
Numerical Relativity in Higher
Dimensional Spacetimes

William Gregory Cook

Supervisor: Dr U. Sperhake

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Trinity Hall July 2018





To my parents and my brother





Declaration

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration except as declared in the Preface and specified
in the text. It is not substantially the same as any that I have submitted, or, is being
concurrently submitted for a degree or diploma or other qualification at the University
of Cambridge or any other University or similar institution except as declared in
the Preface and specified in the text. I further state that no substantial part of my
dissertation has already been submitted, or, is being concurrently submitted for any
such degree, diploma or other qualification at the University of Cambridge or any other
University or similar institution except as declared in the Preface and specified in the
text.

William Gregory Cook
July 2018





Acknowledgements

First and foremost my thanks go to my supervisor Ulrich Sperhake, who has constantly
provided support, encouragement and advice throughout my Ph.D., and without whom
none of this thesis would exist. I am deeply indebted to him for the opportunities he has
given me. I have been lucky to have many fruitful collaborations and helpful discussions
about maths, physics and numerics throughout my time in Cambridge with Chris
Moore, Davide Gerosa, Diandian Wang, Emanuele Berti, Helvi Witek, Markus Kunesch,
Michalis Agathos, Pau Figueras, Roxana Rosca-Mead, Saran Tunyasuvunakool, Tadashi
Tokieda and Vitor Cardoso, for which I am very thankful. I would also like to thank my
examiners Harvey Reall and Carlos Herdeiro for their helpful comments and suggestions
for this thesis. I am also grateful to the hospitality of the University of Mississippi,
and Perimeter Institute, at which parts of the work in this thesis were carried out.

My time in Pavilion B has been made all the more enjoyable due to the company of
my fellow Ph.D. students, for which I thank Alex, Carl, Chris, James, Ruadhaí, Alec,
Charlotte, Chris, Giuseppe, Julija, Felicity, Jack, Nathan and Toby, and especially my
officemates Ben and Chandrima. Finally I would like to thank my friends from my
time at Trinity Hall; Charles, Juliet, Dave, Gavin and Phil.

The numerical work presented in this thesis was performed on DiRAC’s Cosmos
Shared Memory system through BIS Grant No. ST/J005673/1 and STFC Grant Nos.
ST/H008586/1, ST/K00333X/1, and MareNostrum at Barcelona Supercomputing
Center (BSC), Spain under PRACE Grant No. 2016163948. Throughout my Ph.D. I
have been supported by an STFC studentship.





Abstract

The study of general relativity in higher dimensions has proven to be a fruitful avenue of
research, revealing new applications of the theory, for instance in understanding strongly
coupled quantum field theories through the holographic principle, and proposing an
explanation of the hierarchy problem through TeV gravity scenarios. To understand
the non-linear regime of higher dimensional general relativity, such as that involved in
the merger of black holes, we use numerical relativity to solve the Einstein equations.
In this thesis we develop and demonstrate several diagnostic tools and new initial data
for use in numerical relativity simulations of higher dimensional spacetimes, and use
these to investigate binary black hole systems. Firstly, we present a formalism for
calculating the gravitational waves in a numerical simulation of a higher dimensional
spacetime, and apply this formalism to the example of the head on merger of two
equal mass black holes. In doing so, we simulate the merger of black holes in up
to 10 spacetime dimensions for the first time, and investigate the dependence of the
energy radiated away in gravitational waves on the number of dimensions. We also
apply this formalism to the example of head on unequal mass black hole collisions,
investigating the dependence of radiated energy and momentum on the number of
dimensions and the mass ratio. This study complements and sheds further light on
previous work on the merger of point particles with black holes in higher dimensions,
and presents evidence for a link between the regime studied, and the large D regime of
general relativity where D is the number of spacetime dimensions. We also present
initial data that enables us to study black holes with initial momentum and angular
momentum, putting in place the framework needed to study problems such as the
scattering cross section of black holes in higher dimensions, and the nature of black
hole orbits in higher dimensions. Finally, we present, and demonstrate the use of, an
apparent horizon finder for higher dimensional spacetimes. This allows us to calculate
a black hole’s mass and spin, which characterise the black hole.
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Chapter 1

Introduction

In 1915 Albert Einstein published his theory of general relativity (GR) [1–3], a theory
that still stands as a pillar of modern theoretical physics today. GR has passed all of
the experimental tests that it has so far been set [4]. These tests have however, until
very recently, only probed the weak field regime of GR. With the first detection of
gravitational waves (GWs) [5], for the first time we have the opportunity to test general
relativity in the strong field, in the context of the mergers of ultra-compact objects, such
as black holes (BHs). This exciting era promises to reveal answers to many questions
about the universe, from astrophysical questions about the nature of the population of
black holes we see [6], to testing general relativity for the presence of modifications only
apparent in this strong field regime [7, 8]. Much of the study of general relativity has
restricted attention to the 4 spacetime dimensions that we perceive, but, increasingly,
attention has turned to the case of general relativity in more than 3 spatial dimensions.
The study of higher-dimensional spacetimes dates back at least to the attempts by
Kaluza [9] and Klein [10] to unify gravitation and electromagnetism. It has been in the
search for a quantum theory of gravity however that the most motivation for the study
of higher dimensional spacetimes has arisen. General relativity is a classical theory,
that describes the gravitational interaction, whereas the other interactions in nature,
electromagnetism and the strong and weak nuclear forces are described by quantum
theories, as part of the Standard Model. The search for a quantum theory of gravity,
that will describe gravity on the smallest length scales, is perhaps the biggest open
question in theoretical physics today. Currently the leading contender for a quantum
theory of gravity is string theory, a term that encapsulates a number of different
theories that exist in more than 4 spacetime dimensions, which are thought of as
different aspects of one larger theory, “M-theory” [11]. These theories are populated by
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1 dimensional strings and higher dimensional extended objects called branes, and our
four dimensional observed universe is viewed as embedded in this higher dimensional
theory, or as the result of some compactification of the extra dimensions. In this
chapter we will review some of the key motivations for extending the study of GR to
higher dimensions, and introduce the field of numerical relativity, which we will use in
this thesis to study higher dimensional GR.

1.1 Higher dimensional general relativity

The generalisation of general relativity to more than four spacetime dimensions has
revealed a plethora of new phenomena not apparent in 4D, as well as proposing
solutions to fundamental questions in physics, and connections between seemingly
disconnected fields. In higher dimensions results on black hole topology are different
to 4D [12], leading to the discovery of such topologically non trivial solutions as the
black ring [13] and black saturn [14]. The addition of more spatial dimensions also
changes the nature of a spinning black hole, with the Myers-Perry black hole [15], the
higher dimensional analogue of the Kerr black hole, having no upper bound on its spin
in D ≥ 6, and able to spin in multiple planes at the same time.

Higher-dimensional spacetimes have also been used as a purely mathematical
construct, where the number D of spacetime dimensions is regarded as just one other
parameter to be varied. Emparan and collaborators [16–19] have recently investigated
this aspect of higher-dimensional spacetimes by focusing on the large-D limit. They
showed that the physics of four-dimensional spacetimes can be recovered to good
precision from a large-D expansion, and that the large-D limit offers precious physical
insight into the nature of classical and quantum gravity in arbitrary dimensions.

1.1.1 TeV gravity scenarios

One of the most prominent open issues in modern physics is the question of the
hierarchy problem. This asks the question, why is the characteristic energy scale of the
theory of the electroweak interaction, O(1) TeV, 16 orders of magnitude lower than
that of the gravitational interaction, also called the Planck scale, O(1016) TeV. Note we
are, from here, setting c = ℏ = 1. There are a number of proposed explanations for this
problem, including supersymmetry, in which this hierarchy arises naturally; invoking a
multiverse, with our universe having the appropriately fine-tuned physical constants; or
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requiring the existence of extra spatial dimensions. It is this final explanation that we
will focus on, with more thorough reviews of the subject given in [20–22]. In a series of
works, Arkani-Hamed, Dimopoulos and Dvali (ADD) [23, 24], along with Antoniadis
[25, 26], proposed a theory of “Large Extra Dimensions”. In 4 dimensions, the Planck
scale, Mpl, is given by the value of Newton’s constant, according to

Mpl := G
−1/2
4 = O(1016) TeV, (1.1)

and similarly, in higher dimensions, a D dimensional Planck scale can be defined,

M∗ := G
−1/(D−2)
D . (1.2)

This higher dimensional Newton’s constant, GD, arises in the Einstein-Hilbert action
for D dimensional general relativity,

SD = 1
16πGD

∫
dDx

√
−g R, (1.3)

where g is the determinant of the spacetime metric, and R is the Ricci scalar. In their
paper [23], ADD showed that, for a spacetime with D − 4 extra, compact, spatial
dimensions with radius ρ, for gravitational experiments on a scale r ≫ ρ, an effective
4D Planck scale would be observed,

M2
pl ∼ MD−2

∗ ρD−4. (1.4)

By setting M∗ = MEW , the electroweak scale, the apparent hierarchy between these
two scales can be explained as the result of our gravitational experiments not probing
small enough distances. Since the true Planck scale is now O(1) TeV, this is sometimes
referred to as “TeV gravity”. The question of the hierarchy of these two scales is now
transformed into a question of the geometry of the extra dimensions and why they have
the volume that they do. A second question posed in this scenario is, why experiments
involving the standard model have not seen evidence of these extra dimensions. The
solution to this problem is given by string theory, in which the standard model can be
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confined to live only on a 3+1 dimensional brane, embedded in a higher dimensional
bulk spacetime. Examples of string theory models that can give rise to TeV gravity
scenarios have been studied in [27–29], with [30] providing a review . A similar solution
to the hierarchy problem was proposed by Randall and Sundrum, in [31, 32], involving
warped extra dimensions.

If the Planck scale is now O(1) TeV, then experiments probing energies in excess of
this can be expected to reveal new super-Planckian physics, an observational signature
of a TeV gravity scenario. The obvious example of such an experiment is the Large
Hadron Collider (LHC), which collides protons at energies of up to ∼ 13 TeV. It was
conjectured soon after the proposals of ADD and others that, in such a TeV gravity
scenario, the end state of a collision at trans-Planckian energies would be a black hole
[33–35]. From a gravitational perspective the colliding partons would appear to be
gravitational point sources, i.e. black holes, or, in the limit of a boost to the speed of
light and zero mass, Aichelberg-Sexl shockwaves [36], with such collisions studied in
e.g. [37–40]. Then if the impact parameter of the collision was less than some critical
impact parameter on the order of the Schwarzschild radius, the two objects would
merge into a black hole. It was then expected that such a black hole would decay via
Hawking radiation before eventually totally evaporating, though the quantum gravity
mechanism by which this would occur is still unknown. Modelling of the observable
signals of the process of black hole production and decay has been undertaken in a
number of studies with some key results provided by [41–45], on features such as the
cross section and decay products of black hole forming processes.

One question of value to the potential observation of black hole formation at the
LHC is the amount of gravitational radiation expected to be radiated during the
infall and merger of the two incoming objects. As the incoming partons appear to be
gravitational point sources, we suggest that, from a gravitational point of view they
can be modelled as black holes, the simplest gravitational source available in general
relativity. Studies in 4D general relativity have also revealed that, in the limit as
the boost velocity approaches the speed of light, the behaviour of colliding objects
merging into black holes shows universal features and is insensitive to the structure
of its constituent parts. This has been shown for spinning and non spinning back
holes, as well as the collision of relativistic fluid balls [46–54]. This indicates that the
approximation of highly boosted partons as black holes may be justified. We also
assume that, for a black hole the mass of a parton, the Schwarzschild radius of the
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black hole is sufficiently smaller than the size of the extra dimensions that we can treat
the higher dimensional spacetime as asymptotically flat.

Tabletop experiments [55, 56] probing GR at small scales have ruled out extra
dimensions with size greater than 44 µm, with the Randall-Sundrum model [31, 32]
further constrained by astrophysical tests. These observe the lifespans of black holes
present in X-ray binaries and the orbital evolution of the binary, in the strongest case
constraining the size of extra dimensions to ≲ 3µm [57–60]. Atomic spectroscopy tests
have also put bounds on the size of more than one extra dimension in [61]. At the
time of writing, no evidence for black holes has yet been seen at the Large Hadron
Collider, with quantum black hole production ruled out below 8.9 TeV by the ATLAS
experiment, and below 9 TeV by the CMS experiment and semiclassical black holes
ruled out below 9.5 TeV, also by the CMS experiment [62, 63].

1.1.2 The AdS/CFT correspondence

One of the leading motivations in the study of higher dimensional theories of gravity is
due to the gauge/gravity correspondence. First proposed by Maldacena [64] and further
developed in [65, 66] this correspondence is an example of the holographic principle,
where information about a system in D dimensions is encoded into a system defined
on its D− 1 dimensional boundary. In the case of this correspondence, it is shown that
there is a duality between a theory of gravity in D dimensional Anti-de-Sitter (AdS)
space, that is a spacetime with a negative cosmological constant, and a conformal field
theory (CFT) in D− 1 dimensions defined on its boundary. This gives rise to the name
of the AdS/CFT correspondence. This correspondence gives the hope that intractable
calculations in strongly coupled CFTs can be translated into simpler calculations from
the gravitational side. One application of interest is in modelling of heavy ion collisions,
of the sort studied at the Relativistic Heavy Ion Collider or the LHC, in order to learn
more about the quark-gluon plasma, by investigating the dual gravitational process in
AdS space studied in e.g. [67–73].

1.2 Numerical relativity

The field of numerical relativity is concerned with solving the full non-linear Einstein
equations in situations where an analytic approach is not feasible. The most obvious
example of a simple problem in general relativity which is in general intractable in the
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full non-linear, dynamical, regime analytically is the two body problem, the interaction
of two black holes. Unlike in Newtonian physics, the two body problem is not stable
in general relativity, and two orbiting black holes cannot remain indefinitely in orbit.
They must either scatter to infinity, or, through the emission of gravitational radiation,
inspiral and merge into a final remnant black hole. Since the 1960s efforts have been
made to detect gravitational wave radiation in our universe, from not only black holes,
but from the merger of neutron stars and from cosmological sources imprinted in
the Cosmic Microwave Background (CMB) also. In 2015, this search finally proved
successful, with ground based interferometry at the Advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO)[74–76] experiment detecting a black hole-
black hole merger for the first time [5]. Soon after, the Advanced Virgo [77–79]
experiment joined LIGO, with the first coincident detection made in 2017 [80]. At the
time of writing 5 black hole-black hole mergers, and one neutron star-neutron star
merger have been detected between LIGO and Virgo [81–83, 80, 84]. In order to detect
the gravitational wave signal of a black hole merger, the noisy data seen in the detector
is compared to a template bank of waveforms calculated through an effective one body
formalism [85] that combines analytic calculations with numerical data. To facilitate
this, the wave signal can be split into three parts, each of which is analysed using a
different method. The first part, the inspiral, is studied in the Post-Newtonian limit,
which involves expressing general relativity as the sum of corrections to Newtonian
gravity in the parameter v/c, where v is the characteristic speed of the system. A
review of this method is given in [86]. The final part, the ringdown, is studied using
black hole perturbation theory, where linear perturbations are studied on a fixed black
hole background, reviewed in [87, 88]. The merger phase, in between these two, cannot
be described in either the small v or linearised approximations however, and so we
must use numerical relativity to predict the wave signal here.

The breakthrough in numerical relativity came in 2005, when Pretorius first simu-
lated the merger of a binary black hole system and extracted gravitational waves [89],
but the 15 years preceding had contained many advances that paved the way for this
result. We will detail in greater depth many of these key developments in Chapter 2.

1.2.1 Black hole collisions

Before the success in simulating binary black hole inspirals, numerical relativity could
still be used in axisymmetric scenarios, to study the energy radiated in an equal mass
head on black hole collision from rest by Anninos and collaborators [90, 91]. These
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studies found that in such collisions approximately 0.001M , where M is the total ADM
mass of the spacetime was radiated away in gravitational waves. Hawking previously
used the area law, that the area of the event horizon cannot decrease in such a collision,
to provide an upper bound on the energy that could be radiated in an equal mass
collision between two non spinning black holes, finding a limit of (1−2−1/2)M ≈ 0.29M
on the fraction of the total mass of the system that could be radiated away [92]. Clearly,
the numerical results show that this upper bound far exceeds the values for collisions
from rest. In the case of ultrarelativistic collisions, Penrose modelled highly boosted
black holes as Aichelberg-Sexl shockwaves, and constructed a similar upper bound in
unpublished work, also finding an upper limit of 29% on the radiated energy [93], for
further detail see [94]. The study of such high energy boosted collisions was further
studied by D’Eath and Payne in a series of papers using perturbative techniques [95–98].
Here an estimate for the expected fraction of the total energy radiated in GWs is given
to be 16.4%. Subsequent numerical studies of high energy head on collisions [46] were
performed, reaching boost velocities for the black holes of up to 0.94c, which found
a value of 14 ± 3% for the energy radiated in GWs, consistent both with Penrose’s
upper bound, and D’Eath and Payne’s perturbative estimate. The study of high
energy collisions continued in numerical relativity, with studies into highly boosted
collisions of black holes with non-zero impact parameters finding up to 35 ± 5% of
the total energy radiated in gravitational waves, with the remnant a nearly extremal
Kerr black hole [48, 47]. Investigations into the highly boosted collisions of boson stars
[50] and fluid balls [51, 52] have also been performed, with it being found that for
sufficient boosts these mergers result in black hole formation, in line with Thorne’s
hoop conjecture [99]. Along with simulations of highly boosted spinning black holes
[49], these studies also suggest the existence of universal behaviour at high boosts, that
is, at high enough boosts the kinetic energy dominates over any internal structure of the
objects being collided, and all these scenarios display the same behaviours independent
of their internal structure. This has come to be known as the “matter-does-not-matter”
conjecture.

1.2.2 Higher dimensional numerical relativity

Since the breakthrough of Pretorius, numerical relativity has been applied to higher
dimensional asymptotically flat spacetimes to reveal a plethora of new results.

Critical spin parameters have been identified above which Myers-Perry BHs become
unstable to bar mode perturbations in D ≥ 6 dimensions and migrate to more slowly
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spinning BHs via GW emission [100]. Similar numerical results for D = 5 dimensional
BHs [101] have not been confirmed in perturbative studies [102] and may be subject
to revision in future, more accurate numerical investigations [103]. The celebrated
Gregory-Laflamme instability [104] has been shown to lead to the formation of naked
singularities in finite asymptotic time in numerical simulations of black strings in
D = 5 dimensions [105, 106]. Most recently, a similar behaviour has been identified in
evolutions of thin black rings demonstrating the first violation of cosmic censorship for
a generic type of asymptotically flat initial data [107]; see also [108] for a perturbative
study. In addition, Myers-Perry black holes with large spin parameters, in the so called
ultraspinning regime have been shown to be unstable, with the endpoint leading to a
violation of weak cosmic censorship also [109]. Collisions of black holes and inspirals
have been studied in up to 6 spacetime dimensions and their gravitational wave signals
investigated [110–113]. It is particularly this class of simulations that we shall attempt
to push further in this thesis.

The remainder of this thesis is organised as follows. In Chapter 2, we will present an
introduction to numerical relativity, and highlight the key features needed to successfully
evolve the Einstein equations on a computer. In Chapter 3 we will present the Einstein
equations in a dimensionally reduced form that will permit their evolution in higher
dimensions using the modified Cartoon formalism, and present the first numerical
merger of black holes in 7D. This was originally published as [114]. In Chapter 4 we
will present a new method for extracting gravitational waves from higher dimensional
numerical relativity simulations, analogous to the 4D Newman-Penrose Ψ4 method.
We demonstrate that it provides consistent results with previously employed methods
for wave extraction in higher dimensions. This was originally published as [115]. In
Chapter 5 we use the aforementioned wave extraction technique to calculate the energy
and momentum radiated in head on collisions of black holes of varying mass ratio, and
compare the results to existing data calculated in the point particle limit. We draw
links between our results and results previously shown for quasinormal modes of higher
dimensional black holes found both numerically and analytically in the large D limit.
This was originally published as [116]. In Chapter 6 we describe the implementation
of a higher dimensional analogue of Bowen-York initial data in our modified Cartoon
based code, which will permit the evolution of boosted, inspiralling and spinning black
holes, as well as the ADM integrals in higher dimensions. In Chapter 7 we present
an apparent horizon finder for higher dimensional black holes, which will allow us to
calculate the mass and spin of our simulated black holes before and after they merge.
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We present tests of this horizon finder on a variety of initial data. In Chapter 8 we
present a formula for extracting the angular momentum in gravitational waves using
the formalism introduced in Chapter 4. We present our conclusions and outlook for
future work in Chapter 9.





Chapter 2

Numerical Relativity

2.1 Notation

For reference purposes we define the general notation for coordinate systems and index
ranges used in this thesis. In specific circumstances we may define new notation, this
will be made clear at the time.

In most situations we will refer to two specific coordinate systems adapted to the
spacetime we are studying. The first is a set of Cartesian coordinates

XA = (t, x1, . . . , xd−1︸ ︷︷ ︸
(d−1)×

, z, wd+1, . . . , wD−1︸ ︷︷ ︸
(D−d−1)×

) = (t, xî, z, wa) = (t, xi, wa) , (2.1)

where middle Latin indices without (with) a caret range from i = 1, . . . , d (̂i =
1, . . . , d − 1) and early Latin indices run from a = d + 1, . . . , D − 1. Here D is the
number of spacetime dimensions, and d will be the number of dimensions on our
effective computational grid, a distinction which will become clear in our discussion
of the modified Cartoon formalism in Chapter 3. The second is a system of spherical
coordinates

Y A = (t, r, ϕ2, ϕ3, . . . , ϕD−1︸ ︷︷ ︸
(D−2)×

) = (t, r, ϕα) , (2.2)

where Greek indices run from α = 2, . . . , D − 1. We use middle, upper case Latin
indices to denote all spatial coordinates of either of these systems, so that XI =
(xî, z, wa) and Y I = (r, ϕα) with I = 1, . . . , D − 1. In contexts where we refer to this
spherical coordinate system, rotational symmetry will be assumed in all directions
ϕa, a = 4, . . . , D − 1. In the special case d = 3, which will be the value that this
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parameter always takes in our simulations, we use the notation xî ≡ (x, y), so that
Eq. (2.1) becomes

XA = (t, x, y, z, w4, . . . , wD−1) . (2.3)

We orient the Cartesian coordinates (2.1) such that they are related to the spherical
coordinates (2.2) by

(w1 ≡) x1 = r cosϕ2 ,

(w2 ≡) x2 = r sinϕ2 cosϕ3 ,

...
(wd−1 ≡) xd−1 = r sinϕ2 . . . sinϕd−1 cosϕd ,

(wd ≡) z = r sinϕ2 . . . sinϕd−1 sinϕd cosϕd+1 ,

wd+1 = r sinϕ2 . . . sinϕd−1 sinϕd sinϕd+1 cosϕd+2 ,

...

wD−3 = r sinϕ2 . . . sinϕD−3 cosϕD−2 ,

wD−2 = r sinϕ2 . . . sinϕD−3 sinϕD−2 cosϕD−1 ,

wD−1 = r sinϕ2 . . . sinϕD−3 sinϕD−2 sinϕD−1 . (2.4)

Here ϕD−1 ∈ [0, 2π], and all other ϕα ∈ [0, π], and we have formally extended the
w coordinates to also include (in parentheses in the equation) wi = xi. Note that
for the orientation chosen here, the x axis denotes the reference axis for the first
polar angle rather than the z axis which more commonly plays this role for spherical
coordinates in three spatial dimensions. Throughout our work, we use the conventions
of Misner, Thorne and Wheeler [117] for the metric signature, Christoffel symbols and
the Riemann tensor.

For orientation among the different sets of indices, we conclude this section with a
glossary listing index variables and their ranges as employed throughout this work.

• Upper case early Latin indices A, B, C, . . . range over the full spacetime from 0
to D − 1.
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• Upper case middle Latin indices I, J, K, . . . denote all spatial indices, inside and
outside the effective d dimensional computational domain, running from 1 to
D − 1.

• Lower case middle Latin indices i, j, k, . . . denote indices in the spatial compu-
tational domain and run from 1 to d. For d = 3, we have xi = (x, y, z).

• Lower case middle Latin indices with a caret î, ĵ, . . . run from 1 to d − 1 and
represent the xi (without caret) excluding z. In d = 3, we write xî = (x, y).

• Lower case early Latin indices a, b, c, . . . denote spatial indices outside the
computational domain, ranging from d+ 1 to D − 1.

• Greek indices α, β, . . . denote all angular directions and range from 2 to D − 1.

• Greek indices with a caret α̂, β̂, . . . denote the subset of angular coordinates
in the computational domain, i.e. range from 2, . . . , d. As before, a caret thus
indicates a truncation of the index range.

• Upper case early Latin indices with a caret Â, B̂, Ĉ . . . run from 0 to d, including
the spatial indices inside the computational domain, and the timelike coordinate.

• Upper case early Latin indices with a bar, Ā, B̄, C̄, . . . will denote only the t and
r components of the spherical coordinate system.

• Put inside parentheses, indices cover the same range but merely denote labels
rather than tensor indices.

• An index 0 denotes a contraction with the timelike normal to the foliation, rather
than the time component, as detailed in Section 4.3.1.

• ∇A denotes the covariant derivative in the full D dimensional spacetime, whereas
DI denotes the covariant derivative on a spatial hypersurface and is calculated
from the spatial metric γIJ .

• We denote by R with appropriate indices the Riemann tensor (or Ricci ten-
sor/scalar) of the full D dimensional spacetime, and by R the spatial Riemann
tensor (or Ricci tensor/scalar) calculated from γIJ .
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• The round metric on the sphere will be denoted by ωαβ. Its covariant derivative
is denoted by Dα. Unless otherwise specified this will be the metric of the D − 2
sphere.

• The line element on the n sphere will be denoted by dΩn.

2.2 The (D − 1) + 1 split

Einstein’s theory of special relativity placed space and time on an equal footing, by
invoking the idea of a 4D spacetime endowed with the Minkowski metric, with inertial
frames related by Lorentzian, rather than Galilean transformations. General relativity
added gravity into the theory, telling us that spacetime is a 4 dimensional manifold
M, endowed with a metric gAB of Lorentzian signature. We will use the convention
(−,+,+,+) for this signature. This follows in higher dimensions also, with spacetime
now described by a D dimensional manifold, with a metric with Lorentzian signature
(−,+, · · · ,+). In order to perform a computer simulation of the Einstein equations
however, we must cast them in the form of an initial boundary value problem (IBVP),
where initial data is prescribed on a spacelike D − 1 dimensional hypersurface of the
manifold, and then evolved forwards in time. This requires us to separate space and
time apart from each other again, which we do by foliating the D dimensional spacetime
with D− 1 dimensional spacelike hypersurfaces. This separation of space and time was
first performed in 4D by Arnowitt, Deser and Misner (ADM) [118] and reformulated
by York [119, 120], and follows similarly in arbitrary D, as can be seen in, for instance
[22, 121]. We reproduce this splitting here.

Let (M, gAB) be a D-dimensional spacetime with a Lorentzian metric, and asso-
ciated covariant derivative ∇A. Define a scalar function t such that the 1-form dt is
timelike everywhere, which defines spatial hypersurfaces Σt on which t is constant. Spa-
tial coordinates xI cover Σt. We call the coordinates (t, xI) adapted coordinates (to the
foliation). We can then define a timelike unit normal vector field to the hypersurfaces,

n := − dt
|dt|

= −αdt, (2.5)

where α(t, xI) is the lapse function. By definition this is the 4-velocity of an observer
moving normal to the hypersurfaces, so α relates the proper time of such an observer
to the coordinate time elapsed,
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δτ = αδt. (2.6)

We also define the shift vector βI which determines how the spatial coordinates xI

change for such a normally moving observer between hypersurfaces Σt and Σt+δt,

βI :=
(
∂

∂t

)I
− αnI . (2.7)

Thus for an observer starting at coordinates (xI) on hypersurface Σt, moving along
nA from hypersurface Σt to Σt+δt, βI is the vector that lies in hypersurface Σt+δt that
points from the location of the observer to the point on Σt+δt with coordinates (xI).
In other words, βI gives the difference between the worldline of a normal observer,
and lines of constant coordinates. α and βI provide D freely specifiable degrees of
freedom, which correspond to the D degrees of freedom that we have to choose the
coordinates on our spacetime, i.e. the gauge freedom of general relativity. We now
define a projection operator,

⊥A
B= δAB + nAnB, (2.8)

which projects tensors onto the spatial hypersurface by contracting each component of
the tensor with the projection operator. As an example, we project the vector nA,

⊥A
B n

B = δABn
B + nAnBn

B = nA − nA = 0. (2.9)

As expected, since nA is normal to the hypersurface, its projection is 0. The projection
of the spacetime metric gAB is denoted by γAB, which we note is the same as the
projection operator itself,

γAB =⊥C
A⊥D

B gCD = gAB + nAnB =⊥AB . (2.10)
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We can also calculate projections orthogonal to the hypersurfaces, in the time direction,
by contracting any given tensor with the normal vector nA.

By performing all the possible projections of the spacetime metric, and using Eq.
(2.7), we can write it in adapted coordinates as

ds2 = gABdx
AdxB =

(
−α2 + βKβ

K
)
dt2 + 2βIdtdxI + γIJdx

IdxJ , (2.11)

where purely spatial tensors have their indices raised and lowered by the spatial metric
γIJ . The spatial metric γIJ has a metric compatible connection ΓIJK , given by the
Christoffel symbols of this metric, from which a covariant derivative DI can be defined.

We finally define the extrinsic curvature of the spatial hypersurface embedded in
the full spacetime, KAB,

KAB := − ⊥C
A ∇CnB = −1

2LnγAB. (2.12)

We note at this point that rewriting the Lie derivative of the induced metric γAB
in terms of the extrinsic curvature will allow us to rewrite the second order in time
differential equations we will find for γAB as a set of twice as many first order in time
equations for γAB and KAB.

Now we can take the Einstein equations and project them fully onto the spatial
hypersurface, project them twice along the time direction, and project one index onto
the hypersurface and one along the time direction to find the Einstein equations in
(D−1)+1 split form. First we must perform all the possible projections of the Riemann
tensor. Let R with the appropriate number of indices be the Ricci scalar/tensor or
Riemann tensor associated to the spatial metric γAB, i.e. giving the intrinsic curvature
of the spatial hypersurface. The Gauss and Codazzi equations give the fully spatial
projection, and the projection of one index in the time direction, and the rest onto the
spatial hypersurface, respectively [122],

⊥A
E⊥F

B⊥G
C⊥H

D RE
FGH = RA

BCD +KA
CKBD −KA

DKBC , (2.13)
⊥A
E n

F ⊥G
C⊥H

D RE
FGH = DDK

A
C −DCK

A
D. (2.14)
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The final projection of the Riemann tensor is with 2 indices in the time direction and
2 onto the spatial hypersurface,

⊥AE⊥G
C n

FnHRE
FGH = −LnKAC +KABK

B
C + 1

α
DADCα. (2.15)

Performing appropriate contractions of these equations allows us to also express the
D-dimensional Ricci tensor and Ricci scalar in terms of quantities defined on the spatial
hypersurface. Let us now introduce the Einstein equations. In general these are given
by

GAB := RAB − 1
2RgAB + ΛgAB = 8πGTAB, (2.16)

though in this thesis we will consider only cases with the cosmological constant Λ = 0
and the energy momentum tensor TAB = 0. For completeness sake we shall retain
them in this section. Henceforth, we shall also set the gravitational constant G = 1.

We define the projections of the energy-momentum tensor,

ρ = TABn
AnB, (2.17)

jA = − ⊥C
A n

BTBC , (2.18)
SAB = ⊥C

A⊥D
B TCD, (2.19)

S = γABSAB. (2.20)

The variables ρ, jA and SAB defined in this way represent the energy density, momentum
density and spatial stress tensor as measured by an Eulerian observer, i.e. an observer
moving with four velocity nA. Projecting the Einstein equations twice in the timelike
direction gives the Hamiltonian constraint,

H := R +K2 −KIJKIJ − 2Λ − 16πρ = 0, (2.21)

where K = KIJγ
IJ is the trace of the extrinsic curvature. Projecting the Einstein

equations once onto the timelike direction and once onto the spatial hypersurface gives
the momentum constraint,
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MI := DIK −DJK
J
I + 8πjI = 0. (2.22)

It can be shown, by projecting the Bianchi identities onto, and orthogonal to, the
spacelike hypersurface, that if the constraint equations are initially satisfied, they will
remain satisfied throughout the time evolution [122], though we note that numerical
errors can still cause constraint violations. Attempts to minimise this effect can be
found in [123, 124]. Therefore they will not have to be solved on every time slice to
obtain data. Instead we only need to solve them once, on our initial time slice, to
obtain initial data for our simulations.

Finally projecting the Einstein equations twice onto the spatial hypersurface gives
an expression for LnKIJ in terms of quantities defined on the spatial hypersurface.
This allows us to write explicit PDEs in time for the induced metric γIJ and the
extrinsic curvature KIJ , using the definition of their Lie derivatives, which can, in
principle be solved numerically,

∂tγIJ = βM∂MγIJ + γMJ∂Iβ
M + γIM∂Jβ

M − 2αKIJ , (2.23)
∂tKIJ = βM∂MKIJ +KMJ∂Iβ

M +KIM∂Jβ
M −DIDJα + α

(
RIJ +KKIJ − 2KIMK

M
J

)
+8πα

(
S − ρ

D − 2γIJ − SIJ

)
− 2
D − 2αΛγIJ .

(2.24)

2.3 Well-posedness of the evolution scheme

The ADM-York decomposition was found in the 1960s, yet it took until 2005 until the
first simulation of a binary black hole merger was performed [89] . This was not only
due to a lack of computational resources, there were many more theoretical steps that
needed to be taken to obtain a set of equations that could be evolved on a computer
to simulate a black hole inspiral. One of these problems was in finding a well-posed
system of equations suitable for evolution on a computer. In the simpler example of
linear PDEs, a system of PDEs is well-posed if the solution to the PDE, u(t, xi), can
be bounded by the initial data f(xi) in the form,

||u(t)|| ≤ Keαt||f ||, (2.25)
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where ||.|| denotes the L2 norm, and K,α are constants. The generalisation of this
definition to non-linear PDEs can be found in [125]. For our purposes we focus on the
fact that well-posedness ensures that the solution to a PDE is continuously dependent
on the initial data given, clearly a vital feature for numerical evolution of the initial data.
A necessary condition for finding a well-posed IBVP is to find a system of equations
that are strongly hyperbolic [126, 127], a condition that imposes requirements on the
principal part of the differential operator, the highest order derivatives in the equation.
A simplified definition states that for a system of equations to be weakly hyperbolic,
the principal part must have all of its eigenvalues real, and for strong hyperbolicity
the principal part must be diagonalisable, as well as satisfying the conditions for weak
hyperbolicity. If either of these conditions is not met it can be shown that the solution
to the PDE will grow faster than any bound of the form given in Eq. (2.25). For more
detailed reviews of this subject see [125, 128]. It has been shown that as presented
above, in Eqs (2.23 - 2.24), the ADM equations in four dimensions have the property
of weak, but not strong hyperbolicity for a fixed (densitised) gauge [129], making them
unsuitable for numerical relativity. This motivated a search for strongly hyperbolic
formulations of the Einstein equations that could be implemented numerically. Since
the 1950s it was known that the Einstein equations were strongly hyperbolic when
written in the harmonic gauge [130]. This led to the first successful simulation of a
binary black hole merger, completed by Pretorius [89], using the Generalised Harmonic
Gauge formalism. Key works on the use of this formalism in numerical relativity
can be found in [131–133, 123]. In this formalism the generalised harmonic gauge is
taken, where the coordinates are the solution to the equation 2xA = HA for arbitrary
functions HA [134, 135], which are then evolved as dynamical variables in the time
evolution. This gauge choice allows the Einstein equations to be clearly rewritten
such that the principal part of the equation is that of the scalar wave operator. This
naturally presents the Einstein equations in strongly hyperbolic form.

An alternate method even more commonly used to put the Einstein equations into
strongly hyperbolic form, is by reformulating the equations in a method first developed
by Baumgarte and Shapiro [136] and Shibata and Nakamura [137], giving rise to what
are known as the BSSN equations. In this formalism the induced metric γIJ is split into
a conformal factor χ and a conformally rescaled metric γ̃IJ , and the extrinsic curvature
is split into its trace, K and conformally rescaled tracefree part ÃIJ . The final step is
to promote the conformally rescaled Christoffel symbols, contracted with the conformal
metric, to become dynamical variables evolved in time, denoted by Γ̃I = γ̃JKΓIJK . We
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reproduce the full D dimensional BSSN equations in Section 3.3.1. These will be the
equations that we evolve in performing the simulations in this thesis. It has been
shown [138] that, with appropriate gauge conditions discussed below, this is a strongly
hyperbolic system. It is through using this formalism that much of the key work on
black hole simulations has been performed, with the first stable evolutions of black
hole inspirals using this method coming shortly after the aforementioned result by
Pretorius [139, 140].

Further developments have been made since the implementation of the BSSN
scheme, notably the Z4 [141–143] scheme, in which the constraints are evolved as
dynamical variables, satisfying evolution equations that damp constraint violations,
and the CCZ4 scheme [144–147], a conformal decomposition of the Z4 scheme in the
manner of the BSSN scheme.

2.4 Initial data

In order to initialise the induced metric γIJ and the extrinsic curvature KIJ , we must
solve the constraint equations, Eqs (2.21 - 2.22), on the initial timeslice. Here we recap
how this is done for 4D spacetimes for initially stationary black holes, and black holes
with initial momentum and spin. We also recap the construction of initially stationary
black holes in higher dimensions. Later, in Chapter 6, we will introduce new data for
higher dimensional black holes with non-zero momentum and angular momentum. For
a full review of initial data in numerical relativity, see [148].

We begin with 12 components of the metric and extrinsic curvature to specify, 4 of
which will be determined by the constraint equations. To identify which components
we should solve for and which we should specify, we employ the York-Lichnerowicz
[149–153] conformal decomposition. First we decompose the metric into a conformal
factor and a conformal metric, and split the extrinsic curvature into trace and trace
free parts. We will assume here that we are in vacuum, and thus TAB = 0.

γij = ψ4γ̄ij, (2.26)

Aij = Kij − 1
3γ

ijK. (2.27)

The Hamiltonian and momentum constraints are now given by
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8D̄iD̄iψ − R̄ψ + ψ5(AijAij − 2
3K

2) = 0, (2.28)

DjA
ij − 2

3D
iK = 0, (2.29)

where D̄ and R̄ are the covariant derivative and Ricci scalar respectively for the
conformal metric γ̄ij.

For time symmetric initial data, such as initial data for any number of initially
static Schwarzschild black holes, the extrinsic curvature is initially zero. In this case
the momentum constraint is automatically satisfied, and the Hamiltonian constraint
reduces to

8D̄iD̄iψ − R̄ψ = 0. (2.30)

Further, we can choose the conformal metric to be flat, reducing the Hamiltonian
constraint to the flat space Laplace equation,

δij∂
i∂jψ = 0. (2.31)

We now must solve for ψ. The trivial solution ψ = const gives Minkowski space, but
ψ = 1 + M

2r gives a metric of the form,

γijdx
idxj =

(
1 + M

2r

)4
(dr2 + r2dΩ2). (2.32)

This is the spatial part of the metric for a Schwarzschild black hole in isotropic
coordinates, and so this represents a static black hole. We note that, in isotropic
coordinates, the event horizon is located at r = M/2, and that the metric can be put
back into more familiar Schwarzschild coordinates with the coordinate transformation
r̃ = r(1 +M/(2r))2, where r̃ is the Schwarzschild radial coordinate. This coordinate
change makes it clear that, at r = 0 we are in fact at r̃ = ∞, and not at the black hole
singularity. In fact r < M/2 corresponds to the other side of the Einstein-Rosen bridge,
with the other asymptotically flat end of the Schwarzschild metric compactified into
this region, and r = M/2 corresponding to the throat of the wormhole. Since nothing
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can escape from the horizon, the region r < M/2 cannot communicate with the region
r > M/2. As the point r = 0 is a singular point corresponding to the compactification
of the other flat end, our spacetime is really a manifold with the point r = 0 taken out
of it. Consequently, this point is often referred to as the black hole “puncture”. As the
Laplace equation is linear, we are able to superpose solutions for the conformal factor
ψ to construct initial data for multiple black holes. This is known as “Brill-Lindquist
data” [154] and is given by

ψ = 1 +
N∑
i=1

M(i)

2r(i)
, (2.33)

where M(i), r(i) are the bare masses and radial distances from the initial positions
respectively of the N Schwarzschild black holes.

For black holes with initial momentum or angular momentum, the initial data is
no longer time symmetric, so the extrinsic curvature cannot be set to zero. We return
to Eqs (2.28, 2.29). We now assume again that the metric is conformally flat, and now
assume that the extrinsic curvature is trace free. This reduces the constraint equations
to

8δij∂i∂jψ + ψ5AijA
ij = 0, (2.34)

DjA
ij = 0. (2.35)

Bowen and York [155, 152] showed that an analytic solution for the momentum
constraints could be found,

Aij = 3
2ψ2r2 (niPj + njPi + nkP

k(ninj − δij)) − 3
ψ2r3 (ϵilknj + ϵjlkni)nlSk, (2.36)

which we call Bowen-York initial data, where ni is the outwards pointing unit radial
vector. It can be shown using the definitions of linear and angular momentum at
spatial infinity given below in Section 2.6.4 that P i and Si are the linear and angular
momentum of the black hole. By the linearity of Eq. (2.35) we note that for multiple
black hole solutions, we can superpose multiple copies of the extrinsic curvature given
in Eq. (2.36). Finally, we must solve the Hamiltonian constraint for ψ. Since the
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extrinsic curvature is non zero, Eq. (2.34) is now very difficult to solve, so we look to
solve it numerically. To do this we assume that the conformal factor takes the form

ψ = 1 +
N∑
i=1

M(i)

2r(i)
+ u, (2.37)

i.e. the Brill-Lindquist form with a correction u. We then numerically solve Eq. (2.34)
for u. Within the code employed in this thesis, the elliptic PDE solver for u is provided
by the TwoPunctures thorn [156, 157].

When generalising to higher dimensional spacetimes, the construction of initially
static black holes proceeds in direct analogy to the Brill-Lindquist procedure in 4D
[158]. We now perform the conformal decomposition for arbitrary D.

γIJ = ψ
4

D−3 γ̄IJ , KIJ = ψ−2ĀIJ + 1
D − 1γIJK . (2.38)

As we are only searching for static black hole initial data, we can see that the momentum
constraints are again trivially satisfied, so we focus on the Hamiltonian constraint,
which becomes

δIJ∂
I∂Jψ + D − 3

4(D − 2)ψ
−(3D−5)/(D−3)ĀIJĀIJ = 0, (2.39)

which, for extrinsic curvature equal to 0, becomes the flat space Laplace equation again,
but in D − 1 dimensions

δIJ∂
I∂Jψ = 0. (2.40)

This is now solved by

ψ = 1 + µ(i)

4rD−3
(i)

, (2.41)
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where µ is the mass parameter of the black hole. This is related to the ADM mass M
of the spacetime, and the horizon radius Rh, by

µ = 16πM
(D − 2)AD−2

, µ = RD−3
h , AD−2 = 2π(D−1)/2

Γ
(
D−1

2

) . (2.42)

Comparison with the Schwarzschild-Tangherlini metric [159], 1 in isotropic coordinates,
reveals that again, we have constructed the metric corresponding to two asymptotically
flat ends connected by an Einstein-Rosen bridge [160]. We will discuss the Schwarzschild-
Tangherlini solution in isotropic coordinates further in Section 7.3.1. Again, we can
superpose data of this form for multiple black holes, so that the higher dimensional
generalisation of Brill-Lindquist initial data for N black holes is given by

KIJ = 0 , γIJ = ψ4/(D−3)δIJ , ψ = 1 +
N∑

(i)=1

µ(i)

4
[∑D−1

K=1(XK −XK

(i))2
](D−3)/2 . (2.43)

2.5 Gauge conditions

While the gauge functions α, βI can be freely specified, due to the diffeomorphism
invariance of general relativity, in reality only a limited class of choices for these
functions will lead to a stable numerical evolution. One key problem that has to be
avoided through gauge choice is the appearance of a singularity on the grid. While
singularities are a common occurrence when studying black holes, both coordinate and
physical, a singularity in a numerical simulation will lead to non-assigned numbers
which will cause the simulation to crash [161]. This can be avoided by choosing a lapse
function that becomes smaller closer to a singularity, so that coordinate time passes
more slowly the closer one approaches the singularity [162]. Such singularity avoiding
lapses were extensively studied by Bona and Masso [163, 164]. On its own, such a
singularity avoiding lapse can cause the phenomenon of grid stretching, as time passes
slowly close to the singularity but more rapidly elsewhere on the hypersurface, leading
to distorted hypersurfaces with large gradients. This can be counterbalanced with an
appropriately chosen shift vector [165]. The most popular gauge conditions employed
alongside the BSSN equations and puncture data are the “1+log” slicing and “Γ-driver”
conditions:

1This is the higher dimensional counterpart to the Schwarzschild metric.
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∂tα = βM∂Mα− c1αK, (2.44)

∂tβ
I = βM∂Mβ

I + 3
4B

I , (2.45)

∂tB
I = βM∂MB

I + ∂tΓ̃I − ηBI . (2.46)

Here η and c1 are free parameters which we determine empirically for each simulation
2, and Γ̃I is the BSSN variable formed from the Christoffel symbol of the conformally
rescaled metric. We will fully introduce this variable in Eq. (3.11). Often the conditions
for the shift vector, Eqs (2.45 - 2.46) are replaced with a first order in time set of
equations [166],

∂tβ
I = βM∂Mβ

I + 3
4Γ̃I − ηβI . (2.47)

Altogether this choice of gauge, along with the use of puncture data, is known as
the moving puncture approach [165, 140, 139, 166]. While they were developed for
4D spacetimes, these conditions extend in the obvious fashion to higher dimensional
spacetimes and continue to perform successfully in most cases. In Section 5.2.2 we
will discuss adjustments made to the equation for the lapse in order to achieve stable
simulations in higher dimensions for collisions of black holes of unequal masses.

2.6 Diagnostic tools

The above sections in this chapter provide the machinery to successfully evolve black
holes in a higher dimensional spacetime. In order to discover new physical results from
these simulations however, we need to develop diagnostic tools to extract meaningful
physical quantities from the simulated spacetime. A large section of this thesis will
focus on the construction of a method to extract information about gravitational waves
from such a simulated spacetime in higher dimensions, so here we recap the state of
the art of wave extraction in 4 dimensions, and in higher dimensions prior to the work
discussed in this thesis.

2We note that in the search for stable numerical evolutions, sometimes these free parameters are
replaced with functions of the coordinates on the spatial slice
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There are a number of methods that have been developed to extract gravitational
waves from numerical relativity simulations in 4D, from using the quadrupole formula,
to calculating the Landau-Lifshitz pseudotensor [167, 168], to Cauchy characteristic
extraction (CCE), where a second characteristic evolution takes data found by solving
the Cauchy problem in a finite domain and propagates it to I + [169–171]. For a full
review of the history of various wave extraction techniques, see [172]. The 2 most
popular methods are using gauge invariant perturbations, developed by Regge, Wheeler
[173], Zerilli [174] and Moncrief [175] (RWZM), and calculating the Newman-Penrose
scalar Ψ4 [176–178]. Several comparisons of the accuracy of these techniques have
been made, which are listed in [172], one of which compares these 2 methods with
CCE in the context of stellar core collapse [179]. This study found that, despite
calculating gravitational waves at a finite time and radius rather than at I +, Ψ4 and
the RWZM method both find results within 10% of the values found by CCE. Given
the comparative ease of implementing these techniques over CCE, these two methods
have become by far the most widely used. It was also noted in this study that the
RWZM formalism was more vulnerable to the effects of spurious high frequency noise
which distorted the calculated wave signals, as compared to Ψ4.

2.6.1 Wave extraction using Ψ4

Let us recap the Ψ4 wave extraction formalism. In their seminal work [176], Newman
and Penrose (NP) recast the Einstein equations into a spin coefficient formalism. In
this formalism a null (complex) tetrad is defined at each point in spacetime, such that,
projected onto this tetrad the metric is flat. Within this formalism we shall focus on
the treatment of the Weyl tensor, CABCD since this is the object in general relativity
that encodes information about the vacuum curvature of the spacetime, including
gravitational waves. In the NP formalism the Weyl tensor is projected onto the tetrad
in all possible ways, which leads to the 10 degrees of freedom in the Weyl tensor being
encoded in 5 complex scalar functions denoted Ψ0, . . . ,Ψ4, which we will call Weyl
scalars. It was shown that these Weyl scalars obey a peeling property, i.e. that they
obey the asymptotic behaviour,

Ψi ∼ 1
r5−i . (2.48)
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Therefore, if we are interested in outgoing gravitational waves, calculated at a large
radius, Ψ4 will be the scalar containing this information at leading order [180–183].
Let us now explicitly define the tetrad and Ψ4. There is no unique choice of tetrad
in the Newman-Penrose formalism, however the most commonly used in numerical
relativity is the Kinnersley tetrad [184]. This is chosen due to its appearance in the
Teukolsky formalism of black hole perturbation theory [185], allowing connections to
be easily made between quantities calculated in numerics and in this formalism. In
this tetrad Ψ1,Ψ3 can be set to 0, with Ψ0 containing at leading order the ingoing
gravitational radiation, Ψ4 the outgoing gravitational radiation, and Ψ2 the Coulomb
part of the gravitational field. The search for the appropriate construction of this
tetrad in numerical relativity simulations is an ongoing and deep field of research, with
key issues reviewed in [186], however a common choice of tetrad is one that approaches
the Kinnersley tetrad as the spacetime approaches a Petrov type D spacetime (for our
purposes, this will mean as the spacetime approaches either a Schwarzschild or Kerr
spacetime). Such a tetrad (known as quasi-Kinnersley [187–191]) can be constructed
from the normal vector, nA, to the hypersurface, and the radial and angular unit
vectors of the coordinates on the hypersurface, (r̂A, θ̂A, ϕ̂A). The tetrad consists of 4
vectors (ℓA, kA,mA, m̄A) where m is complex.

ℓA = nA + r̂A, (2.49)
kA = nA − r̂A, (2.50)
mA = θ̂A + iϕ̂A, (2.51)
m̄A = θ̂A − iϕ̂A. (2.52)

Ψ4 is then the projection given by

Ψ4 = CABCDk
Am̄BkCm̄D. (2.53)

As we will use this formalism for extracting waves in vacuum, we can at this point
replace the Weyl tensor with the Riemann tensor since, in vacuum, the Ricci scalar
and tensor are 0. We note here that, in 4D, a decomposition of the Weyl tensor is
available, into its so called electric and magnetic parts [135],
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EAB =⊥C
A⊥E

B CCDEFn
DnF , (2.54)

BAB =⊥C
A⊥E

B ⋆ CCDEFn
DnF , (2.55)

where ⋆ denotes the Hodge dual. In practice it is through this decomposition that the
calculation proceeds in 4D, though since we do not use it in higher dimensions we
shall not comment further on it. For the use of this method in implementing this wave
extraction formalism in 4D see Appendix C of [192]. Whether using this decomposition
or the full Riemann tensor, we know from the Gauss and Codazzi relations that we
can rewrite everything in Eq. (2.53) in terms of quantities defined on the spatial
hypersurface, and thus it can be calculated in our simulation. The final step is to relate
this object to gravitational waves. Explicitly performing the contraction in Eq. (2.53),
and replacing the Weyl tensor with the Riemann tensor we can write Ψ4 as [193]

Ψ4 = −1
4(Rtθtθ − 2iRtθtϕ − 2Rtθrθ + 2iRtϕrθ −Rtϕtϕ

+Rrθrθ + 2iRtθrϕ + 2Rtϕrϕ − 2iRrϕrθ −Rrϕrϕ). (2.56)

We then compare this to the linearised Einstein equations, writing the metric as
gAB = ηAB + hAB, with |hAB| ≪ 1, to find a wave equation for the gravitational wave,
and find that the Riemann tensor takes the form

RABCD = 1
2(∂A∂DhBC + ∂B∂ChAD − ∂B∂DhAC − ∂A∂ChBD). (2.57)

Since we know in the transverse traceless gauge the metric of a radially propagating
wave takes the form

hθθ = −hϕϕ = h+, (2.58)
hθϕ = hϕθ = h×, (2.59)

we can substitute Eq. (2.57) into Eq. (2.56), noting that the only non zero components
will be those for which the angular indices appear in the metric, and not in the
derivatives. For an outgoing wave at large r we have that

hAB(t, r, θ, ϕ) = hAB(t− r, θ, ϕ)
r

, (2.60)
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and so we can replace ∂r with −∂t. Eventually we obtain

Ψ4 = ḧ+ − iḧ×. (2.61)

Now we have the information required to calculate gravitational wave strains, and
thus the energy, momentum and angular momentum radiated in gravitational waves.
Explicit calculations of these quantities can be found in [194].

2.6.2 Wave extraction using gauge invariant perturbations

We now give a brief overview of the RWZM formalism, saving a more thorough discussion
for the introduction of its higher dimensional analogue which will follow. For further
details see [172, 195, 196, 121]. The RWZM formalism is based on the decomposition
of perturbations around a background metric into multipoles over a family of tensor
harmonics. These metric perturbations will, however, be gauge dependent quantities, so
the key step in this method is to find combinations of the different metric perturbations
that provide what is called a gauge invariant master function.

First, we write the spacetime metric as a background metric, g(0) (say Schwarzschild)
with some perturbation on top, h,

gAB = g
(0)
AB + hAB. (2.62)

We now expand hAB into its multipolar contributions for even parity perturbations,

hlm, even
ĀB̄

= H lm
ĀB̄Y

lm, (2.63)
hlm, even
Āβ

= H lm
Ā Y lm

β , (2.64)
hlm, even
αβ = r2(K lmωαβY

lm +GlmZ lm
αβ), (2.65)

and odd parity perturbations,

hlm, odd
ĀB̄

= 0 (2.66)
hlm, even
Āβ

= hlmĀ X
lm
β , (2.67)

hlm, even
αβ = r2(hlmX lm

αβ). (2.68)



30 Numerical Relativity

Here Y lm are the standard spherical harmonics, with the other basis functions defined
by

Y lm
α = DαY

lm, (2.69)

Z lm
αβ = DαDβY

lm + 1
2 l(l + 1)ωαβY lm, (2.70)

X lm
α = −ϵβαDβY

lm, (2.71)
X lm
αβ = D(aX

lm
β) , (2.72)

where ϵαβ is the antisymmetric tensor on the 2 sphere. By defining an appropriate
inner product for the basis functions Y,X,Z, and using the orthogonality relations it
gives, we can extract any of the perturbation functions of (t, r) from our simulation
(HĀB̄, HĀ, K,G, hĀ, h) by taking the metric gAB, subtracting off the background metric,
and taking the inner product with the appropriate basis function. For perturbations of
odd parity Regge and Wheeler [173] derived a wave equation describing the propagation
of gravitational waves in the associated perturbations, while Zerilli [197, 174] did
the same for even parity. Moncrief then found gauge invariant combinations of
these perturbations to construct a gauge invariant master function [175], from which
information about gravitational waves could be extracted.

2.6.3 Kodama-Ishibashi formalism

The perturbative formalism of RWZM has already been generalised to higher dimensions
by Kodama and Ishibashi (KI) [198–200]. This has been implemented to extract
gravitational waves previously by Witek et al. [110]. In our work we will also implement
this form of wave extraction as a check of our formalism developed in Chapter 4, and we
will show how these formalisms complement each other in Chapter 5. We note however
that so far this wave extraction formalism has only been implemented for axisymmetric
spacetimes, meaning that the only non zero projections of the metric perturbations will
be those projected onto scalar harmonics (functions that solve the higher dimensional
scalar Laplace equation), and not vector or tensor harmonics. Explicitly, these scalar
harmonics, S, are solutions of

ωαβDβDαSl(ϕγ) = −k2Sl(ϕγ), (2.73)
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where we recall that ωαβ is the metric on the D − 2 sphere, and Dα is the associated
covariant derivative. From these functions we can construct a vector and (0, 2) tensor,

Slα = −1
k
∂αSl, (2.74)

Slαβ = 1
k2 DβDαSl + 1

D − 2ωαβS
l, (2.75)

where k2 = l(l + D − 3). We note that due to the assumption of axisymmetry the
spherical harmonics are only dependent on 1 angular parameter, l, rather than D − 2
in the generic case. The solutions to Eq. (2.73) are explicitly given by the Gegenbauer
polynomials [201, 202]. We assume that the background metric is that of the Tangherlini
black hole, and, as in the 4D case, we decompose the metric perturbations onto these
spherical harmonics. The number of angular indices in the perturbation determines
which harmonic we project onto, with the projections given by

hĀB̄ = fĀB̄,lSl, (2.76)
hĀβ = rfĀ,lSlβ, (2.77)
hαβ = 2r2(HL,lωαβSl +HT,lSlαβ), (2.78)

with summation over the angular l indices implicit. If we were to generalise to non-
axisymmetry, we would also have vector harmonic Vα and tensor harmonic Tαβ copies
of Eqs (2.77)-(2.78), given by the solutions to the equations

ωαβDβDαVδ,lρ(ϕγ) = −k2Vδ,lρ(ϕγ), (2.79)
ωαβDβDαT

lρ
δσ(ϕγ) = −k2Tlρδσ(ϕγ). (2.80)

We note there is a subscript on the angular parameter l in the above equations, as
there are generically D − 2 parameters here in the absence of symmetry.

Returning to the axisymmetric case, we have 4 gauge dependent perturbation
functions of (t, r), {fĀB̄,l, fĀ,l, HT,l, HL,l}. As in 4D, gauge invariant combinations of
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these can be found [199],

Fl = HL,l + 1
D − 2HT,l + 1

r
XĀ,l∇Ār, (2.81)

FĀB̄,l = fĀB̄,l + ∇B̄XĀ,l + ∇ĀXB̄,l, (2.82)
XĀ,l = r

k
(fĀ,l + r

k
∇ĀHT,l), (2.83)

from which we can define a master function,

∂tΦl = (D − 2)r(D−4)/2 F r
t,l + 2r∂tFl

k2 −D + 2 + (D−2)(D−1)rD−3
S

2rD−3

. (2.84)

It has been shown [201] that, using the time derivative of this master function, we can
calculate the energy and momentum radiated in gravitational waves,

dEl
dt

= 1
32π

D − 3
D − 2k

2(k2 −D + 2)(Φl
,t)2. (2.85)

As in the 4D case, by exploiting the orthogonality conditions of the functions solving
Eq. (2.73), we can take the inner product of our numerically evolved metric with
these scalar spherical harmonics to extract fĀB̄,l, fĀ,l, HT,l, HL,l and so construct Φ.
Further details can be found in [111, 201] as well as the papers referenced above.
Our implementation of this method in our code closely follows that detailed in the
appendices of [110].

2.6.4 ADM integrals

As well as using gravitational wave extraction to determine the change in the Bondi
mass and momentum of the spacetime, we also wish to calculate integrals over the
whole spatial slice to find the conserved ADM quantities [118]. Between these values,
the radiated quantities in gravitational waves, and the values of the mass and spin of
the black hole calculated from an apparent horizon finder we can independently account
for the entire contents of a black hole spacetime. In this section we will introduce the
quantities used in 4D numerical relativity.

To define the ADM quantities we will first restrict ourselves to asymptotically flat
slices, defined as slices Σt with 3 metric γij , that admit a Riemannian 3 metric fij such
that [203]
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1. fij is flat outside of a compact domain of Σt

2. There exists a coordinate system (x, y, z) in which fij = diag(1, 1, 1) and r =
√
x2 + y2 + z2 can take arbitrarily large values

3. In the limit r → ∞,

γij = fij + O(r−1), (2.86)
∂γij
∂xk

= O(r−2), (2.87)

Kij = O(r−2), (2.88)
∂Kij

∂xk
= O(r−3). (2.89)

With these assumptions made, we can write the Hamiltonian of GR as

16πH = −
∫

Σt

(αH − 2βiMi)
√
γd3x− 2

∫
S2

(α(k − k0) − βi(Kij −Kγij)nj)dΩ,(2.90)

[122, 204]. Here k is the trace of the extrinsic curvature of the boundary S2 embedded
in the spatial slice Σt with induced metric γij, and k0 is the extrinsic curvature of
the S2 embedded in Σt with the flat metric fij. H and Mi are the Hamiltonian
and momentum constraints defined in Eqs (2.21, 2.22). For solutions of the Einstein
equations, this first integral is equal to zero, and it is the second integral that provides
us with the conserved quantities that we call the ADM mass and momentum. In
coordinates corresponding to an observer moving forwards in coordinate time, we can
set α = 1, βi = 0, and in coordinates corresponding to an observer undergoing a spatial
translation we can set α = 0, βi = 1 for a fixed i corresponding to each of the three
spatial translations. This identifies the first quantity in parentheses with the ADM
mass, and the second quantity with the momentum.

This leads to the definition of the ADM mass of a 3D spatial hypersurface as

MADM = 1
16π lim

r→∞

∫
S2

(δik∂khij − ∂jh) dΩj, (2.91)

where hij is the perturbation of the metric on top of a flat Minkowski background, and
h = δijhij. Similarly the ADM momentum is defined as
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Pi = 1
8π lim

r→∞

∫
S2

(Kij − δijK) dΩj. (2.92)

In coordinates where the decay conditions of Eqs (2.86 - 2.89) are not met this calcula-
tion does not provide meaningful information. For instance, in Painlevé-Gullstrand
coordinates, the Schwarzschild line element is

ds2 = −
(

1 − 2M
r

)
dt2 + 2

√
2M
r

dtdr + dr2 + r2dΩ2. (2.93)

Due to the factor of r−1/2 in the shift vector, the extrinsic curvature does not obey the
decay rate of Eq. (2.88), instead having the asymptotic behaviour

Kij = O(r−3/2). (2.94)

Equations (2.88, 2.89) are not satisfied, and the calculation of the ADM mass gives
zero instead of M [193].

In four dimensions there is however, no well defined expression for an “ADM-like”
concept of angular momentum. The ADM mass and momentum, which are defined at
spatial infinity are preserved by the transformation of the symmetry group of the above
decay conditions, Eqs (2.86 - 2.89). This group consists of Lorentz transformations
and angle-dependent supertranslations. The natural definition of a conserved angular
momentum from the Hamiltonian is

J i = ϵijk
8π lim

r→∞

∫
S2
xj(Kkl − δklK) dΩl, (2.95)

but firstly the decay conditions above do not guarantee that this integral is finite,
and secondly, this vector does not transform covariantly under supertranslations. A
commonly used remedy was proposed by York [119], who suggested restrictions on
the gauges that could be chosen, within which the angular momentum vector did
transform appropriately. These gauge choices were the quasi-isotropic gauge condition
and asymptotic maximal gauge condition, respectively,

∂γ̃ij
∂xj

= O(r−3), (2.96)

K = O(r−3), (2.97)
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where γ̃ij is the conformally rescaled 3-metric, such that its determinant is one. We
note also the work of Ashtekar in further elaborating on this supertranslation ambiguity
in the context of the 3+1 splitting, describing the necessary conditions to remove the
ambiguity in terms of conditions on the magnetic part of the Weyl tensor [205–207].
Finally we note that the gauge conditions used in the moving puncture approach in
our simulations does satisfy the conditions in Eqs (2.96)-(2.97).

2.7 Dimensional reduction by isometry

So far the generalisation from 4D numerical relativity to higher dimensions of the
evolution equations, gauge conditions and initial data construction has proceeded in
a straightforward manner. The largest roadblock to successful evolution of a higher
dimensional spacetime on a computer however is one of resources, often called the
curse of dimensionality. Take a 3 dimensional grid of the type calculated at each time
step in the code, with O(100) points across each of the 3 dimensions. If one were to
naïvely generalise this code, the computational resources required would increase by a
factor of 100 for each added dimension. If we wish to probe values of D much larger
than 4, we cannot afford for the problem to scale like this. We therefore require a
method of dimensional reduction, to allow us to simulate an effective grid of lower
dimension than the D − 1 dimensional surface we use in our physical problem 3. In
the following chapter of this thesis, (Chapter 3) we discuss at length the “modified
Cartoon” method of dimensional reduction which we employ in all of the simulations
performed in this thesis, and describe its implementation in our code. Here we give a
brief overview of an alternate method of dimensional reduction used in other works on
higher dimensional numerical relativity that preceded this work. We call this method
“dimensional reduction by isometry”, based on work by Geroch and others [209–211],
and notably employed in [212, 110, 213]. In this method we assume that we work
with a spacetime with an SO(D − 3) symmetry (though this can be applied to any
SO(n) symmetry), which will allow us to write the spatial part of the metric as an
arbitrary 3D metric, which we will numerically evolve, added to the metric on the
D − 4 sphere, multiplied by a function of the 3D coordinates, which we also evolve.
This added function can then be moved to the right hand side of the Einstein equations,

3That said, we note that interesting results have recently been published on the use of discontinuous
Galerkin methods on “sparse” grids that allow a higher dimensional system that has not been
dimensionally reduced to be simulated in full with low computational cost [208]
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and treated as a matter term, reducing the problem of D dimensional vacuum general
relativity to 4 dimensional general relativity in the presence of a matter field. We
briefly introduce this method below, following analysis in [214–216, 22].

Any metric can be written in the form,

ds2 = gABdxAdxB =
(
gÂB̂ + gabB

a
Â
Bb
B̂

)
dxÂdxB̂ + 2Ba

Â
gabdxÂdxb + gabdxadxb,

(2.98)

splitting the coordinates into the angular coordinates on a D − 4 sphere, and the
coordinates on the remaining 4D space. For a spacetime with SO(D − 3) symmetry,
there exist (D−3)(D−4)/2 Killing vectors ξ(p), labelled by p, with the Killing equation
giving us that,

Lξ(p)gÂB̂ = 0, (2.99)
Lξ(p)B

a
Â

= 0, (2.100)
Lξ(p)gab = 0. (2.101)

Equation (2.99) tells us that the metric components on the 4D space only depend on
the coordinates on that space, gÂB̂ = gÂB̂

(
xĈ
)
. Equation (2.100) tells us that all of the

Killing vectors commute with Ba
Â

. This means that Ba
Â

= 0 since there is no non-trivial
vector field on the sphere that commutes with all the Killing vectors. Note, this is
not true for an SO(2) symmetry. Hence we would have to treat SO(D − 3) symmetry
differently in D = 5. This caveat is also true in the modified Cartoon method discussed
in Section 3.4, and we leave discussion of this problem until then. Equation (2.101)
tells us that gab admits the maximal number of Killing vector fields, so is the metric of
the maximally symmetric space at each point

(
xÂ
)
, the D − 4 sphere. So

gab = λ
(
xÂ
)
ω

(D−4)
ab , (2.102)

where ω(D−4)
ab is the round metric on the D− 4 sphere. Hence the full spacetime metric

can be written as
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ds2 = gABdxAdxB = gÂB̂

(
xĈ
)

dxÂdxB̂ + λ
(
xĈ
)

dΩD−4.

(2.103)

Substituting this metric into the D dimensional Einstein equations provides the
equations for 4D gravity, non-minimally coupled to a scalar field λ,

R̂ÂB̂ = D − 4
2λ

(
∇̂Â∂B̂λ− 1

2λ∂Âλ∂B̂λ
)
, (2.104)

∇̂Â∂Âλ = 2(D − 5) − D − 6
2λ ∂Âλ∂

Âλ, (2.105)

where R̂ÂB̂ and ∇̂Â are the Ricci tensor and covariant derivative respectively with
respect to the 4D metric gÂB̂. Now we have a system of equations that appear to be
indistinguishable from the case of 4D gravity with matter, which we can solve using
existing numerical relativity techniques.

2.8 Mesh refinement

To fully model a physical problem such as the inspiral of 2 black holes, we must be able
to resolve a number of different length scales in our simulation. On one end, we must
be able to resolve the Schwarzschild radius of the black hole, which is of size O(M),
and on the other end, we must be able to resolve gravitational waves at a distance
far from the black hole, at O(100M). The resolution required near the black hole is
much higher than the resolution required far from the black hole, where we extract
gravitational waves, so to save computational resources, we employ mesh refinement.
The first example of the necessity of mesh refinement was in Choptuik’s famous study
of critical phenomena in gravitational collapse, which required the resolution of smaller
and smaller length scales as the black hole produced from collapse approached a naked
singularity [217]. There are many ways to implement mesh refinement, in this thesis
we employ the scheme implemented by the Carpet thorn [218, 219] within Cactus
[220]. This involves placing a high resolution grid on top of the black hole, which lies
nested within a hierarchy of grids of decreasing resolution. These grids can be of fixed
position, or centred on the black hole, in which case they follow the location of the
black hole puncture, and, in the case of a binary black hole spacetime, can merge with
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the grids centred on the other black hole when they approach each other. The different
grids communicate with each other through the Berger-Oliger algorithm [221, 218].

2.9 Boundary conditions

In this thesis we seek to model asymptotically flat spacetimes. In practice we must
evolve a finite sized grid in our simulation, so we have the option of either compactifying
our coordinates to fit the full spatial slice into a finite sized grid, or to only evolve a finite
sized patch of the spatial slice, with appropriate boundary conditions. In evolutions
employing the BSSN formalism the second of these two options is the most widely used.
The search for appropriate boundary conditions that both preserve the well-posedness
of the BSSN equations, and do not introduce violations to the constraint equations is
still ongoing and is a problem that has not been fully solved. In practice, we apply
boundary conditions that give the physical requirements that we desire, that there
should be no radiation incoming from the boundary, and ensure that the boundary is
sufficiently far away from the regions of the spacetime we are interested in, such as the
region in which we extract gravitational waves, that they remain causally disconnected
for the length of the simulation [222]. To impose these boundary conditions, we assume
that all functions f on our grid decay with the following behaviour,

f = f0 + u(t− r)
rn

, (2.106)

with n some integer and u is a retarded time coordinate. Then at the outer boundary
f obeys the condition

∂tf + n
f − f0

r
+ xI

r
∂If = 0. (2.107)

These are known as Sommerfeld boundary conditions. We note that, in order to
evaluate these derivatives at the boundary, we must implement one-sided “advection”
derivatives.



Chapter 3

Dimensional Reduction with the
Modified Cartoon Formalism

This chapter, as well as Appendix A, is based on [114] authored in collaboration with
Pau Figueras, Markus Kunesch, Saran Tunyasuvunakool and Ulrich Sperhake. In
particular the generalisation of the dimensional reduction technique to d > 3 was
performed by the author, as well as independent verification of all other results. The
study of the case of SO(2) symmetry was performed by M. Kunesch.

3.1 Introduction

Numerical simulations of BH spacetimes in higher dimensions are a challenging task.
First and foremost this is simply a consequence of the required computational resources.
Simulations in D = 4 require of the order of O(102) cores and O(102) Gb of memory.
Each extra spatial dimension introduces an additional factor of O(102) grid points
and correspondingly more memory and floating point operations. Even with modern
high-performance computing systems, this sets practical limits on the feasibility of
accurately evolving higher-dimensional spacetimes. At the same time, many of the
outstanding questions in numerical relativity can be addressed by imposing symmetry
assumptions on the spacetimes in question such as planar symmetry in modelling
asymptotically AdS spacetimes [69], cylindrical symmetry for black strings [105] or
different types of rotational symmetries [107]. This can be achieved in practice by
either (i) using a specific form of the line element that directly imposes the symmetry
in question (see e.g. [69]), (ii) starting with a generic line element and applying
dimensional reduction through isometry (see [209, 212, 214] and Section 2.7) or (iii)
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implementing the symmetry through a so-called Cartoon method [223]. Here we are
concerned with the latter approach and, more specifically, with a modification thereof
originally introduced in [133] (see also [100, 224, 225]) which we will henceforth refer
to as the modified Cartoon method.

This chapter is structured as follows. In Section 3.2, we introduce the notation
used throughout our work, and illustrate the modified Cartoon implementation of
the symmetries for a specific example. In Section 3.3 we introduce the Baumgarte-
Shapiro-Shibata-Nakamura [137, 136] (BSSN) evolution system we use for the Einstein
equations, and derive their specific form in SO(D − d) symmetry when rotational
symmetry is present in ≥ 2 planes which corresponds to d < D − 2. The axisymmetric
case d = D − 2 imposes less restrictive conditions on the vanishing of tensor density
components and their derivatives, and the particulars of its numerical implementation
are briefly discussed in Section 3.4. As an example, we present in Section 3.5 numerical
simulations of a BH head-on collision in D = 7 dimensions employing SO(4) symme-
try. We summarise our findings in Section 3.6 and include in Appendix A a list of
important relations for the components of tensors and derived quantities as well as the
regularisation necessary at the origin in the quasi-radial direction.

3.2 SO(D − d) symmetry in the modified Cartoon
method

3.2.1 Coordinates

It is instructive to illustrate the method by considering first a simpler scenario: ax-
isymmetry in three spatial dimensions. Let (x, z, w) denote Cartesian coordinates and
assume rotational symmetry about the x axis1 i.e., there exists a rotational Killing
field in the z, w plane. Evidently, the geometry of such a three-dimensional manifold
can be constructed straightforwardly provided all tensors (e.g. the metric) are known
on the semi infinite plane w = 0, z ≥ 0, x ∈ R. We note the simplification in the
computational task: the w coordinate has dropped out and the quasi-radius z takes
on only non-negative values, reducing an originally three-dimensional computational
domain to a calculation on half of R2. This is the case considered in the original papers
[223, 133].

1It is more common to label the coordinates (x, y, z) and use symmetry about the z axis, but our
choice of labels emphasises more clearly the analogy to the higher-dimensional case.
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The most common applications, for instance the inspiral, or head-on collision of
spinning or non-spinning black holes, will likely consider higher-dimensional spacetimes
with SO(D − 3) symmetry, but here we present the general application to a D

dimensional spacetime with SO(D − d) symmetry, where d ∈ N, 1 ≤ d ≤ D − 2. Let
us then consider a D dimensional spacetime consisting of a manifold M and a metric
gAB satisfying the D dimensional Einstein equations which are given by Eq. (2.16).

We now assume the spacetime to obey SO(D − d) symmetry and introduce the
Cartesian coordinates of Eq. (2.1), which we recall are

XA = (t, x1, x2, . . . xd−1︸ ︷︷ ︸
(d−1)×

, z, wd+1, wd+2, . . . , wD−1︸ ︷︷ ︸
(D−d−1)×

) =: (t, xî, z, wa) , (3.1)

where î = 1, . . . d − 1, a = d + 1, . . . , D − 1. SO(D − d) symmetry implies the
existence of rotational Killing vectors in each plane spanned by two of the coordinates
(z, wa). In complete analogy with the axisymmetric scenario discussed above, it is now
sufficient to provide data on the d-dimensional semi-infinite hyperplane wa = 0, xî ∈ R,
z ≥ 0. The components of a tensor at any point in the spacetime can then be obtained
by appropriately rotating data from the hyperplane onto the point in question. This is
illustrated in Fig. 3.1 where we show an example application consisting of a collision of
two BHs. Note that the BHs can have non-zero spin components in the xî directions and
that the collision may be of grazing nature, that is, with a non-zero impact parameter,
in the corresponding subspace.

In modelling spacetimes with such symmetries, it is therefore entirely sufficient to
compute data on the hyperplane which largely solves the problem of increased compu-
tational cost mentioned in Section 2.7, as we now evolve a d dimensional grid, rather
than one of D− 1 dimensions. There remains, however, the difficulty that the Einstein
equations, irrespective of the specific formulation one chooses, contain derivatives of
tensor components in the wa directions which cannot be evaluated numerically in the
usual fashion, as for example using finite differences or spectral methods. Furthermore,
the number of tensor components present in the Einstein equations still increases
rapidly with the dimension parameter D resulting in a substantial increase of memory
requirements and floating point operations. Both of these difficulties are overcome
by exploiting the conditions imposed on the tensor components and their derivatives
by the SO(D − d) symmetry. It is these conditions which we address next. It turns
out to be convenient in this discussion to distinguish between (1) the case d = D − 2
corresponding to SO(2) isometry, and (2) all remaining cases d < D − 2. We will
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S1 S2
xî

z

wa

Fig. 3.1 Graphical illustration of a BH collision inside a plane spanned by the xî

directions. The BHs may rotate with a spin direction inside that plane. Note that in
general there are multiple coordinates xî and the collisions need not be headon but
may instead be of grazing nature inside the subspace (xî). The dashed line illustrates
the rotational symmetry in any of the (z, wa) planes. Additional rotational symmetries
in the (wa, wb) planes can be present but cannot be illustrated in the figure. Note that
the computational domain is given by the hyperplane wa = 0, z ≥ 0, xî ∈ R and that
each point in this domain represents a D − d− 1 sphere of radius z.

briefly discuss the case d = D − 2, though we note that for the physical scenarios
studied in this thesis, it will not be needed. For a more thorough study of this case
see Section 4 and Appendix C of [114], with an application of the modified Cartoon
method in this particular symmetry class given in [107]. We focus on the generic case
first, d < D − 2.

3.2.2 Tensor components in SO(D−d) symmetry for d < D−2

The key ingredient we use in reducing the number of independent tensor components
and relating their derivatives are the rotational Killing vectors and the use of coordinates
adapted to the integral curves of these Killing vectors. The method is best introduced
by considering a concrete example. Let ξ denote the Killing vector field corresponding
to the rotational symmetry in the (z, w) plane, where w ≡ wa for some fixed number
a ∈ {d+ 1, . . . , D − 1}. We introduce a new coordinate system that replaces (z, w)
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with cylindrical coordinates and leaves all other coordinates unchanged,

X̄A = (t, xî, ρ, wd+1, . . . , wa−1, φ, wa+1, . . . , wD−1) , (3.2)
ρ =

√
z2 + w2 , z = ρ cosφ , (3.3)

φ = arctanw
z
, w = ρ sinφ . (3.4)

In these coordinates, the Killing field is ξ = ∂φ and the vanishing of the Lie derivative
LξgAB = 0 implies ∂φgAB = 0. Note that quantities constructed from the spacetime
metric directly inherit this property. This applies, in particular, to the ADM variables
defined in Eqs (2.10),(2.12) and the BSSN variables widely used in numerical relativity,
which we will shortly define. For d < D − 2, one can furthermore show that the
φ component of a vector field and those components of a tensor field TAB, where
exactly one index is φ, vanish. Here the case d = D − 2 represents an exception; an
axisymmetric, toroidal magnetic field, for example, satisfies SO(2) symmetry, but has
a non-vanishing φ component. We note that this is the same special case that arose in
the method of dimensional reduction by isometry described in Section 2.7, with the
non-vanishing of Ba

Â
in the case of SO(2) symmetry in Eq. (2.100).

The concrete example we now discuss in more detail concerns a symmetric tensor
density TAB of weight W and, in particular, the mixed components Tiw, where the index
i stands for any one of the (xî, z) coordinates and w stands for one of the wa. We first
consider the components Tîw for some fixed value of î. Transforming the component
T̄îφ to Cartesian coordinates, one gets

T̄îφ = DW ∂XA

∂X̄ î

∂XB

∂φ
TAB = DW (−w Tîz + z Tîw) , (3.5)

where here D is the Jacobian det(∂XA/∂X̄B) = ρ. Using that T̄îφ = 0 by symmetry,
this equation implies

Tîw = w

z
Tîz . (3.6)

Similarly, transforming T̄ρφ to Cartesian coordinates and using that T̄ρφ = 0 by
symmetry, one straightforwardly gets

Tzw = zw

z2 − w2 (Tzz − Tww) . (3.7)

Recalling that the computational domain is the hyperplane wa = 0, xî ∈ R, z ≥ 0, we
conclude from Eqs (3.6) and (3.7) that on the computational domain Tiw = 0. This
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argument holds for any specific choice of the coordinate w, so that we conclude

Tia = 0 . (3.8)

To compute the derivatives with respect to w on the w = 0 hyperplane, one can proceed
as follows. For the tensor components in the example above, one can simply use (3.6)
and (3.7) to calculate ∂wTia and then set w = 0. Alternatively, writing the Killing field
ξ as

ξ = z ∂w − w ∂z , (3.9)

and imposing the vanishing of the Lie derivative LξTia = 0 on the w = 0 hyperplane,
one gets

∂wTiw = Tiz − δizTww
z

. (3.10)

Repeating this process for all components of scalar, vector and rank 2 tensor densities as
well as their first and second derivatives, we get the relations summarised in Appendix
A.1.

We have shown the calculation here explicitly for the case of tensor densities. It
can be shown that the vectorial expressions thus obtained also apply to the contracted
Christoffel symbol ΓA ≡ gMNΓA

MN constructed from the metric, even though it is not a
vector density.

3.3 Dimensional reduction of the BSSN equations

In this section, we will apply the symmetry relations obtained above to the specific
case of the BSSN formulation of the Einstein equations in D spacetime dimensions.
We emphasise, however, that the procedure spelled out here for the BSSN system
can be applied in similar form to any of the alternative popular formulations used in
numerical relativity.

3.3.1 The D dimensional BSSN equations

The starting point for the BSSN formulation are the ADM equations, Eqs (2.21)-(2.24)
arising from the (D − 1) + 1 split, performed in Section 2.2 . The BSSN system,
as introduced in Section 2.3, is obtained from the ADM equations by applying a
conformal transformation to the spatial metric, a trace split of the extrinsic curvature
and promotion of the contracted spatial Christoffel symbols to the status of evolution
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variables. The BSSN variables are defined as

χ = γ−1/(D−1) , K = γMNKMN ,

γ̃IJ = χγIJ ⇔ γ̃IJ = 1
χ
γIJ ,

ÃIJ = χ
(
KIJ − 1

D − 1γIJK
)

⇔ KIJ = 1
χ

(
ÃIJ + 1

D − 1 γ̃IJK
)
,

Γ̃I = γ̃MN Γ̃I
MN , (3.11)

where γ = det γIJ , and Γ̃I
MN are the Christoffel symbols associated with the conformal

metric γ̃IJ . We formulate here the conformal factor in terms of the variable χ, following
[140]. Alternative versions of the equations using variables W ≡ √

χ or ϕ ≡ −(lnχ)/4
can be found in [226, 165]. Note that the definition of the BSSN variables in (3.11)
implies two algebraic and one differential constraints given by

γ̃ = 1, γ̃MNÃMN = 0, GI ≡ Γ̃I − γ̃MN Γ̃I

MN = 0 . (3.12)

The D dimensional BSSN equations are then given by the Hamiltonian and momentum
constraints

H ≡ R + D − 2
D − 1K

2 − ÃMNÃMN − 16πρ− 2Λ = 0 , (3.13)

MI ≡ γ̃MND̃MÃNI − D − 2
D − 1∂IK − D − 1

2 ÃM
I

∂Mχ

χ
− 8πjI = 0 , (3.14)
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and the evolution system

∂tχ = βM∂Mχ+ 2
D − 1χ(αK − ∂Mβ

M) , (3.15)

∂tγ̃IJ = βM∂M γ̃IJ + 2γ̃M(I∂J)β
M − 2

D − 1 γ̃IJ∂Mβ
M − 2αÃIJ , (3.16)

∂tK = βM∂MK − χγ̃MNDMDNα + αÃMNÃMN + 1
D − 1αK

2

+ 8π
D − 2α[S + (D − 3)ρ] − 2

D − 2αΛ , (3.17)

∂tÃIJ = βM∂MÃIJ + 2ÃM(I∂J)β
M − 2

D − 1ÃIJ∂Mβ
M + αKÃIJ − 2αÃIMÃ

M
J

+χ (αRIJ −DIDJα− 8παSIJ)TF , (3.18)

∂tΓ̃I = βM∂M Γ̃I + 2
D − 1Γ̃I∂Mβ

M − Γ̃M∂Mβ
I + γ̃MN∂M∂Nβ

I + D − 3
D − 1 γ̃

IM∂M∂Nβ
N

−ÃIM

[
(D − 1)α∂Mχ

χ
+ 2∂Mα

]
+ 2αΓ̃I

MNÃ
MN − 2D − 2

D − 1αγ̃
IM∂MK

−16πα
χ
jI − σGI∂Mβ

M . (3.19)

Here, the superscript “TF” denotes the trace-free part and we have added a constraint
damping term σGI in the last line, following the suggestion by [124], which enables
long term stable evolutions. The above equations are complemented by the following
auxiliary relations,

ΓI

JK = Γ̃I

JK − 1
2χ (δI

K∂Jχ+ δI
J∂Kχ− γ̃JK γ̃

IM∂Mχ) , (3.20)

RIJ = R̃IJ + Rχ
IJ , (3.21)

Rχ
IJ = γ̃IJ

2χ

[
γ̃MND̃MD̃Nχ− D − 1

2χ γ̃MN∂Mχ ∂Nχ

]

+D − 3
2χ

(
D̃ID̃Jχ− 1

2χ∂Iχ ∂Jχ

)
, (3.22)

R̃IJ = −1
2 γ̃

MN∂M∂N γ̃IJ + γ̃M(I∂J)Γ̃M + Γ̃M Γ̃(IJ)M

+γ̃MN
[
2Γ̃K

M(IΓ̃J)KN + Γ̃K

IM Γ̃KJN

]
, (3.23)

DIDJα = D̃ID̃Jα + 1
χ
∂(Iχ∂J)α− 1

2χγ̃IJ γ̃
MN∂Mχ∂Nα . (3.24)

The BSSN equations in this form are general and facilitate the numerical construction
of D dimensional spacetimes. Next, we will describe in detail how the equations can be
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reduced to an effective system in d spatial dimensions for spacetimes obeying rotational
symmetry with d < D − 2.

3.3.2 The BSSN equations with SO(D − d) symmetry for d <
D − 2

We now apply the relations summarised in Appendix A.1 to the definition of the BSSN
variables (3.11) and the D dimensional BSSN equations (3.13)-(3.19). Recalling that
early and middle Latin indices run over a, b, . . . = d + 1, . . . , D − 1 and i, j, . . . =
1, . . . d, respectively, and introducing η ≡ D − d− 1, the variables are given in terms
of their ADM counterparts by

χ = γ−1/(D−1), γ = det γIJ = γηww det γij , K = γMNKMN = γmnKmn + ηγwwKww,

γ̃ij = χγij , γ̃ww = χγww ⇔ γ̃ij = 1
χ
γij , γ̃ww = 1

χ
γww ,

Ãij = χ
(
Kij − 1

D − 1γijK
)

⇔ Kij = 1
χ

(
Ãij + 1

D − 1 γ̃ijK
)
,

Ãww = χ
(
Kww − 1

D − 1γwwK
)

⇔ Kww = 1
χ

(
Ãww + 1

D − 1 γ̃wwK
)
,

Γ̃i = γ̃MN Γ̃iMN = γ̃mnΓ̃imn + ηγ̃wwΓ̃iww , (3.25)

where
Γ̃iww = −1

2 γ̃
im∂mγ̃ww + δiz − γ̃ziγ̃ww

z
. (3.26)

We first note that the spatial metric with SO(D − d) symmetry has the form

γ̃IJ =



γ̃x1x1 · · · γ̃x1xd−1 γ̃xz 0 0 · · · 0
... . . . ... ... ... ... · · · ...

γ̃xd−1x1 · · · γ̃xd−1xd−1 γ̃xd−1z 0 0 · · · 0
γ̃zx1 · · · γ̃zxd−1 γ̃zz 0 0 · · · 0

0 · · · 0 0 γ̃ww 0 . . . 0
0 · · · 0 0 0 γ̃ww . . . 0
... · · · ... ... ... ... . . . ...
0 · · · 0 0 0 0 · · · γ̃ww



, (3.27)

which simplifies the calculation of the inverse metric γ̃AB; see Appendix A.2.
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The constraint equations (3.13), (3.14) become

H = χγ̃mnRmn − ÃmnÃmn + D − 2
D − 1K

2 + η

(
χγ̃wwRww − Ã2

ww

γ̃2
ww

)
−16πρ− 2Λ = 0 , (3.28)

Mi = γ̃mn∂mÃni − Γ̃mÃmi − γ̃mlΓ̃nimÃnl − D − 2
D − 1∂iK − D − 1

2χ Ãmi∂mχ

+ηγ̃ww
(
Ãiz − δizÃww

z
− Γ̃mwwÃmi − 1

2 γ̃
wwÃww∂iγ̃ww

)
− 8πji = 0 .(3.29)

and the BSSN evolution equations (3.15)-(3.19) are now written as

∂tχ = βm∂mχ+ 2
D − 1χ

(
αK − ∂mβ

m − η
βz

z

)
, (3.30)

∂tγ̃ij = βm∂mγ̃ij + 2γ̃m(i∂j)β
m − 2

D − 1 γ̃ij
(
∂mβ

m + η
βz

z

)
− 2αÃij , (3.31)

∂tγ̃ww = βm∂mγ̃ww − 2
D − 1 γ̃ww

(
∂mβ

m − d
βz

z

)
− 2αÃww , (3.32)

∂tK = βm∂mK − χγ̃mnDmDnα + αÃmnÃmn + 1
D − 1αK

2

+ηγ̃ww
(
α
Ã2
ww

γ̃ww
− χDwDwα

)
+ 2
D − 2α {4π[S + (D − 3)ρ] − Λ} , (3.33)

∂tÃij = βm∂mÃij + 2Ãm(i∂j)β
m − 2

D − 1Ãij
(
∂mβ

m + η
βz

z

)
+ αKÃij

−2αγ̃mnÃimÃjn + χ [α(Rij − 8πSij) −DiDjα]TF , (3.34)

∂tÃww = βm∂mÃww − 2
D − 1Ãww

(
∂mβ

m − d
βz

z

)
+ αÃww(K − 2γ̃wwÃww)

+χ [α(Rww − 8πSww) −DwDwα]TF , (3.35)

∂tΓ̃i = βm∂mΓ̃i + 2
D − 1Γ̃i

(
∂mβ

m + η
βz

z

)
+ γ̃mn∂m∂nβ

i + D − 3
D − 1 γ̃

im∂m∂nβ
n

−Γ̃m∂mβi + ηγ̃ww
(
∂zβ

i

z
− δiz

βz

z2

)
+ D − 3
D − 1η

(
γ̃im

∂mβ
z

z
− γ̃iz

βz

z2

)

−Ãim
[
(D − 1)α∂mχ

χ
+ 2∂mα

]
+ 2α

(
Γ̃imnÃmn + ηΓ̃iwwÃww

)
− 16πα

χ
ji

−2D − 2
D − 1αγ̃

im∂mK − σ

[(
∂mβ

m + η
βz

z

)(
Γ̃i − γ̃mnΓ̃imn − ηγ̃wwΓ̃iww

)]
.

(3.36)
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These equations contain a number of auxiliary expressions which are given in terms of
the fundamental BSSN variables by Eq. (3.26) as well as

DiDjα = ∂i∂jα− Γ̃mji∂mα + 1
2χ(∂iχ∂jα + ∂jχ∂iα) − γ̃ij

2χγ̃
mn∂mχ∂nα ,(3.37)

[DiDjα]TF = DiDjα− 1
D − 1 γ̃ij (γ̃mnDmDnα + ηγ̃wwDwDwα) , (3.38)

DwDwα =
(1

2 γ̃
mn∂nγ̃ww + γ̃zm

z
γ̃ww

)
∂mα− 1

2χγ̃wwγ̃
mn∂mχ ∂nα , (3.39)

[DwDwα]TF = 1
D − 1 (d×DwDwα− γ̃wwγ̃

mnDmDnα) , (3.40)

Rij = Rχ
ij + R̃ij , (3.41)

Rww = Rχ
ww + R̃ww , (3.42)

Rχ
ij = 1

2χγ̃ij
[
γ̃mnD̃mD̃nχ+ η

(1
2 γ̃

wwγ̃mn∂nγ̃ww + γ̃mz

z

)
∂mχ

−D − 1
2χ γ̃mn∂mχ ∂nχ

]
+ D − 3

2χ

(
D̃iD̃jχ− 1

2χ∂iχ ∂jχ
)
, (3.43)

Rχ
ww = γ̃ww

2χ

[
γ̃mnD̃mD̃nχ+ (2D − d− 4)

(1
2 γ̃

wwγ̃mn∂nγ̃ww + γ̃mz

z

)
∂mχ

−D − 1
2χ γ̃mn∂mχ ∂nχ

]
, (3.44)

R̃ij = ηγ̃ww
[
−1

2
∂zγ̃ij
z

+ δz(iγ̃j)z − δizδjzγ̃ww
z2 + γ̃wwγ̃z(j − δz(j

z
∂i)γ̃ww

−1
4 γ̃

ww∂iγ̃ww ∂j γ̃ww

]
− 1

2 γ̃
mn∂m∂nγ̃ij + γ̃m(i∂j)Γ̃m

+Γ̃mΓ̃(ij)m + γ̃mn
[
2Γ̃km(iΓ̃j)kn + Γ̃kimΓ̃kjn

]
, (3.45)

R̃ww = −1
2 γ̃

mn∂m∂nγ̃ww + 1
2 γ̃

wwγ̃mn∂mγ̃ww ∂nγ̃ww − η

2 γ̃
ww ∂zγ̃ww

z
+ γ̃ww

Γ̃z
z

+1
2Γ̃m∂mγ̃ww + γ̃zzγ̃ww − 1

z2 , (3.46)

[Rij]TF = Rij − 1
D − 1 γ̃ij γ̃

mnRmn − η

D − 1 γ̃ij γ̃
wwRww , (3.47)

[Rww]TF = 1
D − 1 (d × Rww − γ̃wwγ̃

mnRmn) . (3.48)

The BSSN equations in this form can readily be implemented in an existing “d+1”
BSSN code with the addition of merely two new field variables, γ̃ww and Ãww. While
the BSSN equations acquire additional terms, the computational domain remains d
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dimensional. Furthermore, the entire set of Eqs. (3.28)-(3.48) contains exclusively
derivatives in the xi directions and in time, which can be evaluated without need of
additional grid points, known as ghost zones, in the extra dimensions, which would be
introduced solely for the purpose of evaluating finite difference stencils. Before it was
noted that all terms of the type ∂wa could be rewritten as combinations of terms of the
form ∂xi it was through the use of ghost zones in the additional dimensions that this
technique was implemented. This allowed the use of finite difference stencils to evaluate
derivatives in these extra dimensions without evolving the full spatial slice. This was
the original Cartoon method of which this method is a modification [223, 168].

There only remains one further subtlety arising from the explicit division by z in
several of the terms present. Some (though not all) numerical codes require evaluation
of these expressions at z = 0 which makes regularization of these terms mandatory.
As we show explicitly in Appendix A.2, this can be achieved for all terms, yielding
expressions that are exact in the limit z → 0. The results we discuss in Section 3.5 make
use of these regularized terms on the plane z = 0 demonstrating that this procedure
provides stable and accurate evolutions.

We conclude this section with a brief remark of the matter terms present in (3.28)-
(3.48) in the form of the projections ρ, ji, Sij and S = χ(γ̃ijSij + ηγ̃wwSww) of the
energy-momentum tensor. The specific form of these terms will depend on the physical
system under consideration and will need to be evaluated separately for each case as
will the precise form of the matter evolution equations resulting from the conservation
law ∇AT

AB = 0. Many applications of higher-dimensional numerical relativity concern
BHs and the example application discussed in Section 3.5 will be an asymptotically
flat vacuum spacetime where the matter terms and the cosmological constant are zero.

3.4 SO(2) symmetry

As referenced in our discussion of dimensional reduction by isometry in Section 2.7,
the case of SO(2) symmetry behaves differently to all of the other symmetry classes
we investigate. As there is only one rotational Killing vector in such an axisymmetric
spacetime, any scalar function multiplied by this vector commutes with all of the
Killing vectors, and so Eq. (2.100) no longer implies that tensors with exactly one ϕ
index are identically zero. This is also true for the ϕ component of vectors. In this
symmetry class we cannot generically set any tensor or vector components to zero.
We can however, still evolve a d = D − 2 dimensional grid rather than the full D − 1
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dimensional grid. In practice the full D dimensional BSSN equations are evolved on
a D − 2 dimensional grid, and then the modified Cartoon method is used to rewrite
derivatives with respect to w in terms of derivatives with respect to xi. This formalism
has notably been applied in [133, 107]. Therefore for the case of SO(2) symmetry, we
can still avoid the curse of dimensionality, though we must evolve more grid functions
than in more symmetric cases. For explicit details of the modified Cartoon derivative
terms in SO(2) symmetry, see Appendix C of [114].

3.5 Application to a black-hole collision

In this section we present, as a specific example for the efficacy of the formalism, results
from the numerical simulation of a head-on collision of two non-spinning BHs in D = 7
dimensions starting from rest. We use higher dimensional Brill-Lindquist data of the
type described in Section 2.4 in the Lean code [192, 227], which is based on Cactus
[220, 228] and uses Carpet [219, 218] for mesh refinement. The specific case presented
here has been obtained using SO(4) symmetry, i.e. D = 7, d = 3, for a collision along
the x axis of two equal-mass BHs initially separated by 7.58 Rh, where Rh is the
horizon radius associated with a single BH with µ = µ1 = µ2. The computational
domain consists of a set of seven refinement levels, the innermost two centred on the
BHs and the five outer ones on the origin. We employ standard moving puncture
gauge conditions introduced in Eqs (2.44-2.46) in the first order in time formulation,
with parameter values given below,

∂tα = βm∂mα− 3αK , (3.49)

∂tβ
i = βm∂mβ

i + 3
4Γ̃i − 1

21/4Rh

βi , (3.50)

having initialised lapse and shift to their Minkowski values α = 1, βi = 0. Note that we
use here βa = 0 in accordance with Eq. (A.3). Two simulations have been performed in
octant symmetry with a grid spacing ∆x = Rh/52 and ∆x = Rh/104, respectively, on
the innermost level, that increases by a factor of two on each consecutive level further
out.

Figure 3.2 shows the trajectories of the two BHs evolving in time from the initial
separation through merger into a single hole centred on the origin, obtained from
the high resolution simulation with ∆x = Rh/104. In order to check the consistency
of our numerical formalism, we have also analysed the constraint equations for this
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Fig. 3.2 BH trajectories for an equal-mass head-on collision of two non-spinning holes
initially at rest in D = 7 dimensions. The collision takes place along the x axis.

configuration. A snapshot of the Hamiltonian constraint, Eq. (3.13), along the collision
axis at evolution time t = 80 Rh is shown in Fig. 3.3. In this figure, the result obtained
for the high resolution run has been amplified by a factor of four expected for second-
order convergence. The overlap of the two curves demonstrates convergence at second
order, compatible with the numerical scheme that employs second and fourth-order
accurate discretisation and interpolation techniques. We have performed the same
analysis for the Hamiltonian and momentum constraints at several points in time and
observe the same second-order convergence of both constraints throughout infall and
merger. Note that only one BH is present on the computational domain (at about
x = 2.5 in the figure) because of the octant symmetry. The other BH is represented in
this simulation through the symmetric boundary conditions imposed at x = 0.
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Fig. 3.3 The Hamiltonian constraint along the collision axis obtained for a BH head-on
collision starting from rest using resolution parameters ∆x = Rh/52 (solid, black curve)
and ∆x = Rh/104 (dashed, red curve). The latter has been amplified by a factor of
four corresponding to second-order convergence.

3.6 Conclusions

In the presence of rotational symmetry, the Einstein equations simplify considerably
and the generation of numerical solutions to these equations can be implemented with
significant improvements in computational cost and the required amount of computer
memory. The Cartoon method proposed in [223] was the first technique designed with
the particular goal of efficiently modelling axisymmetric spacetimes in 3+1 numerical
relativity. A modification, often dubbed the modified Cartoon method [133] used
relations between tensor components in place of spatial interpolation operations, which
not only eliminates the need of introducing a few extra grid points in the symmetry
directions, but also allows for a particularly convenient generalisation to an arbitrary
number of spacetime dimensions and number of rotational symmetries [100, 224, 225].

In this work, we have presented in detail the complete set of equations as obtained
for the BSSN formulation of the Einstein equations in D spacetime dimensions with
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SO(D − d) isometry where d ∈ {1, 2, . . . , D − 2}. Furthermore, we note the presence
of extra terms for the case d = D− 2, where the symmetry condition allows for a wider
class of components of tensor densities to remain non-zero. Finally, we have compiled a
list of terms involving division by the quasi-radial coordinate (the z direction in our case)
and illustrate how all irregularities at the origin z = 0 can be cured through equivalence
with manifestly regular expressions. Even though we used the BSSN formulation for
our discussion, the recipes detailed here can be applied straightforwardly to other
popular formulations of the Einstein equations such as the generalised harmonic gauge
[131, 133] or the conformal Z4 [144, 146] systems.

As an example, we have presented results from a head-on collision from rest of two
equal-mass, non-spinning BHs in D = 7 spacetime dimensions. Following a rather slow
acceleration phase, due to the rapid diminishing of the gravitational force with distance,
the two BHs merge and we observe second-order convergence of the constraints. This
confirms in yet another type of application the remarkable robustness observed for
the modified Cartoon method in applications to spinning BHs [100] or high-energy
collisions in D = 5 [112]. This seemingly superior robustness as compared with the
method of reduction by isometry developed in [212] is, at present, empirical but merits
further investigation at the analytic level.



Chapter 4

Higher Dimensional Gravitational
Wave Extraction Using Weyl
Scalars

This chapter, as well as Appendix B, is based on [115], authored in collaboration with
Ulrich Sperhake. The formalism in this chapter was developed by the author and
the calculations were verified by U. Sperhake. The numerical wave extraction code
used to calculate the results shown in this chapter was developed by the author and
independently verified by U. Sperhake.

4.1 Introduction

Gravitational waves entered the limelight with the recent detection of GW150914
[5] which not only constitutes the first observation of a black-hole binary system,
but also marks a true milestone in gravitational physics. This breakthrough has
opened a qualitatively new path for measuring BH parameters [229, 230], testing
Einstein’s theory of general relativity [7] and probing extreme astrophysical objects and
their formation history [6], and substantially broadens the scope of multi-messenger
astronomy [231]. GW modelling, however, finds important applications beyond the
revolutionary field of GW astronomy. Many fundamental questions in general relativity
in D = 4 and D > 4 spacetime dimensions concern the stability of strong-gravity
sources (see [173, 197, 232, 107, 100, 108, 233, 234] and references therein) in the
context of cosmic censorship violation, the solutions’ significance as physical objects or
expanding our understanding of the strong-field regime of general relativity. As we
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have discussed in Section 1.1.1, GW emission represents a channel for mass-energy
loss in ultra-relativistic collisions that are studied in the context of the so-called TeV
gravity scenarios that may explain the hierarchy problem in physics; for further reviews
see e.g. [235, 236].

The calculation of GW signals in the theoretical modelling of D = 4 dimensional
sources in the framework of general relativity has been increasingly well understood
following seminal work by Pirani, Bondi, Sachs and others in the 1950s and 1960s; see
e.g. [237–240, 176, 180, 181] and [241] for a review. Applications are now routinely
found in numerical and (semi-)analytic calculations [242–246, 194, 189, 247, 179, 248]
even though care needs to be taken when applied to numerical simulations on finite
domains [186].

The numerical study of solutions to Einstein’s equations has proven incredibly
useful for understanding the behaviour of black holes and other compact objects.
Most recently, the application of numerical relativity in the generation of gravitational
waveform templates for GW data analysis [249, 248, 250–254] contributed to the above
mentioned detection of GW150914.

The wave extraction techniques presently used in numerical simulations of astro-
physical GW sources can be classified as follows: perturbative methods based on the
formalism developed by Regge, Wheeler, Zerilli and Moncrief [173, 197, 175]; appli-
cation of the quadrupole formula [255] in matter simulations [256, 257]; a method
using the Landau-Lifshitz pseudo-tensor [167, 258] ; Cauchy characteristic extraction
[170, 169, 171]; and, probably the most popular technique, using the Weyl scalars from
the Newman-Penrose formalism [176, 89, 139, 140, 192, 259–261].

The calculation of GWs in higher dimensional relativity requires generalisation of
these techniques to D > 4. The extraction of the GW energy flux from the Landau-
Lifshitz pseudotensor has been generalised straightforwardly to higher dimensions in
[262, 168]. An extension of the Regge-Wheeler-Zerilli-Moncrief formalism for perturba-
tions of spherically symmetric background spacetimes is available in the form of the
Kodama and Ishibashi formalism [198, 263] and forms the basis of the wave extraction
techniques developed in [110, 264], discussed in Section 2.6.3. Even though both of
these methods are in practice applied at finite extraction radius, their predictions
have been found to agree within a ∼ 1 % error tolerance when applied to BH head-on
collisions starting from rest in D = 5 [113]. Recent years have also seen considerable
progress in the understanding of the peeling properties of the Weyl tensor; see [265, 266]
and references therein.
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In particular, Godazgar & Reall [265] have performed a decomposition of the Weyl
tensor in higher dimensions, and derived a generalisation of the Newman-Penrose
formalism for wave extraction to D > 4. This analysis provides us with a quantity
analogous to the Weyl scalar Ψ4, from which we can calculate the energy radiated in
gravitational waves in a similar fashion to the method in D = 4. The one qualitative
difference between the D = 4 and D > 4 cases comes in the availability of a mode
decomposition of the gravitational wave. In the case D = 4 we can project the Weyl
scalar onto spin weighted spherical harmonics, due to the decoupling of the equations
of motion as shown by Teukolsky [267, 185]. In higher dimensions however, a set of
conditions identified as sufficient for decoupling are not satisfied in black hole spacetimes
[268], and so at present we are unable to project out the angular dependence of the
gravitational wave energy. The numerical implementation of this formalism and probing
the accuracy for a concrete example application is the subject of this chapter.

For the simulations presented in this chapter, in which this wave extraction formalism
is implemented, we evolve the D dimensional BSSN equations in effective 3 + 1 form,
using the modified Cartoon formalism as detailed in Chapter 3. The relevant expressions
for the GW computation, however, will be expressed in terms of the Arnowitt-Deser-
Misner [118] variables, and the formalism as presented here can be straightforwardly
applied in other common evolution systems used in numerical relativity.

The chapter is structured as follows. In Section 4.2 we recapitulate the key results
of [265] which sets up the formalism. In Section 4.3 we put the formalism into a form
compatible with the modified Cartoon dimensional reduction of our simulations. In
Section 4.4 we describe the numerical set up used in our simulations, analyse the energy
radiated in BH collisions in D = 6 and compare the predictions with literature results
based on alternative wave extraction techniques.

4.2 Theoretical formalism

Our wave extraction from numerical BH simulations in D > 4 dimensions is based
on the formalism developed by Godazgar & Reall [265, 269, 270]. In this section, we
summarise the key findings and expressions from their work.

The derivation [265] is based on the definition of asymptotic flatness using Bondi
coordinates [181] (u, r, ϕα) where u is retarded time, r the radius and ϕα are D − 2
angular coordinates covering the unit D − 2 sphere. A spacetime is asymptotically
flat at future null infinity [270] if the metric outside a cylindrical world tube of finite
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radius can be written in terms of functions A(u, r, ϕα), B(u, r, ϕα), C(u, r, ϕα) as

ds2 = −AeBdu2 − 2eBdu dr+ r2hαβ(dϕα + Cαdu)(dϕβ + Cβdu) , (4.1)

with dethαβ = detωαβ where ωαβ is the unit metric on the D − 2 sphere. For an
asymptotically flat spacetime hαβ can be expanded as [270]

hαβ = ωαβ(ϕγ) +
∑
s≥0

h
(s+1)
αβ (u, ϕγ)
rD/2+s−1 , (4.2)

and the Bondi news function is obtained from this expansion as the leading-order
correction h

(1)
αβ .

In analogy with the D = 4 case, a null frame of vectors is constructed which is
asymptotically given by 1

l = − ∂

∂r
, k = ∂

∂u
− 1

2
∂

∂r
, m(α) = ∂

∂ϕα
. (4.3)

Note that all the tetrad vectors are real in contrast to the D = 4 dimensional case
where the two vectors m(2) and m(3) are often written as two complex null vectors.
Next, the components of the Weyl tensor are projected onto the frame (4.3) and the
leading order term in the radial coordinate is extracted. Following [265], we denote
this quantity by Ω′ and its components are given by

Ω′
(α)(β) ≡ CABCDk

AmB

(α)k
CmD

(β) = −1
2
êµ(α)ê

ν
(β)ḧ

(1)
µν

rD/2−1 + O(r−D/2) . (4.4)

Here êβ(α) denote a set of vectors forming an orthonormal basis for the unit metric
ωαβ on the D − 2 sphere. In practice, this basis is constructed using Gram-Schmidt
orthonormalisation starting with the radial unit vector.

As with the Newman-Penrose scalar Ψ4 in the four dimensional case, we note that
this is the contraction of the Weyl tensor with the ingoing null vector twice and two
spatial vectors. Whereas in D = 4 the two polarisations of the gravitational waves are

1As in Section 2.6.1, we have freedom in our choice of frame. Again, we choose to construct the
higher dimensional quasi-Kinnersley frame [184, 188] in order to naturally compare our formalism
with the D = 4 case. The error arising from the use of an asymptotic form of the tetrad at finite
extraction radii is mitigated by extracting at various radii and extrapolating to infinity [248] and we
pursue this approach, too, in this work.
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encoded in the real and imaginary parts of Ψ4, here Ω′
(α)(β) is purely real, with the α, β

labels providing the different polarisations. By counting the independent components
of the symmetric, tracefree (D − 2) × (D − 2) matrix Ω′

(α)(β), we obtain D(D − 3)/2
degrees of freedom, which agrees with the number of polarisation states of the graviton
in D dimensions. Equivalently, this is the number of components that determine the D
dimensional metric, D(D + 1)/2, minus D degrees of freedom due to diffeomorphism
invariance, and a further D degrees of freedom from the Bianchi identities.

The final ingredient for extracting the energy radiated in GWs is the rate of change
of the Bondi mass given by [270]

Ṁ(u) = 1
32π

∫
SD−2

ḣ
(1)
αβ ḣ

(1)αβdΩ . (4.5)

By substituting in for ḣ(1)
αβ from the definition of Ω′

(α)(β) we obtain an expression for
the mass loss.

Ṁ(u) = − lim
r→∞

rD−2

8π

∫
SD−2

(∫ u

−∞
Ω′

(α)(β)(ũ, r, ϕγ)dũ
)2
dΩ , (4.6)

where the notation (. . .)2 implies summation over the (α), (β) labels inside the paren-
theses, and dΩ denotes the area element of the D− 2 sphere. In practice, we will apply
Eq. (4.6) at constant radius r, therefore replace retarded time u with “normal” time
t and start the integration at t = 0 rather than −∞, assuming that GWs generated
prior to the start of the simulation can be neglected.

4.3 Modified Cartoon implementation

The formalism summarised in the previous section is valid in generic D dimensional
spacetimes with or without symmetries. We now assume that the spacetime under
consideration obeys SO(D − d) isometry with 1 ≤ d ≤ D − 3, and will derive the
expressions required for applying the GW extraction formalism of Sec. 4.2 to numerical
simulations employing the modified Cartoon method.

Throughout this derivation, we will make use of the expressions for scalars, vectors
and tensors in spacetimes with SO(D − d) symmetry and the regularisation of their
components at z = 0 as listed in Appendix A. The key result of these relations for our
purposes is that the ADM variables α, βI, γIJ , KIJ for a spacetime with SO(D − d)
isometry can be expressed completely in terms of their d dimensional components βi,
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γij and Kij as well as two additional functions γww and Kww according to

βI = (βi, 0) ,

γIJ =
γij 0

0 δabγww

 ,

KIJ =
Kij 0

0 δabKww

 , (4.7)

while the scalar α remains unchanged.
From the viewpoint of numerical applications, the key relations of the procedure

reviewed in Sec. 4.2 are Eqs. (4.4) and (4.6). The first provides Ω′
(α)(β) in terms of the

Weyl tensor and the normal frame, and the second tells us how to calculate the mass
loss from Ω′

(α)(β). The latter is a straightforward integration conveniently applied as
a post processing operation, so that we can focus here on the former equation. For
this purpose, we first note that in practice wave extraction is performed in the wave
zone far away from the sources. Even if the sources are made up of non-trivial energy
matter fields, the GW signal is calculated in vacuum where the Weyl and Riemann
tensors are the same. Our task at hand is then twofold: (i) calculate the Riemann
tensor from the ADM variables and (ii) to construct a null frame. These two tasks are
the subject of the remainder of this section.

4.3.1 The Riemann tensor

The (D − 1) + 1 splitting of the Riemann tensor

To calculate the Riemann tensor, we will start with its projections onto the spatial
hypersurfaces, which we recall are given by the Gauss-Codazzi relations used in the
standard ADM splitting of the Einstein Equations, which we recap here,

⊥RABCD =RABCD +KACKBD −KADKCB, (4.8)
⊥RA0CD ≡ ⊥(RABCDn

B) = −DCKAD +DDKAC, (4.9)
⊥RA0C0 ≡ ⊥(RABCDn

BnD) =⊥RAC + RAC +KKAC −KAEK
E

C

=RAC +KKAC −KAEK
E

C, (4.10)

where in the last line we used the fact that in vacuum RAC and, hence, its projection
vanishes (note, however, that in general RAC ̸= 0 even in vacuum). Furthermore
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DCKAD = ∂CKAD − ΓB
CAKBD − ΓB

CDKAB is the covariant derivative of the extrinsic
curvature defined on the spatial hypersurface, with Christoffel symbols calculated from
the induced metric γAB. Equations (4.8)-(4.10) tell us how to reconstruct the full D
dimensional Riemann tensor from D − 1 dimensional quantities defined on the spatial
hypersurfaces which foliate our spacetime.

From this point on, we will use coordinates adapted to the (D − 1) + 1 split. In
such coordinates, we can replace in Eqs. (4.8)-(4.10) the spacetime indices A, B, . . .
on the left and right-hand side by spatial indices I, J, . . . while the time components
of the spacetime Riemann tensor are taken into account through the contractions with
the unit timelike normal nA and which we denote with the suffix 0 in (4.9), (4.10). Note
that more than two contractions of the Riemann tensor with the timelike unit normal
nA vanish by symmetry of the Riemann tensor.

The Riemann tensor in SO(D − 3) symmetry

The expressions given in the previous subsection for the components of the Riemann
tensor are valid for general spacetimes with or without symmetries. In this section, we
will work out the form of the components of the Riemann tensor in spacetimes with
SO(D − d) isometry for 1 ≤ d ≤ D − 3.

For this purpose we recall the Cartesian coordinate system XI = (xî, z, wa) of
Eq. (2.1), adapted to a spacetime that is symmetric under rotations in any plane
spanned by two of the (z, wa). We discuss in turn how the terms appearing on the
right-hand sides of Eqs. (4.8)-(4.10) simplify under this symmetry. We begin with the
components of the spatial Riemann tensor, given in terms of the spatial metric and
Christoffel symbols by

RIJKL =1
2 (∂L∂IγJK + ∂K∂JγIL − ∂K∂IγJL − ∂L∂JγIK)

− γMNΓN

IKΓM

JL + γMNΓN

ILΓM

JK . (4.11)

The rotational symmetry imposes conditions on the derivatives of the metric, the
Christoffel symbols and the components of the Riemann tensor that are obtained in
complete analogy to the derivation in Section 3.2.2 and Appendix A. We thus calculate
all components of the Riemann tensor, where its indices can vary over the coordinates
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inside and outside the computational domain, and obtain

Rijkl =1
2 (∂l∂iγjk + ∂k∂jγil − ∂k∂iγjl − ∂l∂jγik) − γmnΓnikΓmjl + γmnΓnilΓmjk, (4.12)

Rajkl =0, (4.13)
Riajb =δabRiwjw, (4.14)

Riwjw ≡
∂(iγj)z − δz(j∂i)γww

z
− δz(i

γj)z − δj)zγww
z2 − 1

2∂j∂iγww − γmnΓnijΓmww

− 1
2
∂zγij
z

+ δz(iγj)z − δizδjzγww
z2 + 1

4γ
ww∂iγww∂jγww, (4.15)

Γmww ≡ − 1
2γ

ml∂lγww + δmz − γmzγww
z

, (4.16)

Rabcl =0, (4.17)
Rabcd =(δacδbd − δbcδad)Rwuwu, (4.18)

Rwuwu ≡ − 1
4γ

mn∂mγww∂nγww − γww
γzm

z
∂mγww + γww − γzzγ2

ww

z2 . (4.19)

For the right-hand side of Eq. (4.10), we also need the spatial Ricci tensor which is
obtained from contraction of the Riemann tensor over the first and third index. In
SO(D − d) symmetry, its non-vanishing components are

Rij =γmnRminj + (D − d− 1)γwwRiwjw , (4.20)
Rab =δabRww , (4.21)

Rww ≡γmnRmwnw + (D − d− 2)γwwRwuwu . (4.22)

Note that the last expression, γwwRwuwu, does not involve a summation over w, but
merely stands for the product of γww with the expression (4.19).

The components of the extrinsic curvature are given by Eq. (4.7). Its derivative is
directly obtained from Eqs (A.1 - A.12) in Appendix A and can be written as

DiKjk =∂iKjk − ΓlijKkl − ΓlikKlj , (4.23)
DiKab =δab(∂iKww −Kwwγ

ww∂iγww) , (4.24)

DaKbj =δab
(
Kjz − δjzKww

z
− 1

2Kwwγ
ww∂jγww −KijΓiww

)
. (4.25)

Next, we plug the expressions assembled in Eqs. (4.11)-(4.25) into the Gauss-Codazzi
equations (4.8)-(4.10) where, we recall, early Latin indices A, B, . . . are now replaced
by I, J, . . . following our switch to adapted coordinates. Splitting the index range I
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into (i, a) for components inside and outside the computational domain, and recalling
that an index 0 denotes contraction with n, we can write the resulting components of
the spacetime Riemann tensor as

Rijkl = Rijkl +KikKjl −KilKjk, (4.26)
Ribkd = δbdRiwkw, (4.27)
Riwkw ≡ Riwkw +KikKww, (4.28)
Rabcd = (δacδbd − δbcδad)(Rwuwu +K2

ww), (4.29)
Rajkl = Rabcl = 0, (4.30)
Ri0kl = DlKik −DkKil, (4.31)
Ra0ck = δacRw0wk, (4.32)

Rw0wk ≡ ∂kKww − 1
2γ

wwKww∂kγww − Kkz − δkzKww

z
+ ΓmwwKmk, (4.33)

Ra0cd = Ri0kd = Ra0kl = 0, (4.34)
Ri0j0 = Rij +KKij −KimK

m
j , (4.35)

K = γmnKmn + (D − d− 1)γwwKww, (4.36)
Ra0b0 = δabRw0w0, (4.37)
Rw0w0 ≡ Rww + (K − γwwKww)Kww, (4.38)
Ra0i0 = 0. (4.39)

With these expressions, we are able to calculate all components of the spacetime
Riemann tensor directly from the ADM variables γij, γww, Kij and Kww and their
spatial derivatives. There remains, however, one subtlety arising from the presence
of terms containing explicit division by z. Numerical codes employing vertex centred
grids need to evaluate these terms at z = 0. As described in detail in Appendix B.1,
all the above terms involving division by z are indeed regular and can be rewritten in
a form where this is manifest with no divisions by zero.

4.3.2 The null frame

The null frame we need for the projections of the Weyl tensor consists of D unit
vectors as given in Eq. (4.3): (i) the ingoing null vector kA, (ii) the outgoing null vector
lA which, however, does not explicitly appear in the scalars (4.4) for the outgoing
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gravitational radiation, and (iii) the (D − 2) vectors mA
(α) pointing in the angular

directions on the sphere.
We begin this construction with the D − 2 unit basis vectors on the D − 2 sphere,

mA

(α), and recall for this purpose Eq. (2.4) that relates our spherical coordinates
(r, ϕα) to the Cartesian (xî, z, wa). The set of spatial vectors, although not yet in
orthonormalised form, then consists of a radial vector denoted by m̃(1) and D − 2
angular vectors m̃(α) whose components in Cartesian coordinates XI = (xî, z, wa) on
the computational domain wa = 0 are obtained through the chain rule

m̃(1) = ∂

∂r
= ∂XI

∂r

∂

∂XI
⇒ m̃I

(1) = 1
r

(x1, . . . , xd−1, z, 0, . . . , 0) , (4.40)

m̃(α) = ∂

∂ϕα
= ∂XI

∂ϕα
∂

∂XI
, (4.41)

We can ignore time components here, because our coordinates are adapted to the
space-time split, so that all spatial vectors have vanishing time components and this
feature is preserved under the eventual Gram-Schmidt orthonormalisation. Plugging
Eq. (2.4) into (4.41), we obtain for m̃(α) (after rescaling by r × sinϕ2 × . . .× sinϕα)



−
D−1∑
s=2

(ws)2

w1w2

...

...

...

...
w1wD−1


︸ ︷︷ ︸

=m̃I
(2)

, . . . ,



0
...
0

 (α− 2)×

−
D−1∑
s=α

(ws)2

wα−1wα

...
wα−1wD−2

wα−1wD−1


︸ ︷︷ ︸

=m̃I
(α)

, . . . ,



0
...
...
...
0

−(wD−2)2 − (wD−1)2

wD−3wD−2

wD−3wD−1


︸ ︷︷ ︸

=m̃I
(D−2)

,



0
...
...
...
0

0

−(wD−1)2

wD−2wD−1


︸ ︷︷ ︸

=m̃I
(D−1)

.

(4.42)
In D = 4 dimensions, these vectors, together with m̃(1) of Eq. (4.40) would form the
starting point for Gram-Schmidt orthonormalisation; see e.g. Appendix C in [192].
In D ≥ 5 dimensional spacetimes with SO(D − d) symmetry, however, we face an
additional difficulty: on the computational domain wa = 0, all components of the
vectors m̃(d+1), . . . , m̃(D−1) vanish and their normalisation would result in divisions of
zero by zero. This difficulty is overcome by rewriting the Cartesian components of the
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vectors in terms of spherical coordinates and then exploiting the freedom we have in
suitably orienting the frame. The details of this procedure are given in Appendix B.2
where we derive a manifestly regular set of spatial vectors given by

m̃A

(1) = (0 | x1, . . . , xd | 0, . . . , 0) , (4.43)
m̃A

(2) = (0 | − ρ2
2, x

1x2, x1x3, . . . , x1xd | 0, . . . , 0) , (4.44)
· · · · · ·

m̃A

(α̂) = (0, | 0, . . . , 0︸ ︷︷ ︸
(α̂−2)×

, − ρ2
α̂, x

α̂−1xα̂, . . . , xα̂−1xd | 0, . . . , 0) , (4.45)

· · · · · ·

m̃A

(d) = (0, | 0, . . . , 0︸ ︷︷ ︸
(d−2)×

, − xd, xd−1 | 0, . . . , 0) , (4.46)

m̃A

(d+1) = (0 | 0, . . . , 0︸ ︷︷ ︸
d×

| 1, 0, . . . , 0) , (4.47)

· · · · · ·

m̃A

(D−1) = (0 | 0, . . . , 0︸ ︷︷ ︸
d×

| 0, . . . , 0, 1) , (4.48)

where ρI = ∑D−1
s=I (ws)2, we have restored, for completeness, the time component and

the vertical bars highlight the three component sectors: time, spatial on-domain, and
spatial off-domain. Equations (4.47)-(4.48) can, of course, be conveniently written in
short-hand notation as m̃A

(a) = δAa. For the special case d = 3, the vectors are given by

m̃A

(1) = (0 | x, y, z | 0, . . . , 0) , (4.49)
m̃A

(2) = (0 | − y2 − z2, xy, xz | 0, . . . , 0) , (4.50)
m̃A

(3) = (0 | 0, − z, y | 0, . . . , 0) , (4.51)
m̃A

(4) = (0 | 0, 0, 0 | 1, 0, . . . , 0) , (4.52)
· · · · · · (4.53)

m̃A

(D−1) = (0 | 0, 0, 0 | 0, . . . , 0, 1) , (4.54)

The next step is to orthonormalise these vectors. Clearly the vectors mA
(a) with

components in the wa dimensions are normalised by:

mA
(a) = 1

√
γww

δA
a (4.55)
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For the remaining d vectors given by Eqs. (4.43)-(4.46) or, for d = 3, the spatial
triad consisting of the three vectors (4.49)-(4.51), we use standard Gram-Schmidt
orthonormalisation. Note that under this procedure the components outside the
computational domain of these vectors remain zero and can therefore be ignored.

The final element of the null frame we need is the ingoing null vector, which we
call kA. Given in [265] as ∂/∂u − 1

2∂/∂r asymptotically, we transform out of Bondi
coordinates, sending (u, r) → (t, r) and furthermore use the freedom of rescaling this
null vector by applying a constant factor of2

√
2

kA = 1√
2
(
nA −mA

(1)

)
(4.56)

Expressing the timelike unit normal field nA in terms of our gauge variables α, βI we
find

kA = 1√
2

(
1
α
,−βI

α
−mI

(1)

)
, (4.57)

where βI = (βi, 0, . . . , 0), mI

(1) = (mi
(1), 0, . . . , 0). This result provides the ingoing

null vector for any choice of d and is the version implemented in the code.

4.3.3 The projections of the Weyl tensor

Finally, we calculate the projections of the Weyl tensor that encode the outgoing
gravitational radiation

Ω′
(α)(β) = RABCDk

AmB

(α)k
CmD

(β) , (4.58)

[cf. Eq. (4.4)] where kA is given by Eq. (4.57) and the normal frame vectorsm(2), . . . , m(D−1)

are those obtained from Gram-Schmidt orthonormalising the right-hand sides of
Eqs. (4.43)-(4.48).

We first note that Ω′
(α)(β) is symmetric in α ↔ β, so contractions solely with

m(2), . . . , m(d) will result in d(d − 1)/2 components Ω′
(α̂)(β̂). For the special case

d = 3, we obtain the three components Ω′
(2)(2), Ω′

(2)(3), Ω′
(3)(3). The null vector k has

vanishing w components and from Eqs. (4.26)-(4.39) we see that all components of
the Riemann tensor where an odd number of indices is in the range a, b, . . . are zero.
The only non-vanishing terms involving the Riemann tensor with off-domain indices
a, b, . . ., therefore, have either four such indices or two and contain a Kronecker delta
δab; cf. Eqs. (4.27), (4.29), (4.32), (4.37). As a consequence, the mixed components

2The convention we adopt here is more common (though not unanimous) in numerical relativity.
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Ω′
(α̂)(a) = 0 and the purely off-domain components Ω′

(a)(b) ∝ δab. The list of all
non-vanishing components Ω′

(α)(β) is then given by

Ω′
(α̂)(β̂) = 1

4
[
R0k0lm

k
(α̂)m

l
(β̂) −Rmk0lm

m
(1)m

k
(α̂)m

l
(β̂) −R0kmlm

k
(α̂)m

m
(1)m

l
(β̂)

+Rmknlm
m
(1)m

k
(α̂)m

n
(1)m

l
(β̂)

]
, (4.59)

Ω′
(a)(b) = δab Ω′

(w)(w) , (4.60)

Ω′
(w)(w) = 1

4γww

[
Rw0w0 −Rw0wkm

k
(1) −Rw0wlm

l
(1) +Rwkwlm

k
(1)m

l
(1)

]
, (4.61)

where α̂, β̂ = 2, . . . , d and all components of the Riemann tensor on the right-hand
sides are listed in the set of Eqs. (4.26)-(4.39). In particular, the components Rw0w0,
Rw0wk and Rwkwl, which contain indices in the off-domain directions, are obtained from
Eqs. (4.38), (4.33) and (4.28), respectively and thus derived directly from quantities
computed in the simulation (the γij, Kij, γww and Kww that appear on the right-hand
sides of these equations or enter in the calculation of the spatial Riemann tensor). It
should be noted here that Ω′

(α)(β) is trace free, and so Ω′
(w)(w) can be calculated from

the diagonal terms Ω′
(2)(2), . . .Ω′

(d)(d). In a numerical simulation, the components of
Ω′

(α)(β) are calculated as functions of time and then can be integrated according to
Eq. (4.6) to extract the amount of energy radiated in gravitational waves.

4.3.4 SO(2) symmetry

In the axisymmetric case d = D − 2 there exists only one w direction (off domain).
As discussed in Section 4 of [114], and briefly above in Section 3.4, we keep all tensor
components as we would in the absence of symmetry, and the modified Cartoon method
and, thus, the rotational symmetry, only enters in the calculation of spatial derivatives
in the w direction. For SO(2) symmetry, the extraction of gravitational waves therefore
proceeds as follows.

• All components of the ADM metric and extrinsic curvature are extracted on the
D − 2 dimensional computational domain.

• The spatial Riemann tensor and its contractions are directly evaluated using
Eq. (4.11) with the relations of Appendix C in [114] for off-domain derivatives.
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• The necessary components of the spacetime Riemann tensor and its projections
onto the timelike unit normal are evaluated through Eqs. (4.8)-(4.10).

• The null frame is constructed as detailed in Sec. 4.3.2, simply setting d = D − 2.

• All the projections of the Weyl tensor onto the null frame vectors are obtained
from Eq. (4.59), but now covering the entire range of spatial indices

Ω′
(α)(β) = 1

4
[
R0K0Lm

K

(α)m
l
(β) −RMK0Lm

M

(1)m
K

(α)m
L

(β) −R0KMLm
K

(α)m
M

(1)m
L

(β)

+RMKNLm
M

(1)m
K

(α)m
N

(1)m
L

(β)

]
. (4.62)

Note that with the existence of more components of the Riemann tensor, more projec-
tions of the Weyl tensor now exist, specifically cross-terms such as Ω′

(2)(w). This can be
seen straightforwardly by using SO(2) modified Cartoon terms from appendix C of
[114] and the expressions for the full and spatial Riemann tensor given in Eqs. (4.8) and
(4.11). For example, we can see that a component such as Rwijk is non-zero. This will
contribute to terms of the form Ω′

(α̂)(w). As already emphasised in [114], the key gain
in employing the modified Cartoon method for simulating axisymmetric spacetimes
does not lie in the elimination of tensor components, but in the dimensional reduction
of the computational domain.

4.4 Numerical simulations

In the remainder of this work, we will implement the specific version of the wave
extraction for d = 3 and D = 6 and simulate head-on collisions of equal-mass, non-
spinning BHs starting from rest. We will calibrate the numerical uncertainties arising
from the numerical discretisation of the equations (fourth order in space and time
and second order at the outer and refinement boundaries), the use of large but finite
extraction radii and also consider the dependency of the results on the initial separation
of the BHs. This type of collisions has already been studied by Witek et al. [113] who
calculate the GW energy using the Kodama-Ishibashi formalism, which enables us to
compare our findings with their values.
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4.4.1 Code infrastructure and numerical set-up

We perform evolutions using the LEAN code [192, 227] which is based on CACTUS
[220, 228] and uses CARPET [219, 218] for mesh refinement. The Einstein equations
are implemented in the BSSN formulation with the modified Cartoon method employed
to reduce computational cost. For the explicit equations under the SO(D−3) symmetry
that we use, see Section 3.3.2 with parameter d = 3. Without loss of generality, we
perform collisions along the x-axis, such that the centre-of mass is located at the origin
of the grid, and impose octant symmetry.

We specify the gauge in terms of the “1+log” and “Γ driver” conditions for the
lapse function and shift vector, as given by Eqs (2.44 - 2.46) with parameter values
given by

∂tα =βm∂mα− 2αK , (4.63)

∂tβ
i =βm∂mβi + 1

4Γ̃i − 1
21/3Rh

βi , (4.64)

with initial values α = 1, βi = 0.
The BH initial data is calculated using the higher dimensional generalisation of

Brill-Lindquist data [154, 271] described in Section 2.4 As mentioned above, we place
the BHs on the x axis in the centre-of-mass frame, so that in the equal-mass case,
we have X1

N = ±x0 in Eq. (2.43). Our initial configuration is therefore completely
specified by the initial separation which we measure in units of the horizon radius Rh of
a single BH. The BH mass and the radius Rh are related through the mass parameter
µ given by Eq. (2.42).

The computational domain used for these simulations consists of a set of eight
nested refinement levels which we characterise in terms of the following parameters: (i)
the resolution h on the innermost level which gets coarser by a factor of two on each
consecutive outer level, (ii) the size L of the domain which describes the distance of
the outermost edge from the origin, and (iii) the resolution H on the refinement level
where the gravitational waves are extracted.

For each simulation, we calculate the Ω′
(α)(β) on our three dimensional computational

grid and project them onto a two dimensional array representing a spherical grid at
fixed coordinate radius. The data thus obtained on the extraction sphere are inserted
into Eq. (4.6). The Ω′

(α)(β) are scalars and so in our angular coordinate system do not
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depend on ϕ4, . . . , ϕD−1, so the integral over the sphere in (4.6) can be simplified:

Ṁ(u) = − lim
r→∞

rD−2

8π AD−4

∫ π

0

∫ π

0
I[Ω′2] sinD−3(ϕ2) sinD−4(ϕ3) dϕ3dϕ2 , (4.65)

where I[Ω′2] ≡
(∫ u

−∞ Ω′
(α)(β)dũ

)2
. A final integration over time of the variable Ṁ then

gives the total radiated energy.

4.4.2 Numerical results

We begin our numerical study with an estimate of the uncertainty in our GW estimates
arising from the discretisation of the equations. For this purpose, we have evolved
two BHs initially located at at x = ±x0 = ±4.0 Rh using a computational grid of size
L = 181 Rh and three resolutions h1 = Rh/50.8, h2 = Rh/63.5 and h3 = Rh/76.2 which
corresponds to H1 = Rh/2.12, H2 = Rh/2.65 and H3 = Rh/3.17 in the extraction zone.

We measure the radiated energy in units of the total ADM mass of the spacetime,
which for Brill-Lindquist data is given by Eq. (2.42) with µ ≡ µ1 + µ2, the mass
parameters of the initial BHs. The radiated energy as a function of time is shown in
the upper panel of Fig. 4.1. The radiation is almost exclusively concentrated within
a window of ∆t ≈ 20 Rh around merger. During the infall and the post-merger
period, in contrast, Erad remains nearly constant. In comparison with collisions in
D = 4 dimensions, we find the burst of spurious (colloquially referred to as “junk”)
radiation significantly weaker, presumably because the Brill-Lindquist data in higher
D more closely represent two black holes in isolation due to the higher fall-off rate
of the gravitational interaction. By comparing the high-resolution result with that
obtained for the coarser grids, we can test the order of convergence. To leading order,
the numerical result fh for some variable obtained at finite resolution h is related
to the continuum limit solution f by f = fh + O(hn), where n denotes the order of
convergence. By evaluating the quotient

Qn = fh1 − fh2

fh2 − fh3

= (h1/h2)n − 1
1 − (h3/h2)n

, (4.66)

we can then plot the two differences fh1 − fh2 and fh2 − fh3 and test whether their
ratio is consistent with a given value n. The results for our study are shown in the
lower panel of Fig. 4.1 which demonstrates that our numerical results converge at
fourth order. The discretisation error of the total radiated energy is then obtained as
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Fig. 4.1 Upper panel: Radiated energy as a function of time obtained for the highest
resolution h3 = Rh/76.2 (solid curve) and Richardson extrapolated to infinite resolution
assuming fourth-order convergence (dashed curve). The curves are nearly on top of
each other and we plot in the lower half of the panel their difference to show the level
of agreement. Lower panel: Convergence plot for the radiated energy Erad extracted at
rex = 50.4 Rh from an equal-mass collision of two non-spinning BHs in D = 6 starting
from a separation 8 Rh. The results shown have been obtained using resolutions
h1 = Rh/50.8, h2 = Rh/63.5 and h3 = Rh/76.2. The difference in radiated energy
between the medium and high-resolution simulations has been rescaled by a factor
Q4 = 2.784 expected for fourth-order convergence.
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the difference between the finite resolution result and that predicted by Richardson
extrapolation (see upper panel in the figure). We obtain for the high-resolution case a
total radiated energy Erad = 8.19 × 10−4 MADM with a discretisation error of ∼ 0.4 %,
but note that the error in the cumulative energy peaks at a larger value of a few %
during the sharp increase of Erad(t) marking the merger phase.

A second source of error arises from the extraction at finite radius. Following
standard practice (see e.g. [248]), we estimate this uncertainty by extracting the
GW energy at a set of seven or eight finite radii in the range 40 Rh to 110 Rh and
extrapolating these values assuming a functional dependency

Erad(r) = Erad(∞) + a

r
+ O

( 1
r2

)
, (4.67)

where a is a coefficient obtained through the fitting of the numerical data. By applying
this procedure, we estimate the uncertainty due to the extraction radius at 0.2 % at
Rex = 110 Rh and 0.4 % at Rex = 60 Rh.

An independent check of our results is available in comparing the radiated energy
with the predictions of the perturbative extraction method [110] based on the Kodama-
Ishibashi formalism. For this purpose, we have calculated using h3 = Rh/76.2 the
gravitational-wave energy radiated in the quadrupole mode as predicted by the Kodama-
Ishibashi formalism. Contributions from higher-order multipoles are negligible for
this comparison; for odd l they vanish completely by symmetry and for even l up to
l = 8 they are well below the numerical uncertainty budget. This quadrupole energy is
compared with the result obtained from the Weyl tensor in Fig. 4.2. The difference for
the total radiated energy is about 0.3 %, though a larger temporary discrepancy for
Erad as a function of time is encountered during the steep increase at merger, up to a
few %. This discrepancy is within the error budget of the two extraction methods.

Finally, we have measured the dependency of the total radiated energy on the
initial separation of the BHs. In addition to the simulations discussed so far, we
have performed high-resolution simulations placing the BHs at x0 = ±7.8 Rh and
x0 = ±12.8 Rh. We have found very small variations at a level of 0.1 % in the radiated
energy for these cases, well below the combined error budget obtained above. Compared
with collisions in D = 4 dimensions (see e.g. Table II in [192]), Erad shows significantly
weaker variation with initial separation in D = 6. We attribute this to the more
rapid fall-off of the force of gravity in higher dimensions leading to a prolonged but
dynamically slow infall phase which generates barely any GWs.
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Fig. 4.2 Gravitational wave energy Erad as a function of time using h3 = Rh/76.2 and
extracted at rex = 50.4 Rh for the D = 6 equal-mass head-on collision. The prediction
by the new formalism is compared with that of the Kodama-Ishibashi formalism for
the quadrupole mode (the higher-order multipoles provide negligible contributions in
this case). The bottom panel shows the differences between the two curves.
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In summary, we find the total energy radiated in gravitational waves in a head-on
collision of two equal-mass, non-spinning BHs to be

Erad = (8.19 ± 0.05) × 10−4 MADM , (4.68)

in excellent agreement with the value (8.1 ± 0.4) × 10−4 reported in the independent
study by [113] using dimensional reduction by isometry and the Kodama-Ishibashi
formalism.

4.5 Conclusions

The extraction of gravitational waves from numerical simulations is one of the most
important diagnostic tools in studying the strong-field dynamics of compact objects in
four as well as higher dimensional spacetimes. In this work we have formulated the Weyl
tensor based wave extraction technique of Godazgar & Reall [265] – a higher dimensional
generalisation of the Newman-Penrose scalars – in a form suitable for numerical
simulations of D > 4 dimensional spacetimes with SO(D−d), 1 ≤ d ≤ D−2, symmetry
employing the modified Cartoon method. The only prerequisite for implementing our
formalism is the availability of the ADM variables on each spatial hypersurface of
the effective computational domain. These are constructed straightforwardly from all
commonly used numerical evolution systems such as BSSN, generalised harmonic or
conformal Z4.

The recipe for extracting the GW signal then consists of the following steps.

(1) Computation of the on and off-domain components of the spatial Riemann tensor
(which equals the Weyl tensor in the vacuum extraction region) and the derivative
of the extrinsic curvature according to Eqs. (4.12)-(4.25).

(2) Reconstruction of the components of the spacetime Riemann tensor as well as its
contractions with the unit timelike normal from the quantities of the previous step
according to Eqs. (4.26)-(4.39).

(3) Construction of the null-frame vectors through Gram-Schmidt orthonormalising
the expressions of Eqs. (4.43)-(4.48) and then using (4.57) for the ingoing null
vector.

(4) Calculation of the projections Ω′
(α)(β) of the Weyl tensor onto the null frame vectors

using Eqs. (4.59)-(4.61).
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(5) Calculation of the energy flux in GWs through Eq. (4.6) and integration in time
of the flux to obtain the total radiated energy.

The most common case of modelling higher dimensional spacetimes with rotational
symmetries is the case of d = 3 effective spatial dimensions which allows for straight-
forward generalisation of existing codes (typically developed for 3+1 spacetimes) and
also accommodates sufficiently complex dynamics to cover most of the important
applications of higher dimensional numerical relativity. We have, for this purpose,
explicitly given the specific expressions of some of our relations for d = 3 where these
are not trivially derived from their general counterparts.

For testing the efficacy and accuracy of this method, we have applied the wave
extraction to the study of equal-mass, non-spinning head-on collisions of BHs starting
from rest in D = 6 using d = 3. We find these collisions to radiate a fraction
(8.19 ± 0.05) × 10−4 of the ADM mass in GWs, in excellent agreement with a previous
study [113] employing a perturbative extraction technique based on the Kodama-
Ishibashi formalism. We find this energy to be essentially independent of the initial
separation which we have varied from 8.0 to 15.6 and 25.6 times the horizon radius
of a single BH. We attribute this result to the higher fall-off rate of the gravitational
attraction in higher dimensions and the correspondingly slow dynamics during the
infall stage.

We finally note that the Weyl tensor based wave extraction ideally complements
the perturbative extraction technique of the Kodama-Ishibashi formalism. The latter
provides the energy contained in individual (l,m) radiation multipoles but inevitably
requires cutoff at some finite l. In contrast, the Ω′

(α)(β) facilitate calculation of the
total radiation, but without multipolar decomposition. It is by putting both extraction
techniques together, that we obtain a comprehensive description of the entire wave
signal. Future applications include the stability of highly spinning BHs and their
transition from unstable to stable configurations, the wave emission in evolutions of
black rings and an extended study of higher dimensional BH collisions over a wider
range of dimensionality D, initial boosts and with non-zero impact parameter. These
studies require particularly high resolution to accurately model the rapid fall-off of
gravity, especially for D ≫ 4, and are therefore beyond the scope of the present study.
However, the foundation for analysing in detail the GW energy emission in these and
many more scenarios is now available in as convenient a form as in the more traditional
3+1 explorations of numerical relativity.





Chapter 5

Head-on Black Hole Collisions

This chapter is based on [116], authored in collaboration with Ulrich Sperhake,
Emanuele Berti and Vitor Cardoso. Almost all of the numerical simulations of black
hole mergers were performed by the author, with the wave extraction code developed in
[115] with U. Sperhake, described in Chapter 4. The fitting of the data was performed
by E. Berti and V. Cardoso.

5.1 Introduction

The purpose of this chapter is to extend previous results on the low-energy collision of
BHs to higher dimensions. This effort was started a few years ago [111, 113], but a
combination of gauge issues and difficulties in the regularization of variables in the
dimensional reduction method used, the dimensional reduction by isometry of Section
2.7, generated numerical instabilities, restricting all binary BH simulations to D ≤ 6
spacetime dimensions. Building on earlier work [133, 168] on the so-called modified
Cartoon method, our previously presented simulations in Chapters 3, 4 have not shown
these instabilities. Also, in contrast to earlier works on this subject, we have at our
disposal the new wave extraction tool developed in Chapter 4.

Using these methods, we present new results for the collision of unequal-mass
BH binaries in D = 4, 5, . . . , 10 dimensions, and compare these with perturbative
predictions. We expect our results to also allow for making contact with the large-D
regime studied by Emparan and collaborators.
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5.1.1 General relativity in the large D limit

Let us briefly introduce the aspects of the large D regime that we will make reference
to in this chapter. In a sequence of papers Emparan and collaborators have taken the
number of dimensions D as a free parameter in the theory of GR, and investigated the
effects of sending it to infinity [16–19, 272, 273]. For the purpose of this chapter we
will focus on their results on the behaviour of the quasinormal modes of a black hole
in the large D limit. We focus particularly on the results of [272], and the numerical
results of [102]. In the large D limit, it was shown in [16] that there are two important
length scales associated to a black hole spacetime. As expected the horizon radius
Rh provides one, but due to the large gradients present around the horizon, a shorter
length scale Rh/D also becomes apparent. Clearly in the large D limit, there is a
hierarchy between these scales. Qualitatively we can understand the large gradients
by looking at the fall off of the gravitational potential, which decays proportional to
∼ (Rh/r)D−3, which clearly becomes a sharper fall off as D increases. As a result, it
can be shown that in the large D limit, the radial gradient of the gravitational potential
at the horizon is ∼ D/Rh [16]. Consequently in the large D limit a Schwarzschild black
hole spacetime simply looks like flat Minkowski space, until one approaches within
r−Rh ≲ Rh/D of the black hole horizon, where these large gradients become apparent.
In [272] the quasinormal modes of black holes in the large D limit were studied, with
two separate families being identified, called “non-decoupling” and “decoupling” modes.
These families are separated by their frequencies, which scale respectively with the two
length scales, D/Rh and 1/Rh. In order to find these quasinormal modes, we must
solve the equation for the Kodama-Ishibashi master function, Φ [198],

(
d2

dr2
∗

+ ω2 − V

)
Φ = 0, (5.1)

where r∗ is a radial coordinate, ω is the frequency of the wave, and V is a radial
potential function. As can be seen in Figures 1-3 of [272], in the large D limit, the
radial potential V has a barrier outside the horizon which scales with D2/R2

h. Waves
whose frequencies scale with 1/Rh cannot tunnel through this barrier, and so to satisfy
the boundary conditions of quasinormal modes, they must lie within the region between
the potential barrier and the horizon. These modes are therefore named decoupling
modes. The non-decoupling modes however, with frequencies that scale with D/Rh

can penetrate this barrier, and extend out to asymptotic infinity.
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In [102] the Kodama-Ishibashi master function was solved for and the quasinormal
modes calculated numerically (with the two families of modes called saturating (de-
coupling) which do not scale with D, and non-saturating (non-decoupling), which do
scale with D). The values found agreed closely with those calculated using the analytic
predictions in the large D limit as discussed in [272].

5.2 Modelling framework

The physical scenario we consider in this work consists of two D dimensional, nonspin-
ning BHs with masses M1 and M2 ≤ M1 initially at rest, which then collide head-on
under their gravitational attraction and merge into a single BH. The gravitational radi-
ation released during the encounter of the two BHs, and its total energy and momentum
in particular, is the key diagnostic quantity we wish to extract from our calculations.
For this purpose, we employ two techniques: (i) a perturbative point-particle (PP)
approximation, and (ii) numerical relativity simulations assuming SO(D − 3) isometry.
In this section we review these two methods in turn.

5.2.1 Point-particle calculations

The first attempt at understanding this process considers a somewhat restricted
parameter space: one of the BHs is much more massive than the other, i.e. q ≡
M2/M1 ≪ 1 or

η ≡ M1M2

(M1 +M2)2 = q

(1 + q)2 ≪ 1 , (5.2)

where η is the symmetric mass ratio. The smaller, lighter BH is then approximated as
a structureless PP, moving on a geodesic of the background spacetime described by the
massive BH, while generating a stress-energy tensor which perturbs it. This scheme is
also sometimes known as the PP approximation. In such a framework, the resulting
equations to solve are just linearised versions of the Einstein equations, expanded
around a BH-background spacetime [173, 174, 274, 198, 201, 275]. When the massive
BH is nonspinning, the equations reduce to a single second order ordinary differential
equation for the Kodama-Ishibashi master function sourced by the smaller BH (the
PP). The source term of this wave like equation, as provided by the energy-momentum
tensor of the PP can be found in [275], based on the calculation for a massless particle
in [201]. In this scheme, to leading order, the total energy Erad ∝ q2 as shown by
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D 4 5 6 7 8
Erad
q2M

0.0104 0.0165 0.0202 0.0231 0.0292
Table 5.1 Energy radiated in GWs when a small BH of mass qM1, q ≪ 1 falls from
rest at infinity into a D-dimensional BH of mass M1.

post-Newtonian calculations [262, 276, 201]. The exact coefficient was computed in
[274, 201, 275] for particles falling radially into the BH.

Table 5.1 summarises those results for different spacetime dimensions. Note that
the proportionality coefficient increases with spacetime dimension at large D. An
extrapolation of these results suggests that the perturbative PP calculation should
cease to be valid at sufficiently large D, since the radiation ultimately becomes too
large and the geodesic approximation breaks down: cf. the discussion around Fig. 1 of
[275]. Thus, even within the PP approximation, we identify the need to solve the full,
nonlinear Einstein equations at large D.

5.2.2 Numerical framework

To solve the fully non-linear problem of colliding two black holes, we use our numerical
relativity code to solve the full Einstein equations. Specifically, as in Chapter 4, we
use the Lean code [192, 227], originally developed for BH simulations in D = 4
dimensions and upgraded to general D spacetime dimension with SO(D − 3) isometry
in [212, 114]. We use the Baumgarte-Shapiro-Shibata-Nakamura [137, 136] formulation
of the Einstein equations, combined with the moving puncture [139, 140] gauge and
Berger-Oliger mesh refinement provided by Carpet [218, 219] as part of the Cactus
computational toolkit [228, 220]. In order to calculate the GW signal, we compute the
higher-dimensional Weyl scalars, as detailed in the previous chapter. For comparison
and to determine the contributions of the individual multipoles, we also extract
waveforms calculated with the perturbative Kodama-Ishibashi approach [198, 263] as
detailed in [110] and Section 2.6.3.

When simulating the more extreme cases, that is cases for the largest values of D
and the smallest values of q, we find it necessary to implement two changes to achieve
accurate and stable evolutions. First, we evolve the lapse function α according to

∂tα = βi∂iα− c1αK
c2 , (5.3)
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where βi is the shift vector and K the trace of the extrinsic curvature; the slicing
condition typically used in moving puncture simulations is recovered for c1 = 2, c2 = 1 –
cf. Eq. (2.44) in Section 2.5 – but here we vary these parameter in the ranges 2 ≤ c1 ≤ 10
and 1 ≤ c2 ≤ 1.5. The exact values vary from configuration to configuration and
have been determined empirically. We identify this modification empirically, with
the justification that we expect a slower evolution of the lapse in regions of large
extrinsic curvature, near to the black hole, to be helpful for numerical stability due
to the formations of the larger gradients as we increase D. As far as we are aware,
no thorough study has been made of gauge conditions in higher dimensional BSSN
evolutions, and this would be an interesting area to explore in the future. The second
modification is an approximately linear reduction of the Courant factor ∆t/∆x as a
function of D from 0.5 in D = 4 to 0.03 in D = 10. We shall see in Fig. 5.2 and its
discussion in Sec. 5.3.2 that the merger becomes an increasingly instantaneous event
with an ever sharper burst in radiation as we increase D. We believe the necessity of
reducing the Courant factor to arise from this increasing demand for time resolution
around merger. All of these difficulties can be encapsulated in the dimension dependent
nature of the fall off of the gravitational field. As D increases, the size of the gradients
created near the black holes increase, thus requiring more resolution in both the spatial
and time domains in these situations.

5.3 Results

In our results below, we measure energy in units of the ADM mass M of the spacetime
under consideration, and we measure length and time in units of the Schwarzschild
radius Rh associated with this ADM mass according to Eq. (2.42). We note that due
to this equation mass and length do not have the same physical dimensions, unless
D = 4.

5.3.1 Numerical uncertainties

Our numerical relativity results for the GW energy released in head-on collisions of
BHs are affected by the following uncertainties:

Discretisation error. We estimate the error due to finite grid resolution by studying
a head-on collision of two BHs in D = 8 dimensions with mass ratio q = 1/20. We use
a computational grid composed of 8 nested refinement levels, 2 inner boxes initially
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Fig. 5.1 Convergence plot for the radiated energy Erad extracted from a q = 1/20
head-on collision in D = 8 at 40 Rh as a function of time for grid spacing h1 = Rh/113,
h2 = Rh/129 and h3 = Rh/145. The difference between the high and medium resolution
simulations has been scaled by a factor Q4 = 1.88 expected for fourth-order convergence
and agrees well with the difference of the coarse and medium resolution energies.

centred on the individual holes, and 6 outer levels centred on the origin. The grid
spacing around the BHs is h1 = Rh/113, h2 = Rh/129 and h3 = Rh/145, respectively,
in our three simulations for checking convergence, and increases by a factor 2 on each
consecutive outer level. The radiated energy as a function of time is extracted at 40 Rh,
where the grid resolution is Hi = 32hi for the three runs i = 1, 2, 3. The difference
between the high and medium resolution runs is compared with that between the
medium and coarse resolution runs in Fig. 5.1. Multiplying the former by a factor
Q4 = 1.88 (as expected for the fourth-order discretisation of the code) yields good
agreement between the two curves, and using the according Richardson-extrapolated
result gives an error estimate of 3 % for the medium resolution simulation, which is
closest to our set of production runs in terms of resolution around the smaller BH and
in the wave extraction zone.
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We have analysed several other configurations (including the collision in D = 10
dimensions) and find the discretisation error to mildly increase with mass ratio and
dimensionality D, from about 1 % for q = 1, D = 5, 6 to about 4 % for q = 1, D = 10
and about 5 % for q ≪ 1, D = 8.

Finite extraction radius. The computational domain used in our simulations is of
finite extent, about 200 Rh for the runs analysed here, so that we cannot extract the
GW signal at infinity. Instead we use finite radii and estimate the uncertainty incurred
through this process by fitting the total radiated energy using a polynomial in 1/rex,

Erad(rex) = Erad + a

rex
+ O

(
1
r2

ex

)
, (5.4)

where a is a parameter determined through fitting and Erad is the estimate for the
radiated energy extracted at infinity. We then take the extrapolated value at infinity
as our result, and its difference from the largest numerical extraction radius as the
uncertainty estimate. Applying this procedure yields a fractional error ranging from
about 0.4 % for all equal-mass collisions to about 4 % for configurations with q ≪ 1.

Spurious waves. Initial data of the type used here typically contain a small amount of
unphysical GWs colloquially referred to as “junk radiation”. The amount of unphysical
radiation depends on the initial separation of the BHs (vanishing in the limit of infinite
distance) and on the number of dimensions. As in Chapter 4, we find the amount of
spurious radiation to be orders of magnitude below the errors due to discretisation and
extraction radius. We attribute this to the rapid falloff of gravity in higher dimensions,
so that the constituent BHs of the Brill-Lindquist data are almost in isolation even
for relatively small coordinate separations. We have noticed, however, that spurious
radiation is more prominent in the Kodama-Ishibashi modes as compared with the
results based on the Weyl scalars. We cannot account for the precise causes for the
seemingly superior behaviour of the Weyl scalars, but we note that similar findings
have been reported for the D = 4 case in [179].

Initial separation. The head-on collisions performed here start from finite initial
separation of the BHs, while the idealised scenario considers two BHs falling in from
infinity. By varying the initial separation for several collisions in D = 5 and D = 6
we estimated the difference in Erad due to the initial separation and, as for the junk
radiation above, we found that the differences are well below the numerical error budget.
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Fig. 5.2 Normalised energy flux (Rh/M)Ėrad as a function of time for equal-mass
collisions, with t = 0 defined by the maximum in Ėrad. As D increases, the burst
of radiation becomes increasingly concentrated in time. Note also here that there
are several nodes in each panel where the flux of energy goes to zero. For a head on
collision the Ω′

23 projection of the Weyl tensor is equal to zero due to axisymmetry,
and so does not contribute, leading to this feature. This is analogous to the D = 4
case, where, in axisymmetry, the h× polarisation is zero.

Again, we attribute this observation to the rapid falloff of the gravitational attraction
for large D, leading to a prolonged but nearly stationary infall phase followed by an
almost instantaneous merger that generates nearly all of the radiation.

In summary, our error is dominated by discretisation and use of finite extraction radii.
It ranges from about 1.5 % for comparable mass collisions in low D to about 9 %
for q ≪ 1 in D = 8. For the gravitational recoil, we find similar significance of the
individual error contributions, but overall larger uncertainties by about a factor 4. We
attribute these larger uncertainties to the fact that the recoil arises from asymmetries
in GW emission, and in this sense it is a weaker, differential effect.
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Fig. 5.3 The l = 2 (solid black line) and l = 4 (dashed red line) waveforms from the
collision of two equal-mass BHs in D = 10.

5.3.2 Equal-mass collisions

The collision of two equal-mass BHs has already been studied in D = 4, 5 [111], and
D = 6 [113] spacetime dimensions. We have verified those results, extending them to
D = 7, 8 , 9 , 10. For illustration, in Fig. 5.2 we plot a normalised energy flux (Rh/M)Ė
for collisions in D = 4, 6, 8 and 10 spacetime dimensions. As D increases, the burst of
radiation becomes increasingly concentrated in time. This concentration suggests that
the burst may approach a distribution of infinitesimal width in the large-D limit; it
would be interesting to see if this is borne out in the large-D limit formalism of [16–19].

For further illustration, in Fig. 5.3 we plot the Kodama-Ishibashi waveform Φ̇l0

[198, 263, 110, 113] for D = 10; the qualitative features of the signal are the same for
all other D. The waveform consists of a precursor part with small amplitude when
the two BHs are widely separated, followed by a smooth merger phase connecting
to ringdown. A perturbative calculation, using direct integration techniques on the
Kodama-Ishibashi master equation, yields the following two modes for gravitational-
type scalar perturbations: ωRh = 1.2346 − 0.9329i and ωRh = 2.4564 − 0.9879i. These
are the decoupling (or saturating) and nondecoupling (or nonsaturating) modes in
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Fig. 5.4 Fractional energy Erad/M radiated in GWs during collisions of equal-mass,
nonspinning BHs starting from rest, in D spacetime dimensions. Crosses are numerical
data points and the solid red line is the fit Eq. (5.5). The blue dashed line shows
a fit obtained for the expression b0 2πβ/Γ(β) which resembles even more closely the
functional form of the surface area AD−2 = 2π(D−1)/2/Γ[(D− 1)/2] of the D− 2 sphere,
but does not match the data points as well.
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the language of [272, 273] ( [102]). We find agreement to the level of ≪∼ 0.1% or
better with [102] and very good agreement with the analytical, large-D estimates of
[272]. A one-mode fit of numerical waveforms yields very poor agreement with any of
the frequencies above. However, a two-mode fit yields the following two frequencies:
ωRh = 2.48 − 0.94i, 1.22 − 0.91i. Given the errors in numerical simulations, this is a
reasonable level of agreement with linearised predictions, and it indicates that both
modes are excited to comparable amplitudes for this particular simulation. We note
here also that the amplitudes of the two families of perturbations, the real parts of
the frequencies, are not widely separated at the values of D we are simulating. As
can be seen in Figures 2 and 4 of [102] for the decoupling and non-decoupling modes
respectively, a clear separation of the two scales becomes more apparent at higher
values of D, with a factor of 10 difference in the real part of the frequency after D ≈ 30.

When plotted as a function of the number D of dimensions (Fig. 5.4), the fraction
of center-of-mass energy radiated in GWs by equal-mass head-on collisions reaches a
maximum Erad/M ∼ 9.1×10−4 for D = 5. Beyond this value, we find the total radiation
output to rapidly decrease as a function of D. This suppression is consistent with the
fact that the spacetime is nearly flat outside the horizon: in fact, the gravitational
potential (Rh/r)D−3 vanishes exponentially with D [16]. Another intuitive explanation
for this rapid decay is that, as D increases, the energy is radiated almost instantaneously
(cf. Fig. 5.2): spacetime is flat except extremely near the horizons, and bremsstrahlung
radiation is suppressed. These features have also been seen in zero-frequency limit
calculations [262]. Thus, at large D, radiation is emitted in a burst precisely when
the BHs collide, but this is also the instant where one would expect common horizon
formation, and consequent absorption of a sizeable fraction of this energy. This is, of
course, a very loose description, unable to give us a quantitative estimate. The results
in Fig. 5.4 are (perhaps surprisingly) well described by the following simple analytic
expression,

Eq=1
rad
M

= a0
(2π)β

Γ[β] , β = D − a1

a2
, (5.5)

where a0 = 1.7288 × 10−6, a1 = 1.5771, a2 = 0.5497. This fit reproduces our numerical
results to within ∼ 1% for all D = 4, . . . , 10. It is tempting to relate this expression to
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the area AD−2 = 2π(D−1)/2

Γ( D−1
2 ) of a (D − 2)-dimensional unit sphere, but we do not see an

evident connection as the numerical factors do not match exactly1.
The results for the radiated energy are in stark contrast to the predictions one

would get by applying the PP results of Table 5.1 to the equal-mass case q = 1, where,
instead of a strong suppression of Erad at large D, we see a mild increase in the radiative
efficiency. While the PP approximation is by construction not expected to capture the
equal-mass limit with high precision, it is valuable to understand the origin of this
qualitative discrepancy.

A potential explanation for this difference lies in the features of general relativity in
the large D limit as introduced in Section 5.1.1, specifically the existence of two separate
length scales. For equal-mass collisions the excitation of the modes with length scale
Rh/D (and the radiation output) are strongly suppressed at large D [16]. However,
dynamical processes are very sensitive to the dominant scale in higher dimensions, and
it has been shown that small variations in parameters can, for instance, lead to large
variations in energy emitted in gravitational waves [262, 16]. In the next section, we
explore in more detail unequal-mass collisions and indeed find that these collisions can
trigger the excitation of smaller-scale modes even at the low energies considered in our
simulations.

5.3.3 Unequal-mass collisions and the point-particle limit

The stark contrast between the PP results summarised in Table 5.1 and the numerical
relativity calculations of the previous section strongly points towards a qualitatively
different behaviour of the radiated energy as a function of D for comparable-mass
binaries (where Erad rapidly drops beyond D = 6) as compared with the high mass-ratio
regime (where Erad mildly increases withD). The question we are now facing is: does the
difference in the behaviour arise from the dominance of different physical mechanisms
in the respective regions of the parameter space, and where does the crossover from
one regime to the other occur? To shed light on this issue, we have performed
collisions of unequal-mass, nonspinning BHs focusing on the range q = 1, . . . , 1/100
and D = 4, . . . , 8. The GW energy and linear momentum radiated in these collisions
are summarised in Figs. 5.5-5.8.

1The expression b0 2πβ/Γ(β) resembles even more closely that of the surface area AD−2, but
yields a less accurate fit to the data points (cf. Fig. 5.4). It also does not establish a satisfactory
relation between AD−2 and the numerical parameters appearing in the fit for β, now given by
β = (D − 2.4772)/0.7671.
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Fig. 5.5 Fractional energy Erad/MADM radiated in GWs in collisions of nonspinning
BHs starting from rest with mass ratio q in D spacetime dimensions.

By analysing the waveforms for the most extreme mass ratios we find good agreement
between the ringdown stage and estimates from linearised perturbations. However, our
results indicate that only the high-frequency modes (the “non decoupling” modes) are
excited. Since these modes probe the small scales presumably excited by the smaller
BH [17, 19], it is reassuring to find high-frequency excitations.

Figure 5.5 shows the fractional center-of-mass energy released as GWs when two
BHs collide, and Fig. 5.6 shows the same data normalised by (the square of) the
kinematic, symmetric mass ratio parameter η. Note that η is directly connected to
the reduced mass of the system and is known to yield a very good rescaling of all
quantities in four-dimensional spacetimes (see for instance [277–279]). For low D (in
particular for D = 4, 5) the total radiated energy Erad/(Mη2) is weakly dependent on
η. At small mass ratios q, or equivalently at small η, our results smoothly approach
the PP limit of Table 5.1 (shown in Fig. 5.6 as filled data points at η = 0).

For q ≲ 1 and sufficiently large D, the radiated energy decreases monotonically
with D (Fig. 5.5). This behaviour would clearly contradict the PP results if it held
for arbitrarily small mass ratio. In fact, at small mass ratios the behaviour of the
radiated energy changes. The maximum of the radiated energy as a function of D
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Fig. 5.6 The same data as in Fig. 5.5, but rescaled by η2 (i.e. we plot Erad/(Mη2)) in
order to facilitate the comparison with PP calculations of the radiated energy, which
are shown as filled symbols at η = 0.
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D 4 5 6 7 8
−102b1 0.54 0.95 2.82 3.63 3.58
b2 0.72 1.18 0.83 0.44 0.19

Table 5.2 Fitting coefficients of Eq. (5.7), describing the η dependence of the total
radiated energy.

shifts from D = 5 to D = 6 between q = 1/4 and q = 1/10. Results for even smaller
q indicate a further shift towards D = 7, and possibly yet higher D as we approach
the PP limit. It was noted in [275] that the monotonic increase in radiated energy
in the PP limit would violate Hawking’s area law, which in D dimensions gives that
the fraction of radiated energy is bounded above by 1 − 2−1/(D−2). Clearly, this bound
decreases as D increases. This violation of the area law was taken as an indication of
the breakdown of the PP approximation. It is reassuring to see here therefore that for
fixed q the radiated energy eventually decreases for sufficiently large D in line with the
area law. Furthermore, we see from Fig. 5.6 that Erad/(Mη2) shows a steep increase
for very small η and large D. This behaviour supports our interpretation that new
scales are being probed. If this is indeed the correct interpretation, and if the new
scale is of order Rh/D, one can estimate the mass ratio at which these new scales
are excited. By using Eq. (2.42), and recalling that M2/M1 = q, we get the scaling
(r2/Rh)D−3 = q, with r2 the scale of the small BH and Rh the scale of the large BH in
terms of coordinate quantities. If we equate the “small scale” Rh/D to the size r2 of
the second colliding object we find the threshold mass ratio

q ∼ D3−D . (5.6)

It seems sensible to understand the mass ratio dependence by fixing the PP limit to
be that of Table 5.1. In other words, we fit our results to the expression

Erad

Mη2 = b0 + b1η
b2 , (5.7)

where b0 are the PP values listed in Table 5.1. The exponents b2 obtained by fitting our
data are listed in Table 5.2. These numbers are consistent with the behaviour shown
in Figs 5.5, 5.6: the dependence of the total radiated energy on η is more complex for
large D. In particular, at large D the expansion of Erad in powers of η converges more
slowly, and the convergence of the PP results (a leading-order expansion in mass ratio)
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Fig. 5.7 Recoil due to asymmetric emission of GWs in the collision of nonspinning
BHs starting from rest with mass ratio q in D spacetime dimensions. Note that the
agreement with PP predictions in the small-q limit is very good for D = 4, and degrades
for higher D.

is poor in the small-η regime. It would be interesting to find an analytical prediction
for the coefficient b2.

5.3.4 Kicks

For unequal mass head on BH mergers we expect the emission of linear momentum in
gravitational waves as well as energy. To conserve total momentum, this will cause
the remnant black hole to recoil with a certain velocity, known as a “kick”. Using the
Weyl scalars calculated from our simulations, we find the radiated linear momentum
similarly to the radiated energy, by calculating

Ṗ I(u) = − lim
r→∞

rD−2

8π

∫
SD−2

nI
(∫ u

−∞
Ω′

(α)(β)(ũ, r, ϕγ)dũ
)2
dΩ , (5.8)
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Fig. 5.8 As Fig. 5.7 but here symbols denote the kick for fixed D as a function of the
symmetric mass ratio η. The lines are the simple two-parameter fit of Eq. (5.10).

where nI is the normal radial unit vector, as detailed in [270]. To calculate the velocity
of the remnant black hole we normalise this momentum by the mass of the remnant
black hole, and report the value in km/s by reintroducing the value of the speed of
light c, previously set to 1.

In Fig. 5.7, we show the gravitational recoil (or “kick”) velocity of the post-merger
BH as a function of D for fixed values of the mass ratios q, calculated from the Weyl
scalars with Eq. (8.4). As in the case of the radiated energy (Fig. 5.5), we observe a
shift in the maximum kick towards higher D as the mass ratio decreases. In particular,
the maximum shifts from D = 6 to D = 7 as we change q from 1/4 to 1/10. In Fig. 5.8
we show the same results, but now plotting the kick for fixed D as a function of the
symmetric mass ratio η.

The data in Figs. 5.7 and 5.8 are in good agreement with PP recoil calculations [280,
281, 275]: for example, in D = 4 the PP calculation yields Prad/M = 8.33 × 10−4q2,
or vkick = 250q2 km/s. This is in percent-level agreement with the D = 4, η = 0.01
simulation, for which we get vkick = 0.026 km/s (for such small mass ratios, of course,
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q ≃ η = 0.01). As D increases, the PP prediction becomes less accurate: the relative
error is 4% in D = 4, 21% in D = 6 and 54% in D = 7. This is consistent with the
trend observed for the radiated energy and with physical expectations: according to
Eq. (2.42), for a fixed q the less massive black hole appears less and less like a PP.
It is also possible that some of this disagreement comes from the larger errors in the
high-D, small-mass ratio simulations.

Following previous work on unequal mass collisions in D = 4 dimensions [282] we
first tried to fit the data using the following mass ratio dependence (see e.g. the classic
work by Fitchett & Detweiler [283]):

v
(1)
kick = vDη

2√1 − 4η , (5.9)

where the superscript (1) means that this is a one-parameter fit. According to this
simple formula, the maximum recoil occurs when η = 0.2 (q ≃ 0.38) for all D. Note
that for η = 0.2 we get v(1)

kick,max ≃ 0.018vD, so the parameter vD is related to the
maximum kick by a simple proportionality relation.

However, our previous considerations suggest that the mass ratio dependence of
the radiated energy and of the recoil velocity should vary with D. As a simple way to
investigate this D dependence we used a two-parameter fitting function:

v
(2)
kick = ṽDη

2(1 − 4η)cD . (5.10)

Assuming this dependence, the maximum kick v(2)
kick,max will correspond to aD-dependent

ηmax that can be obtained by fitting the data.
The fitting coefficients and maximum kicks obtained with these two expressions are

listed in Table 5.3. Note that the D dependence of ηmax is very mild for all but the
largest D simulations. More accurate simulations may be needed to resolve the issue of
the D-dependence of ηmax and of the maximum kick velocity. However, the following
conclusion is quite independent of the assumed functional dependence: the maximum
kick is ∼ 16.3 km/s, and it is achieved for D = 6 and ηmax ≃ 0.2. We note that in all
of our simulations the kick is in the direction of origin of the less massive black hole.
This is in agreement with the argument of [284], which says that the smaller black
hole, as it is travelling faster during the infall, will beam its gravitational radiation
along its direction of travel more than the more massive black hole. This will lead to
more radiation emitted in the direction of travel of the smaller BH, so the remnant
will be kicked towards the direction of origin of the smaller BH.
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D 4 5 6 7 8
vD [km/s] 232.9 746.9 915.2 714.8 349.0

v
(1)
kick,max [km/s] 4.166 13.361 16.372 12.787 6.244
ṽD [km/s] 255.8 798.4 1034 989.9 630.7

cD 0.5629 0.5445 0.5821 0.7214 0.9110
ηmax 0.1951 0.1965 0.1936 0.1837 0.1718

v
(2)
kick,max[km/s] 4.148 13.314 16.297 12.822 6.457

Table 5.3 Fitting coefficients of Eqs. (5.9) and (5.10), describing the η dependence of
the kick velocity.

5.4 Conclusions

We have numerically simulated head-on collisions of black holes in D = 4, . . . , 10
dimensions, extracted the GW signal and computed the energy and linear momentum
radiated in the collisions. Starting with the equal-mass case, we find values for the
radiated energy in agreement with previously published results for D = 5 and D = 6
dimensions. The radiated energy, measured in units of the ADM mass M , is maximal
in D = 5, where Erad/M = 9.1 × 10−4. For larger D we observe a strong reduction in
the radiated energy: the fit Erad/M = (2π)β/Γ(β), β = (D − 1.5771)/(0.5497) models
our results to within 1 % for all D simulated. This functional dependence closely
resembles that of the surface area AD−2 = 2π(D−1)/2/Γ[(D− 1)/2], but the discrepancy
in the numerical parameters in the argument suggests a more complicated relation
between the two quantities.

The numerical results for the equal-mass case differ strikingly from those obtained
in the PP approximation, which predicts a mild increase of Erad/(q2M) with D when a
small BH of mass qM1, q ≪ 1 falls into a BH of mass M1. We reconcile these seemingly
different predictions by numerically simulating a wider set of BH collisions with mass
ratios ranging from q = 1 to q = 1/100 in up to D = 8 dimensions. In Fig. 5.6 we
observe that the (symmetric mass ratio-normalised) energy Erad/(Mη2) increases in
the PP limit q → 0. This increase becomes particularly steep for D = 7 and D = 8,
and the numerical data extrapolated to q = 0 are in good agreement with the PP
predictions.

These findings can be understood by invoking the presence of multiple length
scales in the large-D limit, as identified in [16]. Additionally to the length scale Rh

of the Schwarzschild horizon, the large-D limit reveals a shorter scale Rh/D for the
spatial variation of potential terms in the equations governing BH perturbations. It
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is natural then to assume that these shorter length scales will be excited with much
higher efficiency by a small object falling into a BH, while they are largely insensitive
to the collision of two objects of size Rh. The parameter regime in between these two
extremes, on the other hand, is characterised by excitations of comparable magnitude
on both length scales.

Our intuitive interpretation is strengthened by the analysis of the quasinormal mode
frequencies: for q = 1 (and large D) the ringdown exhibits comparable contributions
from two frequencies, corresponding to the “decoupling” and “nondecoupling” modes
in the language of [102], while the ringdown is dominated by the nondecoupling modes
for q ≪ 1. For large D, the emission of gravitational waves therefore appears to be
sensitive to the properties of the two BHs. It is interesting to contrast this observation
with the corresponding insensitivity of the collision dynamics in high-energy collisions
in D = 4 [49, 54]. This contrast naturally raises the question which effect dominates in
high-energy, large-D collisions: sensitivity to structure due to large D or universality
due to high energy?

With regard to the large-D limit, we notice a further connection in the shape of
the energy flux as a function of time. In units of the Schwarzschild horizon associated
with the ADM mass of the spacetime, the flux becomes increasingly peaked in higher
D and it appears to approach the shape of an infinitesimally wide distribution, which
is what one would intuitively expect in the large-D limit, where the spacetime exterior
to a BH approaches Minkowski.

Finally, we analyse the gravitational recoil resulting from the asymmetric emission
of GWs in unequal-mass collisions. We find the data to be well fitted by Fitchett’s
[283] formula commonly applied to the four-dimensional case, but we also observe a
mild indication that the mass ratio maximising the recoil varies with D at large D.
The maximum kick due to gravitational recoil (vkick,max ∼ 16.3 km/s) is achieved for
D = 6, and for a symmetric mass ratio η = ηmax ≃ 0.2 (q ≃ 0.4). When regarding both
energy or linear momentum as a function of D at fixed mass ratio q, we observe a shift
in the maximum towards higher D as we move from the equal-mass case q = 1 to the
PP limit q ≪ 1. This observation further confirms one of our main conclusions: the
PP limit provides exquisitely accurate predictions for small mass ratios, but it must be
taken with a grain of salt when extrapolated to the comparable-mass regime in higher
dimensions.



Chapter 6

Initial Data in Higher Dimensions

The work in this chapter is unpublished, and was performed in collaboration with
Ulrich Sperhake.

6.1 Introduction

The higher dimensional Brill-Lindquist data introduced in Section 2.4 has allowed us
to simulate head on collisions from rest of higher dimensional black holes in Chapters
3 - 5. If, however, we wish to simulate scenarios in which the black holes have initial
momenta, such as BH inspirals, grazing BH collisions, or high energy BH collisions,
we must implement new initial data, for example the higher dimensional analogue
to 4D Bowen-York initial data. This will be the focus of this chapter. In Section
6.2 we introduce the analogue of the Bowen-York data for black holes with initial
momentum, first found in [285] and implemented in the reduction by isometry scheme
of dimensional reduction in [271]. We then explicitly show its implementation in the
modified Cartoon formalism for the first time. In Section 6.3 we do the same for
black holes with initial angular momentum, taking initial data again from [285] and
implementing it for the first time in the modified Cartoon formalism. Finally in Section
6.4 we introduce the higher dimensional analogues of the ADM integrals of Section
2.6.4, which will allow us to calculate the mass, momentum and angular momentum
content of a spatial slice.
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6.2 Initial data for black holes with momentum

We have already shown, in Section 2.4, the generalisation of the Brill-Lindquist initial
data for initially static black holes to higher dimensions. In this chapter we will begin
by introducing the generalisation of the Bowen-York initial data to higher dimensions,
and implementing it in our modified Cartoon formalism. This is based on the ansatz for
the extrinsic curvature provided by [285], and the implementation of the Bowen-York
like data for head on boosted collisions in a reduction by isometry scheme in [271].

In order to construct the initial data, we must again solve the D constraint equations,
one Hamiltonian constraint, and D − 1 momentum constraints, which we reproduce
here,

H = R +K2 −KIJKIJ = 0, (6.1)
MI = DJ(KIJ − γIJK) = 0. (6.2)

Following the York-Lichnerowicz split detailed in Section 2.4, we decompose the metric
and extrinsic curvature, [149–152]

γIJ = ψ
4

D−3 γ̄IJ , KIJ = ψ−2ĀIJ + 1
D − 1γIJK , (6.3)

where ψ is a conformal factor, and K = γIJKIJ is the trace of the extrinsic curvature.
In contrast to the 4D case, we will here work in terms of the conformally rescaled
trace free extrinsic curvature ĀIJ . We assume that the metric is conformally flat,
γ̄IJ = δIJ , and that the maximal slicing condition, K = 0, is satisfied, which gives the
Hamiltonian and momentum constraints in the form

∂IĀ
IJ = 0, (6.4)

δIJ∂
I∂Jψ + D − 3

4(D − 2)ψ
−(3D−5)/(D−3)ĀIJĀIJ = 0 . (6.5)

Note that the indices on conformally rescaled quantities, such as ĀIJ are raised with
the conformal metric γ̄IJ . Following the calculation of Bowen and York, Yoshino et al.
[285], found the ansatz for ĀIJ for a single black hole with linear momentum,

ĀIJ = 4π(D − 1)
(D − 2)AD−2

1
rD−2 (6.6)[

nIP J + nJP I − nMP
M γ̄IJ + (D − 3)nInJPMnM

]
,
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where P I corresponds to the ADM momentum of the black hole and nI is the normal
radial vector in Cartesian coordinates given by

nI ≡ xI − xI
0

r
, r2 = δMN(x− x0)M(x− x0)N , (6.7)

where xI
0 denotes the position of the BH. This ansatz is chosen such that it solves Eq.

(6.4), and reproduces the ADM linear momentum of the black hole spacetime (see
Section 6.4 for discussion of the higher dimensional ADM quantities). We are then left
with the task of solving Eq. (6.5), an elliptic PDE for ψ. As in 4D for Bowen-York
data, we decompose ψ into a Brill-Lindquist component ψBL [154], which on its own
gives initial data for a static black hole, giving the spacetime approximately the correct
ADM mass, and a correction u

(
xI
)
. For a single black hole centred at the origin, this

is given by
ψ = ψBL + u = 1 + µ

4rD−3 + u, (6.8)

where µ is the Schwarzschild-Tangherlini mass parameter, and r is the radial distance
from the black hole. If we wish to solve for, for instance, two black holes, clearly Eq.
(6.4) is linear in ĀIJ , so we can superpose two copies of the extrinsic curvature,

ĀIJ = ĀIJ

(1)

(
PK

(1), n
L

(1)

)
+ ĀIJ

(2)

(
PK

(2), n
L

(2)

)
, (6.9)

where PK

(i) and nL

(i) are the linear momentum, and radial vector respectively, corre-
sponding to the ith black hole. We then let ψ take the same form as above, with the
Brill-Lindquist term modified to include a contribution from the second black hole,

ψ = 1 + µ(1)

4rD−3
(1)

+ µ(2)

4rD−3
(2)

+ u, (6.10)

where µ(i) and r(i) are respectively the mass parameter of, and radial distance from,
the ith black hole. Now we must solve Eq. (6.5) for u, which we achieve using a
spectral elliptic PDE solver detailed in [156, 271], implemented in the Cactus thorn
TwoPunctures.

The final step is to identify how ĀIJ simplifies within the SO(D − 3) symmetry we
impose on our spacetime in implementing the modified Cartoon formalism. Without
loss of generality let us consider the case of a single black hole with initial momentum
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and position

P I = (Px, Py, 0, 0, . . . , 0) , xI

0 = (x0, 0, 0, 0, . . . , 0) . (6.11)

This will give the initial conditions for a collision in the x− y plane, which is the only
plane in which BH collisions can occur, due to the assumption of SO(D− 3) symmetry.
Let us define for convenience

āIJ = nIP J + nJP I − nMP
M γ̄IJ + (D − 3)nInJPMnM , (6.12)

so that
ĀIJ = 4π(D − 1)

(D − 2)AD−2rD−2 ā
IJ . (6.13)

In the modified Cartoon approach, we have w4 = . . . = wD−1 = 0, so that the radial
vector has non-vanishing components only in the x, y and z directions. Furthermore,
we use Cartesian coordinates, so that the expressions we insert into Eq. (6.12) are
given by Eq. (6.11) as well as

nI =
(
x− x0

r
,
y

r
,
z

r
, 0, . . . , 0

)
, (6.14)

γ̄IJ = δIJ . (6.15)
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We can now calculate the individual terms in Eq. (6.12), firstly for terms inside the
computational domain,

niP j =


Px

x−x0
r

Py
x−x0
r

0

Px
y
r

Py
y
r

0

Px
z
r

Py
z
r

0

 , njP i =


Px

x−x0
r

Px
y
r

Px
z
r

Py
x−x0
r

Py
y
r

Py
z
r

0 0 0

 ,

nMP
M γ̄ij =



Px
x−x0
r

+ Py
y
r

0 0

0 Px
x−x0
r

+ Py
y
r

0

0 0 Px
x−x0
r

+ Py
y
r


,

(D − 3)ninjnMP
M = (D − 3)

(
Px
x− x0

r
+ Py

y

r

)


(x−x0)2

r2
(x−x0)y

r2
(x−x0)z

r2

(x−x0)y
r2

y2

r2
yz
r2

(x−x0)z
r2

yz
r2

z2

r2

 .

(6.16)

We thus obtain the components

ā11 = Py
y

r3

(
−y2 − z2 + (D − 4)(x− x0)2

)
+ Px

x− x0

r3

(
y2 + z2 + (D − 2)(x− x0)2

)
,

ā12 = Py
x− x0

r3

(
(D − 2)y2 + z2 + (x− x0)2

)
+ Px

y

r3

(
y2 + z2 + (D − 2)(x− x0)2

)
,

ā13 = (D − 3)Py
yz

r3 (x− x0) + Px
z

r3

(
y2 + z2 + (D − 2)(x− x0)2

)
, (6.17)

ā22 = Py
y

r3

(
(D − 2)y2 + z2 + (x− x0)2

)
+ Px

x− x0

r3

(
(D − 4)y2 − z2 − (x− x0)2

)
,

ā23 = Py
z

r3

(
(D − 2)y2 + z2 + (x− x0)2

)
+ (D − 3)Px

yz

r3 (x− x0) ,

ā33 =
(
Py

y

r3 + Px
x− x0

r3

) (
−y2 + (D − 4)z2 − (x− x0)2

)
.

Finally we calculate the off-domain components,

āab =
(

−Px
x− x0

r
− Py

y

r

)
δab = āwwδab ⇒ āww = −Px

x− x0

r
− Py

y

r
, (6.18)
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and we note that āIJ is trace free as expected. We can now fully implement the initial
data in the modified Cartoon formalism.

6.3 Initial data for spinning black holes

Following Appendix A of [285], as well as Section 5.5.2 of [286], we can extend this
Bowen-York like construction of initial data to include spinning black holes, as can be
done in 4D. For simplicity, we will restrict our attention to singly spinning BHs in the
x− y plane. In 3 spatial dimensions angular momentum can be encoded into a vector
which is orthogonal to the plane in which the object in question is spinning. In higher
dimensions however there is no longer a unique direction orthogonal to a given 2D
plane, so it is no longer helpful to talk about an angular momentum vector. Instead,
our black hole spins will be encoded in an antisymmetric (D − 1 × D − 1) angular
momentum tensor JIJ [232, 287], defined by

JIJ = 1
8π lim

r→∞

∫
SD−2

(xIKJK − xJKIK) dΩK . (6.19)

For our singly spinning black hole this will take the form

JIJ =



0 −J1 0 . . . 0
J1 0 0 . . . 0
0 0 0 . . . 0
... ... ... . . . ...
0 0 0 . . . 0


. (6.20)

A multiply spinning BH will have more 2 × 2 antisymmetric blocks along the diagonal,
spanning the columns and rows corresponding to the planes in which the spins occur,
for an appropriately chosen coordinate system. We will see in Section 6.4 that this
JIJ matches with the angular momentum we can define at spatial infinity in the limit
r → ∞. Following [287] we can connect the parameter J1 to the spin parameter a
found in the singly-spinning Myers-Perry metric by the relation

J1 = AD−2µa

8π , (6.21)
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where µ is the mass parameter, and the singly-spinning Myers-Perry metric is given by

ds2 = −dt2 + µ

rD−5Σ(dt− a sin2 θ dϕ̃)2 + Σ
∆dr2 + Σdθ2

+(r2 + a2) sin2 θ dϕ̃2 + r2 cos2 θ dΩ2
D−4 ,

Σ = r2 + a2 cos2 θ ,

∆ = r2 + a2 − µ

rD−5 . (6.22)

The ansatz of Yoshino et al [285] for Eq. (6.4) is now given by

ĀIJ = −4π(D − 1)
AD−2rD−1 (JIKnKnJ + JJKn

KnI), (6.23)

which reproduces the asymptotic angular momentum of a spinning black hole. For a
singly spinning BH in the x− y plane, the only terms that contribute are

Ā11 = −Ā22 = −4π(D − 1)
AD−2rD−1

(
2J1

xy

r2

)
, (6.24)

Ā12 = Ā21 = −4π(D − 1)
AD−2rD−1J1

(
y2 − x2

r2

)
. (6.25)

Again, since Eq. (6.4) is linear, for 2 (or more) spinning black holes, we can superpose
terms of this form, with 2 potentially different spin parameters J (+), J (−), with the
radial distance now taken from the respective black holes initial positions. Explicitly
then, the initial data for N black holes with generic spin and momentum in the x− y

plane has its trace free conformally rescaled extrinsic curvature given by

ĀIJ =
N∑

(i)=1
Ā

((i),mom)
IJ

(
x

(i)
0 , P

(i)
x , P (i)

y

)
+ Ā

((i),spin)
IJ

(
x

(i)
0 , J

(i)
1

)
, (6.26)

and conformal factor

ψ = 1 + u+
N∑

(i)=1

µ(i)

4rD−3
(i)

, (6.27)

where u is the solution to
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δIJ∂
I∂Ju+ D − 3

4(D − 2)ψ
−(3D−5)/(D−3)ĀIJĀIJ = 0. (6.28)

6.4 ADM integrals in higher dimensions

As a further diagnostic tool, which will allow us to verify that our numerically con-
structed initial data does indeed have the physical properties of linear or angular
momentum that we desire, we construct the higher dimensional analogues of the ADM
integrals defined in Section 2.6.4. These are again conserved quantities defined at
spatial infinity on the D− 1 dimensional spatial slice using the Hamiltonian formalism.
It was shown in [288] that, by considering the symmetries of asymptotically flat spatial
infinity in higher dimensions, the generalisations of the ADM integrals we define below
are the conserved charges associated to these symmetries.

To have asymptotic flatness at spatial infinity we enforce the dimension dependent
analogue of the earlier gauge conditions [286], given in Eqs (2.86 - 2.89), with f a
Riemannian flat metric on the D − 1 spatial slice Σt satisfying conditions 1 and 2 in
Section 2.6.4, with the induced metric and extrinsic curvature satisfying

γij = fij + O(r3−D), (6.29)
∂γij
∂xk

= O(r2−D), (6.30)

Kij = O(r2−D), (6.31)
∂Kij

∂xk
= O(r1−D). (6.32)

The expressions for ADM mass and linear momentum take the same form as in
4D, but we now allow the indices to vary over the full D − 1 spatial coordinates, and
separate them into (i, a) index ranges, so that we can implement them in our modified
Cartoon formalism. First we find the ADM mass,
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M = 1
16π

∫
SD−2

(∂IhIJ − ∂Jh) dΩJ

= 1
16π

∫
SD−2

(∂ihij + ∂ahaj − ∂jh) dΩj

= 1
16π

∫
SD−2

(∂iγij + (D − 4)
(
γjz − δjzγww

z

)
− ∂jh) dΩj

= 1
16π

∫
SD−2

(∂iγij + (D − 4)
(
γjz − δjzγww

z

)
− δik∂jγik − (D − 4)∂jγww) dΩj.

(6.33)

The linear momentum is defined to be

Pi = 1
8π

∫
SD−2

(Kij − δijK) dΩj, (6.34)

Pa = 1
8π

∫
SD−2

(Kww −K) dΩa = 0. (6.35)

The Pa components are identically 0 as any vector Va = 0 in the modified Cartoon
formalism is 0, as described in Appendix A.1. For angular momentum we again impose
the quasi-isotropic gauge, and asymptotic maximal gauge condition,

∂γ̃ij
∂xj

= O(r1−D), (6.36)

K = O(r1−D), (6.37)

and following e.g. [122] we define the total angular momentum to be

J(p) = 1
8π lim

r→∞

∫
SD−2

(KJK −KδJK)φJ(p)dΩK , (6.38)

where φ(p) is the rotational Killing vector associated to the rotational symmetry in
question. Since we will only be concerned with rotations in the x− y plane, we can
pick this to be

φI = x

(
∂

∂y

)I
− y

(
∂

∂x

)I
. (6.39)
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We note that the calculation of this Killing vector is the same as the calculation of the
Killing vector in Chapter 8, detailed in Appendix C.1, though we here present it in
Cartesian, rather than spherical coordinates. Restricted to our computational domain,
the angular momentum reduces to

J(p) = 1
8π lim

r→∞

∫
SD−2

(Kjk −Kδjk)φj(p)dΩk. (6.40)

In the limit as r → ∞ the radial unit vector within the area element dΩk will become
orthogonal to the Killing vector φj . Therefore we can ignore this final term proportional
to K and see that this angular momentum is the same as the angular momentum
tensor we defined in Section 6.3 contracted with the appropriate Killing vector.

6.5 Evaluating the integrals

Let us now make explicit the evaluation of these integrals in the modified Cartoon
formalism. All of the integrals have as their area element dΩj, which, we recall, is the
full D − 2 dimensional area element, multiplied by a vector that only has components
in the computational domain, rather than being the area of e.g. the 2 sphere. Let
nj = xj/r, the unit vector now centred at the origin, rather than at a black hole. The
mass, momentum and angular momentum of the spacetime are then given by

M = 1
16π

∫
SD−2

(∂iγij + (D − 4)
(
γjz − δjzγww

z

)
− δik∂jγik − (D − 4)∂jγww) dΩj

= rD−2

16π AD−4

∫ π

0

∫ π

0
(∂iγij + (D − 4)

(
γjz − δjzγww

z

)
− δik∂jγik − (D − 4)∂jγww)

nj sinD−4(ϕ3) sinD−3(ϕ2)dϕ3dϕ2, (6.41)

Pi = 1
8π

∫
SD−2

(Kij − δijK) dΩj

= rD−2

8π AD−4

∫ π

0

∫ π

0
(Kij − δijK)nj sinD−4(ϕ3) sinD−3(ϕ2) dϕ3dϕ2, (6.42)

J(p) = 1
8π

∫
SD−2

(Kjk −Kδjk)φj(p)dΩk

= rD−2

8π AD−4

∫ π

0

∫ π

0
(Kjk −Kδjk)φj(p)n

k sinD−4(ϕ3) sinD−3(ϕ2) dϕ3dϕ2.

(6.43)
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Clearly the expression for the energy in Eq. (6.41) has a term that appears to diverge
at z = 0. This is however dealt with by one of the regularisation terms we have already
calculated, given in Eq. (A.27),

γjz − δjzγww
z

= ∂zγĵz, (6.44)

where ĵ ∈ {x, y}, with the left hand side equal to 0 if j = z.

6.6 Conclusions

In this chapter we have introduced initial data for boosted and spinning black holes.
This will allow us to investigate a new set of more physically relevant black hole
interactions, such as black hole inspirals, and high energy black hole collisions. We have
also introduced higher dimensional ADM integrals, which will allow us to calculate
the total energy-momentum and angular momentum of a spatial slice. Using the wave
extraction formalism of Chapter 4, we can also calculate the energy and momentum
contained in gravitational waves in the spacetime. To be able to independently verify
the values calculated through wave extraction and the ADM integrals using an energy
balance argument, we need to be able to calculate the mass and spin of the black hole
itself. Therefore the final missing diagnostic tool is a horizon finder, which we shall
introduce in the following chapter.





Chapter 7

An Apparent Horizon Finder in
Higher Dimensions

The work in this chapter is unpublished. It was performed in collaboration with Ulrich
Sperhake and Diandian Wang. The horizon finding code was written by D. Wang and
the author, and the results were generated by U. Sperhake and the author.

7.1 Introduction

A key goal for numerical relativity in any given setting, such as higher dimensions, is
to have a full set of diagnostic tools for that setting. One such tool, the main focus of
this chapter, is the ability to find the horizon of a black hole. Once we can find the
horizon of a black hole, we can then find a measure of its spin and mass, independent
of, for instance, wave extraction calculations. The event horizon of a black hole is a
gauge independent object, but one that requires knowledge of future null infinity to
compute, see [289, 290]. This is impractical to consider in many time evolution codes,
so instead, we restrict our attention to the apparent horizon (AH) of the black hole.
This is a slicing dependent object, that always lies on or within the event horizon of
the black hole, defined as the outermost marginally trapped surface in the spacetime.
Developing efficient, accurate horizon finding has been an important area of research
within numerical relativity, especially in 4 spacetime dimensions, with key references
including [291–294], for a review see [295]. Here we follow the work of Alcubierre et
al. [291], and adapt an algorithm used for 4D horizon finding to higher dimensions.
In this chapter we shall detail the algorithm used to find apparent horizons, and
how it has been adapted to higher dimensional GR, we shall describe its numerical
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implementation, and we shall demonstrate its diagnostic uses on several types of initial
black hole data and time evolutions of black hole binaries. In order to do this, we
will use the binary black hole data described in Chapter 6 to enable us to compute
numerically, for the first time, the apparent horizon of a rotating BH dynamically
formed in higher dimensions in a binary coalescence.

This chapter is organized as follows. In Section 7.2 we review the theory behind
finding apparent horizons, and formulate the problem of horizon finding in the modified
Cartoon formalism. We then derive expressions for the mass and spin of a black hole
in terms of quantities we can extract from the apparent horizon. In Section 7.3 we
present the results of testing this horizon finder on three types of initial data. Firstly
we use analytic data for a single Schwarzschild-Tangherlini black hole and a single,
singly spinning, Myers-Perry black hole. We then use numerically constructed data
of the type detailed in Chapter 6 to simulate inspirals of non-spinning black holes to
dynamically form a spinning black hole.

7.2 Horizon finding algorithm

7.2.1 Horizon finding in higher dimensions

The apparent horizon of a black hole is defined as the outermost marginally trapped
surface in the spacetime. Equivalently, this is the surface on which the expansion of
outgoing normal null geodesics is equal to 0. In order to find the apparent horizon on
a spacelike hypersurface Σt we calculate the expansion Θ = ∇Ak

A of a congruence of
null geodesics with tangent vector kA moving in the outward normal direction to a
surface S, with outward unit normal vector sA. The calculation of the expansion of this
congruence in higher dimensions proceeds identically to the calculation in 4D, and we
present it here for completeness, following the derivation of Gundlach [292]. Consider
a D dimensional spacetime (M, gAB), with covariant derivative ∇A. We foliate this
spacetime with D − 1 dimensional spacelike hypersurfaces Σt with timelike normal nA.
We recall that the induced metric on these hypersurfaces is given by

γAB = gAB + nAnB, (7.1)

with extrinsic curvature

KAB = −γC
A∇CnB = −DAnB, (7.2)
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where DA is the covariant derivative associated to γAB. Now let S be a closed, D − 2
dimensional, spacelike hypersurface of Σ, with unit outward spacelike normal sA, which
is also normal to nA. γAB induces a metric qAB on S,

qAB = γAB − sAsB. (7.3)

Now let us consider the future pointing, null geodesic congruence, whose projection
onto Σ is orthogonal to S and nA. kA satisfies the following equations:

kA∇Ak
B = 0 , kAkA = 0 , qABk

A|S = 0. (7.4)

In consequence of these conditions, we find that, up to a constant factor, here set to 1
without loss of generality,

kA|S = sA + nA . (7.5)

Now we can express the expansion Θ in terms of (D − 1) + 1 quantities,

Θ = gAB∇AkB = (γAB − nAnB)∇AkB

= γAB∇A(sB + nB) − (kA − sA)(kB − sB)∇AkB

= γAB∇AsB + γAB∇AnB − sAsB∇AnB . (7.6)

In a coordinate basis adapted to the space-time split, we can write this equation in
terms of spatial components,

Θ = DIs
I + sIsJKIJ −K . (7.7)

The outermost surface upon which Θ = 0 everywhere will be our apparent horizon. It
will prove convenient to parametrise this surface with a function F (xI), such that our
surface is given by the solution to the equation F (xI) = 0, so that we can write,

sI = DIF

|DF |
, |DF | :=

√
DJF DJF , (7.8)

and Eq. (7.7) can be reframed as a partial differential equation to be solved for the
scalar F .

In order to evaluate Eq. (7.7) in the modified Cartoon formalism, we must distinguish
between directions inside and those pointing off the 3D computational domain. We
can then use the rotational symmetry in the extra dimensions to simplify tensors as
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described in Chapter 3, and furthermore rewrite derivatives in the extra dimensions
in terms of derivatives in our computational domain, using the formulae in Appendix
A. The only terms in Eq. (7.7) that will require such treatment of extra dimensional
components are DIs

I and the trace of the extrinsic curvature. The latter is directly
obtained as K = KI

J = Ki
i + (D − 4)γwwKww while we write the former as

DIs
I = Dis

i +Das
a (7.9)

= DiD
iF

|DF |
− (DiF )(DjF )DiD

jF

|DF |3
+ (D − 4) ∂zF

|DF |z
+ D − 4

2 γww∂kγww
∂kF

|DF |
.

In summary the equation we will look to solve for F is

0 = Θ = DiD
iF

|DF |
− (DiF )(DjF )DiD

jF

|DF |3
+ (D − 4) ∂zF

|DF |z

+1
2(D − 4)γww∂kγww

∂kF

|DF |
+ Kij∂

iF∂jF

|DF |2
−K. (7.10)

We note also that at z = 0 the term ∂zF/z appears ill-defined. According to the
regularisation procedures laid out in Appendix A, in the limit of small z we can
substitute

lim
z→0

∂zF

z
= lim

z→0
∂z∂

zF. (7.11)

7.2.2 Minimisation algorithm

In order to numerically solve Eq. (7.10), we have extended the minimisation algorithm
provided inside the Cactus Computational Toolkit [228, 220] and described in [291,
296] to the case of D dimensions with SO(D − 3) isometry. The first step consists in
parametrising the function F , restricted to the 3D computational domain, as

F (r, ϕ2, ϕ3) = r − h(ϕ2, ϕ3). (7.12)

We can then expand h in terms of real spherical harmonics Ylm(ϕ2, ϕ3),

h(ϕ2, ϕ3) =
∑
l

∑
m

√
4πalmYlm(ϕ2, ϕ3). (7.13)

The iterative search for a solution starts with a spherical trial function for h, from
which we calculate F , and so Θ, by Eqs. (7.12), (7.10). Next, Θ is interpolated onto
the points at which r = h(ϕ2, ϕ3), and used to calculate the surface integral of Θ2 over
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this 2D surface. Powell’s minimisation algorithm [297] then leads to the values alm for
which this integral is minimised. Once a function F giving a minimum for Θ2 is found,
we must determine whether this is a local or global minimum. Following [291], this is
achieved by recalculating the candidate function F with higher spatial resolution, and
more terms in the spherical harmonic expansion (7.13). If the value of the integral of
Θ2 continues to decrease to zero, rather than reaching some non-zero limiting value,
it is interpreted as a global minimum and the corresponding F defines the apparent
horizon. The horizon surface then allows us to calculate further diagnostic quantities
as described in the next section.

7.2.3 Black hole diagnostics

Once we have found the apparent horizon we wish to extract physical diagnostics
of black holes from them. When we consider stationary black holes, such as those
produced by exact initial data (e.g. Secs. 7.3.1 and 7.3.2), we know that the world
tube of the apparent horizon coincides exactly with the event horizon, see [298] for the
proof in D = 4, and [299] for a discussion of the generalisation of this, and related
proofs, to higher dimensions. For black holes produced as the result of mergers in our
simulations (e.g. Sec. 7.3.3) we assume that the spacetime will, after a long enough
period of time, be perturbatively close to a stationary BH, and that in this case the
apparent horizon will closely approximate the spatial cross section of an event horizon.
We therefore base our calculation of BH mass and spin on the assumption that the
spacetime describes a stationary BH.

Non-spinning black holes

For illustration, we first consider non-rotating BHs in D spacetime dimensions. These
are described by the Tangherlini metric [159] given in Schwarzschild coordinates by

ds2 = −
(

1 − µ

r̃D−3

)
dt2 +

(
1 − µ

r̃D−3

)−1
dr̃ + r̃2dΩ2

D−2, (7.14)

where
µ = 16πMADM

(D − 2)AD−2
, (7.15)

is the mass parameter. dΩn is the line element on the unit n-sphere, parametrised by
n angular coordinates, (ϕ2, . . . ϕD−1), An is the surface area of the unit n-sphere, and
MADM is the ADM mass associated to the spacetime containing only the black hole
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with mass parameter µ. By considering Eq. (7.14) we can see that the event horizon of
the black hole is given by the surface r̃D−3

S = µ. We find the area of this surface to be

Ahor =
∫

H

√
qdϕ2 . . . dϕD−1 = r̃D−2

S AD−2, (7.16)

where q = det qIJ , H is the horizon surface, and Ahor is the area of the apparent horizon,
as this is a stationary black hole. Combining this expression with Eq. (7.15), we find

MADM = D − 2
16π A1/(D−2)

D−2 A
(D−3)/(D−2)
hor . (7.17)

Spinning black holes

The Myers-Perry metric for a singly spinning black hole is given by [15]

ds2 = −dt2 + µ

rD−5Σ(dt− a sin2 θ dϕ̃)2 + Σ
∆dr2 + Σdθ2

+(r2 + a2) sin2 θ dϕ̃2 + r2 cos2 θ dΩ2
D−4 ,

Σ = r2 + a2 cos2 θ ,

∆ = r2 + a2 − µ

rD−5 , (7.18)

where µ is the mass parameter, and a is the spin parameter. Note of course that, unlike
in 4D, where the Kerr black hole is the unique uncharged rotating black hole solution,
in higher dimensions other solutions with the same mass and spin, such as black rings
[13], or black saturns [14] can exist. In this discussion we assume that the end state
of the black hole merger is a Myers-Perry black hole. Let ϕ4, . . . ϕD−1 be the angular
coordinates on the D − 4 sphere in the metric. The ranges of the angular coordinates
are θ ∈ [0, π/2], ϕ̃ ∈ [0, 2π], ϕD−1 ∈ [0, 2π], with all other angles lying in the interval
[0, π]. The location of the horizon is given by the largest root of ∆ = 0,

µ

rD−5
+

= r2
+ + a2 , (7.19)

and, following a brief calculation, the horizon area is, similarly to Eq. (7.16), given by

Ahor =
∫

H

√
q dθ dϕ̃ dϕ4 . . . dϕD−1 = rD−4

+ (r2
+ + a2)AD−2 = r+µAD−2 . (7.20)
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To calculate the spin we will need the equatorial circumference

ℓe =
∫ 2π

0

√
gϕ̃ϕ̃dϕ̃ = 2πr

2
+ + a2

r+
= 2π µ

rD−4
+

,

giving us

rD−3
+ = 2π

AD−2

Ahor

ℓe
, µ = Ahor

r+AD−2
, a =

√
µ

rD−5
+

− r2
+ . (7.21)

Note that Eq. (7.15) holds also for stationary, spinning BHs. Substituting µ in that
expression in terms of AD−2 and Ahor and finally setting ℓe = 2πrS, r+ = rS for
the non-spinning limit, one indeed recovers Eq. (7.17). We conclude this diagnostic
section by noting that the total angular momentum associated to the spacetime for
the single-spin Myers-Perry metric (7.18) is given by [232]

J = 2a
D − 2MADM . (7.22)

7.3 Results

Our numerical simulations have been performed with the Lean code [192, 227] originally
developed for black-hole simulations in D = 4 dimensions and upgraded to general
D spatial dimension with SO(D − 3) isometry in [212, 114, 115], using the modified
Cartoon formalism detailed in Chapter 3.

We test the horizon finder in three different scenarios. The first two will in-
volve analytic initial data for spacetimes containing a single black hole. We test a
Schwarzschild-Tangherlini black hole in 5 dimensions with initial data constructed
using isotropic coordinates, and a 5 dimensional singly spinning Myers-Perry black hole,
with initial data in Kerr-Schild coordinates. We then use numerically constructed data,
in the fashion of Bowen-York data, as given in [285, 271] and described in Chapter 6,
to construct 2 black holes with initial orbital angular momentum, and so simulate a
black hole inspiral in higher dimensions (here 6D). In the first example we use the
horizon mass as a diagnostic for the horizon finder, and in the latter two examples we
use the horizon mass and spin to analyse the accuracy of our horizon finder.
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7.3.1 Isotropic Schwarzschild-Tangherlini

In Schwarzschild coordinates the Schwarzschild-Tangherlini metric (7.14) is singular
at the event horizon. These coordinates are therefore not suitable for a numerical
computation of the horizon and we consequently change to isotropic coordinates (see
e.g. [160]),

r̃ = r
(

1 + µ

4rD−3

)2/(D−3)
, (7.23)

which results in the line element

ds2 = −4rD−3 − µ

4rD−3 + µ
dt2 +

(
1 + µ

4rD−3

)4/(D−3)
(
dx2 + dy2 + dz2 +

∑
a

dw2
a

)
. (7.24)

Here r2 = ∑
I(xI)2 is the isotropic radius, there is now no coordinate singularity at

the horizon, and the coordinate singularity at r = 0 is dealt with through use of the
moving puncture gauge [139, 140, 166], as detailed in Section 2.5. We next perform
the ADM spacetime decomposition, picking the isotropic time coordinate as the time
coordinate of our foliation, from which we can read off our initial data,

α =
(

4rD−3+µ
4rD−3−µ

)1/2
, βI = 0 , (7.25)

γIJ = δIJ

(
1 + µ

4rD−3

)4/(D−3)
, KIJ = 0. (7.26)

Note that in our simulations we will not evolve these data in time, so the values of
lapse and shift are merely included here for completeness but not used in the numerical
computation. We note that the construction of this initial data is analogous to the
construction of the higher dimensional Brill-Lindquist data in Section 2.4.

We use our horizon finder to calculate the BH mass for a single isotropic Schwarzschild-
Tangherlini BH with mass parameter µ = 1, for a grid configuration with 7 nested grids
with radii {(128, 64, 32, 16, 8, 4, 1) × (), h}, using the notation of Sec. II F in [192],
in units of the horizon radius Rh = µ1/(D−3). We shall quote the simulation resolution,
h as the grid spacing on the finest refinement level. In this setup, the apparent horizon
is computed on the 6th refinement level {x, y, z} < 4 and we find, for 3 simulations of
differing resolution, the results of Table 7.1. To investigate numerical convergence we
calculate QM given by

QM = M1/48 −M1/64

M1/64 −M1/96
= 2.5924, (7.27)
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Rh/h 48 64 96
Mhor/MADM 1.000041 0.999981 0.999958

Q Q4 = 2.69 QM = 2.59
Table 7.1 Measured horizon mass of Schwarzschild-Tangherlini BH at different resolu-
tions. The bottom row gives the expected convergence factor for 4th order convergence,
Q4, and the measured convergence factor for the mass, QM .

where Mh is the value of the horizon mass calculated for a given resolution. The
empirical convergence factor is very close to the value expected for fourth-order
convergence, Q4 = 2.6923, consistent with the fourth-order differencing employed in
the code.

7.3.2 5D Myers-Perry in Kerr-Schild coordinates

As in the case of the Schwarzschild black hole, the numerical calculation of the apparent
horizon of a spinning Myers-Perry BH requires coordinates that are not singular at
the BH horizon. One such set of coordinates are Kerr-Schild coordinates, in which the
metric is written in the form

ds2 = (ηAB +HlAlB)dxAdxB, (7.28)

for an appropriate function H, and null vector lA. Let us specifically consider a D = 5
singly spinning Myers-Perry black hole, in Cartesian coordinates (t, x, y, z, w). The
spin parameter is a and the spin lies purely in the x− y plane. Following [15] we can
write this metric in Kerr-Schild form, with the functions in Eq. (7.28) given by

H = µr2

ΠF , Π = r2(r2 + a2) , F = 1 − a2(x2 + y2)
(r2 + a2)2 , (7.29)

and
lA =

(
1, rx+ ay

r2 + a2 ,
ry − ax

r2 + a2 ,
z

r
,
w

r

)
, (7.30)

where r is given by the solution to the equation lAlA = 0, i.e. r4 − r2(ρ2 − a2) − a2(z2 +
w2) = 0, where ρ2 = x2 + y2 + z2 + w2. Again we foliate the spacetime with slices of
constant Kerr-Schild time, t, and read off the initial lapse, shift and induced metric
from the line element, and calculate the initial extrinsic curvature with Eq. (2.12),
which for brevity we do not reproduce here.
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a/
√
µ 0.1 0.9√

µ/h 16 32 64 32 48 64
Mhor/M 1.0005025 1.0001200 1.0000287 1.0012295 1.0003776 1.0000498
ahor/

√
µ 0.1007076 0.1001868 0.1000571 0.8979883 0.8991569 0.8995459

Q Q2 = 4 QM = 4.02 Qa = 4.19 Q2 = 2.86 QM = 2.60 Qa = 3.00
Table 7.2 Horizon mass Mhor and spin ahor in units of the analytic values M , √

µ as
obtained for a Myers-Perry BH in Kerr-Schild coordinates (7.28) in D = 5 for spin
parameters a/√µ = 0.1 and 0.9. The bottom row lists the expected convergence
factor Q2 for second-order convergence and the measured convergence factors Qf =
(fh1 − fh2)/(fh2 − fh3) for mass (f = M) and spin (f = a). For the large spin
a/

√
µ = 0.9, we require higher grid resolution to find the apparent horizon; hence the

different range of resolutions used in the convergence analysis.

In Table 7.2 we present the calculated angular momentum and mass for the Myers-
Perry BH for different resolution simulations for different spin values. The grid set up
is the same as for Section 7.3.1, and all results are extracted on refinement level 6.

7.3.3 Numerically constructed Bowen-York like data for a BH
inspiral in 6D

For the third test, we consider the dynamic formation of a rotating BH through the
coalescence of a BH binary with non-vanishing initial orbital angular momentum or,
equivalently, with non-zero impact parameter b. Before we quantitatively analyse such
configurations, however, we emphasize a few important points about orbiting binaries
in D > 4 dimensions.

In general, we expect this type of BH collisions to yield similar regimes of scattering
and merging configurations in D > 4 as known in D = 4 [48]; below a scattering
threshold, b < bscat, the binary results in a merger while for b > bscat, the constituents
will scatter off to infinity. Even without numerical simulations, however, we immediately
notice two major differences between inspirals or grazing collisions in D = 4 as compared
with their D > 4 counterparts. (i) Unlike in D = 4, there exist no stable circular
orbits around a Myers-Perry black hole in D > 4 [300], ruling out, for instance,
stable planetary orbits in a D > 4 solar system. Viable gravity theories based on
higher-dimensional GR therefore require some kind of screening mechanism limiting
the impact of extra dimensions to very large or small scales. (ii) The second difference
is of quantitative nature and concerns the relatively weaker gravitational binding force
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in binary systems in D > 4. For any black hole binary whose orbit begins close to
an unstable circular orbit, this implies correspondingly weaker centrifugal forces and,
thus, that the orbital velocity in the inspiral will be much slower than in D = 4. This
is, of course, a special manifestation of the well-known result that in the large D limit,
there is no gravitational force outside the horizon; cf. [16]. In practice, both features
manifest themselves in the dependence of the binary dynamics on the initial momentum
parameters: (i) we need relatively small initial momenta lest the binary scatters rather
than merges and (ii) without careful fine-tuning of the initial momentum, we find it
hard to obtain inspirals completing more than about one orbit prior to a rapid plunge
phase.

We note that in [112], grazing black hole collisions have been studied in 5D. In
this work it was noted that no “zoom-whirl” orbits were found in 5D. These orbits
have been identified in numerical studies in 4D, where inspiralling black holes whirl
around each other for a number of orbits before either merging or scattering to infinity
[301–303, 48]. Though we cannot make a statement on the existence of such orbits
generically in higher dimensions without fully exploring the parameter space of initial
momenta and impact parameters, and in particular investigating high energy grazing
collisions, we note that the sharp transition between scattering orbits and mergers that
only involve a single orbit supports the hypothesis that such zoom-whirl orbits cannot
be formed in higher dimensions.

Bearing in mind these considerations, we numerically model orbiting binaries and
compute the apparent horizon of post-merger remnant BHs. We construct our initial
data following the procedure outlined in Section 6.2. This determines ĀIJ , the trace
free conformally rescaled extrinsic curvature, and gives us an elliptic PDE for ψ, the
conformal factor, Eqs (6.27), (6.28), which we solve by means of an elliptic PDE solver
provided by the Cactus thorn TwoPunctures [156]. In these simulations we set
the parameter Px = 0 and vary the transverse momentum Py.

We now consider the specific configuration of two equal-mass, non-spinning BHs
starting from positions x0/Rh = ±3.185 with transverse initial linear momentum
Py/MADM = ±0.0286. We have evolved this configuration using a grid setup given
by {(160, 120, 72, 24, 12, 6) × (1.25, 0.625), hi} in the notation of Sec. II F in [192].
In order to study the convergence of the radiated energy and the spin of the merger
remnant, we have used three values for the grid resolution on the innermost refinement
level, h1 = Rh/64, h2 = Rh/96 and h3 = Rh/128. For illustration, we show in Fig. 7.1
the puncture trajectory of the two BHs. We find that, for resolutions lower than these
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Fig. 7.1 Puncture trajectories of the grazing collision of two equal-mass, non-spinning
BHs in D = 6 dimensions starting from positions x/Rh = ±3.185 with transverse linear
momentum Py/MADM = 0.0286.

our results become very untrustworthy, especially for simulations with Py near the
critical value separating scattering and merging orbits. In this critical region altering
the resolution can change a scattering orbit into a merging orbit. Also, at lower
resolutions than reported here we find that the coordinate time until merger varies
non-monotonically with resolution. At the various values of higher resolution reported
here we see none of these issues, so we consider ourselves to be using sufficiently high
resolutions for this problem in the simulations presented in this chapter. Following
the wave extraction procedure described in Chapter 4, we have calculated the energy
emitted in gravitational waves in this collision and for the post-merger phase (starting
at about t/Rh = 150), we extract the spin of the merger remnant as detailed in
Sec. 7.2.3 above. The results obtained for the different resolutions are shown in Fig. 7.2
together with an analysis of the respective convergence properties. We find the radiated
energy to converge at 4th order and the spin between 3rd and 4th order. These findings
are consistent with our code setup which employs 4th-order differencing in space and
time and 2nd order discretisation techniques at the outer boundary and prolongation
in space. Comparison with the corresponding Richardson extrapolated values gives
us an uncertainty estimate of 1.8 % (0.5 %, 0.22 %) for the dimensionless spin at low
(medium, high) resolution and a discretisation error well below 1 % for the energy
extracted at any of the resolutions. Note that the radiated energy in this particular
grazing collision is Erad/MADM = 0.199 %, more than twice as large as the head-on
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Fig. 7.2 Analysis of the energy radiated in gravitational waves (top) and the merger
remnant’s dimensionless spin (bottom). For either quantity, we show results obtained
for the three grid resolutions in the lower panel and compare in the upper panel the
differences low-medium vs. medium-high resolution, rescaling the latter by a factor
Q4 = 5.94 or Q3 = 4.11 expected for 4th or 3rd order convergence.
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value Erad,headon/MADM = 0.0819 %, as reported in Chapter 5. Note that in Fig. 7.2
we report the dimensionless spin parameter defined in [232] as

j = c
1/(D−3)
J

J

M1/(D−3) M
, cJ = AD−3

2D+1
(D − 2)D−2

(D − 3)(D−3)/2 , J = 2
D − 2Ma . (7.31)

7.4 Conclusions

In this chapter we have demonstrated the accuracy of an apparent horizon finder,
using a minimisation algorithm, in higher dimensional numerical relativity, and its
application to various types of initial black hole data. In particular the success of the
finder in tracking black holes through merger, and outputting diagnostic quantities for
the final post-merger black hole should provide a valuable tool in the analysis of black
hole inspirals in higher dimensional numerical relativity. We have also performed the
first simulation of a BH inspiral in more than 4D using Bowen-York like data. With this
code in place there is now scope for a much more extensive exploration of inspiralling
black holes in higher dimensions. We can now investigate how the radiated energy in
gravitational waves varies as a function of the angular momentum of the initial data, as
well as the number of dimensions D. It is also of interest to investigate how high a spin
a black hole can be formed with, as the product of binary black hole coalescence. It is
known that above 5D there is no theoretical extremality bound on the spin of a black
hole, however the sharp drop off in the gravitational field indicates it may be difficult
for inspirals in higher dimensions to produce highly spinning remnants. It would be of
further interest to use the spinning initial data of Section 6.3 to investigate how initially
spinning black holes would affect such results, as well as potential generalisations of
known effects in 4D that are a result of the interaction between black hole spins and
orbital angular momentum, such as the “hang-up” effect [304] and black hole superkicks
[305–308].



Chapter 8

Angular Momentum Wave
Extraction

The work in this chapter is unpublished. It was performed by the author alone.

8.1 Introduction

In order to fully analyse black hole inspirals of the type presented in Chapter 7 we
must implement one more diagnostic quantity. Using our apparent horizon finder we
can calculate the post merger spin of a black hole, and with Eq. (6.43) we can calculate
the total angular momentum in a spatial slice of the spacetime. The difference between
these measures is the Bondi angular momentum, the angular momentum radiated away
in gravitational waves. In this chapter we will implement a formula for the Bondi
angular momentum in the Weyl scalar wave extraction formalism of Chapter 4, using
the modified Cartoon dimensional reduction scheme. As we have seen in Section 2.6.4,
the calculation of the angular momentum in a spacetime proceeds differently to that
for mass and linear momentum, due to the so called supertranslation ambiguity in 4D
of defining angular momentum. For the ADM integrals defined at spatial infinity, the
angular momentum, Eq. (2.95), is not preserved under the symmetry group of spatial
infinity, which contains supertranslations, and so stronger conditions than asymptotic
flatness must be imposed upon the spacetime, given in Eqs (2.96), (2.97). This problem
also arises when defining the ADM integrals in higher dimensions, as we have seen in
Chapter 6. In 4D the asymptotic symmetry group of null infinity is the BMS group
[309, 180], which also contains supertranslations, and so the same problem arises when
considering the angular momentum in gravitational waves in 4D, a problem that has
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been widely studied in e.g. [310–313]. In higher dimensions however, it has been shown
that the symmetry group of null infinity is the Poincaré group [270], which does not
contain supertranslations. This means that in D > 4 we have a well defined Bondi
angular momentum, which has been shown in [314] to obey the equation

d

du
JBondi(p) = 1

16π

∫
SD−2

φα(p)

(
2ḣ(1)

αβDγh
βγ(1) − Dγh

(1)
αβ ḣ

βγ(1) + 1
2 ḣ

(1)βγDαh
(1)
βγ

)
dΩ. (8.1)

Here φα(p) is the Killing vector associated to the rotational symmetry of our angular
momentum, labelled by (p), h(1)

αβ is the Bondi news function, and Dα is the covariant
derivative associated with the round metric on the D − 2 sphere, which we denote
with ωαβ. An overdot ḣ here denotes a derivative with respect to the retarded Bondi
time. The remainder of this chapter is structured as follows. In Section 8.2 we briefly
recap the derivation of Eq. (8.1), as given in [314]. In Section 8.3 we will describe how
to recast Eq. (8.1) in a form suitable for our numerical code, which takes as inputs
the Weyl scalar data calculated from our simulations as described in Chapter 4, and
outputs the flux of angular momentum. Much of the detail of this calculation can be
found in Appendix C.

8.2 Background theory

In Section 4.2 we saw that an asymptotically flat metric can be written in Bondi
coordinates in the form

ds2 = gABdx
AdxB = −AeBdu2 − 2eBdudr+ r2hαβ(dϕα + Cαdu)(dϕβ + Cβdu), (8.2)

where u is a retarded time coordinate, r a radial coordinate and ϕα angular coordinates.
We also saw that the Bondi news function h(1)

αβ arises from this metric in an expansion
of the function hαβ, c.f. Eq. (4.2).

In [314], Tanabe et al. expand guu and guα as a power series in r, with guu

depending on a free function of integration m(u, ϕα) and guα depending on the free
function jα(u, ϕβ). m corresponds to the Bondi mass, and linear momentum of the
system as shown in [270],
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MBondi = D − 2
16π

∫
SD−2

mdΩ, (8.3)

P
(I)
Bondi = D − 2

16π

∫
SD−2

mx̂(I)dΩ, (8.4)

where x̂(I) is the Ith Cartesian unit vector. Similarly the Bondi angular momentum is
defined to be

JBondi,(p) = −D − 1
16π

∫
SD−2

φα(p)jαdΩ,
(8.5)

where φα(p) is the pth Killing vector of the D − 2 sphere. Both functions m and jα can
be freely specified on an initial time slice u = u0. By now considering the evolution
equations of the metric, it is shown in [314] how jα evolves in time, i.e. how it changes
as gravitational waves are emitted to future null infinity. This provides the radiation
formula for angular momentum in higher dimensions, given above in Eq. (8.1).

8.3 Modified Cartoon implementation

The primary concern of this chapter will be writing Eq. (8.1) in a form compatible with
our implementation of the modified Cartoon formalism. A key difficulty in generalising
results on angular momentum radiation in the literature on 3 + 1 numerical relativity,
e.g. [194], to higher dimensions, is that in 4D the spin weighted spherical harmonic
formalism of Newman and Penrose [178] is widely used, which is absent in higher
dimensions. In order to rewrite Eq. (8.1), we must evaluate three objects in our
SO(D − 3) symmetry. The Killing vector φα, the Bondi news function hαβ, and the
covariant derivative Dα. Note, here we have dropped the superscript label on the
Bondi news and shall henceforth only refer to it as hαβ, as we will not refer to the
other function hαβ defined in Eq. (8.2) again in this chapter or in Appendix C.

8.3.1 The Killing vector

In this chapter we shall only consider the case of angular momentum in the x − y

plane, which is the only plane that our SO(D − 3) symmetry assumption will allow us
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to perform a BH inspiral in. We remind ourselves of the angular coordinates that we
have already defined in Section 2.1,

(w1 ≡) x1 = r cosϕ2 ,

(w2 ≡) x2 = r sinϕ2 cosϕ3 ,

...
(wd−1 ≡) xd−1 = r sinϕ2 . . . sinϕd−1 cosϕd ,

(wd ≡) z = r sinϕ2 . . . sinϕd−1 sinϕd cosϕd+1 ,

wd+1 = r sinϕ2 . . . sinϕd−1 sinϕd sinϕd+1 cosϕd+2 ,

...

wD−3 = r sinϕ2 . . . sinϕD−3 cosϕD−2 ,

wD−2 = r sinϕ2 . . . sinϕD−3 sinϕD−2 cosϕD−1 ,

wD−1 = r sinϕ2 . . . sinϕD−3 sinϕD−2 sinϕD−1 . (8.6)

This coordinate system is not naturally suited to give us the Killing vector associated
to the x− y plane, since the 2 angles that are not fixed in our computational domain,
ϕ2, ϕ3, are colatitudinal angles measuring the angle down from the x and y axis
respectively. Instead we require an azimuthal angle in the x − y plane. We shall
therefore switch to a coordinate system in which there is an azimuthal angle in the
x− y plane, calculate the Killing vector in this coordinate system, and then change
coordinates back to the spherical coordinates in Eq. (8.6). What follows is effectively
the same problem as constructing the rotation vector around the x or y axis in a
standard 3D spherical coordinate system that uses the z axis as its reference axis.
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Let us define a new angular coordinate system (ψα), where the coordinates are
defined in the opposite way to that in which they were defined before,

wD−1 = r cosψ2 ,

wD−2 = r sinψ2 cosψ3 ,

...
z ≡ w3 = r sinψ2 . . . sinψD−3 cosψD−2 ,

y ≡ w2 = r sinψ2 . . . sinψD−3 sinψD−2 cosψD−1 ,

x ≡ w1 = r sinψ2 . . . sinψD−3 sinψD−2 sinψD−1 . (8.7)

Now the azimuthal angle ψD−1 lies in the x− y plane, and parametrises the entire 2D
plane, as it runs from [0, 2π]. We now need to express the relevant Killing vector,

φα = (∂/∂ψD−1)α (8.8)

in terms of our old angular coordinate system, (ϕα). We perform this calculation in
Appendix C.1, which gives the Killing vector

φα = (− cosϕ3, cotϕ2 sinϕ3, 0, . . . , 0). (8.9)

8.3.2 The Bondi news

From [265], as referenced in Chapter 4, we know that the Bondi news function can be
extracted from the spacetime in terms of a particular projection of the Weyl tensor,
that we refer to as Ω′

(α)(β). In Eq. (37) of Godazgar and Reall [265] we are told that

Ω′
(α)(β) = −1

2
êα(α)ê

β
(β)ḧαβ

rD/2−1 . (8.10)

Here êα(α) is a basis for the round metric on the sphere, ωαβ, meaning

ωαβ = δ(α)(β)êα(α)êβ(β). (8.11)

Explicitly in terms of our ϕα coordinate system,
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ωαβ =



1 0 0 · · · 0
0 sin2 ϕ2 0 · · · 0
0 0 sin2 ϕ2 sin2 ϕ3 · · · 0
... ... ... . . . ...
0 0 0 · · · sin2 ϕ2 sin2 ϕ3 · · · sin2 ϕD−2


, (8.12)

giving the basis elements

êα(α) = δα(α)

α−1∏
β=2

sinϕβ. (8.13)

Raising the α index with the inverse metric ωαβ gives,

êα(α) = δα(α)

α−1∏
β=2

cscϕβ. (8.14)

In the computational domain sinϕa = 0, so, due to the presence of these cscϕ terms,
we cannot immediately restrict our discussion to the computational domain, we must
first ensure that these terms cancel off.

Using Eq. (8.11) we can construct an expression for hαβ in terms of the Weyl
scalars, by rearranging Eq. (8.10). We remind ourselves at this point that in our
SO(D − 3) symmetry assumption each component of Ω′

(α)(β) is a scalar, that only
depends on the 2 angles ϕ2, ϕ3, and that there are only 4 non zero components of Ω′

(α)(β):(
Ω′

(2)(2),Ω′
(2)(3),Ω′

(3)(3),Ω′
(w)(w)

)
. As Ω′

(α)(β) is trace free, in fact only 3 of these are
independent components. We multiply both sides of Eq. (8.10) by êγ(γ)ê

δ
(δ)δ(α)(γ)δ(β)(δ),

to obtain the Bondi news and its first time derivative,
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−2rD/2−1Ω′
(α)(β)ê

γ
(γ)ê

δ
(δ)δ(α)(γ)δ(β)(δ) = êγ(γ)ê

δ
(δ)δ(α)(γ)δ(β)(δ)ê

α
(α)ê

β
(β)ḧαβ

−2rD/2−1Ω′
(α)(β)ê

γ
(α)ê

δ
(β) = ωαγωβδḧαβ

−2rD/2−1Ω′
(α)(β)ê

γ
(α)ê

δ
(β) = ḧγβ∫ u

−∞
−2rD/2−1Ω′

(α)(β)ê
γ
(α)ê

δ
(β)dũ = ḣγβ∫ u

−∞

∫ û

−∞
−2rD/2−1Ω′

(α)(β)ê
γ
(α)ê

δ
(β)dũdû = hγβ. (8.15)

Lowering the indices we find

hαβ =
∫ u

−∞

∫ û

−∞
−2rD/2−1Ω′

(α)(β)êα(α)êβ(β)dũdû. (8.16)

8.3.3 Covariant derivatives on SD−2

When evaluating the covariant derivatives of the Bondi news, we will need to calculate
terms involving the Christoffel symbols, and partial derivatives of the Bondi news. We
first note that the Christoffel symbols given by the metric ωαβ are

Γββα =

cotϕα if β > α,

0 if β ≤ α,
(8.17)

Γαββ =

− cosϕα sinϕα sin2 ϕα+1 sin2 ϕα+2 · · · sin2 ϕβ−1 if β > α,

0 if β ≤ α.
(8.18)

Let us now consider the partial derivatives of the Bondi news. When we take the
partial angular derivative ∂/∂ϕα of the Bondi news as given in Eq. (8.16) we only act
on the term Ω′

(β)(γ)êβ(β)êγ(γ), so we will at this point ignore the integrals over ũ and û

and the factor of r. Taking the partial derivative of the remaining term, we obtain

∂α
(
Ω′

(β)(γ)êβ(β)êγ(γ)
)

= ∂α(êβ(β))êγ(γ)Ω′
(β)(γ) + êβ(β)∂α(êγ(γ))Ω′

(β)(γ) + êβ(β)êγ(γ)∂αΩ′
(β)(γ).

(8.19)
As discussed above Ω′

(β)(γ) is a scalar on the computational domain, only depending
on ϕ2, ϕ3, so the final term on the right hand side of Eq. (8.19) will be found by
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differentiating the data we calculate for Ω′
(β)(γ), using finite difference methods on a

2D spherical grid. To calculate the first two terms, we must consider the derivative of
the basis vector,

∂αêβ(β) = ∂αδβ(β)

β−1∏
γ=2

sinϕγ,

=

δβ(β) cosϕα
∏β−1
γ=2,γ ̸=α sinϕγ if α ≤ β − 1,

0 o/w.
(8.20)

8.3.4 Evaluating the angular momentum

We now have all the information required to calculate the angular momentum. Since
the Killing vector lies in the computational domain we can set the indices that are
contracted with the Killing vector (i.e. α) to be indices that lie in the computational
domain. We calculate the three terms inside the integral on the right hand side of
Eq. (8.1) in Appendix C.2, and confirm our calculation using the diffgeo package in
Mathematica. For the sake of brevity we do not reproduce the lengthy expression
here, but it can be found in Eq. (C.34) in Appendix C.2.

8.4 Conclusions

In this chapter we have obtained an expression for calculating the angular momentum
radiated in gravitational waves, based on the work of [314]. In the form that we have
calculated, we can now take the data that we have calculated for wave extraction in
Chapter 4, namely the Weyl scalars

(
Ω′

(2)(2),Ω′
(2)(3),Ω′

(3)(3),Ω′
(w)(w)

)
, and their angular

derivatives, computed using finite differencing methods, and calculate the flux in
angular momentum. Combined with the spin measurement of the apparent horizon
introduced in Chapter 7, and the ADM integral for angular momentum on the spatial
slice in Chapter 6, we can now independently account for the individual contributions
to the angular momentum content of a black hole spacetime.
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Conclusions and Outlook

9.1 Conclusions

In this thesis we have attempted to extend the reach of numerical relativity in higher
dimensions by developing new diagnostic tools and initial data for studying black hole
mergers in higher dimensions. Firstly we have demonstrated the application of the
modified Cartoon formalism of dimensional reduction to the BSSN equations, and
used this to simulate the merger of black holes in over 6 dimensions for the first time.
This formalism has allowed us to perform simulations in higher dimensions efficiently,
by exploiting the symmetry of the spacetimes we consider, without falling victim to
the curse of dimensionality. In addition, this method has shown numerical stability
in higher dimensions than the previously employed method of dimensional reduction
by isometry. By following analytic work on the peeling of the Weyl tensor in higher
dimensions, we have developed a new method for performing wave extraction in higher
dimensional numerical relativity. This is analogous to the Newman-Penrose Ψ4 wave
extraction formalism in 4D, and can be used as a complementary tool to the already
implemented Kodama-Ishibashi wave extraction, with which our Weyl scalar formalism
gives good agreement. Using the Weyl scalar method we obtain all of the radiated
energy in gravitational waves at once, avoiding the truncation error introduced in the
Kodama-Ishibashi method, which requires summing a finite number of l modes. The
disadvantage of this method however is the lack of a mode decomposition, making the
Weyl scalar method less suitable for the analysis of, for example, quasinormal modes.
The Weyl scalar method and the Kodama-Ishibashi method should therefore act as
complementary diagnostic tools in the analysis of gravitational waves.



132 Conclusions and Outlook

Using the Weyl scalar method, we have investigated the gravitational waves emitted
when black holes merge, head-on, from rest, in up to 10 spacetime dimensions, and
investigated the dependence of the radiated energy and momentum on the number
of dimensions and the mass ratio. We have found for the equal mass case that the
dependence of radiated energy on D closely resembles that of the surface area of the
sphere in its qualitative form, but clearly differs in the values of the parameters in the fit.
When considering the unequal mass case, we learned that the dependence of radiated
energy on mass ratio is strongly dimension dependent, which allows us to make contact
with results calculated in the point particle limit, which were seemingly in tension with
the numerical results found for the equal mass case. By analysing the quasinormal
modes of the final black holes, found using the Kodama-Ishibashi wave extraction
method, we have matched our numerical data to results from higher dimensional black
hole perturbation theory, and results calculated in the large D limit. We find that in
the unequal mass case “non-decoupling” modes are the dominant modes excited, as
opposed to the equal mass case in which both non-decoupling and decoupling modes
were found. By investigating the emission of linear momentum in these collisions, we
have also obtained a fitting formula for the velocity of the post-merger black hole.

Taking the Bowen-York procedure for calculating extrinsic curvature for an initial
timeslice containing boosted or spinning black holes, we have implemented such initial
data in the modified Cartoon method and evolved higher dimensional black hole
inspirals. By developing an apparent horizon finder for use in higher dimensions we
have have been able to analyse these inspirals to find the spin and mass of the final
black hole, allowing us to, for the first time, analyse a dynamically formed Myers-Perry
black hole. We have also introduced ADM integrals for mass and momentum in higher
dimensions, and an integral for the angular momentum of a spatial slice. Finally, we
have recast a formula for calculating the angular momentum radiated in gravitational
waves in a form compatible with the modified Cartoon implementation of our numerical
code. With these diagnostics in place, we have constructed a toolbox that should allow
us to analyse the behaviour of many more types of black hole-black hole interactions
in higher dimensional general relativity.

9.2 Outlook

There is much work still to be done in the numerical study of higher dimensional black
hole spacetimes, and we hope that the tools constructed in this thesis will provide
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a valuable starting point to investigate outstanding problems. For the first time we
have presented the inspiral of black holes in higher dimensions using Bowen-York
like data, inspirals which, as in the 4D case, will emit angular momentum through
gravitational waves during the inspiral and merger. Now, with the ability to extract
angular momentum from gravitational waves we can fully analyse this. It would
be interesting to see how the value of the parameter D affects the radiated angular
momentum for higher dimensional mergers, especially given that the end product of
the inspiral, the Myers-Perry black hole, does not have an upper limit on its spin in
greater than 5 dimensions. This could lead to qualitatively different behaviour in 6
dimensions and greater, when compared to known results in 4D. Our early results
presented in Chapter 7 suggest that the spins produced in inspirals are low, but a full
investigation of grazing collisions will be required to fully explore both this issue and
the potential existence of zoom-whirl orbits in D > 4. One phenomenon in 4D that
can now be tested in higher dimensions is the hang-up effect [304], where the alignment
of black hole spins with the orbital plane can cause longer or shorter black hole orbits,
as the individual angular momenta of the black holes interact with the orbital angular
momentum. This can be interpreted as an attempt by the black holes to shed their
angular momentum before merger to prevent the formation of a super-extremal Kerr
black hole, so the generalisation of this process to higher dimensions where there is
no upper limit on spin, is not obvious. Beyond this, other spin effects such as black
hole superkicks [305–308], where particular spin configurations cause large emissions of
linear momentum in gravitational waves at the point of merger, can now be investigated
in higher dimensions. In [112] evidence was found for a violation of the weak cosmic
censorship conjecture in black hole inspirals in higher dimensions, with a point identified
outside of any black hole horizon which had super-Planckian curvature. Our code now
has the capability of investigating these results and their extension to D > 5.

In the analysis of non-head on collisions, it will be useful to have the ability to
decompose wave signals into their fundamental modes. Currently we are unaware of a
method for projecting the higher dimensional Weyl scalars onto a higher dimensional
family of spin weighted spherical harmonics as can be done in 4D for Ψ4, and, at present,
the Kodama-Ishibashi formalism has only been implemented for scalar perturbations.
Either constructing the appropriate basis functions for higher dimensional spin weighted
quantities, or implementing the vector and tensor sectors of the Kodama-Ishibashi wave
extraction would allow us to fully investigate the nature of the quasinormal modes of the
final merged black holes after a boosted grazing collision, inspiral, or collision of spinning
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black holes. We note the existence of some work in this direction generalising the
spin weighted spherical harmonics to spheroidal harmonics and generalising spherical
harmonics to higher dimensions in [315].

In order to fully mirror the collisions at the Large Hadron Collider that might, in
TeV gravity scenarios, lead to black hole production, we must investigate the behaviour
of highly boosted black hole collisions. The Bowen-York data presented in this thesis
should give a valuable tool to calculate initial data for such simulations, to investigate
such questions as the maximum energy that can be radiated in black hole collisions,
the scattering cross section of black hole collisions, and whether universality behaviour
seen in 4D generalises to higher dimensions. We will also have the opportunity to
compare numerical data to fitting formulae found in [37, 40], generalised from the
4D work of D’Eath and Payne, [95–98], for the energy radiated when Aichelberg-Sexl
shockwaves collide. Such simulations would also allow us to address the question posed
in Chapter 5, as to whether universality from high boosts, or structure that becomes
apparent in the large D limit, dominates for highly boosted collisions at higher values
of D.

In Chapter 7 we have presented a horizon finder that utilises a straightforward
minimisation algorithm to minimise Eq. (7.10). A commonly used apparent horizon
finder provided as part of the Cactus computational toolkit, AHFinderDirect [316],
uses more efficient spectral methods to find the horizon. For more extreme black hole
mergers, such as those with large boosts, it may become necessary to implement a more
efficient horizon finder, with an adaptation of AHFinderDirect to higher dimensions
being a natural candidate for this problem. Recent papers have also studied the use
of algebraic conditions on spacetimes as a means of locating BH horizons [317–321].
These methods can be applied in 4D and higher dimensions, and, as they require the
calculation of fewer derivatives than apparent horizon finding methods, it has been
suggested that they could be more efficient within numerical codes. Investigating the
relative merits of these methods could prove a valuable insight into how horizon finding
should be performed in numerical relativity.
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Appendix A

Dimensional Reduction with the
Modified Cartoon Formalism -
Appendix

A.1 Cartesian components in SO(D− d) symmetry

We present here the list of all modified Cartoon expressions for the case of SO(D − d)
symmetry with d < D − 2. The index range for early Latin indices is a, b, . . . =
d + 1, . . . , D − 1 and for middle Latin indices i, j, . . . = 1, . . . d. Furthermore, an
index z denotes the coordinate z while the index w only appears in the tensor component
Tww which represents the additional function that needs to be evolved numerically
in addition to the Tij. For example, the spacetime metric is fully described by the
components gαβ, α, β = 0, 1, . . . d, plus one additional field gww. For arbitrary scalar,
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vector and tensor densities Ψ, V A and TAB, the expressions are

0 = ∂aΨ = ∂i∂aΨ , (A.1)

∂a∂bΨ = δab
∂zΨ
z

, (A.2)

0 = V a = ∂iV
a = ∂aV

i = ∂a∂bV
c , (A.3)

∂aV
b = δa

bV
z

z
, (A.4)

∂i∂aV
b = δba

(
∂iV

z

z
− δiz

V z

z2

)
, (A.5)

∂a∂bV
i = δab

(
∂zV

i

z
− δiz

V z

z2

)
, (A.6)

0 = Tia = ∂aTbc = ∂i∂aTbc = ∂a∂bTic = ∂aTij = ∂i∂aTjk , (A.7)
Tab = δabTww , (A.8)

∂a∂bTcd = (δacδbd + δadδbc)
Tzz − Tww

z2 + δabδcd
∂zTww
z

, (A.9)

∂aTib = δab
Tiz − δizTww

z
, (A.10)

∂i∂aTjb = δab

(
∂iTjz − δjz∂iTww

z
− δiz

Tjz − δjzTww
z2

)
, (A.11)

∂a∂bTij = δab

(
∂zTij
z

− δizTjz + δjzTiz − 2δizδjzTww
z2

)
. (A.12)

A.2 Regularization at z = 0 for d < D − 2

The presence of z in the denominator of several terms in the system of Eqs. (3.28)-(3.48)
merely arises from the quasi-radial nature of the coordinate z and can be handled
straightforwardly in analogy to the treatment of the origin in spherical or axisymmetry.

We will present the regularized terms needed in the generic SO(D − d) symmetry;
however, it should be noted that terms involving the inverse metric become much more
complicated for a large d, and so we will also explicitly show these terms for the most
common case, d = 3.

We first require that all components expressed in a fully Cartesian set of coordinates
are regular. A well known consequence of this assumption is that tensor density
components containing an odd (even) number of radial, i.e. z, indices contain only odd
(even) powers of z in a series expansion around z = 0. The same holds for quantities
derived from tensors and densities such as the BSSN variable Γ̃i.
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Next, we consider the inverse metric which we obtain through inversion of the
matrix equation (3.27). By constructing the cofactor matrix and dividing by the
determinant, we obtain, for d = 3

γ̃xx = γ̃ηww
γ̃yy γ̃zz−γ̃2

yz

det γ̃IJ
, γ̃xy = γ̃ηww

γ̃yz γ̃xz−γ̃xy γ̃zz

det γ̃IJ
, γ̃xz = γ̃ηww

γ̃xy γ̃yz−γ̃xz γ̃yy

det γ̃IJ
,

· · · γ̃yy = γ̃ηww
γ̃xxγ̃zz−γ̃2

xz

det γ̃IJ
, γ̃yz = γ̃ηww

γ̃xy γ̃xz−γ̃xxγ̃yz

det γ̃IJ
,

· · · · · · γ̃zz = γ̃ηww
γ̃xxγ̃yy−γ̃2

xy

det γ̃IJ
.

(A.13)

Next, we recall that the BSSN metric has unit determinant, so that

1 = det γ̃IJ = γ̃ηww(γ̃xxγ̃yyγ̃zz + 2γ̃xyγ̃xzγ̃yz − γ̃xxγ̃
2
yz − γ̃yyγ̃

2
xz − γ̃zzγ̃

2
xy)

∗= γ̃ηwwγ̃zz(γ̃xxγ̃yy − γ̃2
xy) , (A.14)

where we introduced the symbol “ ∗= ” to denote equality in the limit z → 0. The
components for the inverse BSSN metric in Eq. (A.13) simplify accordingly.

For a general d we know that the matrix takes the form given in Eq. (3.27). Then,
denoting the cofactor matrix for a given element of γ̃IJ by CIJ , the inverse BSSN metric
components are (note that the metric is symmetric, so that CIJ = CJI)

γ̃x
1x1 = Cx1x1

det γ̃IJ
, · · · , γ̃x

1xd−1 = C
x1xd−1

det γ̃IJ
, γ̃x

1z = Cx1z

det γ̃IJ
,

... . . . ... ...

... · · · γ̃x
d−1xd−1 = C

xd−1xd−1
det γ̃IJ

, γ̃x
d−1z = C

xd−1z

det γ̃IJ

· · · · · · · · · γ̃zz = Czz

det γ̃IJ
.

(A.15)

Again, in the BSSN case det γ̃IJ = 1, and the inverse metric element is simply the
cofactor of that element. For simplicity, we will use indices î in place of xî in the
remainder of this section, so that, for example C12 ≡ Cx1x2 , C1z ≡ Cx1z etc. When used
without a caret, the lower case Latin indices i, j, . . . also include the z component.

If we denote the upper-left quadrant of the matrix in Eq. (3.27) as the matrix Mij,
then we can write the cofactor of an element in this upper-left quadrant as

Cij = (−1)i+j γ̃ηww det(Mkl{k ̸=j,l ̸=i}) . (A.16)
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Here, the notation det(Mkl{k ̸=j,l ̸=i}) denotes the determinant of the matrix obtained
by crossing out the jth row and ith column. Likewise, we may add further inequalities
inside the braces to denote matrices obtained by crossing out more than one row and
column.

The next regularity condition we require our spacetime to satisfy is the absence of
a conical singularity at z = 0. In polar coordinates (ρ, φ) constructed as in Sec. 3.2.2,
this condition can be expressed as γ̃φφ = ρ2γ̃ρρ which translates into the conditions

γ̃zz − γ̃ww
∗= O(z2) , γ̃zz − γ̃ww

∗= O(z2) , (A.17)

in Cartesian coordinates. By taking the time derivative of these relations and combining
these with Eqs. (3.31), (3.32), we obtain an analogous relation for the traceless extrinsic
curvature,

Ãzz − Ãww
∗= O(z2) . (A.18)

We thus arrive at the following list of regularized terms valid in the limit z → 0.

(1) By expanding βz = b1z + b3z
3 + . . ., and likewise for Γ̃z and ∂zγ̃ww, we obtain

βz

z
∗= ∂zβz ,

Γ̃z
z

∗= ∂zΓ̃z ,
∂zγ̃ww
z

∗= ∂z∂zγ̃ww , (A.19)

and likewise for α or χ in place of γ̃ww in the last expression.
(2) We express the inverse metric components through their cofactors, given for

arbitrary d by Eq. (A.16), and then apply the same trading of divisions by z for
derivatives as done for βz/z, to obtain

δiz − γ̃ziγ̃ww
z

∗=


d−1∑
m̂=1

(−1)m̂+î∂z(γ̃m̂z)γ̃η+1
ww det(Mjl{j ̸=z,j ̸=m̂,l ̸=i,l ̸=z}) if i = î

0 if i = z

.

(A.20)
Here, as well in items (5) and (9) below, we formally set det(Mjl{j ̸=z,j ̸=m̂,l ̸=i,l ̸=z}) = 1
for the case d = 2 where no entries would be left in the matrix after crossing out
two rows and columns. For d = 1, the case i = î does not arise which obviates
the need to evaluate the determinant. For the case d = 3, the expression (A.20)
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becomes

δiz − γ̃ziγ̃ww
z

∗=



γ̃η+1
ww (γ̃yy∂zγ̃xz − γ̃xy∂zγ̃yz) if i = x

γ̃η+1
ww (γ̃xx∂zγ̃yz − γ̃xy∂zγ̃xz) if i = y

0 if i = z

. (A.21)

(3) Expanding β î = b0 + b2z
2 + . . . and βz = b1z + b3z

3 + . . . , we trade two divisions
by z for a second derivative and obtain

∂zβ
i

z
− δiz

βz

z2 =


∂z∂zβ

î if i = î

0 if i = z
. (A.22)

(4) We rewrite the term

γ̃im∂mβ
z

z
− γ̃iz

βz

z2 = γ̃im
(
∂mβ

z

z
− δzm

βz

z2

)
, (A.23)

and expand βz = b1z + b3z
3 + . . . which leads to

∂mβ
z

z
− δzm

βz

z2 =


∂m̂∂zβ

z if m = m̂

0 if m = z
. (A.24)

(5) Similarly to Eq. (A.20), we find for general d that

γ̃zm

z
∂mα =

d−1∑
m̂=1

d−1∑
î=1

(−1)m̂+î−1∂z(γ̃m̂z)γ̃ηww det(Mjl{j ̸=z,j ̸=m̂,l ̸=î,l ̸=z})∂îα

+γ̃zz∂z∂zα , (A.25)

where again we formally set det(Mjl{j ̸=z,j ̸=m̂,l ̸=i,l ̸=z}) = 1 for the case d = 2; c.f. item
(2) above. For d = 3, we obtain

γ̃zm

z
∂mα = γ̃ηww [(γ̃xy∂zγ̃yz − γ̃yy∂zγ̃xz) ∂xα + (γ̃xy∂zγ̃xz − γ̃xx∂zγ̃yz) ∂yα]

+γ̃zz∂z∂zα , (A.26)

and likewise for χ in place of α.
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(6) Using Ãzz − Ãww = O(z2), we obtain

Ãiz − δizÃww
z

=


∂zÃîz if i = î

0 if i = z
. (A.27)

(7) Using γ̃zz − γ̃ww = O(z2) and trading a division by z for a z derivative, we find

− 1
2
∂zγ̃ij
z

+ δz(iγ̃j)z − δizδjzγ̃ww
z2 =



−1
2∂z∂zγ̃îĵ if (i, j) = (̂i, ĵ)

0 if (i, j) = (̂i, z) or (z, ĵ)

−1
2∂z∂zγ̃ww if (i, j) = (z, z)

.

(A.28)
(8) Using γ̃wwγ̃zz − 1 = γ̃ww(γ̃zz − γww) = γ̃wwO(z2) and γ̃zî/z = ∂zγ̃zî, we can rewrite

γ̃wwγ̃z(j − δz(j

z
∂i)γ̃ww =



γ̃ww∂zγ̃z(ĵ∂î)γ̃ww if (i, j) = (̂i, ĵ)

0 if (i, j) = (̂i, z) or (z, ĵ)

0 if (i, j) = (z, z)

.

(A.29)
(9) The term (γ̃zzγ̃ww−1)/z2 requires slightly more work and we describe its derivation

here in a little more detail. We first rewrite this term in the form

γ̃zzγ̃ww − 1
z2 = −γ̃zz

1
γ̃zz − γ̃ww

z2 , (A.30)

and express the inverse metric component γ̃zz in terms of the corresponding cofactor
matrix component and the determinant as

1
γ̃zz

= det γ̃IJ

Czz
= γ̃zzCzz

Czz
+
∑d−1
î=1 γ̃zîCzxî

Czz
. (A.31)

Note that these expressions are all valid for arbitrary values of z and we are not
yet using the BSSN condition det γ̃IJ = 1. We can now plug this relation into
Eq. (A.30). We then trade divisions by z for derivatives with respect to z, bearing
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in mind that γ̃zz = γ̃ww + O(z2) and find

γ̃zzγ̃ww − 1
z2

∗= γ̃zz

2 (∂z∂zγ̃ww − ∂z∂zγ̃zz) (A.32)

+ γ̃zz
d−1∑
î=1

d−1∑
ĵ=1

(−1)î+ĵ γ̃ηww
(∂zγ̃zî) ∂zγ̃ĵz

Czz
det(Mkl{k ̸=z,k ̸=ĵ,l ̸=î,l ̸=z}) .

Again, we formally set det(Mjl{j ̸=z,j ̸=m̂,l ̸=i,l ̸=z}) = 1 for the case d = 2; c.f. item (2)
above. Finally we use 1 = det γ̃IJ ⇒ Czz = γ̃zz to obtain

γ̃zzγ̃ww − 1
z2

∗= γ̃zz

2 (∂z∂zγ̃ww − ∂z∂zγ̃zz) (A.33)

+
d−1∑
î=1

d−1∑
ĵ=1

(−1)î+ĵ γ̃ηww(∂zγ̃zî) ∂zγ̃zĵ det(Mkl {k ̸=z,k ̸=ĵ,l ̸=î,l ̸=z}) .

For the case d = 3 this reduces to:

γ̃zzγ̃ww − 1
z2

∗= γ̃zz

2 ∂z∂z(γ̃ww − γ̃zz) − γ̃ηww
[
2γ̃xy(∂zγ̃xz)∂zγ̃yz − γ̃xx(∂zγ̃yz)2

−γ̃yy(∂zγ̃xz)2
]
. (A.34)

Finally, we list for completeness the regularization of Eqs. (A.2), (A.5), (A.6), (A.9),
(A.10) and (A.11) expressed here in terms of generic vector and tensor fields rather
than the BSSN variables,

∂zψ

z
∗= ∂z∂zψ , (A.35)

V z

z
∗= ∂zV

z , (A.36)

∂iV
z

z
− δzi

V z

z2
∗=


∂i∂zV

z if i = î

0 if i = z
, (A.37)

∂zV
i

z
− δiz

V z

z2
∗=


∂z∂zV

i if i = î

0 if i = z
, (A.38)

Tzz − Tww
z2

∗= 1
2∂z∂z(Tzz − Tww) , (A.39)
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∂zTww
z

∗= ∂z∂zTww , (A.40)

Tiz − δizTww
z

∗=


∂zTiz if i = î

0 if i = z
, (A.41)

∂iTjz − δjz∂iTww
z

− δiz
Tjz − δjzTww

z2
∗=



∂i∂zTjz if (i, j) = (̂i, ĵ)

0 if (i, j) = (̂i, z) or (z, ĵ)

∂z∂z(Tzz−Tww)
2 if (i, j) = (z, z)

,

(A.42)

∂zTij
z

− δizTjz + δjzTiz − 2δizδjzTww
z2

∗=



∂z∂zTij if (i, j) = (̂i, ĵ)

0 if (i, j) = (̂i, z) or (z, ĵ)

∂z∂zTww if (i, j) = (z, z)

.

(A.43)



Appendix B

Higher Dimensional Gravitational
Wave Extraction - Appendix

B.1 Regularisation of terms at z = 0

For the axisymmetric case d = D − 2, we only need to regularise terms appearing in
the calculation of derivatives in the off-domain w direction. All these terms are given
explicitly in Appendix C of [114], so that in the following we can focus exclusively on
the additional terms appearing for 1 ≤ d ≤ D − 3, i.e. for spacetimes admitting two or
more rotational Killing vector fields.

The treatment of these terms proceeds in close analogy to that of the BSSN
equations in the modified Cartoon approach as described in detail Appendix A.2.
In contrast, here we will not be using the conformally rescaled metric of the BSSN
equations, which satisfies the simplifying condition det γ̃ = 1, and so certain regularised
terms involving the inversion of the metric will differ from the expressions obtained for
the BSSN equations.

We start with a brief summary of the techniques and the main assumptions we will
use to regularise expressions:

1. Regularity: We require all tensor components and their derivatives to be regular
when expressed in Cartesian coordinates. Under transformation to spherical coordinates
this implies that tensors containing an odd (even) number of radial indices, i.e. z indices
in our notation, contain exclusively odd (even) powers of z in a series expansion around
z = 0. Using such a series expansion enables us to trade divisions by z for derivatives
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with respect to z. For example, for the z component of a vector field V , we obtain

V z

z
=a1z + a3z

3 + . . .

z
= a1 + a3z

2 + . . .
∗= a1

∗= ∂zV
z , (B.1)

where again the symbol ∗= denotes equality in the limit z → 0.

2. Absence of conical singularities: We require that the spacetime contain no
conical singularity at the origin z = 0. For the implications of this condition, we
consider the coordinate transformation from (xî, z, wd+1, . . . , wa . . . , wD−1) to
(xî, ρ, wd+1, . . . , wa−1, φ, wa+1, . . . , wD−1). As no other wb, b ̸= a, coordinates will enter
into this discussion we shall refer to wa as w. In these coordinates we have that

γρρ =z
2

ρ2γzz + 2zw
ρ2 γzw + w2

ρ2 γww , (B.2)

γφφ =w2γzz − 2wzγzw + z2γww , (B.3)

and the line element for vanishing dxî = 0 and dwb = 0, b ̸= a, is given by

ds2 =γρρdρ2 + ρ2γφφdφ
2 . (B.4)

Requiring the circumference to be the radius times 2π, we have that γφφ = ρ2γρρ.
Substituting the above expressions and taking the limit z → 0, we obtain

γzz − γww
∗= O(z2) . (B.5)

Taking the time derivative of this relation and using the definition of the extrinsic
curvature, we find that likewise

Kzz −Kww
∗= O(z2) . (B.6)

3. Inverse metric: Various terms that we need to address contain factors of the
inverse metric γIJ . In the practical regularisation procedure, these terms are conve-
niently handled by expressing γIJ in terms of the downstairs metric components γij
and γww which are the fields we evolve numerically. We know the metric takes the
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following form:

γIJ =



γx1x1 · · · γx1xd−1 γx1z 0 0 · · · 0
... . . . ... ... ... ... · · · ...

γxd−1x1 · · · γxd−1xd−1 γxd−1z 0 0 · · · 0
γzx1 · · · γzxd−1 γzz 0 0 · · · 0

0 · · · 0 0 γww 0 . . . 0
0 · · · 0 0 0 γww . . . 0
... · · · ... ... ... ... . . . ...
0 · · · 0 0 0 0 · · · γww



, (B.7)

and we shall denote the upper left quadrant by the matrix Mij. Again, we will use
the index î to denote xî in this section, so e.g. cofactors C12 = Cx1x2 and C1z = Cx1z.
Similarly the indices i, j, ... will stand for the xi, i.e. include the z component.

We can now write the cofactor of an element in the top left quadrant of γIJ as

Cij = (−1)i+jγηww det(Mkl{k ̸=j,l ̸=i}), (B.8)

where η = D− d− 1 and the notation det(Mkl{k ̸=j,l ̸=i}) denotes the determinant of the
matrix Mkl obtained by crossing out the jth row and ith column. Likewise, we may add
further inequalities inside the braces to denote matrices obtained by crossing out more
than one row and column. Note that here, in contrast to Appendix A, Cij denotes the
cofactor of the element γij, not γ̃ij. We can then use this expression for Cij and the
determinant of the right hand side of Eq. (B.7),

det γIJ = γηww det γij
∗= γηwwγzz det(Mkl{k ̸=z,l ̸=z}) , (B.9)

in order to obtain expressions for inverse metric components according to

γij = Cij
det γIJ

. (B.10)
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For d = 3, this procedure starts from the spatial metric

γIJ =



γxx γxy γxz 0 · · · 0
γyx γyy γyz 0 · · · 0
γzx γzy γzz 0 · · · 0
0 0 0 γww . . . 0
... ... ... ... . . . ...
0 0 0 0 · · · γww


. (B.11)

The components Cij of the cofactor matrix (which is symmetric) are given by

Cxx = γηww(γyyγzz − γ2
yz) , Cxy = −γηww(γyxγzz − γzxγyz) , Cxz = γηww(γyxγzy − γzxγyy) ,

· · · Cyy = γηww(γxxγzz − γ2
zx) , Cyz = −γηww(γxxγzy − γzxγxy) ,

· · · · · · Czz = γηww(γxxγyy − γ2
xy) ,

(B.12)

the determinant becomes

det γIJ = γηww
(
γxxγyyγzz + 2γxyγxzγyz − γxxγ

2
yz − γyyγ

2
xz − γzzγ

2
xy

)
∗= γηwwγzz

(
γxxγyy − γ2

xy

)
, (B.13)

and the inverse metric follows by inserting these into Eq. (B.10).

Using these techniques, we can regularise all terms in Eqs. (4.15), (4.16), (4.19), (4.25)
and (4.33) that contain divisions by z. It turns out to be convenient to combine the
individual terms into the following six expressions.

(1)
δiz − γziγww

z

We express γzi in terms of the metric, and trade divisions by z for derivatives ∂z
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and obtain

δiz − γziγww
z

∗=


d−1∑
ĵ=1

(−1)î+ĵ γww
detMmn

∂zγzĵ det(Mkl{k ̸=î,k ̸=z,l ̸=z,l ̸=ĵ}) if i = î

0 if i = z

(B.14)

For the d = 3 case this reduces to

δiz − γziγww
z

∗=



γyy∂zγxz − γxy∂zγyz
γxxγyy − γ2

xy

if i = x

γxx∂zγyz − γxy∂zγxz
γxxγyy − γ2

xy

if i = y

0 if i = z

. (B.15)

(2)

∂iγjz − δjz∂iγww
z

− δiz
γjz − δjzγww

z2 + ∂jγiz − δiz∂jγww
z

− δjz
γiz − δizγww

z2

Here we simply trade divisions by z for ∂z and obtain

∂iγjz − δjz∂iγww
z

− δiz
γjz − δjzγww

z2 + ∂jγiz − δiz∂jγww
z

− δjz
γiz − δizγww

z2

∗=



2∂z∂(̂iγĵ)z if i = î, j = ĵ

0 if (i, j) = (̂i, z) or (z, ĵ)

∂z∂z(γzz − γww) if i = j = z

. (B.16)

(3)

−1
2
∂zγij
z

+ δz(iγj)z − δizδjzγww
z2
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We use γzz − γww
∗= O(z2) and trade a division by z for a z derivative. The result

is

−1
2
∂zγij
z

+ δz(iγj)z − δizδjzγww
z2

∗=



−1
2∂z∂zγîĵ if i = î, j = ĵ

0 if (i, j) = (̂i, z) or (z, ĵ)

−1
2∂z∂zγww if i = j = z

.

(B.17)

(4)
γwwγ

zj∂jγww
z

Using Eqs. (B.7)-(B.10), we express the inverse metric components γzj in terms
of the downstairs metric and trade the division by z for a z derivative. We thus
obtain

γwwγ
zj∂jγww
z

∗=
d−1∑
ĵ=1

d−1∑
m̂=1

(−1)m̂+ĵ−1 γww
det(Mpq)

∂ĵγww∂zγzm̂ det(Mkl{k ̸=ĵ,k ̸=z,l ̸=z,l ̸=m̂})

+ γww det(Mkl{k ̸=z,l ̸=z})
det(Mpq)

∂z∂zγww . (B.18)

which in the case d = 3 reduces to

γwwγ
zj∂jγww
z

∗=(γyx∂zγzy − γyy∂zγzx)∂xγww + (γyx∂zγzx − γxx∂zγyz)∂yγww
γxxγyy − γ2

xy

+ ∂z∂zγww . (B.19)

(5)
γzzγ2

ww − γww
z2

The regularisation of this term proceeds in analogy to that of term (9) in Appendix
A.2, except we do not set det γ = 1. By rewriting 1 = γzz/γzz = γzz det γIJ/Czz,
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trading divisions by z for z derivatives and using γzz ∗= γww + O(z2), we obtain

γzzγ2
ww − γww
z2

∗=1
2∂z∂z(γww − γzz)

−
∑d−1
î=1

∑d−1
m̂=1(−1)î+m̂−1∂zγzî∂zγzm̂ det(Mkl{k ̸=î,k ̸=z,l ̸=z,l ̸=m̂})

det(Mkl{k ̸=z,l ̸=z})
,

(B.20)

which in the case d = 3 reduces to

γzzγ2
ww − γww
z2

∗=1
2∂z∂z(γww − γzz)

+ −2γxy∂zγxz∂zγyz + γxx(∂zγyz)2 + γyy(∂zγxz)2

γxxγyy − γ2
xy

. (B.21)

(6)
Kiz − δizKww

z

The division by z is again traded for a derivative if i ̸= z and for i = z, we use
Kzz = Kww + O(z2), so that

Kiz − δizKww

z
∗=


∂zKîz if i = î

0 if i = z
. (B.22)

B.2 Normalisation of the spatial normal frame vec-
tors

In this section, we discuss how the set of spatial normal frame vectors, Eq. (4.42), can
be recast in a form suitable for applying Gram-Schmidt orthonormalisation. It turns
out to be convenient to first rescale the m̃(α) such that they would acquire unit length
in a flat spacetime with spatial metric δIJ . Denoting these rescaled vectors with a caret,
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we have

m̂(α) = 1√√√√√(D−1∑
s=α

w2
s

)  D−1∑
s=α−1

w2
s





0
...
0

 (α− 2)×

−∑D−1
s=α (ws)2

wα−1wα

...
wα−1wD−2

wα−1wD−1


(D − α)×



, α = 2, . . . , D − 1 .

(B.23)
Recall that we formally set w1 ≡ x1, . . . , wd−1 ≡ xd−1, wd ≡ z. As a convenient
shorthand, we define

ρ2
I ≡

D−1∑
s=I

(ws)2 , (B.24)

so that, for instance, ρ2
1 = r2, ρ2

4 = (w4)2 + . . . + (wD−1)2, ρD−1 = wD−1. This
definition allows us to write

m̂I

(α) = 1
ρα ρα−1



0
...
0

 (α− 2)×

−ρ2
α

wα−1wα

...
wα−1wD−2

wα−1wD−1


(D − α)×



. (B.25)

We can now express the angles ϕα in terms of the radial variables ρI,

sinϕα = ρα
ρα−1

, cosϕα = wα−1

ρα−1
. (B.26)
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Using these relations in (B.25), we obtain

m̂I

(α) =



0
...
0

 (α− 2)×

− sinϕα

cosϕα cosϕα+1

cosϕα sinϕα+1 cosϕα+2

...
cosϕα sinϕα+1 . . . sinϕD−2 cosϕD−1

cosϕα sinϕα+1 . . . sinϕD−2 sinϕD−1



=



0
...
0

 (α− 2)×

− sinϕα

...

cosϕα
(
α+n−1∏
s=α+1

sinϕs
)

cosϕα+n

...



,

(B.27)
where n = 1, . . . , D − α, and we formally set cosϕD−1 ≡ 1 and ∏α

s=α+1 sinϕα ≡ 1.
Now, in our computational domain ρ2

d+1 = 0, which, from the definition of our
coordinate system in Eq. (2.4) gives

r2 sin2 ϕ2 . . . sin2 ϕd+1 = 0 (B.28)

Since ϕ2, . . . , ϕd are arbitrary in our computational domain, we must have either
ϕd+1 = 0 or π. Without loss of generality, we choose ϕd+1 = 0, which fixes the d− 1
vectors

m̂(2) =(− sinϕ2, cosϕ2 cosϕ3, . . . , cosϕ2
d∏
s=3

sin(ϕs), 0, . . . , 0︸ ︷︷ ︸
(D−d−1)×

) . (B.29)

...

m̂(α̂) =(0, . . . , 0︸ ︷︷ ︸
(α̂−2)×

, − sinϕα̂, cosϕα̂ cosϕα̂+1, . . . , cosϕα̂
d∏

s=α̂+1
(sinϕs), 0, . . . , 0︸ ︷︷ ︸

(D−d−1)×

)

(B.30)
...

m̂(d) =(0, . . . , 0︸ ︷︷ ︸
(d−2)×

, − sinϕd, cosϕd, 0, . . . , 0︸ ︷︷ ︸
(D−d−1)×

) , (B.31)

which, up to rescaling by ρα̂ρα̂−1, are equal to the vectors in Eqs. (4.44)-(4.46). For
the remaining vectors, we can use the rotational freedom in the angles ϕd+2, . . . , ϕD−1.
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Any choice for these values will satisfy wd+1 = . . . = wD−1 = 0 as required on our
computational domain and we merely need to ensure that we choose these angles such
that the resulting set of vectors is orthogonal. This is most conveniently achieved by
setting

ϕd+2 = . . . = ϕD−1 = 0 , (B.32)

which, inserted into Eq. (B.27), implies

m̂I

(a) = δI

a, a = d+ 1, . . . , D − 1. (B.33)

Combined with Eqs. (B.29)-(B.31) and restoring the tilde in place of the caret on the
m̃(a), we have recovered Eqs. (4.47)-(4.48) in Section 4.3.2 for the angular vectors. For
the case d = 3 we have just two non-trivial vectors:

m̂(2) =(− sinϕ2, cosϕ2 cosϕ3, cosϕ2 sinϕ3, 0, . . . , 0︸ ︷︷ ︸
(D−4)×

) , (B.34)

m̂(3) =(0, − sinϕ3, cosϕ3, 0, . . . , 0︸ ︷︷ ︸
(D−4)×

) , (B.35)

recovering Eqs. (4.50)-(4.54).



Appendix C

Angular Momentum Wave
Extraction - Appendix

C.1 Calculation of the Killing vector φ

We present here the calculation to put the Killing vector φα, defined in Eq. (8.8), into
spherical coordinates ϕα, given in Eq. (2.4), from its definition in terms of the new
spherical coordinates ψα, defined in Eq. (8.7). By the chain rule,

∂

∂ψD−1 = ∂ϕα

∂ψD−1
∂

∂ϕα
, (C.1)

so we must calculate all of the terms ∂ϕα/∂ψD−1. We will deal with the case for ϕ2

and ϕ3 first, and then all of the other terms at once.

ϕ2

We differentiate the expression for x with respect to ψD−1 in both (ϕ and ψ) coordinate
systems and set these equal to each other,

− sin(ϕ2)
∂ϕ2

∂ψD−1
= sinψ2 sinψ3 . . . sinψD−2 cosψD−1,

=⇒ ∂ϕ2

∂ψD−1
= − y

r sinϕ2

= − cosϕ3. (C.2)
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ϕ3

We differentiate the 2 expressions for y with respect to ψD−1 and set these equal to
each other,

− sinϕ2 sinϕ3
∂ϕ3

∂ψD−1
+ cosϕ2 cosϕ3

∂ϕ2

∂ψD−1
= − sinψ2 . . . sinψD−2 sinψD−1

= −x

r
,

=⇒ ∂ϕ3

∂ψD−1
= cotϕ2 sinϕ3. (C.3)

ϕa

To calculate ∂ϕa

∂ψD−1
we differentiate the two expressions for wa−1 and set them equal

to each other. Note that for all values of a the expression for wa−1 in terms of the ψ
coordinate system does not depend on ψD−1, and so this derivative is 0.

0 = ∂

∂ψD−1
(wa−1(ϕα))

= − ∂ϕa
∂ψD−1

a∏
β=2

sinϕβ + cosϕa
a−1∑
γ=2

∂ϕγ
∂ψD−1

cosϕγ
a−1∏

β=2,β ̸=γ
sinϕβ,

=⇒ ∂ϕa
∂ψD−1

= cosϕa
a−1∑
γ=2

∂ϕγ
∂ψD−1

cotϕγ. (C.4)

Here we see that each of these partial derivatives depends on all of the previously
calculated derivatives. Let us use this formula to calculate the first, a = 4, term.

∂ϕ4

∂ψD−1
= cosϕ4

3∑
γ=2

∂ϕγ
∂ψD−1

cotϕγ

= cosϕ4(− cotϕ2 cosϕ3 + cotϕ3 cotϕ2 sinϕ3) = 0. (C.5)

As this term is 0, so are all further terms for a > 4. So the Killing vector is, in spherical,
ϕ, coordinates,

φα = (− cosϕ3, cotϕ2 sinϕ3, 0, . . . , 0). (C.6)
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C.2 Calculation of Bondi angular momentum

We present here the explicit calculation of the Bondi angular momentum in higher
dimensions, given in Eq. (8.1). Let us first introduce the following notation. H(α) is
the Heaviside step function defined such that H(α) = 1 if α ≥ 0, and 0 otherwise. We
also define the notation Ω̄αβ :=

∫
Ω′
αβdu, and ¯̄Ωαβ :=

∫ ∫
Ω′
αβdûdu. For brevity we will

denote specific components of Ω′
(α)(β), e.g. Ω′

(2)(3), as Ω′
23. Finally, let us formally set

1∏
α=2

fα = 1, (C.7)

for any function f . We will calculate the three terms in Eq. (8.1) separately, dividing
each into terms involving partial derivatives, and terms involving Christoffel symbols.
As mentioned in the main text, we will set the index α to 2 or 3 only, due to the
contraction with the Killing vector φα given by Eq. (8.9).

C.2.1 Term 1: ḣαβDγh
βγ

Since we can take a factor of the round metric, ωαβ, out of the covariant derivative,
since it is metric compatible, we can take it out of the partial derivative too, as long as
we also take it out of the Christoffel symbols.

A brief calculation, using the results for the derivatives of the Bondi news in Eq.
(8.20) gives the partial derivative terms,

ωγσωβρḣαβ∂γhρσ = 4rD−2
σ−1∏
µ=2

(cscϕµ)Ω̄αρ

α−1∏
ζ=2

(sinϕζ)
(

cotϕσ ¯̄ΩρσH(ρ− σ − 1) + ∂σ
¯̄Ωρσ

)
.

(C.8)

For α = 2,

ωγσωβρḣ2β∂γhρσ = 4rD−2(Ω̄22∂2
¯̄Ω22 + cscϕ2Ω̄22∂3

¯̄Ω23 + Ω̄23 cotϕ2
¯̄Ω23 + Ω̄23∂2

¯̄Ω23

+ cscϕ2Ω̄23∂3
¯̄Ω33).

(C.9)
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For α = 3,

ωγσωβρḣ3β∂γhρσ = 4rD−2(Ω̄23 sinϕ2∂2
¯̄Ω22 + Ω̄23∂3

¯̄Ω23

+Ω̄33 sinϕ2(cotϕ2
¯̄Ω23 + ∂2

¯̄Ω23) + Ω̄33∂3
¯̄Ω33). (C.10)

We now calculate the Christoffel symbol terms, noting that, for brevity, terms such as
Γλσρδσρ have been written as Γλσσ.

−ḣαβωγσωβρ
(
Γλγρhλσ + Γλγσhρλ

)
= −4rD−2

σ−1∏
µ=2

(csc2 ϕµ)
ρ−1∏
ν=2

(cscϕν)Ω̄αρ

α−1∏
ζ=2

(sinϕζ)Γλσρ
¯̄Ωλσ

λ−1∏
ϵ=2

(sinϕϵ)
σ−1∏
η=2

(sinϕη)

+Γλσσ
¯̄Ωρλ

ρ−1∏
ϵ=2

(sinϕϵ)
λ−1∏
η=2

(sinϕη)
 . (C.11)

We now take the two terms in parentheses separately. Take the first term and set
α = 2, then

−ḣ2βω
γσωβρ

(
Γλγρhλσ

)
= −4rD−2

σ−1∏
µ=2

(cscϕµ)
ρ−1∏
ν=2

(cscϕν)Ω̄2ρΓλσρ
¯̄Ωλσ

λ−1∏
ϵ=2

(sinϕϵ)

= −4rD−2
(

Ω̄22 cotϕ2( ¯̄Ω33 + (D − 4) ¯̄Ωww)

+(D − 4)Ω̄23 cscϕ2 cotϕ3
¯̄Ωww

)
. (C.12)

For α = 3 the expression is very similar, simply multiply by sinϕ2 and exchange the
first index on every Ω̄2β for a 3. So for α = 3, we have

−ḣ3βω
γσωβρ

(
Γλγρhλσ

)
= −4rD−2

(
Ω̄23 cosϕ2( ¯̄Ω33 + (D − 4) ¯̄Ωww)

+(D − 4)Ω̄33 cotϕ3
¯̄Ωww

)
. (C.13)

We now calculate the second term in parentheses in Eq. (C.11) for α = 2,
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−ḣ2βω
γσωβρ

(
Γλγσhρλ

)
= −4rD−2

σ−1∏
µ=2

(csc2 ϕµ)Ω̄2ρΓλσσ
¯̄Ωρλ

λ−1∏
η=2

(sinϕη). (C.14)

We note here that, following a brief calculation,

Γ2
σσ

σ−1∏
µ=2

(csc2 ϕµ) = −(D − 3) cotϕ2,

Γ3
σσ

σ−1∏
µ=2

(csc2 ϕµ) = −(D − 4) cotϕ3 csc2 ϕ2, (C.15)

hence,

−ḣ2βω
γσωβρ

(
Γλγσhρλ

)
= 4rD−2

(
(Ω̄22

¯̄Ω22 + Ω̄23
¯̄Ω23) cotϕ2(D − 3)

+(Ω̄22
¯̄Ω23 + Ω̄23

¯̄Ω33) cscϕ2 cotϕ3(D − 4)
)
. (C.16)

For this term the same transformation as above can be used to get to α = 3, that is
multiply by sinϕ2 and send Ω̄2β → Ω̄3β. So for α = 3

−ḣ3βω
γσωβρ

(
Γλγσhρλ

)
= 4rD−2

(
(Ω̄23

¯̄Ω22 + Ω̄33
¯̄Ω23) cosϕ2(D − 3)

+(Ω̄23
¯̄Ω23 + Ω̄33

¯̄Ω33) cotϕ3(D − 4)
)
. (C.17)

C.2.2 Term 2: Dγhαβḣ
βγ

Let’s first calculate the partial derivative terms,

∂γhαβḣ
βγ = 4rD−2

γ−1∏
µ=2

(cscϕµ)δβ(ρ)δγ(σ)Ω̄(ρ)(σ)δα(α)δβ(β)

α−1∏
ζ=2

(sinϕζ)(
cotϕγH(α− γ − 1) ¯̄Ω(α)(β) + cotϕγH(β − γ − 1) ¯̄Ω(α)(β)

+∂γ ¯̄Ω(α)(β)

)
. (C.18)

Now let us set α = 2,
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∂γh2βḣ
βγ = 4rD−2

γ−1∏
µ=2

(cscϕµ)Ω̄βγ

(
cotϕγH(1 − γ) ¯̄Ω2β

+ cotϕγH(β − γ − 1) ¯̄Ω2β + ∂γ
¯̄Ω2β

)
= 4rD−2

(
Ω̄22(∂2

¯̄Ω22) + cscϕ2Ω̄23∂3
¯̄Ω22 + Ω̄23(cotϕ2

¯̄Ω23 + ∂2
¯̄Ω23)

+ cscϕ2Ω̄33∂3
¯̄Ω23

)
. (C.19)

If we set α = 3 instead we find

∂γh3βḣ
βγ = 4rD−2

(
cosϕ2

(
Ω̄22

¯̄Ω23 + 2Ω̄23
¯̄Ω33

)
+ Ω̄22 sinϕ2∂2

¯̄Ω23 + Ω̄23∂3
¯̄Ω23

+Ω̄23 sinϕ2∂2
¯̄Ω33 + Ω̄33∂3

¯̄Ω33

)
. (C.20)

We now calculate the terms involving Christoffel symbols.

−ḣβγ
(
Γδγαhδβ + Γδγβhαδ

)
= −4rD−2δβρδγσ

β−1∏
ν=2

(csc2 ϕν)
γ−1∏
µ=2

(csc2 ϕµ)δρ(α)δσ(β)

ρ−1∏
ζ=2

(sinϕζ)
σ−1∏
ξ=2

(sinϕξ)Ω̄(α)(β)Γδγαδδ(γ)δβ(δ)

δ−1∏
ϵ=2

(sinϕϵ)
β−1∏
η=2

(sinϕη) ¯̄Ω(γ)(δ)

+Γδγβδα(ρ)δδ(σ)

α−1∏
χ=2

(sinϕχ)
δ−1∏
κ=2

(sinϕκ) ¯̄Ω(ρ)(σ)

 .
(C.21)

Now set α = 2 again, and take the two terms summed in parentheses separately. The
first term gives
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−ḣβγ
(
Γδγ2hδβ

)
= −4rD−2δβρδγσ

β−1∏
ν=2

(csc2 ϕν)
γ−1∏
µ=2

(csc2 ϕµ)δρ(α)δσ(β)

ρ−1∏
ζ=2

(sinϕζ)

σ−1∏
ξ=2

(sinϕξ)Ω̄(α)(β)

Γδγ2δδ(γ)δβ(δ)

δ−1∏
ϵ=2

(sinϕϵ)
β−1∏
η=2

(sinϕη) ¯̄Ω(γ)(δ)


= −4rD−2

(β)−1∏
µ=2

(cscϕµ)Ω̄(α)(β)

Γ(γ)
(β)2

(γ)−1∏
ϵ=2

(sinϕϵ) ¯̄Ω(γ)(α)



=


−4rD−2∏(β)−1

µ=2 (cscϕµ)Ω̄(α)(β)

(
cotϕ2δ

(γ)
(β)
∏(γ)−1
ϵ=2 (sinϕϵ) ¯̄Ω(γ)(α)

)
if (γ) > 2

0 if (γ) = 2.
(C.22)

Summing over (γ), we obtain

−ḣβγ
(
Γδγ2hδβ

)
= −4rD−2 cotϕ2Ω̄(α)(γ)

¯̄Ω(γ)(α)

= −4rD−2 cotϕ2(Ω̄23
¯̄Ω23 + Ω̄33

¯̄Ω33 + (D − 4)Ω̄ww
¯̄Ωww).

(C.23)

The second term in parentheses in Eq. (C.21) (with α = 2) gives

−ḣβγ
(
Γδγβh2δ

)
= −4rD−2

(α)−1∏
ν=2

(cscϕν)
(β)−1∏
µ=2

(cscϕµ)Ω̄(α)(β)

(
Γ2

(β)(α)
¯̄Ω22 + Γ3

(β)(α) sinϕ2
¯̄Ω23

)

= −4rD−2
(

2 cotϕ2Ω̄23
¯̄Ω23 − cotϕ2Ω̄33

¯̄Ω22 − cotϕ2
¯̄Ω22(D − 4)Ω̄ww

− cscϕ2 cotϕ3
¯̄Ω23(D − 4)Ω̄ww

)
. (C.24)
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Let us now take these 2 terms again for α = 3. The first term in parentheses from Eq.
(C.21) is

−ḣβγ
(
Γδγ3hδβ

)
= −4rD−2δβρδγσ

β−1∏
ν=2

(csc2 ϕν)
γ−1∏
µ=2

(csc2 ϕµ)δρ(α)δσ(β)

ρ−1∏
ζ=2

(sinϕζ)

σ−1∏
ξ=2

(sinϕξ)Ω̄(α)(β)

Γδγ3δδ(γ)δβ(δ)

δ−1∏
ϵ=2

(sinϕϵ)
β−1∏
η=2

(sinϕη) ¯̄Ω(γ)(δ)


= −4rD−2

(
cosϕ2(Ω̄22

¯̄Ω23 + Ω̄23
¯̄Ω33 − Ω̄23

¯̄Ω22 − Ω̄33
¯̄Ω23)

+ cotϕ3(D − 4)Ω̄ww
¯̄Ωww

)
,

(C.25)

and the second term is

−ḣβγ
(
Γδγβh3δ

)
= −4rD−2

(α)−1∏
ν=2

(cscϕν)
(β)−1∏
µ=2

(cscϕµ)Ω̄(α)(β)

(
Γδ(β)(α) sinϕ2

δ−1∏
κ=2

(sinϕκ) ¯̄Ω3δ

)

= −4rD−2
(

cosϕ2(2Ω̄23
¯̄Ω33 − Ω̄33

¯̄Ω32)

−(D − 4)Ω̄ww(cosϕ2
¯̄Ω23 + cotϕ3

¯̄Ω33)
)
. (C.26)

C.2.3 Term 3: ḣβγDαhβγ

Again, let us first calculate the partial derivatives.

ωρβωσγḣρσ∂αhβγ = 4rD−2
(

Ω̄βγ

(
cotϕα ¯̄Ωβγ(H(β − α− 1) +H(γ − α− 1)) + ∂α

¯̄Ωβγ

))
.

(C.27)

For α = 2 this becomes

ωρβωσγḣρσ∂2hβγ = 4rD−2
(

2 cotϕ2(Ω̄23
¯̄Ω23 + Ω̄33

¯̄Ω33 + (D − 4)Ω̄ww
¯̄Ωww)

+Ω̄22∂2
¯̄Ω22 + 2Ω̄23∂2

¯̄Ω23 + Ω̄33∂2
¯̄Ω33 + (D − 4)Ω̄ww∂2

¯̄Ωww

)
,

(C.28)

and for α = 3
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ωρβωσγḣρσ∂3hβγ = 4rD−2
(

2(D − 4) cotϕ3Ω̄ww
¯̄Ωww + Ω̄22∂3

¯̄Ω22 + 2Ω̄23∂3
¯̄Ω23

+Ω̄33∂3
¯̄Ω33 + (D − 4)Ω̄ww∂3

¯̄Ωww

)
. (C.29)

Finally we calculate the Christoffel terms,

−ωρβωσγḣρσ(Γλαβhλγ + Γλαγhβλ). (C.30)

We first notice by symmetry of interchanging indices, the two terms in parentheses are
identical, so we calculate

−ωρβωσγḣρσ(2Γλαβhλγ) = −8rD−2
β−1∏
µ=2

(cscϕµ)
γ−1∏
ν=2

(cscϕν)Ω̄βγΓλαβ
¯̄Ωλγ

λ−1∏
ϵ=2

(sinϕϵ)
γ−1∏
η=2

(sinϕη)

= −8rD−2
β−1∏
µ=2

(cscϕµ)Ω̄βγΓλαβ
¯̄Ωλγ

λ−1∏
ϵ=2

(sinϕϵ). (C.31)

Now let α = 2

−ωρβωσγḣρσ(2Γλ2βhλγ) = −8rD−2 cotϕ2(Ω̄23
¯̄Ω23 + Ω̄33

¯̄Ω33 + (D − 4)Ω̄ww
¯̄Ωww),

(C.32)

and for α = 3,

−ωρβωσγḣρσ(2Γλ3βhλγ) = −8rD−2(cosϕ2(Ω̄22
¯̄Ω23 + Ω̄23

¯̄Ω33 − Ω̄23
¯̄Ω22 − Ω̄33

¯̄Ω23) +
cotϕ3(D − 4)Ω̄ww

¯̄Ωww). (C.33)

We now have the full α = 2 and α = 3 components, which we can then contract with
the Killing vector. Thus the full expression for the rate of change of Bondi angular
momentum is
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d

du
JBondi(p) = rD−2

4π

∫
SD−2

dΩ(− cosϕ3)
(

2Ω̄22∂2
¯̄Ω22 + 2 cscϕ2Ω̄22∂3

¯̄Ω23 + 2Ω̄23 cotϕ2
¯̄Ω23

+2Ω̄23∂2
¯̄Ω23 + 2 cscϕ2Ω̄23∂3

¯̄Ω33−

2
(

Ω̄22 cotϕ2( ¯̄Ω33 + (D − 4) ¯̄Ωww) + (D − 4)Ω̄23 cscϕ2 cotϕ3
¯̄Ωww

)
+

2
(

(Ω̄22
¯̄Ω22 + Ω̄23

¯̄Ω23) cotϕ2(D − 3) + (Ω̄22
¯̄Ω23 + Ω̄23

¯̄Ω33) cscϕ2 cotϕ3(D − 4)
)

−
(

Ω̄22(∂2
¯̄Ω22) + cscϕ2Ω̄23∂3

¯̄Ω22 + Ω̄23(cotϕ2
¯̄Ω23 + ∂2

¯̄Ω23) + cscϕ2Ω̄33∂3
¯̄Ω23

)
+ cotϕ2

(
Ω̄23

¯̄Ω23 + Ω̄33
¯̄Ω33 + (D − 4)Ω̄ww

¯̄Ωww

)
+
(

2 cotϕ2Ω̄23
¯̄Ω23 − cotϕ2Ω̄33

¯̄Ω22 − cotϕ2
¯̄Ω22(D − 4)Ω̄ww−

cscϕ2 cotϕ3
¯̄Ω23(D − 4)Ω̄ww

)
+0.5

(
2 cotϕ2(Ω̄23

¯̄Ω23 + Ω̄33
¯̄Ω33 + (D − 4)Ω̄ww

¯̄Ωww)+

Ω̄22∂2
¯̄Ω22 + 2Ω̄23∂2

¯̄Ω23 + Ω̄33∂2
¯̄Ω33 + (D − 4)Ω̄ww∂2

¯̄Ωww

))
+(cotϕ2 sinϕ3)

(
2
(

Ω̄23 sinϕ2∂2
¯̄Ω22 + Ω̄23∂3

¯̄Ω23 + Ω̄33 sinϕ2(cotϕ2
¯̄Ω23 + ∂2

¯̄Ω23)

+Ω̄33∂3
¯̄Ω33

)
− 2

(
Ω̄23 cosϕ2( ¯̄Ω33 + (D − 4) ¯̄Ωww) + (D − 4)Ω̄33 cotϕ3

¯̄Ωww

)
+2

(
(Ω̄23

¯̄Ω22 + Ω̄33
¯̄Ω23) cosϕ2(D − 3) + (Ω̄23

¯̄Ω23 + Ω̄33
¯̄Ω33) cotϕ3(D − 4)

)
−
(

cosϕ2

(
Ω̄22

¯̄Ω23 + 2Ω̄23
¯̄Ω33

)
+ Ω̄22 sinϕ2∂2

¯̄Ω23 + Ω̄23∂3
¯̄Ω23 + Ω̄23 sinϕ2∂2

¯̄Ω33

+Ω̄33∂3
¯̄Ω33

)
+
(

cosϕ2(Ω̄22
¯̄Ω23 + Ω̄23

¯̄Ω33 − Ω̄23
¯̄Ω22 − Ω̄33

¯̄Ω23) + cotϕ3(D − 4)Ω̄ww
¯̄Ωww

)
+
(

cosϕ2(2Ω̄23
¯̄Ω33 − Ω̄33

¯̄Ω32) − (D − 4)Ω̄ww(cosϕ2
¯̄Ω23 + cotϕ3

¯̄Ω33)
)

+0.5
(

2(D − 4) cotϕ3Ω̄ww
¯̄Ωww + Ω̄22∂3

¯̄Ω22 + 2Ω̄23∂3
¯̄Ω23 + Ω̄33∂3

¯̄Ω33

+(D − 4)Ω̄ww∂3
¯̄Ωww

)
−
(

cosϕ2(Ω̄22
¯̄Ω23 + Ω̄23

¯̄Ω33 − Ω̄23
¯̄Ω22 − Ω̄33

¯̄Ω23) + cotϕ3(D − 4)Ω̄ww
¯̄Ωww

))
.

(C.34)


	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Higher dimensional general relativity
	1.1.1 TeV gravity scenarios
	1.1.2 The AdS/CFT correspondence

	1.2 Numerical relativity
	1.2.1 Black hole collisions
	1.2.2 Higher dimensional numerical relativity


	2 Numerical Relativity
	2.1 Notation
	2.2 The (D-1)+1 split
	2.3 Well-posedness of the evolution scheme
	2.4 Initial data
	2.5 Gauge conditions
	2.6 Diagnostic tools
	2.6.1 Wave extraction using 4
	2.6.2 Wave extraction using gauge invariant perturbations
	2.6.3 Kodama-Ishibashi formalism
	2.6.4 ADM integrals

	2.7 Dimensional reduction by isometry
	2.8 Mesh refinement
	2.9 Boundary conditions

	3 Dimensional Reduction with the Modified Cartoon Formalism
	3.1 Introduction
	3.2 SO(D-d) symmetry in the modified Cartoon method
	3.2.1 Coordinates
	3.2.2 Tensor components in SO(D-d) symmetry for d<D-2

	3.3 Dimensional reduction of the BSSN equations
	3.3.1 The D dimensional BSSN equations
	3.3.2 The BSSN equations with SO(D-d) symmetry for d<D-2

	3.4 SO(2) symmetry
	3.5 Application to a black-hole collision
	3.6 Conclusions

	4 Higher Dimensional Gravitational Wave Extraction Using Weyl Scalars
	4.1 Introduction
	4.2 Theoretical formalism
	4.3 Modified Cartoon implementation
	4.3.1 The Riemann tensor
	4.3.2 The null frame
	4.3.3 The projections of the Weyl tensor
	4.3.4 SO(2) symmetry

	4.4 Numerical simulations
	4.4.1 Code infrastructure and numerical set-up
	4.4.2 Numerical results

	4.5 Conclusions

	5 Head-on Black Hole Collisions
	5.1 Introduction
	5.1.1 General relativity in the large D limit

	5.2 Modelling framework
	5.2.1 Point-particle calculations
	5.2.2 Numerical framework

	5.3 Results
	5.3.1 Numerical uncertainties
	5.3.2 Equal-mass collisions
	5.3.3 Unequal-mass collisions and the point-particle limit
	5.3.4 Kicks

	5.4 Conclusions

	6 Initial Data in Higher Dimensions
	6.1 Introduction
	6.2 Initial data for black holes with momentum
	6.3 Initial data for spinning black holes
	6.4 ADM integrals in higher dimensions
	6.5 Evaluating the integrals
	6.6 Conclusions

	7 An Apparent Horizon Finder in Higher Dimensions
	7.1 Introduction
	7.2 Horizon finding algorithm
	7.2.1 Horizon finding in higher dimensions
	7.2.2 Minimisation algorithm
	7.2.3 Black hole diagnostics

	7.3 Results
	7.3.1 Isotropic Schwarzschild-Tangherlini
	7.3.2 5D Myers-Perry in Kerr-Schild coordinates
	7.3.3 Numerically constructed Bowen-York like data for a BH inspiral in 6D

	7.4 Conclusions

	8 Angular Momentum Wave Extraction
	8.1 Introduction
	8.2 Background theory
	8.3 Modified Cartoon implementation
	8.3.1 The Killing vector
	8.3.2 The Bondi news
	8.3.3 Covariant derivatives on SD-2
	8.3.4 Evaluating the angular momentum

	8.4 Conclusions

	9 Conclusions and Outlook
	9.1 Conclusions
	9.2 Outlook

	References
	Appendix A Dimensional Reduction with the Modified Cartoon Formalism - Appendix
	A.1 Cartesian components in SO(D-d) symmetry
	A.2 Regularization at z=0 for d<D-2

	Appendix B Higher Dimensional Gravitational Wave Extraction - Appendix
	B.1 Regularisation of terms at z=0
	B.2 Normalisation of the spatial normal frame vectors

	Appendix C Angular Momentum Wave Extraction - Appendix
	C.1 Calculation of the Killing vector 
	C.2 Calculation of Bondi angular momentum
	C.2.1 Term 1: Dh
	C.2.2 Term 2: Dh
	C.2.3 Term 3: Dh 



