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Preface

Elementary particle physics has made remarkable progress in the past ten years.
We now have, for the first time, a comprehensive theory of particle interactions.
One can argue that it gives a complete and correct description of all non-gravitational
physics. This theory is based on the principle of gauge symmetry. Strong, weak,
and electromagnetic interactions are all gauge interactions. The importance of a
knowledge of gauge theory to anyone interested in modern high energy physics
can scarcely be overstated. Regardless of the ultimate correctness of every detail
of this theory, it is the framework within which new theoretical and experimental
advances will be interpreted in the foreseeabie future.

Quantum field theory is a set of ideas and tools that combines three of the
major themes of modern physics: the quantum theory, the field concept, and the
principal of relativity. Today most working physicists need to know some quantum
field theory, and many others are curious about it. The theory underlies modern
elementary particle physics, and supplies essential tools to nuclear physics, atomic
physics, condensed matter physics, and astrophysics. In addition, quantum field
theory has led to new bridges between physics and mathematics.

It is a pleasure to acknowledge the aid I have received from my family, my
colleagues and friends in my group. I am very grateful to Mr. Handoko and Mr.
Andreas for fruitful discussion, and also to Mr. Terry, Mr. Anto, Mr. Agus, and
Mr. Imam for having encouraged and for helping me to finish my thesis. I also
would like to thank to Nowo, Bayu, and many other friends in my group that I
could not tell one by one. Finally, I also gratefully acknowledge the encouragement
and help given by my family in PALABS.

Depok, February 2007

Ardy Mustofa
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Abstract

We impose the Higgs mechanism to break the Grand Unified Theory based on
SU(6) symmetry, SU(6) GUT. We investigate and search for the Higgs multiplets
which are approriate to generate masses for both fermions and gauge bosons. We
have found that the most minimal Higgs multiplets are < Φ15 >, < Φ20 > and
< Φ21 > to realize three steps of symmetry breaking in SU(6) GUT down to the
standar SU(2) × U(1) model. However within this minimal SU(6) GUT, we can
reproduce only some fermions spectra as N4e, νe, N6e, Ne and d quarks, although we
have deployed the most general forms of Higgs multiplets. On the other hand, the
present approach have succeeded in generating the reguler gauge bosons, W±, Z0

and Aµ.
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Chapter 1

Introduction

Nowadays, all phenomenons in the high energy physics have been explained within
the standard model (SM) which is a gauge theory based on SU(3)C ⊗ SU(2)L ⊗
U(1)Y symmetry [1]. This set of symmetry represent strong, weak and electro-
magnetic interactions in a universal framework. In contrast to the weak and elec-
tromagnetic interactions which have been successfully unified in the electroweak
theory based on SU(2)L ⊗ U(1)Y symmetry, the strong interaction with SU(3)C

symmetry remains independent from the others.
So far, the electroweak is in impressive agreement with the most of experi-

mental observables [2]. However, there are recently several experimental results
which disagree with the SM’s predictions, as the oscillation in the neutrino sector
[3] and the discrepancy in the NuTeV measurement [4]. There are also under-
going or forthcoming experiments to measure the double β decay [5], to search
the Higgs particle(s) needed to break the symmetry [6], to relate the high energy
phenomenon with the cosmology one and so on. All of them have been expected
to be able to distinguish some physics beyond the SM. As mentioned above, the
SM is lacking of explaining the unification of three gauge couplings at a particular
scale, especially under an assumption that our nature should be explained by a
single unified theory, the so called grand unified theory (GUT).

In order to realize GUT at some scale, most of works in the last decades have
dealed with gauge theory inspired by the successfull electroweak theory. Those
theories assumed the gauge invariance under particular symmetries larger than
the SM’s one, but contain SU(3)C ⊗SU(2)L ⊗U(1)Y as a part of its subgroups at
electroweak scale. One of these models is SU(6) GUT [7].

As a new model, there is still a lot of work to be done. One of these work is
how this model can reproduce masses fermions and gauge bosons as in SM and
also can have very heavy masses for some new exotic fermions that introduce in
this model. With some new exotic fermion, this model is also expected to explain
some experiments that can not be explained with SM . To construct such masses
we use Higgs Mechanism.

1



CHAPTER 1. INTRODUCTION 2

1.1 An example

Now we are going to give a brief history about the arising of Higgs mechanism.
For the sake of simplicity, let us consider the case of the Abelian gauge theory.

Consider a complex scalar field coupled both to itself and to an electromagnetic
field:

L = −1

4
(Fµν)

2 + |Dµφ|2 − V (φ), (1.1)

with Dµ = ∂mu + ieAµ. This Lagrangian is invariant under the local U(1) trans-
formation

φ(x) → eiα(x)φ(x), Aµ(x) → Aµ(x) − 1

e
∂µα(x). (1.2)

If we choose the potential in L to be of the form

V (φ) = −µ2φ∗φ +
λ

2
(φ∗φ)2, (1.3)

with µ2 > 0, the field φ will acquire a vacuum expectation value and the U(1)
global symmetry will be spontaneously broken. The minimum of this potential
occurs at

〈φ〉 = φ0 =

(
µ2

λ

)1/2

, (1.4)

or at any other value related by the U(1) symmetry (1.2).
Let us expand the Lagrangian (1.1) about the vacuum state (1.4). Decompose

the complex field φ(x) as

φ(x) = φ0 +
1√
2
(φ1(x) + iφ2(x)). (1.5)

The potential (1.3) is rewritten

V (φ) = − 1

2λ
µ4 +

1

2
· 2µ2φ2

1 + O(φ3
i ), (1.6)

so that the field φ1 acquires the mass m
√

2µ and φ2 is the massless Goldstone
boson.

Now consider how the kinetic energy term of φ is transformed. Inserting the
expansion (1.5), we rewrite

|Dµφ|2 =
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2 +
√

2eφ0 · Aµ∂
µφ2 + e2φ2

0AµA
µ + · · · , (1.7)

where we have omitted terms cubic and quartic in the fields Aµ, φ1, and φ2. The
last term written explicitly in (1.7) is a photon mass term

∆L =
1

2
m2

AAµAµ, (1.8)
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where the mass
m2

A = 2e2φ2
0 (1.9)

arises from the nonvanishing vacuum expectation value of φ. Notice that the sign
of this mass term is correct; the physical spacelike components of Aµ appear in
(1.8) as

∆L = −1

2
m2

A(Ai)2, (1.10)

with the correct sign for a potential energy term.
A model with a spontaneously broken continuous symmetry must have mass-

less Goldstone bosons. These scalar particles have the quantum numbers of the
symmetry currents, and therefore have just the right quantum numbers to appear
as intermediate states in the vacuum polarization. In the model we are now dis-
cussing, we can see this pole arise explicitly in the following way: The third term
in Eq. (1.7) couples the gauge boson directly to the Goldstone boson φ2; this gives
a vertex of the form

i
√

2eφ0(−ikµ) = mAkµ. (1.11)

If we also treat the mass term (1.8) as a vertex in perturbation theory, then
the leading-order contributions to the vacuum polarization amplitude give the
expression

= im2
Agµν + (mAkµ)

i

k2
(−mAkν) (1.12)

= im2
A(gµν) − kµkν

k2

The Goldstone boson supplies exactly the right pole to make the vacuum polar-
ization amplitude properly transverse.

Although the Goldstone boson plays an important formal role in this theory, it
does not appear as an independent physical particle. The easiest way to see this
is to make a particular choice of gauge, called the unitarity gauge. Using the local
U(1) gauge symmetry (1.2), we can choose α(x) in such a way that φ(x) becomes
real-valued at every point x. With this choice, the field φ2 is removed from the
theory. The Lagrangian (1.1) becomes

L = −1

4
(Fµν)

2 + (∂µφ)2 + e2φ2AµAµ − V (φ). (1.13)

If the potential V (φ) favors a nonzero vacuum expectation value of φ, the gauge
field acquires a mass; it also retains a coupling to the remaining, physical field φ1.

This mechanism, by which spontaneously symmetry breaking generates a mass
for a gauge boson, was explored and generalized to the non-Abelian case by Higgs,
Kibble, Guralnik, Hagen, Brout, and Englert, and is now known as the Higgs
mechanism.



Chapter 2

SU(6) GUT

In this chapter we would like to give some brief to the new model, SU(6) GUT
[7]. As an introduction to this model, first, we present the pattern of symmetry
breaking that is used in SU(6) GUT [7]. Based on these patterns, the basic of
SU(6) group and its generators are then given in section 2.2. Before presenting the
extended Gell-Mann Okubo relation, we perform a detail study of the quantum
numbers contained in the model in section 2.3. Finally, in the last section we
present a new particle assignment in the SU(6) multiplets.

2.1 Pattern of Symmetry Breaking

First of all, determining the pattern of symmetry breaking in a GUT model is a
crucial step. In the case of SU(6) group, concerning only the sub-matrices of its
generators, intuitively there are several possibilities to break the symmetry, for
example

SU(6) →





SU(5) ⊗ U(1)
SU(2) ⊗ SU(2) ⊗ SU(2) ⊗ U(1) ⊗ U(1)
SU(3) ⊗ SU(3) ⊗ U(1)

(2.1)

The first choice is clearly similar to the known SU(5) GUT where it is followed by
the breaking pattern of SU(5) → SU(3) ⊗ SU(2) ⊗ U(1) to obtain the SM. This
breaking pattern has been introduced by [10], however this is not much preferred
due to too fast proton decay. On the other hand, the second example can be
excluded since it is not able to accomodate the SM. Then the last one is the only
pattern we should choice and it has actually not been studied so far.

At this present stage, we can straightforward put the first SU(3) as SU(3)C

representing the strong interaction, while the second one should break further to
SU(2)L ⊗ U(1)Y to reproduce the electroweak theory. So, there are two stages to

4
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break SU(6) down to the electroweak scale,

SU(6) → SU(3)C ⊗ SU(3)H ⊗ U(1)C

→ SU(3)C ⊗ SU(2)L ⊗ U(1)B ⊗ U(1)C , (2.2)

where H denotes a new quantum number which we later on call as hyper-isospin.
The combination of quantum numbers induced by U(1)B and U(1)C will reproduce
the familiar hypercharge associated with U(1)Y in the electroweak theory.

Next, we should consider the fundamental representation and the minimal mul-
tiplets to accomodate the particle contents. The fundamental representations of
SU(6) group is represented as {6} and its anti-symmetric {6}. A tensor product
of two fundamental representations gives, {6} ⊗ {6} = {21} ⊕ {15}. Following
the general requirement for the anomaly free combination of representations of
fermions in any particular SU(N) group [12], one should choose the combination
of 2{6} ⊕ {15} in the case of SU(6). The second {6}–dimensional representation
comes up from the decomposition of {21} in the above tensor product. There-
fore we can conclude here that the fermions must be assigned in these multiplets,
namely sextet ({6}) and decapentuplet ({15}).

2.2 SU(6) Group

In this section, we construct the generators for SU(6) group. In general, the
generators for SU(N) group can be determined using the existing generators of
SU(N − 1) group and expanding its (N − 1) × (N − 1) matrices [13]. Then there
are three considerable types of matrices which could form an SU(N) group,

λi =








0

λ̃i
...

0
0 · · · 0 0




, for i = 1, 2, · · · , (N − 1)2 − 1




0
...

(0)(N−1)×(N−1) ajN
...
0

0 · · ·ajN · · · 0 0




, for (N − 1)2 − 1 < i < N2 − 1

λN2−1 , for i = N2 − 1

, (2.3)
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where λ̃i is the i-th generator of SU(N − 1) group and ajN = a∗
Nj = 1 or −i

with j = 1, 2, · · · , N − 1. This confirms that the total number of generators in an
SU(N) group equals to [(N − 1)2 − 1] + [2 × (N − 1)] + 1 = N2 − 1. Note that
special (physical) consideration must be taken to determine the last generator, i, e.
λN2−1 beside the basic mathematical requirement tr(λiλj) = 2δij. Of course one
should remark that the order of numbering the generators can be changed for the
sake of convenience due to some physical considerations as discussed soon. Now
we are ready to move forward to the case of SU(6) group.

Throughout the thesis we use the notation λi to indicate the generators of
SU(3) (Gell-Mann matrices [15]), λ̃i for SU(5), λi for the SU(6) and σ1,2,3 for
the Pauli matrices. We start from the well-known generators of SU(5) [14]. It

is considerable to bring the λ̃1,··· ,20 as they are and extend them to be λ1,··· ,20

by adding the 6-th rows and columns with null elements. This implies that the
color quantum number is preserved as the conventional quantum chromodynam-
ics (QCD), i.e. the upper left 3 × 3 block still represents the SU(3)C symmetry.
Since the last generator should form the Cartan sub-algebra which determines the
(physically meaningfull) eigenvalues, that is having non-zero diagonal elements,

we eliminated the λ̃24. Instead of that we put λ21,··· ,26 as the type of extended σ1

and σ2 matrices filling in the upper-right and lower-left 3 × 3 blocks.
Further, λ̃21,22,23 are kept and extended to be λ27,28,29 to represent the SU(3)H

group after the first step of symmetry breaking in Eq.(2). The extended σ1 and σ2

types with its non-zero elements filling the last rows and columns in the lower-right
3 × 3 block form λ30,31,32,33.

Since SU(6) group is a rank 5 group, it should have five generators form its
Cartan sub-algebra. In a more technical term, there must be five generators with
non-zero diagonal elements. Since we already have three of them (λ3,8,29), there-
fore we should define the remaining two diagonal generators. From the fact that
λ27,··· ,33 have the same form as the extended λ1,··· ,7 of SU(3), it is then appropriate
to choose λ34 as the extended form of λ8.

As mentioned earlier, we must take physical considerations to determine the re-
maining λ35. Concerning the first step of symmetry breaking in Eq.(2), λ35 should
reflect the quantum number of U(1)C and be independent from both SU(3)C and
SU(3)H . It yields that,

λ35 =
1√
3

(
(−1)3×3 (0)3×3

(0)3×3 (1)3×3

)
. (2.4)

Finally, the generators for SU(6) group can be defined in a common way using
these matrices as follows,

Fi =
1

2
λi, i = 1, · · · , 35 , (2.5)

which satisfies the relation [Fi, Fj] = ifijkFk with fijk is the structure constant
respectively. Complete expressions for all matrices are given in the appendix.
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Before going on to the next section, we would like to make several remarks
here,

• The Gell-Mann like matrices λ27,··· ,34 with non-zero elements in the lower-
right 3×3 block represents the SU(3)H at the first symmetry breaking. This
generates a new quantum number namely hyper-isospin.

• Since SU(6) contains SU(5) as its sub-group, λ̃24 should be able to be con-
tained in a 6 × 6 matrix which is the linear combination of λ34 and λ35,
i.e.,

c34λ34 + c35λ35 =
2√
15




1 0
1

1
...

−3
2

−3
2

0
0 · · · 0 0




=

(
λ̃24 0
0 0

)
, (2.6)

where the multiplication factors are choosed to be c34 = −1/
√

5 and c35 =
−2/

√
5.

• λ35 represents the hypercharges exist in the strong and weak forces with
opposite signs. This reflects the property of its short and long range inter-
actions. We label this kind of hypercharge as C−hypercharge.

• On the other hand, the hypercharge induced by λ34 exists only in the weak
sector. We label it as B−hypercharge.

2.3 Quantum Number

Since the SU(3)C symmetry is kept till the low energy scale, in the sense of quan-
tum number there is no new physical consequence on it. Then, let us focus on
the generators form SU(3)H relevant for the electroweak interaction. We should
reconsider the Gell-Mann Okubo relation which has been well established within
the SM. This relation constitutes that the isospin and hypercharge are the con-
stituents of charge, i.e. Q = I3 + 1

2
Y . In the present framework we have several

new hypercharges as mentioned in the preceeding section. This motivates us to
consider the extended Gell-Mann Okubo relation.

The B−hypercharge induced by λ34 has non-identical hypercharges, i.e. (1 1
-2), in contrast with the identical C-hypercharge, (1 1 1). If the total hypercharge
Y is defined as,

Y ≡ YB + YC , (2.7)

we obtain non-identical hypercharge and isospin configurations for the doublets
which are possibly built from SU(3)H triplet. This strange behaviour can be
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Figure 2.1: I−, U− and V − spin on the I3 −Y plane for a, b and c in the SU(3)H

triplet.

explained by introducing the U−, V − spins beside the conventional I−spin. If
a, b, c denote the first, second and third elements in the SU(3)H triplet, there are
three combinations of doublet respectively,

I − spin :

(
b
a

)
, U − spin :

(
a
c

)
, V − spin :

(
c
b

)
. (2.8)

These combinations can be illustrated on the I3 − Y plane as shown in Fig. 1.
note that the conventional isospin I3 is determined by λ29.

From these results, we have found that the third component of hyper-isospin
IH is related with isospin and hypercharge as follows,

IH3 = I3 + (∆I3 · ∆Y ) , (2.9)

where the delta means the difference between the upper and lower elements in each
doublet (see Eq.(8)). Secondly, the charge for each element can be derived using
this hyper-isospin and the total hypercharge,

Q = IH3 +
1

2
(2.10)

= I3 + [∆I3 · (∆YB + ∆YC)] +
1

2
(YB + YC) ,

using Eqs.(7) and (9). This is the extended Gell-Mann Okubo relation in the
framework of SU(6) GUT under consideration.

2.4 Particle Assignment

With the extended Gell-Mann Okubo relation at hand, we are now ready to go on
assigning the particle contents appropriately. As mentioned earlier we must fill all
fermions in the combining of the {6}− and {15}−plets.
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Taking into account the quantum numbers (charge, isospin and hypercharge)
defined above, we should take,

(Ψ6
1)

i
R =




di
1

di
2

di
3

(νli)
C

(li)+

Nli




R

and (Ψ6
2)

i
R =




D1di

D2di

D3di

(N4li)
C

(E5li)
+

N6li




R

. (2.11)

for the sextet, while the {15}−plet should consist of,

(Ψ15)i
L =

1√
2




0 (ui
3)

C −(ui
2)

C −ui
1 −di

1 −D7di

−(ui
3)

C 0 (ui
1)

C −ui
2 −di

2 −D8di

(ui
2)

C −(ui
1)

C 0 −ui
3 −di

3 −D9di

ui
1 ui

2 ui
3 0 (li)+ −E10li

di
1 di

2 di
3 −(li)+ 0 N11li

D7di D8di D9di E10li −N11li 0




L

. (2.12)

where ui : u, c, t ; di : d, s, b ; li : e, µ, τ ; Nli : Ne, Nµ, Nτ ; Ddi : Dd, Ds, Db and
1, 2, 3 denote the colors respectively. Nl’s and Dd’s are newly introduced fermions
with neutral charges and −1/3. L and R are the projection operators, L ≡ 1

2
(1−γ5)

and R ≡ 1
2
(1 + γ5).

We should make few remarks here. First, we assign different fermions for two
sextets required to avoid the anomaly. Secondly, it is clear that this model on its
own implies the existence of a new neutral fermion, Nl, to complete its multiplets.
This exotic fermion then could be interpreted as the heavy Majorana neutrino to
enable the seesaw mechanism naturally. Lastly, this is clearly the minimal particle
assignment in the present model, i.e. the minimal SU(6) GUT. One could also
take other possibilities by introducing more exotic fermions as done in [10].



Chapter 3

Symmetry Breaking

In this chapter we review briefly the Higgs Mechanism to break the local symmetry
in the theor. As thee results of symmetry breaking, the fermion and also the
gauge boson masses are generated. In the elementary particle physics, this kind
of mechanism has suceeded in realizing the spontaneous symmetry breaking in
the SM of electromagnetic and weak interactions. Now, we follow the The same
procedure and mechanism to break the SU(6) GUT.

3.1 Higgs Mechanism in SM

Spontaneous breaking of gauge symmetries was the crucial new ingredient in the
model of unified weak and electromagnetic interactions constructed independently
by Weinberg and Salam. The general idea was that weak interactions should
be mediated by gauge bosons (W±), which are, ’to begin with’, massless. The
Lagrangian for the theory also contains terms for massless electrons, muons, and
neutrinos, and is invariant under an internal symmetry group, which is a gauge
symmetry. A scalar field (the Higgs field) is then introduced with a non-vanishing
vacuum-expectation-value. The resulting spontaneous breakdown of symmetry
gives masses to e, µ, and τ and to the gauge bosons, but not to the photon and
neutrino. It is therefore indeed met with a good degree of success in describing
weak interactions.

We begin with a theory with SU(2) gauge symmetry. To break the symmetry
spontaneously, we introduce a scalar field in the spinor representation of SU(2).
However, we know that this theory leads to a system with no massless gauge
bosons. We therefore introduce an additional U(1) gauge symmetry. We assign
the scalar field a charge +1/2 under this U(1) symmetry, so that its complete
gauge transformation is

φ → eiαaτa

eiβ/2φ. (3.1)

10
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(Here τa = σa/2.) If the field φ acquires a vacuum expectation value of the form

< φ >=
1√
2

(
0
v

)
, (3.2)

then a gauge transformation with

α1 = α2 = 0, α3 = β (3.3)

leaves < φ > invariant. Thus the theory will contain one massless gauge boson,
corresponding to this particular combination of generators. The remaining three
gauge bosons will acquire masses from the Higgs mechanism.

3.1.1 Gauge Boson Masses

In order to generate the mass spectrums using the Higgs mechanism, we consider
the covariant derivative of φ appears in the kinetic term of Higgs particle, that is

Dµφ = (∂µ − igAa
µτ

a − i
1

2
g′Bµ)φ, (3.4)

where Aa
µ and Bµ are, respectively, the SU(2) and U(1) gauge bosons. Since the

factors associated with the SU(2) and U(1) gauge groups commute each other,
they may generally have different coupling constants, namely g and g′.

The gauge boson mass terms come from the square of Eq.(3.4), evaluated at
the scalar field vacuum expectation value (3.2). The relevant terms are

∆L =
1

2
(0 v)

(
gAa

µτ
a +

1

2
g′Bµ

) (
gAbµτ b +

1

2
g′Bµ

) (
0
v

)
. (3.5)

If we evaluate the matrix product explicitly, using τa = σa/2, we find

∆L =
1

2

v2

4
[g2(A1

µ)2 + g2(A2
µ)2 + (−gA3

µ + g′Bµ)2]. (3.6)

There are three massive vector bosons, which we notate as follows:

W±
µ =

1√
2
(A1

µ ∓ A2
µ) with mass mW = g

v

2
;

Z0
µ =

1√
g2 + g′2

(gA3
µ − g′Bµ) with mass mZ =

√
g2 + g′2

v

2
. (3.7)

The fourth vector vield, orthogonal to Z0
µ, remains massless:

Aµ =
1√

g2 + g′2
(g′A3

µ + gBµ) with mass mA = 0. (3.8)

We then identify this field as the electromagnetic vector potential.
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3.1.2 Fermion Mass Terms

We now look at the problem of generating the mass terms for fermions, i.e. quarks
and leptons. One cannot put ordinary mass terms into the Lagrangian, because
the left- and right-handed components of the various fermion fields have different
gauge quantum numbers and so simple mass terms violate gauge invariance. To
give masses to the quarks and leptons, we must again invoke the mechanism of
spontaneous symmetry breaking.

In the SM, the right-handed fermions are assigned as singlets: ui
R, di

R, liR; while
the left-handed fermions are assigned as doublets:

LL =

(
νli

li

)

L

, QL =

(
ui

di

)

L

.

As the Lagrangian of mass terms:

Lmass = −mΨΨ

= −m(ΨLΨR + ΨLΨR), (3.9)

we can not construct the mass term. This problem is solved by introducing Higgs
particle which we added to the Lagrangian, so that

Lmass = −λΨΦΨ, (3.10)

the parameter λ is a new dimensionless coupling constant. We can write mass
terms for the leptons:

∆Ll = −λlL
i

LΦliR + h.c., (3.11)

(note that all leptons can have mass except neutrino, because in SM there is no
right-handed neutrino). If we replace φ in this expression by its vacuum expecta-
tion value (3.2), we obtain

∆Le = − 1√
2
λeveLeR + h.c. + · · · (3.12)

This is a mass term for the electron. The size of the mass is set by the vacuum
expectation value of φ, rescaled by the new dimensionless coupling:

me =
1√
2
λev. (3.13)

We can write mass terms for the quarks fields in the same way

∆Lq = −λdQ
i

LΦdi
R − λuǫ

abQ
i

LaΦ
†
bu

i
R + h.c. (3.14)

Substituting the vacuum expectation value of φ from Eq.(3.2), these terms become

∆Lq = − 1√
2
λdvdLdR − 1√

2
λuvuLuR + h.c. + · · · , (3.15)
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standard mass terms for the d and u quarks. The GWS theory thus gives the
relations

md =
1√
2
λdv, mu =

1√
2
λuv. (3.16)

As with the electron, the theory parametrizes but does not explain the small values
of the d and u quark masses observed experimentally.

3.2 Higgs Mechanism in SU(6) GUT

Now we are using the Higgs Mechanism to the SU(6) GUT as we use it in SM. In
SU(6) GUT there are three steps of symmetry breaking:

SU(6) → SU(3)C ⊗ SU(3)H ⊗ U(1)C

→ SU(3)C ⊗ SU(2)L ⊗ U(1)B ⊗ U(1)C (3.17)

→ SU(3)C ⊗ U(1)em ,

so we need three types of Higgs particles. What kind of Higgs particle that will
be appropriate to break these symmetries ? The answer can be found by the help
of group theory.

Let us see again the Lagrangian for fermion mass term with Higgs particle
inside

Lmass = −f ijΨ
i

LΦijΨj
R + h.c., (3.18)

Since in the SU(6) GUT there are two kind of particle assignment, {6}−plets and
{15}−plets, so we have {6} and {15} irrep according to the group theory. From
these irrep, we can do the combination of direct product to have

{6} × {6} = {15} + {21}
{6} × {6} = {1} + {35}
{6} × {6} = none (3.19)

{6} × {15} = {6} × {15} = {20} + {70}
{6} × {15} = {6} × {15} = none

{15} × {15} = {15} × {15} = {15} × {15} = {15} + 2{105}.

We have to choose three of these kind of possibilities as the number of degree of
freedom of Higgs particle. How do we choose them? There is no exact way to
choose the appropriate kind of Higgs particles. After some trial, we choose Higgs
particles with the least degrees of freedom but the most possible one, they are
{15}, {20} and {21} Higgs particle.

Now we have three kind of Higgs particles, but how do we choose the right
Higgs particles for the intended symmetry breakings ? Once again, we have to try
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any possibilities with some considerations. First, we look at the first symmetry
breaking

SU(6) → SU(3)C ⊗ SU(3)H ⊗ U(1)C, (3.20)

from the above SSB the number of Goldstone bosons (massless) : 8 + 8 + 1 = 17.
From this fact we need Higgs particle with {20} or {21} degrees of freedom, so that
we can have massive scalar bosons. After we try all the calculation and consider
the whole generation, we choose Higgs particle with {21} degrees of freedom. Then
we have massive scalar bosons 21 − 17 = 4.

Now we look at the second symmetry breaking

SU(3)C ⊗ SU(3)H ⊗ U(1)C → SU(3)C ⊗ SU(2)L ⊗ U(1)B ⊗ U(1)C, (3.21)

from this symmetry breaking we have the number of Goldstone bosons (massless)
: 8 + 3 + 1 + 1 = 13. From these massless gauge bosons, we can choose Higgs
particle with {15} or {20} degrees of freedom, for the appropriate one we choose
Higgs particle with {20} degrees of freedom. So we have massive scalar bosons
20 − 13 = 7.

Finally for the last symmetry breaking

SU(3)C ⊗ SU(2)L ⊗ U(1)B ⊗ U(1)C → SU(3)C ⊗ U(1)em, (3.22)

From this Symmetry breaking there are 8 + 1 = 9 massless gauge bosons. For this
SSB, we have Higgs particle with {15} degrees of freedom. Then we have massive
scalar bosons 15 − 9 = 6.

From now on, we know that we have three kinds of Higgs particles, {15}, {20}
and {21} degrees of freedom for three steps of symmetry breaking. But, how do
we construct these Higgs particles ? First, we know that, In SU(6) GUT, as we see
in section 2.4, right-handed particles are assigned in {6}−plets while left-handed
particles are assigned in {15}−plets, so in order to to construct all masses we need
Higgs particles with {15}−plets or {6}−plets. However after performing some
calculation, we have found that the appropriate one is the Higgs particles with
{15}−plets.

Now suppose that all Higgs particles have 36 degrees of freedom:

Φ15,20,21 =
1√
2




φ1 φ2 φ3 φ4 φ5 φ6

φ7 φ8 φ9 φ10 φ11 φ12

φ13 φ14 φ15 φ16 φ17 φ18

φ19 φ20 φ21 φ22 φ23 φ24

φ25 φ26 φ27 φ28 φ29 φ30

φ31 φ32 φ33 φ34 φ35 φ36




, (3.23)

then we should calculate the mass terms in lagrangian for every symmetry breaking

∆L1 = −f ijTr[(Ψ
6

1 + Ψ
6

2)RΦ21(Ψ6
1 + Ψ6

2)L] + h.c., (3.24)
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∆L2 = −f ijTr[(Ψ
6

1 + Ψ
6

2)RΦ20Ψ15
L ] + h.c., (3.25)

∆L3 = −f ijTr[Ψ
15

R Φ15Ψ15
L ] + h.c., (3.26)

In every term in the equations above one should choose only the the terms with
neutral charges. Also in the present case, we consider only the neutral Higgs par-
ticles, since only these terms have the vacuum expectation value. The terms with
no neutral Higgs particle will only give contribution to the Yukawa interactions
which are out of our present interest.

After performing some lengthy calculation, we can write the vacuum expecta-
tion values in the form of

< Φ21 >=
1√
2




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 φ28 0 φ30

0 0 0 φ34 0 φ36




, (3.27)

< Φ20 >=
1√
2




0 0 0 0 φ5 φ6

0 0 0 0 φ11 φ12

0 0 0 0 φ17 φ18

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, (3.28)

< Φ15 >=
1√
2




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




. (3.29)

From these results we can see that the Higgs multiplet with 21 degrees of freedom
may have 4 VEV’s, while Higgs multiplet with 20 degrees of freedom contains only
6 VEV’s, and the last one with 15 degrees of freedom may not have any VEV.



Chapter 4

Phenomenological Aspects

4.1 Fermion Masses

Now we are ging to present the fermion mass terms in SU(6) GUT, based on the
Higgs multiplets we have chosen in the preceeding section.

We are back to the mass term lagrangian

Lmass = −Tr[F11Ψ
6

1RΦ21Ψ6
1L + F12Ψ

6

1RΦ21Ψ6
2L

+F13Ψ
6

2RΦ21Ψ6
1L + F14Ψ

6

2RΦ21Ψ6
2L] (4.1)

−Tr[F21Ψ
6

1RΦ20Ψ15
L + F22Ψ

6

2RΦ20Ψ15
L ]

−Tr[F31Ψ
15

R Φ15Ψ15
L ] + h.c.,

Evaluating this equation leads to the mass terms for fermions in SU(6) GUT.
First, let us see the first symmetry breaking (for the first generation)

∆L1 = −Tr[F11Ψ
6

1RΦ21Ψ6
1L + F12Ψ

6

1RΦ21Ψ6
2L

+F13Ψ
6

2RΦ21Ψ6
1L + F14Ψ

6

2RΦ21Ψ6
2L] + h.c.

= −F11N
C

4eRφ28N4eL − F12N
C

4eRφ28νeL − F13ν
C
eRφ28N4eL

−F14ν
C
eRφ28νeL

−F11N6eRφ34N4eL − F12N6eRφ34νeL − F13N eRφ34N4eL (4.2)

−F14N eRφ34νeL

−F11N
C

4eRφ30N
C
6eL − F12N

C

4eRφ30N
C
eL − F13ν

C
eRφ30N

C
6eL

−F14ν
C
eRφ30N

C
eL

−F11N6eRφ36N
C
6eL − F12N6eRφ36N

C
eL − F13N eRφ36N

C
6eL

−F14N eRφ36N
C
eL + h.c.

16
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We can write down the result above in a different way

(N
C

4e νC
e N6e N e)R




F11φ28 F12φ28 F11φ30 F12φ30

F13φ28 F14φ28 F13φ30 F14φ30

F11φ34 F12φ34 F11φ36 F12φ36

F13φ34 F14φ34 F13φ36 F14φ36







N4e

νe

NC
6e

NC
e




L

(4.3)

Then it is simpler to diagonalize the matrix to obtain N4e, νe, N6e, and Ne masses.
From the diagonalization we get the masses by evaluating the eigenvalues of the
matrix λ1,2,3,4, i.e. solving the equation below

λ4 + λ3(−F11φ28 − F11φ36 − F14φ28 − F14φ36)

+λ2(F 2
11φ28φ36 + F11F14φ

2
28 + 2F11F14φ28φ36 + F11F14φ

2
36

+F 2
14φ28φ36 + F 2

14φ
2
30 − F 2

11φ30φ34)

+λ(−F 2
11F14φ

2
28φ36 − F 2

11F14φ28φ
2
36 − F11F

2
14φ

2
28φ36 (4.4)

−F11F
2
14φ28φ

2
36 + F11F

2
14φ

2
30φ36 + F11F

2
14φ

2
30φ28

+F 2
11F14φ30φ34φ36 + F 2

11F14φ28φ30φ34)

+F 2
11F

2
14φ

2
28φ

2
36 + 2F 2

12F
2
13φ28φ30φ34φ36

+F 2
11F

2
14φ

2
30φ

2
34 − F 2

12F
2
13φ

2
30φ

2
34 − F 2

12F
2
13φ

2
28φ

2
36 = 0.

Unfortunately, this equation can be solved only numerically.
Next, let us proceed to the second symmetry breaking

∆L2 = −Tr[F21Ψ
6

1RΦ20Ψ15
L + F22Ψ

6

2RΦ20Ψ15
L ] + h.c.

= −F21D1dRφ5d1L − F22d1Rφ5d1L

−F21D2dRφ11d1L − F22d2Rφ11d1L

−F21D3dRφ17d1L − F22d3Rφ17d1L (4.5)

−F21D1dRφ6D7dL − F22d1Rφ6D7dL

−F21D2dRφ12D7dL − F22d2Rφ12D7dL

−F21D3dRφ18D7dL − F22d3Rφ12D7dL + h.c.

We can see that there are only mass terms relevant for d quarks, i.e. the term
F22d1Rφ5d1L .

Finally, for the last symmetry breaking we get

∆L3 = −Tr[F31Ψ
15

R Φ15Ψ15
L ] + h.c.

= 0 (4.6)

which is clear that we can not get any mass terms from this symmetry breaking.
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4.2 Gauge Boson Masses

After dealing with the fermion masses, now our task is to generate gauge boson
masses in SU(6) GUT, especially to reproduce W±, Z0, and Aµ gauge bosons. The
mass terms should comeout from the kinetic term of Higgs particles

Lkin = (DµΦ
k)†(DµΦk) (4.7)

with covariant derivative

DµΦ = (∂µ − ig6TaA
aµ)Φ. (4.8)

The terms relevant with gauge boson masses are

−g2
6 Tr[Φk†(TaAaµ)†(TbA

b
µ)Φ

k]. (4.9)

For the product TaA
aµ we get

TaAaµ = 1

2
× (4.10)




G3 + G8 − HC G+

1 G+

2 X+

1 Y +

1 Z+

1

G−
1 −G3 + G8 − HC G+

4 X+
2 Y +

2 Z+
2

G−
2 G−

4 −2G8 − HC X+

3 Y +

3 Z+

3

X−
1 X−

2 X−
3 H3 + HB + HC H+

1 H+

2

Y −
1 Y −

2 Y −
3 H−

1 −H3 + HB + HC H+
4

Z−
1 Z−

2 Z−
3 H−

2 H−
4 −2HB + HC




where

G±
1 ≡ A1 ∓ iA2 G3 ≡ A3 G±

2 ≡ A4 ∓ iA5 G±
4 ≡ A6 ∓ iA7

G8 ≡ 1√
3

A8 X±
1 ≡ A9 ∓ iA10 X±

2 ≡ A11 ∓ iA12 X±
3 ≡ A13 ∓ iA14

Y ±
1 ≡ A15 ∓ iA16 Y ±

2 ≡ A17 ∓ iA18 Y ±
3 ≡ A19 ∓ iA20 Z±

1 ≡ A21 ∓ iA22

Z±
2 ≡ A23 ∓ iA24 Z±

3 ≡ A25 ∓ iA26 H±
1 ≡ A27 ∓ iA28 H±

3 ≡ A29

H±
2 ≡ A30 ∓ iA31 H±

4 ≡ A32 ∓ iA33 HB ≡ 1√
3

A34 HC ≡ 1√
3

A35

Further, we have to choose one of three Higgs particles that we already have
(Φ21, Φ20, and Φ15) to gain, at least W±, Z0, and Aµ gauge boson masses. Let us
see all possibilities.

First we see the term involves the Higgs particle with 21 degrees of freedom

−g2
6 Tr[Φ21†(TaAaµ)†(TbA

b
µ)Φ

21]. (4.11)

The result is −g2
6 times

(φ28Y
−
1 + φ34Z

−
1 )(Y +

1 φ28 + φ34Z
−
1 ) + (φ28Y

−
2 + φ34Z

−
2 )(Y +

2 φ28 + φ34Z
−
2 )

+(φ28Y
−
3 + φ34Z

−
3 )(Y +

3 φ28 + φ34Z
−
3 ) + (φ28H

−
1 + φ34H

−
2 )(H+

1 φ28 + φ34H
+
2 )

+[φ28(−H3 + HB + HC) + φ34H
−
4 ][(−H3 + HB + HC)φ28 + H+

4 φ34]

+[φ28H
+

4 + φ34(−2HB + HC)][H−
4 φ28 + (−2HB + HC)φ34]
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(φ30Y
−
1 + φ36Z

−
1 )(Y +

1 φ30 + φ36Z
−
1 ) + (φ30Y

−
2 + φ36Z

−
2 )(Y +

2 φ30 + φ36Z
−
2 )

+(φ30Y
−
3 + φ36Z

−
3 )(Y +

3 φ30 + φ36Z
−
3 ) + (φ30H

−
1 + φ36H

−
2 )(H+

1 φ30 + φ36H
+

2 )

+[φ30(−H3 + HB + HC) + φ36H
−
4 ][(−H3 + HB + HC)φ30 + H+

4 φ36]

+[φ30H
+

4 + φ36(−2HB + HC)][H−
4 φ30 + (−2HB + HC)φ36].

From this result, we can choose one or more terms to extract W±, Z0, and Aµ

gauge boson masses. As we can see from the equation above, we can not have
photon mass. If we do diagonalization for H3, HB, HC , and H4 term, we will have
two zero mass term, one could become the photon mass but the rest will give rise
to another problem.

Finally, we check the Higgs particle with 20 degrees of freedom

−g2
6 Tr[Φ20†(TaAaµ)†(TbA

b
µ)Φ

20]. (4.12)

The result is −g2
6 times

[φ5(G3 + G8 − HC) + φ11G
−
1 + φ17G

−
2 ][(G3 + G8 − HC)φ5 + G−

1 φ11 + G−
2 φ17]

+[φ5G
+
1 + φ11(−G3 + G8 − HC) + φ17G

−
4 ][G−

1 φ5 + (−G3 + G8 − HC)φ11 + G+
4 φ17]

+[φ5G
+

2 + φ11G
+

4 + φ17(−2G8 − HC)][G−
2 φ5 + G−

4 φ11 + (−2G8 − HC)φ17]

+[φ5X
+
1 + φ11X

+
2 + φ17X

+
3 ][X−

1 φ5 + X−
2 φ11 + X−

3 φ17]

+[φ5Y
+

1 + φ11Y
+

2 + φ17Y
+

3 ][Y −
1 φ5 + Y −

2 φ11 + Y −
3 φ17]

+[φ5Z
+
1 + φ11Z

+
2 + φ17Z

+
3 ][Z−

1 φ5 + Z−
2 φ11 + Z−

3 φ17]

[φ6(G3 + G8 − HC) + φ12G
−
1 + φ18G

−
2 ][(G3 + G8 − HC)φ6 + G−

1 φ12 + G−
2 φ18]

+[φ6G
+

1 + φ12(−G3 + G8 − HC) + φ18G
−
4 ][G−

1 φ6 + (−G3 + G8 − HC)φ12 + G+

4 φ18]

+[φ6G
+

2 + φ12G
+

4 + φ18(−2G8 − HC)][G−
2 φ6 + G−

4 φ12 + (−2G8 − HC)φ18]

+[φ6X
+

1 + φ12X
+

2 + φ18X
+

3 ][X−
1 φ6 + X−

2 φ12 + X−
3 φ18]

+[φ6Y
+
1 + φ12Y

+
2 + φ18Y

+
3 ][Y −

1 φ6 + Y −
2 φ12 + Y −

3 φ18]

+[φ6Z
+

1 + φ12Z
+

2 + φ18Z
+

3 ][Z−
1 φ6 + Z−

2 φ12 + Z−
3 φ18]

Then we choose the third and ninth line for G2, G4, G8, and HC , and rewrite them
in a different form

(G2 G4 G8 HC)

0

B

B

@

φ2

5
+ φ2

6
φ5φ11 + φ6φ12 −2(φ5φ17 + φ6φ18) −φ5φ17 − φ6φ18

φ5φ11 + φ6φ12 φ2

11
+ φ2

12
−2(φ11φ17 + φ12φ18) −φ11φ17 − φ12φ18

−2(φ5φ17 + φ6φ18) −2(φ11φ17 + φ12φ18) 4(φ2

17
+ φ2

18
) 2(φ2

17
+ φ2

18
)

−(φ5φ17 + φ6φ18) −(φ11φ17 + φ12φ18) 2(φ2

17
+ φ2

18
) φ2

17
+ φ2

18

1

C

C

A

0

B

B

@

G2

G4

G8

HC

1

C

C

A

(4.13)

Doing the diagonalization, the eigenvalues of this matrix λ1,2,3,4 will roduce the
masses for W±, Z0, and Aµ gauge bosons. These eigenvalues can be calculated by
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solving the equation

λ4 + λ3(−φ2
5 − φ2

6 − φ2
11 − φ2

12 − 5φ2
17 − 5φ2

18)

λ2(φ2
5φ

2
11 + φ2

5φ
2
12 + φ2

5φ
2
17 + φ2

6φ
2
11 + φ2

6φ
2
12 + φ2

6φ
2
18

+5φ2
5φ

2
17 + 5φ2

5φ
2
18 + 5φ2

6φ
2
17 + 5φ2

11φ
2
18

+4φ2
11φ

2
17 + 4φ2

12φ
2
18 + 4φ4

17 + 4φ4
18 + 8φ2

17φ
2
18

−8φ5φ6φ17φ18 − 2φ11φ12φ17φ18) (4.14)

+λ(2φ2
5φ11φ12φ17φ18 + 2φ2

6φ11φ12φ17φ18

+8φ11φ12φ
3
17φ18 + 8φ11φ12φ17φ

3
18 + 8φ5φ6φ

2
11φ17φ18

+8φ5φ6φ
2
12φ17φ18 + 8φ5φ6φ

3
17φ18 + 8φ5φ6φ17φ

3
18

−φ2
5φ

2
12φ

2
17 − φ2

6φ
2
11φ

2
18 − 5φ2

6φ
2
12φ

2
17 − 5φ2

5φ
2
11φ

2
18

−4φ2
6φ

2
11φ

2
17 − 4φ2

11φ
2
17φ

2
18 − 4φ2

12φ
2
17φ

2
18

−4φ2
5φ

2
12φ

2
18 − 4φ2

5φ
2
17φ

2
18 − 4φ2

6φ
2
17φ

2
18

−4φ2
6φ

4
17 − 4φ2

12φ
4
17 − 4φ2

5φ
4
18 − 4φ2

11φ
4
18) = 0.

Here we have one zero eigenvalue which can be interpreted as the photon masses,
because there are no other terms with zero eigenvalues. The other non-zero eigen-
value should give masses for W± and also Z0 boson, but we must work it out
numerically to obtain the specific values for them.



Chapter 5

Result and Discussion

From previous sections we have described explicitely the mechanism of symmetry
breaking to generate fermions and gauge bosons masses in SU(6) GUT. According
to the scope of present study, here we can conclude that

• From {6} and {15}−plets particle assignment in SU(6) GUT, using group
theory, the most minimal Higgs particles we should introduce are Φ15, Φ20

and Φ21.

• Using the mass-term lagrangian

Lmass = −f ijΨ
i

LΦijΨj
R + h.c., (5.1)

we can determine the VEV’s for these Higgs particles are

< Φ21 >=
1√
2




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 φ28 0 φ30

0 0 0 φ34 0 φ36




, (5.2)

< Φ20 >=
1√
2




0 0 0 0 φ5 φ6

0 0 0 0 φ11 φ12

0 0 0 0 φ17 φ18

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




and (5.3)
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< Φ15 >=
1√
2




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




. (5.4)

• With these VEV’s, the relevant lagrangians which are responsible to generate
the fermion masses are

∆L1 = −f ijTr[(Ψ
6

1 + Ψ
6

2)RΦ21(Ψ6
1 + Ψ6

2)L] + h.c., (5.5)

∆L2 = −f ijTr[(Ψ
6

1 + Ψ
6

2)RΦ20Ψ15
L ] + h.c., (5.6)

∆L3 = −f ijTr[Ψ
15

R Φ15Ψ15
L ] + h.c., (5.7)

for each step of symmetry breaking. Also we find that only the masses of
N4e, νe, N6e, and Ne fermions can be generated by solving numerically the
equation

λ4 + λ3(−F11φ28 − F11φ36 − F14φ28 − F14φ36)

+λ2(F 2
11φ28φ36 + F11F14φ

2
28 + 2F11F14φ28φ36 + F11F14φ

2
36

+F 2
14φ28φ36 + F 2

14φ
2
30 − F 2

11φ30φ34)

+λ(−F 2
11F14φ

2
28φ36 − F 2

11F14φ28φ
2
36 − F11F

2
14φ

2
28φ36 (5.8)

−F11F
2
14φ28φ

2
36 + F11F

2
14φ

2
30φ36 + F11F

2
14φ

2
30φ28

+F 2
11F14φ30φ34φ36 + F 2

11F14φ28φ30φ34)

+F 2
11F

2
14φ

2
28φ

2
36 + 2F 2

12F
2
13φ28φ30φ34φ36

+F 2
11F

2
14φ

2
30φ

2
34 − F 2

12F
2
13φ

2
30φ

2
34 − F 2

12F
2
13φ

2
28φ

2
36 = 0.

using < Φ21 > form the first symmetry breaking. The d quarks masses are
obtained from the term F22d1Rφ5d1L from the second symmetry breaking
using < Φ20 >, i.e.

md = F22φ5 (5.9)

• We also have the gauge boson masses using Lagrangian for the kinetic term
on Higgs particle

Lkin = (DµΦ
k)†(DµΦk) (5.10)

with the term
−g2

6 Tr[Φk†(TaAaµ)†(TbA
b
µ)Φ

k]. (5.11)
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from the equation above we can have W±, Z0, and Aµ gauge boson, by
evaluating the eigenvalue of the matrix λ1,2,3,4, which is equal to find the
solution for λ from the equation below

λ4 + λ3(−φ2
5 − φ2

6 − φ2
11 − φ2

12 − 5φ2
17 − 5φ2

18)

λ2(φ2
5φ

2
11 + φ2

5φ
2
12 + φ2

5φ
2
17 + φ2

6φ
2
11 + φ2

6φ
2
12 + φ2

6φ
2
18

+5φ2
5φ

2
17 + 5φ2

5φ
2
18 + 5φ2

6φ
2
17 + 5φ2

11φ
2
18

+4φ2
11φ

2
17 + 4φ2

12φ
2
18 + 4φ4

17 + 4φ4
18 + 8φ2

17φ
2
18

−8φ5φ6φ17φ18 − 2φ11φ12φ17φ18) (5.12)

+λ(2φ2
5φ11φ12φ17φ18 + 2φ2

6φ11φ12φ17φ18

+8φ11φ12φ
3
17φ18 + 8φ11φ12φ17φ

3
18 + 8φ5φ6φ

2
11φ17φ18

+8φ5φ6φ
2
12φ17φ18 + 8φ5φ6φ

3
17φ18 + 8φ5φ6φ17φ

3
18

−φ2
5φ

2
12φ

2
17 − φ2

6φ
2
11φ

2
18 − 5φ2

6φ
2
12φ

2
17 − 5φ2

5φ
2
11φ

2
18

−4φ2
6φ

2
11φ

2
17 − 4φ2

11φ
2
17φ

2
18 − 4φ2

12φ
2
17φ

2
18

−4φ2
5φ

2
12φ

2
18 − 4φ2

5φ
2
17φ

2
18 − 4φ2

6φ
2
17φ

2
18

−4φ2
6φ

4
17 − 4φ2

12φ
4
17 − 4φ2

5φ
4
18 − 4φ2

11φ
4
18) = 0

From this equation, we have one zero eigenvalue, which is the photon mass,
while the rest non-zero eigenvalues should be calculated numerically.

• From all calculations, we conclude also that unfortunately anoter exotic
fermions masses can not be generated simultaneously using this kind of or-
dinary Higgs mechanism. We should guess that the mode requires either
more additional Higgs multiplets or another alternate mechanisms as extra
dimension etc.
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Conclusion

From our results above we can conclude that Higgs mechanism has not succeeded
in generating the fermion and gauge boson masses simultaneously in the SU(6)
GUT model. This conclusion has been obtained by introducing the most general
but minimal Higgs multiplets allowed in the model.

We have shown that only the masses of N, N4, N6 and ν fermions which could
be reproduced. We also have the mass term for d quark fermion, F22φ5 as well. For
gauge boson masses we are able to reproduce the already known W±, Z0 and Aµ

gauge bosons masses. Of course, this terms lead alto to another masses of another
gauge bosons beyond the Standard Model.

However, the up-quark masses should be worke out using another mechanisms,
as adding more Higgs multiplets or for instance the extra dimension like model.
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SU(6) Generators

Here, we provide a complete set of matrices which forms generators for SU(6)
group.

λ1 =




0 1 0
1 0 0 (0)3×3

0 0 0

(0)3×3 (0)3×3




λ2 =




0 −i 0
i 0 0 (0)3×3

0 0 0

(0)3×3 (0)3×3




λ3 =




1 0 0
0 −1 0 (0)3×3

0 0 0

(0)3×3 (0)3×3




λ4 =




0 0 1
0 0 0 (0)3×3

1 0 0

(0)3×3 (0)3×3




λ5 =




0 0 −i
0 0 0 (0)3×3

i 0 0

(0)3×3 (0)3×3




λ6 =




0 0 0
0 0 1 (0)3×3

0 1 0

(0)3×3 (0)3×3




λ7 =




0 0 0
0 0 −i (0)3×3

0 i 0

(0)3×3 (0)3×3




λ8 =
1√
3




1 0 0
0 1 0 (0)3×3

0 0 −2

(0)3×3 (0)3×3



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λ9 =




1 0 0
(0)3×3 0 0 0

0 0 0
1 0 0
0 0 0 (0)3×3

0 0 0




λ10 =




−i 0 0
(0)3×3 0 0 0

0 0 0
i 0 0
0 0 0 (0)3×3

0 0 0




λ11 =




0 0 0
(0)3×3 1 0 0

0 0 0
0 1 0
0 0 0 (0)3×3

0 0 0




λ12 =




0 0 0
(0)3×3 −i 0 0

0 0 0
0 i 0
0 0 0 (0)3×3

0 0 0




λ13 =




0 0 0
(0)3×3 0 0 0

1 0 0
0 0 1
0 0 0 (0)3×3

0 0 0




λ14 =




0 0 0
(0)3×3 0 0 0

−i 0 0
0 0 i
0 0 0 (0)3×3

0 0 0




λ15 =




0 1 0
(0)3×3 0 0 0

0 0 0
0 0 0
1 0 0 (0)3×3

0 0 0




λ16 =




0 −i 0
(0)3×3 0 0 0

0 0 0
0 0 i
0 0 0 (0)3×3

0 0 0




λ17 =




0 0 0
(0)3×3 0 1 0

0 0 0
0 0 0
0 1 0 (0)3×3

0 0 0




λ18 =




0 0 0
(0)3×3 0 −i 0

0 0 0
0 0 0
0 i 0 (0)3×3

0 0 0




λ19 =




0 0 0
(0)3×3 0 0 0

0 1 0
0 0 0
0 0 1 (0)3×3

0 0 0




λ20 =




0 0 0
(0)3×3 0 0 0

0 −i 0
0 0 0
0 0 i (0)3×3

0 0 0



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λ21 =




0 0 1
(0)3×3 0 0 0

0 0 0
0 0 0
0 0 0 (0)3×3

1 0 0




λ22 =




0 0 −i
(0)3×3 0 0 0

0 0 0
0 0 0
0 0 0 (0)3×3

i 0 0




λ23 =




0 0 0
(0)3×3 0 0 1

0 0 0
0 0 0
0 0 0 (0)3×3

0 1 0




λ24 =




0 0 0
(0)3×3 0 0 −i

0 0 0
0 0 0
0 0 0 (0)3×3

0 i 0




λ25 =




0 0 0
(0)3×3 0 0 0

0 0 1
0 0 0
0 0 0 (0)3×3

0 0 1




λ26 =




0 0 0
(0)3×3 0 0 0

0 0 −i
0 0 0
0 0 0 (0)3×3

0 0 i




λ27 =




(0)3×3 (0)3×3

0 1 0
(0)3×3 1 0 0

0 0 0




λ28 =




(0)3×3 (0)3×3

0 −i 0
(0)3×3 i 0 0

0 0 0




λ29 =




(0)3×3 (0)3×3

1 0 0
(0)3×3 0 −1 0

0 0 0




λ30 =




(0)3×3 (0)3×3

0 0 1
(0)3×3 0 0 0

1 0 0




λ31 =




(0)3×3 (0)3×3

0 0 −i
(0)3×3 0 0 0

i 0 0




λ32 =




(0)3×3 (0)3×3

0 0 0
(0)3×3 0 0 1

0 1 0



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λ33 =




(0)3×3 (0)3×3

0 0 0
(0)3×3 0 0 −i

0 i 0




λ34 =
1√
3




(0)3×3 (0)3×3

1 0y 0
(0)3×3 0 1 0

0 0 −2




λ35 =
1√
3

(
(−1)3×3 (0)3×3

(0)3×3 (1)3×3

)
.
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