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Abstract. The QCD critical point and its particle correlation signatures are discussed.

1. Preamble
Quantum Chromodynamics is the theory of strong interactions. It is a well-defined quantum field
theory, with elegant foundations, and potentially enormous predictive power. In principle, QCD
allows one to calculate ab initio the properties of matter under extreme conditions where the
strong forces are dominant. Nevertheless, despite recent progress, QCD phenomenology at finite
temperature and baryon number density is still one of the least known regimes of the theory.
There are several experimental windows into such a regime. One is the physics associated with
the interior of neutron stars. Another — the subject of the ongoing and planned experimental
programs — is the physics of heavy ion collisions.

This brief report summarizes developments to date in the understanding of the finite
temperature and baryon density regime of QCD. The emphasis is given to the singular properties
of the critical point and their manifestation in the fluctuation/correlation observables in heavy-
ion collisions.

2. QCD phase diagram and the critical point
Fig. 1 shows a sketch of the QCD phase diagram as it is perceived by a modern theorist (see,
e.g., [1] for review). By a phase diagram we shall mean the information about the location of the
phase boundaries (phase transitions) as well as the physics of the phases that these transitions
delineate. The phase transitions are the thermodynamic singularities of the system. The system
under consideration is a region (in theory, infinite) occupied by strongly interacting matter,
described by QCD, in thermal and chemical equilibrium, characterized by the given values of
temperature T and baryo-chemical potential µB. In practice, it can be a region in the interior
of a neutron star, or inside the hot and dense fireball created by a heavy ion collision.

On the phase diagram, the regime of small T and large µB is of relevance to neutron star
physics. Because of low temperature, a very rich spectrum of possibilities of ordering can be
envisaged. The line separating the Color-Flavor-Locked (CFL) phase, predicted in Ref. [2], from
the higher temperature disordered phase (quark-gluon plasma, or QGP) is the most simplified
representation of the possible phase structure in this region. This regime is also of particular
theoretical interest because analytical controllable calculations are possible, due to asymptotic
freedom of QCD. The reader is referred to the reviews [1, 3, 4, 5, 6] which cover the recent
developments in the study of this domain of the phase diagram.

Institute of Physics Publishing Journal of Physics: Conference Series 27 (2005) 144–153
doi:10.1088/1742-6596/27/1/016 Correlations and Fluctuations in Relativistic Nuclear Collisions

144© 2005 IOP Publishing Ltd



, GeVµB

T, GeV

10

nuclear

0.1

CFL

QGP

E

critical
point

vacuum matter quark matter quark matter

Figure 1. QCD phase diagram (a sketch)

The region of the phase diagram more readily probed by the heavy ion collision experiments
is that of rather large T ∼ 100 MeV, commensurate with the inherent dynamical scale in QCD,
and small to medium chemical potential µB ∼ 0 − 600 MeV. Theorists expect that this region
has an interesting feature – the end point of the first order phase transition line, the critical
point marked E on Fig. 1. The physics of this point is the focus of the report.

2.1. Theoretical predictions
Theoretically, finding the coordinates (T, µB) of the critical point is a well-defined task. We need
to calculate the partition function of QCD and find the singularity corresponding to the end of
the first order transition line. The Lagrangian of QCD is known, and the partition function is
given by a path integral of the exponent of the QCD action, after Wick rotation to the Euclidean
space (with imaginary time compactified on a torus of circumference 1/T ).

Of course, calculating such an infinitely dimensional integral analytically is beyond our
present abilities (perturbation theory is not applicable here, in the relevant region of T and
µB). We are thus left with numerical methods, i.e., lattice Monte Carlo simulation. At zero µB

this method allows us to determine the equation of state of QCD as a function of T . We expect
that the transition at µB = 0 is a crossover, not a first order phase transition, based on such
numerical calculations [7, 8, 9, 10, 11, 12, 13, 14]. However, at finite µB the conventional Monte
Carlo method is inapplicable due to the sign problem.

The first lattice prediction for the location of the critical point has been reported in Ref. [15].
The assumption is that, although the sign problem becomes exponentially difficult as V → ∞,
in practice, one can get a sensible approximation at finite V . In addition, simulations at finite
T might suffer lesser overlap problem [16] because of large thermal fluctuations [17]. One can
hope that if the critical point is at a small value of µB, the volume V may not need to be too
large to achieve a reasonable accuracy. In particular, numerical estimates show [18] that the
maximal value of µB which one can reach within the same accuracy shrinks only as a power of
1/V .

However, it is not possible to determine this accuracy, since the exact result is unknown.
Normally, one would estimate the error by going to increasingly large volumes V , but the
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method becomes prohibitive too quickly (exponentially) in this limit. Ultimately, the result of
Ref. [15, 19] might turn out to be a good approximation to the exact answer, but we can only tell
once we have an independent result to compare it to. A qualitatively new approach is needed
to overcome the QCD sign problem.1
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Figure 2. Theoretical (models and lattice) predictions for the location of the critical point. The
labels are abbreviations of models/methods used and the publication date (for key and references,
see [23]). The two dashed lines indicate the magnitude of the slope d2T/dµ2 obtained by lattice
Taylor expansion[24]. The upper curve agrees with Ref. [25]. The lower curve corresponds to
smaller quark mass. Errors/uncertainties are not shown.
The red circles indicate location of freezeout points at various collision energies.

In the absence of a controllable (i.e., systematically improvable) method, one turns to model
calculations. Many such calculations have been done [26, 27, 28, 29, 30, 31, 32, 33]. Figure
2 summarizes the results. One can see that the predictions vary wildly. An interesting point
to keep in mind is that each of these models is tuned to reproduce vacuum, T = µB = 0,
phenomenology. Nevertheless, extrapolation to nonzero µB is not constrained significantly by
this. In a loose sense, the existing lattice methods can be also viewed as extrapolations from
µB = 0, but finite T .

2.2. Critical behavior: static and dynamic universality class
Determining properties of QCD (equation of state, correlation functions, etc.) near the critical
point is difficult, for the same reason as it is difficult to find the location of the critical point.
However, as it is the case for any critical point, singular properties, such as critical exponents,
can be determined using universality arguments.

According to the scaling postulate, central to the theory of critical phenomena,[34] all singular
contributions to the thermodynamic quantities are powers of the correlation length ξ, which

1 In theories similar, or approximating, the finite density QCD, the sign and/or overlap problems have been
tackled recently, using various new methods see, e.g., Refs. [20, 21, 22].
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diverges at the critical point. These powers, or critical exponents, are universal, in the sense
that they depend only on the degrees of freedom in the theory and their symmetry, but not on
the other details of the interactions. Very different physical systems may belong to the same
universality class, as far as their critical behavior is concerned.

One should distinguish static and dynamic universality classifications [35]. From the point
of view of static critical phenomena, the QCD critical point falls into the universality class of
the Ising model. This is a consequence of the fact that at mq �= 0 no symmetry remains which
would require the order parameter to have more than just one component. The field theory
which describes the static critical behavior, the one-component φ4 theory in 3 dimensions, has
the critical exponents of the Ising model.

What is the nature of this order parameter? A natural choice is the value of the chiral
condensate 〈ψ̄ψ〉, since it is distinct in two phases coexisting across the first order phase
transition terminating in the critical point. In the close vicinity of the critical point the static
(equal-time) correlation function 〈ψ̄ψ(x)ψ̄ψ(y)〉 develops divergent correlation length:

〈ψ̄ψ(x)ψ̄ψ(0)〉c ∼

⎧⎪⎪⎨
⎪⎪⎩

1
|x|1+η

, |x| � ξ;

e−|x|/ξ, |x| � ξ;

(1)

where 〈ψ̄ψ(x)ψ̄ψ(0)〉c ≡ 〈ψ̄ψ(x)ψ̄ψ(0)〉 − 〈ψ̄ψ〉2. The correlation length diverges, ξ → ∞, at
the critical point. For all theories in the Ising universality class η ≈ 0.04.

Another interesting quantity, both from theoretical and experimental points of view, is the
baryon number density nB(x). Because symmetry (or, rather, the absence of such) allows
mixing of nB(x) with ψ̄ψ(x), the divergence of the baryon number susceptibility is related to
the divergence of the correlation length ξ:

∂nB

∂µB
=

∫
d3x〈nB(x)nB(0)〉c ∼

∫
d3x〈ψ̄ψ(x)ψ̄ψ(0)〉c ∼ ξ2−η. (2)

The baryon number density also jumps across the first order phase transition. One can
equally well use nB as the degree of freedom in the effective theory near the critical point, or
any linear combination of ψ̄ψ and nB (or any other field which can mix with ψ̄ψ) which is
discontinuous across the first order phase transition. Regardless of the choice, there is only one
order parameter, as far as the static critical behavior is concerned.

The situation resembles, but is a little more complicated, if one considers dynamic critical
behavior, e.g., the singularities of kinetic coefficients, etc. The scaling postulate is similar in this
case, but the universality classes are now determined by the effective degrees of freedom which
define the effective hydrodynamic theory near the critical point.[35] In this case the fundamental
difference between ψ̄ψ and nB fields is that the latter is a conserved density. The hydrodynamic
equations for nB are diffusive, while the dynamics of ψ̄ψ is relaxational. Because the two modes
mix, there is, again, only one independent hydrodynamic variable, and it is diffusive.[36, 37]
This mode involves fluctuations of both ψ̄ψ and nB in a fixed proportion. The fluctuations of
ψ̄ψ alone relax on a finite time scale even at the critical point.2

The complete hydrodynamic theory near the critical point must also involve the energy and
momentum densities. Once the hydrodynamic equations are written down, and the mixing
between ψ̄ψ, nB and the energy density is taken into account, one finds the theory equivalent to
the one describing the liquid-gas phase transition, model H in the classification of Ref. [35]. One
consequence of this theory, interesting from phenomenological point of view, is the vanishing of
the baryon number diffusion rate at the critical point: D ∼ ξ−xD , with exponent xD ≈ 1.[37]

2 A related observation, that the sigma pole mass does not vanish at the critical point in the large-N NJL model,
was made in Ref. [31] and confirmed in Ref. [36].
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3. Experimental signatures: fluctuations and particle correlations
Even though the exact location of the critical point is not known yet, the available theoretical
estimates strongly indicate that the point is within the region of the phase diagram probed by
the heavy-ion collision experiments – see Fig. 2. This raises the possibility to discover this point
in such experiments [38].

One of the actively pursued signatures of the critical point is the non-monotonous dependence
on

√
s (and thus, on µB) of the event-by-event fluctuation observables [38, 39]. The idea can

be understood qualitatively by noting that: (1) the susceptibilities diverge at the critical point,
and (2) the magnitude of the fluctuations are proportional to the corresponding susceptibilities.
For example, for the fluctuations of energy or charge, the well-known relations are

∂E

∂T
=

1
T 2

〈(∆E)2〉; ∂Q

∂φ
=

1
T
〈(∆Q)2〉. (3)

Ideally, one could determine susceptibilities on the left-hand side by measuring the
fluctuations on the right-hand side [40]. However, practically, the measurement of the
corresponding fluctuations, ∆E or ∆Q, is not feasible because not all the particles end up
in the detector [39, 41]. A more differential measure of the fluctuations needs to be computed
in theory and compared to experiment.

3.1. Two-particle correlator
A number of such measures can be obtained starting from a two particle correlator

〈∆nα
p∆nβ

k〉 = 〈nα
pnβ

k〉 − 〈nα
p〉〈n

β
k〉 (4)

where ∆nα
p = nα

p−〈nα
p〉 is the event-by-event fluctuation of the number of particles of the type α

in the momentum bin centered around p. Experts familiar with Hanbury-Brown-Twiss (HBT)
interferometry [42] may recognize in (4) the HBT correlation function.

The two-particle correlator (4) can be directly measured. However, for such a function of
many variables, it might be difficult to represent the result of this measurement. A useful
representation, for example, is obtained by limiting (projecting) the variables to transverse
components of p and k. The resulting plot of a function of two arguments, pT and kT , is often
referred to as a ‘Trainor plot’ (see, e.g., Ref. [43]). Interesting information can be also obtained
by projecting onto the rapidities of p and k. If in addition, one weights each particle with its
charge, the resulting correlator, as a function of the rapidity difference yp−yk, is essentially the
balance function introduced in [44].

There also exist many cumulative measures, proposed by theorists and/or used by
experimentalists, [45, 46, 39, 47, 48, 41, 49, 50, 51] that can be expressed in terms of correlator
(4). As an example, the fluctuation of electric charge is given by summing over momenta p and
k of all particles in the experimental acceptance window and weighting each particle with its
charge qα:

∆Q =
∑
p,α

qα∆nα
p; thus 〈(∆Q)2〉 =

∑
p,α

∑
k,β

qαqβ〈∆nα
p∆nβ

k〉. (5)

The same applies to the fluctuations of the baryon number, with qα substituted by the baryon
number of the particles. Similar equation (see Eq.(7)) also applies to the fluctuations of the mean
transverse momentum pT , in which case qα should be replaced with pT − pT – the deviation of
the momentum pT from the all-event (inclusive) mean pT .

The correlator (4) can, in principle, be calculated, under assumption of thermal equilibrium,
once the relevant interactions are known. In the case of the critical point, we need to concern
ourselves with the interactions which can lead to singular contribution to the correlator (and,
as a consequence, to susceptibilities) as the critical point is approached.
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Figure 3. Diagrammatic representation of the singular contribution to the correlator
〈∆np∆nk〉.

In a non-interacting gas in thermal equilibrium the correlator (4) vanishes unless p = k and
α = β.3 The hadrons, however, are interacting. One can ask a question: what is the effect
of the interaction on the correlator (4)? The answer can be found to leading order [52]. The
contribution is proportional to the amplitude of the forward scattering Apk→pk of the particles
with momenta p and k. This is easy to understand using the following argument. The amplitude
of the forward scattering shifts the energy of the 2-particle state relative to the sum of single
particle energies. The statistical weight of the two particle state is therefore changed relative to
the product of the single-particle weights. The difference is the two-particle correlator:

〈npnk〉 − 〈np〉〈nk〉 = fpfk(e−βEI − 1) ≈ fpfk(−βEI) ∼ fpfkβ Apk→pk. (6)

where fp is the equilibrium distribution function and EI is the interaction energy. The exact
formula, obtained using diagrammatic analysis, [52] contains additional factors (1+fp)(1+ fk),
which can be understood as Bose enhancement (stimulated emission) factors (or, in the case of
fermions, (1 − fp)(1 − fk) – Pauli blocking).

Near the critical point the most singular contribution comes from the exchange of the sigma
field quanta in the t channel.4 Since, by kinematics, the quanta carry zero momentum, the
singular contribution is proportional to 1/m2

σ, which equals ξ2 – the square of the sigma field
correlation length.

The absolute strength of the singularity depends on the coupling of the critical mode sigma
to the corresponding hadron in Fig. 3, which is difficult to estimate reliably. Order of magnitude
estimates have been made for coupling to pions [39] and to protons [53] .

As an example of the singular contribution in Fig. 3 consider baryon number susceptibility.
Let Q in equation (5) be the net baryon number. Then one can see that the 1/m2

σ, or ξ2,
singularity from Fig. 3 for scattering two baryons results in the divergence of the baryon number
susceptibility (2) (the critical exponent η = 0 at this order). If only charged baryons are detected,
the total baryon number cannot be measured event by event, but the number of protons is
measurable. Since, according to Fig. 3, the proton number fluctuations should also be singular
at the critical point, measurement of such fluctuations may provide a signal of the critical point
[53].

In principle, knowing the correlator (4) one could make quantitative predictions for fluctuation
measures used in experiment. In practice, calculating the correlator is a very difficult task (what
interactions should be included and what is their strength?). Non-equilibrium effects make this
task even more difficult. Near the critical point these complications become somewhat less
relevant since, as long as we limit ourselves to the singular effects, we only need to consider
contributions such as in Fig. 3.

3 We are not considering HBT correlations, which are a finite size effect.
4 Strictly speaking, what we call here, for simplicity, “sigma” is a mixture (a linear combination) of chiral
condensate, baryon density and energy density fluctuations.
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3.2. Fluctuations, correlations, and acceptance
Cumulative measures of fluctuations are often used to represent experimental results. These
measures suffer an important drawback – they depend on the size and shape of the acceptance
window of the detector. This makes comparison of different experiments, as well as an
experiment to a theory, difficult. However, knowing certain properties of the correlator (4),
it is possible to correct for acceptance in such comparisons.

As an illustration consider event-by-event fluctuations of the mean transverse momentum
pT per particle. Most commonly used fluctuation measures are based on the width of the
distribution of the event mean pT , σ2

ebe. Similar to (5), σ2
ebe can be expressed through the

correlator (4) [39]:

σ2
ebe =

1
〈N〉2

∑
pk

∆pT ∆kT 〈∆np ∆nk〉, (7)

where ∆pT ≡ pT − pT and 〈N〉 is the average multiplicity of accepted particles. In the
thermodynamic limit 〈N〉 → ∞ the fluctuation σ2

ebe vanishes as 1/〈N〉. Thus in this limit,
the quantity 〈N〉σ2

ebe does not depend on the size of the system 〈N〉 and is therefore a natural
subject of theoretical predictions.

To make a closer comparison to experiment, it is useful to exclude the diagonal terms p = k
from the sum in (7), since they give the trivial statistical contribution 〈N〉−1σ2

inc, where σinc is
the r.m.s. width of the inclusive distribution of pT . The remaining off-diagonal terms in (7) give
the nontrivial “dynamical fluctuation”, experimentally obtained after the subtraction:

σ2
dyn ≡ σ2

ebe − 〈N〉−1σ2
inc. (8)

In an experiment, the sum in (7) is limited to p and k which fall within detector acceptance.
Assume, for clarity, that the acceptance is limited in rapidity, i.e., yp and yk belong to an interval
[ymin, ymax]. The cumulative measure σ2

ebe, or σ2
dyn, will then depend on yacc ≡ ymax − ymin.

This dependence simplifies in two regimes of yacc. The boundary between the two regimes is
determined by the characteristic range ycorr of the rapidity correlator of the fluctuations:

〈N〉σ2
dyn

∣∣∣
yacc

=

⎧⎪⎨
⎪⎩

O(yacc), for yacc � ycorr;

〈N〉σ2
dyn

∣∣∣
∞

, for yacc � ycorr.
(9)

In other words, cumulative measure 〈N〉σ2
dyn grows linearly with yacc for small acceptance

windows and saturates at its thermodynamic limit value when the acceptance range exceeds
the correlation range. In most current experiments, the width of the rapidity window yacc is
smaller or at most comparable to the typical range of the rapidity correlator ycorr ∼ 1. This
means that in a typical experiment, for a cumulative measure, normalized to be finite in the
thermodynamic limit, the experimentally observed magnitude is roughly proportional to the
acceptance window size [48, 54, 55].

3.3. Experimental results and concluding remarks
As an example of the QCD phase diagram scan, the plot in Fig.4 shows the results of the
measurements of the pT fluctuations using a cumulative measure ΣpT described in Ref. [56]. No
clear non-monotonous signal, which one would expect if the experiments probed the vicinity of
the critical point, was found.

It is also interesting to compare the magnitude of the observed fluctuations to the singular
contribution expected near the critical point [39]. After correcting for acceptance using the
method outlined in the previous section one finds:

ΣpT ∼ 2% ×
(

G

300 MeV

)2 (
ξ

3 fm

)2

, (10)
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Figure 4. CERES and STAR results for different collision energies [56]. The corresponding
values of µB at freezeout are determined using statistical model analysis [57].

where G is the magnitude of the σππ coupling in the diagram Fig. 3 and ξ = 1/mσ.
It is important to note, that observation of a large magnitude of fluctuations would not by

itself constitute the signal of the critical point. There are many possible contributions to the
fluctuations, which are difficult to estimate. The distinct signature of the critical point is the
non-monotonous behavior of fluctuation observables.

Another important experimental variable is the transverse momentum window of acceptance.
The two-particle correlations induced by critical point have most significant effect on
particles with small transverse momenta (soft part of the spectrum). These correlations are
thermodynamic and affect particles with typical thermal momenta, i.e., p ∼ 3T ∼ 400 − 500
MeV. For comparison, the results reported in [56] include particles in the range of 0.1 < pT < 1.5
GeV. The interesting (from the point of view of critical fluctuations) signal can be enhanced
by restricting this window to, e.g., pT < 500 MeV, elliminating potential contributions from
correlations among higher momentum particles, which have completely different origin (e.g.,
jets).

Experiments at other energies, at CERN SPS, RHIC, and future GSI facility, will be able to
provide a complete scan of the reachable domain on the QCD phase diagram and either discover
or rule out the presence of the critical point in this domain.

This review focused mainly on the signatures of the QCD critical point based on the event-
by-event fluctuations. Further study of the properties of the critical point may reveal other,
perhaps, even more sensitive and experimentally cleaner signatures [58]

Finally, the lack of a controllable and reliable theoretical method to calculate coordinates
of the critical point impairs our ability to perform a more focused search. It is hard to
overemphasize the importance of such a theoretical method.
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