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Abstract. Loop Quantum Cosmology provides a successful quantization of isotropic and
homogeneous flat universes with a massless, homogeneous scalar field as the matter content.
Here, we propose a new ordering for the Hamiltonian constraint operator that facilitates the
quantization of this model and makes the physical consequences much more transparent. In
particular, our constraint is such that, in the gravitational sector, the zero volume state
decouples, allowing us to get rid of the cosmological singularity already at a kinematical level,
as well as to introduce a consistent densitization procedure for the constraint. Furthermore, the
typical discretization of the spatial volume is achieved in superselection sectors which prove to
be most suitable, with support on semilattices and where the basic functions that codify all the
relevant information about the geometry have the expected Wheeler-DeWitt limit of standing
waves. Thanks to these properties, we can demonstrate that the quantum bounce is generic for
any physical state and superselection sector.

1. Introduction
Loop Quantum Cosmology (LQC) is an approach to construct a quantum description of
homogeneous spacetimes using loop quantization techniques [1]. In the particular situation
of a homogeneous, isotropic spacetime with flat spatial curvature coupled to a homogeneous,
massless scalar field, the complete quantization was first studied in [2, 3, 4, 5]. Other systems
with less symmetry have also been quantized using these techniques, including e.g. homogeneous
Bianchi I models [6, 7].

In spite of the fact that the above works about the isotropic flat model succeeded in
incorporating the effects of quantum geometry, some aspects of the quantization needed a deeper
analysis. For instance, a rigorous densitization procedure of the Hamiltonian constraint was
missing, and it was not clear whether and how one could attain superselection sectors that were
simpler and with better properties. Actually, in previous studies of Bianchi I spacetimes in LQC
[6], these questions and problems had been naturally solved. Inspired by those studies, we have
adopted a new ordering for the representation of the gravitational Hamiltonian constraint of the
isotropic case as an operator in the corresponding kinematic Hilbert space [8]. On the one hand,
our constraint operator decouples the state which is the counterpart of the classical singularity in
that Hilbert space (namely, the zero volume state), so that we can just remove it. Thanks to this,
we are able to define a map between the solutions of the original Hamiltonian constraint and those
of the (simpler) densitized one. On the other hand, the constraint (together with the physical
observables) superselects sectors in the gravitational part of the kinematical Hilbert space with
support on semilattices (where the zero volume state is not present) that are contained e.g. in the
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positive real line. The simple structure of these sectors considerably simplifies the analysis of the
model. Indeed, when we consider the gravitational part of the quantum Hamiltonian constraint,
we can fully determine the form and behavior of its generalized eigenfunctions. These admit
a type of no-boundary description, and have the expected asymptotic limit, which agrees with
the Wheeler-DeWitt (WDW) limit of the model. All these properties allow us to prove that the
quantum bounce is generic and occurs for all superselection sectors.

2. The quantum Hamiltonian constraint
The phase space of the model is described by two pairs of conjugate variables. One pair
describes the matter content: the homogeneous massless scalar field φ and its momentum pφ,
with {φ, pφ} = 1. On the other hand, the geometry is represented in terms of a densitized triad
and an Ashtekar-Barbero su(2)-connection. In the homogeneous and isotropic situation under
analysis, and in a diagonal gauge, each of them is specified by a single coefficient, which we
call p for the triad and c for the connection, with {c, p} = 8πGγ/3. Here, G is the Newton
constant and γ the Immirzi parameter. Note that, owing to the homogeneity and in order to
avoid divergences, one must restrict all the spatial integrals to a given cell, whose volume with
respect to a Euclidean fiducial metric will be called V0.

We introduce a standard quantization of the homogeneous scalar field. Regarding the
geometry, we employ a loop quantization procedure. In LQC, and using the fiducial structure,
one considers as basic variables fluxes of densitized triads through square surfaces, which can
be identified essentially with p, and holonomies of the connection along straight lines of fiducial

length µ̄V
1/3

0 . The matrix elements of these holonomies, denoted byNµ̄, are given by exponential
functions of ic. Besides, for these holonomies, we adopt an “improved dynamics” prescription.
Then, the considered fiducial length must satisfy that µ̄−1 =

√
p/∆ (for more details see [4]).

Here, ∆ is the minimum non-zero area allowed quantum mechanically. The gravitational part
of the configuration algebra CylS is the algebra of almost periodic functions of c, which are
identified with kets |v〉. The Cauchy completion with the discrete norm 〈v′|v〉 = δv′v provides
the gravitational part of the kinematical Hilbert space, Hgrav

kin . The action of the basic operators

on the basis states |v〉 is given by p̂|v〉 = sign(v)(2πγG~
√

∆|v|)2/3|v〉 and N̂µ̄|v〉 = |v+ 1〉. Here,
~ is the Planck constant. Using these basic operators, we can promote the classical Hamiltonian
constraint into a quantum one. In particular, the SU(2)-curvature can be described in terms of
holonomies forming a closed loop whose physical area coincides with the minimum area ∆ (see
[3, 4]). At this stage, we exploit the freedom in the factor ordering to introduce a new operator
realization of the constraint, firstly studied in [6] and discussed in detail in [8]. Our Hamiltonian
constraint is given by

Ĉ :=

[
1̂

V

]1/2(
− 6

γ2
Ω̂2 + 8πGp̂2

φ

)[
1̂

V

]1/2

, (1)

where the gravitational part is the square of

Ω̂ :=
1

4i
√

∆

[
1̂√
|p|

]−1/2√̂
|p|
[(
N̂2µ̄ − N̂−2µ̄

)
̂sign(p) + ̂sign(p)

(
N̂2µ̄ − N̂−2µ̄

)] √̂
|p|

[
1̂√
|p|

]−1/2

.

(2)

The inverse volume operator [1̂/V ] := [1̂/
√
|p|]3 is regularized employing the so-called

Thiemann’s trick (see, e.g. [2]).

2.1. Densitization procedure
Our constraint operator Ĉ annihilates the zero volume state |v = 0〉 in the gravitational

sector, and its action leaves invariant the orthogonal complement of |v = 0〉, denoted by H̃grav
kin .
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Then, the zero volume state has no contribution to the non-trivial solutions of the Hamiltonian
constraint, and we can thus restrict the study to H̃grav

kin . To this extent, the classical singularity is
kinematically resolved. Since we have removed the kernel of the inverse volume operator, we can

use [̂1/V ]
−1

to define a bijection between the solutions of Ĉ and the solutions of its densitized
version [8], given by

Ĉ :=

[
1̂

V

]−1/2

Ĉ

[
1̂

V

]−1/2

= − 6

γ2
Ω̂2 + 8πGp̂2

φ. (3)

Let us call C̃ylS the linear span of the states |v〉 with v 6= 0, whose Cauchy completion with

respect to the discrete norm gives H̃grav
kin . Since in general the solutions to the Hamiltonian

constraint are not normalizable states in the kinematic Hilbert space, one should expect them

to belong to a bigger space, like e.g. the algebraic dual of C̃ylS , namely C̃yl
∗
S . In that space, the

map between the solutions (ψ| of the constraint Ĉ and those of Ĉ, (ψ′| = (ψ|[1̂/V ]1/2, is indeed

a bijection. Using Ĉ, we can directly recognize two commuting Dirac observables, Ω̂2 and p̂2
φ, a

fact that simplifies the resolution of the constraint.

2.2. Properties of Ω̂2

The gravitational constraint operator has an action of the form [8]

Ω̂2|v〉 = F−(v)|v + 4〉+G(v)|v〉+ F+(v)|v − 4〉, (4)

so that it only connects states |v〉 separated by 4 units in the label v. Here, F±(v) and G(v) are
certain real functions such that F+(v) = 0 if v ∈ [−4, 0) and F−(v) = 0 if v ∈ (0, 4]. In total,

Ω̂2 only relates states with support on semilattices of the form L±ε̃ := {v = ±(ε̃+ 4n), n ∈ N},
where ε̃ ∈ (0, 4]. We note that the gravitational Hilbert subspaces corresponding to states with
support on any of these semilattices are all separable. In the following, we will restrict the
analysis of the quantum geometry to just one of these separable Hilbert spaces, e.g. one with
v > 0. In [8] we demonstrated that the operator Ω̂2 defined in any of these superselection sectors
turns out to be essentially self-adjoint, with a non-degenerate absolutely continuous spectrum
equal to the positive real line. We will use the parameter λ ∈ [0,∞) to denote the generalized

eigenvalues of Ω̂2.

2.3. Basis of generalized eigenfunctions
The generalized eigenstates |eε̃λ〉 =

∑
v∈L+ε̃

eε̃λ(v)|v〉 are completely determined by a piece of

initial data eε̃λ(ε̃), which can be chosen positive. The resulting eigenfunctions are then real,

since Ω̂2 is a real operator. The elements of this basis must be normalized to the Dirac delta,
condition that fixes the norm of the initial datum. For large v, our operator tends to a differential
operator which also possesses an absolutely continuous spectrum, but 2-fold degenerated. Its
generalized eigenfunctions, denoted by e±ω(v), are given (up to a factor 1/

√
v) by plane waves in

the logarithm of v, each of them interpretable as expanding or contracting waves in the volume
(once the dependence in the matter field is taken into account and the discussion restricted to
positive-frequency solutions). In the regime v → ∞, then, the eigenstates eε̃λ(v) must be linear
combinations of these plane waves. Since the combination has to be real:

eε̃λ(v)→ r
{

exp [iφε̃(ω)] eω(v) + exp [−iφε̃(ω)] e−ω(v)
}
, (5)

where eω(v) = exp (iω ln v/α) /
√

2παv, ω =
√
λ and α = 4πγG~. In addition, r is a real number

and φε̃(ω) is certain real function (that in general varies slowly with ω).
The asymptotic limit of the eigenfunctions eε̃λ(v) has a clear physical interpretation: they

behave as standing waves, with exactly the same contribution of incoming and outgoing flux.
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2.4. Comparison and comments about different constraint operators
The operators chosen to represent the gravitational constraint in [3, 4, 5], denoted there as Θ̂,
have some qualitative differences with respect to ours. On the one hand, the superselection
sectors in those works, in general, are lattices instead of semilattices. The absolutely continuous
spectrum of Θ̂ is 2-fold degenerate. The criterion suggested there to construct the generalized
eigenfunctions needs the union of two lattices. Numerical analyses showed that, on each lattice
and in the regime of semiclassical states peaked around classical trajectories, they behave as
almost standing waves for |v| → ∞ , with different limits in each lattice (the phase of the
almost standing waves is in principle different in each lattice). Even though this difference does
not affect the norm of the considered physical states, the scenario changes drastically for more
general regimes where the behavior as standing waves cannot be assured or the overlapping
between contracting and expanding branches becomes non-negligible. Therefore, our proposal
ensures a good behavior in regimes where the others commented cannot. On the other hand,
there are some specific situations in which the operator Θ̂ has essentially the same properties
as Ω̂2. In more detail, let us consider the operator Θ̂ of [4] (which is also one of the proposals
in [3]) defined in the symmetric superselection sector that contains the |v = ±2〉 states. One
can straightforwardly check that, in the difference eigenvalue equation corresponding to this
constraint operator, some of the coefficients vanish if v = ±2. Something similar happens in the
simplified model of [5] for v = 0. This fact leads to a decoupling between semiaxes. But this is
so only in these exceptional situations, whereas the results of [8], confirming the standing wave
behavior responsible of the quantum bounce, are valid in all circumstances and superselection
sectors.

3. Conclusions
We have analyzed the flat Friedmann-Lemâıtre-Robertson-Walker model coupled to a massless
scalar field in the context of LQC. We have proposed a new Hamiltonian constraint operator,
based on a different factor ordering, which leads to a quantum resolution of the cosmological
singularity already at the kinematical level. Employing this fact, we have been able to carry
out a rigorous densitization of the constraint, facilitating the subsequent analysis of the system.
Remarkably, the basic elements that codify the information about the geometry have support on
semilattices, emerging from an initial section with non-zero volume. In this sense, they provide a
no-boundary description. Furthermore, they behave as standing waves on macroscopic regions of
the universe. These two properties indicate that any incoming flux evolves, through a quantum
region, to outgoing flux and vice versa, for any physical state and in all superselection sectors.
In other words, the intrinsic properties of the gravitational part of the constraint, inherited by
its eigenfunctions, allow us to prove that the quantum bounce is generic. We have compared
also the properties of our Hamiltonian constraint operator with those of previous proposals.
Our operator is the only one which guaranties the phenomenon of a generic quantum bounce,
independently of the particular state and superselection sector considered.
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