussed in section sectionⅣ 5.3, which is dedicated to the statistical analysis of the data.
After the discovery, measurements provided evidence for a neutral spin-zero boson with 𝐽u� = 0+ [35].

It was proven that the new particle couples to gauge bosons and photons, and evidence for vector-
boson-fusion production was also found [36] (see section Ⅱ 5.2 for details on production modes). Mass
measurements [30] revealed

𝑚u� = 125.09 ± 0.21stat ± 0.11syst GeV.

The 2013 Nobel Prize in physics was awarded to Englert and Higgs

“for the theoretical discovery of a mechanism that contributes to our understanding of the origin of
mass of subatomic particles, and which recently was confirmed through the discovery of the predicted
fundamental particle, by the ATLAS and CMS experiments at CERN’s Large Hadron Collider.”

Royal Swedish Academy of Sciences, 2013 [37]

The properties of this newly found particle are in agreement with predictions for the Higgs boson. For
this reason, this particle will be called Higgs boson throughout this thesis. It is understood that it remains
unclear if all properties (couplings, for instance) are exactly as predicted by the Standard Model. Testing
this is the main motivation for this work.
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Figure Ⅱ.7: ATLAS results contributing to the Higgs discovery [33]. The figures (a) – (c) show results of searches
for Higgs decays to gauge bosons. (d) shows the combination of the search channels. All channels observe an
excess of events over the backgrounds predicted by the Standard Model.
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Figure Ⅱ.8: Dominant Higgs production modes at LHC, ordered by cross section (
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to bottom right: Gluon-gluon fusion (ggF) — Vector boson fusion (VBF), Associated production with vector bosons
(VH) — Top fusion (ttH).

Ⅱ 5.2 Higgs Production

With knowledge of the Higgs mass and given the possible couplings to bosons and fermions discussed in
section Ⅱ 3, all production and decay channels can be predicted. The dominant production processes at
the Large Hadron Collider are shown in figure Ⅱ.8. The corresponding cross sections are shown versus
the Higgs mass in figure Ⅱ.9(a). Since the LHC collides protons, which are composite particles, the most
likely collisions to produce Higgs bosons are the ones induced by gluons. This is because gluons are
the most common partons found in the proton. The details of this will be discussed in section Ⅲ 1.1.
Due to the dominance of gluons, about 88 % of all Higgs bosons found in the data of 2012 should be the
result of gluon-gluon fusion (ggF, 21.4 pb, the top left diagram in figure Ⅱ.8 and most of the blue band in
figure Ⅱ.9(a)). Since the massless gluons do not couple to the Higgs boson, the process is mediated by a
quark loop. The loop is mostly populated by top quarks because of their high masses, and therefore strong
Higgs-Yukawa coupling. Other quarks are possible to couple as well. With a more than 10 times lower
cross section, the fusion of vector bosons can produce a Higgs boson and two jets, which are caused by
the scattered quarks shown in figure Ⅱ.8 (VBF, 1.6 pb, red band). With only about 3 % of the ggF cross
section, 𝑊 bosons can be produced and radiate Higgs bosons (WH/Higgs Strahlung, 701 fb, green
band). Similarly, 𝑍 bosons can radiate Higgs bosons (ZH, 420 fb, grey band). The cross section is about
40 % lower than for 𝑊𝐻 production because the 𝑍 coupling to the quarks is suppressed by cos(𝜃u� ),
compare equation (Ⅱ.15) on page 14. Again three times less likely is the fusion of top quarks (ttH, 133 fb,
magenta). A similar process with fusion of 𝑏 quarks exists (202 fb), but the experimental signature of the
top quarks is identified more easily.
At the end of the LHC’s Run 1, ggF and VBF had been observed, and evidence at the level of 4.4

standard deviations for 𝑡𝑡𝐻 production was found by combining ATLAS and CMS results [40]. The same
publication quotes signs for 𝑉 𝐻 production at the level of 3.5 standard deviations, to which the analysis
presented in this thesis, chapterⅣ, contributed.
Details concerning 𝑉 𝐻 production cross sections can be found in [39, 41]. The calculations include

higher-order diagrams, which alter the LO cross sections obtained by evaluating the diagrams in figure Ⅱ.8.
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Figure Ⅱ.9: Higgs production cross-section predictions in dependence of the Higgs mass [39]. (a) Cross sections:
An overlay shows the measured Higgs mass of 125.09 GeV. (b) k-factors: Impact of the first NNLO QCD
calculations (

√
u� = 14 TeV). The k-factors are correction factors for the LO cross section to obtain cross sections

at higher-order accuracy. These are nearly identical for
√

u� = 8 TeV and for the u�u� process (except for
u�u�-induced diagrams).

NLO corrections in QCD, for instance, increase the 𝑉 𝐻 cross-section predictions by about 25 to 30 %,
see figure Ⅱ.9(b). They are therefore included in form of k-factors. The NLO diagrams comprise:

𝑊/𝑍
𝑞

𝑞 𝐻

𝑊/𝑍
𝑞

𝑞 𝐻
𝑊/𝑍

𝑞

𝑞 𝐻

Figure Ⅱ.10: NLO (QCD) diagrams included in the cross-section calculations for figure Ⅱ.9(a).

Next-to-next-to-leading order corrections (NNLO, [38]) do not significantly increase the cross section
of 𝑊𝐻 production, see figure Ⅱ.9(b), but including them reduces the uncertainties of the predictions.
The reason for this will be discussed in more detail in the section on Monte Carlo generators, Ⅲ 4. NNLO
diagrams do, however, have a particular impact on 𝑍𝐻 production, because they permit a new production
mode: 𝑔𝑔-induced 𝑍𝐻 production. The corresponding diagrams are similar to ggF, but a 𝑍 boson is
produced after the quark loop, see figure Ⅱ.11.

𝑍

𝑔

𝑔

𝐻

𝑔 𝑍

𝑔 𝐻

Figure Ⅱ.11: NNLO (QCD) diagrams included in the cross-section calculations for figure Ⅱ.9. The u�u�-induced
u�u� production is only taken into account when calculating u� u� at NNLO accuracy.
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Figure Ⅱ.12: NLO (EW) diagrams included in the cross-section calculations for figure Ⅱ.9(a).

Not only QCD processes affect the cross sections: electroweak contributions are included up to NLO [42].
Typical diagrams are shown in figure Ⅱ.12. The main effect of these diagrams is a reduction of the NNLO
(QCD) cross-section predictions. The magnitude of this reduction reaches from 5 to 10 %, and depends on
the transverse momentum of the Higgs boson. For the 𝑍𝐻 search, this is taken into account by applying
corrections to the LO Higgs transverse momentum spectrum that is predicted by Pythia8 [43].

Ⅱ 5.3 Higgs Decays and Coupling Measurements

The Higgs boson is a heavy particle that couples to all massive particles. It therefore decays almost
instantly with a lifetime of 1.6×10−22 s to lighter particles10. Searches for the Higgs boson can therefore
only proceed by recording its decay products. Figure Ⅱ.13 shows the branching fractions for various decay
modes in dependence of the Higgs mass, and table Ⅱ.1 lists the branching fractions for the observed mass
of 125.09 GeV. The branching fractions are uniquely determined by the Higgs couplings, which depend
only on the Higgs mass and the masses of the decay particles. Uncertainties of the branching fractions
mostly stem from uncertainties of particle masses, and from uncertainties of 𝛼u� for loop-mediated decays.
Although decays to first-generation fermions should be possible, the Yukawa coupling is so weak that
these can be ignored.

The dominant Higgs decay is 𝐻 → 𝑏�̄� (58 %). Despite the high branching fraction, it has not been
observed. The analysis presented in this work finds an excess of 2.4 standard deviations – not enough to
claim evidence for 𝐻 →𝑏�̄� decays. It shows, however, how systematic uncertainties in this channel can be
reduced. This might benefit future updates of this analysis. Particularly, because the Run-2 successor
of the ATLAS 𝑉 𝐻 → 𝑉 𝑏�̄� analysis [44] finds evidence for 𝐻 → 𝑏�̄� decays at the level of 3.6 standard
deviations, while CMS finds an excess of 3.3 standard deviations [45]. 3.0 and 2.8 standard deviations
would have been expected from simulations. To claim an observation of 𝐻 →𝑏�̄� decays, five standard
deviations would have to be reached. If only statistical uncertainties were relevant, a dataset with about
three times the data statistics used for these two analyses would suffice. Both measurements are, however,
limited by systematic uncertainties.

The second most abundant decay is 𝐻 → 𝑊𝑊 . 𝑊 bosons couple more strongly to the Higgs than
𝑏 quarks, but the decay is suppressed because 𝑚u� < 2𝑚u� : at least one 𝑊 boson must be virtual for
the decay to be kinematically possible. Even though this decay is less likely than 𝐻 → 𝑏�̄�, decays to
𝑊 bosons have been observed. This is because pairs of 𝑊 bosons provide a more distinctive signature
at the LHC [46, 47]. Decays to 𝑍-bosons (2.6 %) are very similar to 𝐻 → 𝑊𝑊 decays, but are even
more strongly suppressed since the 𝑍-mass is higher than the 𝑊 mass. Nevertheless, these decays have
been observed [48] since 𝑍𝑍 → 4𝑙 decays provide a very clean signature at hadron colliders. There is
evidence for decays to 𝜏 leptons from ATLAS [49], and CMS has nearly reached the threshold to claim
an observation: 4.9 𝜎 [50]. Decays to photons are very rare because they are mediated by a fermion or 𝑊
loop. Nonetheless, 𝐻 → 𝛾𝛾 was the driving channel for the Higgs discovery, since background levels in
the diphoton final state are low at the LHC [51].
10 From total width of 4 MeV [39], using u� = ℏ/Γ.
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FigureⅡ.13:Higgs decay branching fractions in depend-
ence of u�u� [39]

Decay Coupling Observed

58.0 % 𝑏𝑏 Yukawa
22.0 % 𝑊𝑊 Gauge ✓
8.6 % 𝑔𝑔 Yukawa/Gauge loop
6.3 % 𝜏𝜏 Yukawa (✓)
2.9 % 𝑐𝑐 Yukawa
2.6 % 𝑍𝑍 Gauge ✓
0.23% 𝛾𝛾 Yukawa/Gauge loop ✓
0.15% 𝑍𝛾 Yukawa/Gauge loop
0.02% 𝜇𝜇 Yukawa

Table Ⅱ.1: Higgs decay channels predicted for
u�u� = 125.09 GeV [41]

Decays that cannot be observed in the near future are decays to 𝑔𝑔, 𝑐𝑐, 𝑍𝛾 and 𝜇𝜇. For 𝑔𝑔 and 𝑐𝑐,
background levels at the LHC are too high: the signatures are two light jets for the former and two 𝑐-jets
for the latter. Both are final states with much higher background levels than for the already challenging
𝐻 →𝑏�̄� decay, and the decay branching fractions are lower than for 𝐻 →𝑏�̄�. The searches for the 𝑍𝛾 [52]
and 𝜇𝜇 decays [53] are not sensitive because of the very low branching fractions.

ATLAS and CMS results concerning the couplings in the different final states and their corresponding
signal strengths are summarised in [40], which also includes results from this thesis: the ATLAS
𝐻 → 𝑏�̄� analysis discussed in chapter Ⅳ. Figure Ⅱ.14(a) illustrates the most important Run-1 results
concerning Higgs decays: all signal strength measurements are consistent with StandardModel predictions.
Nonetheless, the decay channel that would profit the most from reduced uncertainties is 𝐻 →𝑏�̄� because
the measurements of 𝜇u�u� are not accurate enough to prove or exclude the existence of these decays.
Figure Ⅱ.14(b) shows the mass dependence of the measured couplings: the 𝜅-parameters factor out

the difference between gauge and Yukawa couplings in order to display the mass dependence in a single
plot. Unlike the signal strength 𝜇, which focusses on final states, the 𝜅-parameters measure the couplings
across different production channels and different final states. All the couplings align with Standard
Model predictions, even though more precision on 𝜅u�, in particular, would be desirable.

𝐻 → 𝑏�̄� and 𝐻 → 𝜏 ̄𝜏 are of marked interest since these are the only decay channels with notable
sensitivity to the Yukawa couplings of the Higgs boson. This thesis is contributing to one of the outstanding
problems in the Higgs boson research since all accessible couplings to gauge bosons have been proven,
while for Yukawa couplings there is evidence at best, for example, in the 𝐻 →𝜏 ̄𝜏 channel. The only other
process that is sensitive to Yukawa couplings is ttH production, but also here there is only evidence but
no proof at the level of five standard deviations.

To conclude the discussion of the importance of the Higgs boson, one should point out that even though
the discovery of the Higgs boson was one of the most important milestones of modern particle physics, the
measurement of its properties remains challenging. Especially the measurement of the 𝐻 →𝑏�̄� Yukawa
coupling turned out to lack precision in comparison with other channels. Improved sensitivity in 𝐻 →𝑏�̄�
searches will yield certainty about the existence of this coupling with smaller datasets, that is, in the nearer
future. In this respect, the results of chapter Ⅴ are interesting because this thesis shows how systematic
uncertainties of the 𝑉 𝐻 →𝑉 𝑏�̄� search can be reduced.
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Figure Ⅱ.14: ATLAS and CMS Higgs results at the end of the LHC’s Run 1 [40]. (a) Measured signal strength
in the most sensitive decay channels. (b) Higgs couplings versus particle mass. The measured couplings u� are
normalised to remove the difference between Yukawa and gauge couplings: u�u�

u�u�
u� for fermions, √u�u�
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gauge bosons. A fit to the observed data is superimposed [54], which is consistent with the prediction that the Higgs
couplings are proportional to the fermion mass and the squared boson mass. All results are consistent with Standard
Model predictions, but improvements in the u� →u�ū� channel are needed the most to better test the Standard Model
coupling predictions.
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CHAPTER Ⅲ

Particle Physics at Hadron Colliders

In this chapter, important aspects of physics at hadron colliders will be reviewed to understand the
experimental constraints for the ATLAS 𝐻 →𝑏�̄� analysis (chapterⅣ). The discussion will start with the
experimental tools, LHC and ATLAS, review the reconstruction of an LHC collision in ATLAS, and
finish with an overview of how such collisions are simulated.

Ⅲ 1 The Large Hadron Collider

In the search for new particles, particle accelerators proved to be the most successful tools. A multitude of
particles, such as antiproton (1955), 𝜈u� (1962), charm quark (1974), 𝜏 (1975), bottom quark (1977), gluon
(1979), 𝑊/𝑍 bosons (1983), top quark (1995), 𝜈u� (2000) and Higgs boson (2012), were all detected in
collisions produced with particle accelerators. A key parameter of an accelerator is the centre-of-mass
energy 𝐸cm =

√
𝑠. It determines which kinds of particles can be produced in a collision. 𝑠 is one of the

Mandelstam variables: in a reaction 1 + 2 → 3 + 4, 𝑠 is the squared energy available in the initial state
or – because of energy conservation – in the final state:

𝑠 = (𝒑1 + 𝒑2)2 = (𝒑3 + 𝒑4)2 = 𝑀2.

The four-vectors 𝒑u� denote the four-momenta of the particles in the beams or final state. If the particles
3 and 4 have a common ancestor, its mass is 𝑀 = 𝐸cm. Particles with masses above 𝐸cm cannot be
produced. Since the centre-of-mass energies reached by accelerators increased over time, more and more
particles with higher masses could be discovered.
To date, the Large Hadron Collider (LHC) [56] is the most powerful accelerator. The LHC is a proton

collider at CERN, the European laboratory for particle physics in Geneva, Switzerland. It was built in
a tunnel with a circumference of 26.7 km, see figure Ⅲ.1, which previously hosted the Large Electron
Positron Collider (LEP), where 𝑊 and 𝑍 bosons were studied. The LHC is the last stage in a chain
of accelerators that accelerates proton beams up to energies of 7 TeV per beam. Protons are extracted
from hydrogen gas, and accelerated in a linear accelerator to an energy of 50 MeV, in bunches of about
1.7×1011 protons. These bunches are subsequently injected into the booster synchrotron (𝑙 = 157 m,
𝐸 = 1.4 GeV), into the Proton Synchrotron PS (𝑙 = 628 m, 𝐸 = 25 GeV), the Super Proton Synchrotron
SPS, where 𝑊 and 𝑍 bosons were discovered (𝑙 = 7 km, 𝐸 = 450 GeV), and finally into the LHC. The
LHC is currently running at energies of 6.5 TeV per beam. In 2012, where the data for this thesis were
recorded, the energy was 4 TeV per beam. These beam energies correspond to centre-of-mass energies
of

√
𝑠 = 13 and 8 TeV.
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Figure Ⅲ.1: Overview of the LHC and the SPS [55]. The LHC is a proton-proton collider at CERN, Geneva. It
is the last accelerator in a chain of accelerators designed to accelerate protons up to a centre-of-mass energy of
14 TeV. Four large experiments record the particle collisions. The data for this thesis was recorded by ATLAS.

In the LHC, particles circulate in two ultra-high-vacuum tubes with pressures of 1×10−13 bar to
avoid collisions with gas molecules inside the tube. 1 232 superconducting dipole magnets operating
at 1.9 K and currents of up to 13 kA provide a bending field of up to 8.33 T, which keeps the particles
on a closed orbit. The magnets are arranged in eight arcs with a bending radius of 2 804 m each. With
𝑞 ⃗𝑣 × �⃗� = u�u�2

u� , the maximum beam energy can be estimated:

𝐸Beam ≈ 𝑝 = 𝑞𝑅𝐵 = e ⋅ 2 804 m ⋅ 8.33 T = 7 TeV. (Ⅲ.1)

The maximum current that can be tolerated by the magnets thus defines the beam energy.
The eight arcs with bending magnets are interleaved with straight sections. In four of these straight

sections, the proton beams are focussed and collided. The collision points are surrounded by seven
particle detectors: four large and three small experiments. Two of the large experiments use multi-purpose
detectors, ATLAS [57] and CMS [58], which focus on a broad spectrum of proton-proton physics such as
the search for the Higgs boson, searches for new physics processes or the measurement of the 𝑊 mass.
The third experiment, LHCb [59], is dedicated to 𝑏 quark physics, and the fourth, ALICE [60], to heavy ion
physics, which takes most of its data when the LHC collides lead nuclei. Two of the small experiments,
LHCf and TOTEM, focus on physics with protons scattered in forward direction, and are installed along the
LHC beam line near ATLAS and CMS. MoEDAL, installed near LHCb, searches for magnetic monopoles.
The LHC was commissioned in 2008, but had to be shut down for repairs until 2009. The first sizeable

dataset was recorded in 2011 at
√

𝑠 = 7 TeV. In 2012, the centre-of-mass energy was increased to√
𝑠 = 8 TeV. The runs of these two years are collectively referred to as “Run 1”. From 2013 until 2015,

upgrades were installed to reach a centre-of-mass energy of
√

𝑠 = 13 TeV. The current “Run 2” is
foreseen to end in 2018.
The LHC was designed to prove whether the Higgs boson exists or not because its predecessors, LEP

and Tevatron had neither been able to confirm nor exclude its existence. For LEP, this was due to a lack
of energy: being an electron-positron collider, the main production channel is 𝑍𝐻 production like in
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figure Ⅱ.8, page 24. LEP reached a centre-of-mass energy of 209 GeV, whereas at least 𝑚u� + 𝑚u� =
216.3 GeV would have been necessary to produce both 𝑍 and 𝐻 . The Tevatron, a proton-antiproton
collider with

√
𝑠 = 1.96 TeV, had ample energy to produce the Higgs boson, but lacked luminosity.

Ⅲ 1.1 Luminosity and PDFs

The luminosity determines the event rate of a given reaction produced by an accelerator:

̇𝑁 = 𝜎 L

𝑁 = 𝜎∫L d𝑡
(Ⅲ.2)

𝑁 is the number of events, 𝜎 the cross section of the reaction, L is the instantaneous luminosity and
∫ L d𝑡 the integrated luminosity. The lack of luminosity was the reason that the Tevatron experiments
were unable to discover the Higgs boson because statistical uncertainties in counting experiments scale as√

𝑁 . The luminosity of an accelerator can be estimated from the following parameters:

L = 𝑛𝑁1𝑁2𝑓
4𝜋𝜎u�𝜎u�

(Ⅲ.3)

𝑛 is the number of colliding bunches, 𝑁u� is the number of particles per bunch, 𝑓 is the repetition rate, and
𝜎u�,u� is the lateral extension of the bunches assuming the particle density is a Gaussian distribution. L
therefore has the units of inverse area-seconds, and is most conveniently expressed in fb−1 s−1 because
cross sections in equation (Ⅲ.2) are often also of the order of fb or pb.
The LHC accelerates particles using eight superconducting radio-frequency cavities operated at

400 MHz, which generate accelerating fields of up to 5 MV m−1. The accelerator is designed to hold
a bunch of particles in every tenth RF-cycle (the “RF bucket”), leading to a maximal collision rate of
40 MHz, corresponding to 25 ns between collisions. The LHC can hold up to 2 808 colliding bunch pairs
with 𝑁1 = 𝑁2 ≈ 1.15×1011 protons. With revolution frequencies of 11 200 per second and a lateral
extension of about 20 μm, this yields an instantaneous luminosity ofL = 1×1034 cm−1 s−1. The lateral
extension of the luminous region in ATLAS is actually about 60 μm, but equation (Ⅲ.3) does not take
into account the beam crossing angle and that the beam profile is not Gaussian.
By contrast, the Tevatron reached 𝑁u� ≈ 2.8×1011, 𝑁ū� ≈ 0.8×1011, with only 36 colliding bunch

pairs at the end of its lifetime, because antiprotons have to be reproduced constantly [61]. The Tevatron
therefore accumulated a dataset of approximately 10 fb−1 during its lifetime from 1986 to 2011. The
integrated luminosity delivered to ATLAS during the LHC’s Run 1 is 5.5 fb−1 (2011) and 22.7 fb−1

(2012), at
√

𝑠 = 7 and 8 TeV [62, 113]. The number of bunches was increased gradually to 1 400 at the
end of 2012. Bunch currents were also increased gradually, which is why the dataset accumulated in
2012 is four times larger than the dataset of 2011. Due to data-taking inefficiencies, a slightly smaller
dataset of 4.7 fb−1 for 2011 and 20.2 fb−1 for 2012 is usable for physics analyses. It was therefore both
the higher energy and the higher luminosity that ensured that the LHC would be able to either confirm or
exclude the Higgs boson.
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Figure Ⅲ.3: Parton distribution functions
(PDFs) for protons [63]. The minimal u� for u�u�
production at rest is marked for the LHC and the
Tevatron.

0.1 1 10
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

105

106

107

108

109

σσσσ
ZZ

σσσσ
WW

σσσσ
WH

σσσσ
VBF

M
H
=125 GeV

WJ S2012

σσσσ
jet

(E
T

jet > 100 GeV)

σσσσ
jet

(E
T

jet > √√√√s/20)

σσσσ
ggH

LHCTevatron

ev
en

ts
 / 

se
c 

fo
r 

L
= 

10
33

cm
-2
s-1

σσσσ
b

σσσσ
tot

σσσσ
W

σσσσ
Z

σσσσ
t

σ σ σ σ 
(( ((n

b
)) ))

√√√√s (TeV)

{
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u�

Figure Ⅲ.2: A gluon temporarily
splitting to quarks.

Although the simple discussion of luminosity and cross sections from
the previous section is sufficient to describe reaction rates for an 𝑒+𝑒−

collider like LEP, it misses an important aspect of hadron colliders:
hadrons are composite particles. When the LHC, for example, collides
protons, not only whole protons interact, but also collisions between
“partons” occur. Partons are the quarks and gluons found inside hadrons.
The proton consists of valence quarks, two up and one down quark,
which define the quantum numbers of the proton such as its electric

charge. The quarks are bound by exchanging gluons, which also take part in parton collisions. The gluons
can temporarily split into quark-antiquark pairs, the “sea quarks”, via diagrams like the one shown in
figure Ⅲ.2. Gluons and sea quarks carry a significant fraction of the proton momentum, and thus have to
be considered in calculations of reaction rates. The fraction of the proton momentum that is carried by a
parton is described by the Bjorken 𝑥-variable:

𝑝parton = 𝑥 ⋅ 𝑝proton, 0 ≤ 𝑥 ≤ 1.

The probability to find a parton with a certain momentum fraction 𝑥 inside the proton is described by the
parton distribution functions (PDF). They depend on the parton type and a momentum scale 𝑄2.
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Figure Ⅲ.3 shows the MSTW proton PDFs [63] at a momentum scale of 𝑄2 = 1×104 GeV2. For the
LHC, this is a moderate momentum transfer of 100 GeV. The probability densities in the figure show
that the partons with the highest values of 𝑥 at this momentum scale are valence quarks. Since the proton
has two up (valence) quarks, the 𝑢-quark probability density is higher than for the 𝑑 quark. At 𝑥 ≲ 0.1,
however, gluons completely dominate among all partons: note that the gluon PDF is scaled down by a
factor of 10 for better visibility. The rest of the proton momentum is carried by the sea quarks. Because of
the dominance of gluons, the LHC is sometimes called a gluon collider. This explains why gluon-initiated
Higgs production dominates all other Higgs production channels at the LHC, compare section Ⅱ 5.2. The
LHC provides a very high “parton luminosity” for gluons.
The production channel in the focus of this thesis, Higgs production in association with vector bosons,

is dominantly produced in collisions of a quark and an antiquark. In proton collisions, the latter can
only be a sea quark. Only at higher orders in 𝛼s (≥NNLO), 𝑉 𝐻 can also be initiated by gluons, see
figure Ⅱ.11 on page 25. Since sea quarks have sizeable probability densities only at low 𝑥, the beam
energy, and thus the parton luminosities, have a strong influence on production cross sections. This is
illustrated by the two markers that have been added to figureⅢ.3. The markers show the minimal 𝑥 that is
required to produce 𝑊 + + 𝐻 at rest. 𝑥 for such a collision can be estimated by calculating the minimal 𝑠
required to produce the particles:

𝑠′ = (𝑥1 ⋅ 𝐸beam1 + 𝑥2 ⋅ 𝐸beam2)2 = (𝑚u� + 𝑚u�)2 = (205 GeV)2

⇒ 𝑥LHC = 𝑚u� + 𝑚u�
2𝐸beam

= 0.026 , 𝑥Tevatron = 0.105

To reach the same value of 𝑠′, LHC collisions require lower values of 𝑥 than Tevatron collisions. The LHC
therefore operates in a regime of higher parton densities as shown by figure Ⅲ.3. The parton luminosity
for a given reaction strongly increases with the beam energy because the PDFs rise quickly towards low 𝑥.
When allowing asymmetric collisions with 𝑠′ > (205 GeV)2 and 𝑥1 ≠ 𝑥2, the sea quark PDF at the
LHC rises most quickly – much faster than any relevant Tevatron-PDF. It is therefore not only the higher
(proton) luminosity, but also the higher parton luminosity in comparison to the Tevatron that lead to the
discovery of the Higgs boson at the LHC.

Figure Ⅲ.4 shows NLO production cross-section calculations after summation over all initial states
and integration over all possible 𝑥 and the MSTW PDFs. The impact of the rising beam energy on the
cross sections is clearly visible. The discontinuity at

√
𝑠 = 4 GeV is the result of changing from proton-

antiproton to proton-proton PDFs. The dark graphs at the bottom show Higgs production cross sections
for ggF, VBF and 𝑊𝐻 production. 𝑍𝐻 production is not shown, but it is about on order of magnitude
less likely than 𝑊𝐻 production. Already at

√
𝑠 = 7 TeV, the LHC outperforms the Tevatron in all

production processes, often by an order of magnitude.
The fact that for the LHC the most likely process for 𝑊𝐻 or 𝑍𝐻 production is the collision of a

valence quark with a sea quark also has consequences for the kinematics of 𝑉 𝐻 events: the most likely
collision is a collision of a valence quark with high 𝑥 and a sea quark with low 𝑥. In most collisions, the
𝑉 𝐻 system will therefore be boosted along the initial direction of the valence quark. At the Tevatron, the
boost will be low on average. The high boost at the LHC is visible in the collision shown in figure Ⅲ.12
on page 49, and will also be relevant for defining observables to select 𝑉 𝐻 events in chapter Ⅴ.
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Ⅲ 2 Collider Detectors: The ATLAS Experiment

Figure Ⅲ.5: The ATLAS detector, a multi-purpose detector at the LHC. Collisions occur in the centre of the
detector, and are recorded by the following subsystems, from inside to outside: tracking detectors (dark grey),
calorimeters (orange and grey), muon system (blue). A solenoid magnet enclosing the tracking detectors and toroid
magnets (light grey, muon system) provide magnetic fields for the measurement of charged-particle momenta.
Image from [65].

ATLAS [57] in figureⅢ.5 is a barrel-shaped multi-purpose detector at CERN’s Large Hadron Collider.
ATLAS was designed to detect particles produced in LHC collisions at collision energies of up to 14 TeV
with repetition rates of up to 40 MHz. It covers a solid angle of nearly 4𝜋 around the interaction region.
The central region is called “barrel” and the regions in forward/backward directions “endcaps”.

Figure Ⅲ.6: Pseudorapidity [66]

ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the 𝑧-axis
along the beam pipe. The 𝑥-axis points from the IP to the centre of the
LHC ring, and the 𝑦-axis points upward. Cylindrical coordinates (𝑟, 𝜙)
are used in the transverse plane, 𝜙 being the azimuthal angle around the
𝑧-axis1. The polar angle 𝜃 is expressed in terms of the pseudorapidity:

𝜂 = − ln tan(𝜃/2).

𝜂 = 0 is the transverse direction, 𝜂 = ±∞ is aligned with the beam
axis, see sketch in figure Ⅲ.6. The pseudorapidity is better suited than

the polar angle to describe the angular distributions of scattered particles, since most particles are scattered
into directions close to the beam axis. With only a few particles scattered into the transverse directions,
angular distributions in 𝜃 peak close to the beam axis, and are only sparsely populated in transverse
direction. The pseudorapidity, by contrast, has an almost flat distribution.
The use of cylindrical coordinates has one more advantage: in a given collision, the momentum

fractions of the partons, 𝑥, and therefore also the 𝑧-momentum of the final state cannot be predicted.
However, the sum of the transverse momenta is known to be zero due to the conservation of momenta.
1 This is the recommended description of the coordinate system for ATLAS papers [67].
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The transverse and longitudinal components of the particle momenta are therefore measured separately,
which favours cylindrical coordinates. In this way, all transverse quantities remain independent of the
longitudinal boost. The Lorentz-invariant analysis in chapter Ⅴ will even go one step further and make
the event selection insensitive also to transverse boosts.
Cylindrical coordinates are also beneficial because ATLAS uses a magnetic field aligned with the

beam axis to bend the tracks of charged particles. Measuring the track curvatures yields the transverse
momentum components:

⃗𝑝T = (𝑝u�
𝑝u�

) = (𝑝T cos 𝜙
𝑝T sin 𝜙)

The longitudinal momentum component is not measured directly because a magnetic field that bends
particles in the longitudinal direction would also deflect the beams. The longitudinal component can,
however, be calculated using 𝑝T and 𝜂. From 𝑝T, 𝜂, 𝜙, one obtains the four-vectors of the particles
(neglecting their rest mass):

𝑝u� =
⎛⎜⎜⎜⎜
⎝

𝑝T cosh(𝜂)
𝑝T cos(𝜙)
𝑝T sin(𝜙)
𝑝T sinh(𝜂)

⎞⎟⎟⎟⎟
⎠

(Ⅲ.4)

Details on this parametrisation can be found in appendix A 3, page 205.
Angular distances are measured as

Δ𝑅 = √(Δ𝜙)2 + (Δ𝜂)2 .

Due to a rotational symmetry, distributions in 𝜙 are flat, and distributions in 𝜂 are nearly flat as explained
earlier. It is therefore reasonable to measure distances between objects as the magnitude of a vector in
the 𝜂-𝜙 plane. Δ𝑅 will be used frequently to measure distances between objects, define the radius of jet
cones or to determine if objects are isolated from other activity in an event.

Ⅲ 2.1 Tracking Detectors: Measuring the Momenta of Charged Particles

The subdetectors of ATLAS will now be discussed from inside to outside: the innermost layers of ATLAS
are tracking detectors. These surround the beam pipe, in which the protons are colliding. When charged
particles traverse the layers of the tracking detectors, they induce electric charges, which are collected
and digitised. This yields “hits”, that is, information on which parts of the detectors have been traversed
by a charged particle. The hits are connected by the reconstruction software, yielding the trajectories of
the particles.
Figure Ⅲ.7 shows the layout of the tracking detectors. Starting in the centre of the detector, one finds

the following subdetectors:

Pixel detector Three layers of pixel sensors and three discs in the forward direction host 80 million
silicon pixels with a size of 50 x 400 μm2 distributed over a surface of 1.7 m2. The pixels yield hit
information with a position resolution of 14 μm in transverse and 115 μm in beam direction. High
spatial resolution close to the beam pipe is paramount in order to be able to extrapolate the particle
trajectories into the interaction region, where no detectors can be installed. Therefore, detectors
are as close as 5 cm to the colliding beams. If all layers are hit, the pixel detector provides three
high-resolution points on the particle trajectories.
FigureⅢ.7(a) shows the pixel layers as green surfaces close to the beam pipe. It additionally shows
a fourth layer, IBL, at a distance of 3.3 cm from the interaction region. Since IBL was installed
after the end of Run 1, it is not relevant for this thesis.
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(a) Expanded view of the barrel region [68] (b) Inner detectors to scale including endcap discs [69]

Figure Ⅲ.7: Inner detectors (ID) surrounding the interaction region of ATLAS. (a) Expanded view of the different
detector layers. From inside to outside: the “Insertable u�-Layer” IBL (since Run 2), three layers of pixel detectors,
four layers of the semiconductor tracker SCT and the transition radiation tracker TRT. The track of a charged particle
is indicated in red. (b) Discs of pixels and SCT modules to extend the acceptance of the tracking detectors into the
forward direction up to |u�| = 2.5.

Semiconductor Tracker SCT consists of four barrel layers and 18 endcap discs hosting 60 m2 of
silicon sensors. The sensors are read out using readout strips spaced at a distance of 80 μm,
allowing for a position resolution of 17 μm transverse to the strips. The layers are installed at a
small crossing angle, providing position information also in direction of the readout strips with a
resolution of about 600 μm. The layers of double-sided barrel modules provide up to eight points
on a particle trajectory. The endcap discs and barrel modules are shown in figure Ⅲ.7(b).

Transition Radiation Tracker TRT is the outermost tracking detector, consisting of 300 000 straw
tubes with a diameter of 4 mm. A tungsten wire in the centre of each straw detects charges induced
in the gas-filled tubes. TRT does not provide the 𝑧-coordinate of the particles, but can provide
≫10 hits with transverse position resolution of 170 μm. When electrons traverse TRT, they induce
transition radiation, that is, they radiate photons. This creates much more charge than for heavier
particles, and is used to separate electrons from other particles.

The inner detector is surrounded by a superconducting solenoid magnet. It provides a nearly uniform
magnetic field of 2 T aligned with the beams, bending the tracks of charged particles in the transverse
plane. The momentum2 in the transverse plane can be computed from the track curvature using the
Lorentz force as for the LHC bending magnets, equation (Ⅲ.1). The charge sign is determined from the
bending direction. The resolution of transverse momentum measurements is [70]:

𝜎u�T

𝑝T
≈ 5×10−4 ⋅ 𝑝T

GeV
+ 0.01 (Ⅲ.5)

The equation shows that the resolution is lower for high-momentum tracks. This is because these are nearly
straight, which degrades the measurement of the bending radius. For an electron with 𝑝T = 100 GeV,
one can expect a transverse momentum resolution of ∼6 %, but ∼2 % for 𝑝T = 25 GeV.
2 Strictly speaking, it is u�T ⋅ u�, which is measured by ATLAS. Since virtually all particles with long-enough lifetimes carry
only a single elementary charge, this description is nevertheless accurate.
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FigureⅢ.8: Calorimeters of the ATLAS detector. The inner orange calorimeter is the electromagnetic liquid argon
calorimeter ECal/LAr, which detects photons, electrons and positrons. The outer tile calorimeter HCal/Tile
detects hadrons. Multiple forward calorimeters surround the beam pipe, leading to a total calorimeter coverage of
−5 < u� < 5 (angular distance of ~0.8° from the beam axis) [71].

The inner detector covers a pseudorapidity range of −2.5 < 𝜂 < 2.5, with full coverage in 𝜙. It
is one of the most important components for the 𝐻 → 𝑏�̄� analysis: since accurate track information is
indispensable to identify jets from 𝑏 quarks, all events must have jets within the acceptance of the tracking
detector in order to be usable for this analysis. Events with “forward jets”, that is, jets outside the tracker
acceptance, have to be discarded. The identification of 𝑏-jets will be discussed in section Ⅲ 3.4. The
tracking detector is also indispensable for the identification of leptons produced in vector boson decays,
because such leptons are expected to be isolated from other activity in an event. The tracking detector
can detect such additional activity, and thus it helps to identify the 𝑉 𝐻 topology.

Ⅲ 2.2 Calorimetry: Measuring the Energy of Particles and Jets

Calorimetry is indispensable for detecting outgoing neutral particles because these entirely escape
detection in the tracking systems. Therefore, the tracking detectors of ATLAS are enclosed by calorimeters,
see figure Ⅲ.8. Furthermore, when particles with net colour charge are produced in an interaction, they
form jets – collimated bundles of hadrons. Single hadrons are most of the time not of interest, contrary to
the properties of the particle that sparked the jet. These properties, for example the energy of the initial
particle and the amount of hadronic activity, are measured with calorimeters. ATLAS uses four types of
calorimeters:

Liquid Argon EM Calorimeter (LAr ECal) The innermost calorimeter is an electromagnetic calori-
meter, figure Ⅲ.9. Electromagnetic calorimeters measure the energy of primarily electromagnetic-
ally interacting particles: photons, electrons and positrons3. When interacting with the material in

3 Other particles, of course, also interact electromagnetically, but they are usually not fully absorbed in the EM calorimeter.
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Figure Ⅲ.9: The ATLAS EM calorimeter. Accordion-
shaped liquid argon cells separated by layers of lead measure
charge deposited by EM showers. Three layers with different
granularities are used to determine shower shapes [72].

Figure Ⅲ.10: Wedge of the Tile Calorimeter. Steel
as absorber is interleaved with small scintillating tiles.
The tiles are connected to photomultiplier tubes for
readout [73].

the EM calorimeter, photons convert into electron/positron pairs (pair creation). When electrons
and positrons traverse the EM calorimeter, they radiate photons when scattered off hull electrons
(Bremsstrahlung). Such photons can again create 𝑒+𝑒−-pairs, which creates showers of particles in
the calorimeter. Shower evolution stops when the energy of Bremsstrahlung-photons falls below
the pair-creation threshold of 2𝑚u� = 1.022 MeV. The remaining low-energy particles ionise the
material of the calorimeter, and the energy of the incoming particles can therefore be measured by
collecting the charge deposited in the calorimeter.

The ECal of ATLAS is a sampling calorimeter: it consists of accordion-shaped cells filled with
liquid argon, the “active material”, where electric charge is collected. The liquid argon cells
are interleaved with layers of lead where electromagnetic showers are induced, the “passive” or
“absorber material”. The energy resolution of the ATLAS EM calorimeter is approximately [13]:

𝜎u�
𝐸

= 30 %
𝐸

⊕ 10 %√
𝐸

⊕ 0.4 %. (Ⅲ.6)

𝐸 is the energy of a particle in GeV, ⊕ denotes summation in quadrature. The resolution depends
on three main factors:

1. Noise term ∝ 1
u� : Caused by noise (e.g. due to electronics), usually negligible unless when

measuring low energies.
2. Stochastic term ∝ 1√

u� : Caused by statistical fluctuations in the shower or in the amount of
detected charge. Since the energy deposited in the calorimeter is proportional to the number
of particles produced in the shower, the relative resolution scales with 1/

√
𝐸. This is because

the statistical uncertainty in a counting experiment scales with
√

𝑁 (∝
√

𝐸).
3. Constant term: Caused by non-uniformity of the calorimeter or calibration uncertainties.

Dominates at high particle energies.
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For an electron with a moderately high energy of 𝐸 = 100 GeV, the energy resolution is ∼1 %,
and it is ∼2 % for 𝐸 = 25 GeV. The EM calorimeter therefore outperforms the tracking detector
already at 𝑝T ⪆ 25 GeV, compare with the momentum resolution, equation (Ⅲ.5), which is 6 % at
𝑝T = 100 GeV and 2 % at 25 GeV. For electrons, the calorimetric measurement can therefore be
preferred over momentum measurements.

In transverse direction, the calorimeter has three layers (figure Ⅲ.9): a presampler with very
high granularity in 𝜂, which detects neutral pions decaying to two photons and particles whose
shower already started in the inner detector. The presampler is followed by longer towers with high
granularity, which detect the bulk of the EM showers, and allow for measurements of the 𝜂- and
𝜙-coordinates of the particles. The last layer detects showers that are leaving the calorimeter. This
occurs when particles other than electron/positron/photon start showers inside the ECal.

The calorimeter has a barrel segment (−1.475 < 𝜂 < 1.475) and two endcap segments covering
1.375 < |𝜂| < 2.5 and 2.5 < |𝜂| < 3.2. The very forward region of the EM calorimeter is not
used in the 𝑉 𝐻 →𝑉 𝑏�̄� analysis because electrons cannot be separated from photons in this region.
For this, tracking information would be necessary, which is only available up to |𝜂| = 2.5.

Tile Calorimeter (Tile Cal / HCal) Hadrons such as pions, kaons, protons and neutrons traverse the
electromagnetic calorimeter largely unimpeded since they do not emit Bremsstrahlung because of
higher masses or missing electric charge. They can, however, interact hadronically with nuclei of
the hadron calorimeter. The probability of such interactions scales with the amount of nucleons,
which is why the hadron calorimeter consists of steel absorbers surrounding the ECal. These are
arranged in 64 wedges with a granularity of Δ𝜙 ⋅ Δ𝜂 = 0.1 ⋅ 0.1, see figure Ⅲ.10. To detect
showers of hadrons, the steel absorbers are interleaved with scintillating tile layers, which emit
light when excited by charged particles in the showers. Neutral pions can also be detected because
these decay to photon pairs, which in turn create small EM showers. The scintillator light is guided
to photomultipliers by fibres as shown in figure Ⅲ.10. The amount of light collected is a measure
of the energy of the incoming hadrons or jets.

The Tile Cal energy resolution is much worse than the ECal resolution, since a large part of the
hadronic showers is absorbed in the steel layers. This leads to a large stochastic term. The energy
resolution also varies with the incident particle type. For charged pions, one finds, for example [74]:

𝜎u�
𝐸

= 160 %
𝐸

⊕ 52 %√
𝐸

⊕ 3 % (Ⅲ.7)

For 𝐸u� = 100 GeV, the resolution is ∼6 %; for 𝐸u� = 25 GeV it is ∼13 %. The HCal resolution
is the most important uncertainty for the measurement of 𝑏-jet energies, which are indispensable
for reconstructing Higgs decays in the 𝐻 → 𝑏�̄� analysis. The typical jet energy resolution in
ATLAS is about 19, 11 and 6 % at 𝑝T = 25, 100 and 500 GeV [75]. Most jets relevant for the
𝐻 →𝑏�̄� analysis are found in the range 𝑝T = 25 to 100 GeV, where the resolution is not very high.
However, building a hadron calorimeter with better energy resolution would require a much larger
and thus much more expensive calorimeter. It therefore has to be accepted as a limiting factor for
the 𝐻 →𝑏�̄� search. The Tile Cal covers a pseudorapidity range of |𝜂| < 1.7, see figure Ⅲ.8.

Endcap and Forward Calorimeters The LAr Hadron Endcap HEC is installed behind the LAr for-
ward ECal. Due to the high particle density in the forward regions, the hadron endcap calorimeters
also use liquid argon technology: the argon, which is constantly exchanged, does not suffer from
radiation damage, contrary to scintillators. The HEC covers 1.5 < |𝜂| < 3.2, and complements
the Tile Cal in the forward regions. A forward calorimeter covers 3.1 < |𝜂| < 4.9, uses three LAr
layers, and is a combined ECal and HCal.
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Table Ⅲ.1: Subsystems and number of readout channels of the ATLAS detector.

Readout Channels

(IBL) 12×106 LAr 170×103

Pixel 80×106 HEC&FCal 9×103

SCT 6×106 Tile 10×103

TRT 350×103 Muons 1×106

The 𝐻 →𝑏�̄� analysis mostly relies on the central parts of the calorimeters with |𝜂| < 2.5, since tracking
information is necessary for both the identification of 𝑏-jets and the identification of leptons. The forward
calorimeters are used only to enforce a “jet veto”: if two or three jets are present in the central part of
the detector, and additional jets are detected in the forward calorimeters, the event is discarded because
only two or three jets are expected in 𝑉 𝐻 →𝑉 𝑏�̄� events, and these must be within the acceptance of the
tracking detectors to apply 𝑏-tagging.

Ⅲ 2.3 Muon Spectrometer: Measuring the Momenta of Muons

The muon spectrometer is the outermost and largest detector of ATLAS: the light-blue and grey com-
ponents in figure Ⅲ.5. It exclusively detects muons since all particles except neutrinos and muons are
absorbed inside the calorimeters. Muons, since they are not interacting via the strong force, deposit only
small amounts of energy when traversing the calorimeters. The muon spectrometer is implemented as a
tracking detector with its own magnetic field to measure track curvatures and thus muon momenta.
The magnetic field in the muon spectrometer is created by eight large toroid coils in the barrel region,

providing a field of 0.5 to 4 T, depending on the distance to the coils. Sixteen smaller toroid coils with
similar field strength are installed in the endcaps. The muon system uses three layers of tracking detectors,
both in the barrel and forward regions. These use a mixture of fast detectors with low position resolution
and slow detectors with high position resolution. This allows for both accurate timing and precise position
or momentum measurements.
The momentum resolution of the muon system ranges from 1.7 % at low |𝜂| for 𝑝T ≈ 10 GeV, to

4 % at large |𝜂| for 𝑝T ≈ 100 GeV [76]. The momentum measurement from the muon system can
be combined with momentum measurements from the inner detector to improve the resolution. Such
“combined muons” will mostly be used to identify 𝑉 𝐻 →𝑉 𝑏�̄� events where the vector boson decays into
muons. The muon system covers a pseudorapidity range of |𝜂| < 2.7, a slightly larger acceptance than
the inner tracking system.

Ⅲ 2.4 Trigger System

As discussed in section Ⅲ 1.1, the LHC is designed for bunch crossing rates of up to 40 MHz, or every
25 ns. The full record of an ATLAS event is about 2 MB since the data of about 100 million readout
channels must be stored, see table Ⅲ.1. Because of the high collision rate, most events have to be
discarded immediately in order to achieve sustainable data rates. A three-level trigger system therefore
selects events to be recorded. The level-1 trigger is a hardware system that selects events based on sparse
data from the calorimeters and the muon system. It can detect the presence of high-momentum muons,
electrons, photons, jets and hadronic decays of 𝜏 leptons, as well as missing transverse momentum (see
section Ⅲ 3.2). The hardware systems on level 1 select event candidates with a latency of 2.5 μs. Only if
an event is accepted by one of the level-1 triggers, the full detector is read out. Since the trigger decision
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might be taken as late as 2.5 μs after the collision, all subdetectors need to constantly buffer at least
100 events. Since no tracking information is available on level 1 (compare the amount of inner detector
channels to the other detector components in table Ⅲ.1), one cannot implement level-1 𝑏-jet triggers. For
the 𝑉 𝐻 →𝑉 𝑏�̄� analysis, this means that trigger decisions must be taken based on decay products of the
vector boson and not based on the 𝐻 →𝑏�̄� decay. Besides reduced background levels, this is one of the
main reasons to focus on the 𝑉 𝐻 final state.
Level-1 triggers reduce the event rate to about 75 to 100 kHz. This means that most events have to

be discarded without fully reading out the detector. Since most collisions produce objects with low
transverse momenta, triggers are usually set to only react to high-transverse-momentum objects. Typical
trigger thresholds in 2012 were 𝑝T ≥ 350 GeV for a single jet, 𝑝T ≥ 18 GeV for isolated electrons and
𝑝T ≥ 20 GeV for muons. These trigger thresholds are too high in order to use jet triggers for the 𝐻 →𝑏�̄�
final state.

The level-2 trigger system runs on a computer farm, and has access to the full detector data in the
regions of interest (ROI) marked by the level-1 triggers. A simple reconstruction of the event is performed,
and a trigger decision is taken within ∼ 40 ms. The output rate is 2 to 4 kHz. The final stage (“event
filter”) performs a more detailed reconstruction, and processes events within a few seconds. These two
stages are collectively referred to as “high level trigger” (HLT). HLT was planned for an output rate
of 200 Hz, but trigger rates as high as 650 Hz were reached in 2012. To achieve a sufficient reduction
of event rates, HLT trigger thresholds need to be significantly higher than the level-1 thresholds. The
threshold for isolated electrons or muons, for example, is 24 GeV. For a 𝑏-jet, the threshold is 360 GeV,
but an additional jet with 𝑝T ≥ 360 GeV has to be required to keep the trigger rate low enough. Double
𝑏-jet triggers with 𝑝T > 35 GeV are only available when simultaneously requiring a third and fourth jet
because this trigger is seeded by a four-jet-trigger on level 1.
This shows that 𝑏-jet triggers are unusable to detect 𝐻 →𝑏�̄� because the signature of ggF, for example,

is two 𝑏-jets with transverse momenta rarely higher than ∼ 100 GeV. The trigger thresholds are so
high because the 𝑏-jet production cross section at the LHC is large: Figure Ⅲ.4 shows that with L =
1×1033 cm−2 s−1, the 𝑏 rate is ∼ 100 kHz. Trigger constraints are slightly better for VBF production.
Triggers for VBF topologies are available, but background levels in the ATLAS 𝐻 →𝑏�̄� VBF analyses [77,
78] are significantly higher than in the already challenging 𝑉 𝐻 →𝑉 𝑏�̄� analysis discussed in this work.

The 𝑉 𝐻 → 𝑉 𝑏�̄� channel therefore is the most promising production channel for 𝐻 → 𝑏�̄� searches
at the LHC. This is because high-𝑝T leptons are rare in LHC collisions since protons consist only
of strongly interacting particles. The triggers for isolated leptons with 𝑝T > 24 GeV are sufficiently
low to record most leptonic vector boson decays in 𝑉 𝐻 → 𝑉 𝑏�̄� events. Typical lepton momenta are
𝑝ℓ ≈ 𝑚u� /2 = 40 GeV and 𝑚u�/2 = 46 GeV if the vector bosons are at rest. The momentum in
transverse direction is on average lower, but with non-vanishing transverse momenta of the bosons, the
leptons easily exceed the trigger thresholds. Hadronic decays of the vector bosons are not targeted in this
work because these would again require jet triggers.
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Ⅲ 3 Reconstruction of Particle Collisions in ATLAS

The raw data recorded by the ATLAS experiment cannot be used directly for analysis. Multiple steps of
object reconstruction have to be run before collision events can be analysed. The mapping of measured
quantities like deposited light or deposited charge to objects like charged particles or jets is carried out by
reconstruction algorithms, which use the fact that specific particles only interact with specific subdetectors.
The signatures of different particles are summarised in figure Ⅲ.11.

Ⅲ 3.1 Reconstruction of Visible Objects

Track and Vertex Reconstruction

The reconstruction of charged particle tracks [79, 80] starts from hits in the inner detector. Pixel and SCT
hits are clustered to both improve the accuracy of the position measurement and reduce the number of
points (and thus the noise) entering the track-finding stage. A typical track in the barrel region is associated
with three pixel clusters, eight clusters in the SCT and ≥ 30 straw hits in the TRT. The reconstruction
algorithms also take into account when clusters are missing because tracks may cross detector areas
known to be dead. After clustering, an inside-out track-finding algorithm searches for three-point tracks
in the silicon detectors. These are extrapolated into the outer regions of the tracking detector by iteratively
associating new clusters to the track and updating the track parameters (Kalman filter). This algorithm is
designed to find charged particles leaving the collision point. The highest detectable curvatures correspond
to momenta as low as a few hundred MeV.
The inside-out algorithm is complemented by a back-tracking algorithm that starts from hits in the

TRT, and extrapolates towards the silicon detectors, iteratively associating silicon clusters. This algorithm
finds tracks that do not originate from the interaction region, giving access to tracks from particles that
are produced in decays outside of the interaction region.
Fully reconstructed tracks are described by six parameters with corresponding uncertainties, which are

estimated by fits to all valid hits associated to a track. The space coordinates of a track are described by the
transverse distance to the interaction region, 𝑑0, and by 𝑧0, the 𝑧-coordinate of the point where the track
is closest to the interaction region. The direction of the outgoing particle is described by 𝜙 and 𝜃 or 𝜂,
and the track momentum or curvature are described by 𝑞/𝑝T.

After tracks are reconstructed, vertices are searched [80, 81]: a vertex is a point where a set of tracks
cross, and is therefore often the point where the collision occurred or where a particle decayed. Vertices
are found by calculating the crossing point of a few tracks and iteratively adding/discarding all tracks that
are compatible/incompatible with originating from this crossing point. In this process, the vertex position
is updated with each change of the track association. Vertices within the interaction region are called
primary vertex, vertices outside of the interaction region secondary vertex. Secondary vertices
may indicate the points where particles with longer lifetimes decayed. This is crucial information for
𝑏-tagging, since 𝑏-flavoured hadrons have lifetimes such that they can decay several millimetres from the
collision point. For a 𝐵 meson with 𝑝 = 60 GeV and a lifetime of 𝒪(1×10−12 s), one can expect a mean
decay length of about 4.5 mm, whereas the interaction region extends only about 60 μm in transverse
direction.

42



Ⅲ 3 Reconstruction of Particle Collisions in ATLAS

Figure Ⅲ.11: Interaction of different particles with the subsystems of ATLAS [82]. The signatures of proton and
neutron are representative for the signatures of any long-lived charged or neutral hadron. The track curvature can
be used to separate particles from antiparticles.

Electron Reconstruction

The reconstruction of electrons4 [83, 84] starts in the EM calorimeter, where electrons deposit their
energy. The calorimeter is divided into a grid of 200x256 (𝜂-𝜙)-towers, the granularity of the middle
layer, and a sliding window of 3x5 towers is moved across this grid. Clusters with 𝐸T > 2.5 GeV are
recorded, and the energy deposited in the other layers of the calorimeter is added to the clusters.
Since electrons are expected to leave a track in the tracking system, tracks within a search window

of Δ𝑅 = 0.3 from the cluster barycentre are selected as candidate tracks. Without any tracks, the EM
cluster would be a photon candidate, compare figureⅢ.11, but photons are not relevant for the 𝑉 𝐻 →𝑉 𝑏�̄�
analysis. Two track fits are performed: assuming the candidate tracks are caused by pions and assuming
they are caused by electrons. Compared with electrons, pions have a high mass and thus traverse the
inner detector without being affected strongly by multiple scattering. Pions therefore create more uniform
tracks than electrons. If the pion track fit fails or indicates a low likelihood, the fit using an electron
hypothesis is preferred. This fit accounts for bremsstrahlung losses and multiple scattering. If this fit
succeeds, a track is accepted in either of the two following cases:

1. If a track with at least four silicon hits matches with the cluster barycentre within a tolerance of
|Δ𝜂| < 0.05 and −0.05 < Δ𝜙 < 0.2, the track is accepted. Δ𝜙 is defined such that positive
distances coincide with the direction the track is bending into. The window is wider towards
positive Δ𝜙 to prevent failed matches due to track momentum uncertainties. The Δ𝜂 requirement is

4 Throughout this thesis, the name of a particle will often be used to also refer to the corresponding antiparticle.
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dropped if the track is a TRT-only track, since the TRT does not provide the longitudinal coordinates.
2. After rescaling the track momentum to the cluster energy and repeating the track-cluster matching,

tracks are accepted if they match within a tolerance of |Δ𝜂| < 0.05 and −0.05 < Δ𝜙 < 0.1. This
ensures that electrons, which may encounter substantial momentum losses due to the emission of
bremsstrahlung, are still accepted.

Track parameters of accepted tracks are estimated using a specialised track fit for electrons, the “Gaussian
Sum Filter”, which yields the best estimate of track parameters when momentum losses due to scattering
and Bremsstrahlung occur.
After assigning tracks to the EM clusters, the cluster energies are determined by enlarging the clusters

to 3x7 cells (5x5 in the endcaps), and applying cell-energy calibration factors. If multiple tracks are
matched to the same cluster, the best track is selected based on the Δ𝑅 distance to the cluster and the
number of precision hits in the inner detector.

Despite the track-cluster-matching, the electron reconstruction described here yields a high number of
false positives, since many clusters in the LAr calorimeter have associated tracks. Such false positives can
be caused by photons or 𝜋0 mesons with nearby tracks or by charged hadrons that deposit a part of their
energy in the ECal. This is because the electron reconstruction does not check if particles also deposit
energy in the hadron calorimeter. Another source of electron candidates are electrons produced inside jets:
these can be real electrons, but they should be attributed to the jet instead of being considered as electrons
in their own right. To suppress false positives, a likelihood-based identification method is employed.
Electron-like and background-like likelihood functions are combined into the following discriminant:

𝑑ℒ = ℒu�
ℒu� + ℒu�

, ℒu�,u� =
u�

∏
u�=1

𝐿u�
u�,u�(𝑥u�)

The terms 𝐿u�(𝑥u�) are likelihood functions in different observables like shower shapes, bremsstrahlung
losses, track parameters or data from the TRT. Different likelihoods for multiple observables are combined
by multiplication. Several working points were defined by selecting sets of 𝐿u� with corresponding
thresholds for 𝑑ℒ. The twoworking points used in the𝑉 𝐻 →𝑉 𝑏�̄� analysis are Very Loose Likelihood
and Very Tight Likelihood [83]5. Typical electron identification efficiencies are 𝜀 = 77 % with a
background rejection of 1:350 for the very tight working point and 𝜀 = 98 % with a background rejection
of 1:30 for the very loose working point. In the 𝑉 𝐻 →𝑉 𝑏�̄� analysis, very tight is used in settings where
hadrons are frequently misidentified as electrons; very loose is used when misidentified hadrons are rare.

Muon Reconstruction

Since the calorimeters absorb all particles except muons and neutrinos, compare again figureⅢ.11, muon
reconstruction is equivalent to finding a track in the muon system [76]. For this, track fragments in the
layers of the muon system are connected to full muon-system tracks. If a muon also traverses the inner
detector, the tracks of the two detector systems are combined. This leads to different types of muons:

1. Combined: Tracks in both inner detector and muon system. Combining these tracks yields a
higher-precision measurement of the muon four-momentum. There are two combination strategies:
simple statistical combination (StaCo) and re-fitting of the tracks, taking into account that muons
loose energy when traversing the calorimeters (MuID = Muon Identification). The latter strategy is
used in the 𝑉 𝐻 →𝑉 𝑏�̄� analysis.

5 The very loose likelihood working point is not documented in the official ATLAS documentations. It is, however, documented
in ATLAS-internal documentation [85].
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2. Stand-Alone: Muons reconstructed in the muon system but without inner-detector tracks. These
muons predominantly occur in the forward regions at 2.5 < |𝜂| < 2.7 since the muon system
extends to pseudorapidities of 2.7 whereas the inner detector only extends to 2.5. Stand-alone muon
tracks can be extrapolated towards the interaction point, but the track parameters have considerably
higher uncertainties because no hits in the inner detector are available.

3. Segment-Tagged: Inner detector tracks connected with a track segment in the muon system. This
occurs when not all layers of the muon system register the muon because of a strongly curved track,
or because regions with low acceptance are traversed.

4. Calorimeter-Tagged: The muon system has uninstrumented regions at 𝜂 ≈ 0, where services
for the inner detector and the calorimeters are installed. Muons can nevertheless be identified
by connecting inner detector tracks with energy clusters in the calorimeters, provided the muon
deposits a part of its energy in the calorimeter. This partly recovers the muon reconstruction
inefficiency at |𝜂| < 0.1. In the 𝑉 𝐻 → 𝑉 𝑏�̄� analysis, such muons are only used in this region
because the rate of false positives is higher.

Even though different muon quality levels were defined by ATLAS, the strictest level “tight” can be used
for all muons in the 𝑉 𝐻 →𝑉 𝑏�̄� analysis with neither notable inefficiency nor notable problems with false
positives. This is because virtually all tracks found in the muon system are indeed caused by muons.

Considerable effort was invested in designing ATLAS such that it can reconstruct leptons with high
precision. EM calorimeter and muon system in fact yield leptons with so high precision that lepton
uncertainties are almost irrelevant for the 𝑉 𝐻 → 𝑉 𝑏�̄� analysis – unlike jet (= hadron calorimeter)
uncertainties. The only lepton generation with notable inefficiencies and uncertainties are 𝜏 leptons.
These are in principle equally interesting as electrons and muons, but due to their short lifetime and
richer decay spectra they are more difficult to reconstruct. With mean lifetimes of 𝑡u� ≈ 2.9×10−13 s,
𝜏 leptons decay before they can be detected by ATLAS. Most decay to hadrons, which requires new
triggers and using the hadron calorimeter for reconstruction. Due to this, the inclusion of 𝑉 → 𝜏𝜈u�
decays into the 𝑉 𝐻 →𝑉 𝑏�̄� analysis would have little benefit: 𝜏 -identification efficiencies of 25 to 50 %
at background rejection rates of 1:100 to 1:10 [86] could be achieved. This compares unfavourably to
𝜀 ≳ 95 % with better background suppression for the other lepton generations. Furthermore, including 𝜏
leptons would require dedicated 𝜏 triggers and 𝜏 analysis categories, and entail considerable inefficiencies
as well as identification and calibration uncertainties. ATLAS analyses therefore usually focus exclusively
on electrons and muons or exclusively on 𝜏 leptons. This work is part of the former class.

Jet Reconstruction

Although the ATLAS sketch in figure Ⅲ.11 suggests otherwise, one is rarely concerned with the re-
construction of single hadrons in ATLAS: since quarks and gluons create jets, one usually reconstructs
these as a whole. Jet reconstruction starts from pre-clustered calorimeter cells. Since the noise term is
dominant at low energies, see equation (Ⅲ.6), pre-clustering the calorimeter into topological clusters,
and only using clusters with high-enough energy suppresses noise (topocluster algorithm [87]). Starting
only with cells where a signal-to-noise ratio of 𝑆/𝑁 ≥4 is found, surrounding cells with 𝑆/𝑁 > 2 are
subsequently added to the cluster. Finally, neighbouring cells with lower 𝑆/𝑁 are added as well. This
reduces the amount of input cells for the jet-finding algorithm, and suppresses the low-energy noise in the
calorimeter. A discussion of clustering algorithms used in ATLAS can be found in [88].
Jets are subsequently reconstructed [89] using the FastJet [90] implementation of the anti-𝑘T al-

gorithm [91]. Anti-𝑘T sequentially combines topoclusters into larger objects based on the momentum-
weighted distance between clusters. For two objects 𝑖 and 𝑗, this distance is:
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𝑑u�u� = min(𝑝−2
T,u� , 𝑝−2

T,u�)
Δ𝑅2

u�,u�

0.42 , with 𝑑u�u� = 𝑝−2
T,u� and

Δ𝑅2
u�,u� = (𝜙u� − 𝜙u�)2 + (𝑦u� − 𝑦u�)2.

The distance 𝑑u�u� is weighted by the inverse, squared transverse momentum of the higher-momentum
object. The algorithm combines the two objects with the lowest 𝑑u�u� into a single cluster. This means that
objects are likely to be combined if they are either very close or if a high-momentum object is surrounded
by low-momentum objects. Therefore, higher-momentum objects in a sense “pull” lower-momentum
objects into a cluster. 𝑑u�u� (𝐵 for beam) is a stopping criterion: if no further objects with 𝑑u�u� < 𝑑u�u�
are found, the jet 𝑖 is considered final, and all associated clusters are removed from the set of candidate
clusters. The denominator in 𝑑u�u� therefore defines the width of the jets: if a jet 𝑖 is surrounded only by
low-momentum objects, the stopping criterion reads:

𝑑u�u� < 𝑑u�u�

⇔ 𝑝−2
T,u�

Δ𝑅2
u�,u�

0.42 < 𝑝−2
T,u�

⇔ Δ𝑅u�,u� < 0.4

Anti-𝑘T6 therefore produces circle-shaped jets. The standard jet radius in ATLAS is Δ𝑅 = 0.4 in the
azimuth-rapidity plane.
After the jet clustering, jet energies are calibrated with calibration functions obtained from simulations

and measurements in data [89, 92]. The intrinsic resolution of the calorimeters nevertheless limits the
achievable jet energy resolution (JER), which is one of the most important uncertainties of 𝐻 → 𝑏�̄�
searches. This is because the resolution of the invariant mass of a pair of 𝑏-jets scales with the jet
energy resolution, and the invariant mass is one of the best observables to separate 𝐻 →𝑏�̄� decays from
background events.

Ⅲ 3.2 Reconstruction of Missing Transverse Energy

Up to this point, all known particles except for neutrinos are covered by at least one of the reconstruction
algorithms. Neutrinos, however, cannot be reconstructed directly because they do not interact with the
detector material. Due to momentum conservation, a part of the neutrino momentum can be reconstructed,
though: as “missing transverse energy”.
The initial state of LHC collisions is well defined in the transverse plane: since the proton beams

are aligned with the longitudinal axis, the transverse momentum in the initial state is effectively zero.
Transverse momenta that partons acquire inside the proton are negligible compared to the momentum
of the proton. While the transverse momentum vanishes, the longitudinal momentum in a collision is
(𝑥1 − 𝑥2) ⋅ 𝐸Beam. The momentum fractions 𝑥u� can neither be predicted nor measured. Conservation of
momentum can thus only be imposed in the transverse plane. If neutrinos or unknown particles leave
the detector with non-zero transverse momenta, the missing momentum can be reconstructed using the
conservation of momentum. This leads to the term “missing transverse momentum”:

⃗𝑝 miss
T = ⃗𝑝 initial

T − ⃗𝑝 final
T = − ⃗𝑝 final

T .

The missing transverse momentum is equal to the negative reconstructed or visible momentum in the
final state.
6 The name “anti-u�T” originates from the ‘u�T’-algorithm, which uses the weight u�2

T,u� ≡ u�2
T,u�. u�T-jets are not circular, though.

This poses problems for calibrating the jets, because the jet area is not predictable. u�−2
T,u� was found to yield circle-shaped jets,

and dubbed ‘anti-u�T’ because of the negative exponent.
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The transverse momenta of muons are measured directly in the muon spectrometer, but for other
particles only energies are detected in the calorimeters. This leads to the definition of missing transverse
energy, 𝐸miss

T or MET:
⃗𝐸miss
T = − ∑

Calo
𝐸u�

T (cos 𝜙u�
sin 𝜙u�

) − ∑
Muons

⃗𝑝u�
T (Ⅲ.8)

𝐸miss
T therefore can be seen as an attempt to measure momenta with calorimeters. All energies measured

in all calorimeter cells have to be decomposed into a longitudinal and a transverse component, and the
transverse components have to be summed, taking into account the 𝜙-coordinates of the cells. Since
a large number of calorimeter cells has to be summed, especially with contributions from the hadron
calorimeter with high uncertainties of up to 20 %7, 𝐸miss

T has high uncertainties, too. Typical values
of 𝐸miss

T range from 10 to 30 GeV, even if the actual missing transverse momentum ⃗𝑝 miss
T is zero. The

accuracy of 𝐸miss
T is usually increased by using information about other reconstructed objects: electrons,

muons, jets, 𝜏 leptons, photons etc., which have been reconstructed and calibrated, are fed back into the
calculation of 𝐸miss

T in order to make use of the calibration results. The corresponding calorimeter cells
are taken out of the sum in equation (Ⅲ.8). Details on the reconstruction and calibration of 𝐸miss

T can be
found in [93, 94].
One fact that should be noted about 𝐸miss

T is that only the sum of all missing momentum vectors in
the transverse plane can be detected. If multiple invisible particles are produced, 𝐸miss

T can increase
or decrease depending on the azimuthal angle between the objects. With 𝜙 ≈ 180°, objects might be
completely invisible if their transverse momenta have similar magnitude. The same holds for particles
that escape in beam direction with low transverse momentum. Nevertheless, 𝐸miss

T is an indispensable
tool in the 𝑉 𝐻 analysis: leptonic 𝑊 decays always produce a neutrino, which can be used to detect and
reconstruct the transverse momentum component of the 𝑊 boson. This is one of the best observables
to separate 𝑊𝐻 → ℓ𝜈𝑏�̄� events from background events. The 𝑊 reconstruction will be revisited in
chapterⅣ.

Ⅲ 3.3 Overlap Removal

The reconstruction algorithms described in the previous sections run independently – no information is
exchanged between different algorithms during the reconstruction of objects. This can lead to objects
being reconstructed multiple times. Since both electrons and jets are reconstructed from clusters in the
calorimeters, electrons are also reconstructed as jets, and jets can be reconstructed as electrons. Moreover,
muons that radiate photons in or in front of the calorimeter might be detected as electrons, since such
muons are visible as a track pointing to a photon cluster. Muons created inside jets might be mistaken
as coming directly from the parton collision because the muon reconstruction does not check for the
presence of jets. The same can happen for electrons inside jets. One such electron is, for example, visible
in the event display in figure Ⅲ.12 where a green electron track is found among the blue hadron tracks
associated to the jet. Despite of two visible electrons, the event is correctly classified as a one-electron
event because disambiguities and double counting of objects are resolved by overlap removal.
To remove the overlap between different object collections, a hierarchy of objects is defined: higher-

priority objects are preferred over lower-priority objects. If two objects are found close to each other in
the 𝜂-𝜙 plane, the lower-priority object is discarded. High-𝐸T electrons, for example, are preferred over
jets, combined muons over calorimeter-tagged muons. Muons or electrons produced inside jets are not
counted as leptons produced in the collision. The exact definition of the object hierarchy slightly varies
depending on which objects are most important for an analysis. The object hierarchy for the 𝑉 𝐻 →𝑉 𝑏�̄�
analysis will be discussed in sectionⅣ 1.1.

7 Compare equation (Ⅲ.7). The energies in most cells will be ≤ u�(GeV).
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Ⅲ 3.4 𝒃-Tagging

𝑏-tagging is a crucial step of the event reconstruction for the 𝐻 →𝑏�̄� search. When a jet forms around a 𝑏
quark, the 𝑏 quark is bound in a short-lived hadron, which subsequently decays. Such hadrons can be 𝐵
mesons, for example, with lifetimes of 𝜏 ≈ 1.5×10−12 s. This lifetime is long enough to make the hadron
travel several millimetres before it decays, but too short to reach the calorimeters. These are reached only
by the lightest mesons like pions and kaons with 𝜏 ≈ 2×10−8 s. This leads to particular signatures for
𝑏-jets, which can be identified with precise tracking: when a 𝑏 hadron decays, several lighter hadrons
originate from a slightly displaced secondary vertex. The tracks of such hadrons will usually not cross
the interaction region, that is, they will have a non-zero impact parameter. This is the distance between
the track and the collision vertex at the point of closest approach. The mean flight length for a 𝐵 meson
with 𝑝 = 25 GeV is, for example:

𝛽 ⋅ c ⋅ 𝜏 ⋅ 𝛾 ≈ c ⋅ 1.5×10−12 s ⋅ 5 = 2.25 mm.

This leads to impact parameters of 𝒪(0.1 mm), since the outgoing tracks originate from the secondary
vertex and not from the interaction region. This can be seen in figure Ⅲ.12, which shows two 𝑏-jets: the
bottom right inset shows a jet with two secondary vertices (blue spheres) that are displaced from the
primary vertex (green sphere) by several millimetres. Secondary vertices like these two can be caused by
a 𝐵 → 𝐷 → light cascade. Several tracks pass the primary vertex at a distance of a few hundred μm.
These impact parameters are smaller than the vertex displacements because the 𝑏 hadrons are boosted
along the jet axis. The other jet has no secondary vertex marker, but also has several displaced tracks.
Both jets are identified as 𝑏-jets by the ATLAS software.

ATLAS uses three classes of 𝑏-tagging algorithms [95, 96]:

• Impact-parameter-based: These algorithms detect displaced tracks by comparing the measured impact
parameters with typical impact-parameter distributions for 𝑏-jets and light jets. If a jet has several
displaced tracks, it is likely a 𝑏-jet.

• Secondary-vertex-based: If a secondary vertex is found in a jet, it is likely a 𝑏-jet. Not all 𝑏-jets have
reconstructible secondary vertices, though, as is visible for one of the jets in figure Ⅲ.12.

• Multivariate algorithms: This class of algorithms combines information from multiple sources into a
single discriminant. The standard ATLAS 𝑏-tagging algorithm for Run-1 data is MV1, a multivariate
classifier that combines the output of several impact-parameter- and vertex-based 𝑏-tagging algorithms,
as well as a multivariate algorithm that analyses jet kinematics. It outperforms all other algorithms,
because it is the only algorithm that simultaneously uses impact-parameter, vertex and kinematic
information.

MV1c, which was developed mainly for the 𝑉 𝐻 →𝑉 𝑏�̄� analysis, is a variant of MV1 with increased charm
jet suppression. Instead of training the algorithm to separate 𝑏- and light jets, it is trained to separate
𝑏-jets from a mixture of charm and light jets. This improves the charm-jet suppression at the cost of a
slightly lower light-jet suppression. Yet charm-jet suppression is more important for the 𝑉 𝐻 → 𝑉 𝑏�̄�
analysis because charm jets are much more likely to be 𝑏-tagged.
This is because, firstly, charm jets can have secondary vertices, and secondly, they also have tracks with

non-zero impact parameters. The lifetime of charm mesons is shorter than for bottom mesons, but the
boost is higher because of the lower mass. With 𝜏u� ≈ 4×10−13 s, typical displacements of a 𝐷 meson,
for example, are of the order of one millimetre, depending on its boost: 𝛽c𝜏𝛾(𝑝 = 25 GeV) ≈ 1.6 mm.
The track multiplicity in 𝐷 decays is lower, though. With lower mass, less energy to create particles is
available. One expects about two tracks for 𝐷 and about five tracks for 𝐵 mesons. MV1c therefore needs
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Figure Ⅲ.12: Event display of a u�u�→u�u�u�ū� candidate event recorded in 2012. The top image shows two
u�-tagged jets as yellow cones as well as a pileup jet with low momentum. The green tracks are reconstructed
electrons. Energy clusters in the calorimeters are indicated by green (LAr) and orange (HCal) cells. Insets at the
bottom show (left) a transverse view of tracking detectors and calorimeters and (right) the interaction region. Tracks
associated to the u�-tagged jets are shown in blue and tracks from pileup collisions in orange/grey. A green sphere
indicates the location of primary vertices. Many tracks are significantly displaced from the primary vertex in the
foreground, which is typical for u�-jets. The primary vertices in the background are caused by pileup collisions. One
jet has two secondary vertices (blue spheres), likely from a u� → u� → light cascade. In the transverse plane, the
two jets and the electron+u�miss

T system (green & dashed red line) are balanced because of momentum conservation.
This is a typical signature for u� and u� recoiling against each other.

to discriminate 𝑏 vertices from 𝑐 vertices. Such discrimination cannot be achieved if only light jets are
considered in the training of the algorithm.
The same holds for the analysis of track impact parameters. As for 𝑏-jets, charm jets can have tracks

with non-zero impact parameters because particles originate from displaced charm-hadron decays. Impact
parameters are usually smaller than for 𝑏-jets, though, since charm hadrons have shorter lifetimes. Without
dedicated training of MV1c against 𝑐-jets, the non-zero impact parameters of charm jets would lead to
frequent 𝑏-tags because the impact parameters in light jets vanish within the tracking uncertainties.
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Ⅲ 4 Simulation of Particle Collisions

The 𝑉 𝐻 →𝑉 𝑏�̄� analysis strongly depends on predictions from “Monte Carlo” simulations: Monte Carlo
generators perform cross-section calculations by evaluating the amplitudes of Feynman diagrams, and
simulate the resulting particles in order to predict how signal and background processes would appear in
a detector like ATLAS. This requires solving integrals in high dimensions, for example, integrals over
all possible momenta in both the initial and final state of a reaction. Such integrals usually have to be
evaluated numerically. The only method that reliably converges is integration by sampling the function at
random points, hence the name “Monte Carlo integration”. The sampling is not fully random, though, it
is often guided in order to reduce sampling errors: by concentrating the sampling on regions that seem
to contribute most strongly to the integral (the VEGAS algorithm [97]), accuracy and convergence speed
can be improved. A review of Monte Carlo methods can be found in [98, 99]. In the following, selected
aspects of QCD and event simulation will be discussed, mostly following the reviews of P. Skands8 [19]
and the particle data group [13].

Ⅲ 4.1 Running Couplings and Renormalisation Scale

When predicting cross sections, one faces a challenging aspect of QCD: the coupling strength changes
with the energy scale probed in the reaction. The strong coupling “constant” 𝛼s varies with the energy
scale as shown in figure Ⅲ.14. Other couplings such as 𝛼em also vary, but for QCD the effect is most
noticeable: 𝛼s can become so large that perturbative expansions in 𝛼s become impossible.

𝑘
u�

u�2−u�2
u�

(u�−u�)2−u�2

𝑘

Figure Ⅲ.13: NLO Feynman dia-
gram showing the scattering of fer-
mions via photon exchange with
one extra loop.

The scale dependence of the couplings arises because at high energies,
virtual particles may contribute to a coupling, and therefore change
the effective coupling strength. The theory of running couplings is
described by the renormalisation group. Renormalisation is a set
of techniques to treat diverging integrals, which occur in quantum field
theories. One example of such integrals is the evaluation of higher-order
corrections to the LO 𝑡-channel scattering of fermions. Figure Ⅲ.13
shows one such NLO diagram, an additional fermion loop on the photon
line of the LO diagram. The corresponding amplitudes have to be
integrated over all possible momenta 𝑞 that can “circulate” in the loop.
This integral, however, diverges [15]: each propagator in the loop
contributes a factor proportional to u�

u�2−u�2 . For high values of 𝑞, the
integral over the loop momentum therefore approaches:

∫
∞

u�0

1
𝑞4 ⋅ 𝑞3d𝑞 = ln 𝑞∣

∞

u�0

.

This integral diverges, which clearly violates unitarity, since this would implicate that the probability
for such reactions exceeds unity. The diverging terms can be split off by stopping the integration at an
arbitrary cutoff scale, which is a regularisation of this integral9. To avoid introducing errors by
stopping the integration, the integrals have to be split into a finite part and a diverging part. The finite
part can be used to evaluate probability amplitudes, but results depend on the cutoff scale. The diverging
contributions can be absorbed into the constants of the theory such as masses and couplings, but this
8 P. Skands contributes to the Monte Carlo generator Pythia8 [43], which is used for both the simulation of u� u� →u� u�ū� and
for many of the parton showers for backgrounds of the u� u� analysis.

9 Other methods of regularisation are usually preferred over a cutoff scale, but this is beyond the scope of this discussion.
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Figure Ⅲ.14: Scale dependence of the strong coupling constant u�s from [13]. For low momentum transfers, the
coupling becomes so strong that perturbation theory cannot be applied. This is the region of “confinement”, where
interactions that bind the partons in the nucleon take place. At high momentum transfers, partons are in “asymptotic
freedom”. This is the region of hard collisions, where perturbation theory can be applied. The coloured points
show various measurements of u�s, which agree with the predicted evolution of u�s.

leads to scale-dependent constants. This scale dependence, however, cancels the corresponding scale
dependence of the finite terms, which renders predictions independent of the choice of scale.
The need for regularisation expresses the fact that a theory such as the Standard Model cannot be

expected to describe the interactions of particles up to infinite loop momenta/energies, or equivalently
to infinitesimally small length or time scales. It is natural to assume that the Standard Model, at some
point, will not yield correct predictions, because processes beyond the framework of the Standard Model
have a non-negligible effect. If a theory is renormalisable, which the Standard Model is [11], it can
nevertheless be used to make predictions, regardless of a possible breakdown at extreme loop momenta.
Renormalisation, in a sense, is a mathematical way to acknowledge that loops with infinite momenta (or
similar processes) are beyond the capabilities of the Standard Model.
The evolution of scale-dependent constants can be predicted to several orders in 𝛼 by solving the

renormalisation group equation (RGE), yielding, for example, for 𝛼s [19]:

𝛼s(𝑄2) = 𝛼s(𝜇2
u�) 1

1 + 𝑏0𝛼s(𝜇2
u�) ln u�2

u�2
u�

+ 𝒪(𝛼2
s )

.

The renormalisation scale 𝜇u� is a reference point for the evolution of the coupling. The ‘constant’
𝛼s can be measured at this scale, and be extrapolated to other scales using the RGE. The coefficient 𝑏0,
as well as higher-order terms, can be found in the chapter on QCD in the PDG review [13]. For QCD,
which has gluon self-coupling, 𝑏0 is positive. This leads to a decreasing coupling when 𝑄 increases. In
QED, which has no self-coupling of gauge bosons, 𝑏0 is negative, and the coupling strength therefore
increases with energy. Figure Ⅲ.14 shows the scale dependence of the strong coupling constant and
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various measurements at different scales, which agree excellently within uncertainties. Since 𝛼s is small
for high 𝑄2, perturbative expansions in 𝛼s are feasible for hard collisions. These break down, however,
when the regime of momentum transfers that bind the nucleons is approached: the size of a proton is
∼1×10−15 m, which corresponds to energy scales of 𝑄 = ℏc

1×10−15 m ≈ 200 MeV. In this regime, 𝛼s is
too large for perturbative expansions. This end of the 𝑄-scale is called “confinement” because the strong
coupling binds the partons inside the nucleons to colour-neutral states. The high end of the 𝑄-scale is
called “asymptotic freedom” because the partons can be treated as free particles, and interactions between
particles can be seen as small perturbations.
It is customary to set the renormalisation scale, at which the evolution of 𝛼s starts, close to the typical

momentum transfers in the interactions being simulated. This ensures that the cross-section predictions
only weakly depend on the renormalisation scale because the evolution of 𝛼s has to be carried out only
over a small energy range. A residual 𝜇u�-dependency always remains, though, because both the Feynman
amplitudes and the coupling evolution are expanded in powers of 𝛼s(𝜇2

u�), and are not evaluated to
all orders. When stopping the expansion at 𝑛th order, the residual 𝜇u�-dependence is 𝒪(𝛼u�+1

s ). This
can be used to estimate the uncertainty of the matrix element calculation: since the uncertainties of an
NnLO calculation are of the same order as the error due to the 𝜇u�-dependence – both are 𝒪(𝛼u�+1

s ), it is
customary to vary the renormalisation scale and take the impact on the cross section as uncertainty of
the matrix element calculation. Even though results depend on the choice of renormalisation scheme
and the magnitude of the scale variation [100], this yields an estimate of the accuracy of the predictions.
The uncertainties of the Higgs production cross sections in figure Ⅱ.9(b) on page 25, as well as the
uncertainties of background cross sections for the 𝑉 𝐻 → 𝑉 𝑏�̄� analysis, were obtained in this way. A
second source of cross-section uncertainties is the accuracy of the 𝛼s-measurements that are taken as
starting point for the RGE-evolution. PDF uncertainties are a third important source of uncertainty. All
these are included in the cross-section uncertainties used in the 𝑉 𝐻 →𝑉 𝑏�̄� analysis.

The running couplings, and therefore the validity of perturbative expansions, have an impact on how
Monte Carlo simulations can proceed: event generators must treat different stages of the simulations with
different strategies. Figure Ⅲ.15 illustrates this for a proton-proton collision. It is inspired by the sketch
of 𝑡𝑡𝐻 production in the Sherpa manual [106], but has been redrawn to show a 𝑍𝐻 →ℓ ̄ℓ𝑏�̄� + 𝑔 event,
which is more typical for the 𝑉 𝐻 →𝑉 𝑏�̄� analysis. The most important steps are10:

1. Initial state with incoming partons. This state is fully described by specifying the beam energy
and incident particle type.

2. Colliding partons. Incoming valence quarks, sea quarks and gluons are described using the PDFs,
which are obtained from external measurements. The range of possible 𝑄 can be quite large: low-𝑥
partons create “soft” collisions, which have to be described with different methods than “hard”
collisions produced by high-𝑥 partons.

3. Hard interaction. 𝑄 is large, and the interactions can be calculated using perturbation theory.
Here, the production of Higgs ( ) and 𝑍 boson ( ) is depicted. If the event generator has at least
NLO or multi-leg accuracy (see section Ⅲ 4.3), it is also able to describe the emission of additional
hard partons such as the gluon ( ) shown in the top left part of the figure.

4. Parton shower. All other emissions, as well as gluons splitting to quarks, are carried out by a
parton shower algorithm. Parton showers will be discussed in section Ⅲ 4.3.

5. Hadronisation. When the parton shower stops, partons are bound into short-lived hadrons. Since
𝑄 is very low at this stage, perturbation theory cannot be applied. This stage is described with
phenomenological models.

10 The numbering of the stages does not imply that the stages have to be simulated in this order. Some stages such as the
underlying event can be simulated in parallel.
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Figure Ⅲ.15: Pictorial representation of the stages necessary to simulate a proton-proton collision producing
a u�u� → ℓ ̄ℓu�ū� event with an additional jet. Inspired by [106], but redrawn for u�u�. The numbered stages are
explained in the text.

6. Decay of hadrons. Short-lived hadrons decay into longer-lived hadrons such as pions, kaons, etc.
The decay chains are recorded because these hadrons can reach the detector. All particles in this
stage are fed into detector simulations to estimate the response of the detector.

7. Secondary collision. Secondary parton collisions might take place. These are not part of the
reaction of interest, but may contribute to the “underlying event”. The underlying event needs to
be taken into account because 𝑉 𝐻 →𝑉 𝑏�̄� observables (e.g. 𝐸miss

T ) might be altered by additional
activity in the event.

8. Proton remnants. The proton remnants are scattered into the very forward direction, and mostly
escape detection because they are close to the proton beams. They are of minor importance for the
reconstruction of the hard reaction.

9. Photon radiation. Photons may be radiated at any time from any charged object.

As illustrated by the figure, the simulation of collisions is a mixture of processes with high 𝑄 and low
𝑄. The low-𝑄 parts require a new approach because perturbative expansions break down when 𝛼s is
large.
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Ⅲ 4.2 Factorisation Theorem

The low-𝑄 parts of the cross-section calculations can be approached by factorising the cross sections into
a perturbative and a non-perturbative part. The factorisation theorem [101] provides a strategy to do this:

d𝜎ℎ1,ℎ2
= ∑

u�,u�
∫

1

0
∫

1

0
d𝑥u�d𝑥u� ∑

u�
∫ dΦu� PDFu�,ℎ1

(𝑥u�, 𝜇2
u� ) PDFu�,ℎ2

(𝑥u�, 𝜇2
u� )

d�̂�u�u�→u�

d𝑥u�d𝑥u�dΦu�

This equation implies that for the collision of two hadrons ℎ1 and ℎ2, the cross section can be obtained by
summing over all initial state partons 𝑖, 𝑗, by integrating the respective PDFs over all momentum fractions
𝑥, by summing over all final states 𝑓 and by integrating over the possible phase space elements dΦu� (e.g.
all kinematically possible momenta of the final-state particles). The essence of the factorisation theorem
is that the non-perturbative parts that govern the behaviour of the partons inside the protons, that is, the
PDFs, and the perturbative part in the matrix element are independent. The total cross section is obtained
by calculating the convolution of these factors. Since this holds independently of the hard process, of
energy scales, accelerators and detectors, the PDFs can be measured externally, and be used for LHC
calculations. The extrapolation of the PDFs between different energy scales is done using the DGLAP
equations [102], see the following page.
The point where one switches from perturbative calculations to approximation through PDFs is set

by the factorisation scale, 𝜇u� . It is not a quantity that describes the nature of the interaction but
merely a point for stopping matrix element calculations to prevent going into a regime where perturbation
theory breaks down.
Skands [19] gives a simple argument why it is possible to separate the two regimes: low-𝑄 interactions

that take place inside the hadron must be at the confinement scale, the scale where 𝛼s is large. This is
Λ ≈ 200 MeV. In natural units, this corresponds to a length scale of ℏc

Λ = 1×10−15 m, the size of the
proton, and to a time scale of ℏ

Λ = 1×10−24 s. By contrast, hard interactions happen at an energy scale
that is considerably higher, for example Λhard = 𝒪(100 GeV). This corresponds to ℏc

Λ = 2×10−18 m and
ℏ
Λ = 7×10−27 s. The time scale of the hard interaction is so short in comparison to interactions inside
the proton that the colliding partons perceive the inner structure of the proton as frozen. Alternatively,
one can argue that the interaction only probes a very small volume inside the proton, and therefore is not
sensitive to the physics of confinement.

The factorisation shown above is incomplete, though: the low-𝑄 regime after the collision also has to
be factorised from the hard regime. This is achieved by including a fragmentation function. Similar
to the PDFs, the fragmentation function describes the non-perturbative parts after the hard interaction
when gluons are radiated, and jets form around the partons. The fragmentation function has to be defined
with respect to an observable 𝑂:

d𝜎ℎ1,ℎ2

d𝑂
= ∑

u�,u�
∫

1

0
∫

1

0
d𝑥u�d𝑥u� ∑

u�
∫ dΦu� PDFu�,ℎ1

(𝑥u�, 𝜇2
u� ) PDFu�,ℎ2

(𝑥u�, 𝜇2
u� )

⋅
d�̂�u�u�→u�

d𝑥u�d𝑥u�dΦu� d�̂�
⋅ 𝐷u�(�̂� → 𝑂, 𝜇2

u� )

𝑂 could, for example, be the energy of a jet. In this case, �̂� would be the energy of the corresponding
parton, and the fragmentation function 𝐷u� describes how the parton energy translates to the observed jet
energy. To obtain an inclusive cross section for all jet energies, an additional convolution with 𝐷 has to
be performed. The fragmentation function also depends on a factorisation scale that defines at which
point the fragmentation function takes over from the hard matrix element calculation. Since no exact
calculations are possible, such functions have to be tuned to data using measurements.
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Ⅲ 4.3 Parton Showers, Multi-Leg Generators and Hadronisation

2

1
3

Figure Ⅲ.16: Gluon radi-
ation in the final state.

Parton showers are a successful strategy to approximate fragmentation func-
tions. Although the partonic cross sections for some final state 𝐹 with 𝑛
extra partons can be predicted if the partons are sufficiently hard and also
separated from other objects, this becomes impossible for jets: when soft
gluons are emitted from a parton, or when gluons are emitted collinearly
with a parton, QCD amplitudes diverge. This can be seen by examining the
cross section for the gluon emission shown in figure Ⅲ.16. Normalised to
the cross section of 𝑞 ̄𝑞 production, one finds [103]:

d𝜎(𝑞 ̄𝑞 + 𝑔)
𝜎(𝑞 ̄𝑞)

≈ 𝛼s
2𝜋

d𝑄2

𝑄2
4
3

1 + 𝑧2

1 − 𝑧
d𝑧. (Ⅲ.9)

𝑄2 = 𝑚2
1+3 is the “virtuality” or mass of quark 1 before the gluon emission happens, and 𝑧 determines

how energy is distributed between quark and gluon: 𝐸u� = 𝑧𝐸ini., 𝐸u� = (1 − 𝑧)𝐸ini.. Quarks are
assumed to be massless, and it is assumed that quark 2 carries most of the energy. If this is not the case,
the labels 1 and 2 can be exchanged. The 𝑄−2-dependence of equation (Ⅲ.9) shows the collinear or mass
singularity of QCD: with vanishing 𝑄, which means that the gluon is emitted collinearly with the quark,
the amplitude diverges. If the gluon is soft, that is, 1 − 𝑧 → 0, the amplitude diverges as well.
Despite the singularities, equation (Ⅲ.9) is very useful: it can be used to describe gluon emissions for

all final states and all energies where the quark mass is small compared with 𝑄. Similar equations exist
for the probability of other emissions like gluons splitting to quarks and gluons emitting gluons. The
resulting functions are the Altarelli-Parisi splitting functions, which are a key ingredient of the DGLAP
equations [102]:

d𝒫u�→u�u� = 𝛼s
2𝜋

𝑑𝑄2

𝑄2 𝑃u�→u�u�(𝑧) d𝑧

𝑃u�→u�u� = 4
3

1 + 𝑧2

1 − 𝑧

𝑃u�→u�u� = 3(1 − 𝑧(1 − 𝑧))2

𝑧(1 − 𝑧)

𝑃u�→u� ̄u� =
𝑛u�

2
(𝑧2 + (1 − 𝑧)2) 𝑛u� = # of quark flavours

Starting from one initial parton, the repetitive application of the splitting functions describes the formation
of a jet. This leads to a shower of particles, the parton shower. The singularities in the splitting functions
have to be avoided, though, by not adding splits softer or “more collinear” than certain shower-evolution
criteria. Different approaches are pursued to keep probabilities finite, see, for example, [99]. Shower
evolution is stopped at the hadronisation scale, 𝒪(1 GeV), where 𝛼s starts to rise above levels
acceptable for perturbative expansions.
The factorisation theorem creates two regimes: in the rather collinear and soft regime, which defines

how jets evolve, parton showers provide a good approximation of all branchings that may occur. In the
well-separated and hard regime, where the coupling and thus the branching probability is low, a matrix
element calculation can be used.
Often, one needs matrix elements that describe a certain process plus the emission of multiple additional

partons, such as 𝑊 production with multiple jets, an important background of the 𝑉 𝐻 analysis. Such
matrix elements with multiple well-separated additional partons are called “multi-leg” matrix elements.
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Figure Ⅲ.17: Double-counting problem for adding a parton (additional leg) to a process u� when parton showers
are used [19].

The cross section for a process 𝐹 with 𝑘 additional legs has the following algebraic structure in QCD:

𝜎u�+u� = 𝛼u�
s (ln2u� + ln2u�−1 + … + ln +ℱ)

The notation lnu� denotes functions of transcendentality 𝜆, for which the logarithms of the given power are
representative, whileℱ is a rational function. For details see Skands [19]. Parton showers can approximate
the coefficients of the functions with ln2u� and ln2u�−1 for all orders in 𝑘 (LL, leading-logarithmic parton
shower). Diverging amplitudes due to soft or collinear emissions cancel with virtual corrections from
loops, as stated by the KLN theorem [104, 105]: with 𝑘 additional legs and ℓ virtual loops, probabilities
remain finite when performing a full calculation – order by order – for all combinations of 𝑘 and ℓ with
𝑘 + ℓ ≤ 𝑛 (resummation). This is illustrated in the left sketch in figureⅢ.17: the LO matrix element ( )
predicts the amplitudes for a process without any additional loops or legs, 𝑘 = ℓ = 0. Adding a parton
shower with appropriate resummation approximates the leading-log (LL) coefficients, (partly) covering
amplitudes for loops and legs to all orders in 𝑛 ( ). The coverage is only partly, though, because the
parton showers only extend to the regions of rather collinear or soft emissions.
To increase the precision of the cross-section prediction, multi-leg generators add matrix elements such

as the 𝐹+1 process (e.g. 𝑊 +1 jet). An example of a multi-leg generator is Sherpa [106], which is used
to simulate all 𝑉 +jets backgrounds of the 𝑉 𝐻 →𝑉 𝑏�̄� analysis. When adding the 𝐹+1 (hard) matrix
element, one has to restrict the amplitudes to the well-separated phase space, though, to avoid divergent
terms. This is indicated by half-filled boxes in the middle sketch in figure Ⅲ.17. Applying the parton
shower to the additional parton again yields the LL coefficients for amplitudes with more legs or loops.
However, since the parton showers for the process 𝐹 (sketch on the left) also reproduce these coefficients,
the sum 𝐹 + (𝐹+1) at LOxLL double counts the leading logarithms ( , right sketch in figure Ⅲ.17). The
same considerations hold for NnLO generators, but here more legs and loops are covered by the hard matrix
element in the first place.
Such double counting is mitigated with matching. Different strategies to match parton shower and

hard matrix elements are possible. One of them is “slicing”: the phase space is sliced into a region
exclusively treated by the hard matrix element and a region exclusively treated by the parton shower.
This was first introduced in HERWIG [107–109], which is used in this work to estimate parton shower
uncertainties for the 𝑉 𝐻 →𝑉 𝑏�̄� analysis. Further details can be found in [19].

An important consequence for the 𝑉 𝐻 → 𝑉 𝑏�̄� analysis is that cross-section predictions are more
challenging than only predicting the amplitudes of the hard matrix element, especially when multiple legs
and matching are required. Cross-section uncertainties are therefore larger than indicated by 𝜇u� variations,
𝛼s measurements and PDF uncertainties. In the 𝑉 𝐻 → 𝑉 𝑏�̄� analysis, 𝐹+2 and 𝐹+3 predictions
are required to simulate the 𝑊 + jets and 𝑍 + jets backgrounds. The choice of the shower algorithm
and matching strategy, as well as adjustments of cutoff scales and shower or matching parameters
will affect the prediction of the cross sections for such 𝑉 +𝑛 jets processes. Therefore, cross-section
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uncertainties beyond the usual scale and 𝛼s uncertainties have to be taken into account. In the 𝑉 𝐻 →𝑉 𝑏�̄�
analysis, this is achieved by adding extra cross-section uncertainties for different jet-multiplicity bins.
The magnitude of these uncertainties is determined by comparing Monte Carlo generators with different
shower implementations and matching procedures. Whenever possible, the normalisations of Monte
Carlo predictions will be measured in data to constrain the associated cross-section uncertainties. The
same holds for the prediction of the parton flavour in additional legs. For the 𝑉 𝐻 →𝑉 𝑏�̄� analysis, it is
not sufficient to only predict/measure the jet multiplicity, but also whether these jets are 𝑏-, 𝑐- or light-
flavour jets. 𝑊+𝑏𝑏 events are evidently harder to separate from 𝑊𝐻 →ℓ𝜈𝑏�̄� events than 𝑊+𝑙𝑙 events.
Jet-flavour uncertainties are therefore also estimated by comparing Monte Carlo generators with varying
shower/matching/radiation settings, and – where possible – they are measured or at least constrained
using the data. These uncertainties nevertheless remain among the dominant background uncertainties of
the 𝑉 𝐻 →𝑉 𝑏�̄� analysis.

Hadronisation

Figure Ⅲ.18: String model of hadron-
isation used by Pythia [19].

Parton showers cannot run indefinitely, because 𝛼s becomes large
at the hadronisation scale 𝜇u� ⪅ 1 GeV. At this scale, parton
showers have to be stopped, and partons are bound into colour-
neutral hadrons. The generator Pythia [43, 110], for example,
uses a string model for hadronisation to take into account the
attractive potential between partons. This is based on the insight
that the potential between two colour charges in the regime of
confinement is essentially

𝑉 (𝑑) = 0.9 GeV fm−1 ⋅ 𝑑 ,

where 𝑑 is the distance between the partons.
The string model is illustrated in figure Ⅲ.18: if two quarks start to separate, their kinetic energy is

converted into potential energy, which is proportional to the length of the strings. If the potential energy
is large enough for a new pair of quarks to be produced, the string breaks, and a pair of quarks appears.
This process continues until the binding energies and quark flavours match those of known hadrons, that
is, bound states of quarks. At this stage, the partons are assigned to colour-neutral hadrons, ensuring that
no free coloured particles remain. If the hadrons created in this step are unstable, they decay to lighter
hadrons. There is considerable freedom, for example, in selecting the spin states of the hadrons produced,
in tuning the number of mesons vs. baryons, in balancing the momentum fractions each string is assigned,
etc. Hadronisation models therefore have to be tuned to data.

MostMonte Carlo generators used in this thesis use Pythia8 or Pythia6 to simulate the parton showers
with the string model of hadronisation. Only Sherpa [106], the multi-leg generator used for 𝑉+jets events,
treats matrix element calculation, matching and hadronisation in a single process. Sherpa’s hadronisation
model, as well as the model of Herwig [107], is different from the string model. Comparisons between
these three shower generators are therefore used to derive shower and hadronisation uncertainties, which
will be used to devise a likelihood model for the statistical analysis of the data in sectionⅣ 6.
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Ⅲ 4.4 Other Aspects of Simulating LHC Collisions

Underlying Event The underlying event is part of a proton-proton collision but independent from the
hard collision. Secondary collisions within the same proton and the proton remnants (7 and 8 in
the list on page 53) lead to additional activity in the detector that is not part of the hard event. The
cross section of such Multiple Parton Interactions (MPI) depends on the momentum transfer: the
lower the transverse momentum produced in the parton-parton interaction, the higher the cross
section. It can, in fact, be so high, that the total inelastic proton-proton cross section is exceeded.
For LHC, this happens at 𝑝T = 4 to 5 GeV [19]. Below this energy regime, more than one parton
collision is expected per proton collision. However, since high transverse momenta (i.e. comparable
to typical objects from a 𝐻 →𝑏�̄� decay) from MPI are rare, these have only minor importance for
the 𝐻 →𝑏�̄� analysis. An ATLAS measurement of underlying event characteristics can be found in
[111], details on the simulation of MPI, parton showers and hadronisation in [112].

Pileup Since the LHC collides bunches of 𝒪(1×1011) protons each, multiple proton-proton collisions
can occur, or “pile up”, in a single bunch crossing. The amount of pileup is determined by the
bunch currents and the transverse extension of the bunches. It therefore scales with the luminosity:
high luminosities coincide with high pileup, unless higher luminosities are reached by increasing
the number of colliding bunches. The typical number of simultaneous collisions in the data of 2012
ranges from 5 to 45, with a mean number of 20.7 [113]. Pileup collisions predominantly produce
low-transverse-momentum objects in comparison with the hard collision that triggers the recording
of an event. There is usually only one hard collision per event because the hard interaction cross
section is low in comparison to the total proton-proton interaction cross section. Objects from
pileup collisions can be separated from objects from the hard collision because collision vertices
are most of the time separated in the 𝑧-direction. Figure Ⅲ.12 on page 49 shows a part of the
interaction region with well-separated collision vertices. The interaction region extends to about
60 μm in 𝑥𝑦-direction but to ∼10 cm in 𝑧-direction. When jet and lepton tracks are traced back
to a primary vertex, the 𝑧-distance between the primary vertices can be used to suppress pileup
objects. Most of the tracks from pileup collisions in figure Ⅲ.12 have in fact been removed from
the event display for better visibility.

Energy measurements in the calorimeters are also corrected for pileup effects. Contributions from
pileup objects to jets and 𝐸miss

T are subtracted from the reconstructed energies, but high levels of
pileup lead to higher energy uncertainties, especially for 𝐸miss

T . Furthermore, if two collisions
are separated by less than ∼ 100 μm, their vertices cannot be resolved, any more. When pileup
levels are high, objects from different collisions might thus seem to originate from the same vertex.
High pileup therefore increases the uncertainties of energy measurements, and slightly worsens the
background suppression of object identification algorithms. High pileup also yields higher data
statistics, though, which outweighs these disadvantages for many analyses.

Pileup is simulated using a specially tuned version of Pythia8 [112] with MSTW2008LO PDFs [63].
Pileup collisions are simulated independently from hard processes and overlaid onto simulated
events.

Detector Simulation The simulation of the detector response is a very important step, which takes
considerable computing power. After simulating the parton shower, hadronisation and decay of
hadrons, particles are passed to GEANT4 [114], a software package for simulating the interactions
of particles with matter. A complete model of ATLAS, including all detector components such as
sensitive and insensitive material (e.g. cables, support structures etc.) is represented in GEANT4.
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All interactions such as Bremsstrahlung, calorimeter showers, charge depositions etc. are simulated.
The response of the detector, as well as trigger decisions are saved, and subsequently processed
with the same reconstruction algorithms that are also used for LHC collision data.
Since the detailed simulation of calorimeter showers is time consuming, ATLAS employs a fast
simulation method, ATLFAST II [115]. Predefined calorimeter showers are selected based on
the incident particle type and energy, and are placed into an event instead of calculating the full
interaction of the incident particle with the detector. This reduces the simulation time by more than
an order of magnitude. Small differences between reconstructed observables obtained with full and
fast simulation are observed, though. These are corrected for with additional calibrations. Most of
the Monte Carlo samples for the 𝑉 𝐻 →𝑉 𝑏�̄� analysis use the fast detector simulation.

Event Weights Many Monte Carlo generators assign weights to events. These weights are used to
re-shape the probability distributions being generated. This is necessary because Monte Carlo
generators sample elements of the phase space with pre-computed frequency: phase space elements
with higher cross sections are sampled more often. These phase space elements are, however, not
infinitely fine-grained, and the cross sections inside such an element may vary. This is corrected by
assigning a weight to each Monte Carlo event that adjusts the probability of selecting a phase space
element to the probability of actually observing a particular event.

Reweighting Similar to generator weights, event weights can be used when a Monte Carlo generator
does not correctly describe the distributions of certain observables. Instead of producing new
Monte Carlo samples, the probability distributions can be reshaped by applying correction weights
to the events. Such weights can, for example, correct identification efficiencies, trigger response
probabilities, the description of kinematic variables, etc. Reweighting does not change the values
of any observables in an event, since event kinematics are of course unambiguously determined by
four-momentum conservation. Reweighting changes the probability of observing an event, thus
shaping the distributions observed when sampling many events. The corrections necessary for the
𝑉 𝐻 →𝑉 𝑏�̄� analysis will be discussed in chapterⅣ.
Reweighting can further be used to estimate systematic uncertainties. For this, multiple Monte Carlo
samples are created that differ only with respect to event weights: a “nominal” sample that only has
generator and correction weights, 𝑤generator ⋅ ∏ 𝑤u�

corr, and samples with altered weights, 𝑤generator ⋅
𝑤sys. unc. ⋅ ∏ 𝑤u�

corr. The additional weights parametrise changes in the predicted distributions that
would occur if identification efficiencies or selection probabilities were different. In this way, event
samples representing various uncertainties can be created without having to generate new Monte
Carlo events.

Monte Carlo Truth To be able to analyse cross-section predictions independently of the detector
response, particles produced after the matrix element / hadronisation step are saved without
undergoing detector simulation and reconstruction. These particles are often referred to as “truth”
particles. The truth records can, for example, be used to study the detector response by comparing
truth observables to reconstructed quantities. The truth records are, however, generator dependent:
since parton showers, hadronisation scale and hadronisation models differ, the only reliable stage
for the analysis of truth particles is after hadronisation. This is why jet flavour studies or 𝑏-tagging
calibrations in the 𝐻 → 𝑏�̄� analysis are only based on truth hadrons. If truth hadrons with 𝑏 or
𝑐 quarks are found inside a jet, the jet is considered to originate from a 𝑏 or 𝑐 quark. In other
cases, the jet is treated as a light jet. Further applications of the truth records will be discussed in
chapterⅣ.
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CHAPTER Ⅳ

Search for 𝑯 →𝒃�̄� Decays with ATLAS
The first multivariate analysis of the 𝑉 𝐻 →𝑉 𝑏�̄� channel in ATLAS

In this chapter, the first of the two analyses discussed in this thesis will be introduced: the ATLAS
𝑉 𝐻 →𝑉 𝑏�̄� analysis [1]. Since the final implementation of this analysis is an effort of a larger group in
ATLAS, this chapter will focus on aspects that were studied the most during the work for this thesis. In
particular:
• Usage of multivariate classifiers instead of a cut-based analysis of the dijet mass spectrum
• Optimising the event selection for use with multivariate classifiers
• Introducing 𝑏-tagging information into the multivariate analysis
• Truth-flavour tagging with 𝑏-tagging at multiple working points
• Resolution correction for 𝑏-jets
• Estimation of the QCD multijet background

For other aspects such as the analysis of final states without charged leptons, one may refer to the ATLAS
publication [1].
This chapter will start with an introduction to the backgrounds of the 𝑉 𝐻 →𝑉 𝑏�̄� analysis in sectionⅣ 1.

Afterwards, sectionⅣ 2 will focus on how signal and background distributions are estimated, discuss
deficits or uncertainties of the Monte Carlo simulations, and review the necessary corrections.
In sectionⅣ 3, the use of boosted decision trees (BDTs) for the 𝑉 𝐻 →𝑉 𝑏�̄� search in ATLAS will be

discussed, which was pioneered at the University of Bonn [7]. Here, it will also be discussed why the
event selection outlined in sectionⅣ 1 is better for the use with multivariate classifiers than the selection
used in previous ATLAS analyses [3, 4].
After a short excursion to using machine-learning methods to check the quality of Monte Carlo

simulations in sectionⅣ 4, the chapter will finish with the statistical analysis of the data in sectionsⅣ 5
andⅣ 6. It will be shown how BDT classifiers, simulations and measurements are brought together in a
likelihood model that can be used to quantify the compatibility of the data with the presence or absence
of 𝑉 𝐻 →𝑉 𝑏�̄� decays.
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(b) u�u�: 2 leptons

Figure Ⅳ.1: Backgrounds of the u� u� →u� u�ū� search. The figures show the invariant mass of two u�-tagged jets in events with
two jets and one or two leptons. The measured distributions are shown with black markers, and background simulations are
shown as coloured histograms. The u� → u�ū� signal is superimposed ( ), and magnified 10 times. The inset at the bottom
shows the ratio of the measured over the simulated distributions. The dark inner band ( ) shows the statistical uncertainty
of the background prediction, the light blue band ( ) shows the quadratic sum of systematic uncertainties. Uncertainties for
data points indicate the 68 % confidence interval of a Poisson distribution, and are therefore asymmetric. Background cross
sections are scaled to match the data.

Ⅳ 1 Backgrounds, Signal Selection and Event Categories
This thesis is focussed on Higgs production in association with vector bosons because of experimental
requirements like the ATLAS triggers or the high levels of 𝑏-jet production at the LHC, which were
discussed in chapterⅢ. If vector bosons decay into leptons, clear signatures for the ATLAS trigger system
are created because in comparison to all-hadronic final states, leptons are rare in LHC collisions.
FigureⅣ.1 shows distributions and relative importance of the backgrounds of the 𝑉 𝐻 →𝑉 𝑏�̄� search.

All processes with the signature ‘two 𝑏-jets and one or two leptons’ are relevant for this search. The
figures show ROOT [120] histograms of the invariant mass of the two 𝑏-jets, the most powerful observable
to separate background processes from 𝐻 →𝑏�̄� production. 𝑉 𝐻 →𝑉 𝑏�̄� simulations are shown with a
red line, peaking at the Higgs mass of ∼ 125 GeV. The width of the Higgs peak is determined by the
jet energy resolution of the calorimeters (section Ⅲ 2.2), which is one of the dominant uncertainties of
the 𝑉 𝐻 →𝑉 𝑏�̄� search. The following background processes need to be taken into account in order to
correctly describe the data:

𝑾 +jets A leptonically decaying 𝑊 boson produced in association with jets, figureⅣ.2(a). The final
state in these reactions is identical to 𝑊𝐻 production if the jets being produced are 𝑏-jets. If the
invariant mass of the jets is close to 125 GeV, the 𝑊+𝑏𝑏 component is therefore irreducible. The
jet multiplicities and quark flavours of the 𝑊 +jets backgrounds cannot be predicted accurately,
though, and are therefore measured in data where possible.

𝒁+jets 𝑍 +jets production, also figure Ⅳ.2(a), is similar to 𝑍𝐻 production if two 𝑏-jets and two
leptons are produced. Since the 𝑍 boson has a higher mass than the 𝑊 boson and because 𝑍→ℓ ̄ℓ
is less likely than 𝑊→ℓ𝜈, it is about one order of magnitude less likely than 𝑊 +jets production.
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Figure Ⅳ.2: Selection of leading-order diagrams for background processes of the u� u� search. The diagrams
shown do not cover all possible production modes. Time runs from left to right.

𝒕 ̄𝒕 Top-quark pairs almost exclusively decay into a pair of 𝑏 quarks and a pair of 𝑊 bosons. These can
subsequently decay into leptons or quarks, see figureⅣ.2(b). If one charged lepton is produced,
the 𝑡 ̄𝑡 events resemble 𝑊𝐻 events, but they often feature additional jets from the decay of one
of the 𝑊 bosons. If both 𝑊 bosons decay leptonically, no additional jets are expected, and 𝑡 ̄𝑡
is a background to 𝑍𝐻 production. If either the additional jets or a lepton is missed during the
reconstruction, 𝑡 ̄𝑡 is an irreducible background of 𝑊𝐻 .

Single 𝒕 The production of a single top quark has a lower cross section than 𝑡 ̄𝑡 pair production.
However, 𝑠- and 𝑡-channel production (figureⅣ.2(c)) in leading order produce a final state with
one 𝑏-jet, a 𝑊 boson and an additional jet, which can either be a second 𝑏-jet or be misidentified as
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one. 𝑊+𝑡 production in figureⅣ.2(d) produces one 𝑏-jet and two W bosons. Depending on how
the bosons decay, this creates final states similar to 𝑊𝐻 →ℓ𝜈𝑏�̄�. This background is practically
irrelevant for a two lepton final state.

Diboson The production of two vector bosons like in figureⅣ.2(e) can lead to a final state that is
identical to 𝑊𝐻 →ℓ𝜈𝑏�̄� or 𝑍𝐻 →ℓ ̄ℓ𝑏�̄� if one of the 𝑍 bosons decays as 𝑍→𝑏�̄�. It can partly be
separated from 𝐻 →𝑏�̄� production because 𝑚u� < 𝑚u�, but due to the limited resolution of the
calorimeters the distributions overlap slightly. Because of the high similarity to the 𝑉 𝐻 signal,
this process can be used as a benchmark for the 𝐻 →𝑏�̄� measurement: in sectionⅥ 2, the signal
strength parameter of diboson production is measured with the methods that are developed for the
𝑉 𝐻 final state in this thesis.

QCD Multijet Gluon collisions like in figureⅣ.2(f) or the radiation of gluons from other objects can
produce a pair of 𝑏-jets. Unlike the other backgrounds, these processes are entirely mediated by
QCD interactions. They therefore have very high cross sections, in particular, because the LHC is
essentially a gluon collider (section Ⅲ 1.1 and figure Ⅲ.4). The ratio of Higgs production to 𝑏�̄�
production in QCD, for example, is [64, 121]:

𝜎(𝑔𝑔𝐻)
𝜎(𝑏𝑏)

≈ 21 pb
200 μb

≈ 1.0×10−7.

By restricting the analysis to 𝑉 𝐻 production, this ratio even falls to 5×10−10. By requiring leptons
in the final state, most of the QCD multijet events can be suppressed, though. Nevertheless, since
leptons are occasionally produced in the vicinity of jets, a sizeable number of QCD multijet events
is selected in the 𝑉 𝐻 analysis. Furthermore, hadrons from the jets can be misidentified as electrons.
In this case, an all-hadronic final state like in figureⅣ.2(f) can also be selected in the 𝑉 𝐻 analysis.
For this reason, QCD multijet events with an object identified as electron ( ) are more likely than
events with muons ( ), which is visible in figureⅣ.1(a).

The 𝑊 +jets and 𝑍+jets simulations are categorised according to the flavours1 of the jets created in
association with the vector bosons. This is achieved by searching the truth records of the Monte Carlo
generators for hadrons overlapping with the jet. Depending on whether these hadrons contain 𝑏, 𝑐 or
lighter quarks, 𝑏, 𝑐 or light labels are assigned to the jets. The flavour categories used in figureⅣ.1 are
𝑊+𝑏 ≔ 𝑊 + (𝑏𝑏 + 𝑏𝑐 + 𝑏𝑙), 𝑊+𝑐 ≔ 𝑊 + (𝑐𝑐 + 𝑐𝑙) and 𝑊+𝑙 for the rest. In events with three jets,
the labelling is done using the jets with the highest transverse momenta. In figures where specific flavour
combinations such as 𝑊+𝑏𝑙 need to be shown separately, these are taken out from the inclusive categories
𝑊+𝑏 and 𝑊+𝑐. In the ATLAS 𝐻 →𝑏�̄� publication [1], 𝑊+𝑐𝑙 is always singled out because on top of
a multi-leg process, strange-gluon scattering 𝑠𝑔→𝑊+𝑐 can also produce this final state. However, an
ATLAS measurement indicates that the contribution of 𝑠𝑔 scattering is less than 28 % of the total 𝑊+𝑐𝑙
production. It is therefore not plotted separately in this thesis2.

TableⅣ.1 lists the cross sections of the background processes and the Monte Carlo programs used
to simulate them. The choice of Monte Carlo programs is dictated by the availability of high-statistics
simulations provided by ATLAS. PowHeg is used for simulating top processes, but for 𝑡-channel production
of single top quarks, AcerMC was found to better describe the data. Both programs generate NLO matrix
elements using CTEQ10 (NLO) PDFs [127]. Parton showers and hadronisation are carried out by Pythia6
based on the Perugia2011C tunes [128] with CTEQ6L1 [129] (LO) PDFs.
1 “Jet flavour” = flavour of the quark or hadron sparking the jet.
2 See appendix B 1 for details on the fraction of u�u� scattering.
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Table Ⅳ.1: Cross sections times branching ratios and Monte Carlo programs used for estimating backgrounds of
the u� u� search (

√
u� = 8 TeV). If specific final states are listed, the branching ratios quoted are only for these

states. If no final state is given, an inclusive simulation is used (i.e. u�u� ≡ 1). u� denotes a charged lepton including
u� . “Py” = Pythia. More details regarding the signal cross sections can be found in tableⅣ.3.

Process Simulation 𝜎 × 𝐵𝑅 Remarks

𝑔𝑔/𝑞𝑔/𝑞𝑞 → 𝑏�̄�/𝑏𝑏 (QCD) Data-driven ~200 μb

LOMulti-leg

𝑊 → 𝑙𝜈 + jets Sherpa 1.4.1 [106] 12.1 nb
𝑍/𝛾∗ → 𝑙 ̄𝑙 + jets Sherpa 1.4.1 [106] 1.2 nb 𝑚u�u� > 40 GeV

NLO

𝑡 ̄𝑡 PowHeg+Py6 [122] 252.9 pb
𝑡 (t-chan) AcerMC+Py6 [123] 87.8 pb
𝑡𝑊 PowHeg+Py6 [122, 124] 22.4 pb
𝑡 (s-chan) PowHeg+Py6 [122, 125] 5.6 pb

𝑊𝑊 PowHeg+Py8 [122, 126] 52.4 pb
𝑊𝑍 → 𝑙𝜈 𝑞 ̄𝑞 PowHeg+Py8 [122, 126] 4.9 pb
𝑊𝑍 → 𝑞 ̄𝑞 𝑙 ̄𝑙 PowHeg+Py8 [122, 126] 1.6 pb 𝑚u�u� > 20 GeV
𝑍𝑍 → 𝑙 ̄𝑙 𝑞 ̄𝑞 PowHeg+Py8 [122, 126] 1.2 pb 𝑚u�u� > 20 GeV

LO

𝑊𝐻 → 𝑙𝜈 𝑏�̄� Pythia8 [43] 87.5 fb
𝑍𝐻 → 𝑙 ̄𝑙 𝑏�̄� Pythia8 [43] 19.4 fb

The 𝑊 + jets and 𝑍 + jets backgrounds are simulated with Sherpa, which also uses CTEQ10 NLO
PDFs [127]. This version of Sherpa is a multi-leg generator at LO (see sectionⅢ 4.3), which also carries
out the parton showers and hadronisation to achieve consistent matching.
Diboson processes are also simulated with PowHeg and CTEQ10 (NLO) PDFs. In contrast to the

generators used for top quark events, the diboson generators are interfaced to Pythia8 with CTEQ6L1
(LO) PDFs for parton shower and hadronisation. The Pythia8 showers were tuned to data by ATLAS
(“AU2 tune”) [112].
The Higgs signal is simulated at LO with Pythia8, but NLO shape corrections and NNLO cross-section

corrections are applied, see sectionⅣ 2.1.
Even though the background normalisations of 𝑊 + jets, 𝑍 + jets and 𝑡 ̄𝑡 are measured in data, the

inclusive cross-section predictions are corrected using k-factors: to NNLO for 𝑉 +jets [130], to NNLO+NNLL
for 𝑡 ̄𝑡 [131], single-top 𝑡-channel [132], 𝑠-channel [133] and 𝑊𝑡 [134].
QCD multijet production is entirely estimated from data. Although it is possible to simulate QCD jet

production with Monte Carlo generators, almost none of these events enter the 𝑉 𝐻 →𝑉 𝑏�̄� phase space of
interest for this thesis. This is because isolated leptons with sufficient momentum are required during the
event selection, which is very rare in QCD multijet events. Therefore, obtaining sufficient Monte Carlo
statistics for the multijet background is not possible. Nevertheless, it is an important background due to
the high cross section (tableⅣ.1). A data-driven estimation is therefore inevitable.
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TableⅣ.2: Object selection cuts for the u� u� →u� u�ū� analysis. IP = impact parameter. Calorimeter and stand-alone
muons are not included in the medium and tight leptons.

Loose Leptons 𝑒 𝜇
Combined Calorimeter Standalone

|𝜂| < 2.47 < 2.7 < 0.1 2.5–2.7
𝐸T, 𝑝T / GeV > 7 > 7 > 20 > 7
Transverse IP /
mm

< 1 < 1

Longitudinal IP /
mm

< 10 < 10

IsoTrack < 0.1 < 0.1 < 0.1
Quality VeryLoose LH Tight MuID + Standard track requirements

Medium Leptons 𝑒 𝜇

Quality Loose u� Loose u�
+ Combined

𝐸T, 𝑝T / GeV > 25 > 25
|𝜂| < 2.47 < 2.5

Tight Leptons 𝑒 𝜇

Quality Medium u� Medium u�
+ VeryTight LH

IsoTrack < 0.04 < 0.04
IsoCalo < 0.04 < 0.04

Jets Signal Veto

𝐸T / GeV > 25 (1st > 45) > 30
|𝜂| < 2.5 2.5–4.5
|JVF| > 0.5

Ⅳ 1.1 Selection of Objects

Not all objects reconstructed in ATLAS can be used for the 𝑉 𝐻 analysis. Several cuts need to be applied
to separate misidentified objects or objects from pileup collisions from those that originate from the hard
collision. These cuts are shown in tableⅣ.2.

Most care is taken for leptons. This is because isolated leptons are the main handle to suppress
backgrounds from QCD-only interactions in the 𝑉 𝐻 →𝑉 𝑏�̄� analysis. Since 𝜏 leptons are not targeted
because of the more involved 𝜏 identification as well as trigger requirements, see section Ⅲ 3.1, the
term “lepton” will refer only to 𝑒 and 𝜇 in the following – the leptons that can be reconstructed directly.
Leptonically decaying 𝜏 leptons contribute to the final states analysed in this thesis, and are therefore
included in the simulations, but the analysis is not optimised to separate such events from events with
prompt electrons or muons. Because of additional neutrinos produced in the 𝜏 decays, only a few 𝜏 events
are actually selected in the 𝑉 𝐻 analysis.

The leptons are sorted into three categories: loose, medium and tight, see again table Ⅳ.2. Loose
leptons must have a transverse momentum of at least 7 GeV, and must be isolated. This means that the
total transverse momentum of all tracks reconstructed in a cone around the lepton is required to be at
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least 10 times lower than the lepton momentum:

IsoTrack =
∑

Δu�<0.2
𝑝TracksT

𝑝LeptonT
< 0.1 (Ⅳ.1)

This suppresses leptons reconstructed in the vicinity of hadrons and jets, which mostly occur in QCD
multijet events. Loose electrons are further required to pass a set of standard ATLAS electron quality
cuts, to be inside the barrel calorimeter region (|𝜂| < 2.47) and to pass the Very Loose Likelihood
identification (section Ⅲ 3.1, page 44).
Loosemuons are reconstructed from the combined, stand-alone and calorimeter-taggedmuons described

in section Ⅲ 3.1. The last two sources of muons are used in regions with low acceptance: stand-alone
muons in the forward regions, which are not covered by the tracking detectors, and calorimeter-tagged
muons in the centre of the detector where support structures are installed. This is reflected by the 𝜂 cuts in
tableⅣ.2. If a track in the inner detector is matched to the track of a muon, it is required to be associated
to the primary vertex within 0.1 mm in transverse and 10 mm in beam direction. This suppresses muons
from pileup collisions. For stand-alone muons, this is not possible, though.

Medium leptons are loose electrons or loose combined muons with 𝑝T > 25 GeV. These can trigger
the recording of an event because the trigger thresholds for electron and muon triggers are 𝑝T > 24 GeV.
Therefore, at least one medium lepton is required in all events of the 𝑉 𝐻 →𝑉 𝑏�̄� analysis because it must
be ensured that one of the leptons actually triggered the recording of an event.

Tight leptons are medium leptons with additional isolation requirements: the track isolation, equa-
tion (Ⅳ.1), is tightened to 0.04, and a calorimeter-based isolation is required in addition. This isolation is
similar to the track isolation, but energy clusters in the calorimeter are compared to the momentum of the
lepton:

∑
Δu�<0.3

𝐸Calo
T

𝑝LeptonT
< 0.04 (Ⅳ.2)

For electrons, the likelihood identification requirement is also tightened to Very Tight Likelihood to
achieve better background suppression.

Jets in the 𝑉 𝐻 analysis are sorted into two categories: signal and veto. Signal jets are required to have
a transverse momentum of more than 25 GeV, and to be in the barrel region of the detector (|𝜂| < 2.5).
The leading jet in 𝑝T is even required to have 𝑝T > 45 GeV. Jets in the forward regions (2.5 < |𝜂| < 4.5)
with a transverse momentum of more than 30 GeV are labelled “veto jet”. If veto (i.e. forward) jets
are found in a collision, an event is discarded for two reasons: firstly, 𝑏-tagging cannot be applied to
forward jets. It is therefore not possible to determine if the forward jets originate from a 𝐻 →𝑏�̄� decay.
Secondly, many background processes produce numerous jets in forward direction. Discarding these
events therefore reduces the number of background events.
Signal jets are further required to have a “Jet Vertex Fraction (JVF)” of at least 50 %. The JVF compares

the scalar sum of track momenta from tracks associated to the primary vertex to the scalar sum of all
tracks associated to the jet:

JVF =
∑
u�

𝑝T

∑
Tracks

𝑝T
, where 𝐴 = {𝑡 ∈ Tracks | 𝑡 associated to primary vertex}.
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Cuts on the jet vertex fraction suppress jets from pileup collisions because tracks in pileup jets are not
associated to the main primary vertex. Pileup jets are discarded from the collection of candidate jets, and
also subtracted from 𝐸miss

T .

Overlap Removal

As described in section Ⅲ 3.3, the ATLAS reconstruction algorithms reconstruct objects in different
domains separately. Electrons are, for example, reconstructed as jets because both electrons and jets
deposit energy in the calorimeter. For the 𝑉 𝐻 analysis, the following overlap removal is applied after the
object selection:

1. If both a calorimeter-tagged muon and a combined muon are reconstructed at a distance of Δ𝑅 <
0.1, the calorimeter-tagged muon is discarded since momenta of combined muons are measured
with much higher accuracy.

2. If a jet and an electron are found at a distance of Δ𝑅 < 0.4, the electron is kept, and the jet is
discarded. This is because almost all electrons are reconstructed as jets, but the opposite case is
rare: the isolation requirements and the electron likelihood identification suppress the majority of
quark or gluon jets that are misreconstructed as electron candidates. An example of an electron
candidate that is discarded during overlap removal can be seen in the event display on page 49. The
event is labelled as a one-electron event, even though two electrons are reconstructed.

3. If a jet and a muon are found at a distance of Δ𝑅 < 0.4, the muon is kept if the number of tracks
associated to the jet is 𝑁trk ≤ 3. For 𝑁trk ≥ 4, the jet is kept. This is based on a study of simulated
events indicating that three or fewer tracks are caused by muons that radiate a photon. Such photons
can convert into an electron/positron pair, which leads to the detection of up to three tracks and an
energy cluster in the EM calorimeter. More than three tracks in vicinity to a muon, however, are
usually caused by real jets, in which a muon was produced. The former muons are of interest for the
𝑉 𝐻 →𝑉 𝑏�̄� analysis because these include muons from prompt 𝑊 or 𝑍 bosons. The latter muons
are usually caused by semileptonic decays within the jet, and are therefore not indicative of a 𝑉 𝐻
process. Hence, the overlap removal is based on the track multiplicity. If a muon from a 𝑊/𝑍
decay incidentally overlaps with a quark or gluon jet, the muon will be discarded incorrectly. In
𝑉 𝐻 events, this is, however, rare because leptons and jets are usually emitted in opposite directions,
compare again the event display in figure Ⅲ.12 on page 49.

4. If an electron and a muon are identified at a distance of Δ𝑅 < 0.2, the muon is kept, and the
electron is removed. This happens when the muon radiates a photon that does not convert into an
𝑒+𝑒− pair.

Ⅳ 1.2 Event Selection and Categorisation of Events

At this stage, all objects for the reconstruction of 𝑉 𝐻 events are available. Depending on the decay of the
vector boson, the analysis splits into three orthogonal categories, also called channels: zero, one and two
charged leptons. These correspond to the decays

𝑍 → 𝜈 ̄𝜈, 𝑊 → ℓ𝜈 and 𝑍 → ℓ ̄ℓ,

where ℓ denotes 𝑒, 𝜇, the leptons directly detectable in ATLAS. Table Ⅳ.3 lists the Higgs production
cross sections and branching ratios in these channels. The channel with the highest signal cross section is
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TableⅣ.3: Cross sections and branching ratios for associated Higgs production at NNLO(QCD)+NLO(EW) accuracy
for u�u� = 125.09 GeV. u� = u�, u� because only channels with visible leptons are used in the analysis. BR(u� →
u�ū�) = 57.5 %. Higgs cross sections and branching ratios from [41], branching ratios for decays of the vector
bosons from [135]. Uncertainties due to scale variations and PDF/u�s have been added linearly to account for
correlations.

Process 𝜎 / fb BRa 𝜎 × BR / fb Used

𝑞 ̄𝑞 → 𝑊𝐻 → 𝑙𝜈𝑏�̄� 701 ± 20 0.125 ± 0.004 87.5 ± 3.5 ✓

𝑞 ̄𝑞 → 𝑍𝐻 → 𝜈 ̄𝜈𝑏�̄� 420 ± 19 0.1150 ± 0.0032 48.3 ± 2.6
→ 𝑙 ̄𝑙𝑏�̄� 0.0421 ± 0.0012 17.7 ± 0.9 ✓

𝑔𝑔 → 𝑍𝐻 → 𝜈 ̄𝜈𝑏�̄� 39 ± 11 0.1150 ± 0.0032 4.5 ± 1.3
→ 𝑙 ̄𝑙𝑏�̄� 0.0421 ± 0.0012 1.7 ± 0.5 ✓

a In contrast to the ATLAS publication [1], decays to u� leptons are not included in the u�/u� → u�u�/u�u� branching ratio because
these events would only be selected if the u� decays to charged leptons, i.e. in 35 % of the u� decays. Moreover, event kinematics
in such events are distorted due to an additional neutrino. It is therefore unlikely that these events will contribute significantly
to the u� u� →u� u�ū� analysis.

the 1-lepton channel, and is covered in this thesis with most detail. The channel with the second-highest
cross section is the 0-lepton channel, but it is not covered in this work because no lepton triggers can be
used. It is included in the 𝑉 𝐻 →𝑉 𝑏�̄� Run-1 publication [1], though. The 2-lepton channel has the lowest
signal cross section and branching ratios, but it is quite “clean”: since the two leptons originate from 𝑍
decays, most of the backgrounds such as QCD multijet and 𝑊 +jets production are efficiently suppressed
by requiring two leptons with the same flavour, opposite charges and an invariant mass compatible with
𝑚u�. The only relevant background processes passing this selection are 𝑡 ̄𝑡 and 𝑍+jets production, as is
visible in figureⅣ.1.

Events are categorised into the 1-lepton channel if exactly one tight lepton and no other loose, medium
or tight leptons are found. This is because any additional lepton, regardless of the quality of reconstruction,
is indicative of a background process. Choosing the requirements for the signal lepton very tight and for
the veto leptons very loose leads to the highest background suppression.
Events are categorised into the 2-lepton channel if two loose leptons are found, of which at least one

needs to pass the medium requirement. This selection is much looser in comparison to the 1-lepton
definition to maximise the signal acceptance. Despite the rather loose lepton definition, background levels
are not very high in this channel since a 𝑍-boson selection is applied. All events that do not fall in one of
these two categories are discarded.
Apart from categorising events based on the lepton multiplicity, the 𝑉 𝐻 → 𝑉 𝑏�̄� analysis also has

jet-multiplicity and 𝑏-tag-multiplicity categories and categories for the boost of 𝑊 or 𝑍 (𝑝u�
T ). This results

in the categories two or three jets, one or two 𝑏-tags (one or both of the two leading3 jets is 𝑏-tagged) and
low or high 𝑝u�

T .
FigureⅣ.3 shows that background compositions and signal fractions differ strongly in these categor-

ies. This facilitates the measurement of background normalisations, and creates a few high-sensitivity
categories. The main features of each region are:

3 “Leading jet” denotes the jet with the highest transverse momentum, u�T. The next jet is the subleading jet, etc.
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Figure Ⅳ.3: Signal regions and background control regions of the u� u� → u� u�ū� search. Each of the regions
displayed is split into u�u�

T < 120 GeV (left) and u�u�
T > 120 GeV (right). Backgrounds are drawn counter-clockwise

in the order shown in the legend. The u� u� signal is slightly displaced for better visibility. The main signal region
is 2 jets, 2 u�-tags, and is indicated by frames.
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2 jets, 2 𝒃-tags Main signal region (indicated by frames). Most of the 𝐻 → 𝑏�̄� decays ( ) fall into
this region. Main backgrounds are 𝑡 ̄𝑡 production ( ) in both channels, 𝑊 +jets ( ) in the 1-lepton
channel and 𝑍+jets ( ) in the 2-lepton channel.

3 jets, 2 𝒃-tags Top control region. A pair of top quarks most likely decays into a pair of 𝑏 quarks, but
if one of the two𝑊 bosons produced in this process decays leptonically and the other hadronically, an
isolated lepton and jets from the𝑊 decay are found in addition. The 3- and 4-jet regions are therefore
dominated by 𝑡 ̄𝑡 events. The 3-jet region, however, is sufficient to measure the 𝑡 ̄𝑡 normalisation.

The 3-jet region is also more interesting than the 4-jet region because 𝑉 𝐻 →𝑉 𝑏�̄� events fall into
this region when processes such as the radiation of gluons create an additional jet. This is the case
for about 25 % of the 𝑉 𝐻 signal. The top control region therefore also serves as a secondary signal
region. Events with more than three jets can be discarded because the probability of two or more
additional jets in a 𝑉 𝐻 → 𝑉 𝑏�̄� event is low. Comparing the 3-jet regions of the 1- and 2-lepton
channels in figureⅣ.3 shows that 𝑡 ̄𝑡 events are less likely to occur in the 2-lepton channel. This is
because the requirement of two leptons with same flavour, opposite charge and 𝑚ℓℓ ≈ 𝑚u� is rarely
fulfilled in 𝑡 ̄𝑡 decays.

1𝒃-tag region Light-flavour control region. With relaxed 𝑏-tagging, backgrounds with lighter jet
flavours such as 𝑊+𝑙 ( ), 𝑊+𝑐 ( ), 𝑍+𝑙 ( ) and 𝑍+𝑐 ( ) are enhanced. This region can therefore
be used to measure the normalisation of these backgrounds. Creating an additional region without
𝑏-tagged jets is not necessary because light-flavour backgrounds are abundant in the 1𝑏-tag region.

Low-/High-𝒑u�
T region The transverse momentum of the vector boson in 𝑉 𝐻 events, 𝑝u�

T , is recon-
structed from its decay products:

𝑝u�
T =

⎧{
⎨{⎩

∣( ⃗𝑝u� + ⃗𝐸miss
T )

⟂
∣ 1 lepton channel

∣( ⃗𝑝u�0
+ ⃗𝑝u�1

)
⟂

∣ 2 lepton channel
(Ⅳ.3)

This quantity is only well defined for events with vector bosons, but will be denoted 𝑝u�
T for all events

in the 𝑉 𝐻 analysis. If lepton and 𝐸miss
T , or the two leptons, respectively, do not originate from the

same particle, this observable is the sum of non-related, mostly randomly distributed objects. This
results in a background distribution peaking close to zero and falling rapidly.

For 𝑉 𝐻 → 𝑉 𝑏�̄� events, 𝑝u�
T is not only the transverse momentum of the vector boson, but it is

also an estimate for the transverse momentum of the Higgs boson. Due to transverse momentum
conservation, Higgs boson and vector boson recoil from each other. Since a strong recoil is rare
because it requires high 𝑞2 in the collision, the 𝑝u�

T distribution falls rapidly, but it falls even more
rapidly for backgrounds without vector bosons. This is used to suppress background processes, and
is especially helpful in the 1-lepton channel, where requiring 𝑝u�

T > 120 GeV almost completely
suppresses the QCD multijet background with muons (MJu� ), see figureⅣ.3. Hadrons that are
misreconstructed as electrons cannot be suppressed entirely, though. MJu� ( ) therefore remains
non-negligible, but it is low in comparison to other backgrounds.

The downside of the high-𝑝u�
T region is low data statistics. The split at 120 GeV is a compromise

between high purity and sufficient data statistics.

A set of kinematic cuts listed in tableⅣ.4 is applied to all regions to further suppress backgrounds,
or to ensure that the simulations yield a good description of the data. The cut on the angular distance
between the 𝑏-jets, Δ𝑅(𝑏, 𝑏), is a modelling cut: except for very high transverse momenta of the vector
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Table Ⅳ.4: Preselection cuts for the 1- and 2-lepton channels. All quantities but angles in GeV.

1 Lepton Channel 2 Lepton Channel

Leptons 1 × tight 1 × ≥ medium + 1 × ≥ loose
Δ𝑅(jet1, jet2) > 0.7 > 0.7 if u�u�

T < 200
𝐻T > 180 if u�u�

T < 120
𝐸miss
T > 20 if u�u�

T > 120
𝑚u�u� 71 – 121

boson (𝑝u�
T > 200 GeV), the jets of the Higgs system are always well separated, that is, Δ𝑅 ≫ 0.7.

Therefore, a minimal distance of Δ𝑅 > 0.7 can safely be required. This improves the description of
the data by the 𝑉 +jets simulations because events with overlapping jet cones are suppressed. For high
𝑝u�

T , this cut removes signal events, though. Therefore, the cut is not applied in this region. Instead, a
systematic uncertainty for the description of 𝑚u�u� (low Δ𝑅 =̂ low 𝑚u�u�) takes modelling uncertainties
into account.
The 𝐻T and 𝐸miss

T cuts in the 1-lepton channel are applied to reduce the QCD multijet background,
and thereby improve the quality of the background description. The observable 𝐻T in figureⅣ.4 is the
scalar sum of the transverse momenta of jets, leptons and 𝐸miss

T :

𝐻T ≡ 𝐸miss
T + ∑

jets, leptons
𝑝T. (Ⅳ.4)

𝐻T can be as low as 95 GeV in multijet events because jets and signal leptons are always required to
have at least 𝑝T = 25 GeV (45 GeV for the leading jet). For QCD multijet events with two jets and one
lepton, 𝐻T is at least

𝐻T ≥ 𝐸miss
T + 95 GeV = 115 GeV,

but the𝐸miss
T requirement was removed for figureⅣ.4. For 𝑉 𝐻 events, 𝐻T is usually larger than 130 GeV.

This is because without any transverse boost, 𝐻T can be estimated as follows:

⟨𝐻T(𝑝u�
T = 0)⟩ = 2 ⋅ 𝑚u�

2
∫u�/2
0

sin(𝜃) d𝜃
𝜋/2

+ 2 ⋅ 𝑚u�
2

∫u�/2
0

sin(𝜃) d𝜃
𝜋/2

= 130.8 GeV

For this estimation, it is assumed that 𝑝u�
T ≈ 0 and that daughter particles in the mother particle’s rest

system are back-to-back with a momentum of 𝑚/2 each. Since the direction of the daughter particles is
isotropic in the rest system, momenta have to be averaged over all angles as shown in the equation. If the
assumption of vanishing transverse momenta for 𝑊 and 𝐻 is not fulfilled, that is, 𝑊 or 𝐻 are boosted in
transverse direction, 𝐻T increases. Hence, most signal events are found at 𝐻T ≥ 200 GeV as shown in
figureⅣ.4. Requiring 𝐻T > 180 GeV is therefore a good compromise between signal efficiency and
QCD multijet suppression. When 𝐸miss

T > 20 GeV is applied in addition, the level of multijet background
shown in figureⅣ.4 is reduced a bit more such that the total multijet contribution is well below 20 % of
the total backgrounds in all categories of the 𝑉 𝐻 analysis.

In the 2-lepton channel, only 𝑍-boson cuts and the Δ𝑅(𝑏, 𝑏) modelling cut are applied. The event
selection might hence seem quite loose. This is because it is designed to be used in conjunction with a
multivariate classification: a restrictive preselection would limit the potential of the multivariate methods
because all signal events discarded in the preselection phase are lost for further analysis. This will be
demonstrated in more detail in sectionⅣ 3.3.
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Figure Ⅳ.4: Distribution of u�T, equation (Ⅳ.4), in the 1-lepton channel before the full event selection from
tableⅣ.4 is applied. Only the object selection and exactly one tight lepton are required. Because of the missing
event selection, it is not expected that the simulations and the data-driven QCD multijet estimate describe the
distribution observed in data.
The region of low u�T is completely dominated by QCD multijet events ( ), which are suppressed at higher values
of u�T. Most of the u�u� signal ( ) is found at u�T ⪆ 200 GeV. Since a decent description of the data is achieved
starting from u�T = 180 GeV, u�T is always required to be larger than 180 GeV. The blue band in the lower
inset shows the statistical uncertainties of the background simulations. A band with systematic uncertainties is not
shown because these are derived only for the phase space with the full event selection.

Ⅳ 1.3 𝒃-Tagging at Multiple Working Points

A unique feature of the ATLAS 𝐻 → 𝑏�̄� analysis is that 𝑏-tagging is used at multiple working points.
The 𝑏-tagging algorithm MV1c (see section Ⅲ 3.4) was designed with the requirements of the 𝐻 → 𝑏�̄�
search in mind, and was therefore calibrated for the simultaneous use of 𝑏-tagging efficiencies of 80, 70,
60 and 50 %. The background rejection power of MV1c ranges from 29 for light and 6 for charm jets at
80 % 𝑏-jet efficiency up to 1 400 (𝑙) and 26 (𝑐) at 50 % 𝑏-jet efficiency [136]. Charm rejection is more
important for the 𝑉 𝐻 →𝑉 𝑏�̄� analysis because the signature of charm jets is more similar to 𝑏-jets than for
light jets. As shown in figureⅣ.3, 𝑊+𝑙 or 𝑍+𝑙 events are not the dominant backgrounds, but 𝑏-tagging
algorithms are normally trained to suppress light flavour jets. MV1c is trained to suppress light and charm
jets, and therefore achieves the highest charm rejection on Run-1 data in ATLAS.
The fact that MV1c can be used at multiple working points is called “continuous 𝑏-tagging” in AT-

LAS. This is an unfortunate term because the 𝑏-jet selection efficiency cannot be varied continuously:
calibrations only exist for the four working points listed previously.
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Figure Ⅳ.5: Use of u�-tagging for the measurement of background normalisations and for background suppression.
(a) Flavour composition of the backgrounds for the available working points of the MV1c u�-tagging algorithm.
Backgrounds with light and charm jets are strongly suppressed with tight u�-tagging. The simulations slightly
underestimate the background cross sections or u�-tagging efficiency, but this difference is covered by the uncertainties
shown by the blue band. A full measurement of normalisations is carried out during the profile-likelihood fit
discussed in sectionsⅣ 5 andⅣ 6. (b) Categories of the u� u� →u� u�ū� analysis: the 2u�-tag regions LL, MM, TT are
used as signal regions, the 1u�-tag region is used as a background control region, and the 0u�-tag region is not used.

The availability of multiple working points allows for additional freedom in the use of 𝑏-tagging for the
𝑉 𝐻 search: since the flavour composition of background processes depends on the 𝑏-tagging working
point, see figureⅣ.5(a), background normalisations can be measured with higher accuracy. To achieve
this, the 2𝑏-tag region of the 𝑉 𝐻 →𝑉 𝑏�̄� analysis is split into three more categories: LL (loose+loose)
for events where both jets pass 𝑏-tagging at 80 % efficiency, MM for medium with 70 % efficiency and TT
for tight with 50 % efficiency. If the two leading jets pass different working points, the event is assigned
to the lowest category passed by both jets. All 𝑏-tagging-related categories are shown in figureⅣ.5(b).
Events with three jets are categorised based on the two leading jets in 𝑝T.
Apart from a higher sensitivity to background normalisations, 𝑏-tagging at multiple working points

is also useful for better background reduction. FigureⅣ.5(a) shows that the amount of 𝑏-jet-dominated
processes (𝑡 ̄𝑡, 𝑡, 𝑊+𝑏), as well as 𝐻 → 𝑏�̄�, is nearly constant in each bin, but charm- and light-jet-
dominated backgrounds are suppressed almost entirely at 50 % 𝑏-tagging efficiency. Previous 𝐻 →𝑏�̄�
analyses, however, were only using 𝑏-tagging at the 70 % working point, which has a total 𝐻 → 𝑏�̄�
efficiency of 49 % because two jets have to be tagged. At the 50 % working point, the total signal
efficiency would only be 25 %. With 𝑏-tagging at multiple working points, both high background rejection
and high signal statistics can be achieved: TT has 25 % efficiency and low background levels, MM has
(70 %)2 −(50 %)2 = 24 % efficiency and intermediate background levels, and LL has 15 % of the𝐻 →𝑏�̄�
events but high background levels. A simultaneous fit of all three therefore yields much higher sensitivity
than any choice of a single 𝑏-tagging working point. The remaining 36 % of the 𝐻 →𝑏�̄� events fall into
the 0- and 1𝑏-tag regions dominated by 𝑊+𝑙 and 𝑍+𝑙, and cannot be identified because of the very high
background levels. A dedicated 60 % category is not created: it would contain only about 11 % of the
signal events, and is therefore merged into the 70 % category in order to ensure sufficient data statistics.
Also due to low data and signal statistics, MM and TT are merged in the 2-lepton channel, where 𝜎 ⋅ 𝐵𝑅 is
about five times lower than in the 1-lepton channel as shown in tableⅣ.3.
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Ⅳ 2 Modelling of Signal and Background Processes

Monte Carlo simulations cannot be expected to model the data perfectly: whereas kinematic relations
in each event can be calculated exactly because of energy and momentum conservation, inclusive and
especially differential cross-section predictions can have high uncertainties. Jet multiplicities or flavour
fractions in 𝑉 +jets events, for example, are observables with significant uncertainties, see section Ⅲ 4.3.
If predicted distributions are found to differ from distributions in data, corrections have to be applied by
reweighting the Monte Carlo events. The corrections necessary for the 𝑉 𝐻 →𝑉 𝑏�̄� simulations as well as
a jet-energy resolution correction will be discussed in the following.

Ⅳ 2.1 Signal Simulations

As discussed in section Ⅱ 5.2, the 𝑉 𝐻 state mainly has two production modes: the 𝑞 ̄𝑞 → 𝑉 𝐻 process
can produce both the 𝑊𝐻 and 𝑍𝐻 state. The reaction 𝑔𝑔 → 𝑍𝐻 , however, can only produce a 𝑍 boson
because the initial state is neutral. This process is only included when simulating 𝑉 𝐻 production at NNLO
accuracy. With the LO generator Pythia8, this is not possible.
A simple method to correct this lack of events would be to scale the inclusive Monte Carlo cross section,

that is, to apply a k-factor that accounts for the LO-NNLO difference. Although this is works well for the
inclusive 𝑞 ̄𝑞 → 𝑉 𝐻 cross section, it does not correctly predict the kinematics of 𝑔𝑔 → 𝑍𝐻 . This process
is therefore taken into account by a PowHeg simulation [122, 137] interfaced to Pythia8. The reason
for differences in kinematic distributions is illustrated by figure Ⅱ.11 on page 25: since the 𝑍 boson is
produced by a quark loop, the cross section changes when the top quark threshold is reached: if the energy
available in the collision is larger than 2 × 𝑚top, two top quarks can significantly contribute to the loop,
which increases the cross section. This changes the transverse momentum spectrum in 𝑔𝑔 → 𝑍𝐻 events,
but not in 𝑞 ̄𝑞 → 𝑍𝐻 . Therefore, applying k-factors to the LO predictions is not sufficient.
Furthermore, NLO electroweak effects in the 𝑉 𝐻 process affect the transverse momentum distribution

of the Higgs boson. Radiation of photons or contributions of fermion loops as in the diagrams in figure Ⅱ.12
on page 26 are examples of such higher-order processes: a comparison of LO predictions with NLO
predictions obtained with the HAWK [138] program was used to derive correction factors in dependence of
the transverse momentum of the Higgs boson, which are applied by reweighting the Pythia8 predictions.

Ⅳ 2.2 𝒃-Jet Energy Correction

Since the invariant mass of two 𝑏-jets is one of the most important observables to suppress background
processes, the mass resolution of the Higgs peak, figureⅣ.1, should be as high as possible. A Monte-
Carlo-driven jet energy correction is therefore applied to signal and background simulations, as well as
data events, because an improved jet energy resolution also leads to a higher dijet mass resolution. The
following effects limit the jet energy resolution:

• Calorimeter resolution, section Ⅲ 2.2. The intrinsic calorimeter resolution is the lower limit for the
jet energy resolution. It is minimised by applying the standard ATLAS energy calibration, but apart
from minimising calibration untertainties no further reduction is possible.

• Neutrino production in the particle cascade of the jet. Neutrinos escape undetected and lower the
measured jet energy.

• Muon production. If a muon is produced in a 𝑏 decay (𝑏 → 𝑐𝑊 → 𝑐𝜇𝜈), or in a similar 𝑐 decay, the
muon is detected in the muon system, but not in the calorimeter. This reduces the measured jet energy.
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Figure Ⅳ.6: Effect of the u�-jet energy correction (“pTReco”). (a) All u�-jet transverse momenta are corrected with
a u�T-dependent factor. (b) This improves the resolution of the invariant mass of two u�-jets by 8 %.

• Out-of-cone leakage. Charged particles, especially with low momentum, are deflected by the magnetic
field in ATLAS. If their momentum is low enough (𝑝T ≲ 0.7 GeV4), particles leave the cone of the
jet clustering algorithm, and are therefore not attributed to the jet.

The 𝑏-jet energy correction aims to correct these effects. The energies of 𝑏-jets are corrected in two stages:

1. If muons are detected inside a jet, the muon four-momenta are added to the four-momenta of the
jet. The small amount of energy that such muons typically deposit in the calorimeter is subtracted
from the jet energy to prevent double counting. This corrects for muons from semileptonic 𝑏 or 𝑐
decays. The neutrino, which is produced in such decays, however, is not corrected for.

Semileptonic 𝑏 decays producing electrons need not be corrected for because the energy of such elec-
trons is detected in the EM calorimeter, and therefore attributed to the jet. The energy measurement
is therefore only weakly distorted.

2. The transverse energy of the jet is corrected using the function in figureⅣ.6(a). It mostly corrects
for out-of-cone leakage, but also applies a 𝑝T-independent scale correction. This accounts for
residual miscalibrations of 𝑏-jet energies and for the energy that is carried by neutrinos. The
correction function was derived by comparing the energy of truth jets to the reconstructed energies.

These corrections improve the resolution of the Higgs peak in 𝑚u�u� by 8 to 14 %, depending on the
category of the 𝑉 𝐻 analysis. FigureⅣ.6(b) shows a comparison of 𝑊𝐻 events with and without this
correction. The narrowed Higgs peak leads to higher sensitivity.
4

𝐿 𝑠

1
m

0.42 mParticles with low momenta are deflected outside of the jet cone. The minimal transverse momentum for
this to happen can be estimated using the sagitta u�. A track originating from the interaction point and touching
the edge of the jet cone can be described by the red circle in the sketch on the right. The corresponding sagitta
u� is equal to the radius of the jet cone at the beginning of the calorimeter, u� ≈ tan(0.4) ⋅ 1 m = 0.42 m. The
sagitta has to be related to the dashed baseline u�, which is two times the distance between interaction region
and calorimeter, and this yields the momentum using the following formula:

u�T ≈ 0.3
8

u�2u�
u�

= 0.7 GeV, with [u�T] = GeV, u� = 2 m, u� = 2 T.
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The 𝑏-jet energy correction is applied to all 𝑏-tagged jets in data and simulations, but it is derived solely
from the signal simulations. Two systematic uncertainties are added to account for the possibility that the
signal simulations overestimate the achievable energy resolution: firstly, the jet energy scale is varied by
±0.4 % (SysJetBE). It accounts for the uncertainty of the offset correction shown in figureⅣ.6(a).
Secondly, an uncertainty on the momentum resolution of 𝑏-jets is added (SysBJetReso) [139]:

𝜎(𝑝u�
T)

𝑝u�
T

= 0.4 ∗ ( 0.99
√𝑝T

⊕ 0.12) , [𝑝T] = GeV (Ⅳ.5)

It is not a coincidence that this equation resembles the typical resolution function for calorimeters,
compare, for example, equation (Ⅲ.7) on page 39. When deriving the uncertainty of the 𝑏-jet energy
correction, the calorimeter resolution function was chosen as the underlying model. The parameters in
equation (Ⅳ.5) were obtained from fits to Monte Carlo simulations of the jet energy. The model neglects
the noise term 𝑎/𝐸, and is parametrised in 𝑝T, but the parameters are similar to the expected resolution
of the liquid argon + tile calorimeters discussed in section Ⅲ 2.2, which is 0.52√

u� ⊕ 3 %.
The momentum resolution uncertainty is estimated by scaling the transverse momentum of each jet

with a random number obtained from a normal distribution, where 𝜎 of the normal distribution is given
by equation (Ⅳ.5). Since the measured calorimeter energies are also normally distributed, this increases
the intrinsic resolution by about 40 %. This is because the widths are roughly equal, and widths for the
product of Gaussian distributions add in quadrature: 1 𝜎 ⊕ 1 𝜎 ≈ 1.41 𝜎.
In the 2-lepton channel of the ATLAS 𝐻 →𝑏�̄� publication [1], a kinematic fit was applied to further

reduce the jet energy resolution. It uses a Breit-Wigner constraint for the invariant mass of the 𝑍 boson,
Gaussian constraints for the transverse momentum of 𝑍𝐻 , transfer functions to relate true to reconstructed
jet momenta and a prior for the typical jet 𝑝T spectrum in 𝑍𝐻 events. Although this correction is more
powerful than 𝑝RecoT shown in figureⅣ.6(a), it was not re-implemented in this work. An about 8 % better
mass resolution can be expected [140], but the focus in this work is on the 1-lepton channel, which has
higher sensitivity. In this work, the 𝑏-jet energy correction 𝑝RecoT is therefore applied to all events. Yet
more powerful methods such as multivariate jet energy regression [141] or particle flow [142] were not
yet commissioned by ATLAS for Run-1 data.

Ⅳ 2.3 Angular Distance Between Jets in 𝑽 +jets Simulations

The Sherpa simulations used to model the 𝑉 + jets background wrongly predict the angular distance
between the two leading jets. FigureⅣ.7(a) shows that the simulations predict a surplus of events with
small angular distances and a deficit of events with large distances. The root cause of the mismodelling is
not known. It may be a misconfiguration of matching, shower or hadronisation parameters. More recent
versions of Sherpa show a reduction of this effect [143], but these are not available in ATLAS for Run-1
data.
The mismodelling is not confined to the Δ𝜙 distribution shown in figureⅣ.7(a). It also affects the Δ𝑅

distribution because of Δ𝑅 = √(Δ𝜙)2 + (Δ𝜂)2. Furthermore, it affects 𝑝u�
T because the (transverse)

recoil of a vector boson against the jets is low if the angle between the jets is large. This is visible in the
𝑝u�

T distribution in figureⅣ.7(c), which shows a deficit of 𝑊 +jets events at low transverse momenta.
Finally, the mismodelling of the angular distance is also connected with a misdescription of the dijet
invariant masses, 𝑚u�u�. This is because small distances between the jets correspond to low invariant
masses. Considering that𝑚u�u� and 𝑝u�

T are two of the most powerful observables for separating 𝑉 𝐻 →𝑉 𝑏�̄�
from background processes, the mismodelling must be corrected for.
The mismodelling is most pronounced in the Δ𝜙 distribution of 𝑊+𝑙 events with two jets. After
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(a) Δu� distribution of the two leading jets in u� +jets
events
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(b) Δu� distribution after Δu� correction
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(c) u�u�
T distribution in u� +jets events
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(d) u�u�
T distribution after Δu� correction
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(e) u�u�u� distribution of the two leading jets in u� +jets
events
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(f) u�u�u� distribution after Δu� correction

Figure Ⅳ.7: u� +jets events after application of the preselection detailed in sectionⅣ 1.2. No u�-tagging applied.
Left: (a) The Sherpa simulations ( ) fail to describe the angle between the leading jets. The mismodelling of the
angular distribution also affects other kinematic variables like (c) the transverse momentum of the u� boson, u�u�

T ,
and (e) the invariant mass of the leading jets u�u�u�. Right: Distributions after application of a correction. The
correction improves not only (b) the Δu� distribution, but also (d) and (f).
NB: The peak in the Δu� distributions at 0.7 is explained by the selection cut Δu� = √(Δu�)2 + (Δu�)2 > 0.7.
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𝑏-tagging, where 𝑊+𝑙 events are strongly reduced in favour of 𝑊+𝑏 events, the effect is not visible.
Therefore, the Δ𝜙 distributions for 𝑊+𝑙 and 𝑊+𝑐 events are reweighted to match the data using
polynomials of 2nd to 4th degree. These are determined by fits to the ratio of data and Monte Carlo
predictions such as the one shown in figureⅣ.7(a). These fits are carried out separately for the 2- and
3-jet region and for 𝑝u�

T ≷ 120 GeV. 50 and 150 % of the applied correction is used to estimate a
systematic uncertainty for the 𝑊+𝑙 and 𝑊+𝑐 correction. No correction is applied to 𝑊+𝑏 events since
the mismodelling vanishes when 𝑏-tagging is applied. Nevertheless, a systematic uncertainty is estimated
by using the 𝑊+𝑙 and 𝑊+𝑐 reweighting for 𝑊+𝑏 events.
Figures Ⅳ.7(b), Ⅳ.7(d) and Ⅳ.7(f) show distributions after application of the correction: the Δ𝜙

distribution is fully corrected (by definition), but also 𝑝u�
T and 𝑚u�u� improve. Residual differences are

covered by systematic uncertainties.
A similar strategy as for 𝑊 + jets events is pursued to correct 𝑍+𝑙 events. Instead of 2nd- to 4th-

degree polynomials, linear corrections proved to be sufficient, though. Systematic uncertainties are again
estimated by applying 50 and 150 % of the correction for 𝑍+𝑙 events.
In contrast to 𝑊 +jets events, the ATLAS 𝐻 →𝑏�̄� group chose to correct the heavier 𝑍+jets flavours

by reweighting 𝑝u�
T instead of Δ𝜙. 𝑝u�

T is reweighted using the function 𝑎 ln(𝑝u�
T) + 𝑏, which is again

fitted to the ratio of data and Monte Carlo predictions. This correction is used for both 𝑍+𝑏 and 𝑍+𝑐
events in all regions. Nevertheless, a Δ𝜙 uncertainty is estimated by applying the Δ𝜙 correction for
𝑍+𝑙 events to 𝑍+𝑐 and 𝑍+𝑏 events. It is unlikely that the misdescription in the 𝑍+jets samples has
a different cause than for the 𝑊 +jets samples. Since the mismodelling is visible in Δ𝜙, 𝑝u�

T and 𝑚u�u�,
the root cause is likely identical. The systematic uncertainty for the 𝑝u�

T correction is again estimated by
applying 50 and 150 % of the correction to the 𝑍+jets samples.

Ⅳ 2.4 Truth-Flavour Tagging at Multiple Working Points

Strictly speaking, truth-flavour tagging is not a correction, but it is a weight-based technique to reduce
statistical uncertainties of Monte Carlo simulations when 𝑏-tagging is used. The size of Monte Carlo
samples is often limited by computational resources, and when 𝑏-tagging is applied, backgrounds with
high fractions of light jets are highly suppressed. This leads to low Monte Carlo statistics in samples
dominated by light-flavour jets because the probability of 𝑏-tagging a light jet is about 3 to 0.07 % [136],
depending on the 𝑏-tagging working point. Even though strong light-jet suppression is desirable for a
high-sensitivity analysis, it also implicates that most Monte Carlo events with light jets are discarded. For
a 𝑉 +𝑙𝑙 sample, even at the loose working point with 80 % 𝑏-tagging efficiency, only (3 %)2 = 0.09 % of
the available Monte Carlo statistics would be used.
With truth-flavour tagging, the fraction of events passing the selection can be increased. In this work,

it is applied to all 𝑉 +𝑞𝑙 events in the 𝑉 + jets samples as well as to 𝑊𝑊 simulations. Truth-flavour
tagging works by searching the truth records of the Monte Carlo generators for hadrons that overlap with
a reconstructed jet. If truth hadrons with 𝑏 and 𝑐 quarks or truth 𝜏 leptons with 𝑝T > 5 GeV are found,
the jet is labelled ”true b”, ”true c” or ”true 𝜏”. The probability to 𝑏-tag such jets is retrieved from the
𝑏-tagging calibration information in dependence of jet transverse momentum and 𝜂 [96, 144]. Finally, the
jet is treated as if it passed the 𝑏-tagging cut, and the event weight is modified according to the probability
of this jet actually passing the 𝑏-tagging cut. In this way, the amount of jets passing the 𝑏-tagging cuts is
simulated correctly, but a larger fraction of the Monte Carlo statistics is used than for direct 𝑏-tagging.
In this analysis, one jet is always required to be 𝑏-tagged directly, and the other jet, usually a light jet, is

“truth tagged”. This means that 𝑉 +𝑞𝑙 events from the 1𝑏-tag region are also used in the 2𝑏-tag regions,
but 0𝑏-tag events are not used. This suppresses any bias and mismodelling observed in the 0𝑏-tag region
such as the Δ𝜙 mismodelling.
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Figure Ⅳ.8: Cumulative distribution functions of the probability to u�-tag a jet using MV1c. Data from [136]. The
60 % u�-tagging working point is indicated by the line in the medium region.

In the ATLAS 𝑉 𝐻 →𝑉 𝑏�̄� analysis, the use of truth tagging is complicated by the fact that multiple
𝑏-tagging working points are used and that this information is also used to train multivariate classifiers.
This will be discussed in sectionⅣ 3.3. When using truth tagging, it is therefore not sufficient to only
alter event weights because the “truth tagged” jets also need to be assigned plausible 𝑏-tagging scores in
order to be recognised as 𝑏-jets by the multivariate classifiers. Otherwise, the background rejection power
of the multivariate classifiers would be overestimated in simulations.
This problem is solved by calculating 𝑏-tagging scores based on the cumulative distribution functions

(CDF) of MV1c. For each jet, these are extracted from the ATLAS 𝑏-tagging calibration as a function of
the jet transverse momentum and jet 𝜂. FigureⅣ.8 shows CDFs for 𝑏, 𝑐 and light jets integrated over
𝑝T and 𝜂. The bottom graph for 𝑏-jets, for example, shows that there is a probability of 20 % that a 𝑏-jet is
not tagged; 10 % that it passes loose, but not medium; 20 % that it passes medium, but not tight etc. The
𝑏-tagging scores assigned during truth tagging need to reproduce this distribution. For truth tagging, the
lighter jet flavours are more interesting, though: to “truth 𝑏-tag” a charm jet, the event weight is multiplied
by ∼0.33, the sum of the L, M and T probabilities. The 𝑏-tagging score assigned to the jet is determined
by drawing a random number between 0.67, the start of the loose region, and 1. Based on the outcome,
the MV1c score corresponding to L, M, T or to the 60 % working point is assigned to the jet. Although the
60 % working point is not used for categorising events, it is used as an input for the multivariate analysis.

Ⅳ 2.5 Top Transverse Momentum Distribution

In a previous version of the ATLAS 𝑉 𝐻 analysis5, the distribution of 𝑝u�
T in 𝑡 ̄𝑡 events predicted by

PowHeg was found to disagree with the 𝑝u�
T distribution in data: the predicted spectrum is too hard.

This does not mean, though, that PowHeg wrongly predicts the transverse momentum of 𝑊 . Using
equation (Ⅳ.3), one finds:

𝑝u�
T ≡ ∣( ⃗𝑝lep + ⃗𝐸miss

T )
⟂

∣ .

This definition is based on the assumption that one charged lepton and one neutrino are produced by
a single 𝑊 boson, which is valid for 𝑊𝐻 events in the 1-lepton channel. In 𝑡 ̄𝑡 events, however, this
observable is not the transverse momentum of a 𝑊 boson because multiple 𝑊 bosons and neutrinos are
produced. A misdescription of 𝑝u�

T therefore means that 𝐸miss
T , 𝑝leptonT or both are described wrongly. This

can be caused, for example, by a misdescription of the top transverse momenta. Indeed, the transverse
momentum distribution of top quarks from PowHeg simulations was found to be too hard in other ATLAS
analyses [145].
5 Without multivariate classifiers for the conference EPS [4].
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In the 2-lepton channel, a different effect was observed: 𝑝u�
T was found too soft. Again, the observable

𝑝u�
T does not describe the momentum of a 𝑍 boson in 𝑡 ̄𝑡 events:

𝑝u�
T ≡ ∣( ⃗𝑝lep0

+ ⃗𝑝lep1
)

⟂
∣ .

If the transverse momenta of top quarks are predicted too high, angles between the leptons increase
because the leptons are emitted more collinear with the top quarks, which are usually well separated.
Larger angles between the leptons lead to lower values of 𝑝u�

T.
Both observations are therefore compatible with the top transverse momenta being predicted too high.

To correct for this effect in the 𝑉 𝐻 →𝑉 𝑏�̄� analysis, the top quarks are reconstructed using the Monte
Carlo truth data, the average 𝑝topT is calculated, and this distribution is corrected according to the findings
of an ATLAS top analysis with 7 TeV data [145]. 50 and 150 % of the correction is again used to estimate
systematic uncertainties of this correction.

Ⅳ 2.6 QCD Multijet Estimation

Among the backgrounds for the 𝑉 𝐻 →𝑉 𝑏�̄� analysis, the QCD multijet background is unique because it is
produced with very high cross section (≈ 200 μb), and because it has to be estimated from data due to the
very specific topology required in the 𝑉 𝐻 analysis: the production of an isolated lepton is very unlikely
in QCD multijet events, but only these events are compatible with the 𝑉 𝐻 topology. The preselection
described in sectionⅣ 1 aims to reduce the multijet background as far as possible, and only the part that
cannot be suppressed without suppressing the Higgs signal is estimated from data.
This estimation relies on inverting the track-isolation requirement, see equation (Ⅳ.1) on page 67,

because this selects leptons that are produced in the vicinity of other hadronic activity such as leptons
from jets or misidentified hadrons. Leptons from electroweak processes, in contrast, are usually isolated
from such activity. The underlying assumption is that QCD multijet events with poorly isolated leptons
are similar to QCD multijet events with well-isolated leptons, and that the former can therefore be used to
estimate the contribution of the latter in the signal region of the 𝑉 𝐻 analysis.
The ATLAS lepton triggers, however, suppress poorly isolated leptons, and distort their transverse

momentum spectrum, and therefore complicate the estimation of the multijet background: 𝑊𝐻 one-
electron events are selected using an electron trigger, which is sensitive starting from 𝑝T ≈ 24 GeV.
To reduce the event rate due to the high cross section of multijet events, a track isolation of ≤ 0.12 is
required on trigger level. This trigger is complemented with a 60 GeV electron trigger without isolation
requirements. Both triggers achieve a combined efficiency of 0.97 ± 0.01 [146]. 𝑊𝐻 one-muon events
are recorded using a 24 GeV trigger that also requires a track isolation of less than 0.12. This trigger
is complemented with a non-isolated muon trigger starting to be sensitive at 36 GeV. These achieve a
combined efficiency of 0.78 ± 0.01.
When inverting the track isolation, the turn-on of the non-isolated lepton triggers severely distorts the

transverse momentum distribution of the leptons. These triggers therefore cannot be used to estimate
the multijet templates. Therefore, the triggers with isolation, which are fully efficient at 𝑝T > 25 GeV,
have to be used, but the trigger track isolation also distorts the templates. FigureⅣ.9 shows the track-
and calorimeter-isolation variables for leptons in the 𝑉 𝐻 analysis. The tight category ( ) comprises
well-isolated leptons, which are the signal leptons of the 1-lepton channel. Loose leptons ( ), where no
multijet suppression is necessary, have a relaxed isolation requirement of ≤ 0.1, which is chosen such
that the influence of the track isolation on trigger level is eliminated. “Multijet leptons” ( ) are poorly
isolated, and affected by the trigger-isolation cuts shown by the dotted line. There is a gap between the
tight and the multijet regions in order to ensure that only a negligible amount of events from electroweak
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Figure Ⅳ.9: Isolation variables for electrons and muons. The blue region corresponds to loose leptons as defined
in section Ⅳ 1. The green region is the signal region with very tight isolation cuts for the 1-lepton channel.
The QCD multijet template is taken from the pink region (MJ) with an inverted track-isolation cut. There is no
calorimeter-isolation requirement for loose leptons, but it is required for multijet template leptons. The lepton track
isolation required by ATLAS triggers (dotted line) distorts the multijet templates.

processes such as 𝑊 +jets and 𝑡 ̄𝑡 is present in the multijet template. This contribution is estimated with
Monte Carlo simulations, and it is subtracted from the data events found in the multijet regions to avoid
double counting. Since “multijet electrons”, that is, predominantly misidentified hadrons, are produced
in different processes than “multijet muons”, which are real muons, the multijet template regions start at
0.05 for electrons and 0.07 for muons.

Since events with poorly isolated leptons are used to estimate the multijet contribution of events with
well-isolated leptons, extrapolation uncertainties from the ‘multijet’ into the ‘tight’ region are derived as
follows: the multijet-dominated regions for both electron and muon channel are split in two halves. It
is likely that electrons with better isolation (“MJ” in figureⅣ.9(a)) are more similar to tight electrons
than electrons with worse isolation (MJ ControlRegion). Shape differences between these two regions
are therefore measured, and applied as shape uncertainties for electron-multijet events, which are moved
from the MJ region to the tight region. The reason that the multijet control region MJ CR is populated at
all is that track reconstruction on trigger level is more superficial than the offline track reconstruction. A
small fraction of QCD multijet events therefore passes the trigger selection despite of the track-isolation
cut at 0.12.
In the one-muon channel, the trigger-isolation requirement has an even stronger impact on the template

statistics. Since only semileptonic decays can produce poorly isolated muons, the data statistics in the
muon multijet template are much lower than in the electron channel. The trigger isolation, however,
reduces the event rate so strongly that all poorly isolated muons with track-isolation values from 0.07 to 0.5
have to be used for the multijet template. The template is nevertheless split in two halves at 0.095 to
estimate shape uncertainties due to the inversion of the track isolation. The splitting point for muons is
closer to the tight region because the trigger and calorimeter isolation for muons is much more efficient
than for electrons. To estimate the extrapolation uncertainty for one-muon multijet events, the difference
between ‘MJ 1’ and ‘MJ 2’ is calculated, but the sum of the two regions is used as the nominal template.
Because of the low template statistics in ‘MJ 1’ and ‘MJ 2’, the shape differences have to be smoothed
when systematic uncertainties are evaluated.
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(b) Multijet templates and electroweak backgrounds
after a fit to data

FigureⅣ.10: Multijet estimation in the region with 2 jets and 2 u�-tags. Inverting the track-isolation requirement for
the leptons yields the multijet template. Its normalisation is subsequently measured in the u�miss

T distribution, filling
the gap between the data and electroweak backgrounds from simulations. The orange band shows the statistical
uncertainty of the background estimates.

In conjunction with inverting the track-isolation requirement, the calorimeter isolation has to be relaxed
from 0.4 to 0.7. This is necessary since good calorimeter isolation and poor track isolation are mutually
exclusive. Relaxing the calorimeter isolation, however, also alters the template shapes. To estimate the
influence of this choice, the shape difference to a multijet template with tight calorimeter isolation of 0.4
is measured, and applied as a systematic uncertainty to the nominal template. These shape uncertainties
also have to be smoothed because statistics in the template with tight calorimeter isolation are low.

Normalisation of the Multijet Templates

The multijet templates obtained from events with poorly isolated leptons must be normalised to the QCD
multijet cross section in the tight region. Since there are no cross-section predictions in dependence of
the isolation variables, such normalisations have to be measured in data. The distribution of 𝐸miss

T , for
example, shows good separation between electroweak processes and multijet events, as can be seen in
figureⅣ.10. The gap between data and simulation in figureⅣ.10(a) is caused by QCD multijet events,
which are not included in electroweak Monte Carlo predictions. 𝐸miss

T shows good separation because
QCD multijet events have no on-shell 𝑊 bosons, which could produce neutrinos with sufficient transverse
momentum. This is also the reason for requiring 𝐸miss

T > 20 GeV during the preselection, see tableⅣ.4.
The normalisations of the multijet templates are determined in fits to 𝐸miss

T distributions, separately for
the 0-, 1- and 2𝑏-tag categories, for the 2- and 3-jet regions, and for electron and muon events. The
sum of all electroweak backgrounds is allowed to float in these fits in order to remove dependencies
on electroweak cross-section predictions. The measured multijet normalisation factor is kept, but the
electroweak normalisation factor is reverted to one because the full determination of the electroweak
normalisations is carried out during the profile-likelihood fit. The 𝐸miss

T distributions after the electron
and muon multijet fits in the 2-jet regions is shown in figureⅣ.10(b).
In principle, the multijet normalisations can also be extracted from the distribution of the transverse 𝑊

mass. Since fits to 𝑚u�
T yield different normalisation factors than for 𝐸miss

T , the difference between these
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measurements is assigned as a normalisation uncertainty for the multijet backgrounds, separately in each
of the categories mentioned in the previous paragraph.

Extrapolating Multijet Events from the 1𝒃-tag to the 2𝒃-tag Region

The statistical uncertainties of the multijet templates are high due to the track isolation enforced by lepton
triggers, due to the calorimeter-isolation cut applied, but especially due the use of 𝑏-tagging. Without
further treatment, the statistical uncertainties of the multijet templates would be higher than the statistical
uncertainties of the data, especially in the tight region. The QCD multijet background would therefore
dominate the statistical uncertainties of the 𝑉 𝐻 analysis. Since no triggers with higher statistics for
poorly isolated leptons are available, and since the calorimeter isolation is already relaxed, the only way
to further increase the template statistics is to relax the 𝑏-tagging requirement.
In previous versions of the ATLAS 𝐻 →𝑏�̄� analysis [2–4], where no multivariate classifiers were used,

the 𝑏-tagging requirement was lifted entirely: the multijet template was obtained from the 0𝑏-tag region.
With this strategy, the statistical uncertainty of the multijet template is negligible, but event kinematics
change strongly:

• 𝑏-tagging changes the transverse momenta of the jets. 𝑏-tagging is more efficient for high-momentum
jets. Therefore, the jet 𝑝T spectra are harder after 𝑏-tagging and too soft in the multijet template.

• A significant fraction of 𝑏�̄� events is produced by gluon splitting. Lifting the 𝑏-tagging requirement
increases the contribution of other jet production modes, which leads to a larger angular distance
between the jets. Multijet templates without 𝑏-tagging therefore have larger invariant masses of jet
pairs, which is an important observable for the 𝐻 →𝑏�̄� search.

• 𝑏-tagging favours jets with semileptonic decays. Leptons in or close to jets are predominantly produced
by bottom to charm and charm to light decays. When 𝑏-tagging is applied, the angular distance between
jets and leptons therefore changes.

A QCDmultijet template with distortions in the distributions of these three observables due to the lifting of
the 𝑏-tagging requirement cannot be used in conjunction with a multivariate analysis because multivariate
classifiers are sensitive to such differences.
Therefore, a better multijet estimation strategy was devised by only partly lifting the 𝑏-tagging require-

ment: instead of using events without 𝑏-tags, events with at least one 𝑏-tagged jet are used. In this case,
the distributions used to train the multivariate classifiers are more similar to the distributions in the 2𝑏-tag
region, but differences are still measurable. To mitigate these residual differences, all observables used in
the multivariate analysis as well as others such as the lepton momentum were compared for 1- and 2𝑏-tag
multijet events. For one-muon events, no significant differences were found. This is because most of the
jets in these events are indeed 𝑏-jets or 𝑐-jets because the dominant source of such muons are semileptonic
decays in heavy-flavour jets.
This is different for electrons because the dominant source of these are misidentified hadrons. In

electron multijet templates, significant differences between the 1- and 2𝑏-tag regions were found, the
largest in the distance between the two leading jets, Δ𝑅(𝑏, 𝑏): the 1𝑏-tag template predicts larger angles
than the 2𝑏-tag template. This is shown in figureⅣ.11(a). Correction functions for the 1𝑏-tag template
are shown in figureⅣ.11(b). These corrections are larger for tight 𝑏-tagging because the bias due to the
more aggressive 𝑏-tagging is stronger: if both jets are 𝑏-tagged, gluon splitting is enriched, which leads
to small distances between jets. If only one jet is 𝑏-tagged, gluon splitting is not enriched, and other
processes contribute, which do not necessarily produce jets with small angular distance.
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Figure Ⅳ.11: Comparison of multijet templates in the 1- and 2u�-tag region. (a) The shaded 1u�-tag template
predicts higher values of Δu�(u�, u�) than the 2u�-tag template (blue markers). Differences are shown as red and
orange uncertainty bands. (b) Functions used to correct the difference in Δu�(u�, u�). The corrections depend on the
u�-tagging working point because of changes in the background composition.

After the application of Δ𝑅(𝑏, 𝑏) corrections, the 1𝑏-tag templates (solid histogram in figureⅣ.11(a))
match the 2𝑏-tag distributions, the markers in figure Ⅳ.11(a). Correcting Δ𝑅(𝑏, 𝑏) also corrects dif-
ferences observed in the dijet-mass distributions (cf. list above), but a small disagreement in 𝑝u�

T and
𝑝LeptonT remains. Details are shown in figure B.1 on page 208. This difference in 𝑝u�

T arises because
𝑏-tagging favours events with higher transverse momenta of leptons (cf. list above), which coincide with
higher 𝑝u�

T . Therefore, 𝑝u�
T is also reweighted after applying the Δ𝑅(𝑏, 𝑏) correction. This also corrects

the disagreement observed in the 𝑝LeptonT distribution. The corrections were derived by calculating the
ratio of the distributions in the 2𝑏-tag region over the distributions in the 1𝑏-tag region. Since the accuracy
of such correction factors is limited by the statistical uncertainties of the 2𝑏-tag templates (uncertainties
of the dark blue markers), the distributions of the correction factors were smoothed. Two systematic
uncertainties are assigned: a Δ𝑅(𝑏, 𝑏) uncertainty shown as a red band in figure Ⅳ.11(a) and a 𝑝u�

T
uncertainty shown in orange. These were found to cover all remaining differences between the 1- and
2𝑏-tag templates.

Since the multivariate classifiers have access to 𝑏-tagging information, a strategy similar to truth
tagging described in sectionⅣ 2.4 has to be applied for events in the multijet templates. Since there is no
truth information in data, the 2-D 𝑏-tagging response of the leading versus the subleading jet in 2𝑏-tag
multijet events was measured. This is a two-dimensional distribution with 16 bins, and can therefore be
determined from the 2𝑏-tag template with sufficient statistical precision. This 2-D distribution is used
to predict plausible 𝑏-tagging scores for the non-𝑏-tagged jet in 1𝑏-tag multijet events: depending on
the 𝑏-tagging score of the 𝑏-tagged jet, the CDF for the 𝑏-tagging score of the other jet is retrieved from
this distribution. Similar to truth tagging, a 𝑏-tagging score is selected by sampling random points on
this CDF. Systematic uncertainties of these CDFs are low because they are directly taken from data.
Nevertheless, separate normalisation uncertainties in each of the LL, MM and TT regions are assigned to
the QCD multijet templates.
Due to the double reweighting and assigning of 𝑏-tagging scores, the multivariate analysis cannot

discriminate the multijet templates with one 𝑏-tag from templates with two 𝑏-tags. Only because of this,
multivariate classifiers can be used in the 1-lepton channel, where the largest gains are expected from
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using multivariate classifiers. In comparison to previous versions of the 𝐻 →𝑏�̄� analysis, this version
of the multijet estimation was most extensively studied, assumptions were most thoroughly backed with
systematic uncertainties, and the templates are as close to events with two truly 𝑏-tagged jets as possible.
Because of the conservative uncertainties and since the event selection is designed to keep the fraction of
QCD multijet below 20 % in comparison to other backgrounds, it will not need further special attention
in subsequent chapters. Terms like “simulations” or “Monte Carlo” may therefore be understood as
“simulations plus a small contribution of a data-driven QCD multijet estimate”.

Other Corrections

Several corrections also being applied to the simulations were not discussed here. Among these are
the matching of pileup levels in simulations to the levels observed in data, correction of trigger, lepton
identification and 𝑏-tagging efficiencies, suppression of events with detector or reconstruction errors etc.
Since these follow standard ATLAS recommendations, and are common to all ATLAS analyses, they are
of minor interest here. Details can be found in the ATLAS 𝐻 →𝑏�̄� publication [1] and references therein.
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Ⅳ 3 A Multivariate Analysis for the Detection of a 𝑯 →𝒃�̄� Signal

In this section, the first multivariate 𝐻 → 𝑏�̄� search conducted by the ATLAS collaboration will be
introduced [1]. The use of boosted decision trees as multivariate classifiers improved the expected
significance of the ATLAS 𝑉 𝐻 analysis from 1.65 𝜎6 (dijet mass analysis [4]) to 2.5 𝜎 (multivariate
analysis [1]), which amounts to an improvement of the sensitivity by 52 %. The dijet mass analysis was
updated with insights obtained from the multivariate analysis, which increased its expected significance to
1.9 𝜎 [1]. Using multivariate classifiers was therefore still 32 % better than using the improved cut-based
analysis.

Ⅳ 3.1 Introduction to Boosted Decision Trees

Boosted Decision Trees (BDTs) are a relatively simple but powerful machine-learning method to classify
data, which are represented by a set of observables. In high-energy physics, the most common application
for BDTs is to classify events into the categories “signal” and “background”.
Decision trees label data by following a hierarchic list of decisions such as a hierarchical set of cuts to

select events. Therefore, every cut analysis such as the ones in the previous 𝐻 →𝑏�̄� publications [3, 4]
can be implemented as a decision tree. The resulting trees would typically be several levels deep, and
have many “background” leaves because each selection cut discards events until a few signal-enriched
leaves, the signal regions of the analysis, remain. Depending on the number of selection cuts, the depth
of such trees can grow to 10 to 20 levels.
TMVA [147], the “Toolkit for Multivariate Data Analysis with ROOT [120]” provides a framework to

grow binary decision trees based on training data represented by a set of input variables. A binary
decision tree is a tree with exactly two branches per node as in figure Ⅳ.12(b). To grow a tree, TMVA
scans the distributions of all input variables for cuts that increase the purity of signal or background
events, thereby separating the former from the latter. The Gini index is used to determine whether a
cut increases the separation because it measures if one of the classes is in the majority:

𝐺 = 𝑝 ⋅ (1 − 𝑝), where 𝑝 = 𝑛u�(𝑥u�)
𝑛u�(𝑥u�) + 𝑛u�(𝑥u�)

𝑛u�(𝑥u�), 𝑛u�(𝑥u�) are the (weighted) numbers of signal and background events found after applying a
cut at the point 𝑥u�. Without separation, that is, 𝑛u� = 𝑛u�, one finds 𝐺 = 0.25; at full separation one
finds 𝐺 = 0. Multiple splitting points in the distributions of all input observables are tested, and the
split yielding the highest separation gain is selected to split the sample of events. The separation gain is
the difference of the Gini index in the parent node and the sum of the Gini indices in the child nodes,
weighted by the relative fraction of events:

Separation Gain = 𝐺parent − 𝐺left ⋅ 𝑁left
𝑁total

− 𝐺right ⋅
𝑁right

𝑁total

When a split is implemented, the procedure is repeated within the new nodes until a stopping condition
such as a maximum depth is reached. Each leaf of the tree is labelled “signal” or “background”, depending
on which class is in the majority in the leaf. Note that if one class completely dominates the training
sample, the splitting will predominantly create nodes labelled with the majority class. In high-energy
6 The significance for an exclusive measurement on 8 TeV data is not reported in the ATLAS note. u�0 = 0.05 (expected) is
reported for the combined 7 and 8 TeV dataset, though. The significance is obtained from u�0 using equation (Ⅳ.24) from
sectionⅣ 5.3.
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Figure Ⅳ.12: Decision-tree classification with two variables. (a) Possible set of splits, which each minimise the
Gini index. The blue line is the resulting decision boundary. The region marked with * is “overfitted”, which will be
discussed in the text. (b) shows the decision tree that implements the decision boundary.

physics, this is often the case since a few signal events have to be found in large numbers of background
events. The signal cross section is therefore usually increased during the training to match the cross
section of the total background. This leads to similar fractions of signal and background nodes, and
therefore prevents trees that almost only have background leaves.
In the example in figureⅣ.12, two classes with equal numbers of training examples are distributed in

the 𝑥1, 𝑥2-plane. A tree could be grown as follows: the first split could be implemented at 𝑥2 = 0.5,
creating a signal-free region 𝐵1 with optimal Gini index 𝐺 = 0. This is indicated by lines in the figure.
A subsequent split in 𝑥1 creates a background-free region 𝑆1, again with 𝐺 = 0. The order of these two
splits could of course be reversed, since the Gini index is zero both times. Decision trees are therefore
inherently unstable in the sense that small fluctuations in the training sample can lead to very different
trees being grown. To categorise the remaining space, the next split could be implemented using 𝑥2,
creating a background-free region 𝑆2 and a region with non-optimal separation 𝐵2. The corresponding
decision tree is shown in figureⅣ.12(b). The blue line in figureⅣ.12(a) is the decision boundary
defined by this tree, which separates the two classes.
The optimal decision boundary would be a line connecting the points where the circles intersect. The

tree in figureⅣ.12(b) crudely approximates this line using a step function in 𝑥1 and 𝑥2. With more splits,
the accuracy of this approximation would increase. However, the quality of the inference of the optimal
boundary depends on the statistics of the training sample. If the same point clouds as in figureⅣ.12(a)
would be represented with lower statistics, the decision boundary would likely be distorted more.
In principle, TMVA could derive a classical cut selection by iteratively scanning all variables and

growing a large decision tree. However, to reach human-level performance, an automated procedure has
to overcome a lack of information: a classical cut analysis is guided by (external) physics knowledge,
whereas a classifier for automated learning has to be inferred from the training data alone. It therefore
needs higher training statistics and high-enough flexibility to derive a sophisticated cut selection and to
overcome the lack of physics intuition.

When training decision trees, two extreme cases have to be balanced: versatile trees with large depth
and robust trees with limited depth. The former achieve optimal separation on the training sample because
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the decision boundary can be approximated with arbitrary precision. They might, however, perform only
poorly on datasets that are statistically independent from the training sample. This is because a deep
tree rebuilds all features of the training sample, but the underlying distributions are not approximated
correctly: after many splits, the number of training events available in each node is low. The training
algorithm will then base the splits on statistical fluctuations in the training data. In such cases, the
resulting decision boundary, although seemingly optimal on the training sample, can be far from the
truly optimal decision boundary. This is called overfitting. An overfitted region is marked with ‘*’ in
figureⅣ.12(a): although background events are expected in this region, it is classified as signal because a
fluctuation in the training sample leads to an absence of background events.
Trees with very limited depth are robust because they are unlikely to overfit the training sample. Since

only a few splits are possible, the number of events in each node is large, which mitigates the impact of
statistical fluctuations. Such trees are more likely to underfit, though: the optimal decision boundary is
only crudely approximated because only a few splits are possible.
The tree in figureⅣ.12 is an example of the latter class: the depth is limited to three consecutive splits,

leaving region 𝐵2 poorly separated. At the same time, however, it overfits region ‘*’. This, however, is a
feature of the training sample, and cannot be avoided without higher training statistics.

A shortcoming of a tree-growing algorithm as described here is that the splitting decision does not
involve any planning for future splits. It can therefore not easily handle the situation that two variables
depend7 on each other in the sense that a split in one of them has to be introduced to profit from a subsequent
split in the other variable. This is the case in figureⅣ.12(a). The optimal cuts in such cases would be found
using a 2-D scan. The computation timewould, however, increase as ( u�

2 ) = u�!
2!⋅(u�−2)! = u�⋅(u�−1)

2 = 𝒪(𝑘2)
with the number of variables 𝑘. With fast 1-D scans, the splitting can only be optimal if the tree is very
deep: in figureⅣ.12, the diagonal would only be found after many more splits.
The computational challenge to derive close-to-optimal splits with 1-D scans while controlling over-

fitting can be overcome by boosting. Any classifier can be boosted, in principle, but this technique
is predominantly used for decision trees. For the ATLAS 𝐻 → 𝑏�̄� analysis, the algorithm adaptive
boosting (AdaBoost) [148] is used:

AdaBoost:
1. Fit a simple classifier ℎ(𝒙) such as a decision tree to the training data {(𝒙u�, 𝑦u�)}u�

u�=1.
𝒙u� is the vector of input variables, and 𝑦u� is the desired response for each event 𝑖.

2. Determine the fraction of misclassified events 𝜀.
3. Apply the boost weight 𝛼 to the weights of all misclassified events:

𝑤u� → 𝑤u� ⋅ 𝛼, 𝛼 = 1 − 𝜀
𝜀

, ∀𝑖 ∈ {misclass.}

4. Adjust all weights such that the sum of weights remains constant.
5. Repeat starting at step 1.
6. Finally, combine the classifiers:

𝑦(𝒙) = 1
𝑇

u�−1
∑
u�=0

ln(𝛼u�) ⋅ ℎu�(𝒙), 𝑇 = # trees (Ⅳ.6)

7 “Dependent” and “correlated” are different: “Dependent” is used for variables that have to be used in the same tree to achieve
optimal separation. The variables in figure Ⅳ.12(a) depend on each other because the optimal decision boundary is the
diagonal connecting the intersection of the circles. “Correlated” is used if variables have correlation coefficients significantly
deviating from zero. Dependent variables may improve the separation if used correctly in the same tree. Yet correlated
variables might not increase the separation at all, for example, in the extreme case of 100 % correlation: the variables express
identical information.
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In each iteration, it can be assumed that 𝜀 < 0.5 because the label of a leaf is determined by the class
that is in the majority, unless 𝑛u� = 𝑛u�. Therefore, 𝛼 > 1, and misclassified events are assigned a higher
weight in comparison to correctly classified events.
In exampleⅣ.12(a), the only events whose weights will be increased are the signal events in region

𝐵2. The next tree being grown will therefore predominantly separate events in 𝐵2, and in a sense
“correct” the mistakes of the previous tree. This procedure is repeated until it converges, combining the
classification results of the trees according to equation (Ⅳ.6). 𝑦(𝒙) is the combined boosted classification
result, ℎu� is the hypothesis of the 𝑗th tree, and 𝒙 is the vector of input variables. For signal/background
binary decision trees, the hypothesis is 1 for signal and −1 for background leaves. Note that close
to convergence one finds: ln(𝛼u�) → 0. This is because when the training approaches the optimal
signal/background separation, newly grown trees cannot improve the classification result. This means
that the misclassification probability 𝜀 approaches 0.5, which is equivalent to random guessing. Thus,
𝛼u� ↘ 1 ⇒ ln(𝛼u�) ↘ 0. This is the point where the training can be stopped.

Boosting proved particularly useful for “weak learners”, that is, simple classifiers such as small
but robust decision trees with only two to four levels. Being robust against overfitting due to their
simplicity, their tendency to underfit is mitigated by the boosting procedure. Boosting also solves the
problem of modelling dependencies between variables. Instead of performing 2-D scans (k-D scans for
multiple dependent variables) and growing large trees, 1-D scans and boosting suffice. This is visible
in figureⅣ.12(a): the optimal decision boundary would be a diagonal connecting the points where the
circles intersect, but the first tree only finds a crude approximation. The next tree will, however, focus
on the poorly classified events in 𝐵2. The following tree will again focus on a different point along the
diagonal, etc. In this way, the diagonal is much better represented without using deep trees or performing
a 2-D scan of 𝑥1 and 𝑥2. With enough trees and high training statistics, boosted decision trees can
therefore approximate any function in any 𝑘-dimensional hyperplane as a step function. Nonetheless, a
coordinate transformation that aligns the optimal decision boundary with one of the axes in figureⅣ.12(a)
would lead to much faster convergence. Therefore, uncorrelated variables should be preferred as input
variables for BDTs.
Boosting also increases the robustness of a classifier: the majority of events is classified at the beginning

of the training using a few trees with large weights. Since by construction the boost weights decrease in
each iteration, outliers are classified in late iterations and thus contribute only small corrections to the
general classification result. By construction, this limits the impact of outliers.

A different way to look at boosted decision trees is to picture the response 𝑦 as a step function in
𝑘 dimensions; 𝑘 being the number of input variables: for a given data vector 𝒙u�, the function assigns
𝑦(𝒙u�) ∈ [−1, 1]. The points, at which the step function jumps to a new value, are decision boundaries of
trees, such as the dark blue line in figureⅣ.12(a): crossing this boundary is equivalent to the transition
𝑦(𝒙u�) to 𝑦(𝒙u� + 𝜹) = 𝑦(𝒙u�) ± 2 ln(𝛼u�), where 𝛼u� is the boost weight of the tree whose decision
boundary is being crossed. Each split implemented by any of the trees therefore corresponds to an edge in
the 𝑘-dimensional space. The location of the edges is determined by the splitting algorithm, and indirectly
by the boosting procedure. The size of the steps when crossing boundaries is determined by the boost
weight ln (𝛼u�) of the corresponding tree. Early trees with large boost weights will cover large parts of the
phase space, introduce large steps, and approximate the general features of the underlying distributions.
Late trees with low boost weights will apply small corrections, and cover more narrow regions.
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Figure Ⅳ.13: Overfitting check for BDTs trained with 1-lepton and 2-lepton events for the ATLAS u� → u�ū�
analysis. (a) Standard training with only small differences between the training sample (markers) and test sample
(histogram). The BDTs model the Monte Carlo distributions well, and are therefore able to discriminate signal
(blue) from background events (red) even on the test sample that is not analysed during the training. (b) Training
with strong overfitting, which was provoked by providing low signal statistics. The separation power on the training
sample is overestimated, and it does not generalise to the test sample (blue histogram). This training is a special
configuration that is not used to search for u� u� events, but to detect a “covariate shift”, that is, mismodelling. This
will be discussed in sectionⅣ 4.

Ⅳ 3.2 Overfitting and Regularisation

Overfitting, in high-energy physics also called “overtraining”, occurs when classification algorithms
are trained on a dataset that is too small to correctly infer the underlying distributions. Instead, the
classification algorithms rebuild random fluctuations in the training dataset such as the region marked
with the symbol ‘*’ in figure Ⅳ.12(a). Overfitting of a training sample can be detected by splitting
the training data into a training and a test sample. The test sample is not used during the training,
but it is used to evaluate the performance of the classifier after the training has converged. Since it is
statistically independent, it shows whether the classification performance generalises to independent
datasets. FigureⅣ.13 shows such a test for BDTs trained with events from the 𝑉 𝐻 →𝑉 𝑏�̄� phase space.
The response of the BDTs to signal (blue) and background events (red) is shown for both the training
sample (filled histograms) and the test sample (points with error bars). In figure Ⅳ.13(a), the results
agree well with only a few bins deviating more than the 1 𝜎 statistical uncertainty. This classifier, as well
as all others used in the 𝑉 𝐻 → 𝑉 𝑏�̄� analysis show almost no signs of overfitting. For figure Ⅳ.13(b),
overfitting was provoked in the 2-lepton channel by using a very small signal sample. On the training
sample it looks like the classifier can separate signal and backgrounds, but on the test sample one sees
that this does not generalise to statistically independent datasets.

Since overfitting a training sample can lead to poor performance on independent samples, it should be
reduced using methods of regularisation. Regularisation enforces simpler models that tend to overfit
less, and therefore generalise better to new data. All model parameters that limit the flexibility of the
decision trees enforce regularisation. The training parameters for the 𝑉 𝐻 →𝑉 𝑏�̄� decision trees are listed
in tableⅣ.5. Three of them regularise the models:
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Table Ⅳ.5: Hyperparameters for training the BDTs used in the ATLAS u� →u�ū� publication [1].

TMVA Parameter Value Description

AdaBoostBeta 0.15 𝛽 as in equation (Ⅳ.7)
NTrees 200 Number of trees trained
MaxDepth 4 Maximum depth of decision trees
nCuts 100 Granularity of scanning for possible splits
nEventsMin 100 Minimum number of events in a tree node

AdaBoostBeta The boosting can be regularised by introducing the “learning rate” 𝛽:

𝛼 → 𝛼u�, with 𝛽 < 1. (Ⅳ.7)

This reduces the boost weights such that the convergence of the algorithm is slower, but the
probability of overfitting the training sample decreases: with decreased boost weights, the training
is more robust with respect to outliers because these are assigned lower boost weights. The learning
rate of 𝛽 = 0.15 in tableⅣ.5 is considerably lower than for classic AdaBoost with 𝛽 = 1.

If viewing BDTs as a method that implements a 𝑘-dimensional step function, a reduction of the
learning rate corresponds to a reduced step size when crossing the decision boundary of a tree.
This allows for a more fine-grained sampling of the phase space.

MaxDepth As discussed before, deeper trees are more likely to overfit the data because with every split
the number of training events is reduced. Reducing the depth of the trees hence enforces simpler
models. The depth of four is a compromise between complexity and robustness.

nEventsMin Split decisions can be regularised by requiring a minimum number of training events in
each BDT node. This suppresses splits that are implemented based on features with high statistical
uncertainty. For the 𝑉 𝐻 BDTs, 100 training events are required in each BDT node; corresponding
to about 1‰ of the high-𝑝u�

T training sample. A split is not implemented if the number of events
falls below this value.

Twomore parameters not related to regularisation are listed in the table: the parameter nCuts determines
how many points are scanned for split decisions: each variable is segmented into nCuts equidistant
intervals, and the Gini index is calculated at each boundary. Choosing nCuts low speeds up the training,
but it leads to a less accurate determination of the optimal cut position. Since this parameter was chosen
to be 100 for the ATLAS 𝑉 𝐻 → 𝑉 𝑏�̄� analysis, the value range of certain variables such as transverse
momenta or invariant masses had to be limited before using these in the training. A disadvantage of this
method is that energy and momentum conservation laws cannot be inferred correctly for events where
at least one variable exceeds one of the thresholds. It therefore has to be ensured that these events are
irrelevant for the analysis at hand, for example, because the truncated regions are background-dominated.
An alternative strategy will be discussed in section Ⅴ 1.1, which is to use a transformation that does not
violate energy and momentum conservation.
The parameter nTrees in tableⅣ.5, determines the number of trees being trained. Since by construction

the boost weights decrease with each new tree, the training converges to an optimal point, after which
training new trees does not increase the separation. The optimal number of trees was found to be about
200 by testing if adding a new tree increases the separation on the test sample.
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Although overfitting can be reduced by appropriate regularisation, all classifiers are by construction
models being fit to the training sample. Statistical evaluations of such classifiers using the training sample
will therefore always be biased towards better performance. Since the statistical evaluation of Monte
Carlo simulations is a central step in each analysis in high-energy physics, this bias must be avoided.
Any statistical analysis of the simulations is therefore always carried out on the test sample. If a single
classifier is used, this, however, reduces the Monte Carlo statistics: the training sample is not available for
statistical tests after the training.
The full Monte Carlo statistics can be retained, though, if two independent classifiers with identical

model parameters are used. The training sample of one classifier is used as the test sample of the other
and vice versa. This also eliminates biases due to overfitting. In order to use such classifiers on data, a
reproducible splitting strategy needs to be devised. For the 𝑉 𝐻 →𝑉 𝑏�̄� analysis, all data and Monte Carlo
samples are split into even and odd event numbers, which creates two completely orthogonal samples of
almost the same size.
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Table Ⅳ.6: Comparison of event selection cuts for the ATLAS cut analysis [3, 4], the ATLAS u� → u�ū� MVA
baseline proposal and the u�T-based preselection developed for the ATLAS Run-1 publication [1]. Ranges indicated
with “→” vary in steps with u�u�

T .

ATLAS cut analysis Proposed for MVA 𝐻T-based

𝑝u�
T 0-90|90-120|120-160|160-200|200-∞ 120 to ∞ –

Δ𝑅(𝑏, 𝑏) 0.7a to 1.4 → 3.4 0.7a to ∞ 0.7a to ∞

𝑏-tagging 70 % 70 % 80 %

𝐸miss
T 1L 25 → 50 to ∞ 25 to ∞ 20 to ∞

𝑚u�
T 1L 40b to 120 40c to ∞ –

𝐻T 1L – – 180c to ∞

𝑚u�u� 2L 83 to 99 71 to 121 71 to 121

a if u�u�
T < 200 GeV b if u�u�

T < 160 GeV c if u�u�
T < 120 GeV
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Figure Ⅳ.14: Comparison of preselection strategies. ( ) MVA baseline proposal, ( ) cut analysis preselection and
( ) u�T-based preselection for the 1-lepton channel, 2 u�-jets (70 %). The curves show the significance obtained by
selecting only events that exceed a certain BDT classifier score. Scanning through the minimal required score yields
the curves. The signal efficiency and highest significance for the two most important preselections are indicated
at the top of the curves. The rightmost curve ( ) shows a very loose preselection with only u�-tagging and object
selection applied, which was used to find the optimal preselection.
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Ⅳ 3.3 Applying BDTs to the Search for 𝑯 →𝒃�̄� Decays

Some aspects of applying BDTs to the 𝑉 𝐻 analysis have been discussed before because they are inde-
pendent of the analysis at hand: overfitting, regularisation, model parameters and ensuring that the Monte
Carlo simulations model the data well enough to train a classifier. Now, two aspects that are specific to
the 𝑉 𝐻 →𝑉 𝑏�̄� analysis will be discussed8: the preselection of events entering the training and the choice
of discriminative variables.

A. Preselection of Events

To introduce multivariate classifiers to the 𝑉 𝐻 → 𝑉 𝑏�̄� search, a new preselection had to be derived.
This is because the approach of separating signal from background is different when using an MVA
(MultiVariate Analysis) instead of using a classical cut analysis. Recalling that the inference of the
underlying distributions cannot be guided by physics intuition, but entirely has to come from training
examples, large simulated datasets are needed. However, if sufficient training data are available, a
multivariate selection can outperform a standard selection by applying much more complicated cuts. Yet
in order to achieve this, the preselection of events entering the training should be kept to a minimum. Pre-
emptively applying selection cuts may impede the determination of sophisticated multivariate selections.
This can be shown by comparing the ATLAS cut analysis preselection [4], a preselection initially proposed
for the MVA and the final 𝐻T-based preselection listed in table Ⅳ.6. Their impact on the training of
classifiers is shown in figureⅣ.14 for the most sensitive region of the 𝑉 𝐻 analysis with one lepton and
two jets. The figure shows the performance of BDT classifiers, which only differ in the preselection
applied before the training. The discovery significance9 is plotted versus the number of 𝑉 𝐻 →𝑉 𝑏�̄� events
that can be expected to pass the selection in the dataset of 2012, with 𝑏-tagging at 70 % efficiency. Each
point on the curves corresponds to a working point that is selected by cutting on the classifier response
𝑦(𝒙): very high background suppression and low signal efficiency when requiring high 𝑦 on the left and
vice versa on the right. The optimal working point is usually at about 50 % signal efficiency. With higher
signal efficiencies, the background suppression is too low, therefore the significance decreases. For low
signal efficiency, the statistical uncertainty of the number of observed signal events is too high, which
also decreases the significance. The jitter of the curves in regions where less than 20 signal events are
expected is also caused by statistical uncertainties of the Monte Carlo samples. It should be noted that
this is not the final significance of the 𝑉 𝐻 analysis. Nonetheless, measuring this simple MVA-supported
significance can guide the choice of the best preselection strategy.
The preselection for the ATLAS cut analysis [3, 4] (left column in tableⅣ.6) draws its selection power

from cuts in the Δ𝑅(𝑏, 𝑏), 𝑚u�
T , 𝑝u�

T and 𝐸miss
T distributions. Used with BDTs, this preselection, however,

leads to low discovery significances because it pre-emptively applies cuts, which BDTs could implement
better: BDTs would create more fine-grained step functions, and can much better model the dependence
between 𝑝u�

T and Δ𝑅(𝑏, 𝑏), which is only roughly captured in five steps by the cut-analysis selection.
Therefore, loosening of the preselection cuts, but keeping 𝑝u�

T > 120 GeV, was proposed (MVA baseline
proposal, middle column in tableⅣ.6, left graph in figureⅣ.14). The figure shows that this preselection
allows for much higher significance, but it is far from being optimal. The best preselection is the𝐻T-based
preselection introduced in sectionⅣ 1 because the cuts of the MVA baseline proposal – although relaxed
in comparison with the cut analysis – still remove a large fraction of the 𝐻 →𝑏�̄� signal. At the optimal

8 It is clear that the optimal model parameters depend both on the preselection and on the input variables. Yet the strategy for
optimising the model parameters is independent of final state, preselection and input variables. The model parameters listed
in tableⅣ.5 are optimised for the preselection and variables discussed in the following.

9 For details see sectionⅣ 5.3, page 108.
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Figure Ⅳ.15: Usage of BDT classifiers to identify high-sensitivity regions to guide the derivation of preselection
cuts. The figures show distributions of (left) u�T and (right) Δu�(u�, u�)a for ( ) signal events in the high-sensitivity
phase space, ( ) signal events in the low-sensitivity phase space and ( ) the total background. All distributions
are normalised to unit area. Preselection cuts not affecting high-sensitivity events can be applied without negative
impact on the analysis. More distributions can be found in appendix B 3, page 209.

a The edge in the background distribution at Δu�(u�, u�) = 0.7 is due to an oversight: the Δu�(u�, u�) modelling cut is applied
for background events with u�u�

T < 200 GeV, but not to signal events. It does not change the conclusions, though: there are
virtually no signal events in this region, and for u�u�

T > 200 GeV the cut is not applied, anyway.

working points, one can expect about 10 signal events in the 8 TeV dataset with the baseline proposal,
but ∼65 signal events with the 𝐻T-based preselection. The latter therefore outperforms all alternatives.
If only statistical uncertainties would have to be considered, the best strategy would be to not apply

a preselection, and delegate the background suppression entirely to BDTs. However, if systematic
uncertainties are taken into account, it is beneficial to restrict the phase space to a well-understood region,
in which the Monte Carlo generators make reliable predictions. Ideally, such narrowing of the phase
space would not discard any signal events. However, a sizeable number of signal events falls into regions
with very high backgrounds.
Many of these can be discarded without reducing the sensitivity of the analysis, but a method to find

such regions is necessary. One method is to train BDTs on a dataset with a very loose preselection, and
using a large set of variables that could potentially be used for applying a preselection [7]. In the 𝑉 𝐻
case, these candidates are:
• Angular variables: Δ𝑅(𝑏, 𝑏), Δ𝜂(𝑏, 𝑏), ΔΦ(𝑉 , 𝑏𝑏), ΔΦ(ℓ, 𝐸miss

T ), min(ΔΦ(ℓ, 𝑏))
• Transverse momenta: 𝑝u�

T , 𝑝u�1
T , 𝑝u�2

T , 𝑝ℓ
T

• Invariant masses: 𝑚u�u�, 𝑚u�
T

• Others: 𝐸miss
T , 𝐻T

The very loose preselection is the basic object selection from section Ⅳ 1 with loosened transverse
momentum cuts, with signature selection cuts (2 jets, 1/2 leptons) and 𝑏-tagging. The classifier trained in
this way is by no means optimal for extracting the 𝐻 →𝑏�̄� signal strength – its response for simulations
and data might even be different – but it shows which regions of the phase space spanned by the candidate
variables have high sensitivity. The performance of this classifier is shown by the rightmost curve in
figureⅣ.14. The significance is lower than for the 𝐻T-based classifier because input variables for the
latter are optimised for discrimination power instead of being candidates for a preselection, and because
the phase space covered by the former is considerably larger. For better performance, this classifier would
require more flexibility, that is, less regularisation, but maximal performance is not necessary to derive a
preselection.
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This preselection-study classifier guided the derivation of the 𝐻T-based preselection. It was used to
split the phase space into a signal-enriched region, that is, events passing the 50 % working point, and
a background-enriched region. Figure Ⅳ.15 shows this for two variables: 𝐻T, which suppresses the
QCD multijet background, and Δ𝑅(𝑏, 𝑏), which can be used to improve the Monte Carlo description.
The figures also show the inclusive distribution for background events without using any classifier. The
histogram of 𝐻T on the left suggests that the 𝐻T cut should be placed at 𝐻T > 150 GeV, which would
avoid any loss of high-sensitivity signal events. This cut was, however, tightened to 180 GeV as described
in sectionⅣ 1.2 to restrict the analysis to a phase space with low QCD multijet background, compare
again figureⅣ.4 on page 73. This means that a small fraction of high-sensitivity signal events is lost, but
background uncertainties are reduced, and the description of the data improves.
The histogram of Δ𝑅(𝑏, 𝑏) on the right of figureⅣ.15 shows that Δ𝑅(𝑏, 𝑏) > 0.7 can be applied with

only a small loss of high-sensitivity signal events. This cut improves the Monte Carlo description because
jet cones will overlap at this distance, which distorts the jet clustering. Details of parton shower and
matching implementation are not negligible in this region, either. Results for other variables can be found
in appendix B 3 starting on page 209. The only other acceptable cuts are 𝐸miss

T > 20 GeV and cuts on
the transverse momenta of the 𝑏-jets, which are therefore part of the 𝐻T-based preselection. Other cuts
from the cut analysis or MVA baseline proposal were removed. Because of this, a larger number of signal
events is retained, which increases the sensitivity of the multivariate classifiers.

Using the 𝐻T-based preselection, one can expect 118 𝑊𝐻 →ℓ𝜈𝑏�̄� signal events in the data of 2012
instead of 25 for the MVA baseline proposal as shown by figureⅣ.14. At the same time, the QCD multijet
background remains at a controllable level. The 𝐻T cut is even superior to other QCD multijet cuts such
as 𝐸miss

T or 𝑚u�
T used in the other preselections in tableⅣ.6 because QCD multijet events predominantly

contain soft jets and leptons. While 𝐸miss
T is only sensitive to neutrinos, and 𝑚u�

T is sensitive to 𝐸miss
T +

lepton, 𝐻T is sensitive to 𝐸miss
T + lepton + jets.

The𝐻T-based preselection differs from the alternatives in tableⅣ.6 in one more respect: less restrictive
𝑏-tagging. With 𝑏-tagging at multiple working points (sectionⅣ 1.3), the phase space covered by the
MVA could be enlarged to 𝑏-jet efficiencies of 80 %, retaining (80 %)2 = 64 % of all di-𝑏-jet events.
This has to be compared to 49 % at 70 % 𝑏-tagging efficiency. Since the analysis is split into multiple
𝑏-tagging categories, the enlarged phase space does not lead to an increase of background levels: the
sum of the MM and TT categories is identical to an analysis with 70 % 𝑏-tagging preselection, but a new
category is introduced: LL. In figure Ⅳ.14, the 𝐻T-based preselection is shown with 70 % 𝑏-tagging,
though, to facilitate the comparison with the other alternatives. With 80 % 𝑏-tagging, the preselection
retains 161 signal events.

The derivation of a preselection for the 2-lepton channel was carried out with the same strategy as
has been described for the 1-lepton channel, but the results are simpler: only a loose cut on 𝑚u� = 𝑚ℓℓ,
the signature selection (2 same-flavour, oppositely charged leptons, 2 𝑏-jets), as well as the Δ𝑅(𝑏, 𝑏)
modelling cut are applied. Other preselection cuts are not necessary because requiring two isolated
leptons and two 𝑏-jets yields an event sample with only 𝑍+jets and 𝑡 ̄𝑡 backgrounds.
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Figure Ⅳ.16: Correlation coefficients of the discriminating variables in simulated u� u� → u� u�ū� events in the
2-jet regions. (a) 13 pairs of variables have correlation coefficients >30 %, 5 have high correlations >60 %. (b)
Correlations are lower in the 2-lepton channel: 8 pairs >30 %, and 2 pairs >60 %.

B. Selection of Variables

Several variables provide information to separate 𝑉 𝐻 →𝑉 𝑏�̄� events from background events. The most
powerful variables like 𝑚u�u�, 𝑝u�

T and Δ𝑅(𝑏, 𝑏) were already identified by the ATLAS cut analyses. To
complement these, a bottom-up technique was used. From a pool of possible discriminating variables,
one at a time was added to the set of input variables, and its impact on the discovery significance of the
resulting classifiers was measured. The most promising variable was added to the baseline set, and the
procedure was repeated with further variables from the pool. The resulting training variables are shown
in tableⅣ.7. Nine kinematic variables such as momenta, masses and angles between final-state objects
were selected for the 1-lepton channel. For the 2-lepton channel, 10 kinematic variables were selected.
Besides kinematic variables, the training algorithm also has access to the response of the 𝑏-tagging

algorithm for each of the two leading jets. The quasi-continuous response of MV1c is transformed into
a step function that can take four discrete values. These indicate if a jet passes the 80, 70, 60 or 50 %
working points. Details on 𝑏-tagging can be found in section Ⅲ 3.4. By adding this information to the
set of input variables, the BDTs can essentially split the phase space into 16 𝑏-tagging categories: four
working points for each of the two jets. In this way, decision boundaries can be adapted to the event
kinematics in dependence of 𝑏-tagging-related effects such as changes of background flavour compositions
or the momentum dependence of 𝑏-tagging. The classifiers were found to indeed adapt to the momentum
dependence: for high classifier outputs, 𝑏-tags on the leading jet (𝑝T > 45 GeV) are always tight, but
𝑏-tags on the subleading jet with 𝑝T > 25 GeV are often 60 % and medium, occasionally also loose.

Selecting discriminating variables by adding more and more candidates to the pool of input variables
has a potential downside: this method detects if a variable improves the discrimination power, but it does
not detect whether this variable encodes information optimally. This can lead to training variables with
high correlations, which is the case for the 𝑉 𝐻 →𝑉 𝑏�̄� input variables as shown in figureⅣ.16. High
correlations are unfavourable, because implementing decision boundaries in such settings requires a high
number of degrees of freedom, that is, cuts.
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Table Ⅳ.7: Discriminating variables of the ATLAS u� u� →u� u�ū� analysis [1].

1 Lepton 2 Leptons

𝑝u�
T • •

𝐸miss
T • •

𝑝u�1
T • •

𝑝u�2
T • •

𝑚u�u� • •
Δ𝑅(𝑏, 𝑏) • •
Δ𝜙(𝑉 , 𝑏𝑏) • •
𝑚u�

T •
min Δ𝜙(𝑙, 𝑏) •

1 Lepton 2 Leptons

|Δ𝜂(𝑏, 𝑏)| •
|Δ𝜂(𝑉 , 𝑏𝑏)| •
𝑚u�u� •
MV1c(𝑏1) • •
MV1c(𝑏2) • •

3-jet events

𝑝u�3
T • •

𝑚u�u�u� • •
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Figure Ⅳ.17: Implementation of a decision
boundary for strongly correlated variables.

This is illustrated in figureⅣ.17, which shows two vari-
ables with high correlation. An exemplary decision bound-
ary based on a grid spaced in steps of 0.1 in 𝑥1 is shown.
To implement this decision boundary, 24 cuts are neces-
sary. If the ellipsoids were rotated by 45°, the correlation
would vanish, and only two cuts would suffice to enclose
the blue ellipsoid, yielding almost better separation than
for the decision boundary shown in the figure. With high
correlations as shown in the figure, the decision boundary
can only be implemented with deep or numerous trees after
multiple iterations of boosting. If training statistics are
a limiting factor, strong regularisation has to be applied,
which suppresses deep trees. The inference of the optimal
decision boundary might therefore be prevented if multiple
correlated variables are used.

The downside of high correlations can alternatively be understood by estimating how much information
is contained in the input variables. The example in figureⅣ.17 can be decomposed into a variable with
low separation power (along the diagonal) and one with high separation power (counterdiagonal). The
information contained in the pair of variables can almost fully be represented by the single variable in
direction of the counterdiagonal. The pair therefore expresses only one “unit of information” with two
variables. This is relevant when training statistics do not suffice to populate a 𝑘-dimensional training
phase space. If the number of variables can be reduced by representing the same information with
𝑢 = 𝑘 − 𝑛noisy variables, the phase space shrinks. The difference 𝑢 is the number of usable units of
information. Statistical uncertainties therefore have less influence on the decision boundaries. A set of
variables with vanishing correlations that has 𝑢 = 𝑘 will be derived in chapter Ⅴ.
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Ⅳ 4 Excursion: Covariate Shift and Multivariate Monte Carlo
Modelling Checks

Before proceeding to the statistical analysis of the data, a short detour is taken here in order to look into
how machine learning can help to study the quality of the Monte Carlo simulations. These studies were
not conducted for the ATLAS Run-1 publication [1], but it makes sense to include these here because they
are a natural extension of the modelling studies described in sectionⅣ 2. The multivariate modelling
checks described in the following were used to check the Lorentz-invariant MVA (chapter Ⅴ), but this
MVA uses the same simulations as were used for the Run-1 publication.

Apart from overfitting, there is a second form of bias that can affect the reliability of the classifiers used
for the 𝑉 𝐻 search: the fact that Monte Carlo simulations do not perfectly model the data. Classifiers are
usually trained on simulations, and will therefore not make optimal predictions when used to classify
data events. In machine learning, this would be called “covariate shift” [149], in high-energy physics
“mismodelling”. Both terms refer to the situation that distributions in the training domain differ from
distributions in the target domain, that is, data. In high-energy physics, such differences are mitigated by
reweighting the simulations10, where necessary, or by discarding poorly described regions of the phase
space. All remaining differences need to be addressed by assigning modelling uncertainties to the Monte
Carlo simulations.
Covariate shifts can be detected using machine learning: a classifier can be trained to separate the

training domain from the target domain, that is, to separate simulations from data events. If the classifier
succeeds in separating the two classes, a covariate shift is present. The advantage of this method is that it
not only checks the modelling of single variables, but also if the dependencies of multiple variables are
predicted correctly. Such tests should be performed after known deficits of the simulations are corrected
because they would otherwise only detect the known deficits.

FigureⅣ.18 shows two classifiers, which have been trained to separate data events from simulations in
the 𝑉 𝐻 →𝑉 𝑏�̄� phase space. The BDTs slightly overfit the data sample (labelled “signal”) because the
data statistics are considerably lower than the Monte Carlo statistics. The model parameters were not
optimised for this kind of training, hence the overfitting, but an optimal training is anyway not necessary:
the information that can be obtained from the test samples (filled histograms) is sufficient to conclude
that a good description of the data is achieved in the 1-lepton channel, figureⅣ.18(a). The minimal shift
is caused by slightly different 𝑏-tagging efficiencies between data and simulations, which are covered by
the 𝑏-tagging uncertainties.
In figureⅣ.18(b), a covariate shift is detected, though, at least for a part of the phase space. The figure

shows a classifier trained on the least sensitive region of the 𝑉 𝐻 analysis: 2 leptons, 2 jets, low 𝑝u�
T .

Based on this outcome, events with classifier scores larger than 0.2 were studied in more detail. It was
found that observables such as the angles between the 𝑏-jets and the invariant mass of the 𝑏-jets are not
described correctly by the Monte Carlo simulations. These are used by the covariate-shift classifiers to
separate data from Monte Carlo events. This misdescription is caused by a deficit of 𝑍+jets events in
the Monte Carlo simulations: the 𝑍+jets backgrounds have to be scaled up by about 16 % to match the

10 Interestingly, Shimodaira shows in his paper on domain adaptation [149] that a likelihood function for predictive inference
under covariate shift should be weighted by “the ratio of the density function of the covariate in the population to that in the
observations”. The “covariate” is an input variable, and the “population” corresponds to data events, whose distributions
one wants to predict. The “observations” correspond to the training examples. In high-energy physics, this corresponds to
simulations, contrary to what the term Shimodaira uses seems to imply. The weighting prescription quoted above is therefore:
simulated events should be weighted by the ratio of the distribution in data over the distribution in simulations. This is
identical to the reweighting used to correct Monte Carlo distributions that is normally used in high-energy physics.
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Figure Ⅳ.18: BDTs trained to separate data (blue) from Monte Carlo events (red). Poor separation is a sign of
good Monte Carlo description because it is not possible to separate data from Monte Carlo events. Figure (b)
points to a misdescription in the 2-lepton category, which is caused by a deficit of u�+jets events in the simulations.
Further discussion in the text.

data. This scaling changes the background composition because the amount of 𝑍+jets is increased in
relation to 𝑡 ̄𝑡 events. Since 𝑍 + jets and 𝑡 ̄𝑡 events have different event kinematics, the distributions of
several observables such as angles between jets are changed.
Covariate-shift classifiers for all categories of the 𝑉 𝐻 analysis – and also for the 2-lepton channel

after an approximate normalisation correction for 𝑍 + jets – are shown in appendix B 4 on page 211.
No further poorly described categories could be detected. Although a covariate shift in the category 2
leptons, low 𝑝u�

T , 3 jets was visible before the normalisation correction, there is no significant separation
after the correction. This demonstrates that the misdescription is caused by incorrect normalisations.
The only misdescribed category remains 2 leptons, low 𝑝u�

T , 2 jets, but the separation decreases after the
normalisation correction. This is because an overall normalisation correction by 16 % applied to all𝑍+jets
events is not sufficient: the full correction, which has to be done separately for 2/3 jets, in dependence
of the jet flavours and including 𝑏-tagging uncertainties, is only achieved with the profile-likelihood fit
discussed in the following sections.

The detection of a covariate shift using BDTs thus proved to be a powerful and easy-to-implement
method to check the quality of the Monte Carlo description: it successfully detected the shape differences
due to the deficit of 𝑍 + jets events, and did not indicate further problems. Throughout this thesis,
an inclusive 16 % normalisation correction is therefore applied to 𝑍 +jets samples for all plots of the
2-lepton channel, but it is not applied to inputs to the profile-likelihood fit. This allows for an all-in-one
determination of the optimal scale factors during the profile-likelihood fit.
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Ⅳ 5 Statistical Analysis of the Data

Ⅳ 5.1 A Likelihood Model for Extracting a Signal Strength

The statistical model that is used to extract the Higgs signal in this thesis is a binned likelihood11model,
which is implemented with the RooFit/RooStats [120, 150, 151] framework. This discussion fol-
lows [152, 153].

For analyses such as the 𝑉 𝐻 →𝑉 𝑏�̄� search, the observed number of data events can be described by
the expected numbers of signal and background events 𝑆 and 𝐵:

𝑛 = 𝜇𝑆 + 𝐵

The signal strength 𝜇 is a parameter to scale the amount of signal events. It facilitates hypothesis testing:
setting 𝜇 = 1, the signal+background hypothesis is tested; setting 𝜇 = 0, the background-only hypothesis
is tested. For the likelihood models discussed here, 𝜇 is the parameter of interest, and in this thesis, it
represents the signal strength of the Standard Model 𝑉 𝐻 →𝑉 𝑏�̄� process.
For 𝑛 events observed in data, the likelihood function 𝐿 given 𝜇, reads:

𝐿(data ∣ 𝜇) = Poisson(𝑛 ∣ 𝜇𝑆 + 𝐵) ⋅ [
u�

∏
u�=1

𝜇𝑆 𝑓u�(𝑥u�) + 𝐵 𝑓u�(𝑥u�)
𝜇𝑆 + 𝐵

]

Poisson(𝑛 ∣ 𝜇𝑆 + 𝐵) = (𝜇𝑆 + 𝐵)u�𝑒−(u�u�+u�)

𝑛!

(Ⅳ.8)

This likelihood is the product of two terms:
• A Poisson likelihood term to obtain 𝑛 events given that 𝜇𝑆 + 𝐵 events are expected.
• For each event 𝑒, the probability density of measuring 𝑥u� (e.g. a BDT score) given the relative
fractions of signal and background: the functions 𝑓u�,u� are probability density functions for the
observable 𝑥, and 𝑓u� is for signal, 𝑓u� for background events. The expression 𝐵 ⋅ 𝑓u�(𝑥u�) d𝑥, for
example, denotes the expected number of background events in an interval of range d𝑥 around 𝑥u�.
Using the 1-lepton 𝑊𝐻 →ℓ𝜈𝑏�̄� BDT in figureⅣ.13(a) on page 91, typical values would be 𝑓u� d𝑥 =
0.1 %, 𝑓u� d𝑥 = 10 % in the leftmost bin with 𝑥u� = −1, and 𝑓u� d𝑥 = 10 %, 𝑓u� d𝑥 = 1 % at the
signal peak at 𝑥u� = 0.4.

For given data, the likelihood function only depends on 𝜇. Finding the maximum of the likelihood
function yields the most probable value of 𝜇, the maximum-likelihood estimator (ML). In practice, this is
achieved by minimising the negative logarithmic likelihood function (NLL):

− ln 𝐿(𝜇) = −𝑛 ln(𝜇𝑆 + 𝐵) + (𝜇𝑆 + 𝐵) + ln(𝑛! ) −
u�

∑
u�=1

ln [𝜇𝑆 𝑓u�(𝑥u�) + 𝐵 𝑓u�(𝑥u�)
𝜇𝑆 + 𝐵

]

= (𝜇𝑆 + 𝐵) + ln(𝑛! ) −
u�

∑
u�=1

ln [𝜇𝑆 𝑓u�(𝑥u�) + 𝐵 𝑓u�(𝑥u�)]
(Ⅳ.9)

The computationally difficult 𝑛!, as well as other constants, can be ignored for the maximisation of
the likelihood function. Ignoring these shifts the log-likelihood, but it does not affect the location of
the maximum. Obtaining the PDFs (in this chapter: Probability Density Functions) of the signal and
11 Following the conventions in the HistFactory user’s guide [152], “likelihood” will denote a probability that depends on data.
A likelihood therefore quantifies if the data are compatible with the model being tested, whereas probability just denotes the
chance of an event to occur.

102



Ⅳ 5 Statistical Analysis of the Data

background distributions, however, is challenging because the functional form of the signal/background
distributions is usually not known. The PDFs are therefore approximated by histograms of certain
observables such as the BDT classification score 𝑦(𝒙), which are estimated using simulated events.
Denoting the Poisson-distributed bin contents with ‘𝜈u�’, the likelihood of a histogram reads:

𝐿(𝑛tot ∣ 𝜇) = Poisson(𝑛tot ∣ 𝜇𝑆 + 𝐵) ⋅ [ ∏
u� ∈ bins

𝜇𝜈sig
u� + 𝜈bkg

u�
𝜇𝑆 + 𝐵

] (Ⅳ.10)

= 𝒩 ∏
u� ∈ bins

Poisson(𝑛u� ∣ 𝜇𝜈sig
u� + 𝜈bkg

u� ),

where 𝑓u�(𝑥) → 𝜈sig
u�

𝑆Δu�
and 𝑓u�(𝑥) → 𝜈bkg

u�
𝐵Δu�

.

Δu� is the width of the 𝑖th bin. The normalisation factor𝒩 is constant and can be removed when computing
the NLL. Following the convention in [152], 𝐿 is said to depend on ‘variables’ and ‘parameters’. Variables
are values that are measured in the experiment such as 𝑛, the number of observed events, whereas
parameters (Greek letters) are adjusted to maximise the likelihood. If the dataset is fixed, variables also
have a fixed value: the 𝑛u� are constant, but parameters like 𝜇 can be adjusted to maximise the likelihood.

Generalisation for Multiple Channels and Monte Carlo Samples

The probability density function (Ⅳ.10) can be generalised to multiple channels/categories and multiple
background sources by multiplying the PDFs of all channels, and by summing the bin contents of all
signal/background samples:

𝐿(𝑛u�, 𝑥u� ∣ 𝜙u�) = ∏
u� ∈ channels

[Poisson(𝑛u� ∣ 𝜈u�) ⋅
u�u�

∏
u�=1

𝑓u�(𝑥u� ∣ 𝜙u�)]

𝑓u�(𝑥u� ∣ 𝜙u�) =
𝜈u�u�u�

𝜈u�
with 𝜈u� = ∑

u� ∈ bins
𝜈u�u�

𝜈u�u�(𝜙u�) = ∑
u� ∈ samples

𝜙u�u� 𝜎u�u�u�

(Ⅳ.11)

The variables 𝑛u� are the observed numbers of data events in the channels 𝑐, the parameters 𝜙u� are a set
of normalisation factors for the simulated samples, and 𝜈u�u�u�

is the expected number of events in the bin
where the data event ‘𝑒’ is observed. The values 𝜈u�u�u�

are normalised using 𝜈u�, the total number of events
predicted for each channel 𝑐. This number is the sum of all bin contents 𝜈u�u� in category 𝑐, which, in turn,
are obtained by summing the predictions of all samples 𝑠. The last line contains normalisation factors
𝜙u�u�, which can be used to scale the raw predicted bin contents 𝜎u�u�u�, separately for each channel 𝑐 and
sample 𝑠.
In the log-likelihood function, the combination of different channels corresponds to summing the

logarithmic PDFs. In comparison to equation (Ⅳ.10), the likelihood model in equation (Ⅳ.11) is more
powerful because samples can be normalised or scaled using the additional parameters 𝜙, separately or
simultaneously across multiple samples and categories.
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Ⅳ 5.2 Parametrisation of Systematic Uncertainties with Nuisance Parameters

Systematic uncertainties of the Monte Carlo predictions have to be translated into uncertainties of
the predicted bin contents. This is achieved by making the likelihood function depend on additional
parameters, the nuisance parameters. One is usually not interested in measuring these parameters,
hence the name, but these can affect the measurement of the parameter(s) of interest. Variations of
nuisance parameters change the predicted bin contents, and thereby represent systematic uncertainties in
the likelihood. With nuisance parameters highlighted in bold font, the likelihood reads:

𝐿 (𝑛u�, 𝑥u�, 𝒂u� ∣ 𝜙u�, 𝜶u�, 𝜸u�) = ∏
u� ∈ channels

[Poisson(𝑛u� ∣ 𝜈u�) ⋅
u�u�

∏
u�=1

𝑓u�(𝑥u� ∣ 𝜙u�, 𝜶u�, 𝜸u�u�
)]

⋅ ∏
u� ∈ u�

𝒈u�(𝒂u� ∣ 𝜶u�)
(Ⅳ.12a)

𝑓u�(𝑥u� ∣ 𝜙u�, 𝜶u�, 𝜸u�u�u�
) =

𝜈u�u�u�

𝜈u�
with 𝜈u� = ∑

u� ∈ bins
𝜈u�u�(𝜙u�, 𝜶u�, 𝜸u�u�) (Ⅳ.12b)

𝜈u�u�(𝜙u�, 𝜶u�, 𝜸u�u�) = 𝝀 𝜸u�u� ∑
u� ∈ samples

𝜙u�u� 𝜼u�u�(𝜶u�) 𝜎u�u�u�(𝜶u�) (Ⅳ.12c)

This likelihood has new terms. These are:
• External constraints: The 𝒈u�(𝒂u� ∣ 𝜶u�) terms are external constraints for the nuisance parameters

𝜶u�, where 𝒑 is a source of uncertainty. 𝒈u� is the likelihood of finding the parameter 𝜶u� at the
value 𝒂u�. The values 𝒂u� are usually known, or at least estimated, from external measurements or
predictions. All nuisance parameters, for which such knowledge is available, are collected in the set
of constrainable parameters 𝒞.
Example: constraining the luminosity scale factor 𝝀 = ∫L / ∫L0. Since the luminosity of the
data sample is not known with arbitrary precision, the likelihood function must allow some freedom
to adjust the normalisation of the Monte Carlo samples. 𝝀 in equation (Ⅳ.12c) therefore scales
all samples simultaneously, but 𝝀 must be constrained to a reasonable range backed by external
measurements. Ideally, this would be done by setting the constraining PDF 𝒈lumi(L ∣ 𝜆) to the full
likelihood function of an external luminosity measurement, but this would lead to very complicated
likelihood functions since the same would have to be done for other nuisance parameters. Instead,
one includes a simplified representation of the external luminosity measurement: assuming such a
measurement is normally distributed, the maximum-likelihood value ∫L0 and its uncertainty are
sufficiently represented by a Gaussian distribution centred around ∫L0 with 𝜎 = 68 %CL(∫L ).
The parameter 𝝀 adds one degree of freedom to the likelihood model, which can be used to adjust the
total Monte Carlo normalisation, but the external constraint restricts such normalisation corrections
to a few percent. If 𝝀 significantly deviates from one, the total likelihood falls because a tension with
the external luminosity measurement is observed. In this way, additional information is propagated
into the 𝑉 𝐻 →𝑉 𝑏�̄� likelihood, thus making it a more powerful model.

• Statistical uncertainties of the Monte Carlo simulations, 𝜸u�u�. If the statistical uncertainty of the
Monte Carlo simulations – or data-driven prediction of the bin content – is not negligible in a given
bin, a 𝜸 parameter is added to include this knowledge in the likelihood model. These parameters allow
for limited variations of the predicted bin contents. The magnitude of such variations is determined
by adding a constraint term 𝒈bin u�u�(𝝂u�u� ∣ MC stat.unc.) for each bin with a 𝜸 parameter. Although
several samples may contribute to a bin, a single parameter reflecting the total statistical uncertainty
of each bin is sufficient.
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Example: bin with very high sensitivity. In the 𝑉 𝐻 analysis, the background suppression in the
rightmost bins of a BDT response can be so high that the statistical uncertainty of the Monte Carlo
simulations is non-negligible. A 𝜸 parameter is therefore assigned when the relative uncertainty falls
below 5 %.

• Normalisation uncertainties, 𝜼u�u�(𝜶u�). These are similar to the normalisation factors 𝝓 except for
the fact that the 𝜼 are constrained by 𝒈u�-terms, whereas the 𝝓 vary freely. The 𝜼 parameters are used
to scale the normalisation of a sample within predefined confidence intervals.

Example: the multijet normalisation uncertainties. Before the profile-likelihood fit, the normalisations
of the multijet templates are measured in data, and the uncertainties of these measurements have to
be reflected in the likelihood model using the constraint terms. The 𝝓 parameters, by contrast, are
used for the main backgrounds 𝑡 ̄𝑡 and 𝑉 +jets. They are not constrained since there are no auxiliary
measurements (in the 𝑉 𝐻 phase space), and hence their normalisations are directly inferred from the
data.

• Shape uncertainties. Not only the normalisations of the samples, but also the contents of single
bins can vary due to systematic uncertainties, which leads to changes in the predicted distributions of
observables. Therefore, the predicted bin contents 𝝈u�u�u� in equation (Ⅳ.12c) depend on the nuisance
parameters 𝜶u�. Shape changes are also constrained with 𝒈u�-terms to keep the magnitude of the
changes consistent with knowledge obtained from external measurements.

Example: the jet energy resolution (JER). Variations of the jet energy resolution affect all jet-energy-
dependent variables such as 𝑝jetT or 𝑚u�u�. This leads to shape changes in all distributions that depend
on such variables, particularly in an observable like the BDT classification score.
The power of the constraint terms is to incorporate knowledge from auxiliary measurements, as well

as theoretical predictions, into the likelihood model: without constraint terms, the nuisance parameters
𝜶 could be adjusted to any value that maximises the likelihood function. If it is known, however, that
parameters like luminosity, normalisations or detector calibrations are likely to be found in a certain
region, this information should be reflected by the likelihood model.
Ideally, to correctly incorporate all available knowledge, the full likelihood functions of all external

measurements would be inserted. In practice, the constraint terms are much simpler: only the main
results like central value and uncertainty are included to simplify the computations. For some systematic
uncertainties such as the detector acceptance for 𝑉 𝐻 → 𝑉 𝑏�̄� events, no auxiliary measurements exist.
In this case, the constraint terms can be seen as a kind of “prior belief” obtained from Monte Carlo
predictions. Two kinds of constraint functions are used:
• Gaussian: Most systematic uncertainties are assumed to be normally distributed, and are thus
constrained with a Gaussian PDF centred at zero and with a standard deviation of one. After fits to
data, most 𝜶 are therefore distributed around zero, and fluctuate mostly between −1 and 1.
The Gaussian constraint is used for all shape uncertainties and also for normalisation uncertainties. If
an uncertainty should affect multiple samples, categories or bins simultaneously, a single constraint
term 𝒈u�(𝒂u� ∣ 𝜶u�) and a single parameter 𝜶u� are assigned to all of them. In this way, information
about a nuisance parameter can be measured in one region, and be transferred to others.

• Poisson: The number ofMonte Carlo events in each bin fluctuates according to the Poisson distribution,
and consequently cannot be constrained with Gaussian terms. The constraint term for 𝜸-parameters
is therefore 𝑔u� = Poisson(𝑚u� ∣ 𝛾u�𝜏u�), where 𝑚u� is the number of events predicted in bin 𝑖, given
𝜏u� = (𝜈u�/𝛿u�)2. This is the squared ratio of the relative Monte Carlo uncertainty 𝛿u� and of the initially
predicted bin content 𝜈u�. The 𝛾u� start at one and can fluctuate up and down during the likelihood
maximisation.
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Interpolation of Shape and Normalisation Changes

Similar to not including the full likelihood function for external constraints, systematic uncertainties are
represented only approximately in a likelihood model. The impact of systematic uncertainties on the
terms in the likelihood function such as predicted bin contents or normalisations is parametrised using
three points: the nominal prediction and two predictions obtained by setting the uncertainty to ±1 𝜎.
These points are denoted with 𝛼 = 0, ±1. To allow for smooth transitions between these points, the bin
contents 𝜎csi(𝛼) in equation (Ⅳ.12c) are interpolated linearly between these three values of 𝛼.
For normalisation uncertainties like the 𝜂cs in equation (Ⅳ.12c), a hybrid interpolation strategy with

polynomial interpolation and exponential extrapolation is used:

𝐼(𝛼; 𝐼0, 𝐼+, 𝐼−) =
⎧{
⎨{⎩

(𝐼+/𝐼0)u� 𝛼 ≥ 1
1 + ∑5

u�=0 𝑎u�𝛼u� |𝛼| < 1
(𝐼−/𝐼0)−u� 𝛼 ≤ −1

(Ⅳ.13)

The value 𝐼 is the model prediction, that is, the normalisation factor of a sample for a particular value of
𝛼. 𝐼0 is the initial value, 𝐼± the up and down variations caused by the uncertainty.
If an extrapolation is required (|𝛼| > 1), the exponential strategy ensures that normalisations cannot

turn negative. This could alternatively be solved by using a log-normal constraint term for the nuisance
parameter, and using linear extrapolation for the normalisation. With exponential extrapolation and
Gaussian constraint, though, the same effect is achieved. This can be seen by writing equation (Ⅳ.13) as
𝐼 = 𝛼′ with 𝛼′ = eu� ln (u�±/u�0). Since 𝛼 is normally distributed, and the other terms are constant, 𝛼′

is log-normally distributed. The extrapolation prescription therefore simplifies to a linear extrapolation
in a log-normally distributed variable. The advantage of using exponential extrapolations is that both
normalisation- and shape-related nuisance parameters can be constrained using Gaussian distributions. It
also facilitates the interpretation of the post-fit values of the nuisance parameters because both shape and
normalisation uncertainties should be distributed normally.
Nonetheless, the exponential strategy has one disadvantage: it has a discontinuous first derivative

at 𝛼 = 0, which poses a problem for the likelihood maximisation unless 𝐼+/𝐼0 = 𝐼0/𝐼−. Therefore,
a polynomial interpolation is employed in the regions |𝛼| < 1. The six coefficients 𝑎u�(𝐼+, 𝐼0, 𝐼−) are
determined from six boundary conditions: the function as well as the first and the second derivatives
have to be continuous at the points 𝛼 = ±1.

Ⅳ 5.3 Statistical Tests for Detecting a 𝑯 →𝒃�̄� Signal: The Profile-Likelihood
Ratio

Likelihood models such as the one described by equations (Ⅳ.12a) to (Ⅳ.12c) can be used to detect
signs of 𝐻 →𝑏�̄� decays in data. This can be done by testing hypotheses about 𝜇, in particular the null
hypothesis 𝐻0 (𝜇 = 0) and the signal+background hypothesis 𝐻1 (𝜇 = 1). Being able to reject 𝐻0 in
favour of 𝐻1 shows that the data are compatible with the presence of a new process such as 𝐻 → 𝑏�̄�
decays. This does not prove the existence of 𝐻 →𝑏�̄� decays, though: other processes that lead to similar
observations can also lead to a rejection of the null hypothesis.
Alternatively, one can try to exclude 𝐻1. Being unable to exclude the signal hypothesis can be taken

as indication for a Higgs-like process provided that it can be shown with simulations that the analysis
is sensitive enough for an exclusion. Both approaches are followed in this work. First, however, a
strategy must be established to measure 𝜇 with statistical and systematic uncertainties using the maximum-
likelihood approach: the profile-likelihood ratio.
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The profile-likelihood ratio is defined as:

𝜆(𝜇) =
𝐿 (𝜇, ̂̂𝜽)

𝐿 ( ̂𝜇, ̂𝜽)
. (Ⅳ.14)

Following Cowan et al.’s [154] notation, parameters with the symbol ‘^’ are maximum-likelihood estim-
ators. ̂𝜇 and ̂𝜽 in the denominator are the signal strength and the vector of nuisance parameters that yield
the global maximum of the likelihood for the given data. The maximum can be found by minimising −𝐿
or − ln 𝐿 with gradient-descent minimisers such as MINUIT [155]. In the numerator, the same likelihood
function is used, but 𝜇 is taken as a parameter of the function 𝜆. This means that 𝜇 is fixed and not
being optimised during the likelihood maximisation. Since 𝜇 cannot be changed by the minimiser, the
likelihood in the numerator is either lower or equal to the one in the denominator, hence 0 ≤ 𝜆 ≤ 1.
If a specific value of 𝜇 is chosen by the user, the nuisance parameters 𝜽 in the numerator are re-optimised

depending on 𝜇. Therefore, the likelihood in the numerator is a conditional likelihood. The notation
̂̂u� denotes conditional maximum-likelihood estimators – in this case depending on 𝜇 – whereas in the
denominator the maximum-likelihood estimators are unconditional.
The profile-likelihood ratio in equation (Ⅳ.14) is a special case of a composite statistical hypothesis

test described by Wilks [156]. Wilks shows that twice the negative logarithmic ratio of two likelihoods is
distributed as 𝜒2, that is

− 2 ln (𝜆(𝜽)) = 𝜒2
u� + 𝒪 ( 1√

𝑛
) ≈ 1

2u�/2 Γ(u�/2)
𝑥u�/2−1e−u�/2. (Ⅳ.15)

𝜽 are the parameters of the likelihoods, 𝜒2
u� is a 𝜒2 distribution with 𝑘 degrees of freedom, 𝑛 is the number

of data events. Wilks’ result is valid if two conditions are met: firstly, the likelihood in the numerator is
required to be a special case of the likelihood in the denominator. The PDF in the numerator must result
from the PDF in the denominator by releasing12 𝑘 parameters of the model in the denominator. Secondly,
the data need to be ‘from a population with a distribution characterized by values of the 𝜽’ [156], the
model parameters. This means that the parameters need to provide sufficient flexibility that the model can
describe the data. For the profile-likelihood ratio, this can be tested by inverting Wilks’ result: releasing
one parameter of the model, one can test if −2 ln(𝜆) is 𝜒2

1 distributed by computing the corresponding
probability. If all nuisance parameters are released one by one, and each is found to be 𝜒2

1 distributed as
well as consistent with expectations, one can conclude that the nuisance parameters are able to describe
the data. This will be tested in detail in section Ⅴ 2.

This result can be used to compute the uncertainties of the parameter of interest: releasing 𝜇, the PDF of
−2 ln(𝜆(𝜇)) can bemeasured bymaximising the likelihood in the numerator for all values of𝜇. Integrating
this PDF to both sides of the value of maximum likelihood ̂𝜇 yields the 1, 2 and 3 𝜎 uncertainties of

̂𝜇. The corresponding confidence intervals are defined by the central 68.3, 95.4 and 99.7 % quantiles
of the cumulative density function (CDF). Since −2 ln(𝜆(𝜇)) should be 𝜒2

1 distributed, which is the
distribution of a squared, normally distributed random variable, these quantiles are defined by the points
−2 ln(𝜆) = 1, 4, 9, that is, the 1, 2 and 3 𝜎 quantiles of the underlying normal distribution.

12 Releasing in this context means that the parameters are released from the fit, and hence are not inferred from data. Instead,
their value can be chosen by the user.
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This further allows to give an approximate expression for −2 ln(𝜆(𝜇)) as shown by Wilks [156] and
Wald [157]:

− 2 ln(𝜆(𝜇)) ≈ (𝜇 − ̂𝜇)2

𝜎2 + 𝒪 ( 1√
𝑛

) . (Ⅳ.16)

̂𝜇 is the maximum-likelihood value of the signal strength, a normally distributed observable that fluctuates
around the true signal strength in data, 𝜇′, with a standard deviation of 𝜎. 𝑛 is again the size of the data
sample, and 𝜎 has to be estimated from the uncertainties of ̂𝜇.

𝒑-value and Discovery Significance

If the distribution of −2 ln(𝜆) is known, one can perform hypothesis tests. To test, for example, the
background-only hypothesis 𝐻0, the 𝑝-value of the 𝜒2 distributions has to be computed. The 𝑝-value is
the probability to obtain data that are equally or more incompatible with a hypothesis than the measured
outcome. As shown in figure Ⅳ.19, 𝑝0 is computed by integrating the distribution of a suitable test
statistic based on 𝜆 from the measured value 𝑞obs0 over all values that are even less compatible with the
hypothesis:

𝑝0 = ∫
∞

u�obs
0

𝑓(𝑞0) d𝑞0. (Ⅳ.17)

Here, 𝑞0 is a test statistic for 𝐻0 based on equation (Ⅳ.15), and it quantifies the compatibility of the data
with the background hypothesis. The PDF 𝑓(𝑞0) is its distribution. If a very low 𝑝-value is obtained, one
can conclude that 𝑞0 does not follow the distribution 𝑓(𝑞0), and the null hypothesis should be rejected
based on the measured outcome. In particle physics, it was agreed that the null hypothesis 𝐻0 needs to
be rejected with 𝑝0 ≤ 2.8×10−7 or “five standard deviations” (see next page) to claim a discovery.
For the discovery of a signal, that is, rejection of the background hypothesis 𝐻0, Cowan et al. [154]

propose the following test statistic:

𝑞0 = {
−2 ln 𝜆(𝜇 = 0) ̂𝜇 ≥ 0
0 ̂𝜇 < 0

(Ⅳ.18)
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If the maximum-likelihood value of the signal strength, ̂𝜇, is larger than zero, 𝑞0 is equivalent to Wilk’s
likelihood ratio test evaluated at 𝜇 = 0, equation (Ⅳ.15). If ̂𝜇 is smaller than zero, 𝑞0 vanishes. This
means that a downward fluctuation of ̂𝜇 is not regarded as contradictory to the background-only hypothesis.
This is because an incidental lack of events in data should not lead to the exclusion of the background
hypothesis – or worse, be misinterpreted as the exclusion of a signal.
Since 0 ≤ 𝜆 ≤ 1, one has 𝑞0 ≥ 0. The asymptotic PDF of this test statistic is [154]:

𝑓(𝑞0 | 𝜇′) = (1 − Φ (𝜇′

𝜎
)) 𝛿(𝑞0) + 1

2
1√
2𝜋

1
√𝑞0

e− 1
2 ( √u�0− u�′

u� )
2

(Ⅳ.19)

𝜇′ is the signal strength assumed in the data, 𝜎 is the uncertainty of measurements of this signal strength,
and Φ in the first term is the CDF of a Gaussian distribution with unit variance. The 𝛿 term arises because
a one-sided test is performed: 𝑞0 is set to zero if the measured signal strength ̂𝜇 is smaller than zero, but
the probability to obtain negative values of ̂𝜇 must be reflected in the CDF, and is thus placed exactly at
zero. The CDF of the test statistic is found by integrating its asymptotic distribution, equation (Ⅳ.19).
The result is:

𝐹(𝑞0 ∣ 𝜇′) = Φ ( √𝑞0 − 𝜇′

𝜎
) , (Ⅳ.20)

where Φ is again the CDF of a Gaussian distribution with unit variance, 𝜇′ is the signal strength assumed
in data, and √𝑞0 is always real.
When using 𝑝0, one tests the assumption that the data show no signs of a signal, that is, 𝜇′ = 0.

Probability density and CDF therefore simplify to:

𝑓(𝑞0 ∣ 0) = 1
2

𝛿(𝑞0) + 1
2

1√
2𝜋

1
√𝑞0

e−u�0/2, and (Ⅳ.21)

𝐹(𝑞0 ∣ 0) = Φ ( √𝑞0) . (Ⅳ.22)

For the PDF one finds a mixture of a 𝛿 distribution at zero and half of a 𝜒2 distribution with one degree of
freedom, Wilks’ result from equation (Ⅳ.15). The CDF simply is an integral over a Gaussian distribution.
Since 𝑝0 = 1 − 𝐹(𝑞0 ∣ 0) according to equation (Ⅳ.17), using equation (Ⅳ.22) yields:

𝑝0 = 1 − Φ ( √𝑞0) . (Ⅳ.23)

The distribution of 𝑞0 and the 𝑝-value for a given 𝑞observed0 are shown in figureⅣ.19. Background-only
data most likely yield small 𝑞0 and large 𝑝-values ( ), whereas data with signs of a signal often yield large
𝑞0 ( ). This yields small 𝑝-values because these are always computed using 𝑓(𝑞0 ∣ 0), that is, assuming
no signs of a signal in the data. The largest-possible 𝑝-value is 50 %, which is reached when ̂𝜇 ≤ 0.

𝑝-values can be converted into a more intuitive quantity, the discovery significance, 𝑍0. It maps
the measured 𝑝-values to 𝑝-values of a Gaussian distribution with unit variance, see figureⅣ.20:

𝑍0 = Φ−1(1 − 𝑝0). (Ⅳ.24)

Here, Φ−1 is the inverse CDF of a Gaussian distribution, the function that maps the non-shaded area in
figureⅣ.20 to the abscissa. The critical 𝑝-value in high-energy physics, 2.8×10−7, is equivalent to the
integral over the Gaussian distribution from 5 𝜎 to infinity.
The discovery significance can be computed from 𝑞0 by inserting equation (Ⅳ.23) into equation (Ⅳ.24).

One obtains the simple expression:
𝑍0 = √𝑞0. (Ⅳ.25)
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Discovery significance and 𝑝0 can not only be calculated with the observed data, but also with simulations
to estimate the sensitivity of an analysis. For this, the likelihood model is fit to the Asimov dataset. This
is a dataset generated from the signal+background prediction, which simulates the expected distribution
of the data. The difference to the nominal Monte Carlo prediction is that the statistical uncertainties of
the Asimov dataset are equal to the expected uncertainties of the data. If the plain Monte Carlo prediction
was used, estimates of the sensitivity would be too optimistic because usually, one has higher statistics
in the Monte Carlo samples than in the data. The signal strength in the Asimov dataset, 𝜇′, can be
chosen freely. In this way, the result of the 𝐻0 tests can be simulated for any value of 𝜇′ that might be
encountered in data. Typically, 𝜇′ is set to one to obtain the expected significance of the Standard
Model prediction. In section Ⅴ 1, this will be used as a metric to compare the Lorentz-invariant MVA to
the 𝑉 𝐻 MVA from the current chapter.

Example: Discovery Significance for a Simple Counting Experiment

Using the results from this section, one can estimate the discovery significance for a simple counting
experiment, for which one takes the background rate as known, and signs of a signal are quantified by
trying to reject the null hypothesis. If one finds 𝑛 data events while expecting a total number of 𝜇𝑆 + 𝐵,
the likelihood is just one Poisson term:

𝐿(𝑛 ∣ 𝜇) = (𝜇𝑆 + 𝐵)u�

𝑛!
⋅ e−(u�u�+u�)

The profile-likelihood test statistic for testing 𝐻0 is:

𝑞0 = {
−2 ln u�(0)

u�(û�) ̂𝜇 ≥ 0
0 ̂𝜇 < 0

In the numerator, one fixes 𝜇 to zero, whereas in the denominator, 𝜇 is measured in data by maximising
the likelihood. This yields the ML value ̂𝜇, and if it is non-negative, the observed 𝑞0 is:

𝑞obs0 = −2 ln 𝐵u�/𝑛! ⋅e−u�

( ̂𝜇𝑆 + 𝐵)u�/𝑛! ⋅e−(û�u�+u�) = −2 ln (𝐵u�/( ̂𝜇𝑆 + 𝐵)u� ⋅ eû�u�)

= −2 (𝑛 ln ( 𝐵
̂𝜇𝑆 + 𝐵

) + ̂𝜇𝑆) = 2 (𝑛 ln (1 + ̂𝜇𝑆
𝐵

) − ̂𝜇𝑆)

If the data statistics are large enough, one can use equation (Ⅳ.25) to compute the discovery significance.
Using an Asimov dataset, one can further estimate the median expected significance. In this case, the
Asimov dataset with 𝜇′ = 1 would by definition yield a count of 𝑛 = 𝑆 + 𝐵 data events, and a fit to this
dataset would by definition converge to ̂𝜇 = 𝜇′ = 1. Inserting these into 𝑞obs0 yields:

median[𝑍0 | 𝜇′ = 1] = √𝑞Asimov0 = √2 ((𝑆 + 𝐵) ln (1 + 𝑆
𝐵

) − 𝑆) if 𝐵 ≳ 5; (Ⅳ.26)

= √2 ((𝑆 + 𝐵) ( 𝑆
𝐵

− 1
2

𝑆2

𝐵2 + …) − 𝑆) if 𝑆 < 𝐵;

= 𝑆√
𝐵

(1 + 𝒪(𝑆/𝐵)) , if 𝑆 ≪ 𝐵. (Ⅳ.27)
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Figure Ⅳ.21: Asymptotic vs. exact discovery signific-
ance for counting experiments where u� is well known and
signs of the signal u� are searched for in data. Based on
[154].

Equation (Ⅳ.26) is the standard approximation
for the discovery significance that is used in AT-
LAS. The asymptotic formulae used to derive it
are, however, only valid with sufficient data statist-
ics. This is shown in figureⅣ.21, which compares
Monte Carlo measurements of the median signi-
ficance with the asymptotic formula from equa-
tion (Ⅳ.26) (blue line) and the widely used ap-
proximation 𝑆/

√
𝐵 from equation (Ⅳ.27) (red

dotted line). The asymptotic formula usually over-
estimates the significance, but for 𝐵 ≳ 5 (dashed
line) or large 𝑆, it is quite accurate. The exact
median significance jumps because the number
of observed events 𝑛 is discrete. 𝑆/

√
𝐵 is only

accurate if 𝑆 ≪ 𝐵 holds such that the logarithm
in equation (Ⅳ.26) is sufficiently approximated by
the first two terms of its Taylor series. Otherwise,
𝑆/

√
𝐵 strongly overestimates the significance. In

this work, asymptotic significances are therefore
always computed using equation (Ⅳ.26).

Exclusion Limits

Instead of trying to reject the null hypothesis by calculating the corresponding 𝑝-value, one can also
select a fixed 𝑝-value, and find the highest 𝜇 that is still compatible with the data. This defines an upper
limit on 𝜇. The 𝑝-value is usually set to 5 %, corresponding to a confidence level (CL) of 95 %.
All values of 𝜇 with 𝑝-values lower than 5 % are said to be “excluded at 95 % confidence level”. If the
signal+background hypothesis 𝜇 = 1 falls into the exclusion range, this can be taken as indication that
the signal is not visible in the data. By construction, the probability of false exclusion is 5 %, though. If
an analysis is sensitive enough to exclude a signal, but an exclusion is not possible given the data, this can
be taken as an indication for the presence of a new process.
A simple method to estimate the upper limit on 𝜇 is to assume that ̂𝜇 follows a Gaussian distribution

centred at the true value of the signal strength, 𝜇′, with a variance of 𝜎2. The 95 % confidence level is
obtained by finding the 95 % quantile of the corresponding PDF and solving for 𝜇up:

0.95 = ∫
u�up

−∞
Gauss(𝜇 | ̂𝜇, 𝜎) d𝜇 . (Ⅳ.28)

For a Gaussian distribution with unit variance, the 95 % quantile is reached at 1.645. The upper limit can
therefore be estimated using:

𝜇up ≈ ̂𝜇 + 1.645 𝜎. (Ⅳ.29)

For a more thorough calculation that correctly takes into account the underlying PDF of 𝜇, Cowan
et al. [154] propose the test statistic

𝑞u� = {
0 ̂𝜇 > 𝜇 ,
−2 ln 𝜆(𝜇) ̂𝜇 ≤ 𝜇 .

(Ⅳ.30)

111



Chapter Ⅳ Search for 𝐻 →𝑏�̄� Decays with ATLAS

High values of 𝑞u� again indicate incompatibility of the data with the value of 𝜇 being tested. In contrast
to equation (Ⅳ.18), this test statistic vanishes when ̂𝜇 ≥ 𝜇 instead of ̂𝜇 < 0 because the observed value
of the signal strength, ̂𝜇, cannot be excluded by an upper limit. That means that 𝑞0 tests for implausible
values of 𝜇 to the left and 𝑞u� to the right of ̂𝜇.
The asymptotic PDF of this test statistic reads [154]:

𝑓(𝑞u� | 𝜇′) = Φ (𝜇′ − 𝜇
𝜎

) 𝛿(𝑞u�) + 1
2

1√
2𝜋

1
√𝑞u�

e− 1
2 ( √u�u�− u�−u�′

u� )
2

, (Ⅳ.31)

where 𝜇′ is again the signal strength assumed in data, 𝜎 is the standard deviation of measuring the signal
strength, and Φ is the CDF of a Gaussian distribution with unit variance. The 𝛿 term again arises because
a one-sided test is performed, and the right-hand term converges to the distribution 1

2𝜒2
1 when 𝜇 = 𝜇′.

The 𝑝-value, the probability of obtaining a test statistic higher than the observed value, 𝑞obsu� , is [154]:

𝑝u� = ∫
∞

u�obs
u�

𝑓(𝑞u� | 𝜇′) d𝑞u�, (Ⅳ.32)

= 1 − Φ ( √𝑞u� − 𝜇 − 𝜇′

𝜎
) . (Ⅳ.33)

Asymptotic distributions for 𝑞u� for different values of 𝜇′ are shown in figureⅣ.22. To obtain the 95 %
CL upper limit on 𝜇 given ̂𝜇, one needs to find the value of 𝜇 where 𝑞obsu� = 𝑞95

u� , which is the value of
𝑞u� that defines the 𝑝-value of 5 % shown by the area shaded in red in figure Ⅳ.22. This can only be
achieved numerically because 𝜎 in equations (Ⅳ.16), (Ⅳ.29) and (Ⅳ.33) depends on 𝜇. One therefore
has to update 𝜇 iteratively using the distribution of 𝑝u� from equation (Ⅳ.33):

𝜎u�(𝜇u�) = 𝜇u� − ̂𝜇
√𝑞u�,u�

(Ⅳ.34a)

𝑞95
u�′ ( 𝜇′

u�
𝜎u�(𝜇u�)

) = 𝑞u�′,u� ≈ (𝜇′
u� − ̂𝜇)2

𝜎2
u� (𝜇u�)

(Ⅳ.34b)

𝜇u�+1 = 𝜇u� + 𝛾u�(𝜇u� − 𝜇′
u�) (Ⅳ.34c)

In each iteration, 𝜎u�(𝜇) is computed directly from the profile-likelihood ratio 𝑞u� = −2 ln(𝜆) using
equation (Ⅳ.34a), which follows from the Wald approximation, equation (Ⅳ.16). Given this estimate for
𝜎, one can numerically find the value of 𝑞u�′ that yields a 𝑝-value of 95 % according to equation (Ⅳ.34b).
This also yields an estimate of the signal strength in data, 𝜇′, which is used to correct 𝜇 according
to equation (Ⅳ.34c). However, since 𝜎 in equation (Ⅳ.34b) is computed from −2 ln(𝜆(𝜇)) instead
of −2 ln(𝜆(𝜇′)), one needs to update 𝜇 using equation (Ⅳ.34c), and repeat the whole computation
starting with a new estimate of 𝜎 from equation (Ⅳ.34a). 𝛾u� is a damping factor that reduces the step
size when updating 𝜇. When a precision of |u�−u�′|

u� < 0.005 is reached, the process is stopped because
equation (Ⅳ.33) essentially becomes 𝑝u� ≈ 1 − Φ( √𝑞u�) = 5 %.
As for the discovery significance, the test statistic 𝑞u� can also be calculated from a fit to the Asimov

dataset. This yields expected limits, which can be used to measure the exclusion power of an analysis.

The expected changing of exclusion limits due to statistical and systematic uncertainties can be estimated
by shifting the expected limit up or down by one (or 𝑁 ) standard deviations of ̂𝜇. This is evident from
equation (Ⅳ.29) when substituting ̂𝜇 with ̂𝜇 ± 𝑁 ⋅ 𝜎. As before, a more accurate way is to repeat the
limit calculation numerically using equations (Ⅳ.34a) to (Ⅳ.34c) and substituting ̂𝜇 → ̂𝜇 ± 𝑁 ⋅ 𝜎 therein.
This strategy will be used in this thesis.
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Figure Ⅳ.22: Asymptotic distribution of
the test statistic u�u�, equation (Ⅳ.31), for dif-
ferent values of the signal strength in data
(u�′). If the value u� being tested is higher
than the value in data, u�u� is often signific-
antly larger than zero ( ), because u�u� is
used to exclude high values of u�. If u� is
lower than u�′, u�u� is mostly close to zero
( ), because low values of u� are only rarely
excluded by this test. If u� = u�′ ( ), u�u�
has the same 1

2 u�2
1 distribution as u�0 (fig-

ureⅣ.19).
To find the upper limit at 95 % confidence
level, one has to find a value of u� such
that u�obsu� = u�95

u� , where a u�-value of 5 %
is reached.
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With the test statistic in equation (Ⅳ.30), negative limits on 𝜇 would be possible. If one wants to build
a model that does not allow for a negative signal strength, the test statistic can be modified to:

̃𝑞u� = {
0 ̂𝜇 > 𝜇
−2 ln �̃�(𝜇) ̂𝜇 ≤ 𝜇

=

⎧{{
⎨{{⎩

0 ̂𝜇 > 𝜇 ,

−2 ln u�(u�, ̂û�(u�))
u�(û�,û�(û�))

0 ≤ ̂𝜇 ≤ 𝜇 ,

−2 ln u�(u�, ̂û�(u�))
u�(0,û�(0))

̂𝜇 < 0 .

(Ⅳ.35)

Although the ML estimator of the signal strength, ̂𝜇, can be negative because of statistical fluctuations,
the likelihood ratio test is always conducted with the conditional likelihood evaluated at 𝜇 ≥ 0. In other
words, it is conducted against the background hypothesis plus a variable amount of (a positive) signal.
This is the test statistic that will be used for upper limits in chapterⅥ.

The 𝐂𝐋u� Method

In high-energy physics, exclusion limits are usually not quoted using 𝑝u�+u� directly. The reason for
not doing this is that such tests quantify the compatibility of the data with the signal plus background
hypothesis. What is, however, desired, is a statement about the compatibility of the data with the signal-
only hypothesis. Except for a background-free experiment, this is impossible, though. With limits based
on 𝑝u�+u�, an exclusion of the 𝑠 + 𝑏 hypothesis can occur in cases where the measured data yield fewer
events than expected from background predictions. This may be misinterpreted as an exclusion of a
signal although it is a statement only about the combined hypothesis. Especially when an analysis is not
sensitive to the signal being searched for, this can lead to surprising results: a 95 % confidence limit, by
construction, falsely excludes the 𝑠 + 𝑏 hypothesis in 5 % of the experiments, regardless of the sensitivity
of the experiment. This also holds for the test statistic ̃𝑞u� in equation (Ⅳ.35).
To obtain what Read [158] calls an “approximate confidence in the signal hypothesis”, the confidence

in the signal+background hypothesis is normalised to the confidence in the background hypothesis (Read
et al. [159, 160]):

CLu� = CLu�+u�/CLu� (Ⅳ.36)

Note that unlike Read et al., who use 𝐶𝐿u� = 𝑝u�(𝑋 ≤ 𝑋obs) with the test statistic 𝑋 = −2 ln u�(u�+u�)
u�(u�) ,
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ATLAS uses:

𝑝u� = ∫
∞

u�obs

𝑓(𝑞u� ∣ 𝜇) d𝑞u� ≡ 𝐶𝐿u�u�+u�, and

1 − 𝑝u� = ∫
∞

u�obs

𝑓(𝑞u� ∣ 0) d𝑞u� ≡ 𝐶𝐿u�.

With this definition, equation (Ⅳ.36) can be rewritten, and be used to exclude the “signal hypothesis” at
“95 % confidence level” if

CLu� =
𝑝u�

1 − 𝑝u�
≤ 5 %.

Since the denominator is less or equal to unity, CLu� is usually larger than CLu�u�+u�, and therefore yields
more conservative limits. If CLu� would be applied to figureⅣ.22 with 𝜇 = 1, one would not search the
value of 𝜇 where the red 𝑝-value is 5 %, but the value where it is 5 % times the area under the blue curve
from 𝑞95

u� to infinity. This defines 𝑞95(CLu�)
u� , which is to the right of 𝑞95

u� , and therefore yields a higher
limit. Despite its name, CLu� does hence not define a confidence level because the coverage probability is
larger than the stated 95 %. In the special case where the data are identical to the background prediction,
𝑝u� = 50 %, CLu� is twice as large as CLu�u�+u�, and yields a limit at 97.5 % confidence level. The benefit
of this prescription is that experiments with low sensitivity to 𝜇, that is 𝑝u�u�+u� ≈ 1 − 𝑝u�, cannot yield
a limit of 𝜇up = 0 even if an extreme downward fluctuation is observed in data. This avoids spurious
exclusions of a signal if an experiment is not sensitive enough. Therefore, all 𝑞95

u� in this thesis are always
based on probabilities normalised according to the CLu� prescription.

Ⅳ 5.4 Systematic Uncertainties and the Profile-Likelihood Ratio

So far, the impact of systematic uncertainties on the uncertainties of 𝜇 did not receive any special attention.
In this section, it will be explained briefly how these translate into uncertainties of 𝜇. Two nuisance
parameters of the 𝑉 𝐻 → 𝑉 𝑏�̄� likelihood model (sectionⅣ 6) will be used as real-world examples for
parameters with large and small systematic uncertainties. These are studied after fitting the likelihood
model to ATLAS data, which will be validated in more detail in section Ⅴ 2.

FigureⅣ.23 shows two profile-likelihood ratios computed according to equation (Ⅳ.15). The 1, 2 and
3 𝜎 uncertainties of the parameters are therefore found at the points where the curve reaches 1, 4 and 9.
The 1 𝜎 interval is indicated by the dashed line. The profile-likelihood ratios were obtained by maximising
the unconditional likelihood in the denominator, releasing the nuisance parameter shown on the axis and
re-maximising the conditional likelihood in the numerator for several values of the respective nuisance
parameters. The likelihood ratios or log-likelihood differences are plotted against the nuisance parameters.
The red curve in figureⅣ.23 shows the profiles with re-maximisation of the conditional likelihood, and the
blue curve shows a profile where only the released nuisance parameter changes while all other parameters
remain constant. The black curve is an approximation, which will be discussed at the end of this section.
FigureⅣ.23(a) shows a parameter with large systematic uncertainties: the normalisation of 𝑊+𝑏𝑏

backgrounds in the 𝑉 𝐻 analysis. This normalisation cannot be determined accurately because it is
anti-correlated to the 𝑡 ̄𝑡 normalisation: if 𝑊+𝑏𝑏 is reduced by a few percent, 𝑡 ̄𝑡 increases, and the total
background prediction therefore remains nearly constant. Small changes in the 𝑊+𝑏𝑏 to 𝑡 ̄𝑡 ratio will
therefore yield a likelihood that is only slightly lower than the global maximum. This means that the
numerator and the denominator in the profile-likelihood ratio (Ⅳ.14) are almost equal, regardless of
the 𝑊+𝑏𝑏 normalisation. This is because the 𝑡 ̄𝑡 normalisation parameters as well as other nuisance
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Figure Ⅳ.23: Profile-likelihood method applied to two nuisance parameters to illustrate the impact of systematic
uncertainties. The figures show logarithmic likelihood ratios where the likelihood in the numerator is ( ) re-
maximised in dependence of the nuisance parameter, ( ) not re-maximised, and ( ) where the profile is approximated
using the Hesse matrix in the minimum of −2 ln(u�); see next page.

parameters in the numerator are allowed to compensate changes of norm(𝑊+𝑏𝑏). In figureⅣ.23(a), this
yields the wide red parabola: only strong changes of the 𝑊+𝑏𝑏 normalisation lead to a notable difference
in the likelihoods, and therefore the 𝑊+𝑏𝑏 normalisation has a large uncertainty of about 10 %.
The blue parabola in figure Ⅳ.23(a) shows a likelihood scan without systematic uncertainties: the

uncertainty of the 𝑊+𝑏𝑏 normalisation therefore falls to ∼1 %. The parabola is much narrower because
the nuisance parameters in the numerator are not allowed to compensate for changes of the 𝑊+𝑏𝑏
normalisation. This is equivalent to an experiment where the 𝑊+𝑏𝑏 normalisation is measured in data,
and all other backgrounds are assumed to be fixed. In this case, only the statistical uncertainty of the data
limits the precision of the 𝑊+𝑏𝑏 measurement.
It is the fact that nuisance parameters are allowed to compensate changes of the parameter of interest

(POI) that translates systematic uncertainties implemented in the likelihood model into uncertainties of
the POI. If a nuisance parameter can compensate changes of the POI, it also means that the associated
systematic uncertainty has a similar impact on the predicted distributions as the signal that is in the focus
of the search. The more nuisance parameters can compensate changes of the POI, the higher is the total
uncertainty of the POI.

FigureⅣ.23(b) shows a nuisance parameter with very small systematic uncertainties: an uncertainty for
the simulation of the azimuthal angle between jets (ΔΦ) for 𝑍+𝑙 events in the 3-jet region. This is a shape
uncertainty that only has a small impact on the predicted distributions. Furthermore, there are no nuisance
parameters in the likelihood model that can effectively compensate shape changes associated with this
nuisance parameter. Whether other nuisance parameters are re-optimised (red) or remain unchanged (blue)
therefore has almost no effect on the profile-likelihood ratio. Consequently, the blue and red parabolas are
similar, and the total uncertainty of the nuisance parameter is almost the same as the statistical uncertainty.
If this nuisance parameter was a POI, its systematic uncertainties would be negligible.

The power of the profile-likelihood method is that it can compute the simultaneous impact of numerous
systematic uncertainties. It automatically computes whether a systematic uncertainty has a high or
low impact on the POI because it measures if the effects on the high-sensitivity bins are significant or
negligible. It also takes into account external knowledge via the constraint terms and constraints obtained
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from fits to the data. This means that nominally large uncertainties can be reduced if the likelihood model
can infer the value of certain nuisance parameters from the data, that is, constrain them. If the value of
a nuisance parameter cannot be constrained using the data, the constraint terms at least ensure that its
impact is consistent with external knowledge such as auxiliary measurements.
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FigureⅣ.24:Distribution of a log-likelihood
difference for a Poisson-distributed nuisance
parameter if u� = 5 events have been meas-
ured.

The likelihood profiles in figureⅣ.23 are all nearly para-
bolic. This is not a coincidence because most terms in the like-
lihood function are Gaussian distributions or at least nearly
normally distributed. The log-likelihood is therefore quad-
ratic in the nuisance parameters, which is consistent with
Wilks’ result, equation (Ⅳ.15). Deviations from the para-
bolic shape can occur for parameters where the constraint
term is not dominant or absent, that is, parameters that are
inferred from data. Nevertheless, measurements of such ob-
servables are often normally or nearly normally distributed
because of the central limit theorem [161]: the sum of a large
number of independent random variables converges to a Gaus-
sian distribution. Nuisance parameters where the parabolic
assumption does not hold entirely are normalisation uncer-
tainties (𝜂 parameters) and the 𝛾 parameters: normalisation
uncertainties have slightly asymmetric likelihood profiles.

This is because normalisations are often products of several positive and independent random factors,
which renders them approximately log-normally distributed13. A log-normal constraint should therefore
be used, but in practice, one uses the Gaussian constraint with exponential extrapolation and polynomial
interpolation, which have an approximately log-normal effect, see page 106. Since both the constraints
and the underlying distributions of normalisation uncertainties are only approximately log-normal, the log-
likelihood profiles are also only approximately parabolic. Finally, 𝛾 nuisance parameters associated with
the statistical uncertainty of the simulations follow the Poisson distribution, which in the log-likelihood
becomes 𝑛 ln 𝜆 − 𝜆 − 𝑛!, see blue curve in figureⅣ.24. Although this distribution is asymmetric, the
central part can be approximated quite well using the parabola labelled “Hesse”, whose parameters one
can compute by calcuating the second derivative of the Poisson log-likelihood.

Given that most profiles are parabolic, a parabolic approximation can be used to calculate the uncer-
tainties of all nuisance parameters: instead of evaluating the full profile likelihood for each nuisance
parameter as shown for the red curves in figureⅣ.23, one can compute the matrix of 2nd derivatives in
the minimum of the NLL. This is done with Minuit’s algorithm HESSE, and yields the black parabolas
shown in figureⅣ.23. It is much faster than finding the crossing point of the log-likelihood curve with
the line at one (MINOS algorithm), and simultaneously yields the parabolas for all parameters. In most
cases, HESSE uncertainties are quite accurate – at least for the ±1 𝜎 interval. FiguresⅣ.23(a) andⅣ.24,
however, show that the approximation is not accurate for asymmetric distributions, especially outside
the 1 𝜎 interval. The HESSE approximations will therefore be used to validate the likelihood model in
chapter Ⅴ, but for the measurement of 𝜇, a strategy like MINOS will be used in order to obtain the most
accurate uncertainties.

13 More accurately, one can show that the central limit for the product u� = ∏u� u�u� of several independent positive random
variables u�u� has the property [162]:

ln u� = u�u� + 1
2

u�2u�.

u� is a random variable with a semicircle distribution, and u� is a uniformly distributed random variable, which are both
centred at zero and independent. Therefore, the log-normal assumption is not entirely correct.

116



Ⅳ 6 The Likelihood Model for the 𝑉 𝐻 →𝑉 𝑏�̄� Search

Ⅳ 6 The Likelihood Model for the 𝑽 𝑯 →𝑽 𝒃�̄� Search

TableⅣ.8: Categories and distributions used in the u� u� →u� u�ū� likelihood fit. The likelihood model
is based on the ATLAS u� →u�ū� publication [1]. In the 2-lepton channel, the MM and TT regions are
merged because of low data statistics. One further categorisation is not shown: all categories are split
into a 2-jet and a 3-jet category, leading to eight classifiers in total.

Category 1 Lepton 2 Leptons

𝑝u�
T < 120 GeV 𝑝u�

T > 120 GeV 𝑝u�
T < 120 GeV 𝑝u�

T > 120 GeV

1 𝑏-tag MV1c MV1c MV1c MV1c

LL BDT 1 BDT 2 BDT 3 BDT 4
2 𝑏-tags MM BDT 1 BDT 2 BDT 3 BDT 4

TT BDT 1 BDT 2

TableⅣ.8 shows the categories of the 𝑉 𝐻 →𝑉 𝑏�̄� analysis that are represented in the 𝑉 𝐻 likelihood
model. In both the 2- and the 3-jet region, events with two 𝑏-tagged jets are represented by 10 histograms
of BDT scores. The categories with only one 𝑏-tagged jet are represented by histograms of the MV1c
𝑏-tagging score. Jets that are not 𝑏-tagged are not used. More details on the 𝑏-tagging categories can be
found in sectionⅣ 1.3.
Since event kinematics differ depending on the jet and lepton multiplicity and depending on 𝑝u�

T ≶
120 GeV, different classifiers are trained for each category as shown in table Ⅳ.8. Each category is
covered by a pair of classifiers with identical model parameters but orthogonal training samples to remove
any bias due to overfitting. The table shows only four pairs of classifiers, but four more pairs are trained for
the 3-jet region. All classifiers are trained on the sum of the LL, MM and TT 𝑏-tagging categories because
the BDTs have access to the 𝑏-tagging information, and can therefore autonomously create 𝑏-tagging
categories as discussed in sectionⅣ 3.3. In spite of the inclusive training, the likelihoods of the LL, MM
and TT regions are evaluated separately to measure the normalisations of the 𝑉 +jets backgrounds. This is
necessary because the BDTs are trained to separate signal from background events, but not to disentangle
different background classes. The response to various background classes is often similar, especially
for different 𝑉 +jets flavours. Without splitting the histograms into 𝑏-tagging categories, it would be
challenging to measure and constrain background flavour fractions. In the 2-lepton channel, where data
statistics are lower than in the 1-lepton channel, MM and TT are combined into a single category.

The likelihood model includes systematic uncertainties due to detector resolution and calibration
uncertainties and due to imperfections of the simulations. The simulation and modelling uncertainties are
listed in tableⅣ.9. These are identical to the ones used in the ATLAS 𝐻 →𝑏�̄� publication [1]. Many of
these originate from the limited precision of parton-shower models or cross-section predictions. In that
sense, they are “theoretical” uncertainties, that is, they are not obtained from external measurements, and
not constrained by external measurements. Constraint terms for these nuisance parameters therefore do
not represent confidence intervals, but are similar to a kind of prior belief. If Monte Carlo generators
make conflicting predictions for observables such as jet multiplicities or flavour fractions, systematic
uncertainties are added to the likelihood model by comparing the predicted observables for different
Monte Carlo programs. The nominal prediction corresponds to 𝛼 = 0, and the conflicting predictions
are represented by 𝛼 = 1 or −1. Since it is often unknown which generator should be preferred over the
other(s), or since multiple generators may make acceptable predictions, all post-fit values of 𝛼 between
−1 and 1 are acceptable for the “theoretical” nuisance parameters in tableⅣ.9.
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Table Ⅳ.9: Systematic uncertainties of the signal and background modelling. The symbol “S” denotes shape
uncertainties, others are implemented as normalisation uncertainties using u� parameters.

Interpretation Impact Name in likelihood model

Signal

Cross section (scale) 1 % (𝑞 ̄𝑞), 50 % (𝑔𝑔) TheoryQCDScale
Cross section (PDF) 2.4 % (𝑞 ̄𝑞), 17 % (𝑔𝑔) TheoryPDF
Branching ratio 3.3 % TheoryBRbb
Acceptance (scale) 1.5 % – 3.3 % TheoryAcc_J2
3-jet acceptance (scale) 3.3 % – 4.2 % TheoryAcc_J3
𝑝u�

T shape (scale) S TheoryVPtQCD
Acceptance (PDF) 2 % – 5 % TheoryAccPDF
𝑝u�

T shape (NLO EW correction) S TheoryVHPt
Acceptance (parton shower) 8 % – 13 % TheoryAccPS

𝑡 ̄𝑡

3/2-jet ratio 20 % ttbarNorm_J3
High/low-𝑝u�

T ratio 7.5 % ttbarHighPtV
Top-quark 𝑝T, 𝑚u�u�, 𝐸miss

T shapes S TopPt, Ttbar{MBB,Met}Cont

𝑊+jets

𝑊𝑙 normalisation, 3/2-jet ratio 10 % WlNorm, WlNorm_J3
𝑊𝑐𝑙, 𝑊+hf 3/2-jet ratio 10 % W{cl,hf}Norm_J3
𝑊𝑏𝑙/𝑊𝑏𝑏 ratio 35 % WblWbbRatio
𝑊𝑏𝑐/𝑊𝑏𝑏, 𝑊𝑐𝑐/𝑊𝑏𝑏 ratio 12 % W{bc,cc}WbbRatio
Δ𝜙, 𝑝u�

T , 𝑚u�u� shapes S WDPhi, WPtV, WMbb

𝑍+jets

𝑍𝑙 normalisation, 3/2-jet ratio 5 % ZlNorm, ZlNorm_J3
𝑍𝑐𝑙 3/2-jet ratio 26 % ZclNorm_J3
𝑍+hf 3/2-jet ratios 20 % ZbbNorm_J3
𝑍𝑏𝑐/𝑍𝑏𝑏, 𝑍𝑏𝑙/𝑍𝑏𝑏, 𝑍𝑐𝑐/𝑍𝑏𝑏 ratios 12 % Z{bc,bl,cc}ZbbRatio
Δ𝜙, 𝑝u�

T , 𝑚u�u� shapes S ZDPhi, ZPtV, ZMbb

Single top

Cross section 4 % (s-, t-channel), 7 % (𝑊𝑡) stop{s,t,Wt}Norm
Acceptance (generator) 3 % – 52 % {S,T,Wt}Chan<generator>
𝑚u�u�, 𝑝u�2

T shapes S WtChan<generator>, TChanPtB2

Diboson

Cross section and acceptance (scale) 3 % – 29 % VVJetScalePtS
Cross section and acceptance (PDF) 2 % – 4 % VVJetPDFAlphaPt
𝑚u�u� shape S VVMbb_{WW,WZ,ZZ}

Multijet

1-lepton channel normalisation 2 % – 60 % MJ{El,Mu}Norm_*
Template variations, reweighting S MJEl{CaloIso,DR,PtV,TrkIso}

MJMuTrkIso
2-lepton channel –
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The modelling uncertainties for all signal and background processes will now be discussed in more detail:

Signal samples Since the signal strengthmeasures the ratio of the observed to the predicted signal cross
sections [39], any uncertainties in these predictions will have a strong impact on 𝜇. Therefore, all
uncertainties of cross sections, PDFs (in the following: parton distribution functions) and branching
ratios are included in form of 𝜂 nuisance parameters assigned to the signal samples. Table Ⅳ.9
shows the relative normalisation changes encountered when setting the nuisance parameter to ±1 𝜎.
The choice of factorisation and renormalisation scales, the parton-shower model and the PDFs
used in the Monte Carlo simulations affect the event kinematics and therefore the acceptance of
𝑉 𝐻 →𝑉 𝑏�̄� events. The impact of scale variations is estimated with a POWHEG simulation with varied
scales; parton-shower uncertainties are estimated by replacing the Pythia8 showers with HERWIG
showers, and PDF uncertainties are estimated by exchanging the PDF set. All resulting changes of
the acceptance are measured, and parametrised in the likelihoods using the 𝜂 parameters shown in
the table.
Most of these uncertainties have low impact on the distributions of observables, and are therefore
sufficiently described by global 𝑉 𝐻 normalisation changes or by normalisation changes that increase
the amount of events in the 2-jet region while decreasing it in the 3-jet region or vice versa. Scale
changes, however, affect the 𝑝u�

T distribution, which is why a shape uncertainty is assigned. A shape
uncertainty is also assigned to reflect the impact of NLO electroweak corrections (see sectionⅣ 2.1).

Top-pair samples Normalisation changes of background samples such as 𝑡 ̄𝑡 and 𝑉 +jets have a large
impact on the measured Higgs signal. Therefore, these are assigned normalisation uncertainties,
which often differ between analysis categories. In the 2-jet region, the normalisation of the top-pair
background is, for example, described using two sample normalisation factors 𝜙, separately in the 1-
and 2-lepton channel. This is because the kinematics of the top pairs are different in these channels:
in the 2-lepton channel, almost all top quarks decay leptonically, 𝑡 → 𝑙𝜈𝑏, and all visible objects are
detected. In the 1-lepton channel, the 𝑡 ̄𝑡 background is a mixture of fully leptonic decays where one
lepton is missed (limited acceptance, 𝜏 decay) and events where one top quark decays hadronically,
but the resulting light-quark jets are missed.
The POWHEG+Pythia 𝑡 ̄𝑡 cross-section predictions were compared to several other Monte Carlo
generators. The cross-section ratios between the 3- and the 2-jet region were found to be as high as
20 %. A corresponding 𝜂 uncertainty is therefore assigned to 3-jet top events. A similar normalisation
uncertainty is introduced for the high-𝑝u�

T region: the high-𝑝u�
T top normalisation is allowed to dif-

fer from the one measured in the low-𝑝u�
T region by assigning a normalisation uncertainty with

𝜂 = 1 ± 0.075.
All regions in the 1- and 2-lepton channel share a common, unconstrained top normalisation factor.
The global normalisation is measured in all jet-multiplicity and 𝑝u�

T categories simultaneously, but
local normalisation corrections for specific regions are allowed by assigning 𝜂 parameters. The
following scheme shows the top normalisation strategy:

𝜙2j, low u�T
= 𝜙top 𝜙2j, high u�T

= 𝜙top ⋅ 𝜂hu�T
(7.5 %)

𝜙3j, low u�T
= 𝜙top ⋅ 𝜂3j(20 %) 𝜙3j, high u�T

= 𝜙top ⋅ 𝜂hu�T
(7.5 %) ⋅ 𝜂3j(20 %)

The 𝜂 parameters are the ratios of the normalisation in a specific region to the global normalisation
factor shared by all regions. All nuisance parameters that implement a similar scheme are therefore
called “ratio” in tableⅣ.9. The 𝜂 parameters are defined such that 𝜙top is the normalisation in the
main signal region: the 2-jet region.

119



Chapter Ⅳ Search for 𝐻 →𝑏�̄� Decays with ATLAS

The comparison of different 𝑡 ̄𝑡 simulations further revealed differences in the distributions of several
observables that are used in the MVA. Shape uncertainties for the variables 𝑚u�u�, 𝐸miss

T and 𝑝topT
are therefore parametrised in the likelihood. The distribution of 𝑝topT is corrected on truth level (cf.
section Ⅳ 2.5), and half of the correction is applied as systematic uncertainty. The other shape
uncertainties listed in the table are estimated by reweighting reconstructed quantities, separately for
the 2-/3-jet and the low-/high-𝑝u�

T regions. For each of these uncertainties, a nuisance parameter is
assigned, which causes simultaneous shape variations in all regions.

𝑾 +jets The 𝑊 +jets normalisations require a more sophisticated uncertainty model because the jets
in 𝑊 + jets events occur in all jet flavours, unlike for 𝑡 ̄𝑡 pairs. 𝑊+𝑏𝑏 is the most important jet
flavour combination for the measurement of 𝜇, and is therefore measured directly. This means that
the normalisation of the 𝑊+𝑏𝑏 sample floats with an unconstrained normalisation factor 𝜙u�+u�u�.
The 𝑊+𝑐𝑐, 𝑊+𝑏𝑐 and 𝑊+𝑏𝑙 flavours float simultaneously with 𝜙u�+u�u�, but are allowed to differ
from the 𝑊+𝑏𝑏 normalisation by assigning ratio uncertainties using 𝜂 parameters with a 1 𝜎 impact
of 12, 12 and 35 %. The magnitude of these uncertainties was determined by comparing Sherpa
to ALPGEN. The 𝑊+𝑐𝑙 normalisation is taken as independent from the other flavour components,
and measured in data, mostly in the 1𝑏-tag region. This is because 𝑠𝑔 scattering contributes to
𝑊+𝑐 production. 𝑊+𝑙 events are not floating freely. They are allowed to vary around the NLO
cross-section predictions by 10 %. This uncertainty was estimated from normalisation measurements
in the 0𝑏-tag region. Like in the 𝑡 ̄𝑡 case, the normalisations in the 3-jet region are allowed to differ
from the ones measured in the 2-jet region by introducing additional 3-jet 𝜂 parameters, separately
for 𝑊+𝑙, 𝑊+𝑐𝑙 and the heavier flavours.

Shape uncertainties for 𝑊 + jets simulations originate from the Δ𝜙 correction discussed in sec-
tionⅣ 2.3 and from modelling uncertainties for the 𝑝u�

T and 𝑚u�u� distributions. These were obtained
by comparing the Sherpa predictions with POWHEG+Pythia8, aMC@NLO+HERWIG and ALPGEN, by
varying the renormalisation and factorisation scales, as well as the PDFs. The comparisons yielded
differences regarding the jet multiplicity of up to 10 % and differences in the distributions of 𝑝u�

T and
𝑚u�u�. The corresponding shape uncertainties are represented by the nuisance parameters WMbb and
WPtV.

𝒁+jets The 𝑍 + jets samples are assigned similar systematic uncertainties as the 𝑊 + jets samples
because both are simulated with the same version of Sherpa: the𝑍+𝑙 normalisation is taken from an
NLOMonte Carlo prediction, and checked in data, the 𝑍+𝑏𝑏 and 𝑍+𝑐𝑙 normalisations are measured
directly, other flavours are coupled to 𝑍+𝑏𝑏 using 𝜂 parameters whose 1 𝜎 uncertainties are derived
from Monte Carlo comparisons. The 3-jet normalisations are coupled to their 2-jet counterparts
using additional 𝜂 parameters as shown in table Ⅳ.9. Most of the uncertainties are lower in the
𝑍+jets case, only the 3/2 jet ratios for 𝑍+𝑐𝑙 and heavier flavours are higher.

Shape uncertainties similar to the 𝑊 +jets uncertainties are assigned for Δ𝜙 and 𝑝u�
T as explained in

sectionⅣ 2.3. An uncertainty for 𝑚u�u� was derived by comparing the simulated 𝑚u�u� spectrum to the
spectrum measured in data. This is possible because the 2-lepton region is less contaminated with
𝑡 ̄𝑡 and QCD multijet backgrounds than the 1-lepton region, which yields an almost pure sample of
𝑍+jets events. The signal region 100 GeV < 𝑚u�u� < 150 GeV was excluded from this comparison,
but the uncertainty is extrapolated into this region. Further comparisons of Sherpa with ALPGEN
only showed differences that are covered by the uncertainties derived using the data.

Single 𝒕 The single-top backgrounds are normalised to NNLO cross-section predictions, and the the-
oretical uncertainties are assigned as normalisation uncertainties [163]. The samples do not float
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freely during the fit. By comparing to other Monte Carlo generators such as ACERMC, MC@NLO,
POWHEG+HERWIG, acceptance uncertainties were derived. These vary from 5 % for 𝑊𝑡 production,
∼ 20 % for 𝑠-channel production and up to 52 % for 𝑡-channel production in 2-jet events with
𝑝u�

T < 120 GeV. For this reason, acceptance uncertainties are assigned separately for 𝑠-, 𝑡- and
𝑊𝑡-channel production, separately for 2/3 jets and separately for low/high 𝑝u�

T .

The Monte Carlo comparisons also revealed differences in the spectra predicted for 𝑚u�u� and 𝑝u�2
T ,

the transverse momentum of the subleading 𝑏-jet. Shape uncertainties are therefore assigned for
these observables.

Diboson The normalisations of the POWHEG diboson simulations are corrected to NLO in QCD using
MCFM. The samples do not float freely, but normalisation uncertainties due to changes in renormalisa-
tion and factorisation scales and the choice of PDFs are assigned separately for 2/3 jets, low/high 𝑝u�

T
and for the 1-/2-lepton channel. The dijet-mass distribution in 𝑍→𝑏�̄� processes is affected by the
parton shower and hadronisation model, which was revealed by comparing POWHEG+Pythia8 with
HERWIG. Corresponding shape uncertainties were therefore assigned for all three diboson channels.

Multijet The derivation of the multijet template was discussed in sectionⅣ 2.6, and all shape corrections
and assumptions used there are backed by shape uncertainties. These are MJElTrkIso, MJMuTrkIso
for the track isolation inversion, separately for different categories, an uncertainty covering the choice
of the calorimeter isolation for electrons (MJElCaloIso) and the extrapolation of 1 𝑏-tag events to
the 2 𝑏-tag region for electrons (MJElDR, MJELPtV). For muons, no significant shape differences
were observed, but the statistics of the muon multijet template are lower than for electrons.
Since the multijet background is fitted into the gap between the electroweak predictions and the
distributions observed in data, separately for all jet- and 𝑏-tag multiplicities, normalisation uncer-
tainties are also assigned separately. These uncertainties were derived by comparing fits in 𝐸miss

T
to fits in 𝑚u�

T , which yield different normalisation factors. The multijet normalisation is measured
simultaneously for LL, MM and TT, but uncertainties are assigned separately for each region to cover
flavour-fraction uncertainties of the multijet “truth tagging” procedure, see sectionⅣ 2.6. In the sig-
nal region with one electron and two jets, the normalisation uncertainties amount to 11, 14 and 22 %
for the LL, MM and TT regions. In the muon channel, uncertainties are even larger: 28, 42 and 60 %.
This is because the overall multijet background with muons is smaller, and because the templates
have lower statistical precision. In the 3-jet regions, the normalisation nuisance parameters for LL,
MM, TT were merged into a single nuisance parameter since their impact on the 𝑡 ̄𝑡 normalisation, the
dominant background in this region, is negligible. The large number of independent normalisation
nuisance parameters for the QCD multijet background prevents any extrapolation of normalisation
measurements across categories. Therefore, normalisation uncertainties cannot be constrained
significantly during the profile-likelihood fit, which means that the QCD multijet estimate is very
conservative.
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Table Ⅳ.10: Summary of experimental systematic uncertainties applied to all simulated events. The last column
lists the names of the nuisance parameters in the likelihood model.

Jet energies

Energy resolution
• all jets 1 NP JetEResol
• b-jets 1 NP BJetReso
Jet energy scale (JES)
• Calibration 6 NPs JetNP[1-6]
• MC modelling 2 NPs Jet{EtaModel,EtaStat}
• Fast/full simulation difference 1 NP JetNonClos
• Pileup dependence 4 NPs Jet{NPV,PilePt,PileRho,Mu}
b-jets
• Detector response for b-jets 1 NP JetFlavB
• Energy loss in 𝐵 decays due to 𝜇, 𝜈 1 NP JetBE
light/𝑔 components in non-b-jets
• Fraction 4 NPs JetFlavComp_*
• Difference in response 4 NPs JetFlavResp_*

𝑏-tagging

b-jet 10 NPs BTagB[0-9]Effic
c-jets, 𝜏 leptons 15 NPs BTagC[0-14]Effic
light jets 10 NPs BTagL[0-9]Effic
MC generator dependence 4 NPs BTag[BC]{Pythia8,Sherpa}

Other sources

𝐸miss
T 2 NPs MET{Scale,Reso}SoftTerms

Luminosity 1.9 % LUMI_2012
Lepton efficiency 2 NPs {Muon,Elec}Effic
Lepton isolation 1 NP LeptonIso
Electron energy 2 NPs Elec{E,EResol}
Muon momentum 2 NPs MuonEResol{ID,MS}
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Experimental Uncertainties

Experimental uncertainties describe how well particles can be reconstructed, and how well the response
of the ATLAS detector to certain kinds of particles is understood. Reconstruction and identification
efficiencies for all relevant particles have been measured by ATLAS, and their uncertainties are estimated
following standard ATLAS recommendations. TableⅣ.10 lists these uncertainties, and how they are
reflected in the likelihood model. Almost all are shape uncertainties that either are implemented with
event weights (reconstruction & identification efficiencies), or are obtained by varying reconstructed
quantities such as energies or momenta and re-running the varied events through the analysis chain. The
most important sources of uncertainties are:

Jet energy resolution (JER) The JER is the dominant uncertainty for reconstructing the invariant
mass of the 𝑏�̄� system. It is caused by the limited resolution of the calorimeters. It has been measured
by ATLAS [75], and is parametrised in dependence of 𝜂 and 𝑝T. The parametrisations follow the
calorimeter resolution functions discussed in equations (Ⅲ.6) and (Ⅲ.7) on the pages 38 and 39. To
estimate the resolution uncertainty, jet energies in all simulated events are randomised according to
the measured calorimeter uncertainties.

In addition to the resolution uncertainty common to all jets, 𝑏-jets are assigned an extra uncertainty
in the 𝑉 𝐻 → 𝑉 𝑏�̄� analysis because a dedicated 𝑏-jet energy correction is applied to improve the
resolution of 𝑚u�u�, see equation (Ⅳ.5) on page 77. The uncertainty of this correction is not reflected
by the standard ATLAS uncertainties, and was therefore estimated separately [139].

Jet energy scale (JES) Jets have to be calibrated after the reconstruction [164]. The uncertainties of
this calibration are parametrised in bins of the jet transverse momentum and pseudorapidity. Since
systematic uncertainties of the jet calibration are affected by various sources that often impact large
regions of the phase space simultaneously, they are represented in a large covariance matrix. This
matrix can be diagonalised, yielding eigenvectors and eigenvalues that represent the main effects
of the calibration uncertainties. The uncertainties with the five largest eigenvalues (JetNP[1-5])
are added as nuisance parameters to the 𝑉 𝐻 likelihood model, and the corresponding eigenvectors
define the magnitude of the impact on the observables. All other components with small eigenvalues
are summed in quadrature, and added as a 6th nuisance parameter (JetNP6_rest). Other jet-energy
uncertainties such as pileup dependence, Monte Carlo modelling and jet-flavour dependence are
also included, but their impact on the 𝐻 →𝑏�̄� analysis is low.

𝒃-tagging 𝑏-tagging is a crucial tool for the 𝐻 → 𝑏�̄� analysis. Since four operating points from
50 to 80 % are used, and since the 𝑏-tagging calibration is 𝑝T-, 𝜂- and jet-flavour-dependent, 𝑏-
tagging uncertainties are also represented as eigenvalues and eigenvectors of large covariance
matrices. Details on the 𝑏-tagging efficiency measurements can be found in [96, 144]14.

The 𝑉 𝐻 → 𝑉 𝑏�̄� analysis uses 10, 15 and 10 nuisance parameters for 𝑏-, 𝑐- and light jets (out
of a total of 24, 16 and 48 eigenvectors). Four more nuisance parameters cover differences in
𝑏-tagging efficiencies between different Monte Carlo generators. All 𝑏-tagging-related uncertainties
are uncertainties of the 𝑏-tagging probability of single jets, and can therefore be represented by
adjusting event weights in dependence of the properties of each jet.

𝑬miss
T The calculation of the missing transverse energy has to take into account all objects reconstructed in

the detector. If systematic uncertainties for these objects are evaluated, for example, by changing the

14 MV1c is not documented in these publications, but the methods for calibrating MV1c are identical to the methods used for MV1.
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jet momenta, 𝐸miss
T is also recalculated. Therefore, 𝐸miss

T is affected by all experimental uncertainties
that change an event observable. However, in addition to the reconstructed objects, calorimeter
clusters that are not associated to any object also contribute to 𝐸miss

T – the “MET Soft Terms”.
Two systematic uncertainties (MET{Scale/Reso}SoftTerms) parametrise the energy scale and
resolution of these soft terms [93]. These are mostly important for the 1-lepton channel because
𝐸miss
T is used to detect leptonic 𝑊 decays.

Luminosity The luminosity uncertainty is the only experimental uncertainty implemented as a normal-
isation change. All Monte Carlo samples are normalised to the integrated luminosity of 20.2 fb−1,
but are allowed to vary according to the luminosity uncertainty derived from beam-separation
scans performed in November 2012 [113]. The uncertainty amounts to 1.9 %. The corresponding
nuisance parameter simultaneously scales all samples in all categories. At the time of the 𝐻 →𝑏�̄�
publication [1], a preliminary uncertainty of 2.8 % was used, while the Lorentz-invariant analysis in
chapter Ⅴ uses the updated uncertainty. The impact of this change is negligible, though.

Leptons Lepton uncertainties have vanishing impact on the 𝑉 𝐻 analysis because lepton momenta can
be measured with much higher accuracy than 𝑏-jet momenta. The latter therefore limit the 𝑉 𝐻
analysis. Furthermore, the lepton identification efficiencies can be measured with high accuracy such
that the corresponding systematic uncertainties for the 𝑉 𝐻 analysis are negligible. These would
only be relevant if 𝜏 leptons were used.

Smoothing and Pruning of Systematic Uncertainties

Most of the experimental systematic uncertainties in table Ⅳ.10 vary measured quantities such as jet
momenta. This causes events to disappear from the Monte Carlo sample because they might fail one of
the selection cuts, which the original event passes. Similarly, events that previously were discarded might
pass all cuts, and appear as new events when systematic uncertainties are estimated. Finally, events can
also migrate to different categories. Although precisely these effects need to be estimated, the raw effect
of the systematic uncertainty can be overshadowed by statistical fluctuations. If systematic uncertainties
are estimated on simulations with very high statistics, the statistical uncertainties are negligible, and the
impact of the systematic uncertainty can be measured easily. However, if the statistical power of the
simulations in certain categories is low because, for example, 𝑏-tagging suppresses nearly all events of
a light-jet simulation, the shape differences need to be smoothed. Otherwise, statistical uncertainties
of the simulations would be taken into account multiple times: by assigning 𝛾 parameters and by re-
sampling events when trying to estimate systematic uncertainties. Smoothing is applied to all systematic
uncertainties that are not weight or normalisation changes, and it reduces noise in the likelihood model.
The smoothing algorithm developed for the ATLAS 𝑉 𝐻 →𝑉 𝑏�̄� analysis will be described in more detail
in chapter Ⅴ because in this chapter it will be compared to an improved smoothing algorithm developed
for this thesis.

Apart from smoothing systematic uncertainties, noise is also reduced by pruning systematic uncer-
tainties. This is because some experimental uncertainties have little to no impact on the 𝑉 𝐻 → 𝑉 𝑏�̄�
measurement beyond statistical fluctuations. Therefore, shape and normalisation uncertainties are pruned
from the likelihood model if their impact on the likelihood function is insignificant. An uncertainty is
pruned if at least one of the following conditions is met:
• Normalisation uncertainties lead to variations < 0.5 %. This is checked separately for each region
and Monte Carlo sample such that uncertainties might be removed only in single categories.

124



Ⅳ 6 The Likelihood Model for the 𝑉 𝐻 →𝑉 𝑏�̄� Search

• Both the up and down variations for a shape uncertainty change a distribution in the same direction. In
this case, finding the minimum of the NLL is an ill-posed, degenerate problem. It is reasonable to prune
such uncertainties because this effect mostly occurs for uncertainties whose impact is overshadowed
by statistical fluctuations.

• Shape uncertainties only introduce differences of <0.5 % in all bins of a distribution.
• If an up-variation was pruned, the down variation is pruned as well (and vice versa).
• If a sample in a given region amounts to < 1 % of the total background, a shape or normalisation
uncertainty is pruned if one of the following conditions is true:

– The uncertainty changes the shape or event count of a specific background sample by <2 %,
and the region is background-dominated (<2 % of the signal).

– The uncertainty changes the shape or event count of the total background in the region by
<0.5 %.
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CHAPTER Ⅴ

Beyond the ATLAS 𝑯→𝒃�̄� Analysis

Ⅴ 1 A Lorentz-Invariant MVA

In this section, an alternative approach to unambiguously select a set of variables for a multivariate
analysis that describes the 𝑉 𝐻 topology will be discussed. In contrast to the bottom-up approach, that
is, increasing the number of input variables until the performance saturates as was done for the ATLAS
MVA in chapterⅣ, a top-down approach is proposed. The key idea of the top-down approach is to find a
set of variables that contains the full kinematic information to describe a 𝑉 𝐻 system, and to reduce it to
a set that only contains the usable information while avoiding any redundancies. In this way, one arrives
at the minimal set that optimally encodes all exploitable kinematic information about the 𝑉 𝐻 system.
There are two reasons for seeking a minimal set without redundancies: firstly, variables without dis-

criminative power introduce noise into the training. Training events need to populate a higher-dimensional
phase space, and are thus distributed more sparsely. Though BDTs are quite robust against variables that
do not provide discriminative power, such variables will not be ignored completely, and occasionally
affect split decisions because of random fluctuations in the training sample. This can have negative
effects on the classification results. Secondly, and more importantly, using such variables can increase
the systematic uncertainties of the classification result. Since systematic uncertainties are not evaluated
during the training of classifiers, negative effects due to useless variables might only be measurable using
the profile-likelihood fit.

Ⅴ 1.1 Lorentz-Invariant Quantities for a Full Description of the 𝑽 𝑯 System

In the most important categories of the 𝑉 𝐻 →𝑉 𝑏�̄� analysis, the 2-jet regions, one expects four objects in
the final state. The kinematic information of such events can therefore be described with 16 parameters
because each object is fully described by a four-vector. An MVA with more than 16 kinematic variables
therefore cannot provide better separation than an MVA with 16 (well-chosen) variables.
There are multiple ways to choose the 16 variables. A natural choice in high-energy physics are

Lorentz-invariant quantities because these are independent of the reference frame. With four final-state
objects, 10 Lorentz-invariant quantities can be derived that describe the kinematics inside the 𝑉 𝐻 system.
Six more parameters describe the 𝑉 𝐻 system from the outside, that is, its orientation and its boost. A
possible set of parameters therefore is:

• 4 four-vector norms, the masses of the four final-state objects:

⟨1|1⟩ , ⟨2|2⟩ , ⟨3|3⟩ , ⟨4|4⟩
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• 6 inner products of distinct four-vectors:

⟨1|2⟩ , ⟨1|3⟩ , ⟨1|4⟩ , ⟨2|3⟩ , ⟨2|4⟩ , ⟨3|4⟩

• 3 angles describing the orientation of the 𝑉 𝐻 system
• 3 parameters describing the momentum or boost of the 𝑉 𝐻 system in relation to a reference frame

The Lorentz invariants are obtained by calculating the inner products of all possible combinations of
two four-vectors. Since these describe the inner kinematics of the 𝑉 𝐻 system, they are especially useful
at proton-proton colliders. Other parametrisations would depend on the boost and orientation of the 𝑉 𝐻
system, which cannot be predicted: the longitudinal boost depends on the fractional momenta of the
colliding partons. The transverse boost depends on the physics of confinement, the underlying event and
possibly also the radiation of gluons, against which the 𝑉 𝐻 system might recoil. This was discussed in
section Ⅲ 1.1 and section Ⅲ 4. For 10 of the 16 variables, all these uncertainties are therefore irrelevant.
The Lorentz-invariant parameters can be interpreted either as invariant masses or as Lorentz-invariant

angles between two objects. This is illustrated by writing down the inner product of a sum of four-vectors
𝐶u� ≡ 𝐴u� + 𝐵u�, that could, for example, describe a decay 𝐶 → 𝐴 + 𝐵:

𝐶u�𝐶u� = (𝐴u� + 𝐵u�) (𝐴u� + 𝐵u�) (Ⅴ.1)
= 𝐴u�𝐴u� + 2 𝐴u�𝐵u� + 𝐵u�𝐵u�

⇔ 𝐴u�𝐵u� = 1
2( 𝐶u�𝐶u� − 𝐴u�𝐴u� − 𝐵u�𝐵u� ) (Ⅴ.2)

= 1
2( 𝑀2 − 𝑚2

u� − 𝑚2
u� )

⟨𝐴|𝐴⟩ and ⟨𝐵|𝐵⟩ can be identified with the squared masses of the final-state particles, 𝑚2
u� and 𝑚2

u�.
If 𝐴 and 𝐵 have a common ancestor, ⟨𝐶|𝐶⟩ = 𝑀2 can be identified with the ancestor’s mass. If 𝐴
and 𝐵 are four-vectors of 𝑏-jets (𝑏u�) or of light leptons (ℓu�), the masses of the final-state particles in
equation (Ⅴ.2) can be neglected. The invariant masses of the heavy particles in a 𝑉 𝐻 system are therefore
represented by:

⟨𝑏1|𝑏2⟩ ≈ 1
2𝑚2

u�, (Ⅴ.3a)
⟨ℓ1| 𝜈 ⟩ ≈ 1

2𝑚2
u� , (Ⅴ.3b)

⟨ℓ1|ℓ2⟩ ≈ 1
2𝑚2

u�. (Ⅴ.3c)

If 𝐴 and 𝐵 do not have a common ancestor, one can write the four-vectors in terms of angular coordinates:

⟨ 1 | 2 ⟩ =
⎛⎜⎜⎜⎜
⎝

𝑝T1 cosh(𝜂1)
𝑝T1 cos(𝜙1)
𝑝T1 sin(𝜙1)
𝑝T1 sinh(𝜂1)

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

𝑝T2 cosh(𝜂2)
𝑝T2 cos(𝜙2)
𝑝T2 sin(𝜙2)
𝑝T2 sinh(𝜂2)

⎞⎟⎟⎟⎟
⎠

(Ⅴ.3d)

= 𝑝T1𝑝T2[ cosh(𝜂1) cosh(𝜂2) − cos(𝜙1) cos(𝜙2)
− sin(𝜙1) sin(𝜙2) − sinh(𝜂1) sinh(𝜂2) ]

= 𝑝T1𝑝T2 [ cosh(𝜂1 − 𝜂2) − cos(𝜙1 − 𝜙2) ]

Although equation (Ⅴ.3d) depends on transverse momenta and angular distances, which are both not
Lorentz invariant, the combination of the two (𝑝T-weighted angles or angle-weighted 𝑝T) is Lorentz
invariant. The parametrisation of the four-vectors used in equation (Ⅴ.3d) follows from equation (Ⅲ.4) on
page 35.
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Figure Ⅴ.1: u�u� event of the high-u�u�
T category in the laboratory system, with u�u�

T = 160 GeV. Three angles
describing the orientation of the u�u� system are marked: u�1 measures the inclination of the Higgs momentum
vector with respect to the beam axis (green arc ). u�2 (yellow arc between the normal vectors of the planes )
measures the angle between the Higgs-beam-plane (green ) and the Higgs-lepton-plane (orange ). u�3 (blue arc
in the transverse view ) measures the u�-coordinate of the Higgs momentum vector.

The three angles describing the orientation of the 𝑉 𝐻 system depend on the reference frame, and can
therefore be defined in multiple ways. Figure Ⅴ.1 shows momentum vectors for a typical 𝑊𝐻 event,
where three angles have been defined with respect to the laboratory system. The first angle 𝜃1 is the angle
between the Higgs momentum vector and the LHC beams. The Higgs momentum vector is estimated as
the sum of the 𝑏-jet momentum vectors: �⃗� = ⃗𝑏1 + ⃗𝑏2. The second angle 𝜃2 measures the inclination of
the plane spanned by the Higgs boson and the lepton1 against the plane spanned by the Higgs boson and
the beams. The inclination can be measured using the normal vectors of these planes, which are also
shown in the figure. The third angle 𝜃3 describes rotations around the 𝑧-axis, and is thus equivalent to
the angle 𝜙 in ATLAS coordinates. The description of the 𝑉 𝐻 system is completed by three parameters
describing the movement or boost of the 𝑉 𝐻 system, which can be obtained by summing the momentum
vectors of all final-state objects.
Not all of these parameters contain useful information, though:
• The four masses of the final-state objects are smaller than what calorimeters or muon system can
resolve. These parameters are therefore dominated by noise and do not provide useful information.

1 In the 2-lepton channel, the lepton with higher transverse momentum is chosen.
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• LHC collisions are isotropic in 𝜙-direction2. The angle 𝜃3, the 𝜙-coordinate of �⃗� , therefore does not
provide any information about the 𝑉 𝐻 process.

• Not all boost parameters are useful, either:

– Longitudinal: The longitudinal boost of the 𝑉 𝐻 system is determined by the parton distribution
functions. The boost provides little insights into the 𝑉 𝐻 process because the PDFs are determ-
ined by properties of the protons. The average boost, however, varies with the PDFs involved
in a collision. The average boost in 𝑔𝑔-collisions is low, whereas collisions of quarks and sea
quarks are boosted along the direction of the valence quark. More details on PDFs can be found
in section Ⅲ 1.1.

– Transverse: The two parameters of the transverse boost of the 𝑉 𝐻 system depend on the
underlying event, gluon emissions and the physics of confinement. Because of the 𝜙-symmetry
of the LHC’s collisions, the angular component of the transverse boost does not provide usable
information. The magnitude of the transverse boost, however, indicates if the 𝑏𝑏ℓ𝜈 or 𝑏𝑏ℓℓ
system is at rest (in transverse direction).

Due to the above restrictions, a sufficient description of the 𝑉 𝐻 system in LHC collisions can be achieved
with six Lorentz invariants, two angles and up to two boost parameters. Whether the boost parameters are
useful, depends on the final state. This will be discussed further in the next sections.

3-Jet Region

Since events in the 3-jet region have five objects in the final state, four more parameters can be added to
the set of discriminating variables. Given that there are five objects, the additional four parameters can all
be expressed in terms of Lorentz invariants. One possible set of Lorentz-invariant parameters is:

⟨𝑗1|𝑗3⟩ , ⟨𝑗2|𝑗3⟩ , ⟨𝑙1|𝑗3⟩ , ⟨𝑙2, 𝜈 |𝑗3⟩ . (Ⅴ.4)

Again, not all parameters are useful. The angles between the third jet and the leptons are not of interest
because gluons, the main cause of an additional jet, are not radiated from leptons. Gluon radiation,
however, is the dominant process for moving 𝑉 𝐻 →𝑉 𝑏�̄� events into the 3-jet region: about 30 % of all
signal events are found there. Therefore, the four-vector products between the third jet and each of the
two 𝑏-tagged jets are added to the set of training variables in the 3-jet region. Their distributions are
shown in appendix C 1.1. Low values, that is, Lorentz-invariant angles, indicate that the additional jet is
close to the 𝑏-tagged jets 𝑗1 or 𝑗2, whereas high values indicate large separation. As can be expected
if gluon radiation is the main cause of additional jets in 𝐻 →𝑏�̄� events, the signal distribution peaks at
lower angles than for background events. The figures, however, also show that the signal distribution
extends to large angles. This is expected because there are always two 𝑏-jets: if the additional jet is close
to one of them, it is usually far from the other jet. Such a topology can easily be analysed using BDTs,
given that both Lorentz invariants are accessible at the same time.
The ATLAS 𝑉 𝐻 analysis also included the mass of all three jets to enhance the discriminative power

in the 3-jet region. Since this variable is Lorentz invariant, and the parametrisation in equation (Ⅴ.4) is
not unique, it was tested to add the three-jet mass to the set of training variables for the Lorentz-invariant
BDTs. It was found that it is strongly correlated with the three four-vector products that represent the
Lorentz-invariant angles between the jets: ⟨𝑗1|𝑗2⟩ , ⟨𝑗1|𝑗3⟩ , ⟨𝑗2|𝑗3⟩. This indicates that the information
expressed by this variable is already accessible to the classifiers. Classifiers with access to the three-jet
2 The fact that the beams have a small crossing angle and are not exactly aligned with the u�-axis is not measurable in the u� u�
analysis.
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mass were consequently achieving only insignificantly higher separation (≪1 %). The three-jet mass is
therefore not used in this thesis.

Transformation of the Lorentz Invariants

Since the Lorentz invariants are inner products of four-vectors, the range of possible values can be very
large: from close to zero for an almost vanishing four-vector product to 𝒪(1010 MeV2)3. When scanning
input variables for optimal splits, the tree-growing algorithm of TMVA tests a fixed number of points
distributed on a grid across the value range of a variable. For the ATLAS BDTs, 100 points are tested (p.
92), which was increased to 200 points for the Lorentz-invariant BDTs.
Given that the range of possible values for the Lorentz invariants is large, sampling at only 200 points

would lead to poor split decisions. The signal distribution, however, does not extend over the full range
of possible values. The background-dominated regions are therefore compressed by mapping the value
range of each Lorentz invariant into the interval [0, 1] using the following transformation:

𝑥′ = 𝑥
𝑐 + 𝑥

, 𝑐 = median[𝑥u� u�] ≈ 1010 MeV2

𝑥 is one of the Lorentz-invariant variables, 𝑥u� u� is its distribution for signal events. By choosing the
constant 𝑐 equal to the median of the signal distribution, the most relevant range of 𝑥 is mapped to about
0.5. If 𝑥 ≈ 𝑐, 𝑥′ varies quickly with 𝑥. This means that the signal is found towards the centre of the
interval, and it is rather spread out, or “zoomed”. If 𝑥 ≪ 𝑐 or 𝑥 ≫ 𝑐, 𝑥′ varies only weakly with 𝑥.
Background-dominated regions are therefore compressed towards the boundaries of the interval [0, 1],
where large variations of 𝑥 have only a small effect on 𝑥′. This aids the BDT splitting algorithm because
the signal region can be scanned with high granularity while the compressed, background-dominated
regions are scanned with low granularity. The reduction of the granularity in the tails of the spectra
prevents fine-grained splitting of background regions with low Monte Carlo statistics or high systematic
uncertainties. Finally, this transformation eliminates the need to truncate the distributions of input
variables, which allows for an undistorted inference of energy and momentum conservation laws, unlike
for the ATLAS BDTs as discussed in sectionⅣ 3.2.

𝒃-tagging Information

𝑏-tagging information is part of the ATLAS training variables, see section Ⅳ 3.3 on page 98. The
response of MV1c to both the leading and subleading jet in 𝑝T is available to the classifiers. Since
kinematic distributions depend on the flavour of the jets, inclusion of this information yields more sensitive
classifiers. 𝑏-tagging information is therefore also part of all sets with Lorentz-invariant variables. Since
𝑏-tagging information, by itself, is not kinematic information about the 𝑉 𝐻 system, it is neither correlated
to the other input variables nor is it redundant. It is also independent of the specifics of the 1- or 2-lepton
channels, and can therefore be included in both channels without affecting the selection of the optimal
kinematic variables.

3 ATLAS measures momenta, masses and energies in MeV. Recall also that the Lorentz invariants have units of squared
masses. (125 GeV)2 = 1.56×1010 MeV2.
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FigureⅤ.2: Kinematic variables of the Lorentz-invariant MVA in the 1-lepton channel after application of the MVA
preselection outlined in sectionⅣ 1. Shape corrections from sectionⅣ 2 are applied, normalisation corrections for
the background simulations are not applied except for the multijet template. The dark blue band in the Data/MC plot
shows the statistical uncertainty of the background simulations. The larger, light blue band shows the quadratic sum
of the systematic uncertainties. Normalisation uncertainties are not shown because they are added in the likelihood
model.
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Ⅴ 1.2 Details on the 1-Lepton Channel:
Estimation of the Longitudinal Neutrino Momentum

Figure Ⅴ.2 shows histograms of all kinematic variables used in the 2-jet region of the 1-lepton analysis:
the six Lorentz invariants after application of the transformation and two angles. Including information
on the longitudinal or transverse boost of the 𝑊𝐻 system did not significantly improve the separation.
This will be shown in section Ⅴ 1.5. A peculiarity of the computation of the Lorentz invariants in the
1-lepton channel is that not all four-vectors can be determined fully. The reason is that the longitudinal
momentum of the neutrino cannot be measured, see section Ⅲ 3.2. This is also illustrated in figure Ⅴ.1:
the neutrino momentum vector is shown in blue, but the event reconstruction algorithms can only find
the red momentum vector, 𝐸miss

T , which is the projection of the neutrino momentum onto the transverse
plane.
The longitudinal component can be approximated, though, at least in 𝑊𝐻 events. One has to assume

that the available energy in the 𝑊𝐻 rest system is distributed equally among the four final-state particles:

⟨𝐸′
u�⟩ = 1

4𝑚u�u�. (Ⅴ.5)

Primed quantities denote quantities in the 𝑊𝐻 rest system. Equation (Ⅴ.5) is a decent approximation
because momentum conservation will lead to ⃗𝑝′

u� = − ⃗𝑝′
u� , and the rest masses of the final-state particles

are negligible. Therefore, 𝐸′ = 𝑝′ holds, and the energies of 𝑊 and 𝐻 are therefore equal. When 𝑊
and 𝐻 decay, their energies are each distributed among two particles with low masses. Consequently,
each particle will on average carry 1

4 of the total energy. Note that 𝑚u�u� is not the sum of the 𝑊 and 𝐻
rest masses but the invariant mass, or full energy, of the 𝑊𝐻 system. The expected 𝑧-momentum in the
laboratory frame can be obtained by applying a Lorentz transformation that boosts the 𝑊𝐻 rest system
along the 𝑧-axis, and by inserting equation (Ⅴ.5):

⟨𝑝u�
u�⟩ = 𝛾 ⟨𝑝′u�

u� ⟩ + 𝛽𝛾 ⟨𝐸′
u�⟩ = 𝛽𝛾 ⟨𝐸′

u�⟩ =
𝑝u�

u�u�
𝑚u�u�

⟨𝐸′
u�⟩ = 1

4𝑝u�
u�u�. (Ⅴ.6)

This computation is simplified by the fact that the neutrino momenta in the𝑊𝐻 rest system are distributed
isotropically: the probability of the neutrino moving into the forward direction is the same as of moving
into the backward direction. Therefore, the average neutrino 𝑧-momentum in the 𝑊𝐻 rest system
vanishes: ⟨𝑝′u�

u� ⟩ = 0.
Finally, the total 𝑧-momentum of the 𝑊𝐻 system needs to be determined. This requires knowledge

of the neutrino 𝑧-momentum, which is a circular dependency. The 𝑊𝐻 𝑧-momentum can, however, be
approximated using the three observable particles: summing the three observable 𝑧-momenta should
account for about 3

4 of the total 𝑊𝐻 𝑧-momentum. Hence,

𝑝u�
u�u� ≈ 4

3
(𝑝u�

ℓ + 𝑝u�
u�1

+ 𝑝u�
u�2

) . (Ⅴ.7)

Using the Lorentz transformation (Ⅴ.6) and inserting the 𝑊𝐻 𝑧-momentum (Ⅴ.7) yields the average
𝑧-momentum of the neutrino:

⟨𝑝u�
u�⟩ ≈ 1

3
(𝑝u�

ℓ + 𝑝u�
u�1

+ 𝑝u�
u�2

) . (Ⅴ.8)

This is a plausible result because the equation states that the neutrino 𝑧-momentum is approximately the
average 𝑧-momentum of the three observable final-state particles.
Often, a more simple approach is pursued, that is, setting the neutrino 𝑧-momentum to zero. Fig-

ure Ⅴ.3(a) compares these two approaches. The figure demonstrates that the approximation in equa-
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Figure Ⅴ.3: Invariant u� mass calculated from four-vector products using equation (Ⅴ.3b) after the standard
MVA preselection. Estimating the longitudinal neutrino momentum significantly improves the mass peak. (a)
Comparison of u� mass hypotheses in u�u� events. The blue curve with estimation of the neutrino u�u� shows a
more narrow u� peak compared to the red curve where u�u� ≡ 0. (b) Applying the u�u� estimation to u�u� events
(blue) and u� +jets background events (green). The mass hypothesis is not accurate for background events because
assumptions about the u�u� system fail. This makes ⟨ℓ|u�⟩ a useful variable for a multivariate analysis.

tion (Ⅴ.8) is superior to the simple approach: the figures show the 𝑊 mass, obtained from ⟨ℓ|𝜈⟩ ≈ 1
2𝑚2

u� ,
compare equation (Ⅴ.3b) on page 128. The distributions should therefore peak at 80 GeV, which is the
case for the blue distribution with neutrino momentum estimation. The red distribution without this
estimation is shifted to higher masses, and has a broader peak. This is explained by equation (Ⅴ.3d): if the
𝑊𝐻 system acquires a sizeable boost in beam direction, the angle 𝜂u� of the visible lepton and the neutrino
four-vector will either both be positive or both be negative. When ignoring the neutrino 𝑧-momentum,
that is, setting 𝜂u� = 0, the hyperbolic cosine will always grow because it is an even function. ⟨ℓ|𝜈⟩ will
therefore also grow.
The assumptions used in the above estimation are only valid for the 𝑊𝐻 system, and only when looking

at many events. For background events, some assumptions will fail, which leads to 𝑝u�
u� being estimated

wrongly. This, in turn, yields a wrong estimate of the 𝑊 mass, promoting ⟨ℓ|𝜈⟩ to an observable that
discriminates plausible 𝑊𝐻 kinematics from the kinematics of 𝑊 +jets events. This is illustrated in
figure Ⅴ.3(b), which shows the reconstructed 𝑊 mass for both 𝑊𝐻 → ℓ𝜈𝑏�̄� and 𝑊+𝑏𝑏 events. Even
though the final state is identical, and both samples contain leptonic 𝑊 decays, assuming that momenta
in 𝑊+𝑏𝑏 events are distributed as in 𝑊𝐻 events leads to a shifted and broadened 𝑊 peak.

134



Ⅴ 1 A Lorentz-Invariant MVA

Ⅴ 1.3 Details on the 2-Lepton Channel:
Separating Top from 𝒁𝑯 Events

As mentioned in section Ⅴ 1.1, a sufficient description of the 𝑉 𝐻 system is achieved with six Lorentz
invariants, two angles and a varying number of boost parameters. Classifiers for the 2-lepton channel
were found to require the inclusion of one boost parameter: the magnitude of the transverse boost.
The Lorentz-invariant variables4 describe the kinematics inside the 𝑍𝐻 system while angles and boost

parameters describe the 𝑍𝐻 system from the outside, for example, from the laboratory system. If the
𝑏𝑏ℓℓ system was always at rest in transverse direction, and if the longitudinal boost was irrelevant for
background suppression, no boost parameters would be necessary. Indeed, the 𝑍𝐻 system is usually
at rest in transverse direction if no other particles are produced. By contrast, 𝑡 ̄𝑡 events selected in the
2-lepton channel will contain two neutrinos. These leave the detector in the vicinity of the visible leptons
(cf. figureⅣ.2(b) on page 63). Since these are invisible to the detector, missing transverse momentum
can be observed in such events. This also means that the transverse momentum of the 𝑏𝑏ℓℓ system does
not vanish, and this resembles a 𝑍𝐻 system that is not at rest.
To augment the Lorentz-invariant variables with this information, the missing transverse energy 𝐸miss

T
could be added to the set of input variables. 𝐸miss

T should vanish in 𝑍𝐻 events, but not in 𝑡 ̄𝑡 events.
However, 𝐸miss

T does not vanish in 𝑍𝐻 events, either, because of calorimetric uncertainties and neutrinos
produced inside jets. However, the same information can be expressed using the transverse boost of
the 𝑍𝐻 system, which is a superior observable because its uncertainties are lower. This is because all
final-state objects are visible, and because the lepton momenta can be measured accurately. The transverse
boost will also not vanish entirely because of the underlying event or gluon radiation, but its uncertainties
are lower than for 𝐸miss

T . 𝐸miss
T is affected by pileup activity, calorimeter uncertainties and the 𝐸miss

T
calibration.
Figure Ⅴ.4 shows the BDT input variables for the 2-jet region of the 2-lepton channel. The distribution

of the transverse boost, 𝑝u� u�
u� , is shown in the top row. 𝑍𝐻 and 𝑍 + jets events peak close to zero as

expected; 𝑡 ̄𝑡 events have non-vanishing 𝑝u� u�
u� 5. The magnitude of the transverse boost vector thus helps

to discriminate 𝑍𝐻 events from 𝑡 ̄𝑡 events.
The𝑍+jets backgrounds in figureⅤ.4 have been scaled up by 16 % to correct for the deficit of background

events that was also detected using the multivariate modelling checks discussed in section Ⅳ 4. The
distributions such as the 𝑍 mass in the third row, ⟨ℓ1|ℓ2⟩, show that this is a sufficient approximation for
the 2-jet region. The final and more sophisticated determination of the background scale factors will be
carried out using the profile-likelihood fit, which will be discussed in section Ⅴ 2.

One may ask if the transverse boost could also improve the training of classifiers in the 1-lepton channel.
If additional objects are not detected, the 𝑏𝑏ℓ𝜈 system can also have a non-zero transverse momentum.
However, distortions of the transverse kinematics due to undetected objects also affect 𝐸miss

T . Since 𝐸miss
T

is the transverse component of the neutrino four-vector, the information about 𝑝u� u�
T is already encoded in

the neutrino four-vector, and thus in the Lorentz invariants. Additional transverse boost information is
therefore only necessary in the 2-lepton channel.

4 This name describes a set of variables that contains Lorentz invariants, angles to describe the orientation of the u� u� system,
u�-tagging information and possibly also the boost.

5 As for u�u�
T , the name u�u� u�

u� is only well defined for u� u� events. In u� ̄u� events, this variable expresses the transverse momentum
of two jets and two leptons.
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FigureⅤ.4: Kinematic variables of the Lorentz-invariant MVA in the 2-lepton channel after application of the MVA
preselection outlined in sectionⅣ 1. Shape corrections from sectionⅣ 2 are applied. The u�+jets backgrounds
are scaled up by 16 %. The dark blue band in the Data/MC plot shows the statistical uncertainty of the background
simulations. The larger, light blue band shows the quadratic sum of the systematic uncertainties. Normalisation
uncertainties are not shown because they are added in the likelihood model. The particular shape of ⟨ℓ1|ℓ2⟩ is
explained by the event selection: u�u� = √2 ⟨ℓ1|ℓ2⟩ is truncated during the event selection because no signal
events are expected in the side bands of the invariant mass distribution.
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Ⅴ 1.4 Better BDT Training With Gradient Boosting

The configuration of the boosted decision trees discussed in chapterⅣ was optimised for the 16 variables
of the ATLAS 𝐻 → 𝑏�̄� analysis6. In optimising the BDT training for the Lorentz-invariant variables,
it was found that a different boosting algorithm yields better performance. This algorithm is gradient
boosting [165]. Gradient-boosted trees will be called ‘BDTG’ in the following. Gradient boosting is
based on a differentiable loss function that is minimised using a gradient-descent algorithm. High losses
indicate poor separation of signal and background, low losses correspond to good separation.

Gradient Boosting:
1. Find a constant that minimises the loss 𝐿:

𝐹0(𝒙) = arg min
u�

u�
∑
u�=1

𝐿(𝑦u�, 𝛾)

𝐹0 is the starting value to construct a classifier, 𝒙 is the vector of input variables,
𝑦u� is the target for each event 𝑖. Note that the input variables are not scanned during
the first step.

2. In each iteration 𝑚, compute pseudo-residuals for all events 𝑖:

𝑟u�u� = −𝜕𝐿(𝑦u�, 𝐹u�(𝒙u�))
𝜕𝐹u�(𝒙u�)

.

𝐹u�(𝒙u�) is the prediction of the classifier for event 𝑖 after 𝑚 training cycles.
3. Fit a classifier ℎu�+1 to the pseudo-residuals, that is, to the training set

{(𝒙u�, 𝑟u�u�)}u�
u�=1.

4. Improve the prediction model according to

𝐹u�+1(𝒙) = 𝐹u�(𝒙) + 𝛾u�+1ℎu�+1(𝒙) .

The optimal step size 𝛾 is given by minimising the loss:

𝛾u�+1 = arg min
u�

u�
∑
u�=1

𝐿(𝑦u�, 𝐹u�(𝒙u�) + 𝛾ℎu�+1(𝒙u�)) . (Ⅴ.9)

5. Repeat starting at step 2 until residuals do not decrease, any more.

For decision trees, it is common to compute the step size separately for each leaf of the tree. This algorithm
minimises the loss, and thus the difference between the targets 𝑦u� and the responses 𝐹u�(𝒙u�). By fitting
trees to the mistakes (residuals) of the previous classifier, each update of the classifier with a new tree
reduces the loss a bit further, until no further improvements can be achieved. The negative gradient of the
loss function in the second step shows the direction of steepest descent, that is, the direction where 𝐿 falls
most rapidly.
The approach of using trees to predict the residuals of a loss function is conceptually different from

adaptive boosting: Adaptively boosted BDTs always predict a class label, -1 or 1, which is good for
classification problems. Gradient-boosted BDTs can predict any value in the value set of 𝐿, provided that
𝐿 can be differentiated. The algorithm can therefore be used for regression, ranking and classifications
problems, with any loss function that is differentiable.
6 See tableⅣ.5 on page 92 for the training parameters and tableⅣ.7 on page 99 for the ATLAS variables.
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As adaptively boosted BDTs, gradient-boosted trees can be regularised. This is achieved with similar
strategies as for adaptively boosted BDTs: limiting the number of splits or the depth of the trees or
requiring a minimal number of events in a leaf. A reduction of the learning rate is also possible by
reducing the step size in equation (Ⅴ.9):

𝛾u� → 𝛽𝛾u�, with 𝛽 ∈ [0, 1].

Lower values of the learning rate or “shrinkage” 𝛽 lead to slower convergence because the minimum of
the loss function is approached in smaller steps. The benefit of lower learning rates is higher robustness.
Approaching the minimum slowly and constantly re-estimating the gradient samples the region close to the
minimum of the loss function with higher precision. This is because close to the minimum, the residuals
𝑟u�u� of most events will be very small. New trees will therefore implement only small corrections, and
events with small residuals will more often be sorted into the same leaf. This prevents leaves with high
statistical uncertainties and therefore numerically unstable gradients.
Slightly randomising the gradient computation further improves robustness. This can be achieved with

bagging. When bagging is used, each gradient calculation is performed only on a randomly chosen subset
of the full training data. This prevents converging into pseudo-minima, which may be caused by statistical
fluctuations of the training sample. Instead, minima that are stable with respect to re-sampling from the
set of training events are approached, leading to more robust estimates of the underlying distributions.
This prevents overfitting the training sample.

−2 −1 0 1 2

1

2

3

u�⋅u�

𝐿(𝑦, 𝐹)
Exponential
Binomial LL
This Work
Misclass.
Error

Figure Ⅴ.5: Loss functions for binary
classification. Shifted to pass through
(1,0).

The biggest advantage of gradient boosting in comparison to
adaptive boosting is that the loss function can be adapted to the
problem at hand. For the Lorentz-invariant analysis, the TMVA
default, binomial log-likelihood loss (orange),

𝐿(𝑦, 𝐹) =
u�

∑
u�=1

ln(1 + e2u�u�u�(u�u�)),

was replaced with a less aggressive loss function (blue):

𝐿(𝑦, 𝐹) =
u�

∑
u�=1

2 ⋅ 𝑦u�
1 + 𝑒2⋅u�u�u�(u�u�) . (Ⅴ.10)

The scalar 𝑦u� is the target, 𝒙u� is the vector of all input variables,
and 𝐹(𝒙u�) is the response of the classifier for an event 𝑖. All

loss functions approximate the naïve loss function for binary classification, the misclassification error
Θ(−𝑦u� ⋅ 𝐹 (𝒙u�)), which is shown in black: the loss is zero if the prediction of the trees is correct, that is,
has the same sign as the target, and it is one if the signs differ. Its derivative is constant, though, and it
can therefore not be used for a gradient computation. Adaptive boosting, which was used in chapterⅣ,
was shown [166] to be equivalent to gradient boosting with an exponential loss function (red):

𝐿(𝑦, 𝐹) =
u�

∑
u�=1

𝑒−u�u�u�(u�u�).

The default loss functions of TMVA, binomial log-likelihood loss for gradient boosting and especially
the exponential loss for adaptive boosting, have the shortcoming of heavily penalising misclassified
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Table Ⅴ.1: Hyperparameters for the training of gradient-boosted decision trees used with the Lorentz-invariant
variables. If two parameters are listed, the first is for the 1-lepton channel, the second for the 2-lepton channel,
which has lower training statistics, and therefore profits from stronger regularisation.

TMVA Parameter Value Description

Shrinkage 0.5 / 0.05 Step size along the gradient
NTrees 800 Number of trees trained
MaxDepth 5 / 4 Maximum depth of decision trees
nCuts 200 / 500 Granularity of scanning for possible splits
BaggedSampleFraction 0.6 / 0.7 Fraction of randomly selected events per training step
MinNodeSize 5 % Minimum fraction of total training events in a BDT node

events because they grow fast towards -1. With training data where the classes are difficult to separate,
that is, signal and background events are overlapping frequently, this leads to steeper gradients (when
implemented as gradient boosting) or larger boost weights (when implemented as AdaBoost). This
is a disadvantage when a few misclassified background events are found close to correctly classified
signal events. Due to their high weights or large residuals, such background events define how trees
in the signal region are grown. This may be undesired because the discovery significance scales as

u�√
u� , whereas the Gini index scales as u�u�

u�+u� ≈ 𝐵 (if 𝑆 is large). The training algorithm will therefore
aggressively try to introduce splits in the signal region even if the impact of a few background events
on the discovery significance is low. This can lead to higher noise in the regions of very high classifier
scores that determine the sensitivity of a search. However, in such high-sensitivity regions, robustness
might outweigh aggressiveness. The section to follow next will show that this is indeed the case for the
𝑉 𝐻 analysis.
Gradient boosting with the less steeply rising loss in equation (Ⅴ.10) was therefore chosen as the

baseline boosting algorithm for the Lorentz-invariant MVA. Given this choice, other training parameters
were optimised separately for the 1- and 2-lepton channel. The results are shown in table Ⅴ.1. The
parameters used for the ATLAS BDTs can be found in tableⅣ.5 on page 92. Apart from using gradient
boosting, the optimised trees use lower learning rates, bagging, and in the 1-lepton channel also deeper
trees. The fact that the parameters were optimised separately for each channel particularly improves
the training in the 2-lepton channel because the lower training statistics in this channel require more
regularisation to build reliable models. In the 1-lepton channel, which has higher training statistics,
increasing the tree depth while maintaining strong regularisation allows for more complicated models
without increased overfitting. The background rejection in both channels increases due to these changes,
and there is no reason to use identical model parameters for the two channels as was done for the ATLAS
analysis. Apart from the reduced learning rate, regularisation for the BDTG training is achieved by
bagging and by requiring 5 % of the full training sample in each BDT node. The regularisation for the
BDTG training is therefore much stronger than for the ATLAS BDTs, but this is compensated by training
more trees: 800 instead of 200.

Figure Ⅴ.6 shows the background rejection for the gradient-boosted trees and for classifiers that
were trained with Lorentz-invariant variables but adaptive boosting. In all relevant signal regions, 1
and 2 leptons, low and high 𝑝u�

T , the gradient-boosted trees reach higher significance than the ATLAS
configurations. One should also note that the advantage of gradient boosting is only visible in the regions
with low signal and low background efficiency, that is, in regions where a less aggressive loss function
and better regularisation are expected to yield improvements.
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Figure Ⅴ.6: Background rejection versus signal efficiency of Lorentz-invariant BDT classifiers in events with two
jets. The gradient-boosted BDTs with the loss function from equation (Ⅴ.10) (BDTG) reach higher significance
than BDTs trained with the setup used in the ATLAS u� →u�ū� publication [1] in all four categories.
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Figure Ⅴ.7: BDT classifiers with Lorentz-invariant variables and gradient boosting for 1- and 2-lepton events
with two jets. The preselection outlined in sectionⅣ 1 and shape corrections from sectionⅣ 2 are applied. Data
uncertainties are marked at the 68 % confidence level for Poisson distributions, and are therefore asymmetric. The
dark blue bands ( ) in the bottom plots show statistical uncertainties of the background simulations, and the light
blue band ( ) shows the quadratic sum of systematic uncertainties. Normalisation uncertainties are not shown
because they are implemented in the likelihood fit. Normalisation corrections are only applied for the QCD multijet
and u�+jets backgrounds as before. BDT scores in the 2-lepton channel are mapped into the interval [0, 1]. This
does not change the performance of the classifiers.

The response of the BDTG classifiers to data and simulations in the 2-jet region are shown in figure Ⅴ.7.
The less sensitive 3-jet region is shown in appendix C 1.2 on page 214. 𝐻 → 𝑏�̄� simulations are
superimposed in red and enlarged for better visibility. The figures show that the BDTs successfully
separate signal and background events, and that the data distributions are well modelled by the Monte
Carlo simulations. A detailed validation of systematic uncertainties, where correlations and constraints
are also taken into account, will be discussed in section Ⅴ 2.
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Figure Ⅴ.8: Linear correlation coefficients of BDT input variables for (top) the Lorentz-invariant variables and
(bottom) the ATLAS u� → u�ū� variables. High correlation coefficients indicate redundant information, which
requires higher model complexity when using BDTs. The sets with Lorentz-invariant variables avoid correlations,
and therefore describe u� u� events with one variable less in both the 1- and 2-lepton channel.
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Table Ⅴ.2: Comparison of Lorentz-invariant variables and ATLAS u� →u�ū� variables. Where applicable, similarit-
ies (≈) or equivalences (⇔) between the sets are indicated. Redundancies in the ATLAS variables explain why the
Lorentz-invariant set contains one variable less in both channels.
For the Lorentz-invariant variables, the only difference between the 1- and the 2-lepton channel is the inclusion of
u�u� u�

T in the latter. By definition, all other variables in the Lorentz-invariant set represent the same information in
the 1- and 2-lepton channels. The strategy to include the u�-tagging score MV1c is identical for all configurations.

Lorentz inv. ATLAS 𝐻 →𝑏�̄�

1 L 2 L 1 L 2 L

⟨ 𝑗1 | 𝑗2 ⟩ • • ⇔
⎧{
⎨{⎩

𝑚u�u� • •
|Δ𝜂(𝑏, 𝑏)| •
Δ𝑅(𝑏, 𝑏) • •

⟨ 𝑗1 | 𝑙1 ⟩ • • }≈ min Δ𝜙(𝑙, 𝑏) •⟨ 𝑗2 | 𝑙1 ⟩ • •
⟨ 𝑗1 |𝜈/𝑙2 ⟩ • •
⟨ 𝑗2 |𝜈/𝑙2 ⟩ • •

⟨ 𝑙1 |𝜈/𝑙2 ⟩ • • ≈ { 𝑚u�
T •

𝑚u�u� •
𝜃1 • •

𝜃2 • • ≈ { Δ𝜙(𝑉 , 𝑏𝑏) • •
|Δ𝜂(𝑉 , 𝑏𝑏)| •

MV1c(𝑗1) • • = MV1c(𝑏1) • •
MV1c(𝑗2) • • = MV1c(𝑏2) • •
𝑝u� u�

u� • ⇔ 𝐸miss
T • •

𝑝u�
T • •

𝑝u�1
T • •

𝑝u�2
T • •

3-jet Events

⟨ 𝑗1 | 𝑗3 ⟩ • • 𝑝u�3
T • •

⟨ 𝑗2 | 𝑗3 ⟩ • • 𝑚u�u�u� • •
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Table Ⅴ.3: Discovery significance of different multivariate classifiers for the combination of the 1- and 2-lepton
channels. The significance is calculated from the profile-likelihood ratio using equation (Ⅳ.26), p. 110. The first
row shows the expected significance without inclusion of systematic uncertainties; the second row includes these
with all nuisance parameters set to zero. BDTG denotes classifiers trained with the set-up in table Ⅴ.1, and Ada
denotes the ATLAS u� →u�ū� BDT set-up with adaptive boosting (tableⅣ.5). The Lorentz-invariant classifier used
in this work is shown in the leftmost column, and the classifier used for the ATLAS u� →u�ū� publication is shown
in the rightmost column.

Lorentz Lorentz + 𝛾u� ATLAS

BDTG Ada BDTG Ada BDTG Ada

𝑍stat
0 2.45 2.37 2.42 2.38 2.60 2.41

𝑍sys
0 1.95 1.88 1.92 1.90 1.97 1.86

Difference -20.6% -20.6% -20.3% -20.1% -24.3% -22.7%

Ⅴ 1.5 Comparison of Lorentz-Invariant and ATLAS 𝑽 𝑯 Classifiers

At this point, the Lorentz-invariant 𝐻 →𝑏�̄� analysis can be compared to the ATLAS 𝐻 →𝑏�̄� MVA, that
is, BDTG training with Lorentz-invariant variables is compared to adaptive boosting with a selection of
standard kinematic observables. Table Ⅴ.2 lists both sets of input variables, and also indicates similarities
or equivalences among certain subsets. For three subsets of the ATLAS 𝐻 → 𝑏�̄� set, there is just a
single variable in the Lorentz-invariant set, whereas the opposite holds for only one subset in the Lorentz-
invariant collection. This suggests that the ATLAS variables are (at least partly) redundant. An analysis
of linear correlation coefficients shows that this is indeed the case, see figure Ⅴ.8. The ATLAS set
contains several variables with high correlation coefficients. By contrast, the Lorentz-invariant set has no
redundant variables. This not a coincidence, it is by design: the derivation starts from 16 orthogonal and
uncorrelated parameters.
The low correlations are a first reason to prefer the Lorentz-invariant variables over the ATLAS variables.

Even though boosted decision trees deal well with correlated variables, correlations require higher model
complexity. This was shown in figureⅣ.17 on page 99. If strong regularisation is used during the training
because the training sample is not large enough for complex models, the extraction of information from
correlated variables might be inhibited. Since the BDTG models are both more complex and use stronger
regularisation than the ATLAS BDT model, removing correlations among input variables facilitates the
extraction of information.

A second reason to prefer the Lorentz-invariant variables is that many ATLAS variables depend on
the movement or boost of the 𝑉 𝐻 system. All angular distances in 𝜙 and 𝜂, for example, vary with the
boost of 𝑉 𝐻 . The pseudorapidity differences are nearly Lorentz invariant, though, at least with respect
to boosts along the 𝑧-axis. For the Lorentz-invariant variables, such dependencies are by definition
minimal because the inner, Lorentz-invariant kinematics of the 𝑉 𝐻 system are separated from the outer
description.
The third reason to prefer the Lorentz-invariant classifiers is the impact of systematic uncertainties on

the expected discovery significance. This significance is an important indicator for the sensitivity of a
search. Discovery significances for different classifiers are shown in table Ⅴ.3. Significances in the first
row (𝑍stat

0 ) only include the statistical uncertainties of the data. In the second row, systematic uncertainties
are included as well. Several configurations are compared in the table because the Lorentz-invariant and
the ATLAS analysis differ in two main points: the boosting algorithm and the input variables.
To measure the impact of these changes separately, both the Lorentz-invariant (left) and the ATLAS
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variables (right) have been used with both training algorithms. The classifiers selected for this work are
shown in the leftmost column. These use gradient boosting, the six Lorentz-invariant variables (eight in
the 3-jet region), two angles, 𝑏-tagging information and the transverse boost in the 2-lepton channel, as
shown in table Ⅴ.2. Furthermore, the middle column shows a set of Lorentz-invariant variables identical
to the leftmost sets except for including the longitudinal boost of the 𝑉 𝐻 system. As discussed at the
beginning of section Ⅴ 1.1, this parameter is sensitive to the difference between 𝑔𝑔 and 𝑞 ̄𝑞 collisions.

The following conclusions can be drawn from table Ⅴ.3:

• The Lorentz-invariant variables express all relevant kinematic information. Although 7 to 8 of the
16 parameters to describe the 𝑉 𝐻 kinematics are removed from the set of variables, the statistical
significances of the Lorentz-invariant classifiers are comparable to the significance of the ATLAS
classifiers in the rightmost column.

• Including the longitudinal boost of the 𝑏𝑏ℓ(𝜈/ℓ)-system in the set of Lorentz-invariant training
variables yields no improvement – although this variable separates 𝑡 ̄𝑡 from 𝑉 𝐻 events. This shows
that the other observables are sufficient to separate the two classes, and including the boost mostly
adds noise to the training. The set “Lorentz + 𝛾u�” was therefore not pursued any further.

• The systematic uncertainties relevant for the 𝑉 𝐻 →𝑉 𝑏�̄� topology decrease the discovery significance
by about 20 % for Lorentz-invariant classifiers and by 23 to 24 % for the ATLAS classifiers. This
shows that the Lorentz-invariant variables are more robust with respect to systematic uncertainties.
This is a decisive advantage in an analysis where statistical uncertainties are equally large as systematic
uncertainties.

• For all configurations, gradient boosting is better than adaptive boosting. It was therefore chosen as
the baseline training algorithm for all classifiers in this chapter. This improvement comes at the only
cost of a longer training time because more trees have to be trained to compensate the lower learning
rates and stronger regularisation.

The Lorentz-invariant classifiers selected for this work reach an expected discovery significance of 1.95 𝜎.
This is 5 % higher than for the standard ATLAS classifiers. They are also the second best classifiers in
the table. One might be tempted to draw the conclusion that the best classifier for the 𝑉 𝐻 analysis is the
classifier with ATLAS variables and BDTG training in the second-to-last column. The significance of
this configuration is 1 % higher than for the Lorentz-invariant classifiers.
However, the impact of systematic uncertainties is also higher. This is, in fact, the largest degradation

observed for all configurations. This is a reason not to choose this classifier because the expected
significance as shown in table Ⅴ.3 only measures the sensitivity of an analysis for an idealised case: it
is assumed that the simulations perfectly model the data, and that all nuisance parameters remain at
zero. The data are ignored entirely in the computation of the expected significance. It is clear that a high
sensitivity to systematic uncertainties already on the Asimov dataset can lead to more severe degradations
when the imperfect simulations are fitted to the data. The data distributions are, in fact, expected to
differ from the Monte Carlo predictions – this is the main reason to add systematic uncertainties to the
likelihood model. The sensitivities of the different classifiers therefore also have to be compared after
fitting the likelihood model to the data. After fits to the data, the 𝑉 𝐻 →𝑉 𝑏�̄� likelihood model will, for
example, take into account the normalisation corrections that have to be applied to the 𝑍+jets simulations.
The ranking of the classifiers is therefore likely to change, especially if these are highly sensitive to
systematic uncertainties. Although the BDTG training with ATLAS variables achieves the highest
expected significance, its sensitivity will likely degrade most strongly due to systematic uncertainties.
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Evaluating the performance of the classifiers after fits to data requires that the likelihood model is
able to describe the data given the systematic uncertainties. That this is indeed the case was validated
before deriving the final performance estimates of the classifiers. This discussion will be postponed to
section Ⅴ 2, though, because it is unrelated to the choice of boosting algorithms or input variables, which
is the subject of the current section.

Comparison of the Classifiers After Fits to Data

To compare the classifiers, four likelihood models have been fit to data. Categories, preselection, sim-
ulations, data and systematic uncertainties for all models are identical7. The models only differ in the
classification of events: two models use input variables with Lorentz-invariant observables, one with
gradient and one with adaptive boosting, two models use the ATLAS 𝐻 →𝑏�̄� variables (again with BDTG
and Ada boosting). For each model, the point of maximum likelihood is found, and the uncertainty of the
signal strength 𝜇 is calculated using the profile-likelihood ratio. For details on the profile-likelihood ratio
see sectionⅣ 5.3.
For each model, the total uncertainty was decomposed into different sources. This is achieved by

fixing a set of nuisance parameters to their maximum-likelihood values and re-evaluating the profile
likelihood. The resulting uncertainty of 𝜇 is lower than the total uncertainty because the corresponding
nuisance parameters cannot be readjusted when the profile-likelihood ratio is evaluated. The quadratic
difference of the total and the reduced uncertainty yields the impact of the fixed nuisance parameter(s). It
should be understood that fixing a nuisance parameter is not identical to removing it from the likelihood
model entirely. This is because pulling nuisance parameters can be necessary to describe the data. A
good example is the 𝑍+jets normalisation correction: fixing the 𝑍+jets nuisance parameters to their
maximum-likelihood values means to measure systematic uncertainties with a fixed, but optimal 𝑍+jets
normalisation. This quantifies the impact of the 𝑍+jets normalisation uncertainties. Entirely removing
the 𝑍+jets normalisation nuisance parameters yields a likelihood model that is unable to describe the
data, and can therefore not be used to conduct any measurement.
The decomposed uncertainties of the four classifiers are compared in figure Ⅴ.9. The Lorentz+BDTG

classifier selected for this work is the baseline, and the relative change of systematic uncertainties when
an alternative classifier is used is shown as bars. The ATLAS Run-1 classifier is shown in red, and the
two other classifiers demonstrate the effects of changing the training variables or changing the boosting
algorithm. A more detailed decomposition of uncertainties can be found in appendix C 2.
On the very left, the total uncertainty is shown, which is decomposed into a statistical and a systematic

component, the second and third set of bars. These show that the Lorentz-invariant classifier with gradient
boosting outperforms all alternatives, especially the ATLAS Run-1 classifier. If the Lorentz-invariant
classifier had been used for the Run-1 analysis, the total uncertainty in the channels with charged leptons
would have reduced by 10 %, and systematic uncertainties even by 16 %. From the statistical uncertainties
one can conclude that the gradient boosting configuration used in this thesis is superior to the ATLAS
𝐻 →𝑏�̄� configuration. With better BDT training, more information can be extracted from the data, and

7 The response of all nuisance parameters was checked for all four likelihood models to prevent overconstraints or pulls of single
nuisance parameters due to random fluctuations: if a nuisance parameter is found strongly constrained or pulled for only one
model, this indicates a fluctuation. Such a fluctuation should not affect the comparison of the classifiers. An overconstraint in
the 3-jet region with low u�u�

T was, for example, observed for the jet energy resolution uncertainty, but only for one of the
likelihood models. This region has no sensitivity to u�, but it can be used to (over)constrain the jet energy resolution with
negative effects on other regions. To remove the impact of this overconstraint, this nuisance parameter was decoupled from
the other regions in all four models. For three of the models, this change has a negligible effect, but for the model with the
fluctuation, the overconstraint is removed. This ensures that the comparison of the classifiers is on equal footing.
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Figure Ⅴ.9: Comparison of uncertainties affecting the measurement of the signal strength u� for different BDT
classifiers. The Lorentz-invariant classifier for this thesis (baseline) is compared to three alternative configurations
for different classes of systematic uncertainties listed in order of importance. Their relative impact is shown at the
bottom. The bars show how much uncertainties change when the Lorentz+BDTG classifier is replaced with one of
the three alternatives. The classifier developed for the ATLAS u� →u�ū� publication [1] is shown in red ( ). A table
with absolute uncertainties and further sources of uncertainties can be found in appendix C 2.

therefore the impact of limited data statistics is less severe. The figure shows that both BDTG classifiers,
regardless of the input variables, have lower uncertainties than classifiers with adaptive boosting.
However, the separation power of the BDTs is less important than their sensitivity to systematic

uncertainties: whereas statistical uncertainties change on the level of a few percent, systematic uncertainties
differ by up to 16 %. Since statistical and systematic uncertainties contribute equally to the total uncertainty,
the third set of bars in figure Ⅴ.9 is of highest interest for the choice of the best classifier. It shows that both
classifiers with Lorentz-invariant variables are superior to the classifiers with ATLAS 𝐻 →𝑏�̄� variables
( , ), and among the Lorentz-invariant classifiers the gradient-boosted classifier is the best.
This result may seem to contradict the results obtained using Asimov datasets, that is, from the

expected significance in table Ⅴ.3. In this test, the ATLAS 𝐻 →𝑏�̄� classifier was only 5 % worse than
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Lorentz+BDTG whereas now it is 10 % (total) and 16 % (systematic). This difference arises because
two different tests are carried out: the Asimov datasets are idealised data, whereas in figure Ⅴ.9, the
performance for likelihood models that actually have to adapt to the observed data is tested. Hence,
the latter is the more relevant result. Furthermore, the fits to data in figure Ⅴ.9 confirm the observation
from Asimov fits that the two classifiers with ATLAS variables have the highest sensitivity to systematic
uncertainties. The effect is just more pronounced in fits to data.

To understand why the Lorentz-invariant classifiers with gradient boosting are the best choice, figureⅤ.9
shows a more fine-grained decomposition of the systematic uncertainties. The fourth to 11th entries in
the figure show that classifiers with Lorentz-invariant variables are particularly robust with respect to
shape uncertainties: ‘Jet uncertainties’, ‘𝑊 + jets shapes’, ‘𝑏-tagging’, ‘𝑍 + jets shapes’ and ‘Multijet
description’ all are classes of shape uncertainties where Lorentz-invariant classifiers are better than
classifiers with ATLAS variables. In most cases, this is true for both gradient (baseline) and adaptive
boosting ( ), but gradient boosting usually performs best. The only exception where classifiers with
ATLAS 𝐻 →𝑏�̄� variables ( , ) are clearly the better choice with respect to shape uncertainties are the
top shape uncertainties. These, however, only amount to 2 % of the total uncertainty.
The BDTs with ATLAS 𝐻 → 𝑏�̄� variables, particularly with adaptive boosting that uses the more

aggressive loss function with a high sensitivity to outliers ( ), are the best choice if one is interested
in constraining normalisation uncertainties. This is visible for the class ‘Normalisations (𝜙, 𝜂)’, which
contains all normalisation uncertainties for all samples, but also when the normalisation uncertainties
(𝜙, 𝜂) are separated into 𝑊 + jets, 𝑡 ̄𝑡 and 𝑍 + jets. This indicates that the profile-likelihood fits use
differences in the response of the ATLAS classifiers to separate 𝑊 +jets from 𝑡 ̄𝑡 and 𝑍+jets from 𝑡 ̄𝑡.
The ATLAS variables make explicit use of jet transverse momenta and angles between reconstructed
objects, and angular variables strongly depend on the boost of the 𝑉 𝐻 system. Since these distributions
differ for 𝑡 ̄𝑡, 𝑊+jets and 𝑍+jets, the classifier outputs also differ. Measuring background normalisations,
however, is not the primary goal of using such classifiers: it is to separate the signal from backgrounds.
The disadvantage of reduced normalisation uncertainties is a higher sensitivity to shape uncertainties
because the measurement of background normalisations is only possible when the BDTs are sensitive to
shape differences between the backgrounds.
The Lorentz-invariant variables avoid explicit dependencies on variables such as transverse momenta

and Lorentz-variant angles, which have visibly different distributions for different backgrounds. Fur-
thermore, they avoid correlated input variables. When correlations among the input variables are low,
detector uncertainties affect smaller subsets of input variables. This leads to smaller changes of the
classifier response due to such uncertainties. Additionally, the transformation used to compress the
dynamic range of the Lorentz invariants into the interval [0, 1] suppresses shape changes that affect only
background-dominated regions8. Lastly, the less aggressive boosting for the BDTG classifier makes it
less sensitive to particularities of certain backgrounds. Instead of learning features (outliers) that make
certain backgrounds unique, more general shape differences between the signal and all backgrounds are
learned, and used to separate only these two classes. Therefore, the BDT response of Lorentz+BDTG is
similar for all background processes. This means that background normalisations cannot be measured
with the same accuracy as for the ATLAS classifiers, but shape changes also have a lower impact.
One can, in fact, design a Lorentz-invariant classifier that is more sensitive to the difference between

𝑊 +jets and 𝑡 ̄𝑡 by including the boost along the 𝑧-axis. This is because 𝑡 ̄𝑡 events are produced mostly
in gluon collisions and 𝑊 +jets events in quark-antiquark collisions (see e.g. section Ⅲ 1.1). Although
normalisation uncertainties reduce when using such a classifier, it was shown in table Ⅴ.3 for the classifiers
“Lorentz + 𝛾u�” that this does not improve the sensitivity of the search. The reason is that by including the
8 For more on the transformation see page 131.
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boost, the classifiers also become more sensitive to shape uncertainties.

Given that normalisations can be measured externally, for example, in control regions, and given that
many of the dominant uncertainties are shape uncertainties such as the jet uncertainties, the 𝑊 +jets
description and the 𝑏-tagging uncertainties, the Lorentz-invariant classifiers are the best choice for the
𝑉 𝐻 →𝑉 𝑏�̄� analysis. Moreover, background normalisation uncertainties can also be reduced by obtaining
higher data statistics or by obtaining better Monte Carlo predictions. This means that there are three
independent ways of mitigating the only disadvantage of the Lorentz-invariant classifiers. The Run-2
version of the ATLAS 𝑉 𝐻 → 𝑉 𝑏�̄� analysis [44] indeed uses a larger data sample and NLO 𝑉 + jets
simulations, and introduced a control region to better measure 𝑊 +jets normalisations. It could further
benefit from a fourth layer of pixel detectors, IBL, which is closer to the interaction region, and therefore
improves the 𝑏-tagging performance by almost a factor of two. The classifiers, however, are nearly identical
to the ATLAS Run-1 classifiers from chapterⅣ apart from adding a few more discriminating variables.
As one can expect from the results obtained in this chapter, the Run-2 analysis is now limited by systematic
uncertainties. It reached an expected significance of three standard deviations. Lorentz-invariant classifiers
therefore are an interesting option for future updates of the Run-2 analysis.
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Figure Ⅴ.10: Dominant systematic uncertainties for the measurement of the signal strength û�. Each bar represents
the impact on the observed value of u� if the corresponding systematic uncertainty is varied by ±1u� (top axis).
Arrows indicate the +1u� variation. (Upper bars, blue) ATLAS BDTs, (Lower bars, green) Lorentz-invariant
BDTs.
Measured nuisance-parameter pulls are overlaid with black markers (bottom axis). The ±1u� thresholds are
indicated by dashed lines. Red nuisance parameters are unconstrained sample normalisation factors like the u�
factors in equation (Ⅳ.12c), page 104. These should be distributed around one whereas other nuisance parameters
are constrained to zero using Gaussian constraint terms.
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Ranking of Nuisance Parameters

Figure Ⅴ.10 shows the ten nuisance parameters with the highest impact on ̂𝜇 (from both the Lorentz-
invariant and the ATLAS search). The coloured bars show the impact on ̂𝜇 when pulling a nuisance
parameter by ±1 𝜎 (top axis), and the black points show the maximum-likelihood values after the fit to
data as pulls (bottom axis). Arrows in the blue boxes indicate the impact of the +1𝜎 variation. If the jet
energy resolution, for example, would be pulled to 𝛼JER = +1𝜎, that is, the pull marker is found at the
dashed line at +1 (bottom axis), ̂𝜇 would increase by ∼0.2 (top axis).
The red nuisance parameters are normalisation factors. They should be distributed around one, and

they are not constrained. A detailed discussion of the pulls will be deferred to section Ⅴ 2, where the
likelihood model is validated, because for the current comparison the impact on 𝜇 (coloured bars) is of
higher interest.
Comparing the impact on ̂𝜇 confirms the findings from figure Ⅴ.9: the Lorentz-invariant classifiers

are significantly less sensitive to the dominant shape uncertainties such as the jet energy resolution and
𝑏-tagging-related or 𝑚u�u�-related shape uncertainties. The only uncertainties that have higher impact on
the Lorentz-invariant classifiers compared to the ATLAS classifiers are the background normalisations of
the three dominant backgrounds 𝑊+𝑏𝑏, 𝑡 ̄𝑡 and 𝑍+𝑏𝑏.
The signal acceptance uncertainty deserves special attention because it cannot be constrained in fits to

data. It encodes the impact of the parton-shower model on the signal predictions, and is implemented as
a normalisation uncertainty for the signal samples. Higher acceptance leads to lower ̂𝜇 and vice versa.
This is explained by the definition of 𝜇:

𝑁 = 𝜇 𝑆 + 𝐵.

The number of observed events 𝑁 is given by the data, and 𝐵 as well as 𝑁 are constant after the likelihood
maximisation. 𝜇 is a free parameter, and will therefore vary oppositely to 𝑆, which varies in dependence
of the parton-shower model. Since the data only constrain the sum 𝜇𝑆 + 𝐵, the acceptance uncertainty
cannot be measured in data. These properties are correctly reflected in the likelihood model: the +1𝜎-
variation of the parton shower uncertainty leads to a reduction of ̂𝜇 and vice versa. Further, the pulls of
the nuisance parameter are zero, and there are no constraints from the fit to data. The signal acceptance
uncertainties are identical for both the Lorentz-invariant and ATLAS classifiers. Nonetheless, the impact
on ̂𝜇 is lower for the Lorentz-invariant classifiers. This is because the Lorentz-invariant classifiers have
higher sensitivity in the high-𝑝u�

T region, where the parton-shower acceptance uncertainty is minimal.
The total impact of this uncertainty is therefore lower for the Lorentz-invariant MVA.

This concludes the discussion of the Lorentz-invariant classifiers. It was shown that the Lorentz-
invariant classifiers are superior to the ATLAS classifiers used for the 𝑉 𝐻 → 𝑉 𝑏�̄� Run-1 result [1]
because they would have reduced the total uncertainty of the signal strength ̂𝜇 by 10 % in the channels
with charged leptons. Systematic uncertainties would have reduced by 16 %. Lorentz-invariant classifiers
are also an interesting option for future updates of the 𝑉 𝐻 →𝑉 𝑏�̄� search because these will be limited by
systematic uncertainties where the Lorentz-invariant classifiers perform best.
Before measuring the 𝑉 𝐻 →𝑉 𝑏�̄� signal strength in ATLAS data of 2012, two flaws of the ATLAS

likelihood have to be addressed. These became evident when the model was adapted to the Lorentz-
invariant classifiers. The necessary modifications of the likelihood model change some uncertainties
of 𝜇, which is why all results in this thesis, also from the current section, were derived with corrected
likelihood models. Nevertheless, it made sense to postpone the discussion of these changes because the
choice of classifiers is largely independent of the modifications to the likelihood model.
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Ⅴ 2 Improvement of the Likelihood Model

When using the profile-likelihood approach, it must be ensured that the likelihood model is able to
describe the data given the set of systematic uncertainties. Otherwise, any measurement of observables
is meaningless. Since all simulations used to derive the likelihood functions rely on approximations,
the model must possess sufficient degrees of freedom, that is, systematic uncertainties, to account for
differences between the predictions and the data. The validation of the likelihood model in this section
ensures that this is the case. The focus will be on two aspects: firstly, to ensure that systematic uncertainties
are parametrised properly, and secondly, to ensure that the likelihood model can use these to describe the
data.

Ⅴ 2.1 Smooth Parametrisations of Systematic Uncertainties

All ATLAS analyses share a set of systematic uncertainties, which can be assigned to two classes:
uncertainties of efficiencies or probability distributions (e.g. reconstruction efficiency) and uncertainties
of event observables (e.g. momentum of a particle). The former can be estimated by changing the weights
assigned to Monte Carlo events, the latter are estimated by changing observables in each event. The
changes of event weights are usually small, which means that the distributions of observables change
smoothly because the same events enter the distributions with only slightly altered weights.
However, when event observables are changed, events can migrate between different categories or

pass/fail selection cuts, which they do not pass/fail in the nominal analysis. The goal is to parametrise the
resulting shape changes of the probability distributions, but these might be overshadowed by statistical
uncertainties. Statistical fluctuations therefore should be removed when estimating shape changes, or
at least mitigated. To achieve this, the normalised shape difference of the samples with and without
systematic uncertainty is calculated bin by bin:

Δrel =
𝑥Sys − 𝑥Nominal

𝑥Nominal
. (Ⅴ.11)

𝑥 is an observable such as the BDT classifier score. To separate the impact of the systematic uncertainty
from statistical fluctuations, the shape difference is subsequently smoothed. After smoothing, the distri-
bution representing the systematic uncertainty is reconstructed from the nominal distribution using the
smoothed relative difference:

𝑥smooth
Sys = 𝑥Nominal ⋅ (1 + Δsmooth

rel ).

Aggressive smoothing methods reduce statistical fluctuations, but the effect of a systematic uncertainty
might be represented wrongly when distributions are “oversmoothed”. Weak smoothing might not
suppress statistical fluctuations sufficiently. The smoothing algorithm therefore decides how accurately
systematic uncertainties are described by the likelihood model.
The performance of the ATLAS 𝐻 → 𝑏�̄� smoothing algorithm was validated, especially for the

dominant systematic uncertainties of the Lorentz-invariant 𝑉 𝐻 →𝑉 𝑏�̄� analysis. It was found that the
ATLAS smoothing algorithm can only correctly approximate the impact of systematic uncertainties whose
distributions can be represented with monotonous step functions. Other distributions are oversmoothed.
This is visible in figure Ⅴ.11: the systematic uncertainty in figure Ⅴ.11(a) is represented well, but the
distribution in figure Ⅴ.11(b) is oversmoothed. This is because the ATLAS 𝑉 𝐻 →𝑉 𝑏�̄� smoothing was
designed assuming that the normalised difference is always monotonous – for all systematic uncertainties,
processes, classifiers and categories. This assumption fails often for the Lorentz-invariant classifiers, but
also for some official ATLAS histograms used for the Run-1 𝐻 →𝑏�̄� publication [1]. In figure Ⅴ.11(a),
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Figure Ⅴ.11: Impact of systematic uncertainties before and after smoothing, illustrated using the BDT response to
u�u� events. The figures show the difference of a histogram with systematic uncertainties applied with respect to
the nominal distribution. The dashed lines show the impact of the systematic uncertainty without any smoothing.
Top: ATLAS smoothing. Bottom: Polynomial smoothing.

for example, the jet energy resolution uncertainty for 𝑊𝐻 events vanishes completely.

Popular smoothing algorithms to replace the ATLAS 𝐻 →𝑏�̄� smoothing like calculating the mean or
median of three adjacent bins or the more sophisticated 353QH [167] commonly used in ROOT did not
produce superior results because these do not take into account the statistical uncertainties of the bins.
Yet these uncertainties are very relevant because bin contents of similar magnitude are subtracted from
each other when calculating the normalised difference, see equation (Ⅴ.11). This leads to significant
uncertainties in numerous bins, which needs to be taken into account when smoothing is applied.

A method to take such uncertainties into account while at the same time lifting the false assumption of
monotonous distributions is to fit functions to the normalised difference. The monotonous step functions
used by ATLAS were therefore replaced with polynomials fitted to the normalised difference. Results
are shown in figures Ⅴ.11(c) and Ⅴ.11(d): both shapes are reproduced accurately and without statistical
fluctuations. Nonetheless, it must be ensured that the polynomials do not overfit the data: with sufficient
degrees of freedom, a polynomial can follow any distribution – in the worst case it follows random noise.
Therefore, the F-test [168] is employed to choose the lowest-order polynomial that reliably represents
the impact of a systematic uncertainty. 𝐹 is the ratio of two independent, 𝜒2-distributed variables 𝑈u�,
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normalised by the number of degrees of freedom:

𝐹u�,u� = ( 𝑈u�
ndfu�

) / ( 𝑈u�
ndfu�

)

𝐹 can hence be used to compare the fit quality of two models. Be 𝑎 a simple model with 𝑝u� parameters,
and 𝑏 a more complex model with 𝑝u� > 𝑝u� parameters. Model 𝑎 should further be a special case of 𝑏; in
the sense that 𝑏 can be made identical to 𝑎 if a set of parameters in 𝑏 is chosen correctly. For polynomials,
this is the case if 𝑏 is of higher order than 𝑎. If both models are fit to data, and if model 𝑎 captures the
underlying distributions equally well as 𝑏, any additional degrees of freedom in 𝑏 should not improve the
quality of the fit. The squared sum of residuals of 𝑎 will be larger than for 𝑏, but a difference in 𝜒2-values,
𝑈 , only occurs because of statistical fluctuations, and therefore it will itself be 𝜒2-distributed:

𝜒2
u� = 𝜒2

u� + 𝑈, where 𝑈 ∼ 𝜒2
Δndf.

‘Δndf’ is the difference in degrees of freedom between the two models. In such a case, the 𝐹 -statistic is:

𝐹u�,u� =
u�2

u� − u�2
u�

Δndf
u�2

u�
ndfu�

=
u�

Δndf
u�2

u�
ndfu�

.

Knowing the distribution of 𝐹 , one can test if the more complex model 𝑏 is better suited to describe the
data. The corresponding hypothesis test is:

𝑯0 𝐹u�,u� is 𝐹 -distributed. Both models describe the data equally well. Choosing the more complex
model is not necessary.

𝑯1 𝐹u�,u� is not 𝐹 -distributed. Model 𝑏 provides a superior description of the data. The more complex
model should be chosen.

The probability of 𝐻0 can be computed by evaluating the cumulative 𝐹 -distribution. The critical value for
rejecting the null hypothesis, that is, accepting themore complicated polynomial, was set to 𝑝(𝐻0) < 30 %.
There is no guideline for choosing the critical value, but setting it to 20 and 40 % did not yield significantly
different results.

Using the 𝐹 -test to choose the best polynomial is a way to regularise the models used to represent the
shape changes caused by systematic uncertainties. Unless statistical evidence is found that a complex
model provides a superior description of the shape, it is assumed that the shape change can be represented
using a simple polynomial such as a straight line. The baseline model therefore is a 1st-order polynomial,
and polynomials up to 10th order are tested. If 𝐻0 for the straight line is rejected in favour of a more
complex polynomial, the process is repeated with this polynomial as the baseline model until no further
significant 𝐹 -values are found, or until a polynomial of 10th order is reached. Since the histograms for
smoothing systematic uncertainties were configured to have 50 bins, this ensures that the fits to extract
the coefficients of the polynomials are never underdetermined. For the 𝑉 𝐻 →𝑉 𝑏�̄� likelihood models,
the polynomials are usually of low orders up to 3rd. More complex polynomials up to 6th order are
chosen rarely, and higher orders were chosen only in single instances. Figure Ⅴ.12 shows two examples:
a systematic uncertainty with negligible impact in (a) and one of the rare uncertainties that requires a
7th-order polynomial in (b). The first five polynomials that were tested in each instance are shown as
dashed lines, and the best-fitting polynomial is shown with a bold solid line. The figures demonstrate
that the complexity of the model is successfully adapted to the shape changes caused by the systematic
uncertainties, and that statistical fluctuations are efficiently reduced.
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Figure Ⅴ.12: Smoothing of systematic uncertainties with polynomials. The figures show the relative difference
as in equation (Ⅴ.11), which describes the impact of a systematic uncertainty on the classification result. The
u� -test is used to find the polynomial that best approximates the distributions. (a) Noisy systematic uncertainty with
insignificant shape changes. A straight line is the best approximation. (b) Systematic uncertainty with complex
shape changes. A 7th-order polynomial is found to be the best approximation.

𝜒2 tests were used to rate the performance of polynomial smoothing and ATLAS 𝑉 𝐻 →𝑉 𝑏�̄� smoothing.
The statistical compatibility between the smoothed and the raw shape was tested for both smoothing
algorithms in all categories, for all uncertainties and for all signal/background samples. Polynomial
smoothing outperforms the ATLAS method in all categories, although the ATLAS method also minimises
a 𝜒2-metric: a 𝜒2-test is used to determine whether the step function should remain constant or jump to
a new value. However, polynomial smoothing uses superior baseline models: by lifting the assumption of
monotonously rising or falling distributions, shapes can be represented more accurately, and with fewer
parameters.

Apart from the 𝐹 -test, a second method of regularisation is employed for polynomial smoothing: after
selecting the best polynomial, the parameters of the polynomial are tested for being compatible with
zero. If all parameters are compatible with zero within the 1 𝜎 uncertainty, the systematic uncertainty is
removed from the respective category. This reduces the number of noisy uncertainties being propagated
into the likelihood model, but it also ensures that all significant shape changes are represented correctly.
This does not mean that a systematic uncertainty is removed completely, though: smoothing and pruning
of systematic uncertainties are applied separately per category, per background/signal sample and per
source of systematic uncertainty. Although shape changes might be insignificant in single categories,
they might be dominant in others. The method introduced here fully takes this into account.
Polynomial smoothing is used for all likelihood models and all comparisons in this thesis. Its impact

on the uncertainties of 𝜇 was compared with the ATLAS smoothing method: it was found that depending
on the category of the analysis and the classifiers used, uncertainties of 𝜇 increase or decrease by 0.05 to
0.1. Given that the total uncertainty is about 0.6, this impact is not negligible, but it is limited because the
most important Monte Carlo samples – 𝑉 𝐻 , 𝑡 ̄𝑡 and partly also 𝑉 +jets – provide rather high statistics, and
therefore are less affected by the details of the smoothing algorithm. Nevertheless, the ATLAS smoothing
method occasionally fails also for high-statistics simulations such as 𝑊𝐻 shown in figure Ⅴ.11(b).
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Figure Ⅴ.13: Nuisance parameters of u�-tagging uncertainties. These are shown as pulls, that is, the post-fit values
of the nuisance parameters divided by the pre-fit uncertainties. The green and yellow bands show the one- and two-
standard-deviation uncertainties of the u�-tagging calibration. The error bars show the post-fit one-standard-deviation
uncertainty. ( ) Fit to data ( ) Fit to a dataset generated from simulations (“Asimov dataset”).

Ⅴ 2.2 Analysis of Nuisance-Parameter Pulls

The analysis of nuisance-parameter pulls is even more important than the smoothing algorithm: the
nuisance parameters provide the degrees of freedom to fit a likelihood model to the data taking into
account that the simulations usually cannot perfectly reproduce the distributions in data. To judge if
the likelihood model is able to describe the data given the systematic uncertainties, the response of
all nuisance parameters must be checked because −2 ln(𝜆) should be 𝜒2-distributed when releasing a
nuisance parameter. This is usually done by analysing pulls, that is, the post-fit values of the nuisance
parameters divided by the input uncertainties. As described in sectionⅣ 5.3, the post-fit values of the
nuisance parameters are the values that maximise the likelihood, and the post-fit uncertainties are obtained
by evaluating the matrix of second derivatives of the profile-likelihood ratio.
Figure Ⅴ.13 shows an example of pulls that can be regarded as well-behaved, in this case 𝑏-tagging

uncertainties. The full set of nuisance-parameter pulls can be found in appendix C 4.3. In the present
example, two likelihood fits are compared in the same panel: a fit to data (left, ) and a fit to the Asimov
dataset (right, ). For the interpretation of the pulls, the following points need to be considered:
• Pulls should be distributed around zero, and uncertainties should normally be close to one.
• If the fit can infer the value of a nuisance parameter from the data, uncertainties are lower than one.
This is because the uncertainties result from two terms in the likelihood function: the constraint term,
a Gaussian term centred at zero with a standard deviation of one, and the impact on the bin contents
constrained by the data. If an uncertainty has measurable impact on the bin contents, and the data have
low-enough statistical uncertainties in these bins, the latter term becomes relevant, and the uncertainty
of the nuisance parameter shrinks.

• Whether a fit model is sensitive to certain nuisance parameters, can be determined using the fit to
the Asimov data. If nuisance-parameter uncertainties reduce to less than one in the Asimov fit, the
likelihood model uses the (Asimov) data to measure the nuisance parameter. It can therefore be
expected that such a measurement is also possible with real data. In the example of figure Ⅴ.13,
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the first two nuisance parameters, which have the strongest impact on 𝑏-tagging efficiencies, can be
inferred from data because Asimov uncertainties are about half of the input uncertainties. Other
𝑏-tagging nuisance parameters can be inferred only with much lower sensitivity because they also have
a lower impact on the likelihood. The Asimov fit, however, only tests the sensitivity for an idealised
data sample that exactly follows the nominal prediction. Asimov uncertainties are therefore usually
lower than in fits to data (as in the present example).

• Post-fit uncertainties in fits to real data that are considerably larger than 1 𝜎 indicate ill-defined
uncertainties: the upper bound on the post-fit uncertainty is given by the constraint term in the
likelihood, which yields an uncertainty of exactly 1 𝜎. If the post-fit uncertainty is larger, this is a sign
of a numerical instability in the minimum of the log-likelihood that leads to an inaccurate estimation
of the Hesse matrix (e.g. because the log-likelihood profile is asymmetric). Such uncertainties need to
be reparametrised, unless the excess over 1 𝜎 is small, and the corresponding systematic uncertainty
is negligible for the measurement of 𝜇. Only a few of the 177 post-fit uncertainties documented in
appendix C 4.3 are slightly larger than one, but all of these are irrelevant for the measurement of 𝜇.

• Nuisance parameters can be pulled or constrained more than expected from the Asimov fit for different
reasons:
1. Poorly parametrised systematic uncertainty.
2. Statistical fluctuation: both the auxiliary measurements and the values inferred from the data

may occasionally fluctuate. This can lead to significant pulls or constraints.
3. No prior knowledge: some uncertainties need to be estimated without external measurements.

Especially when comparing Monte Carlo generators, it is unclear which Monte Carlo generator
models the data best, for example, with respect to the flavour fractions of 𝑏, 𝑐, 𝑙 jets in 𝑉 +jets
events. Pulls must therefore be expected.

4. Missing flexibility of the likelihood model: if an uncertainty relevant for a measurement is not
included in the likelihood model, other nuisance parameters with a similar effect on the bin
contents might be pulled unjustifiably to cover the differences between data and simulations.

Depending on which of these four effects causes significant pulls, different actions are advisable: case 1
needs to be excluded by analysing the histograms that parametrise the systematic uncertainty. The result of
such checks is the correction of the smoothing algorithm described in section Ⅴ 2.1. Pulls caused by case
2 can be detected by determining the value of the nuisance parameter separately in different categories. If
only one category shows a large pull, the pull is likely a fluctuation. The category that is causing the pull
should be decoupled from the other categories, which eliminates the impact of the fluctuation on other
categories. Parameters falling into class 3 are known in advance. Pulls can be accepted, unless they are
very high (≫1 𝜎). Case 4 remains if none of the other explanations are plausible. This case should be
avoided because measurements conducted with such a likelihood model are likely unreliable. If case 4 is
the only plausible explanation for a pull, the likelihood model needs to be extended in order to provide
the missing degrees of freedom to describe the data.

Given figure Ⅴ.13, it is justified to state that 𝑏-tagging efficiencies in the Lorentz-invariant 𝑉 𝐻 analysis
are modelled well. The likelihood model is only weakly sensitive to most of the nuisance parameters, and
therefore the calibration uncertainties provided by ATLAS are directly translated into uncertainties of 𝜇.
Only for the two dominant 𝑏-tagging nuisance parameters uncertainties reduce to 0.8 𝜎. The nuisance
parameters are also slightly pulled, but well within the 1 𝜎 interval of the ATLAS measurements. Both
the constraints and the pulls are justified because the 𝑉 𝐻 → 𝑉 𝑏�̄� analysis relies heavily on 𝑏-tagging,
but it probes only a specific region of phase space (two Higgs 𝑏-jets recoiling against a vector boson),
whereas ATLAS calibrations are provided for a much larger phase space. It is therefore not surprising
that pulls and post-fit uncertainties slightly deviate from the ATLAS calibration.
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Figure Ⅴ.14: All nuisance parameters of the Lorentz-invariant analysis that are pulled by more than ±0.75 u�, or
constrained to less than 0.4 u�. ( ) Fit to data ( ) Fit to a dataset generated from simulation (“Asimov dataset”).

The post-fit values of nuisance parameters should not be interpreted as measurements in their own
right. This is because the nuisance-parameter formalism only approximates a full measurement: instead
of adding the full likelihood function for a thorough measurement of external parameters, the main results
of external measurements are approximated in the 𝑉 𝐻 →𝑉 𝑏�̄� likelihood model by computing the ±1 𝜎
impact on the 𝑉 𝐻 distributions and by adding a Gaussian constraint term to the 𝑉 𝐻 likelihood. Most
likely, the phase space covered by the 𝑉 𝐻 →𝑉 𝑏�̄� analysis is different from the phase space probed by
external measurements. Hence, if post-fit values of nuisance parameters differ from zero, this is not a
disagreement with external results. Only when strong pulls (≫ ±1 𝜎) are observed, this should be taken
as an indication that the 𝑉 𝐻 likelihood model detects a tension between the present data and the external
knowledge.
In order to find unjustified pulls or unreasonable constraints, all nuisance parameters of the 𝑉 𝐻 analysis

that are either pulled by more than 0.75 𝜎, or whose post-fit uncertainties are below 0.4 𝜎, have been
compiled in figure Ⅴ.14. There is no convention to set the thresholds to 0.75 𝜎 and 0.4 𝜎. Larger pulls or
stronger constraints also do not necessarily indicate deficits of the likelihood model. These thresholds
ensure, however, that neither strong pulls nor strong constraints are missed. The Asimov uncertainties
in figure Ⅴ.14 show that the likelihood model is sensitive to most of these “questionable” nuisance
parameters. This is expected because pulls are unlikely when a likelihood model is not sensitive to the
values of certain nuisance parameters: the constraint term would dominate the likelihood, and the pull
would therefore be close to zero9. The figure shows that only 14 out of 177 parameters10 are pulled
outside of the interval ±0.75 𝜎, and only five are pulled to more than ±1 𝜎. This means that only in very
few cases the likelihood fit significantly deviates from external knowledge. Nine out of 177 nuisance
parameters are constrained to less than 0.4 𝜎. Many of these are simulation uncertainties such as jet
multiplicities that can be measured in data. It is expected, in fact, desired that the fit constrains these
(item 3 on the previous page).
9 High sensitivity does not mean that the impact on u� is also high. The impact on u� is entirely determined by how strongly an
uncertainty changes the bin contents in the bins with the highest u�/u�. The sensitivity to a nuisance parameter is determined
by how strongly the corresponding systematic uncertainty changes bins where the statistical uncertainties of the data are low.

10 The u� parameters are not counted because these are not sensitive to deficits of the likelihood model: each u� parameter only
affects a single bin and is therefore not sensitive to shape and normalisation differences.

158



Ⅴ 2 Improvement of the Likelihood Model

In the following, all nuisance parameters in figure Ⅴ.14 will be discussed:
BTagC*Effic These nuisance parameters describe the probability of 𝑏-tagging charm jets or hadronically

decaying 𝜏 leptons. Since the ATLAS 𝐻 →𝑏�̄� analysis was the first to use the 𝑏-tagging algorithm
MV1c, whose main purpose is to suppress charm backgrounds, one can expect a high sensitivity to the
calibration of charm 𝑏-tagging probabilities. This is supported by the Asimov uncertainties.
3 of the 15 BTagC nuisance parameters are pulled close to the 1 𝜎 level, yet they are consistent with the
calibration. Such pulls are acceptable, especially because the likelihood model is unable to strongly
constrain the nuisance parameters. The post-fit uncertainties remain close to the input uncertainty,
and are therefore translated into uncertainties of 𝜇 without significantly reducing the impact of the
underlying uncertainty. The same pulls were also observed in the ATLAS 𝐻 →𝑏�̄� analysis [1].

JetEResol The jet energy resolution uncertainty is constrained to 37 %. A strong constraint is expected
for two reasons: firstly, the 𝐻 →𝑏�̄� analysis strongly depends on the jet energy resolution. The Higgs
peak in the invariant mass of two 𝑏-jets is the most powerful discriminator. Consequently, the BDT
classifiers are very sensitive to changes of the jet energy resolution. The fact that the uncertainty in the
Asimov fit agrees with the uncertainty obtained in the fit to data shows that the measured constraints
are also consistent with predictions. Secondly, other ATLAS analyses also observed constraints of this
nuisance parameter, to about 50 % of the input uncertainty. This indicates that the uncertainties of the
ATLAS jet energy resolution parametrisation are more conservative than necessary. A constraint of
the jet energy resolution parameter is therefore acceptable.

JetEResol_B0_3J_2T This nuisance parameter is the same as the previous one, but it is restricted to
the region with 3 jets, 2 𝑏-tags, 𝑝u�

T < 120 GeV – a region with very low sensitivity11. The pull
in this region deviates from the pull in the rest of the 𝑉 𝐻 → 𝑉 𝑏�̄� phase space for one of the three
likelihood models that were compared to the Lorentz+BDTG configuration in section Ⅴ 1.5, likely due
to a statistical fluctuation. This leads to an overconstraint of the jet energy resolution parameter. The
impact of this overconstraint is removed by decoupling the nuisance parameter in this category from
the nuisance parameter common to all other categories. In order to compare the four classifiers on an
equal basis, this decorrelation is also introduced in all other likelihood models, see also footnote 7 on
page 146.
For the Lorentz+BDTG configuration in figure Ⅴ.14, both nuisance parameters agree. This shows
that this exception would not be necessary for the Lorentz-invariant analysis used for the main result
of this thesis, and it supports the hypothesis that the pull in the other fit configuration is caused by a
statistical fluctuation.

JetEtaModel/-EtaStat These nuisance parameters describe uncertainties of jet energy calibrations:
such calibrations are provided in bins of 𝜂, and these two uncertainties have a small, 𝜂-dependent
impact on jet energies. Therefore, they change the shapes of jet-related observables in all simulations
on the level of 1 %, but there is no indication that the pulls are unreasonable. Both uncertainties have
a vanishing impact on 𝜇.

WMbb_B0_WbbORcc This is a shape uncertainty for the modelling of 𝑚u�u� for the 𝑊+𝑏𝑏 and 𝑊+𝑐𝑐
backgrounds in the region 𝑝u�

T < 120 GeV. As discussed in sectionⅣ 6, the Monte Carlo predictions
for the shape of 𝑚u�u� and 𝑝u�

T differ depending on the generator used. No measurements with data have
been conducted, though: this nuisance parameter therefore falls in the category “no prior knowledge”,
see item 3 in the list on page 157, and any post-fit value between -1 and 1 is reasonable.

11 B0 stands for the first u�u�
T bin, starting at 0 GeV, B2 stands for the second u�u�

T bin, starting at 120 GeV. B1 is not used, any
more. It is reserved for an intermediate bin in the ATLAS cut analysis [3, 4].
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WPtV_3J_2T_B2_ll_Whf As for the previous nuisance parameter, Monte Carlo predictions for 𝑝u�
T differ

in 𝑊+jets events. Pulls of the WPtV uncertainty can therefore be expected. However, the 𝑝u�
T nuisance

parameter for the 3-jet region was initially pulled to < −1.5 𝜎, outside of the credible interval obtained
from Monte Carlo comparisons. Further studies revealed that there is a discrepancy between the
region 3 jets, 2 loose 𝑏-tags, 𝑝u�

T > 120 GeV, ‘3J_2T_B2_ll’ and all other 3-jet regions: the pulls
are −1.6 ± 0.7 in this region vs. −0.7 ± 0.6 in all other regions. Since the strong pull is confined to
one region only, a statistical fluctuation is the most likely cause. Therefore, the nuisance parameter in
this particular 3-jet category was decoupled from the rest of the 3-jet regions to avoid a bias due to the
fluctuation.

TtbarMBBCont This nuisance parameter represents uncertainties regarding the predicted 𝑚u�u� distribu-
tions in 𝑡 ̄𝑡 events, which is estimated by comparing Monte Carlo generators as described on page 119.
As for the last two nuisance parameters, pulls can be expected because no external measurements
are available. Contrary to the previous nuisance parameter, a statistical fluctuation is likely not the
cause of the pull: a clear shape difference between data and Monte Carlo predictions is observed, see
appendix C 3 on page 217. By pulling the nuisance parameter, this shape difference is corrected, and
this pull is therefore required to correctly describe the data.

WblWbbRatio_B0, bl1T2TRatio_* These nuisance parameters are associated to flavour-fraction un-
certainties for the Sherpa simulations. These will be discussed in detail in the next section.

*Norm_3J As discussed in section Ⅲ 4.3 of the introduction, the 𝑉 𝐻 analysis relies on cross-section
predictions in two jet-multiplicity bins: 2 jets and 3 jets. Since cross-section uncertainties of the 3/2-
ratio are larger than for simpler matrix elements without additional jets, ‘3J’ normalisation nuisance
parameters are assigned to the 3-jet predictions of most backgrounds. As for other Monte-Carlo-only
nuisance parameters, no external measurements are fed into the profile-likelihood fit. Jet multiplicities
have of course been measured, but not specifically in the 𝑉 𝐻 →𝑉 𝑏�̄� phase space. As shown by the
Asimov fits, the likelihood model is very sensitive to such cross-section differences. That means that
these can be measured in the 𝑉 𝐻 →𝑉 𝑏�̄� phase space, and it was therefore decided to allow for strong
constraints of the 3/2-ratios. All post-fit values are found within the plausible range predicted by
Monte Carlo generators. The magnitude of the pre-fit 3-jet normalisation uncertainties can be found
in tableⅣ.9 on page 118.

160



Ⅴ 2 Improvement of the Likelihood Model

Ⅴ 2.3 The Treatment of 𝑽 +𝒃𝒍 Normalisations

The use of MV1c and 𝑏-tagging at multiple working points (sectionⅣ 1.3) improved the sensitivity of
the 𝑉 𝐻 → 𝑉 𝑏�̄� cut analysis from 1.6 𝜎 [4] to 1.9 𝜎 [1]. However, with more powerful 𝑏-tagging, the
𝑉 𝐻 →𝑉 𝑏�̄� analysis is also more sensitive to the modelling of 𝑏-tagging probabilities and flavour fractions
in 𝑉 + jets simulations. Since these flavour fractions cannot be predicted accurately (section Ⅲ 4.3),
normalisation uncertainties for all flavour categories have to be added to the likelihood model. These are
estimated by comparing predictions of different Monte Carlo generators and changing parton shower and
hadronisation models. In the 𝑉 𝐻 analysis, these normalisation uncertainties are as high as 35 % (ratio of
𝑊+𝑏𝑙 to 𝑊+𝑏𝑏 events). The full list of uncertainties can be found in tableⅣ.9 on page 118. No external
measurements are available for the 𝑉 +jets flavour fractions. They therefore have to be constrained by
fits to data. With the ATLAS likelihood model, the measurement of many flavour fractions is carried
out in the 1𝑏-tag region. However, it is assumed that this measurement can be extrapolated to the 2𝑏-tag
region without any uncertainties. This turned out to be false during the validation of the Lorentz-invariant
likelihood models as will be shown in the following.

In likelihood fits using the Lorentz-invariant MVA, two nuisance parameters were found to be pulled
significantly – more than expected from comparing various simulations: the 𝑊+𝑏𝑙 and 𝑍+𝑏𝑙 flavour
fractions. The ratio of 𝑊+𝑏𝑙 to 𝑊+𝑏𝑏 events was found to be pulled to -1.29, and the ratio of 𝑍+𝑏𝑙
to 𝑍+𝑏𝑏 events to -1.91. With prior uncertainties of 35 % and 11 %, respectively, and by applying the
exponential normalisation extrapolation (𝐼−/𝐼0)−u� for negative values of 𝛼12, this is equivalent to
normalisation factors of

𝜂u�+u�u� = 0.651.29 ≈ 0.57 and 𝜂u�+u�u� = 0.881.91 ≈ 0.78 .

The data would favour even lower normalisation factors, but the constraint terms prevent further reduction
of these two 𝑉 +𝑏𝑙 normalisations. For this reason, other nuisance parameters such as 𝑏-tagging uncer-
tainties or flavour fractions of other 𝑉 +jets flavours are pulled when the ATLAS likelihood model is
used. This is a sign of tensions between data and simulations that the likelihood model cannot account
for because certain systematic uncertainties have been overlooked.

The cause of the 𝑉 +𝑏𝑙 normalisation reduction was found in the 1𝑏-tag region, see figures Ⅴ.15
and Ⅴ.16. The figures show the response of MV1c for both the leading and the subleading jet. Simulations
predict an excess of events in the rightmost bin, whereas predictions in other bins are correct or slightly
low. The rightmost bins would thus require decreased normalisation factors, whereas other bins require
constant or increased normalisations. The rightmost bins are populated by events in which one jet passes
the tight 𝑏-tagging requirement (50 %) while the other jet is not 𝑏-tagged. The dominant background
process in these bins is 𝑉 +𝑏𝑙, whose normalisation can only be constrained in these bins when the
ATLAS likelihood model is used. This is because in the 1-lepton channel, 𝑊+𝑏𝑙 is almost completely
absent from other bins (figure Ⅴ.15), and 𝑍+𝑏𝑙 in the 2-lepton channel is relatively low in the first three
bins (figure Ⅴ.16). An excess of Monte Carlo events in the rightmost bin therefore leads to a significant
reduction of the 𝑉 +𝑏𝑙 flavour fractions, whereas other 𝑉 +jets normalisations are increased, especially
𝑍+𝑏𝑏. Figures Ⅴ.15 and Ⅴ.16 only show the regions with the highest sensitivity, but a similar excess of
simulated events is visible in all other 1𝑏-tag categories of the analysis. This is shown in appendix C 4.1
on page 218.
While an excess of Monte Carlo events is visible in the 1𝑏-tag region, no such excess is visible in

the signal regions with two 𝑏-tagged jets. On the contrary, an increase of background normalisations is
12 See equation (Ⅳ.13) on page 106.
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(a) Leading jet u�-tagged, 1 lepton
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(b) Subleading jet u�-tagged, 1 lepton

Figure Ⅴ.15: u�-tagging response for events with one u�-tagged jet in the 2-jet region, u�u�
T > 120 GeV, 1-lepton

channel. The bins correspond to the four working points of the MV1c u�-tagging algorithm. From left to right: 80,
70, 60 and 50 %. 1u�-tag distributions show an excess of Monte Carlo events in the rightmost bin. One of the
dominant backgrounds in this bin is u�+u�u� ( ). A similar excess is observed in other regions of the analysis. See
figure Ⅴ.16 and appendix C 4.

necessary to describe the data in the 2𝑏-tag region, especially in the 2-lepton channel where the 16 %
correction was applied to all plots shown previously. MV1c distributions with two 𝑏-tagged jets are shown
in appendix C 4.2. The excess of events in the 1𝑏-tag region can be caused by several effects:

1. The 𝑏-tagging efficiency of the 50 % working point is overestimated in simulations. This option is
unlikely, though: ATLAS provides 𝑏-tagging calibrations with detailed uncertainties, which are
all propagated into the likelihood model as 𝑏-tagging nuisance parameters. The blue band in the
bottom plot in figure Ⅴ.15 shows the quadratic sum of these uncertainties. Since these 𝑏-tagging
uncertainties for both 𝑏- and light jets are neither constrained nor pulled strongly, the (single jet)
𝑏-tagging calibration is probably not the cause of the misdescription.

2. The probability that both jets in 𝑉 +𝑏𝑙 and partly also 𝑉 +𝑐𝑙 events are 𝑏-tagged is underestimated
in simulations. 𝑉 +𝑏𝑙 events should normally be observed in the 1𝑏-tag region, but some will
migrate into the 2𝑏-tag region if the light jet is misidentified as a 𝑏-jet. If the probability of such
“mistags” is lower in simulations than in data, a deficit of 𝑉 +𝑏𝑙 events in the 2𝑏-tag region and an
excess in the 1𝑏-tag region will be observed.
Contrary to the previous case, this effect is not fully covered by 𝑏-tagging uncertainties. These
are derived for single light/charm/𝑏-jets but not for whole events where two jets are tagged. 𝑏-
tagging uncertainties are applied separately for each jet, and no interdependency between the jets is
assumed. However, if the response of MV1c for a given jet depends on other jets in the same event,
the single-jet 𝑏-tagging uncertainties can be insufficient to describe the 2𝑏-tag probability in 𝑉 +𝑏𝑙
events.

3. The cross section of 𝑉 +𝑏𝑙 events is overestimated in the Sherpa simulations. This would produce
an excess of Monte Carlo events in the rightmost bin of the 1𝑏-tag region, but also in the 2𝑏-tag
region. A misdescription of cross sections or flavour fractions is therefore likely not the cause of
the excess.

Depending on the cause of the excess, the impact on the analysis is different: for cases 1 and 2, an excess
in the 1𝑏-tag region would lead to a deficit of events in the 2𝑏-tag region. For case 3, an excess in the
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(a) Leading jet u�-tagged, 2 leptons
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(b) Subleading jet u�-tagged, 2 leptons

Figure Ⅴ.16: u�-tagging response for events with one u�-tagged jet in the 2-jet region, u�u�
T > 120 GeV, 2-lepton

channel. The bins correspond to the four working points of the MV1c u�-tagging algorithm. From left to right: 80,
70, 60 and 50 %. 1u�-tag distributions show an excess of Monte Carlo events in the rightmost bin. The dominant
background in this bin is u�+u�u� ( ). u�+jets backgrounds are scaled up by 16 % as in previous figures. A similar
excess is observed in other regions of the analysis: see figure Ⅴ.15 and appendix C 4.

1𝑏-tag region would be observed in conjunction with an excess also in the 2𝑏-tag region. The flaw of the
ATLAS likelihood model is that it cannot handle all three cases: the flavour-fraction uncertainties are
designed to describe case 3, and ATLAS 𝑏-tagging uncertainties should cover case 1, but case 2 cannot
be described.

For completeness, one should establish that other background processes are most likely not the cause of
the excess:
• 𝑡 ̄𝑡 events ( ) significantly contribute to the rightmost bin in the 1-lepton analysis (figure Ⅴ.15), but
are irrelevant in the 2-lepton channel (figure Ⅴ.16). Furthermore, the fraction of 𝑡 ̄𝑡 events is different
depending on whether the leading or subleading jet in 𝑝T is 𝑏-tagged (figures Ⅴ.15(a) and Ⅴ.15(b)).
Nevertheless, the excess is of similar magnitude in both distributions.

• Single-top events ( ) could cause an excess in the 1-lepton channel, but are absent in the 2-lepton
channel. It is therefore unlikely that these are the only source of the excess. They could, however, be
affected by a 𝑏-tagging calibration problem such as case 2 in the list above because they also have a
‘lepton+𝑏𝑙’ signature.

• The diboson backgrounds ( ) do not impact normalisations because their contribution is very low.
• QCD multijet events ( ) are absent in the 2-lepton channel. In the 1-lepton channel, multijet events
with a single 𝑏-tagged jet are directly taken from data13. Hence, their 𝑏-tagging efficiencies cannot be
calibrated wrongly.

13 This is an improvement with respect to previous versions of the ATLAS u� →u�ū� analyses, which were taking all multijet
events from the 0u�-tag region, see sectionⅣ 2.6.

163



Chapter Ⅴ Beyond the ATLAS 𝐻→𝑏�̄� Analysis

Nuisance Parameters to Account for the 𝑽 +𝒃𝒍 Excess

Although case 2 from the list above seems to be the most likely cause of the excess, the ATLAS likelihood
model treats the 𝑉 +𝑏𝑙 normalisations in both 𝑏-tag categories as correlated. That means that it can
correctly treat case 3, global changes of the 𝑉 +𝑏𝑙 cross section, and partly case 1 provided that the official
ATLAS 𝑏-tagging uncertainties are large enough. Yet if case 2 is the cause of the excess, the 𝑉 +𝑏𝑙 flavour
fractions will be measured wrongly: since the number of observed events in the 1𝑏-tag region is about 10
times larger than in the 2𝑏-tag region, the likelihood model gives higher precedence to the normalisations
measured in the 1𝑏-tag region. (460 000 vs. 45 000 events in the 1-lepton channel. Event yields can be
found in appendix D). Any measurement of normalisations in the 1𝑏-tag region will therefore override
conflicting measurements in the 2𝑏-tag region. Yet if case 1 or 2 are the cause of the excess, a reduction
of 𝑉 +𝑏𝑙 events in the 1𝑏-tag region should lead to an increase of events in the 2𝑏-tag region. However,
fits using the ATLAS likelihood model will do the opposite, and pull both normalisations down.
To create a likelihood model that can handle all cases, the ATLAS likelihood model was extended

with nuisance parameters allowing for migrations between the 1- and 2𝑏-tag regions. The essence of a
migration is that events that disappear in the 1𝑏-tag region appear in the 2𝑏-tag region, which is not what
happens with the ATLAS likelihood model. The implementation of these nuisance parameters is similar
to the 3- to 2-jet ratio nuisance parameters:

𝜙2T, low u�u�
T

= 𝜙u�u�u� ⋅ 𝜂WblWbbRatio_B0 𝜙1T, low u�u�
T

= 𝜙u�u�u� ⋅ 𝜂WblWbbRatio_B0 ⋅ 𝜂bl1T2TRatio_Wbl_B0

𝜙2T, high u�u�
T

= 𝜙u�u�u� ⋅ 𝜂WblWbbRatio 𝜙1T, high u�u�
T

= 𝜙u�u�u� ⋅ 𝜂WblWbbRatio ⋅ 𝜂bl1T2TRatio_Wbl

This scheme defines the 𝑊+𝑏𝑙 sample normalisations 𝜙<region> as the product of three factors. They
float synchronously with the total 𝑊 + jets normalisation factor 𝜙u�u�u�. This factor represents global
𝑊 +jets cross-section changes. The second factor, 𝜂WblWbbRatio, is a flavour-fraction uncertainty, which
allows for global adjustments of the 𝑊+𝑏𝑙 normalisations, but a Gaussian constraint term couples these
to 𝑊+𝑏𝑏 within a credible interval (1 𝜎) of 1.00 ± 0.35. This accounts for parton shower, hadronisation
or flavour-fraction differences that change the total number of 𝑊+𝑏𝑙 events, regardless of the 𝑏-tagging
category. The newly added third factor is a normalisation uncertainty named bl1T2TRatio* (blue),
which is sensitive to migrations between the 𝑏-tagging categories. Only with these uncertainties, all three
possible causes of the excess can be described. Similar uncertainties were added for 𝑍+𝑏𝑙 events, as well
as single-top production. This is because these events will be affected in a similar way if the excess is
caused by the 𝑏-tagging calibration for ‘𝑏𝑙’ events.
Since flavour-fraction uncertainties in the ATLAS 𝐻 → 𝑏�̄� analysis from chapter Ⅳ were found to

depend on 𝑝u�
T in the 1-lepton analysis, the low- and high-𝑝u�

T flavour fractions were decoupled for the
ATLAS Run-1 publication [1]. In the 2-lepton channel, the same was done for the 2- and 3-jet regions.
The same scheme was therefore implemented also for the new nuisance parameters; leading to a total
of five new nuisance parameters: two for 𝑊+𝑏𝑙 and 𝑍+𝑏𝑙 each, one for single-top production. For
single-top production, separate uncertainties were tested but there is no indication that such separate
treatment is necessary, particularly because single-top production is only relevant in the 1-lepton channel,
and here it is small.
In principle, the 1𝑏-tag ↔ 2𝑏-tag uncertainties could also be implemented with nuisance parameters

that have a simultaneous effect on both the 1- and 2𝑏-tag region. In this case, 𝜂1T and 𝜂2T would have to
be anti-correlated to describe the migration of events between the 1- and the 2𝑏-tag regions. The reason
this was not done is twofold:
Firstly, it is known that the Monte Carlo description of the Sherpa simulations is better when more

jets are 𝑏-tagged: the 0𝑏-tag regions show clear signs of mismodelling, and corrections had to be applied
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(see sectionⅣ 2.3). The 0𝑏-tag regions were therefore not included in the profile-likelihood fit. In the
2𝑏-tag regions, no such mismodelling could be detected. It is therefore assumed that the 2𝑏-tag region
should be preferred over the 1𝑏-tag region. However, due to the 10 times higher statistics in the 1𝑏-tag
region, the ATLAS likelihood model measures 𝑉 +𝑏𝑙 flavour fractions virtually only in the 1𝑏-tag region.
Assigning 𝜂 parameters only to the 1𝑏-tag regions gives higher precedence to the 𝑉 +𝑏𝑙 flavour-fraction
measurements from the 2𝑏-tag regions.
Secondly, assigning these uncertainties only to the 1𝑏-tag region yields a more conservative likelihood

model: with more emphasis on the 2𝑏-tag regions, the 𝑉 +𝑏𝑙 flavour fractions acquire larger uncertainties –
both due to lower data statistics and because 𝑉 +𝑏𝑙 events are not the dominant background after requiring
two 𝑏-tags. If backgrounds are constrained less, uncertainties of 𝜇 become larger. This kind of likelihood
model better reflects the fact that before doing the measurement it is unknown whether normalisations in
the 1- and 2𝑏-tag regions should be correlated or anti-correlated. It can handle both cases, and will not
need any adjustments if the data or 𝑉 +jets Monte Carlo predictions are exchanged.
It is also unknown how large the new uncertainties should be. The initial flavour-fraction uncertainties

were obtained byMonte Carlo comparisons on truth events without any use of 𝑏-tagging. The uncertainties
assigned to the 1𝑏-tag flavour fractions were therefore chosen slightly larger than the “truth” flavour-
fraction uncertainties: 1.0 ± 0.4 for 𝑊+𝑏𝑙, 1.0 ± 0.2 for 𝑍+𝑏𝑙 and 1.0 ± 0.1 for the single-top s-, t- and
𝑊𝑡 channel.

A decisive advantage of the augmented likelihood model is that it can be used for all possible causes
of the excess that were listed before: in case of a 𝑏-tagging-related problem (case 1 and 2), the 1𝑏-tag
normalisations will move opposite to the 2𝑏-tag normalisations. The 1T2TRatio nuisance parameters
will therefore be pulled down, whereas the flavour-fraction uncertainties common to both 𝑏-tagging
categories will remain close to zero or increase slightly. In case of a global cross-section problem, case 3,
the 1T2TRatio nuisance parameters will remain close to zero, and 𝜂WblWbbRatio or 𝜂ZblZbbRatio will be
pulled instead.
Figure Ⅴ.17 shows results from fits to data. The 𝑏𝑙-related nuisance parameters are shown in (a), and

the global normalisation factors are shown in (b). Fit results with the ATLAS likelihood model ( ) are
compared with the improved likelihood model ( ). In the fit with the improved model, all bl1T2TRatio
nuisance parameters are pulled down, and global normalisations as well as flavour fractions move up.
This indicates a problem with the simulation or calibration of 𝑏-tagging, case 1 or case 2, and rules out a
global cross-section problem, case 3. Incidentally, the case that is entirely ruled out is the only case that
the ATLAS likelihood model could have treated correctly.
One further finds that all pulls of the bl1T2TRatio* uncertainties for 𝑉 +jets simulations are incom-

patible with zero within post-fit uncertainties. Instead, they are compatible with 𝛼 ≈ −1 in all regions.
This clearly proves that the mismodelling is present in all regions, and it suggests that the underlying
cause is independent of whether 𝑊 +jets, 𝑍+jets, two jets or three jets are simulated. The single-top
extrapolation nuisance parameter bl1T2TRatio_stop is consistent with both zero and one within post-fit
uncertainties. It is therefore unclear if the misdescription is caused by the Sherpa simulations or a problem
of the MV1c calibration.

Since the ATLAS likelihood model was augmented with additional degrees of freedom to accommodate
a clear misdescription of the data, pulls on other nuisance parameters reduce: flavour fractions such
as WblWbbRatio or ZblZbbRatio move up, which is expected if events migrate between the 1- and
2𝑏-tag regions. More importantly, the flavour fractions are also compatible with the pre-fit uncertainties
obtained from Monte Carlo comparisons when the likelihood model is augmented. Moreover, the global
normalisation factors in figure Ⅴ.17(b) become more consistent with expectations: 𝑍+jets backgrounds
had to be scaled up by 16 % in chaptersⅣ and Ⅴ, for example in figure Ⅴ.7 on page 141. A normalisation
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Figure Ⅴ.17: (a) Normalisation uncertainties and (b) normalisation factors for the Lorentz-invariant u� u� →
u� u�ū� analysis using the ATLAS likelihood model (bottom ) and an improved likelihood model with additional
normalisation uncertainties (top ).
Nuisance parameters, which have no counterpart in the ATLAS likelihood model, were introduced to model the
excess of Monte Carlo events in the rightmost bins of MV1c.

correction for 𝑊 +jets events is also necessary as shown in the same figure. The improved likelihood
model supports this observation, adjusting 𝑍+𝑏𝑏 to 1.19 instead of 1.13, 𝑍+𝑐𝑙 to 0.98 instead of 0.87,
𝑊+𝑏𝑏 to 1.04 instead of 0.94 and 𝑊+𝑐𝑙 to 1.18 instead of 1.09. 𝑡 ̄𝑡 normalisations are not affected, which
is justified if the misdescription is confined to 𝑏𝑙-events. Furthermore, the uncertainty of all normalisation
factors and all flavour fractions increases. This is a consequence of choosing the more conservative way
to correct the likelihood model, and it is justified because normalisations are evidently hard to determine
given that different regions of the analysis yield conflicting normalisation factors. Lastly, the improved
likelihood model reduces pulls of 𝑏-tagging uncertainties. Figures C.11(a) to C.11(c) in appendix C 4.3
show that 15 pulls of 𝑏-tagging uncertainties decrease, whereas only three increase notably. This indicates
that the deficits of the ATLAS likelihood model lead to erroneous pulls of these parameters because
no other degrees of freedom exist to describe the mismodelling. This is an expected behaviour given
that reducing the normalisation of 𝑉 +𝑏𝑙 events synchronously in both 𝑏-tagging categories is the wrong
approach if events migrate between the categories.
The results obtained with the improved likelihood model also explain why one-electron events with

low 𝑝u�
T were removed from the ATLAS 𝐻 → 𝑏�̄� analysis [1]. The synchronous reduction of 𝑉 +𝑏𝑙
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normalisations due to the excess in the 1𝑏-tag region leads to a deficit of background events in the
2𝑏-tag region. Although numerous nuisance parameters are pulled to compensate, the deficit cannot be
eliminated entirely because none of the systematic uncertainties of the ATLAS model can sufficiently
describe migrations between the 1- and 2𝑏-tag categories. The resulting deficit of events is most apparent
in the regions ‘2 jets, 1 lepton, low 𝑝u�

T ’ and ‘3 jets, 2 leptons’. These are the regions with the strongest
pulls in figure Ⅴ.17(a), especially when using the ATLAS likelihood model. The deficit of 𝑉 +jets events
affects the measurement of the signal strength: 𝑡 ̄𝑡 events are constrained from the 3-jet region, and can
therefore not be scaled up significantly. Other background normalisations are inferred mostly from the
1𝑏-tag region because its statistical power is higher than that of the 2𝑏-tag region. Therefore, only one
freely floating Monte Carlo sample remains in the 2𝑏-tag region: the 𝑉 𝐻 signal. If the mismodelling in
the 1𝑏-tag region pulls backgrounds in the 2𝑏-tag region down, the Higgs signal has to be increased to
compensate. Given that the tensions observed with the ATLAS likelihood model were most severe in
the 1-lepton channel with low 𝑝u�

T , it was decided to remove events with one isolated electron from this
region. This reduces the statistical power of the 1𝑏-tag region by 50 %, and therefore also reduces the pull
of the WblWbbratio_B0 nuisance parameter. Furthermore, it reduces pulls of the global normalisations
shown in figure Ⅴ.17(b). However, tensions in other regions are not corrected by this decision. Even
though 50 % of the events in the low-𝑝u�

T region were missing, WblWbbratio_B0 was still found to be
pulled to −0.9 ± 0.6, which is more than for the Lorentz-invariant analysis that uses the full low-𝑝u�

T
region. ZblZbbratio_J3 was even found to be pulled to −2.0 ± 0.6 [169], but no actions were taken by
ATLAS because this region has a low impact on 𝜇.

In this thesis, the decision to remove one-electron events is questioned: events with one electron and
low 𝑝u�

T are not the cause of the mismodelling. Removing these admittedly reduces its impact, but only in
one region of the analysis. Given that all 1T2TRatio nuisance parameters in figure Ⅴ.17(a) are pulled
consistently across lepton multiplicity, 𝑝u�

T and jet-multiplicity categories, one must conclude that the
underlying problem affects all regions simultaneously. Reducing the statistical power of a single region is
not the correct approach.

To finalise the likelihood model for the Lorentz-invariant MVA, further studies were conducted in
order to test if similar uncertainties could be necessary for other 𝑉 +jets flavour combinations, but no
indication was found. This is because, firstly, heavier-flavour events such as 𝑉 +𝑐𝑐, 𝑉 +𝑏𝑐 are negligible
in the 1𝑏-tag region. Their normalisation is therefore predominantly measured in the 2𝑏-tag region, and
no migration uncertainty is necessary. Secondly, events with only light flavour jets are of low importance
in the 2𝑏-tag region, even negligible for 𝑏-tagging tighter than LL, see for example figure C.7. Thirdly, it
was tested if 𝑉 +𝑐𝑙 migration uncertainties are necessary, but the result was negative: 𝑉 +𝑐𝑙 is the only
flavour category similar to 𝑉 +𝑏𝑙, where a heavy-flavour jet occurs in combination with a light-flavour
jet. A likelihood model with additional 1𝑏-tag ↔ 2𝑏-tag ratios for 𝑉 +𝑐𝑙 events was created to test for
signs of mismodelling. Nuisance-parameter pulls for this likelihood model are compared to the baseline
model for this thesis and to the ATLAS model in appendix C 4.4 on page 227. It is found that pulls
for events other than 𝑉 +𝑐𝑙 change only marginally. Moreover, three of four 𝑉 +𝑐𝑙 nuisance parameters
are found to be consistent with zero. Only one is found at 0.9 ± 0.7, but this pull likely occurs because
of an anti-correlation with the corresponding 𝑉 +𝑏𝑙 pull. The two nuisance parameters describe the
same problem and can thus be represented by a single nuisance parameter, preferably the 𝑉 +𝑏𝑙 nuisance
parameter. Finally, the impact on 𝜇 due to 𝑉 +𝑐𝑙 parameters was found to be marginal as well. 𝑉 +𝑐𝑙
ratios are therefore not necessary to describe the data.
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Table Ⅴ.4: Impact of the u� +u�u� 1T → 2T extrapolation uncertainties on the signal strength in different categories
of the Lorentz-invariant analysis.

1 Lepton 2 Leptons 1+2 Leptons

low 𝑝u�
T

+0.4 +1.0
−0.3 −1.0

high 𝑝u�
T

+0.2 +0.1
−0.2 −0.1

Combination +0.12 +0.29 +0.11
−0.12 −0.27 −0.11

The impact of the 1𝑏-tag ↔ 2𝑏-tag ratio parameters on 𝜇 can be quantified by fixing the parameters
while carrying out likelihood ratio tests as for figure Ⅴ.9. The quadratic difference of uncertainties is
shown in table Ⅴ.4. The full contribution to the uncertainty of 𝜇 is 0.11. This is not negligible because
the total uncertainty of 𝜇 is about 0.6, but in comparison to other uncertainties it is of minor importance.
Not including the nuisance parameters, however, yields a likelihood model that is unable to describe the
data, which is why one-electron events were removed from the ATLAS likelihood fit.
By constructing likelihood models with separate parameters of interest such as 𝜇1u� and 𝜇2u�, or even

separate parameters for each 𝑝u�
T category, the impact on different regions was measured. The largest

uncertainties are obtained in the low-𝑝u�
T regions, which is consistent with the observations of the ATLAS

𝐻 →𝑏�̄� analysis. It should be understood that the uncertainties in table Ⅴ.4 are not showing the bias of 𝜇
that would be encountered if the ATLAS likelihood model was used to fit the data. The table only shows
uncertainties that are introduced by correcting the 𝑉 +𝑏𝑙 excess.

On one hand, uncertainties of 𝜇 increase as shown in the table, but on the other hand the improved
likelihood model corrects for the modelling problem. Improving the 𝑏-tagging calibrations, external
measurements of flavour fractions or Monte Carlo predictions would be preferable, but all these remedies
are beyond the scope of this thesis. Instead, the presence of the modelling problem is acknowledged, and
properly reflected in the likelihood model at the cost of slightly higher uncertainties of 𝜇. Nonetheless,
all results from section Ⅴ 1 hold: the comparison of the classifiers was done with the corrected likelihood
model. The Lorentz-invariant classifiers should therefore be preferred over the standard ATLAS classifiers.
One might wonder why the mismodelling of the MV1c distributions was not detected with the mul-

tivariate modelling checks introduced in sectionⅣ 4. This is because no 1𝑏-tag events enter the BDT
training14. The misdescription of normalisations and migrations affecting this region could therefore not
be detected.
The repetition of the 𝑉 𝐻 →𝑉 𝑏�̄� analysis on Run-2 data [44] is most likely not affected by the modelling

problem because all critical regions are excluded from the analysis: 1𝑏-tag events are ignored entirely,
as well as all events with 𝑝u�

T < 150 GeV (0- and 1-lepton channel) or with 𝑝u�
T < 75 GeV (2-lepton

channel). Furthermore, 𝑏-tagging is used only with a single working point, and the Sherpa generator, the
𝑏-tagging algorithm and its calibration have been updated.

This concludes the validation of the likelihood model. In validating the likelihood model for the
Lorentz-invariant classifiers, two deficits of the ATLAS likelihood model were uncovered, which also
affect the ATLAS Run-1 publication [1]. In order to conduct measurements with the Lorentz-invariant
classifiers, the smoothing algorithm and the treatment of 𝑉 +𝑏𝑙 normalisations were corrected, which
14 Except for the QCD multijet estimate, for which great care is taken that these 1u�-tag events actually resemble 2u�-tag events.
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enables the inclusion of events with one isolated electron in the low-𝑝u�
T region. These had been excluded

from the ATLAS analysis. All known deficits of the ATLAS likelihood model are now corrected for,
and since the analysis of pulled and constrained nuisance parameters in section Ⅴ 2.2 did not reveal any
further problems, the likelihood model can now be used for measurements in ATLAS data recorded in
2012.
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CHAPTER Ⅵ

Measurement of the 𝑽 𝑯 →𝑽 𝒃�̄� Signal
Strength

The likelihoodmodel introduced in sectionⅣ 6 and validated in sectionⅤ 2 has been used with the Lorentz-
invariant MVA from section Ⅴ 1 to measure the signal strength of 𝑉 𝐻 →𝑉 𝑏�̄� decays in proton-proton
collisions at

√
𝑠 = 8 TeV recorded by ATLAS in 2012. Contrary to the ATLAS 𝑉 𝐻 analysis described

in chapter Ⅳ, events with one isolated electron and 𝑝u�
T < 120 GeV are included in the measurement.

Distributions of the BDT discriminant after the profile-likelihood fit for the two most sensitive regions of
the Lorentz-invariant analysis are shown in figureⅥ.1.

For a Standard Model Higgs boson with 𝑚u� = 125 GeV, the signal strength measured in the data is1:

𝜇u� u� = 1.3+0.7
−0.6.

Measurements with separate parameters of interest in the 1-lepton and 2-lepton channels yield:

𝜇u�u� = 1.6+0.8
−0.7 and 𝜇u�u� = 0.7+1.1

−1.0.

Computing the 𝜒2 probability for the compatibility of the separate and the combined measurement yields
46 %, which indicates that the measurements are well compatible despite the difference in the central
values. The results are also fully compatible with the Standard Model prediction, which is within 0.6
standard deviations of the measured outcome.
FigureⅥ.2 shows the signal strength measurements with uncertainties separated into statistical and

systematic uncertainties. The𝑉 𝐻 →𝑉 𝑏�̄� analysis is limited by both statistical and systematic uncertainties,
which are of equal size except for the 2-lepton channel, where statistical uncertainties are higher than
systematic uncertainties.

An excess over the background-only hypothesis is found. For a Higgs boson with 𝑚u� = 125 GeV,
𝑝-value and significance are:

𝑝0 = 8.17×10−3,
𝑍0 = 2.40 𝜎.

𝑝0 is the probability that a null model without signal events would yield a signal strength equal or higher
than the observed value of 𝜇. The null hypothesis is rejected with a confidence of 99.2 % or 2.4 𝜎. The
1 Uncertainties are rounded according to the PDG rounding conventions [13].

171



Chapter Ⅵ Measurement of the 𝑉 𝐻 →𝑉 𝑏�̄� Signal Strength

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 0

.0
6

1−

10

1

10

2
10

3
10

4
10

Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
Multijet
W+hf
Z+hf
Uncertainty
Prefit background

20×VH(bb)

Lorentz Invariant MVA

 
1

Ldt = 20.2 fb∫ = 8 TeV s

1 lep., 2 jets, 2 Tight tags

>120 GeVV

T
p

VH
BDT

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0

0.5
1

1.5

2

(a) 1 lepton, 2 jets, high u�u�
T , TT u�-tagging

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

E
v
e
n
ts

 /
 0

.1
3

1

10

2
10

3
10

4
10

Data 2012
=1.0)µVH(bb) (

Diboson
tt

Single top
Z+hf
Z+cl
Uncertainty
Prefit background

20×VH(bb)

Lorentz Invariant MVA

 
1

Ldt = 20.2 fb∫ = 8 TeV s

2 lep., 2 jets, 2 Medium+Tight tags

>120 GeVV

T
p

VH
BDT

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

D
a
ta

/P
re

d

0

0.5
1

1.5

2

(b) 2 leptons, 2 jets, high u�u�
T , MM+TT u�-tagging

Figure Ⅵ.1: BDT-classifier distributions after the profile-likelihood fit in the most sensitive regions of the Lorentz-
invariant analysis. The Higgs signal ( ) is shown both as an overlay magnified by 20 and as a histogram scaled to
the Standard Model expectation.
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Figure Ⅵ.2: Signal strength obtained with Lorentz-invariant multivariate classifiers in the search for associated
Higgs production with u� →u�ū� decays. The dataset consists of 20.2 fb−1 of proton-proton collisions recorded by
ATLAS in 2012 at a centre-of-mass energy of 8 TeV. The Higgs mass is assumed to be 125 GeV. The u�u� and
u�u� measurements are obtained from a combined fit in the 1- and 2-lepton channels that uses two parameters of
interest: u�u�u� in the 1-lepton channel and u�u�u� in the 2-lepton channel.
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Figure Ⅵ.3: u�0 values, discovery significance and 95 % CLs upper limits obtained with the Lorentz-invariant
u� → u�ū� search. The figures show the results from combined measurements in the 1- and 2-lepton channels for
Higgs production in association with a vector boson. The data used are 20.2 fb−1 of proton-proton collisions
recorded by the ATLAS collaboration in 2012 at a centre-of-mass energy of 8 TeV.

excess is therefore not large enough to claim evidence for 𝐻 →𝑏�̄� decays. 𝑝0 = 2.69×10−2 and 1.93 𝜎
were expected from simulations. Since the observed signal strength 𝜇 is higher than the Standard Model
expectation, the measured significance is also higher than expected, and the measured 𝑝0 is lower.
Figure Ⅵ.3(a) shows 𝑝0 for Higgs boson masses from 105 to 150 GeV. The black line shows the

observed 𝑝0, and the dashed blue line shows the expected distribution of 𝑝0, predicted by Asimov datasets,
for various Higgs masses. The dotted line shows the expectation for a Higgs mass of 125 GeV. The figure
shows that the analysis is optimised for a Higgs mass of 125 GeV, but due to the low mass resolution
of the di-𝑏-jet system, Higgs bosons with lower masses would also be detected with similar sensitivity.
The loss in sensitivity for higher Higgs-boson masses is primarily caused by the lower probability of
𝐻 →𝑏�̄� decays: 𝐻 →𝑊 +𝑊 − decays are more probable than 𝐻 →𝑏�̄� decays when 𝑚u� > 135 GeV, see
section Ⅱ 5.3.

Although evidence for 𝐻 →𝑏�̄� decays cannot be claimed, the signal hypothesis is not rejected, either.
FigureⅥ.3(b) shows the 95 % confidence level upper limit on 𝜇 for the production of a 𝑉 𝐻 state with
subsequent 𝐻 →𝑏�̄� decay. At 𝑚u� = 125 GeV, one finds:

𝜇u� u� ≤ 2.46.

Upper limits of 1.08 (null hypothesis) and 2.03 (SM hypothesis) were expected from simulations.
These expectations are indicated by dashed lines in the figure. Coloured bands show the impact on the
limits if 𝜇 would fluctuate by ±1 and ± 2 standard deviations. The simulations suggest that the current
analysis should have nearly sufficient sensitivity to exclude the signal hypothesis at the 95 % confidence
level if 𝐻 →𝑏�̄� decays were absent. Yet the observed upper limits are found to be higher by about two
standard deviations of 𝜇. This result is consistent with the non-zero discovery significance. The steep rise
of the upper limits for 𝑚u� ≳ 130 GeV is explained by the rapidly falling 𝐻 → 𝑏�̄� branching fraction,
similar as for 𝑝0.

In comparison with the first multivariate 𝑊𝐻 →ℓ𝜈𝑏�̄� analysis developed in Bonn [7], the exclusion
power was almost doubled: the expected upper limit 𝜇up reduced from 2.06 to 1.08, and the expected
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discovery significance increased from 1.04 𝜎 to 1.93 𝜎 – with an identical dataset. This is the result of
introducing “continuous 𝑏-tagging” in conjunction with a more sophisticated likelihood model, of adding
the 𝑍𝐻 →ℓ ̄ℓ𝑏�̄� channel, of redefining the preselection to give freedom to multivariate classifiers, and
finally of optimising BDT classifiers with Lorentz-invariant variables for each of the two channels in
order to reduce systematic uncertainties.

FiguresⅥ.4 andⅥ.5 show event displays of the two data events that were assigned the highest classifier
scores in the 1- and 2-lepton channels. The 1-lepton event in figureⅥ.4 is the most signal-like of the
four events observed in the second-to-last bin of the 1-lepton classifier output in figureⅥ.1(a). After the
fit to data, simulations predict 2.1 signal events (𝜇 = 1) and 3.9 background events in this bin, that is, a
chance of 1:1.9 that this is a 𝑊𝐻 →ℓ𝜈𝑏�̄� event. The 2-lepton event in figureⅥ.5 is the most signal-like
of the four events observed in the rightmost bin of the 2-lepton classifiers shown in figureⅥ.1(b). Here,
1.4 signal events and 2.0 background events, a 𝑍𝐻 →ℓ ̄ℓ𝑏�̄� likelihood of 1:1.4, are predicted. The event
shown in figure Ⅲ.12 on page 49 to illustrate secondary vertices in 𝑏-jets has the third-highest classifier
score in the 1-lepton analysis, and therefore also falls in the bin with a signal likelihood of 1:1.9.

Ⅵ 1 Comparison with ATLAS Results

The results of the ATLAS Run-1 analysis [1] cannot be compared directly to the results of the Lorentz-
invariant analysis because the likelihood models differ: firstly, ATLAS results are obtained from a
simultaneous fit to 0+1+2 lepton data recorded at

√
𝑠 = 7 and 8 TeV, but in this work, only the channels

with charged leptons are analysed using 8 TeV data. Secondly, the ATLAS likelihood has two flaws that
were discussed in section Ⅴ 2. It does not correctly take into account an excess of simulated events in the
1𝑏-tag region. It therefore overestimates 𝜇, and underestimates normalisation uncertainties, which is why
events with one isolated electron in the low-𝑝u�

T region were removed for the ATLAS Run-1 publication.
TableⅥ.1 therefore compares the Lorentz-invariant MVA both with the official ATLAS results in the
middle column and with a projection of results that should have been obtained if the ATLAS analysis had
been conducted only for the 1+2-lepton channels with 8 TeV data.
This projection was obtained as follows: the official inputs to the ATLAS Run-1 𝑉 𝐻 →𝑉 𝑏�̄� profile-

likelihood fit were rebinned from 1 000 to 32 (1L) and 15 bins (2L) to match the binning of the Lorentz-
invariant analysis shown in figureⅥ.1. In this way, differences due to histogram binning are mitigated.
The resulting histograms were used to create an ATLAS-style 𝐻 → 𝑏�̄� likelihood model without the
improvements introduced in sections Ⅴ 2.1 and Ⅴ 2.3, and a simultaneous fit of the 1- and 2-lepton
channels with 8 TeV data was carried out. Since it is known that this likelihood model has no parameters
to account for the mismodelling of the MV1c distribution, events with one electron and low 𝑝u�

T were
removed as for the official ATLAS result. This reduces the impact of the excess in the 1𝑏-tag region,
but does not entirely remove the bias towards higher values of 𝜇. Since the ATLAS likelihood model
is known to underestimate uncertainties from extrapolating the 𝑉 +𝑏𝑙 normalisations from the 1- to the
2𝑏-tag region, the uncertainties shown in table Ⅴ.4 were added in quadrature to the uncertainties obtained
from the profile-likelihood fit. This yields approximately correct results because the 𝑉 +𝑏𝑙 migration
uncertainties are uncorrelated with all but the 𝑉 +𝑏𝑙 flavour-fraction uncertainties, which are not the
dominating uncertainties of the 𝑉 𝐻 analysis. TableⅥ.1 also has one column that quantifies the impact
of not removing one-electron events, but this column only shows the relative change of 𝜇.

Although the third column in table Ⅵ.1 does not show officially approved ATLAS results, one can
conclude that the Lorentz-invariant analysis and the ATLAS Run-1 inputs are in good agreement, despite
the deficits of the ATLAS likelihood model discussed in section Ⅴ 2.
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Table Ⅵ.1: Comparison of the signal strength obtained with the Lorentz-invariant u� u� →u� u�ū� analysis (left) and
the official ATLAS analysis (middle). Since the official ATLAS result does not separately quote an 8 TeV result,
ATLAS inputs for the Run-1 u� u� →u� u�ū� profile-likelihood fit were re-analysed using the ATLAS likelihood model
(right). Since this likelihood model was shown to not describe the excess of u� +u�u� events in the 1u�-tag region
(section Ⅴ 2.3), events with one electron and low u�u�

T were removed from the ATLAS histograms, and uncertainties
have been adjusted accordingly. The impact of keeping these events is shown in the rightmost column.

Analysis Lorentz invariant ATLAS [1] Run 1 𝑉 𝐻 inputsa
Dataset 8 TeV 7+8 TeV 8 TeV
Fit configuration 1+2 L 0+1+2 L 1+2 L

Electrons with low u�u�
T Included Excluded Excluded Included

1 L 1.6+0.8
−0.7 1.2+0.7

−0.6 1.6+0.9
−0.8 +29 %

2 L 0.7+1.1
−1.0 0.9+0.9

−0.9 0.8+1.0
−0.9 + 6 %

1+2 L 1.3+0.7
−0.6 1.3+0.8

−0.7 +26 %
a Not an ATLAS result. See discussion in the text.

In the 1-lepton channel, results of the Lorentz-invariant analysis and results obtained from official
ATLAS histograms even agree to the first decimal place after applying the PDG rounding recommend-
ations [13]. Evidently, the removal of one-electron events in the low-𝑝u�

T region sufficiently reduces
the bias towards higher values of 𝜇 such that the measured signal strength is identical. The last column
shows that this would not be the case if the low-𝑝u�

T region was fully included as in the Lorentz-invariant
analysis. The official ATLAS 1-lepton signal strength in the middle column is considerably lower because
it includes the 7 TeV measurement [4] of 𝜇1u�

7 TeV = −2.5 ± 2. Uncertainties also differ, which is caused
by three effects: 7 TeV data are included, the 0-lepton channel is fit simultaneously with 1+2 leptons, and
no 𝑉 +𝑏𝑙 normalisation uncertainties are included. The inclusion of the 0-lepton channel and the 7 TeV
data yields additional constraints for background normalisations, and thus also reduces uncertainties in
the 1- and 2-lepton channel.

In the 2-lepton channel, results are similar, but they do not agree as closely as in the 1-lepton channel.
The 2-lepton ATLAS signal strength can be expected to be slightly higher because 𝑉 +𝑏𝑙 migration
uncertainties also affect the signal strength in the 2-lepton channel, but no extra treatment such as
excluding a part of the low 𝑝u�

T region is applied. The measurement of the bias in the rightmost column
only quantifies the impact of excluding events from the 1-lepton channel. The 2-lepton result obtained
from ATLAS inputs further includes a kinematic likelihood fit, which improves the resolution of 𝑚u�u�.
These two differences explain the lower uncertainties, and why central values differ slightly. The official
ATLAS 2-lepton result differs even more because it is again obtained from a simultaneous fit with the
0-lepton channel and with 7 TeV data. The 7 TeV result is 𝜇2u�

7 TeV = 0.6 ± 4.0.

Finally, the combined 1+2 lepton results are found to agree. This can be seen as an a-posteriori
justification for excluding one-electron events with low 𝑝u�

T . Although the wrong treatment of migrations
between the 1- and 2𝑏-tag region is not confined to this region, and the reduction of the statistical power in
this region is an unreasonable remedy, it nonetheless leads to similar results as with the Lorentz-invariant
analysis, which covers the full 𝑉 𝐻 → 𝑉 𝑏�̄� phase space. A comparison with an official ATLAS result
for the combination of the 1- and 2-lepton channels is not possible because such a combination was not
published.
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Figure Ⅵ.4: u�u� → u�ū�u�u� candidate event with the highest signal probability recorded by ATLAS in the data of
2012. A pair of u�-jets (yellow cones) recoils off a muon and u�miss

T (red tracks), which are compatible with a u�
decay. In the transverse view, tracks assigned to the u�-jets are shown in blue. Several tracks have significant impact
parameters. The event is categorised as 1 lepton, 2 jets, high u�u�

T , TT u�-tagging, and has the highest classifier score
observed in the 1-lepton channel: 0.997. This corresponds to one signal event in 1.9 background events.

Figure Ⅵ.5: u�u� → u�ū�u�−u�+ candidate event with the highest signal probability recorded by ATLAS in the data
of 2012. A pair of u�-jets (yellow cones) recoils off an electron-positron pair (green tracks), which is compatible
with being produced in a u� decay. In the transverse view, tracks assigned to the u�-jets are shown in blue. Several
tracks have significant impact parameters. One of the electron tracks in the transverse view is short because the
u�ū�u�−u�+-system is boosted in forward direction, see main panel. Therefore, the electron does not reach the barrel
calorimeters, and is detected in the endcap calorimeters. The event is categorised as 2 leptons, 2 jets, high u�u�

T , TT
u�-tagging, and achieves the highest classifier score observed in the 2-lepton channel: 0.959. This corresponds to
one signal event in 1.4 background events.
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Ⅵ 2 Measurement of the Diboson Process

The likelihood model developed for searching 𝐻 →𝑏�̄� decays can be used to measure one more Standard
Model process: the production of two vector bosons, of which one decays as 𝑍 → 𝑏�̄�. If the other
vector boson (either 𝑊 or 𝑍) decays leptonically, such events have the same signature as associated
Higgs production with 𝐻 → 𝑏�̄� decays. Cross sections, branching ratios and event kinematics differ
since 𝑚u� < 𝑚u�, and since the spin of 𝑍 is one instead of zero. However, by training boosted decision
trees with Lorentz-invariant variables to select 𝑉 𝑍 instead of 𝑉 𝐻 decays, the 𝑉 𝐻 analysis strategy
can be applied to the diboson process, and in this way be validated by interpreting data and simulations
differently.
The diboson reactions are about eight times more likely than 𝑉 𝐻 production. Cross sections times

branching ratios are compared in table Ⅵ.2, which follow from tables Ⅳ.1 and Ⅳ.3 by applying the
following branching-ratio corrections [135]:

BR(𝑍 → 𝑏�̄�)
BR(𝑍 → 𝑞 ̄𝑞)

= 0.15
0.70

and
BR(𝑉 → 𝑒, 𝜇 )
BR(𝑉 → 𝑒, 𝜇, 𝜏)

= 2
3

.

These account for the fact that the diboson cross sections in tableⅣ.1 include 𝑍 →𝑞 ̄𝑞 decays and final
states with 𝜏 leptons. The 𝑊𝑍 process is about eight, the 𝑍𝑍 process about nine times more likely
than associated Higgs production. These are inclusive ratios, but due to differences in acceptance, these
ratios also depend on 𝑏-tagging and 𝑝u�

T , see tableⅥ.3. The dependence on 𝑝u�
T arises because the recoil

of 𝑊/𝑍 is different in 𝑉 𝑍 events: if 𝑊/𝑍 recoil against 𝑍 instead of 𝐻 , they recoil against a lighter
particle. This leads to lower transverse momenta in diboson events. The largest cross-section difference
is therefore observed in the low 𝑝u�

T regions. Furthermore, the 𝑉 𝑍/𝑉 𝐻 ratios depend on the 𝑏-tagging
category. This is because the 𝑍 →𝑏�̄� branching fraction is 15 % instead of 58 % for 𝐻 →𝑏�̄�. Since 𝑍 →𝑐 ̄𝑐
is much more likely than 𝐻 →𝑐 ̄𝑐, decays to charm quarks contaminate the 80 % 𝑏-tagging category in
the diboson analysis but not in the 𝐻 →𝑏�̄� analysis. Unlike the Higgs boson, the 𝑍 decays to 𝑐 quarks
with almost the same probability as to 𝑏 quarks: to up-type quarks with about 12 % and to down-type
quarks with 15 % branching fraction. In the LL 𝑏-tagging region, 𝑍 →𝑐 ̄𝑐 decays therefore increase the
𝑉 𝑍/𝑉 𝐻 ratio to about 9 in the 1-lepton channel and to 12 in the 2-lepton channel. This effect wears off
in the TT 𝑏-tagging region, where almost only 𝑍 →𝑏�̄� decays contribute.
To conduct the diboson measurement, only two changes with respect to the 𝐻 →𝑏�̄� analysis have to

be implemented: firstly, instead of training the BDTs to separate Higgs simulations from backgrounds,
the BDTs are trained to separate diboson simulations from other backgrounds. These “backgrounds”
also include the 𝑉 𝐻 process. Secondly, the diboson normalisation nuisance parameter is promoted to a
parameter of interest, whereas the Higgs normalisation is demoted to a nuisance parameter. The constraint

Table Ⅵ.2: Cross sections and braching ratios for
associated Higgs production and diboson produc-
tion (from tablesⅣ.1 andⅣ.3).

𝜎 × BR

𝑊𝐻 → 𝑙𝜈𝑏�̄� 88 fb
𝑊𝑍 → 𝑙𝜈𝑏�̄� 700 fb

𝑍𝐻 → 𝑙 ̄𝑙 𝑏�̄� 19 fb
𝑍𝑍 → 𝑙 ̄𝑙 𝑏�̄� 171 fb

Table Ⅵ.3: u� u� to u� u� ratios in dependence of u�-
tagging category and lepton channel. MM and TT are
merged in the 2-lepton channel.

𝑉 𝑍/𝑉 𝐻 LL MM TT

1 L low 𝑝u�
T 9.4 3.6 2.6

1 L high 𝑝u�
T 6.5 2.4 1.7

2 L low 𝑝u�
T 11.6 6.4

2 L high 𝑝u�
T 5.5 3.0
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Figure Ⅵ.6: Signal strength of the Lorentz-invariant multivariate analysis trained to select the diboson process.

term for 𝐻 →𝑏�̄� was chosen conservatively as a 50 % normalisation uncertainty because 𝐻 →𝑏�̄� decays
have not been observed with a significance of five standard deviations.
The Lorentz-invariant MVA and the selection of events are not changed, even though the selection

could be optimised for the diboson processes. One such optimisation would be to adjust the transverse-
momentum cuts for 𝑏-jets. Since the transverse momenta in 𝑍 decays are on average lower, the cut 𝑝u�1

T >
45 GeV removes almost all 𝑍 decays where the 𝑍 has low transverse boost: from 𝑚u� = 91.2 GeV [135]
one finds 𝑝u�1 = 45.6 GeV ⇒ 𝑝u�1

T ≤ 45 GeV if 𝑍 is at rest. On one hand, this significantly lowers the
sensitivity of the diboson analysis, but on the other hand, it restricts the phase space to the same region
as the 𝐻 →𝑏�̄� analysis. The latter is more important for a sanity check, which is why the selection cuts
were not optimised. The same holds for an optimisation of the MVA: it would be possible, but it is not
advisable because the 𝑉 𝑉 analysis serves as a cross check of the Lorentz-invariant 𝑉 𝐻 analysis.
Figure Ⅵ.7 on page 180 shows the response of BDTs trained to enhance the diboson process. The

red overlay shows 𝑉 𝐻 →𝑉 𝑏�̄� events as before, and the diboson signal is shown in grey. For a diboson
classifier, the signal should peak at high classifier scores whereas the Higgs signal should be assigned
low scores. The figure shows that this is indeed the case.
A likelihood model similar to the one described in sectionⅣ 6, but with diboson BDTs and 𝜇u� u� as

parameter of interest was used to measure the diboson signal strength in data. The result is:

𝜇u� u� = 0.56+0.31
−0.28.

The Standard Model prediction is within 1.4 standard deviations of the value of maximum likelihood. As
for the 𝑉 𝐻 measurement, a measurement with separate parameters of interest for the 1- and 2-lepton
channels has been conducted, see figureⅥ.6. The results are:

𝜇1u�
u�u� = 0.5+0.4

−0.4 and 𝜇2u�
u�u� = 0.6+0.4

−0.4.
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The negative logarithmic-likelihood values of the separate and the combined measurement differ by 0.05.
Performing a likelihood-ratio test using equation (Ⅳ.15) on page 107 yields a compatibility between the
separate and the combined measurement of 75 %.
The measurement of 𝜇u� u� is almost completely dominated by systematic uncertainties, in contrast to

the 𝑉 𝐻 measurement. This is due to the higher cross sections, which lead to higher statistical significance.
Moreover, in contrast to the 𝐻 →𝑏�̄� case, the 2-lepton channel has higher sensitivity than the 1-lepton
channel because the ratio of 𝑉 𝑍 to 𝑉 𝐻 events is higher in the 2-lepton channel, see table Ⅵ.3. The
highest-ranking systematic uncertainties are modelling uncertainties for the 𝑚u�u� distribution in 𝑉 +jets
events, the measurement of 𝑊+𝑏𝑏, 𝑍+𝑏𝑏 and 𝑍+𝑐𝑙 normalisations and the cross-section and acceptance
uncertainties of the diboson signal2. Pulls and normalisations of the diboson analysis and their impact on
𝜇u� u� are shown in figureⅥ.8. They are consistent with the pulls observed in the 𝑉 𝐻 →𝑉 𝑏�̄� analysis.

The discovery significance of the diboson signal is

𝑍u� u�
0 = 2.0 𝜎.

3.5 𝜎 would have been expected from Monte Carlo predictions, but since 𝜇u� u� is lower than the Standard
Model prediction, the discovery significance is also lower.

Ⅵ 2.1 Comparison with ATLAS Diboson Results

The ATLAS Run-1 𝑉 𝑍 analysis [1] finds 𝜇1u�
u� u� = 0.80+0.39

−0.35 and 𝜇2u�
u� u� = 0.67+0.25

−0.24. As for the 𝑉 𝐻
analysis, these values cannot be compared directly:
• The ATLAS measurement combines the 7 and 8 TeV measurements whereas this work only uses the

8 TeV data. Small changes in central values and lower statistical uncertainties are therefore expected.
• The ATLAS likelihood model does not include extrapolation uncertainties for the measurement of

𝑉 +𝑏𝑙 normalisations in the 1𝑏-tag region, see section Ⅴ 2.3. The ATLAS likelihood model therefore
underestimates the systematic uncertainty of background normalisations, and the mismodelling of the
rightmost bin of the MV1c distributions is not treated.

• This explains the small difference of the measured 𝜇2u�
u� u�, and why the ATLAS uncertainties are lower.

• A second reason for lower uncertainties in the ATLAS result is the 0-lepton channel. It is included in
the ATLAS fit, and slightly reduces background normalisation uncertainties.

• In the 1-lepton channel, a larger difference of central values is observed. However, a larger difference
can also be expected: due to the mismodelling of the rightmost bin of the MV1c distributions, the
ATLAS likelihood model does not include electron events with 𝑝u�

T < 120 GeV. This region, however,
has the highest contribution of 𝑊𝑍 events, up to nine times more than 𝑊𝐻 events. The Lorentz-
invariant analysis therefore probes different events than the ATLAS analysis, and can thus be expected
to yield a different central value.

• The uncertainty in the 1-lepton channel is similar to the ATLAS result, but this is the result of two
competing effects: on one hand, the higher signal statistics reduce the statistical uncertainty in the
Lorentz-invariant analysis. On the other hand, this channel is most affected by the uncertainty of
𝑊+𝑏𝑙 normalisations, which increases the systematic uncertainties of the Lorentz-invariant analysis.
The net result is an uncertainty of the same magnitude.

2 Technically, one can also interpret normalisation uncertainties as statistical uncertainties because they fall with growing
datasets. In this case, the measurement is also limited by statistical uncertainties.
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Figure Ⅵ.7: BDT classifiers with Lorentz-invariant variables and gradient boosting trained to enrich the diboson
process ( ). The Higgs signal is overlaid in red ( ), and is mostly flat as expected when training to select diboson
events. The preselection outlined in sectionⅣ 1 and shape corrections from sectionⅣ 2 are applied. Normalisation
corrections for the background simulations are not applied except for the multijet template and for increasing
the u�+jets normalisations by 16 % as before. The dark blue band ( ) in the data/MC plot shows the statistical
uncertainty of the background simulations. The light blue band ( ) shows the quadratic sum of systematic
uncertainties excluding normalisation uncertainties.

The diboson analysis can be seen as a sanity check for the 𝑉 𝐻 analysis. It yields a result that is well
compatible with Standard Model predictions: 𝜇SM

u� u� = 1 is within 1.4 𝜎 or within the 92 % confidence
interval of 𝜇u� u�, and the 𝑝-value for rejecting the Standard Model hypothesis is 𝑝1 = 7.8 %. Furthermore,
differences to the ATLAS result are understood. The diboson sanity check therefore does not give rise to
concerns regarding the 𝐻 →𝑏�̄� measurement.
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CHAPTER Ⅶ

Summary

In this thesis, two ways to search for the 𝐻 →𝑏�̄� decay of the Standard Model Higgs boson are presented.
These focus on Higgs production in association with vector bosons that decay to charged leptons with
20.2 fb−1 of ATLAS data recorded in 2012 at a centre-of-mass energy of

√
𝑠 = 8 TeV.

The aspects discussed in chapterⅣ were important contributions to successfully implementing the
first ATLAS analysis to use machine learning for 𝑉 𝐻 →𝑉 𝑏�̄� searches. The use of boosted decision-tree
classifiers for selecting 𝑉 𝐻 →𝑉 𝑏�̄� events improved the expected significance of the 𝐻 →𝑏�̄� search by
32 % in comparison with the best ATLAS dijet mass analysis on the same dataset [1]. This analysis is
also the first ATLAS analysis to use multivariate 𝑏-tagging at five working points simultaneously, which
improves the sensitivity to 𝑏�̄� final states by 15 %. The sensitivity of the multivariate analysis therefore
increased to 2.5 𝜎. With this, the ATLAS analysis is the most sensitive 𝑉 𝐻 → 𝑉 𝑏�̄� search published
using data from LHC’s Run 1. The corresponding search by the CMS collaboration reached an expected
discovery significance of 2.1 𝜎 [6].

The analysis discussed in chapter Ⅴ improves two important aspects of the ATLAS Run-1 search in final
states with charged leptons: the first aspect is the multivariate analysis. The concept of BDT classifiers
with Lorentz-invariant variables is applied to the 1- and 2-lepton channels, which leads to a reduction of
systematic uncertainties by 16 %. The total uncertainty of 𝜇 is reduced by 10 %. It is also shown that
systematic uncertainties reduce because the classifier responds less to shape changes in the distributions
of kinematic observables. This reduces the impact of systematic uncertainties, and makes the classifier
less sensitive to differences between background processes. Although such classifiers can be used less
well for the measurement of background normalisations, this is an advantage for future 𝐻 →𝑏�̄� searches
because background normalisations can be measured in background control regions, especially with
larger datasets. The Lorentz-invariant classifiers therefore provide an interesting alternative for future
𝑉 𝐻 →𝑉 𝑏�̄� searches, which will be limited by systematic uncertainties. This is because the data statistics
recorded by the ATLAS experiment are already larger than for the LHC’s Run 1, and are still increasing.
The second aspect that is improved is the statistical model. The ATLAS likelihood model is corrected to

be able to describe an excess of simulated events with one 𝑏-tagged jet. This extension permits analysing
the full 𝑊𝐻 → ℓ𝜈𝑏�̄� and 𝑍𝐻 → ℓ ̄ℓ𝑏�̄� phase space, in contrast to the ATLAS Run-1 analysis, which
excluded one-electron events with low 𝑝u�

T . The results obtained in this thesis explain why tensions that
lead to the exclusion of such events were observed, and it is shown how to include these correctly. It is
further shown that the signal strength measurements for the ATLAS Run-1 publication [1] yield similar
values in spite of deficits of the likelihood model because the regions with the largest tensions were not
analysed.

Finally, an excess of 2.4 standard deviations over the Standard Model background prediction is observed
in the ATLAS data recorded in 2012. The ratio of the measured signal strength over the Standard Model
prediction is 𝜇u� u� = 1.3+0.7

−0.6, and is fully consistent with the Standard Model.
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Ⅶ 1 Outlook
Despite the large branching fraction of 58 %, 𝐻 →𝑏�̄� remains a challenging decay, which has not been
observed yet. With growing datasets, statistical uncertainties of 𝑉 𝐻 → 𝑉 𝑏�̄� searches will decrease,
but systematic uncertainties will be the limiting factor for a discovery of this process at the level of
five standard deviations. The concepts studied in this thesis may guide future 𝐻 → 𝑏�̄� searches at the
LHC. Lorentz-invariant classifiers are expected to outperform the standard classifiers also at the higher
centre-of-mass energy achieved during the LHC’s Run 2. The higher energy will increase the boost of the
𝑉 𝐻 system and also of objects inside this system, but Lorentz-invariant quantities will not depend on
this. Such classifiers might therefore perform even better than on Run-1 data if boost-related uncertainties
are relevant for the classification result.
Moreover, with IBL installed, the sensitivity of 𝑏-tagging in ATLAS increased. A way to further

improve the ATLAS Run-2 𝑉 𝐻 →𝑉 𝑏�̄� analysis is therefore to re-introduce 𝑏-tagging at multiple working
points. However, this kind of 𝑏-tagging is not commissioned yet for Run-2 data. This thesis shows how to
apply it in a multivariate analysis, and also shows possible problems that may arise in the determination
of flavour fractions in 𝑉 +jets events when very powerful 𝑏-tagging is used.

Five interesting aspects could not be considered in this work:

1. Events with 𝑍𝐻 → 𝑏�̄�𝜈 ̄𝜈 decays, the “0-lepton channel”, were not studied. Since the branching
fraction of 𝑍 → 𝜈 ̄𝜈 in comparison to 𝑍 → 𝜇+𝜇− + 𝑒+𝑒− is three times higher, this channel can
improve the sensitivity significantly. However, of the 16 parameters necessary to fully describe the
𝑍𝐻 system, four are unknown in the 0-lepton channel, instead of one parameter in the 1-lepton
channel. Nonetheless, many of the strategies used to derive a minimal set of Lorentz-invariant
discriminating variables would still apply.

2. Multivariate regression methods can be employed to improve the resolution of reconstructed
quantities such as 𝑏-jet energies [141]. This would be a meaningful extension of the dijet-mass
resolution correction discussed in sectionⅣ 2.2.

3. In recent years, deep neural networks evolved as a more powerful alternative to boosted decision
trees. These outperform BDTs when several ‘low-level observables’ are used. These are observables
that are processed less by reconstruction algorithms such as the energy distribution of a jet in the
calorimeter, and are therefore less structured and harder to use for a multivariate training. Unlike
for high-level observables such as the Lorentz invariants, where physicists select the best way to
present information to the classifier, the training algorithms autonomously have to infer the best
way to combine the information from low-level observables. It is, however, unclear if gains from
more powerful classifiers outweigh the most likely higher susceptibility to systematic uncertainties.
The results from section Ⅴ 1 indicate that systematic uncertainties instead of the sensitivity of the
classifiers might be the limiting factor for future 𝐻 →𝑏�̄� analyses. Nevertheless, the potential of
deep neural networks should be explored.

4. Neural-network classifiers are an interesting option for a second reason because they can be trained
to be insensitive to certain quantities [170, 171]. Such “pivotal quantities” can, for example, be
event observables: a neural network can be trained to leave the invariant mass of two jets undistorted,
which can be used to study an undistorted resonance peak. This is usually not possible because if a
classifier is used to suppress background events, it distorts most observables. A more interesting
application in light of searches limited by systematic uncertainties, however, is to make a classifier
independent of the dominant systematic uncertainty. In general, the discriminative power of the
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classifier decreases when this technique is applied, but the loss of (statistical) sensitivity might
be outweighed by reduced systematic uncertainties. This is especially interesting with growing
datasets because the loss of discriminative power can be compensated with higher data statistics.

5. Analyses in high-energy physics often face the problem that classifiers are trained on Monte Carlo
simulations that do not accurately predict distributions in data. The training domain differs from the
target domain (“covariate shift”), which causes the classifiers to perform worse on data because the
distributions in data are not predicted correctly. Classifiers can be made robust against differences
between training and target domain by using domain adaptation [172]. One technique of domain
adaptation, for example, is to mix data events and simulations during the training. A first step in this
direction was done by trying to detect a covariate shift using multivariate classifiers in sectionⅣ 4,
but machine-learning literature indicates more potential in this field.

6. Similar to domain adaptation, classifiers can be trained entirely without (truth) labels [173]. This
means that it is possible to train a classifier on data events, which by definition do not provide truth
information. This allows suppressing backgrounds that can hardly be simulated such as the QCD
multijet background without having to estimate these events with data-driven extrapolations. Such
extrapolations might be biased, which was shown for the 𝑉 𝐻 analysis in section Ⅳ 2.6. These
biases would be learned by classifiers that are trained with the standard strategies. Data-driven
extrapolations with corresponding uncertainties would still be necessary to evaluate the performance
of the classifiers trained without truth labels, but their response would be biased less in the first
place.

It is not a coincidence that the largest potential for future improvements of the 𝑉 𝐻 → 𝑉 𝑏�̄� analysis
seems to be connected with machine learning: manual optimisations of the 𝑉 𝐻 → 𝑉 𝑏�̄� analysis in
all three lepton channels have been performed from 2011 to 2015, reducing expected exclusion limits
from 𝜇 < 4 [2], to 1.9 [3] to 1.3 [4]. However, only the use of machine learning for signal selection
and 𝑏-tagging improved the limit to 0.8 [1], below the Standard Model prediction. The dataset was not
growing when machine learning was introduced.
After reducing the systematic uncertainties of BDT classifiers in the 1- and 2-lepton channels by another

16 % in this thesis, there seems to be little room for further improvements, unless novel strategies from
the field of machine learning are explored.
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APPENDIX A

Notes on the Introduction

A 1 Notes on the Discussion of Gauge Invariance

The Neutral Part of the Lepton Lagrangian

Writing out the 𝑅, 𝐿 shorthands for the photon terms, the neutral part of the Lagrangian becomes

L Neutral
Leptons = − [𝑔

2
sin(𝜃u� ) (− ̄𝜈u�𝛾u�𝜈u� − ̄ℓu�𝛾u�ℓu� − 2 ̄ℓu�𝛾u�ℓu� + ̄𝜈u�𝛾u�𝜈u� − ̄ℓu�𝛾u�ℓu�)] 𝐴u�

− [𝑔′

2
(− sin(𝜃u� )) (�̄�𝛾u�𝑌 𝐿 + �̄�𝛾u�𝑌 𝑅) + 𝑔

2
cos(𝜃u� ) (�̄�𝛾u�2𝑇3𝐿)] 𝑍u�

= −𝑔 sin(𝜃u� ) ̄ℓ𝛾u�ℓ 𝐴u�

− 𝑔
2 cos(𝜃u� )

[− sin2(𝜃u� ) (�̄�𝛾u�𝑌 𝐿 + �̄�𝛾u�𝑌 𝑅) + (1 − sin2(𝜃u� )) (�̄�𝛾u�2𝑇3𝐿)] 𝑍u�

= −𝑔 sin(𝜃u� ) ̄ℓ𝛾u�ℓ 𝐴u�

− 𝑔
2 cos(𝜃u� )

[�̄�𝛾u�2𝑇3𝐿 − sin2(𝜃u� ) (�̄�𝛾u�2𝑇3𝐿 + �̄�𝛾u�𝑌 𝐿 + �̄�𝛾u�𝑌 𝑅)] 𝑍u�

= −𝑔 sin(𝜃u� ) ̄ℓ𝛾u�ℓ 𝐴u�

− 𝑔
2 cos(𝜃u� )

∑
u�=u�u�,ℓu�,ℓu�

̄𝜓u�𝛾u� [2𝑇3 𝑃u� − sin2(𝜃u� ) (2𝑇3 + 𝑌 )] 𝜓u� 𝑍u�

= −𝑔 sin(𝜃u� ) ̄ℓ𝛾u�ℓ 𝐴u�

− 𝑔
2 cos(𝜃u� )

∑
u�=u�,ℓu�,ℓu�

̄𝜓u�𝛾u�(𝑔u� − 𝑔u�𝛾5)𝜓u� 𝑍u�

(A.1)
𝑇3 = 1

2𝜏3 is the operator for the 3rd component of isospin, which acts only on the 𝑆𝑈(2) doublets. For
the 𝑈(1) singlets, it is understood to be zero. For the 𝑍0 terms, the V-A structure of weak interactions
has been emphasised by inserting 𝑃u�𝐿 = 1𝐿 into the left-handed currents.
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The Full Standard Model Lagrangian

Lboson = 1
4

𝐹u�u�𝐹 u�u� − 1
4

(𝜕u�𝐺u�
u� − 𝜕u�𝐺u�

u�)(𝜕u�𝐺u�
u� − 𝜕u�𝐺u�

u�)

− 1
2

𝑊 +
u�u�𝑊 − u�u� + 𝑚2

u� 𝑊 +
u� 𝑊 − u� − 1

4
𝑍u�u�𝑍u�u� + 1

2
𝑚2

u�𝑍u�𝑍u�

+ 1
2

𝜕u�𝐻𝜕u�𝐻 − 1
2

𝑚2
u�𝐻2

+ 𝑔𝑔𝑔 + 𝑔𝑔𝑔𝑔

+ 𝑊 +𝑊 −𝐴 + 𝑊 +𝑊 −𝐴𝐴 + 𝑊 +𝑊 −𝑍 + 𝑊 +𝑊 −𝑍𝑍 + 𝑊 +𝑊 −𝐴𝑍

+ 𝑊 +𝑊 −𝑊 +𝑊 −

+ 𝐻𝐻𝐻 + 𝐻𝐻𝐻𝐻

+ 𝑊 +𝑊 −𝐻 + 𝑊 +𝑊 −𝐻𝐻 + 𝑍𝑍𝐻 + 𝑍𝑍𝐻𝐻

(A.2)

Terms in boxes are shorthands for interactions predicted by the Standard Model. Note that all weak boson
vertices are always vertices with one 𝑊 + and 𝑊 − boson, since the third component of weak isospin is
conserved.

LFermion = ∑
ℓ=u�,u�,u�

̄ℓ(i 𝛾u�𝜕u� − 𝑚ℓ)ℓ + ∑
u�=u�u�,u�u�,u�u�

̄𝜈(i 𝛾u�𝜕u�)𝜈 + ∑
u�=u�,…,u�

̄𝑞(i 𝛾u�𝜕u� − 𝑚u�)𝑞

+ ̄ℓℓ𝐴 + ̄𝑞𝑞𝐴

+ ̄𝜈ℓℓ𝑊 + + ̄ℓ𝜈ℓ𝑊 − + �̄�𝑑′𝑊 + + ̄𝑑′𝑢𝑊 −

+ ̄ℓℓ𝑍 + ̄𝜈ℓ𝜈ℓ𝑍 + ̄𝑞𝑞𝑍

+ ̄ℓℓ𝐻 + ̄𝑞𝑞𝐻

(A.3)

A 2 A Note on the Higgs Mass

As mentioned in the introduction (see e.g. the section Ⅱ 3.2 on the Higgs mechanism), the mass of the
Higgs boson is not predicted by the theory. In fact, it is the only free parameter concerning the Higgs
boson, as charge (0), spin and parity (0+) are fixed by the requirement that the field is an electrically
neutral scalar. The mass therefore governs all properties of the Higgs, since it unambiguously determines
𝜆 and therefore all couplings to the Higgs boson.
The mass has been measured by the ATLAS and CMS collaborations in 2015 [30]. The result is

𝑚u� = (125.09 ± 0.24) GeV. The value of 125 is quite interesting, because it is very close to the
theoretically tolerable minimum; at the same time it is also low enough so that many of the possible
decay channels become accessible at the LHC. If the mass was ≳160 GeV, decays into 𝑊 bosons would
dominate, and the search for 𝐻 →𝑏�̄� decays would be even more challenging than it is already now — it
might even be pointless.
The theoretical constraints limiting the Higgs mass will be discussed now, summarising a more detailed

discussion by Djouadi [20]:

Unitarity Due to its coupling to vector bosons, the Higgs boson affects the scattering amplitudes of
these bosons, e.g. in 𝑊𝑊 scattering:
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𝑊 +

𝑊 −

𝑊 +

𝑊 −

𝑊 +

𝑊 −

𝑊 +

𝑊 −

𝐻 𝐻

𝑊 +

𝑊 −

𝑊 +

𝑊 −

Figure A.1: Selection of diagrams contributing to u�u� scattering.

The amplitude of such scattering processes at high energies (𝑠 ≫ 𝑚2
u� ) can be written as

𝐴(𝑊𝑊 → 𝑊𝑊) → 1
𝑣2 (𝑠 + 𝑡 − 𝑠2

𝑠 − 𝑚2
u�

− 𝑡2

𝑡 − 𝑚2
u�

) .

𝑠, 𝑡 are the Mandelstam variables. Due to the Higgs-mediated diagrams, the total amplitude
depends on the Higgs mass. High Higgs masses might render the scattering amplitude so high
that unitarity is violated, that is, the probabilities of all possible outcomes exceed unity. This is
shown by Djouadi using the optical theorem, which relates the total scattering cross section to the
amplitude in forward direction: 𝜎tot = 1

u�ℑ𝐴fwd. Expanding the amplitude in terms of partial waves
using Legendre polynomials, one obtains the 𝐽 = 0 partial wave

𝑎0 = − 𝑚2
u�

8𝜋𝑣2 .

Unitarity requires that |ℜ𝑎u�| < 1
2 which limits the Higgs boson mass to 𝑚u� ≲ 870 GeV. Taking

into account other boson scattering amplitudes, this bound lowers to 𝑚u� ≲ 710 GeV.

This argument breaks down for very high Higgs masses: since the Higgs self-coupling 𝜆 = u�2
u�

2u�2

grows with the Higgs mass, perturbation theory cannot be applied to calculate radiative corrections
for this result. Given that the Higgs mass is well below this theoretical bound, this is, however, not
an issue.

Triviality The quartic Higgs coupling has higher-order radiative corrections, some of which are depicted
in figure A.2:

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

𝐻

Figure A.2: Quartic Higgs coupling and subset of radiative-correction diagrams.

As all couplings in the Standard Model, 𝜆 varies with the energy scale probed. Taking the EW
symmetry breaking scale 𝜆(𝑣2) as reference point, the coupling evolves as

𝜆(𝑄2) = 𝜆(𝑣2)
1 − 3

4u�2 𝜆(𝑣2) ln(u�2

u�2 )

If the energy probed ismuch less than the EW symmetry breaking scale (𝑄2 ≪ 𝑣2), the denominator
goes to positive infinity, implying a vanishing coupling, thus vanishing interaction. The theory is
called trivial, since it does not describe an interaction, any more. This does not set a bound on the

203



Appendix A Notes on the Introduction

Higgs mass, but the triviality argument is relevant for the next point.

Perturbativity If the energy is much higher than the EW scale (𝑄2 ≫ 𝑣2), the coupling can become
infinitely large. This happens at the “Landau pole”

Λu� = 𝑣 e 4u�2
3u� = 𝑣 e

4u�2u�2
u�2

u� .

The location of this pole depends on the Higgs mass. The Standard Model is valid only below
the cut-off scale determined by the pole Λu�, where the coupling is small, and where perturbation
theory can be applied. There are two solutions to avoid the breakdown of perturbation theory:

• Triviality: If one imposes triviality (i.e. 𝜆 = 0), the problem vanishes, but the Higgs boson
becomes massless. This is clearly not a helpful solution.

• New physics: New phenomena could have an effect on the coupling, which could make it finite.
The corresponding bound on the Higgs mass, where new processes can be expected is shown
as the upper red band in figure A.3. Given that the Higgs mass is much lower than this bound,
perturbativity is also not an issue.

Vacuum Stability Not only loops with Higgs bosons as in figure A.2 contribute to the running of 𝜆,
but also fermions play a role due to their Yukawa coupling to the Higgs boson. Since the top quark
is the heaviest fermion with the strongest Yukawa coupling, it plays the most important role, but
other quarks and the weak bosons also contribute. The evolution of 𝜆 can be approximated by

𝜆(𝑄2) = 𝜆(𝑣2) + 1
16𝜋2 [−12𝑚4

u�
𝑣4 + 3

16
(2𝑔2 + (𝑔2 + 𝑔′2)2)] ln(𝑄2

𝑣2 ) .

Depending on the value of the top quark mass, 𝜆 could become negative, which would lead to an
unbounded potential without a stable vacuum state. The “Mexican hat” of figure Ⅱ.4(b) (p. 15)
would transform into a potential that falls to negative infinity, if only high enough 𝑄2 are involved.
This constrains 𝜆 and thus the Higgs mass. The corresponding bound is shown versus the cut-off
scale as the green band in figure A.3. The figure shows that the observed Higgs mass is not far
from this bound: at energies of the order of 1 000 TeV, 𝜆 should become negative. There might
still be a stable vacuum state (different from 𝑣) if the potential e.g. contained 𝜙6 terms or if new
physics affected the evolution of 𝜆, but this is beyond the scope of this work. Although figure A.3
is slightly outdated because the precision of the top quark mass measurement has increased, the
result that 𝜆 may become negative remains valid.

This work will neither have an impact on the measurement of the Higgs boson mass, nor will it probe the
Yukawa coupling (or the mass) of the top quark. However, in light of the interesting fact that the Higgs
and top masses are so close to the stability bound, it might provide helpful insights into the properties of
the Higgs boson. Considering that the universe may in fact be long-lived but only metastable, that is, a
small but non-zero probability exists that the vacuum Higgs field transitions to a state with lower potential
energy [174], one might ask if contributions of new physics processes could prevent this. New particles
might change the evolution of 𝜆, which means that the vacuum stability calculations would have to be
revised. If such particles affected 𝜆, they would also couple to the Higgs, and might therefore change
its decay branching ratios and production cross sections. Since the aim of this work is to measure cross
section times branching ratio, it indirectly probes for new physics. Aside from proving that the Higgs
couples to 𝑏 quarks, this is one of the main motivations to search for 𝐻 →𝑏�̄� decays.
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Figure A.3: Theoretical
bounds on the Higgs mass
with uncertainties [20]. The
upper bound results from
requiring perturbativity,
that is, u� remains small;
the lower bound results
from vacuum stability,
that is, u� stays positive.
The bands indicate the
theoretical uncertainties.
The measured Higgs mass
is indicated by the blue line.
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𝑝u� =
⎛⎜⎜⎜⎜
⎝

𝐸
𝑝u�
𝑝u�
𝑝u�

⎞⎟⎟⎟⎟
⎠

𝑝u� =
⎛⎜⎜⎜⎜
⎝

𝐸
𝑝T cos(𝜙)
𝑝T sin(𝜙)
𝑝 cos(𝜃)

⎞⎟⎟⎟⎟
⎠

𝑝T, 𝜂, 𝜙 coordinates for a massless particle:

𝑝u� =
⎛⎜⎜⎜⎜
⎝

𝑝T cosh(𝜂)
𝑝T cos(𝜙)
𝑝T sin(𝜙)
𝑝T sinh(𝜂)

⎞⎟⎟⎟⎟
⎠

(A.4)
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This parametrisation follows from:

𝜂 = 1
2

ln (𝑝 + 𝑝L
𝑝 − 𝑝L

)

= 1
2

ln (1 + 𝑝L/𝑝
1 − 𝑝L/𝑝

)

= artanh (𝑝L
𝑝

)

⇔ tanh(𝜂) = 𝑝L
𝑝

⇔ 𝑝L = 𝑝 tanh(𝜂)

Using the definition of 𝑝 and the above result:

𝑝2 = 𝑝2
L tanh−2(𝜂) = 𝑝2

L + 𝑝2
T

⇔ 𝑝2
L = 𝑝2

T

tanh−2(𝜂) − 1

⇔ 𝑝2
L = 𝑝2

T sinh2(𝜂)
cosh2(𝜂) − sinh2(𝜂) = 1

⇔ 𝑝L = 𝑝T sinh(𝜂)

This can be combined with the previous result on 𝑝L:

𝑝L = 𝑝T sinh(𝜂) = 𝑝 tanh(𝜂)
⇔ 𝑝 = 𝑝T cosh(𝜂)

Inserting these two results in the energy and 𝑝u� components of a four-vector, equation (A.4) is obtained.
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Notes on the ATLAS 𝑯 →𝒃�̄� Analysis

B 1 The Contribution of 𝒔𝒈 Scattering in 𝑾 +𝒄𝒍 Events
In the ATLAS 𝐻 → 𝑏�̄� publication [1] 𝑊+𝑐𝑙 events is plotted separately from other 𝑊 + jets events
with charm hadrons because on top of gluon radiation like in the other 𝑊 +jets processes, there is an
additional process to produce this final state: strange-gluon scattering 𝑠𝑔 → 𝑊 +𝑐.
Event though it is difficult to quantify the exact fraction of 𝑠𝑔 scattering in 𝑊 + 𝑐𝑙 events, it is certainly

not the dominating process: most measurements of 𝑠𝑔 scattering focus on 𝑊 + 1 jet final states but this
analysis only retains events with at least two jets. 𝑠𝑔 scattering for 𝑊 + 1 jet events is expected to be
5% [175] of the total cross-section for the Tevatron, 10 to 12 % for LHC [176]. Still, for this process to
appear in the 𝐻 →𝑏�̄� selection, there needs to be an additional light or gluon jet. The best estimate for
LHC can be obtained from an ATLAS measurement of 𝑊 +𝑐 production with one additional jet [177]:
comparing same sign (SS) with opposite sign final states (OS), an an upper limit of the 𝑠𝑔 scattering
contribution can be obtained. This is because same sign final states cannot be created in 𝑠𝑔 scattering
since the charge of the s-quark needs to be conserved: 𝑠−1/3𝑔 → 𝑊 −𝑐+2/3 or its charge conjugate are the
only possible reactions. The measurement yields

(𝑊 +𝑐𝑥)u�u� scat

(𝑊 +𝑐𝑥)total
≤ (𝑊 +𝑐𝑥)OS

(𝑊 +𝑐𝑥)total
= 28%.

Combining this with the 10 to 12 % expectation for 𝑊 + 1 jet events does not implicate a strong necessity
to plot the 𝑊+𝑐𝑙 contribution separately.
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B 2 Extrapolating the 1𝒃-tag QCD Multijet Template to the 2𝒃-tag
Region
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(a) 1u�-tag– 2u�-tag comparison for u�u�
T in events with

2 jets after applying the Δu�(u�, u�) correction
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Figure B.1: Comparison of the multijet template in the 1 and 2u�-tag region. (a) the shaded 1u�-tag template predicts
lower values of u�u�

T than the 2u�-tag template. The differences between the templates are shown as red and orange
uncertainty bands. The central value of the 1u�-tag template is corrected to match the 2u�-tag template and half of
the shown uncertainty band is assigned as systematic uncertainty. The correction functions are shown in (b). With
tighter u�-tagging, the corrections become larger because the bias on the kinematic distributions is stronger.
The correction rapidly changes at u�u�

T > 120 GeV because the multijet template in the high-u�u�
T region is nor-

malised separately from the low-u�u�
T region. The multijet normalisation measurement partly corrects the u�u�

T
dependence which is why the correction is positive at u�u�

T ≳ 120 GeV but negative at u�u�
T ≳ 150 GeV to cancel

the overcorrection due to the normalisation correction.
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Figure B.2: Usage of a BDT classifier to derive preselection cuts that retain regions of high-sensitivity. The
BDT is trained events where only topology selection and u�-tagging is applied. It uses a large set of candidates
for preselection variables. The figures show the distributions of u�T and Δu�(u�, u�) for a phase space with high
u�/u� (50 % working point), low u�/u� and all backgrounds. The distributions show that lower cuts on u�T and
Δu�(u�, u�) can be applied without suppressing signal events in regions with high u�/u�.
The only usable preselection cut is u�miss

T > 20 GeV, which is indeed applied in the analysis. The angular variables
show only low separation, the sidebands of u�u�u� are necessary to measure the normalisation of backgrounds.
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Figure B.3: Usage of a BDT classifier to derive preselection cuts that retain regions of high-sensitivity. The
BDT is trained events where only topology selection and u�-tagging is applied. It uses a large set of candidates
for preselection variables. The figures show the distributions of u�T and Δu�(u�, u�) for a phase space with high
u�/u� (50 % working point), low u�/u� and all backgrounds. The distributions show that lower cuts on u�T and
Δu�(u�, u�) can be applied without suppressing signal events in regions with high u�/u�.
Usable preselection cuts are u�u�1

T > 45 GeV, u�u�2
T > 20 GeV, which are indeed applied in the analysis. Cuts on

u�u�
T and u�u�

T are not advisable and were thus removed.
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B 4 Multivariate Modelling Checks and Covariate Shift
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Figure B.4: BDTs trained to separate data (blue) from Monte Carlo events (red). The poor separation of the two
classes in the test sample (filled histograms) shows that the BDTs are not able to detect deficits in the Monte Carlo
simulation.
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Figure B.5: BDTs trained to separate data (blue) from Monte Carlo events (red). The poor separation of the two
classes in the test sample (filled histograms) shows that the BDTs are not able to detect deficits in the Monte Carlo
simulation.
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APPENDIX C

Notes on the Lorentz-Invariant Analysis

C 1 Plots of the 3-Jet Regions

C 1.1 Lorentz Invariants
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Figure C.1: Additional Lorentz invariants used in the 3-jet region. These can be interpreted as a Lorentz-invariant
angle between jets. Left: Inner product of leading and third-leading momentum jet. Right: Inner product of
subleading and third-leading momentum jet. Low values indicate more collinear jets.
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C 1.2 BDT Classifiers
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(b) 1 lepton, 3 jets, u�u�
T > 120 GeV
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Figure C.2: BDT classifiers with Lorentz-invariant variables and gradient boosting in the 3-jet region. These
classifiers are fed into the likelihood model outlined in sectionⅣ 6. The preselection outlined in sectionⅣ 1 and
shape corrections from sectionⅣ 2 are applied. Normalisation corrections for the background simulations are not
applied except for the multijet fit and the scaling up the u�+jets backgrounds by 16 % as before. The dark blue
band in the data/MC plot shows the statistical uncertainty of the background simulations. The larger band in light
blue shows the quadratic sum of the systematic uncertainties. Normalisation uncertainties are not shown because
they are added in the likelihood model.
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C 2 Breakdown of Systematic Uncertainties: Comparing Lorentz-Invariant MVA and ATLAS Approach

C 2 Breakdown of Systematic Uncertainties of the
Lorentz-Invariant MVA in Comparison to the ATLAS Approach

Notes for table C.1:
• “Floating normalisations” denote normalisation factors without constraint terms: 𝑊+𝑏𝑏, 𝑍+𝑏𝑏,

𝑊+𝑐𝑙, 𝑍+𝑐𝑙 and 𝑡 ̄𝑡.
• “Normalisation uncertainties” denote 𝜂 parameters as described in sectionⅣ 5.2, page 104. These
are constrained with Gaussian terms.

• “Normalisations” denote both: factors and uncertainties.

Table C.1: Breakdown of uncertainties of the signal strength u�. Tabular version of figure Ⅴ.9, page 147. The sets
of nuisance parameters are not orthogonal, i.e. nuisance parameters may be found in several of the sets listed here.
The Lorentz invariant classifier with gradient boosting serves as a baseline, for other classifiers the mean relative
increase/decrease of uncertainties with respect to the first column is shown.
Since the 1 lepton uncertainties dominate, the test was simplified by not retraining the 2 lepton classifiers in the two
middle columns.

Lorentz invariants ATLAS 𝐻 →𝑏�̄�

Uncertainty on 𝜇 BDTG Adaptive BDTG Adaptive

+0.65 +0.68 +0.71 +0.72Total −0.58 +4.8 % −0.61 +7.9 % −0.62 +10 % −0.64
+0.45 +0.47 +0.46 +0.47Statistics (data) −0.44 +3.8 % −0.45 +2.5 % −0.45 +4.3 % −0.46
+0.09 +0.09 +0.11 +0.08Statistics (MC) −0.09 +0.0 % −0.09 +16 % −0.10 −18 % −0.07
+0.47 +0.50 +0.54 +0.55Full systematics −0.39 +5.7 % −0.41 +13 % −0.43 +16 % −0.44
+0.25 +0.24 +0.29 +0.24Normalisations −0.22 −0.5 % −0.22 +16 % −0.25 −3.3 % −0.21
+0.21 +0.19 +0.23 +0.17Normalisations (floating part) −0.18 −5.9 % −0.18 +10 % −0.20 −18 % −0.15
+0.16 +0.17 +0.21 +0.15Normalisations (modelling uncert.) −0.15 +3.5 % −0.16 +26 % −0.19 −9.8 % −0.14
+0.23 +0.20 +0.24 +0.21W+jets −0.20 −8.8 % −0.19 +7.7 % −0.21 −6.4 % −0.19
+0.18 +0.15 +0.18 +0.13W+jets normalisations −0.16 −11 % −0.15 +3.0 % −0.16 −26 % −0.12
+0.17 +0.14 +0.20 +0.17W+jets modelling −0.16 −15 % −0.14 +15 % −0.18 +2.5 % −0.16
+0.22 +0.25 +0.25 +0.27Jets & MET −0.16 +12 % −0.18 +10 % −0.17 +22 % −0.20
+0.22 +0.25 +0.24 +0.27Jets −0.16 +12 % −0.18 +7.7 % −0.17 +22 % −0.19
+0.16 +0.17 +0.18 +0.15Top −0.14 +8.3 % −0.15 +3.1 % −0.13 −6.0 % −0.13
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Lorentz invariants ATLAS 𝐻 →𝑏�̄�

Uncertainty on 𝜇 (cont.) BDTG Adaptive BDTG Adaptive

+0.12 +0.11 +0.15 +0.10Top normalisation −0.10 −2.9 % −0.10 +17 % −0.11 −13 % −0.08
+0.09 +0.11 +0.08 +0.09Top modelling −0.09 +17 % −0.10 −16 % −0.07 −2.8 % −0.09
+0.17 +0.16 +0.17 +0.23b-tagging −0.13 −2.4 % −0.12 +4.3 % −0.13 +37 % −0.17
+0.10 +0.10 +0.12 +0.18b-tagging (b-jets) −0.07 −3.9 % −0.06 +9.9 % −0.07 +84 % −0.13
+0.08 +0.07 +0.08 +0.10b-tagging (c-jets) −0.07 −9.0 % −0.06 +8.7 % −0.07 +22 % −0.08
+0.07 +0.06 +0.06 +0.07b-tagging (light-jets) −0.06 −7.6 % −0.06 −8.6 % −0.06 +0.5 % −0.06
+0.20 +0.20 +0.24 +0.29Signal Theory −0.09 −2.3 % −0.08 +25 % −0.12 +69 % −0.17
+0.17 +0.18 +0.17 +0.21Jet Energy Resolution −0.11 +2.9 % −0.11 −4.5 % −0.10 +31 % −0.15
+0.13 +0.14 +0.15 +0.12Z+jets −0.13 +8.4 % −0.14 +12 % −0.15 −15 % −0.11
+0.09 +0.10 +0.10 +0.06Z+jets normalisations −0.10 +5.7 % −0.10 +6.8 % −0.11 −34 % −0.07
+0.07 +0.09 +0.09 +0.08Z+jets modelling −0.07 +19 % −0.08 +22 % −0.08 +4.7 % −0.07
+0.11 +0.10 +0.14 +0.08bl 1T → 2T extrapolation −0.11 +1.9 % −0.11 +26 % −0.14 −21 % −0.09
+0.07 +0.08 +0.09 +0.07Multijet −0.06 +12 % −0.06 +22 % −0.06 +5.2 % −0.06
+0.07 +0.05 0.00 +0.07Single top −0.05 −16 % −0.05 −93 % 0.00 +18 % −0.06
+0.06 +0.05 +0.06 +0.07Luminosity uncertainty −0.03 +0.4 % −0.03 +0.9 % −0.03 +36 % −0.05
+0.03 +0.02 +0.03 +0.03Diboson −0.02 −9.7 % −0.02 −1.9 % −0.02 −8.1 % −0.02
+0.02 +0.01 +0.02 +0.01Lepton ident./reconstr. −0.01 −51 % −0.01 −15 % −0.01 −18 % −0.01
+0.01 +0.02 +0.05 +0.02MET −0.01 +157 % −0.02 +550 % −0.04 +114 % −0.01
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C 3 Details on the Validation of the Likelihood Model

C 3.1 Invariant Mass of 𝒃-jets for 𝒕 ̄𝒕 Events
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Figure C.3: Systematic uncertainty of the u�u�u� distribution for u� ̄u� events. The histograms show data and the total
background prediction before the profile-likelihood fit. Predicted distributions of u�u�u� depend on the Monte Carlo
generator being used. Differences between the predictions were assigned as systematic uncertainty TtbarMBBCont,
indicated by the coloured lines. Top: In the 2-jet region POWHEG+Pythia predicts too many u� ̄u� events in the most
background-like region (classifier output of −1 to −0.6), but too many at higher classifier scores. Bottom: In the
3-jet region, the effect is reversed: the generator predicts too few events. If the systematic uncertainty is pulled
towards −1u�, both effects are corrected.
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C 4 Response of MV1c

C 4.1 1𝒃-tag Region
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(a) Leading jet u�-tagged, 1 lepton
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(b) Subleading jet u�-tagged, 1 lepton
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(d) Subleading jet u�-tagged, 2 leptons

Figure C.4: u�-tagging score of the u�-tagged jet for 2-jet events, u�u�
T < 120 GeV. The bins correspond to the four

working points of the MV1c u�-tagging algorithm. From left to right: 80, 70, 60 and 50 %. 1u�-tag distributions
show an excess of Monte Carlo events in the rightmost bin.
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Figure C.5: u�-tagging score of the u�-tagged jet for 3-jet events, 1-lepton channel. The bins correspond to the four
working points of the MV1c u�-tagging algorithm. From left to right: 80, 70, 60 and 50 %. 1u�-tag distributions
show an excess of Monte Carlo events in the rightmost bin.
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Figure C.6: u�-tagging score of the u�-tagged jet for 3-jet events, 2-lepton channel. The bins correspond to the four
working points of the MV1c u�-tagging algorithm. From left to right: 80, 70, 60 and 50 %. 1u�-tag distributions
show an excess of Monte Carlo events in the rightmost bin.
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C 4.2 2𝒃-tag Region
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(a) Leading jet u�-tagged, 1 lepton
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(b) Subleading jet u�-tagged, 1 lepton
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(c) Leading jet u�-tagged, 2 leptons
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(d) Subleading jet u�-tagged, 2 leptons

Figure C.7: u�-tagging scores for 2-jet events with 2 u�-tags, inclusive in u�u�
T . The bins correspond to the four

working points of the MV1c u�-tagging algorithm. From left to right: 80, 70, 60 and 50 %. 1u�-tag distributions
show an excess of Monte Carlo events in the rightmost bin. 2u�-tag distributions show no such excess.
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(a) Leading jet u�-tagged, 1 lepton
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(b) Subleading jet u�-tagged, 1 lepton
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(c) Leading jet u�-tagged, 2 leptons
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(d) Subleading jet u�-tagged, 2 leptons

Figure C.8: u�-tagging scores of the two leading jets for 3-jet events with 2 u�-tags, inclusive in u�u�
T . The bins

correspond to the four working points of the MV1c u�-tagging algorithm. From left to right: 80, 70, 60 and 50 %.
1u�-tag distributions show an excess of Monte Carlo events in the rightmost bin. 2u�-tag distributions show no such
excess.
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C 4.3 Nuisance-Parameter Pulls of the Improved Likelihood Model
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Figure C.9: Comparison of (black) improved likelihood model and (red) ATLAS likelihood model. Nuisance
parameters in the black model without counterparts in the red model have been introduced to mitigate deficits of
the ATLAS model.
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Figure C.10: Comparison of (black) improved likelihood model and (red) ATLAS likelihood model. Nuisance
parameters in the black model without counterparts in the red model have been introduced to mitigate deficits of
the ATLAS model.
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(c) u�-tagging for light jets

Figure C.11: Comparison of (black) improved likelihood model and (red) ATLAS likelihood model. Nuisance
parameters in the black model without counterparts in the red model have been introduced to mitigate deficits of
the ATLAS model.
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Appendix C Notes on the Lorentz-Invariant Analysis
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(a) u�u� modelling
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(d) Summary of u�u�-related uncertainties

Figure C.12: Comparison of (black) improved likelihood model and (red) ATLAS likelihood model. Nuisance
parameters in the black model without counterparts in the red model have been introduced to mitigate deficits of
the ATLAS model.
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C 4.4 Necessity of an Extension of the Likelihood Model for 𝒄𝒍 Events
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(a) Nuisance parameters connected to u�u� events
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(b) All normalisation uncertainties

Figure C.13: blue: Likelihood model with u�u� and u�u� uncertainties black: Likelihood model with u�u� uncertainties
red: ATLAS likelihood model
(a) The introduction of additional extrapolation uncertainties for u�u� events only marginally affects other u�u�-related
nuisance parameters. Except for cl1T2TRatio_Wcl_B0 the u�u� extrapolation uncertainties are consistent with zero.
(b) All other nuisance parameters for background normalisation uncertainties are consistent with the likelihood
model that was extended with only u�u� uncertainties. It can therefore be concluded that additional u�u� 1u�-tag to 2u�-tag
ratio uncertainties are not necessary to describe the data.
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APPENDIX D

Event Yields

The following pages show event yields in all categories of the 1- and 2-lepton channels after the profile-
likelihood fit.
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Table D.1: Post-fit yields for 1-lepton and 2- or 3-jet events after the mva selection. The uncertainties are the full post-fit errors including all nuisance parameters
with priors, floating normalizations, and the correlations deduced from the data. The difference in the data and the post-fit simulation is compared to u� which is
obtained from the sum in simulation as the sum in quadrature of the post-fit and Poissonian error.

Sample 1-tag 2L-tag 2M-tag 2T-tag

𝑝u�
T < 120 𝑝u�

T > 120 𝑝u�
T < 120 𝑝u�

T > 120 𝑝u�
T < 120 𝑝u�

T > 120 𝑝u�
T < 120 𝑝u�

T > 120

VH 98.9 37.1 27.5 10.9 43.4 17.0 48.2 19.2
VV 3 648.1 920.2 190.0 54.1 115.6 30.7 92.8 25.0
𝑡 ̄𝑡 21 709.5 6 400.3 3 539.1 844.8 4 469.0 885.0 4 221.7 732.1
s-top 25 189.7 3 529.9 2 123.7 327.2 1 774.3 252.2 1 364.0 177.2
𝑊+l 120 376.8 23 186.5 2 731.4 577.8 174.9 31.5 4.3 0.3
𝑊+cl 139 808.0 21 992.5 5 188.2 868.3 853.5 133.0 39.2 5.5
𝑊+hf 23 278.0 5 653.5 3 178.2 653.8 2 100.3 402.3 1 132.0 237.8
𝑍+l 8 160.2 1 268.8 194.2 35.4 13.3 2.6 0.2 0.0
𝑍+cl 2 948.0 368.8 116.7 17.0 22.0 3.3 0.9 0.2
𝑍+hf 4 465.9 517.8 335.4 41.8 238.4 28.4 153.9 20.3
MJu� 30 639.0 3 160.4 1 561.9 128.3 769.1 71.5 385.9 31.4
MJu� 14 645.1 217.4 701.9 19.7 286.8 6.9 145.0 1.5

Total 394 967.0 67 253.0 19 888.1 3 579.0 10 860.6 1 864.4 7 588.0 1 250.5
Data 394 974 ± 629 67 271 ± 259 19 872 ± 141 3 533 ± 59 10 847 ± 104 1 917 ± 44 7 621 ± 87 1 221 ± 35

3-jet
VH 38.7 18.2 8.0 4.3 12.2 6.8 13.8 7.6
VV 2 056.4 646.6 90.9 33.7 39.4 14.5 25.2 11.8
𝑡 ̄𝑡 37 593.9 10 919.9 6 151.3 1 386.0 7 949.2 1 436.5 8 097.8 1 199.6
s-top 12 942.5 2 628.3 1 192.1 263.0 1 084.2 214.3 875.0 149.5
𝑊+l 46 496.3 11 296.6 999.0 267.0 63.6 14.9 2.0 0.2
𝑊+cl 50 729.2 10 901.9 1 766.8 406.5 279.1 61.0 10.9 2.7
𝑊+hf 9 597.1 3 870.1 1 210.6 494.4 774.5 253.3 413.0 147.7
𝑍+l 3 532.8 585.0 81.5 15.4 6.0 1.2 0.0 0.0
𝑍+cl 1 479.4 204.3 53.5 9.3 9.0 1.4 0.3 0.0
𝑍+hf 2 174.6 296.6 151.5 25.7 115.8 21.0 81.3 14.3
MJu� 14 535.1 859.1 673.4 74.4 343.7 34.8 172.4 16.0
MJu� 4 895.2 124.4 282.0 10.3 130.5 3.6 59.6 0.9

Total 186 071.0 42 351.1 12 660.6 2 989.9 10 807.1 2 063.2 9 751.3 1 550.4
Data 186 115 ± 431 42 293 ± 206 12 605 ± 112 3 007 ± 55 10 833 ± 104 2 037 ± 45 9 765 ± 99 1 581 ± 40

23
0



Table D.2: Post-fit yields for 2-lepton and 2- or 3-jet events after the mva selection. The uncertainties are the full post-fit errors including all nuisance parameters
with priors, floating normalizations, and the correlations deduced from the data. The difference in the data and the post-fit simulation is compared to u� which is
obtained from the sum in simulation as the sum in quadrature of the post-fit and Poissonian error.

Sample 1-tag 2L-tag 2M+T-tag

𝑝u�
T < 120 𝑝u�

T > 120 𝑝u�
T < 120 𝑝u�

T > 120 𝑝u�
T < 120 𝑝u�

T > 120

VH 27.9 9.9 7.5 2.7 25.7 9.4
VV 774.7 131.6 65.6 11.5 121.7 21.3
𝑡 ̄𝑡 3 481.3 216.5 939.4 45.5 3 050.2 136.5
s-top 347.1 40.5 39.1 4.9 85.2 10.7
𝑊+l 105.1 7.5 2.1 0.2 0.6 0.0
𝑊+cl 95.4 10.1 3.8 0.4 0.6 0.1
𝑊+hf 59.1 10.8 3.7 0.5 4.1 0.5
𝑍+l 28 283.5 4 070.8 608.5 98.5 37.3 5.6
𝑍+cl 13 058.9 1 647.8 462.8 63.7 70.9 9.5
𝑍+hf 21 193.5 2 732.7 2 002.5 276.9 2 969.9 408.8

Total 67 426.5 8 878.1 4 135.0 504.7 6 366.2 602.4
Data 67 414 ± 260 8 889 ± 94 4 196 ± 65 503 ± 22 6 374 ± 80 555 ± 24

3-jet

VH 9.9 5.2 2.0 1.2 6.6 3.8
VV 338.1 94.4 19.6 6.2 25.1 7.6
𝑡 ̄𝑡 1 963.5 166.1 413.3 24.1 1 312.4 66.4
s-top 122.6 18.5 14.1 2.6 35.1 6.2
𝑊+l 30.7 3.9 0.7 0.1 0.0 0.0
𝑊+cl 33.3 4.4 1.2 0.2 0.2 0.0
𝑊+hf 28.8 4.6 1.4 0.6 0.9 0.3
𝑍+l 8 440.4 1 869.9 174.0 42.8 10.5 2.3
𝑍+cl 4 945.2 958.1 163.7 34.0 23.9 5.0
𝑍+hf 5 962.9 1 194.8 577.7 129.7 866.5 191.4

Total 21 875.4 4 319.9 1 367.8 241.5 2 281.3 283.1
Data 21 834 ± 148 4 333 ± 66 1 357 ± 37 253 ± 16 2 310 ± 48 270 ± 16231
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