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Abstract

In this thesis we address an alternative subtraction schemein high energy colliders at Next-
to-Leading Order (NLO) QCD calculations. In particular, wefocus on the treatment of real
radiation contributions in the soft and collinear limits. After UV-renormalization, the remaining
infrared singularities appearing both in the real radiation and in the virtual contributions can be
regularized using dipole subtraction method. In this scheme, dipoles are based on the momentum
mapping and on the splitting functions derived from an improved parton shower formulation
with quantum interference effects. In our new scheme, we employ a slightly altered momentum
mapping such that the number of subtraction terms is greatlyreduced in comparison with the
standard Catani-Seymour scheme. In addition, the new scheme also facilitates the matching
of NLO calculations with parton showers using the same splitting functions. We also achieve
the complete integrations of the splitting functions over an unresolved one parton phase space,
obtaining the correct soft and collinear singularity structures that are necessary to cancel the soft
divergences in the virtual contributions. We discuss the general framework setup of the scheme
as well as some scattering processes at colliders; we find complete agreement with the results in
the widely used Catani-Seymour dipole subtraction scheme.



Contents

1 A brief review of QCD 6

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6

1.2 ColourSU(3)C and quark confinement . . . . . . . . . . . . . . . . . . . . . . 8

1.3 QCD Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Local gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 13

1.5 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 14

1.6 Parton branching at Next-to-Leading Order . . . . . . . . . . .. . . . . . . . . 18

2 Nagy-Soper dipoles 22

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

2.2 General structure of the NLO cross section and subtraction procedure . . . . . . 25

2.2.1 The general subtraction procedure . . . . . . . . . . . . . . . .. . . . . 25

2.2.2 Generalization to hadron collisions . . . . . . . . . . . . . .. . . . . . 28

2.2.3 Observable-dependent formulation of the subtraction method . . . . . . . 30

2.3 Scheme setup and momentum mapping . . . . . . . . . . . . . . . . . . .. . . 31

2.3.1 Splitting a final state parton . . . . . . . . . . . . . . . . . . . . .. . . 32

2.3.2 Splitting an initial state parton . . . . . . . . . . . . . . . . .. . . . . . 36

2.4 Splitting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 40

2.4.1 Definition of the splitting amplitudes . . . . . . . . . . . . .. . . . . . 40



4 CONTENTS

2.4.2 Eikonal factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.3 Collinear splitting functions: final state splittings . . . . . . . . . . . . . 47

2.4.4 Collinear splitting functions: initial state splittings . . . . . . . . . . . . 52

2.4.5 Soft splitting functions . . . . . . . . . . . . . . . . . . . . . . . .. . . 56

2.5 Integrated splitting functions . . . . . . . . . . . . . . . . . . . .. . . . . . . . 59

2.5.1 Collinear integrals: final state splittings . . . . . . . .. . . . . . . . . . 60

2.5.2 Collinear integrals: initial state splittings . . . . .. . . . . . . . . . . . 61

2.5.3 Interference between initial states . . . . . . . . . . . . . .. . . . . . . 64

2.5.4 Interference between initial and final states . . . . . . .. . . . . . . . . 65

2.5.5 Interference between final (final and initial) states .. . . . . . . . . . . . 66

3 Applications 71

3.1 SingleW production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.1 Tree level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.2 Real emission, virtual correction and dipole subtraction . . . . . . . . . . 72

3.2 Dijet production ine+e− annihilation . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Higgs production in gluon-gluon fusion:gg → H . . . . . . . . . . . . . . . . 85

3.3.1 The subprocessqq̄ → gH . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.2 The subprocessqg → qH . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.3 The subprocessgg → gH . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3.4 One-loop virtual corrections . . . . . . . . . . . . . . . . . . . .. . . . 95

3.3.5 Proof: Nagy-Soper scheme and Catani-Seymour scheme .. . . . . . . . 98

3.3.6 Proof: Catani-Seymour scheme and literature results. . . . . . . . . . . 100

3.4 Higgs decay:H → gg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4.1 The subprocessH → gqq̄ . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.2 The subprocessH → ggg . . . . . . . . . . . . . . . . . . . . . . . . 103



CONTENTS 5

4 Conclusions 108

5 Appendix 111

5.1 Useful mathematical formulae . . . . . . . . . . . . . . . . . . . . . .. . . . . 111

5.1.1 Gamma function, Beta function and Hypergeometric function . . . . . . 111

5.1.2 Dilogarithm function . . . . . . . . . . . . . . . . . . . . . . . . . . .. 112

5.1.3 The volume element ind dimensions . . . . . . . . . . . . . . . . . . . 113

5.2 Integration measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 114

5.2.1 Final state splitting . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 114

5.2.2 Initial state splitting . . . . . . . . . . . . . . . . . . . . . . . . .. . . 117

5.2.3 Master integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

5.2.4 Pole extractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

5.3 Colour algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

5.4 Phase space integration . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 122

5.5 Soft photon radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 129

5.6 Collinear photon radiation . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 131

5.6.1 Final state radiation . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 131

5.6.2 Initial state radiation . . . . . . . . . . . . . . . . . . . . . . . . .. . . 134

5.7 One-loop calculations: examples . . . . . . . . . . . . . . . . . . .. . . . . . . 134

5.8 A review of the Standard Model (SM) . . . . . . . . . . . . . . . . . . .. . . . 140

5.8.1 Abelian gauge theory: Quantum electrodynamics (QED). . . . . . . . . 140

5.8.2 Non-abelian gauge theory . . . . . . . . . . . . . . . . . . . . . . . .. 141

5.8.3 Electroweak theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

5.8.4 The Standard Model of particle physics . . . . . . . . . . . . .. . . . . 156



Chapter 1

A brief review of QCD

1.1 Introduction

In elementary particle physics, the fundamental theory of the strong interaction is described by
Quantum Chromodynamics (QCD). It describes the interactions between quarks and gluons, and
in particular how they bind together to form hadrons (e.g. the proton and the neutron). QCD is a
quantum field theory within a special class described by non-abelian gauge theory [1] (or some-
times called Yang-Mills gauge theory). It is based on theSU(N) gauge group. Understanding
how to use non-abelian gauge theory, combined with the parton model, led to the development
of QCD and it is now a very well established theory in the sensethat QCD predictions have
successfully accounted for all the strong interaction experiments observed at colliders, in par-
ticular the phenomena of hadronic jet structure ine+e− annihilation, the Drell-Yan process and
heavy quark production [100]. QCD has two peculiar properties, which differ from Quantum
Electrodynamics (QED)/electroweak interactions and which also reveal its uniqueness.

• Asymptotic freedom: this means that at very high energies, the strong force (alsocalled
the colour force) of quarks and gluons is so weak that they behave almost as free parti-
cles when the quarks or gluons are really close to each other.This phenomenon is called
asymptotic freedom and it is due to the fact that the strong running coupling constant
αs(Q

2) depends on the energy scaleQ; αs(Q2) becomes weaker as the scaleQ increases1.
To check this, one must determine the running of the couplingconstantαs, which is gov-
erned by the renormalization group equation,

β(αs) = Q2 ∂αs
∂Q2

1In contrast to QED where the couplingα becomes strong at high energies.
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if β < 0, the theory is asymptotically free. The asymptotic freedomof QCD also explains
why we can apply a perturbative approach to explore the structure of matter at short dis-
tances (= high energies). This prediction of QCD was first discovered in the early 1970s
by H. David Politzer [2] and by David J. Gross and Frank Wilczek [3]. For this work they
were awarded the 2004 Nobel Prize in Physics.

• Colour confinement: the strong force of quarks becomes stronger when the distance in-
creases, which implies low energy. So it would take an infinite amount of energy to move
apart two quarks; they are always confined inside hadrons. Confinement is widely be-
lieved to be true (although analytically unproven yet; a lotof QCD theorems are based
on assumptions ) in the sense that no free quark and gluon degrees of freedom have been
observed at colliders2.

The recent progress in the understanding of strong interactions has been due to the comparison
between precise higher order perturbative QCD calculations and accurate experimental data.
The perturbative calculation of jet cross sections is basedon the QCD improved parton model
picture [4–6], which has been made rigorous since the discovery of asymptotic freedom. In
this model a hard scattering process between two hadrons canbe thought of as an interaction
between the quarks and gluons, which are the constituents ofthe incoming hadrons. Much of the
techniques of perturbative QCD derive from the well known methods of QED apart from the fact
that QCD is a non-abelian gauge theory; however, there are still big differences between the two
theories.

Importantly because the quanta of QCD, quarks and gluons, the analogues of electrons and pho-
tons in QED, are always bound into hadrons and not observed asfree particles at colliders. At
low energies, confinement effects dominate and non-perturbative approaches become more im-
portant. The most widely used method is lattice QCD. At very high energies, however, one
still cannot avoid confinement effects due to the fact that the asymptotic incoming and outgoing
partons consist of hadrons. For certain quantities, factorization theorems [7–9] allow the two
scales to be appropriately separated, and the low energy pieces can be treated by parametriza-
tions, model calculations or factoring them into the partondistribution functions (PDF). The
remaining quantities involve only high momentum transfers(and therefore short distances and
short times) and is insensitive to long distances behaviourof QCD. Thus, these quantities are cal-
culable in perturbation theory because of asymptotic freedom. The factorization theorem states
that the short distance behaviour of parton scattering (thehard part) does not interfere with the
long distance process that turns partons (quarks and gluons) into hadrons, hadronization. This
factorization property can be proved to be valid to all orders in perturbation theory.

2Note, that all hadrons are colourless (or colour singlets) and only colour singlet states can be observed as free
particles;i.e.we never observe a free quark/gluon since quark/gluon carries colour charge.
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Another important ingredient of perturbative QCD is infrared safety, which is the guiding princi-
ple of higher order perturbative calculations. In general,we consider any quantity that is infrared
finite. That is to say, infrared safe quantities do not dependon the long distance behaviour of
QCD (except for the long distance effects that are factored into the parton distribution functions),
so that it makes sense to calculate any quantity in perturbative QCD. The proof of infrared safety
comes from the KLN theorem [10, 11], which is a fundamental quantum mechanical result and
which provides the theoretical argument to the problem of collinear and infrared singularities
due to massless charged particles. It states that fully inclusive measurements, which sum over all
degenerate initial and final states, are free from infrared divergences.

In this thesis we will only deal with the physics of hard processes at Next-to-Leading Order
precision, in which case the infrared divergences have to betreated carefully. The properties of
any given hadron species will be irrelevant because of factorization theorems. This is why jet
production is computed as simple parton scattering. The probability that partons will produce
hadrons is unity.

1.2 ColourSU(3)C and quark confinement

First, let us review the addition of angular momenta in Quantum Mechanics. Addition of two
spin-1/2 particlesjA = jB = 1/2 has total spinJ = 0 or J = 1. Symbolically, we have3

2⊗ 2 = 1⊕ 3 (1.1)

Now, combining a third spin-1/2 particle, we have

( 2⊗ 2 )⊗ 2 = ( 1⊕ 3 )⊗ 2 = ( 1⊗ 2 ) ⊕ ( 3⊗ 2 ) = 2⊕ 2⊕ 4 (1.2)

At the end, we have a quartet of spin3/2 and two doublets of spin1/2. The quarks in the spin-
3/2 baryons are in a symmetrical state of spin, space andSU(3)f flavour degrees of freedom,
e.g.we consider the pion-nucleon resonance4 ∆++ with spin-3/2

∣∣∆++, J3 = 3/2
〉
= |u ↑, u ↑, u ↑ 〉 (1.3)

Here,J3 is the third component of the total angular momentum for∆++ and the arrow represents
the spin aligned up. However, this state is not allowed because the wave function has to be totally
antisymmetric under interchange of any of the two quarks dueto the Fermi-Dirac statistics. To

3Here, we use the dimension (i.e. the size of multiplet2 J + 1) to label the irreducible representation.
4∆++ is made of threeu-quarks.
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reconcile the baryon spectrum and the Fermi-Dirac statistics, one can introduce an additional
quantum number, called colour [121,122]. Hence, we can construct colour singlet states

|M > ∼ | qa q̄a > or | M >=
1√
3
δab | qa q̄b > and | B > ∼ εabc | qa qb qc >

for mesons5 and baryons6, respectively, whereεabc is the totally antisymmetric tensor and
a, b, c (= 1, 2, 3 ) represent three colours of quarks. It is then easy to construct the totally anti-
symmetric wave function for∆++

∣∣∆++, J3 = 3/2
〉
= εabc

∣∣ ua ↑, ub ↑, uc ↑
〉

(1.4)

The state Eq. (1.4) is then a singlet1 representation ofSU(3)C . Next, we consider the confine-
ment effect in QCD. Quark confinement is directly related to the fact that quarks (gluons) are
coloured quanta and hence cannot be observed in nature. All physical hadrons are colourless. In
order to construct colour singlet states we have to pick out asinglet representation in the decom-
position of the product of two/three quarks into irreducible representation. For meson state, we
have7

3⊗ 3̄ = 1⊕ 8 (1.5)

For baryon state, we have

3⊗ 3⊗ 3 = ( 3̄⊕ 6 ) ⊗ 3 = ( 3̄⊗ 3 ) ⊕ ( 6⊗ 3 ) = 1⊕ 8⊕ 8⊕ 10 (1.6)

Diquark and four-quark states belong to colour nonsinglets:

| q q > : 3⊗ 3 = 3̄⊕ 6

| q q q q > : 3⊗ 3⊗ 3⊗ 3 = 3⊕ 3⊕ 3⊕ 6̄⊕ 6̄⊕ 15⊕ 15⊕ 15⊕ 15′

| q̄ q̄ > : 3̄⊗ 3̄ = 3⊕ 6̄

| q̄ q̄ q̄ q̄ > : 3̄⊗ 3̄⊗ 3̄⊗ 3̄ = 3̄⊕ 3̄⊕ 3̄⊕ 6⊕ 6⊕ 15⊕ 15⊕ 15⊕ 15
′

(1.7)

Only | q q̄ > and| q q q > states belong to colour singlets. The conjecture that only colour singlet
states can be observed is the same as that of the quark confinement.

1.3 QCD Lagrangian

Strong interactions between quarks and gluons are described by non-abelian local gauge theory
andSU(3)C is the gauge group. Each quark field (flavour) forms a triplet in the fundamental

5Mesons are quark-antiquark bound states.
6Baryons are bound states of three quarks (antiquarks).
7Quark field belongs to the fundamental3 representation ofSU(3)C and antiquark is then assigned to the

complex-conjugatē3 representation. The6 is symmetric and̄3 is antisymmetric under interchange of the two
quarks.
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representation ofSU(3)C

qa =




qred

qblue

qgreen


 , (a = 1, 2, 3) (1.8)

and eight gluon fieldsGA
µ form an octet in the adjoint representation (defined to have the same

dimensions as the gauge group). The indexA runs over the eight colour degrees of freedom of
the gluon field (A = 1, · · · , 8). The QCD Lagrangian density is given by

LQCD = Lclassical+ Lgauge-fixing+ Lghost (1.9)

where the classical Lagrangian density is

Lclassical= −1

4
GA
µνG

µν
A +

∑

flavours

q̄a (iD/ −m)ab qb (1.10)

which describes the interaction of spin-1
2

quarks of massm and massless spin-1 gluons. D/
in Eq. (1.10) is a symbolic notation forγµDµ and the spinor indices ofγµ andqa have been
suppressed. The sum in Eq. (1.10) runs over thenf different flavours of quarks (= u, d, c, s, t, b).
We follow the standard notation with metric given bygµν = diag(1,−1,−1,−1) and set~ =

c = 1. The gamma matrices satisfy the Clifford algebra

{γµ, γν} = 2 gµν (1.11)

GA
µν is the field strength tensor, which can be derived from the gluon fieldGA

µ

GA
µν = ∂µG

A
ν − ∂νG

A
µ − gfABCGB

µG
C
ν , (A,B,C = 1, · · · , 8) (1.12)

whereg is the strength of the strong coupling constant8 between coloured quanta (quarks and
gluons). It is the third term on the right-hand-side of Eq. (1.12) that gives rise to cubic and
quartic gauge boson (gluon) self-interactions9. Note that the mass termsm2GA

µ G
µ
A for the gauge

bosons (gluons) are not gauge invariant! Gauge bosons of unbroken non-abelian gauge theory
are massless. Gauge invariance combined with renormalizability (absence of higher powers of
fields and covariant derivatives in Lagrangian) determinesgauge boson/fermion couplings and
gauge boson self-interactions. In order to preserve the renormalizability of QCD, each term in
the Lagrangian has to have mass dimension four. It follows, that the dimensions of the fieldsqa
andGA

µ are 3/2 and 1, respectively.fABC are the structure constants of theSU(3)C colour group.
D is the covariant derivative, which acts on triplet and octetfields according to

(Dµ)ab = ∂µδab + ig
(
tCGC

µ

)
ab

(Dµ)AB = ∂µδAB + ig
(
TCGC

µ

)
AB

(1.13)

8Note that the notationsg andgs can be exchanged with each other without making any difference in the later
discussions.

9This term leads to the property of asymptotic freedom at the end.
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wheret andT are matrices in the fundamental and adjoint representations of SU(3)C colour
group respectively.

[
tA, tB

]
= i fABC tC

[
TA, TB

]
= i fABC TC

(
TA
)
BC

= − i fABC (1.14)

The generatorstA can be represented by the eight Gell-Mann matrices. These matrices are
hermitian and traceless,

tA =
1

2
λA (1.15)

with

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 (1.16)

The colour charges of theSU(N) matrices can be chosen to be (see Fig. 1.1)

Tr tA tB = TR δ
AB, TR =

1

2
,
∑

A

tAab t
A
bc = CF δac, CF =

N2 − 1

2N

Tr TC TD =
∑

A,B

fABC fABD = CA δ
CD, CA = N (1.17)

The colour charge is directly related to the Casimir operator Ci = T 2 = TA TA where,(
TA
)
BC

≡ − i fABC if i is a gluon andTAab ≡ tAab (− tAba) if i is a quark (antiquark). The
Casimir operator commutes with all group generators,i.e.

[
TB, TA TA

]
= i fBAC TC TA + i fBAC TA TC = i fBAC︸ ︷︷ ︸

antisymmetric

{
TC , TA

}
︸ ︷︷ ︸

symmetric

= 0 (1.18)

Hence,T 2 is an invariant of the algebra. For the specific case ofSU(3)C we have

CF =
4

3
, CA = 3 (1.19)

For the anticommutator of thet matrices in the fundamental representation, we have

{tA, tB} =
1

N
δAB I + dABC tC ,

∑

A,B

dABC dABD =
N2 − 4

N
δCD, dAAC ≡ 0 (1.20)
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CA fABC fABD = CA δ
CD

CF tAab t
A
bc = CF δac

TR Tr tA tB = TR δ
AB

Figure 1.1: The definitions of the colour charges in theSU(N) gauge group. Repeated indices
are summed over theN2 − 1(N) values ofA,B,C(a, b, c) of the adjoint (fundamental) repre-
sentation. Here, the curl line means gluon field and solid line means quark field. We can also
defineCi = CF = (N2 − 1)/(2N) if i is a quark or antiquark andCi = CA = N if i is a gluon.
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1.4 Local gauge invariance

Eq. (1.10) is invariant under local gauge transformations.This means the parametersθA(x)
which characterize the transformation depend on the spacetime coordinates and we can redefine
the quark fields independently at every spacetime point, without changing the physics.

qa(x) → q′a(x) = Ω(x)ab qb(x), Ω(x) = exp{i tAθA(x)}, Ω† Ω = ΩΩ† = 1 (1.21)

If Ω is unitary, thetA are hermitian matrices, called group generators. They generate infinitesimal
transformations around the unit matrix element of the Lie group. ForSU(N) matrix (unitary and
det Ω = 1), there areN2 − 1 traceless, hermitian generatorstA = 1/2 λA.

Ω(x) = 1 + i tA θA(x) +O(θ2) (1.22)

The covariant derivative transforms as

Dµ q(x) → D′
µ q

′(x) ≡ Ω(x)Dµ q(x) (1.23)

Here we have omitted the colour labels of the quark fields. We can use Eq. (1.23) to derive the
transformation property of the gluon fieldGµ(x)

D′
µ q

′(x) =
(
∂µ + i g t ·G′

µ

)
Ω(x)q(x)

= (∂µΩ(x)) q(x) + Ω(x)∂µq(x) + i g t ·G′
µΩ(x)q(x) (1.24)

where

t ·Gµ =
∑

A

tAGA
µ (1.25)

Thus we find

t ·G′
µ = Ω(x) t ·Gµ Ω

−1(x) +
i

g
(∂µΩ(x)) Ω

−1(x) (1.26)

which in terms of the infinitesimal parametersθ(x) can be rewritten as

G′A
µ = GA

µ − fABC θB GC
µ − 1

g
∂µθ

A +O(θ2) (1.27)

The third term is similar to the abelian case. The second termis specific to the non-abelian gauge
theory. Introducing the generatorsTA in the adjoint representation of the gauge group, one may
write the infinitesimal transformation as

δ GA
µ = −1

g
(Dµ)AB θ

B, G′A
µ = GA

µ + δ GA
µ (1.28)
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It is straightforward to show that the transformation property of the field strength tensorGµν is10

t ·Gµν(x) → t ·G′
µν(x) = Ω(x) t ·Gµν(x) Ω

−1(x) , (1.29)

which may be derived using the relation

[Dµ, Dν ] = i g t ·Gµν . (1.30)

1.5 Renormalization

The running coupling constant and renormalization group equation (RGE)

SupposeA is a dimensionless quantity which depends on a single energyscaleQ. By assumption
the scaleQ is much bigger than another mass scale:Q2 � m2. In the limit m → 0, A is
independent ofQ by dimensional analysis.

A = A(Q2/m2, αs) −→ A(αs) as m→ 0 (1.31)

After quantization, the theory must be renormalized due to the presence of ultraviolet (UV)
divergences. Hence an arbitrary mass scaleµ has to be introduced.

A −→ A(Q2/µ2, αs) after quantization (1.32)

The scaleµ is arbitrary, and physical results cannot depend on it. Mathematically, theµ inde-
pendence ofA may be expressed by

µ2 d

dµ2
A(Q2/µ2, αs) = µ2

(
∂

∂µ2
+
∂αs
∂µ2

∂

∂αs

)
A = 0 (1.33)

This is a renormalization group equation (RGE). In order to solve RGE, one defines

t = lnQ2/µ2, β(αs) = µ2 ∂αs
∂µ2

(1.34)

Using
∂

∂µ2
=

∂t

∂µ2

∂

∂t
(1.35)

we have (
− ∂

∂t
+ β(αs)

∂

∂αs

)
A = 0 (1.36)

10In contrast to QED, the field strength tensor is not gauge invariant in QCD, because of the gluon self-
interactions. However, the traceTrGµν G

µν is gauge invariant. Also, the gluon fields are coloured quanta, in
contrast to QED, where the photons are electrically neutral.
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The strong running couplingαs(Q2) is then introduced

t =

∫ αs(Q2)

αs

dx

β(x)
, αs(µ

2) ≡ αs (1.37)

We can then take derivatives with respect tot andαs (the two independent variables) on both
sides of Eq. (1.37). By takingd/dt we obtain

1 =
1

β(αs(Q2))

∂αs(Q
2)

∂t
,

∂αs
∂t

= 0 (1.38)

By takingd/dαs we obtain

0 =
1

β(αs(Q2))

∂αs(Q
2)

∂αs
− 1

β(αs)
(1.39)

These two relations show explicit the dependence of the running coupling ont andαs:

∂αs(Q
2)

∂t
= β(αs(Q

2)),
∂αs(Q

2)

∂αs
=

β(αs(Q
2))

β(αs)
(1.40)

from which it follows that
A(Q2/µ2, αs) = A(1, αs(Q

2)) (1.41)

is a solution of Eq. (1.36). Thus, the scale dependence ofA is known if that ofαs(Q2) is known.

The β function

Instead of discussing different UV renormalization schemes, let us compute a simple renormal-
ization scale dependent parameter: the running strong coupling αs. In QCD, the differential
equation for the strong couplingαs is

β(αs) = Q2 ∂αs
∂Q2

(1.42)

Thusαs is a function of the energy scale at which it is evaluated and runs according to theβ
function, which at the one-loop level is given by

β(αs) = − 1

2 π
β0 α

2
s + · · · , β0 =

11

6
CA − 2

3
nf TR (1.43)

where(· · · ) represents the terms beyond the one-loop level. In the following we will explain in
detail how Eq. (1.43) is computed. Let us consider bottom pair production at the LHC:qq̄ →
bb̄. The Feynman diagram is ans-channel off-shell gluon. The physical parameters we can



16 CHAPTER 1. A BRIEF REVIEW OF QCD

=⇒

+

=⇒

=⇒

Figure 1.2: The one-loop contributions to the renormalization counterterms for the gluon and
fermion self-energies and the gluon-fermion vertex. The curl line means gluon field, solid line
means quark field and dash line means ghost field.
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renormalize in this process are the strong couplingαs and the bottom quark mass. Wave function
renormalization constants are not physical. Here we assumethat all quarks are massless. To
compute theβ function, one has to calculate three types of virtual diagrams (see Fig. 1.2): the
internal gluon self-energies with a renormalization constantZA, the external quark self-energies
with a renormalization constantZψ and the gluon-fermion vertexZAψψ. The strong coupling
renormalization constantZg is related toZAψψ, ZA andZψ by

ZAψψ = Zg Z
1/2
A Zψ (1.44)

where11

ZA = 1 +
αs
4 π

(
5

3
CA − 4

3
nf TR

)
Γ(ε)µ−2ε

Zψ = 1− αs
4 π

CF Γ(ε)µ−2ε

ZAψψ = 1 +
αs
4 π

(CF + CA) Γ(ε)µ
−2ε (1.45)

For the gluon self-energies (see the first block of Fig. 1.2) the fermion loop contribution gives

i
(
q2 gµν − qµqν

)
δAB

(
− αs
4 π

4

3
nf TR µ

−2ε 1

ε
+ · · ·

)
(1.46)

while the rest of the diagrams give

i
(
q2 gµν − qµqν

)
δAB

(
αs
4 π

5

3
CA µ

−2ε 1

ε
+ · · ·

)
(1.47)

For the fermion self-energies (see the second block of Fig. 1.2), we have

i
αs
4 π

p/CF µ
−2ε 1

ε
+ · · · (1.48)

and for the gluon-fermion vertex (see the last block of Fig. 1.2), we have

i
αs
4 π

gs t
A γµ (CF + CA) µ

−2ε 1

ε
+ · · · (1.49)

We define the functioñβ(gs) via the relationβ(αs) = gs β̃(gs)/(4 π), whereαs and gs are
related byg2s = 4 π αs. Hence, the result for̃β(gs) is12

β̃(gs) = (−2)
g3s

(4 π)2

[
(CF + CA)− CF +

1

2

(
5

3
CA − 4

3
nf TR

)]
(1.50)

11Here we calculate ind = 4− 2 ε dimensions.
12Here we have changed the notation for the strong coupling constant bygs, which we denoted withg in the last

section.



18 CHAPTER 1. A BRIEF REVIEW OF QCD

or equivalently

β(αs) = − α2
s

2 π
β0 (1.51)

The coupling constantαs has an expression, which relates two different scales:Q2 at whichαs
is calculated and the renormalization scaleµ2. At leading order in the perturbative expansion,
we can solve Eq. (1.42) with Eq. (1.43) to obtain

αs(Q
2) =

αs(µ
2)

1 + αs(µ2) b0 ln (Q2/µ2)
, b0 =

β0
2 π

(1.52)

In QCD withnf ≤ 16 ( or β < 0 ) the strong couplingαs becomes weaker as the energy scale
increases. This is known as asymptotic freedom. This behaviour of asymptotic freedom is in
contrast to QED where the coupling becomes strong at high energies. In QED theβ function is

βQED(α) =
1

3 π
α2 + · · · (1.53)

1.6 Parton branching at Next-to-Leading Order

In this section we will discuss in detail infrared and collinear singularity13 that we used through-
out the main part of this thesis. Fig. 1.3 shows the kinematics and notation for the splitting of
partona into b andc in the final state,e.g.a virtual quark splits into a real quark plus a real gluon.

For the propagator we have14

propagator=
1

(p+ k)2 −m2
=

1

2 p · k =
1

2EbEc (1 − A cosϑ)
(1.54)

We have to take the square of the amplitude and integrate overthe final state phase space, all
together, we getd3~k/Eb · 1/E2

b ∼ Eb dEb · 1/E2
b ∼ dEb/Eb. WhenEb goes to zero this

corresponds to a soft singularity. Form → 0 we haveA → 1 and(1 − A cosϑ) vanishes
at cosϑ = 1. This corresponds to a collinear mass singularity. However, infrared (soft plus

13We will explain this in more detail in Section 5.5 and Section5.6, where we discussed soft and collinear photon
radiations. The generalization to soft and collinear gluonradiations in QCD is straightforward, one can simply
replace photon field with gluon field and take the colour factors and QCD coupling constantgs into account,i.e.we
make the following substitution for vertex:

− i eQf γµ → − i gs t
A
ab γµ .

14Here we choosep = (Ec , ~pc ) , k = (Eb , ~pb ) , hence|~pc| = Ec

√
1 − m2/E2

c ≡ Ec A and|~pb| = Eb.
Note also that the notationpb andk can be exchanged with each other without making any difference; i.e. we will
use both notations interchangeably without being noticed.Similarly for pc andp.
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a

b

c
p+ k p

k

ϑ

MBorn

Figure 1.3: A final-state parton branching.

collinear) singularities cancel, if we add virtual diagrams (seee.g.Fig. 1.2). This is a conse-
quence of the KLN theorem [10,11].

In QCD there is a generic property, that the real emission amplitude ((m+1)-parton phase space)
can be factorized into a Born-level amplitude (m-parton phase space) in the soft and collinear
limits based on the factorization theorems

Mm+1 ≈ v` · Mm (1.55)

wherev` means the singular factor. One can also refer to Eq. (5.116) in appendix for soft-gluon
approximation and Eq. (5.133) in appendix for collinear gluon emission15, e.g. for a collinear
final-stateqqg parton branching (see Fig. 1.3) we have

Mm+1 ∼ ū(p)
[
− i gs t

A
ab γµ

]
ε∗µ(k)

i p/a
p2a

A(pa) ∼
1

t
ū(p)

[
gs t

A
ab γµ

]
ε∗µ(k)

∑

spins

u(pa) ū(pa)A(pa)︸ ︷︷ ︸
=Mm

∼
∑

spins

1

t
ū(p)

[
gs t

A
ab γµ

]
ε∗µ(k) u(pa)Mm (1.56)

whereū(p) is the spinor of the fermion andA(pa) the remaining part of the amplitude. Hence16

|v`|2 ∼ 1

t
Pqq(z) with Pqq(z) = CF

1 + z2

1− z
(1.57)

15In Section 5.5 and Section 5.6 we discussed photon radiations; for the gluon radiations we simply make the
following substitution for vertex:

− i eQf γµ → − i gs t
A
ab γµ .

16HerePqq(z) is the spin-averaged splitting function [6]. In the collinear limit, the radiation of additional partons
is described by universal splitting functions, independent of the hard interaction. The Eq. (1.57) shows that the
m → m+1 amplitude factorizes into a soft/collinear part1/t from the propagator, the splitting functionPqq(z) and
a hardm → m amplitude without IR singularities.
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Here we have assumed that17

p2a = (pb + pc)
2 ≡ t � p2b , p

2
c (1.58)

and the energy fraction is defined by

z = Eb/Ea = 1− Ec/Ea (1.59)

Hence for small angles we obtain

t ≡ p2a = 2EbEc (1− cos ϑ) = z (1− z)E2
a ϑ

2 (1.60)

The limit wherepb andpc become collinear can be precisely defined using Sudakov decomposi-
tion

pb = z pa + pT + ζb n

pc = (1− z) pa − pT + ζc n

2 pb · pc = − p2T
z (1− z)

, pT → 0

p2b = 0 ⇒ ζb = − p2T
2 z n · pa

p2c = 0 ⇒ ζc = − p2T
2 (1− z)n · pa

(1.61)

wherepT · pa = pT · n = n2 = 0. In Eq. (1.61),nµ is an auxiliary lightlike vector, that
is necessary to specify the transverse componentpT (p2T < 0). We can split the angleϑ for
massless partons according to Fig. 5.2 of [109]

ϑ = ϑb + ϑc and
ϑb
ϑc

=
pT
Eb

(
pT
Ec

)−1

=
1− z

z
⇔ ϑ =

ϑb
1− z

=
ϑc
z

(1.62)

In order to calculate the cross section for the various splitting processes, we need to know the
factorization of the phase space from(m+1)-parton phase space intom-parton phase space. We
consider the multi-particle phase space decomposition (see also appendix). For the branching of
partona into b+ c , we can decompose the collinear phase space according to18

dPSm+1 = dPSm (2 π)4 δ4 (pa − pb − pc)
d3~pb

(2 π)3 2Eb

d3~pc
(2 π)3 2Ec

dp2a
2 π

= dPSm
1

(2 π)3
1

4EbEc
δ4 (pa − pb − pc) d

3~pb d
3~pc dt

= dPSm
1

2 (2 π)3

∫
Eb dEb ϑb dϑb dϕ dt

dz

1− z
δ(t−EbEc ϑ

2) δ(z − Eb/Ea)

= dPSm
1

4 (2 π)3
dt dz dϕ (1.63)

17Here we choosepa = (Ea , ~pa ).
18d3~pc = d3~pa at fixed~pb , d3~pb = E2

b dEb ϑb dϑb dϕ and sinϑb ∼ ϑb.
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whereϕ is the azimuthal angle. Adding the matrix elements to this factorization of the collinear
phase space we can derive the cross section for one collinearemission

dσm+1 ∼ |Mm+1|2 dPSm+1

= |Mm+1|2 dPSm
1

4 (2 π)3
dt dz dϕ

= |Mm+1|2 dPSm
1

4 (2 π)2
dt dz spherically symmetric

=
2 g2s
t
Pab(z) |Mm|2 dPSm

dt dz

16 π2
assuming |Mm+1|2 =

2 g2s
t
Pab(z) |Mm|2

(1.64)

Here we have neglected the initial-state flux factorF . Usingdσm ∼ |Mm|2 dPSm we can write
the most general form of Eq. (1.64)

dσm+1 = dσm
dt

t
dz

αs
2 π

Pab(z) (1.65)

The Eq. (1.65) means that we can calculate the(m+1)-particle cross section from them-particle
cross section convoluted with the universal splitting functions Pab(z). In Chapter 2 we will
discuss various branching processes,e.g.a quark splitting into a quark and a gluon(qqg), a gluon
splitting into two quarks(gqq̄), a gluon splitting into two gluons(ggg) and derive alternative
splitting functions in the final (initial) states using a slightly different kinematics and momentum
mapping. Our new subtraction scheme is based on these improved splitting functions.



Chapter 2

Nagy-Soper dipoles

2.1 Motivation

The main topic of this thesis is the calculation of QCD cross sections in high energy hadron
colliders or lepton colliders at Next-to-Leading Order (NLO) accuracy. For the LHC we will
be faced with complex hadronic scatterings with many particles in the final state and we need
to understand the standard model (SM) predictions precisely in order to dig out any signal from
physics beyond the SM (BSM). Therefore, processes have in general to be calculated at least
to NLO precision. Another reason why we bother with higher order calculations is that the
naı̈ve parton model picture corresponds to the Leading-Order (LO) approximation; and the LO
calculations only predict the rough order of magnitude of a given cross section due to poor
convergence of perturbative expansion; there is still a strong dependence on the unphysical input
scales (renormalization and factorization scales). NLO QCD calculations can help us to reduce
dependence on the renormalization scale for observables including αs(µ2

F ), which at the end
leads to stable predictions for the cross sections. In higher order calculations, we have to consider
real emission corrections and virtual contributions. Furthermore we will often be facing two
different sources of singularities: ultraviolet (UV) divergences and infrared (IR) divergences;
the UV singularities, which are only present in the virtual diagrams, can be removed by the
standard renormalization procedure and infrared singularities (soft and collinear), which instead
can appear both in the real and in the virtual contributions,also cancel when we sum over real and
virtual contributions. That is a consequence of the KLN theorem. In general, when we compute
cross sections with initial state hadrons; there are still left-over collinear singularities, which
need to be factorized into the universal and process independent parton distribution functions
(PDFs). As a result, cross sections are finite at the parton level order by order in perturbation
theory. Recent progress for results at NLO have been available for all 2 → 2 and2 → 3, and for
some2 → 4 processes at hadron colliders.
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There are, generally speaking, two types of algorithms widely used for dealing with the infrared
divergences in NLO QCD calculations: the phase space slicing and the subtractionmethods.
Now suppose that we are interested in calculating the integral

I = lim
ε→0

(∫ 1

0

dx

x
x−εM(x) +

1

ε
M0

)
(2.1)

whereM(x) is a complicated function which is nonsingular atx = 0; and it depends on the hard
scattering processes. The first term on the right-hand side can be thought of the contribution from
real graphs and the second term plays the role of the contribution from virtual diagrams. Herex
is analogous to the energy of a gluon, or to the angle between two partons. There is a singularity
at x = 0. Using dimensional regularization by lowering the dimension to d = 4 − 2 ε, this
singularity is regularized by a factorx−ε. The integral is divergent asε→ 0, but the divergence is
cancelled by the second term+ (1/ε)M0, which is a result of the KLN theorem. In this case KLN
theorem also ensures thatlimx→0M(x) = M0. In practice, the functionM(x) could be very
complicated for an increasing number of external particlesin the final state. The question is how
to calculate the value ofI numerically (and efficiently) if the functionM(x) is too complicated
such that an analytic computation cannot be allowed.

• Slicing: the widely used method is called the phase space slicing method. Introducing an
arbitrary cutoff δ (we chooseδ � 1 andδ � |ε|), one can split the integration region into
two pieces:0 < x < δ andδ < x < 1. For the region0 < x < δ, we can use the simple
approximation thatM(x) →M(0). This gives

I =

∫ 1

δ

dx

x1+ε
M(x) +

∫ δ

0

dx

x1+ε
M(x) +

1

ε
M0 '

∫ 1

δ

dx

x
M(x) +

1

ε

(
1− δ−ε

)
M0

'
∫ 1

δ

dx

x
M(x) + ln(δ)M0 (2.2)

Now the first integration can be integrated numerically in the respective Monte Carlo pro-
gram. As long asδ is small, the result will be independent ofδ. The details of this method
are explained by Baer, Ohnemus and Owens [12] in the context of a calculation of pho-
toproduction of jets. This method has also been applied to NLO calculations of three-jet
cross sections ine+e− annihilation [13,14].

• Subtraction: the idea was first used for QCD calculations of jet structure in e+e− annihi-
lation by R. K. Ellis, Ross and Terrano [15], and later by Z. Kunszt and P. Nason [16].
The basic idea is that one can write

I =

∫ 1

0

dx

x1+ε
M(x) −

∫ 1

0

dx

x1+ε
M0 +

∫ 1

0

dx

x1+ε
M0 +

1

ε
M0

=

∫ 1

0

dx
M(x) −M0

x1+ε
+

(
−1

ε
+

1

ε

)
M0 '

∫ 1

0

dx

x
[M(x)−M0] (2.3)
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The integration can now be performed numerically by Monte Carlo integration. In sum-
mary, both the phase space slicing and the subtraction algorithms provide the foundation
for setting up a Monte Carlo program, which can be used to implement arbitrary higher or-
der QCD calculations in a given process. As for the subtraction algorithm, a general NLO
formalism has been applied to calculate three-jet cross sections ine+e− annihilation and
cross sections up to two-jet production in the final state at hadron colliders [17–19]; the
algorithm of [17] has been modified to deal with three-jet cross sections at next-to-leading
order [20]. This formalism is also applicable ton-jet production ine+e− annihilation and
in hadron collisions. The treatment of massive partons has also been considered in the case
of heavy quark correlations in hadron collisions at next-to-leading order [20,21].

In recent years, an important calculational tool for the implementation of NLO QCD correc-
tions in Monte Carlo style programs are dipole subtraction schemes [22–25]. The key point
for the dipole subtraction method is that the QCD squared real-emission matrix element can be
factorized into Born matrix element in the soft and collinear limits based on the factorization
properties of QCD matrix elements [26, 27]. Dipole subtraction schemes introduce local coun-
terterms, which mimic the behaviour of the real-emission matrix element in the singular limits.
After standard UV-renormalization, the soft and collinearsingularities then cancel when the in-
tegrated subtraction terms are added to the virtual cross section. Hence, the results to the NLO
cross section are finite and the further phase-space integrations can be performed numerically by
Monte Carlo techniques.

The various schemes [22,23,25] differ in the phase-space momentum mapping, which relates LO
and NLO kinematics. In the standard scheme of Catani and Seymour [22], the universal local
counterterms need to be re-calculated for each emitter/spectator pair1. Therefore, this scheme
suffers from a large number of momentum mappings needed to evaluate the subtraction terms.
Basically, the number of momentum mappings scales likeN3 for a LO 2 → N process. This
scaling leads to a rapidly rising number of momentum mappings for a large number of exter-
nal particles in the final state. Following an approach suggested by Zoltan Nagy and Dave
Soper [28–30], we employ a subtraction scheme with a slightly altered momentum mapping,
such that the number of kinematic transformations is greatly reduced. Basically, the number of
mappings scales likeN2 for a LO 2 → N process, thereby reducing the number of matrix ele-
ment computations by a factor ofN . In addition, the dipole subtraction terms in this alternative
scheme are based on splitting functions which have been proposed in the context of an improved
parton shower formulation including quantum interferenceeffects. Hence, the new scheme facil-
itates numerical implementations of higher order corrections in Monte Carlo Event Generators
and also allows for easy matching with a parton shower using the same splitting functions.

1The number of momentum mappings = number of emitters.
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We begin in Section 2.2 by giving a brief overview of the general subtraction procedure. In Sec-
tion 2.3 we discuss the general framework setup and the momentum mapping betweenm- and
(m + 1)-particle phase space. In Section 2.4 we will give the explicit expressions of splitting
functions for each process in both the initial and final states, as well as the eikonal splitting func-
tions and soft splitting functions. In Section 2.5 we will show the complete integrated splitting
functions including collinear and soft integrals. In Chapter 3 we will show our first applications
to NLO processes at hadron and lepton colliders. Finally we will summarize in Chapter 4.

2.2 General structure of the NLO cross section and subtrac-
tion procedure

2.2.1 The general subtraction procedure

In this Section we explain the general subtraction procedure for calculating NLO cross sections
at lepton and hadron colliders. Suppose that we want to calculate the jet quantityσ at NLO
accuracy

σ = σLO + σNLO (2.4)

Suppose also that there arem partons in the final state at LO, then we have

σLO =

∫

m

dσB (2.5)

Here,dσB is the Born-level cross section, which can be symbolically written as

dσB = dPSm |Mm|2 F (m)
J (2.6)

wheredPSm denotes the phase space ofm particles in four dimensions,Mm is the matrix
element andF (m)

J is a function of cuts defining the jet observables, which we will discuss in
Section 2.2.3. By definition, the LO cross section is finite sothat Eq. (2.5) can be integrated
(analytically or numerically) in four dimensions.

At NLO, we have to consider both the real and virtual contributions. There arem + 1 partons
in the final state for the real emission andm partons in the final state for the virtual one-loop
correction. So we can write

σNLO =

∫
dσNLO =

∫

m+1

dσR +

∫

m

dσV (2.7)

The first integral on the right-hand side of Eq. (2.7) is the contribution from real diagrams, which
contains IR divergences, and the second integral on the right-hand side of Eq. (2.7) is the con-
tribution from virtual diagrams, which contains both UV andIR divergences. A traditional way
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for dealing with IR singularities is by introducing an infinitesimal regulator,e.g.by lowering the
dimension tod = 4 − 2 ε, the so-called dimensional regularization scheme, in which the Feyn-
man diagrams are computed ind dimensions and the singularities in the integral can be extracted
as double (soft and collinear) poles1/ε2 and single (soft, collinear or UV) poles1/ε. Here we
suppose that one has already performed the renormalizationprocedure indσV so that all its UV
singularities have been removed. This way, the analytic cancellation of the respective divergent
parts for fully inclusive measurements is straightforward. However, numerical implementations
of parts containing infinitesimal regulators for multi-particle processes proved to be challenging.
In subtraction schemes, the difficulty is circumvented by introducing universal local countert-
erms (or dipole terms), which mimic the behaviour of the squared real emission matrix elements
in the singular regions; adding back the respective one particle integrated counterparts to the
virtual contributions results in finite integrands for bothreal contribution (m + 1-particle phase
space) and virtual correction (m-particle phase space). Symbolically, we write

dσNLO =
[
dσR − dσA

]
+
[
dσA + dσV

]
(2.8)

wheredσA is regarded as a local counterterm (or dipole), which mimicsthe singular behaviour
of dσR. In the next step we introduce the phase space integration. One can safely perform the
limit ε→ 0 in the first term on the right-hand side of Eq. (2.8) by definition. For the second term
on the right-hand side of Eq. (2.8), one can carry out analytically the integrated dipole termdσA

over the emitted one parton phase space, leading to the polesin ε that are necessary to cancel the
soft singularities in virtual one-loop cross section. Thuswe can perform the limitε→ 0 after all
the divergences are cancelled. The final structure of the calculation is given by

σNLO =

∫

m+1

[
dσR − dσA

]

︸ ︷︷ ︸
finite

+

∫

m+1

dσA +

∫

m

dσV

︸ ︷︷ ︸
finite

=

∫

m+1

[
dσRε=0 − dσAε=0

]
+

∫

m

[∫

1

dσA + dσV
]

ε=0

(2.9)

Both integrands are now finite, meaning that we can perform all integrations numerically in the
respective Monte Carlo program. The explicit expressions of the cross sectionσ form andm+1

particle contributions to the total NLO cross section are given by

∫

m

[
dσB + dσV +

∫

1

dσA
]
=

∫
dPSm

[
|Mm|2 + |Mm|2one-loop +

∑

`

B` |Mm|2
]

∫

m+1

[
dσR − dσA

]
=

∫
dPSm+1

[
|Mm+1|2 −

∑

`

D` |Mm|2
]

(2.10)

Here, ε → 0 in them + 1 particle phase space is always understood. Convolution with jet
functions then ensures that theσ is infrared and collinear safe and that the Born-level contribution
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Mm+1
1

m+ 1

i

j

i andj
become soft and/or collinear

−→
∑

{ij,k}...

Mm

...

...

1

m

ĩj ⊗
i

j

k

Vij,k

Figure 2.1: Dipole factorization procedure [22]. When the partonsi andj become soft and/or
collinear, the (m+1)-parton matrix element factorizes into them-parton matrix element times a
singular factorVij,k which in our notation is denoted withv`({p̂}m+1).

is well defined. In Eq. (2.10), the sum goes over all local counterterms needed to match the
complete singularity structure of the real emission contribution. For each singular limit,i.e.when
two partons become collinear or when one parton becomes soft, the real emission matrix element
factorizes into the Born-level matrix element according to2 (Fig. 2.1)

Mm+1({p̂}m+1) −→
∑

`

v`({p̂}m+1)⊗Mm({p}m) and D` ∝ v2` (2.11)

whereD` denote the dipoles containing the respective singularity structure. HereD` is just a
symbolic notation. The explicit expressions for each splitting process will be given in Section 2.4.
The symbol⊗ represents properly defined phase-space, spin and colour convolutions. p̂ andp
represent momenta in(m+1)- andm-parton phase spaces, respectively. As|Mm+1|2 and|Mm|2
live in different phase spaces, a mapping of the respective momenta from(m+1)- tom-particle
phase space needs to be introduced, which is defined by a mapping functionFmap according to
p = Fmap(p̂). D` andB` are related byB` =

∫
dζpD`, wheredζp is an unresolved one

parton integration measure. In summary, any subtraction scheme needs to fulfill the following
requirements:

• dipole subtraction termsD` must match the behavior of the real emission matrix element
in each soft and collinear region.

• the mapping functionFmap guarantees total energy momentum conservation as well as the
on-shell condition for all external particles both before and after the mapping.

2In Fig. 2.1 we follow Catani-Seymour’s notation to explain the dipole factorization procedure; it is worth
mentioning that in this thesis we used` for the mother parton instead of̃ij, which Catani and Seymour used.
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X

a

b

fa/A

fb/B

σ̂ab

A

B

Figure 2.2: Hadron collision.

• subtraction terms have to lead to correct IR poles when carrying out the analytical integra-
tion over the one parton phase space ind dimensions that are necessary to cancel the soft
singularities in virtual one-loop matrix element.

2.2.2 Generalization to hadron collisions

Now we consider the cross sections in hadron collisions (Fig. 2.2). In the case of processes with
two initial-state hadronsA andB carrying momentapA andpB, respectively, the calculation of
the QCD cross sections must be convoluted with parton distribution functions (PDFs):

σ(pA, pB) =
∑

a, b

∫ 1

0

dηa fa/A(ηa, µ
2
F )

∫ 1

0

dηb fb/B(ηb, µ
2
F )
[
σLOab (pa, pb) + σNLOab (pa, pb, µ

2
F )
]

+O
(
ΛnQCD

Qn

)
(2.12)

wherepa = ηa pA andpb = ηb pB are parton momenta, whileηa andηb are the momentum
fractions of the partons. The parton distribution functions fa/A(ηa, µ2

F ) gives the probability of
finding partona inside hadronA with momentum fractionηa when the hadron is probed at the
scaleµF . In general, the hard scattering cross sectionsσLO andσNLO depend onαs(µ2

F ) and the
ratioQ2/µ2

F . The parameterµF is the factorization scale at which long distance physics (PDFs)
and short distance process (hard scattering cross sections) can be separately treated. The scale
µF is arbitrary that is introduced in order to renormalize the UV divergences after quantization,
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and physical results cannot depend on it. The correspondingparton level cross sections are:

σLOab (pa, pb) =

∫

m

dσBab(pa, pb)

σNLOab (pa, pb, µ
2
F ) =

∫

m+1

dσRab(pa, pb) +

∫

m

dσVab(pa, pb) +

∫

m

dσCab(pa, pb, µ
2
F ) (2.13)

In general, the initial-state collinear singularities in hadron collisions do not cancel. However,
they are universal and process-independent in all orders inperturbation theory. Therefore they
can be cancelled by universal collinear countertermsdσCab, which are generated by the renormal-
ization of the PDFs of the incoming particles. The explicit form is given by3:
∫

m

dσCab(pa, pb, µ
2
F ) =

αs
2π

1

Γ(1− ε)

∑

c

∫ 1

0

dx

∫

m

dσBcb(xpa, pb)
1

ε

(
4πµ2

µ2
F

)ε
P ac(x)

+
αs
2π

1

Γ(1− ε)

∑

c

∫ 1

0

dx

∫

m

dσBac(pa, xpb)
1

ε

(
4πµ2

µ2
F

)ε
P bc(x) (2.14)

Here, theP ab(x) are the Altarelli-Parisi kernels in four dimensions. The collinear counterterm
depends on the factorization scheme. Here we have chosen themost commonly usedMS scheme.
As in the case of UV renormalization, the full hadronic crosssection is unaltered under a change
of the factorization scheme, provided that the PDFs are alsosuitably changed.

For processes with incoming hadrons, the subtraction procedure is applied toσNLOab (pa, pb, µ
2
F )

as previously described and we can write it as follows

σNLOab (pa, pb, µ
2
F ) =

∫

m+1

[
dσRab(pa, pb)− dσAab(pa, pb)

]

+

∫

m

[∫
dσVab(pa, pb) +

∫

1

dσAab(pa, pb) + dσCab(pa, pb, µ
2
F )

]

ε=0

(2.15)

where
∫
1
dσAab + dσCab can be written as
∫

m

[∫

1

dσAab(pa, pb) + dσCab(pa, pb, µ
2
F )

]

=

∫

m

dσBab(pa, pb)⊗ I(ε) +

∫ 1

0

dx

∫

m

dσBab(xpa, pb)⊗
[
Ka(xpa) + P (x, µ2

F )
]

+

∫ 1

0

dx

∫

m

dσBab(pa, xpb)⊗
[
Kb(xpb) + P (x, µ2

F )
]

(2.16)

This equation defines the insertion operatorsI(ε), K(x), P (x, µ2
F ) at the cross section level,

where we follow the standard notation introduced in [22]. The symbol⊗ denotes all possi-
ble spin, colour and flavour correlations. Eq. (2.16) can be divided into two parts: the first part

3Here the splitting functionsPab andP ab can be exchanged with each other without making any difference,
i.e.Pab = P ab in the later discussions.
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is the universal insertion operatorI(ε), which contains all the poles inε that are necessary to
cancel the soft singularities in the virtual cross section.The universal insertion operator has the
LO kinematics. The second part consists of the finite pieces that are left over after absorbing
the initial-state collinear singularities into a redefinition of the parton distribution functions at
NLO. It involves an additional one dimensional integrationover the momentum fractionx of an
incoming parton with the LO cross sections and thex-dependent structure functions.

2.2.3 Observable-dependent formulation of the subtraction method

The jet observables which we are interested in should be welldefined experimentally or theo-
retically in such a way, that the cross sections are infraredand collinear safe. In general, the
jet function may containθ functions (which define cuts and corresponding cross sections) andδ
functions (which define differential cross sections). To bemore specific, we consider the follow-
ing expressions for Born-level and the corresponding NLO cross sections

σLO =

∫
dPSm(p1, · · · , pm) |Mm(p1, · · · , pm)|2 F (m)

J (p1, · · · , pm)

σNLO =

∫
dPSm+1(p1, · · · , pm+1) |Mm+1(p1, · · · , pm+1)|2 F (m+1)

J (p1, · · · , pm+1)

+

∫
dPSm(p1, · · · , pm) |Mm(p1, · · · , pm)|2one-loopF

(m)
J (p1, · · · , pm) (2.17)

where|Mm|2, |Mm+1|2 and|Mm|2one-loopare the squared LO matrix element, the squared NLO
real emission matrix element and the squared NLO virtual matrix element, respectively. There is
a formal requirement on the jet functionF (m)

J . For cases where two partons become collinear or
where one parton becomes soft, the functionF

(m+1)
J reduces toF (m)

J , i.e. in the soft and collinear
limits, the jet function fulfils the following properties

F
(m+1)
J (p1, · · · , pj = λ q, · · · , pm+1) → F

(m)
J (p1, · · · , pm+1) if λ→ 0

F
(m+1)
J (p1, .., pi, .., pj, .., pm+1) → F

(m)
J (p1, .., p, .., pm+1) if pi → z p, pj → (1− z) p

F
(m)
J (p1, · · · , pm) → 0 if pi · pj → 0 (2.18)

The first two conditions of Eq. (2.18) define the essential property of the jet function that the jet
observable has to be infrared and collinear safe for any numberm of partons in the final state,
i.e. to any order in QCD perturbation theory. The last condition of Eq. (2.18) guarantees that the
Born-level cross section is well defined. To summarise, we require that

F
(m+1)
J → F

(m)
J

in the singular limits.
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2.3 Scheme setup and momentum mapping

In the scheme presented here, the NLO dipole subtraction terms are derived from the splitting
functions introduced in [28]. The subtraction scheme is based on a physical picture that partons
can split or join. For parton splitting, one of them partons splits, producingm + 1 partons
in the final state. For parton joining, two partons can join, reducing them + 1 partons back
into m partons. Parton splitting is needed to describe a parton shower, while parton joining is
relevant in NLO QCD calculations. A momentum mapping function is needed to relate different
phase spaces, and the mappings fromm + 1 to m partons needed correspond to the inverse
transformation of the respective showerm tom+ 1 partons mappings.

In the following, the partons are labelled by an index that takes valuesa or b for the initial state
partons and1, 2, · · · , m for the final state partons. We will denote anm parton state by momenta
{p}m. The partons will be labelled by{a, b, 1, 2, · · · , m} with momenta

{pa, pb, p1, p2, · · · , pm}

After the splitting, we have anm + 1 parton state with momenta{p̂}m+1. The momenta are
labelled by

{p̂a, p̂b, p̂1, p̂2, · · · , p̂m+1}

Now suppose that partons` andj are produced by the splitting of a mother parton. Here the
mother parton is in anm-parton state{p}m, while partons̀ andj are in an(m+ 1)-parton state
{p̂}m+1. There are two situations. For a final state splitting,` andj are in the{p̂1, p̂2, · · · , p̂m+1}
configuration. The mother parton emerges from the hard interaction and splits into partons̀and
j. In this case, the momentum of the mother parton is labelled by p` ∈ {p1, p2, · · · , pm} while the
momenta of partons̀andj are labelled bŷp` andp̂j, respectively. For an initial state splitting,
j is in the{p̂1, p̂2, · · · , p̂m+1} configuration and̀ is in the{p̂a, p̂b} configuration. Partoǹ splits
into partonj and an initial state parton that enters the hard interaction. Hence the momentum
of mother parton is labelled bypa (or pb) while the momenta of partons̀andj are labelled by
p̂a (or p̂b) and p̂j, respectively. Our description for an initial state splitting follows backwards
evolution, in which the initial state parton that enters thehard interaction is the mother parton.
In summary, the notation is that mother parton` splits into partons with labels̀andj for both
initial and final state splittings, while the other partons keep their labels. Following this rule, our
convention throughout will be that in an(m + 1)-parton state,̂p` is the emitter,̂pj the emitted
parton, and̂pk the spectator4.

The momenta{p̂}m+1 after splitting are determined by the momenta{p}m and a momentum
splitting variableζp, which defines the momenta of the daughter partons. Here we consider an

4In contrast to [22], in our case a spectator only needs to be specified if p̂j denotes a gluon.
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example: when we join two partons` andj, the momentum of mother parton,p`, is approxi-
matelyp` ≈ p̂` + p̂j for a final state splitting, andp` ≈ p̂` − p̂j for an initial state splitting. As
stated previously, hatted and unhatted momenta correspondtom+1 andm-parton phase spaces,
respectively. The momenta of the other partons, which we candenote bypn, are approximately
unchanged, meaning thatpn ≈ p̂n for n /∈ {`, j}. However, these relations cannot be exact
because the momenta after parton joining should be on shell.In order for the mother parton
momentump` to be on-shell, we have to take some momenta from the spectators, sopn 6= p̂n
andp` 6= p̂` ± p̂j . So the definition of a mapping{p}m ↔ {p̂}m+1 should guarantee that all
external partons are on-shell, as well as total energy momentum conservation.

There are many ways to define the momentum mapping. The most widely used scheme is that
of Catani and Seymour [22]. This scheme may be called a local mapping. They define a emit-
ter/spectator pair, the momentum fraction goes to one additional parton only. Hence, the mo-
menta of the remaining partons are left unaltered. In this scheme, the momentum mapping
follows the rule that two partons are mapped into three partons according to

(p`, pk) ↔ (p̂`, p̂j, p̂k)

for each emitter/spectator pair. Here the color connectionbetween a spectator and an emitter
has to be considered. The antenna factorization [31, 32] also uses a local mapping. In the new
scheme, we apply a global mapping, in which the mapping takesall the partons into account at
once when going from(m + 1)- tom-particle phase space, instead of separately summing over
all possible emitter/spectator pairs. We will restrict ourexpressions to subtractions on the parton
level and to the massless case; details on convolution with PDFs are given in [28].

In the following subsections, we will first describe the finalstate splitting, then continue with
the more complicated initial state splitting case. For the final state splitting we first show how
{p̂}m+1 is obtained from{p}m and{ζp}, then we reverse the transformation from{p̂}m+1 to
{p}m and{ζp}. In the same way we will derive the initial state splitting.

2.3.1 Splitting a final state parton

Parton splitting

We will neglect parton masses in the kinematics. Suppose themother partoǹ with momentum
p` emerges from the hard interaction and splits into daughter partons` andj with momentap̂`
andp̂j , respectively. The on-shell condition ensures thatp2` = p̂2` = p̂2j = 0. We always have
(p̂` + p̂j)

2 ≥ 0. For a final state splitting, we can always leave the momenta of the initial state
partons unchanged:

pa = p̂a, pb = p̂b (2.19)
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LetQ be the total momentum of the final state partons

Q ≡
m∑

n=1

pn = pa + pb (2.20)

Here the momenta of the incoming partons remain the same, henceQ̂ = p̂a + p̂b is the same as
Q. We define

a` =
Q2

2 p` ·Q
(2.21)

Note thata` ≥ 1. The transformation also has to keep all of the momenta on-shell. In order to
define the momentum mapping for the final state splitting, we first parametrize the total momenta
of the two daugther partonŝp` andp̂j according to

P` = p̂` + p̂j = λ p` +
1− λ+ y

2 a`
Q (2.22)

There are two parameters in this definition:y andλ. y is the measure for the virtuality of
the splitting andλ is a function ofy that we will determine later. In order for the mother parton
momentump` to be on-shell as well as to preserve momentum conservation,we have to take some
momentum fractions from the final state spectators. In contrast to the Catani-Seymour scheme,
in which only a single spectator parton in the final state donates the needed momentum, we can
choose that all of the final state spectator partons, except partons` andj, donate a momentum
fraction. So the needed momentum from all of the final state spectators can be obtained by a
Lorentz transformation, which relates the momenta after and before the splitting,

p̂µn = Λ(K̂,K)µν p
ν
n, n /∈ {`, j = m+ 1} (2.23)

Here,K is the total momentum of the final state spectators before thesplitting

K = Q− p` (2.24)

andK̂ is the total momentum of the final state spectators after the splitting

K̂ = Q− P` (2.25)

Since each final state spectator is changed by a Lorentz transformation, we have

K̂µ = ΛµνK
ν (2.26)

The Lorentz transformation is given by

Λ(K̂,K)µν = gµν −
2 (K̂ +K)µ (K̂ +K)ν

(K̂ +K)2
+

2 K̂µKν

K2
(2.27)
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which automatically implies
K̂2 = K2 (2.28)

In a particular case in which there are only two massless partons in the final state, this corresponds
to a` = 1 andK2 = 0. In this case, an alternative representation of the Lorentztransformation
has to be introduced so that the boost in Eq. (2.27) still remains well defined whenK2 = 0.

Λ(K̂,K)µν = gµν +

(
K · n
K̂ · n

− 1

)
nµ n̄ν +

(
K̂ · n
K · n − 1

)
n̄µ nν (2.29)

wheren and n̄ are lightlike vectors in theQ-p` plane withn · n̄ = 1 and (p` · n/p` · n̄) <
(Q · n/Q · n̄).

The parametersλ andy can be determined from Eq. (2.28).

λ =

√
(1 + y)2 − 4 a` y, y =

p̂` · p̂j
p` ·Q

(2.30)

There is a maximum value ofy corresponding toλ = 0

ymax =
(√

a` −
√
a` − 1

)2
= 2 a` − 1 − 2

√
a` (a` − 1) (2.31)

Another important relation, connecting hatted and unhatted quantities, is given by

p` ·Q = (p̂` + p̂j) ·Q− p̂` · p̂j (2.32)

which can also be rewritten as

2P` ·Q = (1 + y) 2 p` ·Q (2.33)

As stated previously, the momenta{p̂}m+1 after splitting are determined by the momenta{p}m
and a momentum splitting variableζp. It will be convenient to define the daughter parton mo-
menta by

ζp ≡ (p̂`, p̂j) (2.34)

Hence, the momentum mapping from them to them + 1 particle phase space is given by a
transformation5

{p̂, f̂}m+1 = R` ({{p, f}m, {ζp, ζf}}) (2.35)

wheref denotes the flavour of each parton:f ∈ {g, u, ū, d, d̄, · · · }. Here, the splitting variable
ζf is given by the flavours of the daughter partons, so we have

ζf = (f̂`, f̂j) (2.36)

5More precisely, after the splitting{p̂, f̂}m+1 is determined from{p, f}m and splitting variable{ζp, ζf}, where
ζp denotes the daughter momenta andζf denotes the daughter flavours.
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The flavours of the spectator partons remain unchanged

f̂n = fn, n /∈ {`, j = m+ 1} (2.37)

while the flavour of the mother partonf` obeys

f̂` + f̂j = f` (2.38)

e.g.if the mother partoǹ is a quark/antiquark, then we haveζf = (q/q̄, g). If the mother parton
` is a gluon, thenζf can be a pair of gluonsζf = (g, g), which corresponds tog → g g splitting,
or any choice of quark/antiquark flavoursζf = (q, q̄), which corresponds tog → q q̄ splitting6.

Parton joining

There is an inverse transformation of Eq. (2.35), which mapsthe (m + 1)-parton momenta to
them-parton momenta. So we start with{p̂}m+1 and determine{p}m and{ζp}. The splitting
variable for the momenta is given by the momenta of the daughter partonsζp ≡ (p̂`, p̂j). LetQ
be the total momentum of the final state partons:

Q =

m+1∑

n=1

p̂n = p̂a + p̂b (2.39)

One can determine the lightlike momentump` by rearranging Eq. (2.22)

p` =
1

λ
(p̂` + p̂j)−

1− λ+ y

2 λ a`
Q (2.40)

Here, the parametera` still depends on the mother parton momentump`, which can be mapped
into her daughterŝp` andp̂j through Eq. (2.32). Now we need the inverse Lorentz transformation
to Eq. (2.23). All non-emitting final state spectators are mapped using the following Lorentz
transformation. FromK = Q − p` andK̂ = Q− P`, we have

pµn = Λ(K, K̂)µν p̂
ν
n, n /∈ {`, j = m+ 1} (2.41)

whereΛ(K, K̂)µν can be obtained using Eq. (2.27) witĥK andK interchanged. Now the inverse
transformation from them+ 1 to them particle phase space is given by

{{p, f}m, {ζp, ζf}} = Q` ({p̂, f̂}m+1) (2.42)

6For final stateq → q g or q̄ → q̄ g splittings, we usej for the label of the gluon. For a final stateg → q q̄
splitting, we usej for the label of thēq.
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The transformation of the flavours is similar to the case of parton splitting. The splitting variable
ζf is given by the flavours of the daughter partonsζf = (f̂`, f̂j). The flavour of the mother
partonf` is given by

f` = f̂` + f̂j (2.43)

with the rule of adding flavours,q + g = q andq + q̄ = g. The flavours of the spectators remain
unchanged

fn = f̂n, n /∈ {`, j = m+ 1} (2.44)

In summary, it is the transformationR` that is needed to describe a parton shower, whileQ` is
needed to describe the NLO QCD calculations.

The integration measure for final state splitting

In order to calculate the various splitting processes and extract the correct singularities inε, we
need to know the factorization of the phase space fromm+ 1 tom partons

∫
d{p̂, f̂}m+1 g({p̂, f̂}m+1) =

∫
d{p, f}m dζp g({p̂, f̂}m+1) (2.45)

whereg({p̂, f̂}m+1) is an arbitrary function. The definition of the unresolved one parton integra-
tion measure is [28]

dζp = dy θ(ymin < y < ymax) λ
d−3 p` ·Q

π

ddp̂`
(2 π)d

2 π δ+(p̂2`)
ddp̂j
(2 π)d

2 π δ+(p̂2j )

× (2 π)d δd
(
p̂` + p̂j − λ p` −

1− λ+ y

2 a`
Q

)
(2.46)

Here,ymin = 0 for massless partons andymax is given by Eq. (2.31). The final expressions in
terms of the integration variables (see Section 2.4.3) can be found in Section 5.2.1.

2.3.2 Splitting an initial state parton

Parton splitting

For an initial state splitting, we follow the backwards evolution description that an initial state
daughter partoǹ splits into an initial state mother parton that enters the hard part of the process
and a final state daughter partonj when going forward in time,i.e. p̂a → pa + p̂j . For simplicity
we have chosen the convention that

` = a (2.47)
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For the casè = b, we just simply interchangea↔ b. Here the final state daughter partonj is in
{p̂1, p̂2, · · · , p̂m+1} configuration. In this subsection, we will describe how{p̂}m+1 is determined
from {p}m and a splitting variable{ζp}. To describe the initial state partons momenta, we start
by assuming the incoming hadron momentapA andpB to be massless, so

p2A = p2B = 0 and 2 pA · pB = s (2.48)

wheres is the center-of-mass energy of incoming hadrons. We will restrict our expressions to
massless partons in the kinematics, sop2a = p2b = p̂2a = p̂2j = 0, where

pa = ηa pA

pb = ηb pB

p̂a = η̂a pA (2.49)

Here,ηa andηb are momentum fractions of the incoming partons before the splitting andη̂a is the
momentum fraction after the splitting. We choose the momentum fraction of partonb to remain
unaltered

η̂b = ηb (2.50)

The momentum fraction̂ηa after the splitting will be determined by the final-state daughter parton
p̂j. As in the case of a final-state splitting, the relationp̂a ≈ pa+ p̂j cannot hold, as the momenta
after parton splitting should be on-shell. In order to allowall partons to be on-shell, while
conserving momentum, we choose to take the needed momenta from the final state spectator
partons. This can be achieved by a Lorentz transformation asin the case of a final state splitting

p̂µn = Λ(K̂,K)µν p
ν
n, n ∈ {1, · · · , m} and n 6= j (2.51)

Here,K is the total momentum of the final state spectators before thesplitting

K = pa + pb (2.52)

andK̂ is the total momentum of the final state spectators after the splitting

K̂ = p̂a + pb − p̂j = Q̂− p̂j, Q̂ = p̂a + pb (2.53)

Since each final state spectator is changed by a Lorentz transformation, we have

K̂µ = ΛµνK
ν (2.54)

with the Lorentz transformation given by Eq. (2.27). In order thatK is related toK̂ by a Lorentz
transformation, we needK2 = K̂2. Hence, we get

K2 = α ηa = K̂2 (2.55)
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where
α = ηb s (2.56)

From this it follows that

ηa ηb s = (p̂a + pb − p̂j)
2

= η̂a ηb s− 2 [η̂a pA · p̂j + ηb pB · p̂j ] (2.57)

which defines

η̂a =
ηa ηb s+ 2 ηb pB · p̂j
ηb s− 2 pA · p̂j

≤ 1 (2.58)

A consequence of Eq. (2.58) is
ηa < η̂a < 1 (2.59)

Again, we can introduce the splitting variableζp that defines the momenta of the daughter par-
tons:

ζp ≡ (p̂a, p̂j) (2.60)

so that{p}m together withζp determines{p̂}m+1. There is a transformationRa relatingm to the
m+ 1 particle phase space,

{p̂, f̂}m+1 = Ra ({{p, f}m, {ζp, ζf}}) (2.61)

Here, the splitting variableζf is given by the flavours of the daughter partons, so we have

ζf = (f̂a, f̂j) (2.62)

The flavours of the spectator partons remain unchanged

f̂n = fn, n /∈ {a, j = m+ 1} (2.63)

while the flavours of the daughter partonsf̂a andf̂j obey

f̂a + f̂j = fa (2.64)

Parton joining

Now we consider the inverse transformation needed in the subtraction, meaning that we combine
an initial-state parton with a final-state parton into a mother parton that enters the hard part. So
we start with{p̂}m+1 and determine{p}m and{ζp}.

The splitting variable for the momenta is given by the momenta of the daughter partons

ζp ≡ (p̂a, p̂j) (2.65)
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One can determineηa by solvingK2 = K̂2, so we can expressηa in terms ofη̂a. This gives

ηa =
K̂2

α
=

η̂a ηb s− 2 [η̂a pA · p̂j + ηb pB · p̂j]
ηb s

(2.66)

Once we haveηa, we can constructK = pa + pb. Further we need the inverse Lorentz transfor-
mation of Eq. (2.51). FromK andK̂, we have

pµn = Λ(K, K̂)µν p̂
ν
n, n ∈ {1, · · · , m} and n 6= j (2.67)

whereΛ(K, K̂)µν can be obtained using Eq. (2.27) witĥK andK interchanged. The mapping
for the initial state partona is

pa =

(
1− p̂j · Q̂

p̂a · pb

)
p̂a (2.68)

Now the inverse transformation from the(m+ 1)- to them-particle phase space is given by

{{p, f}m, {ζp, ζf}} = Qa ({p̂, f̂}m+1) (2.69)

The transformation of the flavours is similar to the case of parton splitting. The splitting variable
ζf is given by the flavours of the daughter partonsζf = (f̂a, f̂j) in the sense of backwards
evolution. The flavour of the mother partonfa is given by

fa = f̂a + f̂j (2.70)

The flavours of the spectators remain unchanged

fn = f̂n, n /∈ {a, j = m+ 1} (2.71)

The integration measure for initial state splitting

The phase space factorization fromm + 1 tom partons takes a similar form as in the final state
splitting, i.e. we have again

∫
d{p̂, f̂}m+1 g({p̂, f̂}m+1) =

∫
d{p, f}m dζp g({p̂, f̂}m+1) (2.72)

whereg({p̂, f̂}m+1) is an arbitrary function. The definition of the unresolved one parton integra-
tion measure is [28]

dζp =
ddp̂j
(2 π)d

2 π δ+(p̂2j )
α

α̂
(2.73)

Here,α̂ = ηb s − 2 pA · p̂j . The factorα/α̂ is just the derivativedη̂a/dηa calculated from the
relationK̂2 = K2. The final expressions in terms of the integration variables(see Section 2.4.4)
can be found in Section 5.2.2.
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2.4 Splitting functions

In the Nagy-Soper dipole subtraction scheme, the dipoles are based on splitting functions [28,29]
that will be used to generate the shower. The new subtractionscheme also allows for easy match-
ing with a parton shower using the same splitting functions in the spin-averaged approximation.
In addition, the use of the dipoles as splitting functions inthe shower, when combined with NLO
calculations, simplifies the treatment of double counting.

Consider for a moment the QCD scattering amplitude without spin, colour or flavours. In the
singular limit the transition amplitude factorizes according to

| Mm+1({p̂}m+1) >≈ v`({p̂}m+1) · | Mm({p}m) > (2.74)

wherev`({p̂}m+1) is the splitting amplitude proportional to1/p̂` · p̂j . The momentum mapping
between{p̂}m+1 and{p}m is described in Section 2.3. In reality, we have soft as well as collinear
singularities in QCD, we also have to consider spin, colour and parton flavours. We will describe
splitting amplitudes in more detail including all these factors in the next subsection.

It has been known, that scattering amplitudes can be factorized out in a general way by using
the factorization properties of QCD amplitudes in the soft and collinear limits [31–35]. At the
next-to-next-to-leading order and beyond, the factorization of QCD scattering amplitudes can be
found in [36].

2.4.1 Definition of the splitting amplitudes

The splitting functions described in [28,29] are based on the spin dependent splitting amplitudes.
The QCD scattering amplitude form+ 1 partons is a vector in colour⊗ spin space.

| M({p̂, f̂}m+1) > (2.75)

when two partons̀ andj are almost collinear, this amplitude becomes

| M({p̂, f̂}m+1) >∼ | M`({p̂, f̂}m+1) > (2.76)

In the limit, that partonj becomes soft, then all of the| M`({p̂, f̂}m+1) > amplitudes contribute,
and we have (|M` 〉 is to be defined in Eq. (2.78) )

| M({p̂, f̂}m+1) >∼
∑

`

| M`({p̂, f̂}m+1) > (2.77)

After splitting parton`, the amplitude| M`({p̂, f̂}m+1) > can be factorized into a splitting
operator times them-parton matrix element according to

| M`({p̂, f̂}m+1) >= t†`(f` → f̂` + f̂j) V
†
` ({p̂, f̂}m+1) | M({p, f}m) > (2.78)
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Here, the Born amplitude for producingm partons is evaluated at momenta and flavours{p, f}m
determined from{p̂, f̂}m+1 according to the transformationQ`({p̂, f̂}m+1) in Eq. (2.42) or
Eq. (2.69). V †

` ({p̂, f̂}m+1) is an operator acting on the spin part of the colour⊗ spin space,
while t†`(f` → f̂` + f̂j) is an operator acting on the colour part of the colour⊗ spin space. The
spin-dependent splitting operator can be described in the spin space| {s}m >,

< {ŝ}m+1 | V †
` ({p̂, f̂}m+1) | {s}m > (2.79)

we can take Eq. (2.79) to be diagonal

< {ŝ}m+1 | V †
` ({p̂, f̂}m+1) | {s}m >=




∏

n/∈{`,j=m+1}
δŝn,sn


 v`({p̂, f̂}m+1, ŝj, ŝ`, s`)

(2.80)

Here, the splitting amplitudesv`({p̂, f̂}m+1, ŝj, ŝ`, s`) can be derived from the QCD vertices,
spinors and polarization vectors for on-shell partons. We can use the mother momentump` to
describe the splitting amplitudesv`, and the relation betweenp` and{p̂, f̂}m+1 is given by the
transformationQ`({p̂, f̂}m+1).

In the following, we will illustrate splitting amplitudes by giving some examples. First we con-
sider the case of ag → g g splitting. Theggg QCD vertex is given by

vαβγ(pa, pb, pc) = gαβ(pa − pb)
γ + gβγ(pb − pc)

α + gγα(pc − pa)
β (2.81)

In order to define the propagator for the gluon field properly,we have to make a choice of gauge.
The choice

Lgauge-fixing = − 1

2 λ
(nµGA

µ )
2 (2.82)

is called the axial gauge, in which we introduce an additional vectorn. Here the parameterλ
will break the gauge invariance of the theory, however, the physical results will be independent
of λ at the end. The advantage of the axial gauge is that ghost fields are not required. Now we
consider a special case in whichλ = 0 andn2 = 0. This is called the light-cone gauge. We
define

Dµν(P, n) = −gµν + P µ nν + nµ P ν

P · n (2.83)

In the limitP 2 → 0 we have

nµDµν(P, n) = 0, P µDµν(P, n) = 0 (2.84)

In the axial gaugen · GA = 0, only two physical polarization states propagate, which are
orthogonal ton andP . Hence we can use the propagator for an off-shell gluon

Dµν(p̂` + p̂j, n`)

(p̂` + p̂j)2
(2.85)
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where the lightlike vectorn` is chosen to lie in the plane ofp` andQ (see [28,29]),

n` = Q− a` p` =
1 + y + λ

2 λ
Q− a`

λ
(p̂` + p̂j) (2.86)

for the final state splitting. More generally, the vectorn` has the following form for both initial
and final state splittings,

n` =





pB for ` = a

pA for ` = b

Q− a` p` for ` ∈ {1, · · · , m}

(2.87)

In the case of a final-stateg → g g splitting (Fig. 2.3), we derive

v`({p̂, f̂}m+1, ŝj, ŝ`, s`) =

√
4παs

2 p̂j · p̂`
εα(p̂j, ŝj, Q̂)

∗ εβ(p̂`, ŝ`, Q̂)
∗εν(p`, s`, Q̂)

× vαβγ(p̂j , p̂`,−p̂j − p̂`)Dγν(p̂` + p̂j, n`) (2.88)

In the case of an initial-stateg → g g splitting (Fig. 2.4), we have

v`({p̂, f̂}m+1, ŝj, ŝ`, s`) = −
√
4παs

2 p̂j · p̂`
εα(p̂j , ŝj, Q̂)

∗ εβ(p̂`, ŝ`, Q̂)ε
ν(p`, s`, Q̂)

∗

× vαβγ(p̂j,−p̂`, p̂` − p̂j)Dγν(p̂` − p̂j, n`) (2.89)

Here we have the exact QCD vertex and the off-shell gluon propagator in the axial gaugen·GA =

0 for both initial- and final-stateggg splittings. In order for the mother gluon to be on-shell, we
can make an approximation so that the mother gluon is projected onto the physical degrees of
freedom as it emerges from the hard matrix element. This projection is contained in the on-shell
polarization vectorε(p`, s`, Q̂).

For a final-stateq → q g splitting (Fig. 2.5), we derive

v`({p̂, f̂}m+1, ŝj, ŝ`, s`) =
√
4παs εµ(p̂j, ŝj , Q̂)

∗ U(p̂`, ŝ`) γ
µ (p̂/` + p̂/j)n/` U(p`, s`)

(p̂` + p̂j)2 2p` · n`
(2.90)

For an initial-stateq → q g splitting (Fig. 2.6), we have

v`({p̂, f̂}m+1, ŝj, ŝ`, s`) = −
√
4παs εµ(p̂j, ŝj , Q̂)

∗ U(p`, s`)n/` (p̂/` − p̂/j) γ
µ U(p̂`, ŝ`)

(p̂` − p̂j)2 2p` · n`
(2.91)

Here,U andU denote Dirac spinors for the quark fields satisfying(q/ − m)U(~q, s) = 0 and
U(~q, s) (q/−m) = 0. The Dirac spinors for the antiquark fields obey(q/+m) V (~q, s) = 0 and
V (~q, s) (q/+m) = 0. They are normalized to

U(~p, s) γµ U(~p, s) = 2 pµ,

V (~p, s) γµ V (~p, s) = 2 pµ (2.92)
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The projection operators are

q/+m =
∑

s

U(~q, s)U(~q, s), q/−m =
∑

s

V (~q, s) V (~q, s) (2.93)

The polarization vectorεµ for the gluon field is defined in a timelike axial gauge so that

p̂j · ε = Q̂ · ε = 0, Q̂ = Q (2.94)

For other flavour choices, the results can be found in [28]. For the splitting functions, we have to
square the splitting amplitudes. In the new formalism, there are two sorts of splitting functions:
direct splitting functions (Fig. 2.7) and interference splitting functions (Fig. 2.8). The direct
splitting functions correspond to the scattering amplitude | M`({p̂, f̂}m+1) > for a partoǹ to
split times its complex conjugate scattering amplitude< M`({p̂, f̂}m+1) | for that same parton
` to split, while the interference splitting functions correspond to the interference between the
scattering amplitude| M`({p̂, f̂}m+1) > for a parton` to split into partons̀ and j and the
complex-conjugate scattering amplitude< Mk({p̂, f̂}m+1) | for another partonk to split into
partons with labelsk andj. These functions generate leading singularities when parton j is a
soft gluon.

The direct splitting function is the product of a splitting amplitudev` and its complex-conjugate
splitting amplitudev∗` , so we have

v`({p̂, f̂}m+1, ŝj, ŝ`, s`) v`({p̂, f̂}m+1, ŝj, ŝ`, s`)
∗ (2.95)

which, after summing over the daughter parton spins and averaging over the mother parton spins,
leads to the spin averaged splitting functions

W `` =
1

2

∑

ŝ`,ŝj ,s`

∣∣∣v`({p̂, f̂}m+1, ŝj, ŝ`, s`)
∣∣∣
2

(2.96)

2.4.2 Eikonal factor

When partonj is a gluon, there is a common result in the limitp̂j → 0, in which the splitting
amplitudev` can be replaced by the eikonal approximation,

veikonal
` ({p̂, f̂}m+1, ŝj, ŝ`, s`) =

√
4παs δŝ`,s`

ε(p̂j, ŝj, Q̂)
∗ · p̂`

p̂j · p̂`
(2.97)

The eikonal approximation of the spin-averaged splitting functionsW `` is then

W
eikonal
`` = 4 π αs

p̂` ·D(p̂j, Q̂) · p̂`
(p̂j · p̂`)2

(2.98)
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p̂`

p̂j

p`

Figure 2.3: A final-stateggg splitting.

p̂a

p̂j

pa

Figure 2.4: An initial-stateggg splitting.

p̂`

p̂j

p`

Figure 2.5: A final-stateqqg splitting.
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p̂a

p̂j

pa

Figure 2.6: An initial-stateqqg splitting.

...
...

| M`({p̂, f̂}m+1) > <M`({p̂, f̂}m+1) |

p̂j

p`
p̂`

Figure 2.7: Collinear diagram: partonj is emitted from partoǹ in the scattering amplitude
| M`({p̂, f̂}m+1) > and partonj is emitted from that same parton` in the complex-conjugate
scattering amplitude<M`({p̂, f̂}m+1) |.

...

...

...
...

| M`({p̂, f̂}m+1) > <Mk({p̂, f̂}m+1) |

j
`

k

1

m+ 1

Figure 2.8: Soft diagram: partonj is emitted from partoǹ in the scattering amplitude and parton
j is emitted from partonk in the complex-conjugate scattering amplitude.
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Here,Dµν is the transverse projection tensor for an off-shell gluon, which is given by

Dµν(p̂j, Q̂) = −gµν +
p̂µj Q̂

ν + Q̂µ p̂νj

p̂j · Q̂
−
Q̂2 p̂µj p̂

ν
j

(p̂j · Q̂)2
(2.99)

It will be convenient if we define a dimensionless functionF :

F =
p̂` · p̂j
4 π αs

W `` (2.100)

then as the gluonj becomes soft,̂pj → 0, we can define the functionFeik :

Feik =
p̂` · p̂j
4 π αs

W
eikonal
`` =

p̂` ·D(p̂j, Q̂) · p̂`
p̂` · p̂j

=
2 p̂` ·Q
p̂j ·Q

− Q2 p̂` · p̂j
(p̂j ·Q)2

(2.101)

We can also introduce the notationv2eik or v̄2eik, which we will use throughout in the following
discussions, and which is defined through the spin-averagedsplitting functionW

eikonal
``

W
eikonal
`` = v̄2eik =





1
2
v2eik for quarks

1
2 (1−ε) v

2
eik for gluons

(2.102)

The prefactor1/2 is the quark spin (or helicity) degrees of freedom, while thefactor1/2/(1− ε)

is the gluon spin degrees of freedom. More precisely, if we consider both the colour and spin
average, we can introduce a notation1/ω(a), which is defined by

ω(a) =





2N if a = q

2 (1− ε)DA if a = g
(2.103)

ω(a) is the number of colour and spin degrees of freedom for the flavoura. DA = N2 − 1 is the
dimension of the adjoint representation of theSU(N) colour group, whileN is the dimension
of the fundamental representation of the colour group,e.g.for SU(3)C we haveDA = 8 colour
degrees of freedom of the gluon field in the adjoint representation andN = 3 colour degrees
of freedom of the quark field in the fundamental representation ofSU(3)C . In principle we also
have to considerδab or δAB (which equals 3 or 8) in the quark or gluon propagators, wherethe
indicesa, b = 1, 2, 3 andA,B = 1, · · · , 8. In practice all these factors are included in the
matrix element.

In Eq. (2.102),v2eik denotes the spin-unaveraged splitting function. So we have

v2eik = 4 π αs ×






[
2 / (p̂` · p̂j)2

]
p̂` ·D(p̂j, Q̂) · p̂` for quarks

[
2 (1− ε) / (p̂` · p̂j)2

]
p̂` ·D(p̂j, Q̂) · p̂` for gluons

(2.104)
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For the interference (soft) term, we obtain

∆W = W
eikonal
`` −W `k =





1
2
(v2eik − v2soft) for quarks

1
2 (1−ε) v

2
eik − 1

2
v2soft for gluons

(2.105)

where the soft term is given byW `k = 4 π αs 2A`k p̂` ·D(p̂j, Q̂) · p̂k/(p̂j · p̂` p̂j · p̂k) andA`k is
to be defined precisely in Eq. (2.162) (see also Section 2.4.5).

2.4.3 Collinear splitting functions: final state splittings

In this and the next subsections, we will give the explicit expressions of splitting function for
each process. In the following, we will remove the common factor 4 παs, which we will add it
back in the end. We also ignore the colour factors for a moment, which we will include when we
consider the integrated splitting functions. For the splitting functions in (m + 1)-parton phase
spaces we always work in four dimensions, meaning that we cansafely putd = 4 (or ε = 0)
in the following discussions. We will also include the eikonal factor for the collinear splitting
functions if the emitted partonj is a gluon. The eikonal splitting function will turn out to be
important when we incorporate the soft gluon interference diagrams. We will explain this in
more detail in Section 2.4.5.

Kinematics: integration variables

We can introduce the two integration variables

x =
p̂j ·Q
P` ·Q

, z =
p̂j · n`
P` · n`

(2.106)

Hence we could express most dot products in terms ofx, y , z , λ, a`. The parametersa`, λ and
y have been given in Section 2.3. Note, however, that these arenot all independent variables;a`
depends on the kinematics before splitting/after recombination respectively, andλ = λ(a`, y).
The variablex is given by

x =
λ

1 + y
z +

2 a` y

(1 + y) (1 + y + λ)
(2.107)

So we are left witha`, y, z as free variables; we will usey andz in the integration. If we want
to eliminate thex dependence and go back toy andz as integration variables and keepa` as a
fixed parameter coming from them-particle phase space, we can introduce

x0 =
1− λ+ y

1 + λ+ y
= x0(a`, y) (2.108)
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Using

γ =
1

2
(1 + y + λ) (2.109)

we obtain a couple of useful relations,e.g.

x0 =
y a`
γ2

, 1− x0 =
λ

γ
, 1 + x0 =

1 + y

γ

x (1 + y) = γ [x0 + z (1− x0)] , (1− x) (1 + y) = γ [1− z (1− x0)] (2.110)

When integrating the interference terms, we need to make useof an additional integration vari-
able parametrizing the angle between emitter and spectator. To parametrize this in a Lorentz
invariant way, we introduce the variables

v =
p̂j · p̂k
p̂k · P`

, z̄ =
p̂k · n` p̂` · p̂j
p̂k · P` n` · P`

=
y

γ

p̂k · n`
p̂k · P`

=
y

γ
ã (2.111)

and

p̂k ·Q =
p̂k · P`
γ

(λ ã+ a`) (2.112)

with

ã = ã(y) =
p̂k · n`
p̂k · P`

(2.113)

It is convenient to introduce the anglesθ, θk andϕ in the integration measure such that in the
center of mass system we have7

p̂j = Aj




1
sin θ cosϕ
sin θ sinϕ

cos θ


 , p̂k = Ak




1
sin θk
0

cos θk


 , P` = P




1
0
0
0


 , Aj =

P

2

(2.114)
In the integration measure, we will need an additional change of variable,

v′ =
1

2
(1− cosϕ) =

v − vmin

vmax− vmin
(2.115)

where

v =
1

2
(1− sin θ sin θk cosϕ− cos θ cos θk)

vmax =
1

2
(1 + sin θ sin θk − cos θ cos θk)

vmin =
1

2
(1− sin θ sin θk − cos θ cos θk) (2.116)

7In the reference frame whereP` is at rest (center of mass frame), we havep̂j = ( p0j , ~pj) = ( p0j , p
0
j û) and

p̂` = ( p0` ,− ~pj) = ( p0` ,− p0j û) = ( p0j ,− p0j û). Hence, the 4-vectorŝpj andp̂` have the same energy content in
the massless case:Aj = p0j = p0` = P/2. Here, the unit vector iŝu = sin θ cosϕ x̂+ sin θ sinϕ ŷ + cos θ ẑ.
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We can also writēz andz in terms of the anglesθk andθ,

z̄ =
1

2
(1− cos θk), z =

1

2
(1− cos θ) (2.117)

Finally we give a list of useful relations for dot products ofvectors, which we have used through-
out the dipole calculations,

P` ·Q = (1 + y) p` ·Q
p̂j ·Q = x (1 + y) p` ·Q
p̂` ·Q = (1− x) (1 + y) p` ·Q

P` · p` =
1 + y − λ

2 a`
p` ·Q

P` · n` =
1 + y + λ

2
p` ·Q

p` · p̂j =
1

λ

(
y − 1− λ+ y

2 a`
x (1 + y)

)
p` ·Q

p` · p̂` =
1

λ

(
y − 1− λ+ y

2 a`
(1− x) (1 + y)

)
p` ·Q (2.118)

The subprocessqqg splitting

First we consider the collinearqqg splitting function in the final state. Thēqq̄g final state splitting
function is the same for massless quarks. The dipole including the eikonal splitting function is
given by

v2qqg − v2eik =
2

y (p` ·Q)

{
(λ− 1 + y)2 + 4 y

4 λ
Feik +

d− 2

4
z (1 + y + λ)

}
(2.119)

which, in terms of the momenta, can be rewritten as

v2qqg − v2eik =
2

p̂` · p̂j








(
P` · n`
p` ·Q

− 1

)
+

a` p̂` · p̂j√
(p` ·Q)2 + (p̂` · p̂j)2 + 2 p` ·Q p̂` · p̂j (1− 2 a`)





×
(
2 p̂` ·Q
p̂j ·Q

− Q2 p̂` · p̂j
(p̂j ·Q)2

)
+ 2

(
d− 2

4

) (
p̂j ·Q− a` p` · p̂j

p` ·Q

) }
(2.120)

where
Feik = 2

1− x

x
− 2 a` y

x2 (1 + y)2
(2.121)

The dipolev2qqg − v2eik denotes the spin-unaveraged splitting function. After averaging over the
incoming parton spins gives an additional factor1/2. The relation, connecting hatted and un-
hatted quantities, is given in Eq. (2.32). In Eq. (2.119), only the collinear singularity is left
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over after subtracting the eikonal factor. Note thatQ̂ = Q for the final state splittings and
P` · n` = (p̂` + p̂j) · Q − a` (p̂` + p̂j) · p` is reduced top` · Q if a` = 1. It corresponds to the
case in which there are only two massless partons in the final state. If we want to eliminatex and
switch tox0 andz as variables8, we obtain

Feik = 2

(
−1 +

1 + x0
x0 + z (1− x0)

− x0

(x0 + z (1− x0))
2

)
(2.122)

Note also that asy → 0 (which meansx = z), F turns into the standard Altarelli-Parisi splitting
function,

FAP (z) =
1 + (1− z)2

z
(2.123)

The subprocessgqq̄ splitting

Only the collinear singularity is present for thegqq̄ splitting, so we do not subtract the eikonal
splitting function in this case. Hence the dipole for the massless quarks is given by

v2gqq̄ =
2

y p` ·Q
(1− ε− 2 z (1− z)) (2.124)

which, in terms of the momenta, can be rewritten as

v2gqq̄ =
1

p̂` · p̂j
(d− 4) +

2

(p̂` · p̂j)2
{
p̂` ·Q p̂j · p` + p̂j ·Q p̂` · p`

p` ·Q
− Q2 p̂` · p` p̂j · p`

(p` ·Q)2
}

(2.125)

Averaging over the incoming parton spins gives an additional factor 1/2/(1 − ε). For massless
quarks, thegq̄q splitting function is the same.

The subprocessggg splitting

For theggg splitting, we have to do something slightly different because there are two identical
gluons in the final state. We have to make sure that only the daughter partonj generates a
singularity. The unaveraged splitting function is given by

v2ggg =
1

2 (p̂` · p̂j)2
{
(d− 2) [p̂` ·Dj · p̂` + p̂j ·D` · p̂j ]− k2⊥ Tr [D` ·Dj]

}
(2.126)

8Herex0 is a function ofa` andy, i.e.x0 = x0(a`, y).
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whereDj = D(p̂j, Q̂),D` = D(p̂`, Q̂) and

p̂` ·Dj · p̂` =
2 y p` ·Q

x0 + z (1− x0)

[
1 − z (1− x0) − x0

x0 + z (1− x0)

]

p̂j ·D` · p̂j =
2 y p` ·Q

1− z (1− x0)

[
x0 + z (1− x0) − x0

1− z (1− x0)

]

k2⊥ = −2 y z (1− z) p` ·Q
Tr [D` ·Dj] = d− 2− 2∆ +∆2

∆ =
Q2 p̂` · p̂j
p̂` ·Q p̂j ·Q

=
2 x0

(x0 + z (1− x0)) (1− z (1− x0))
(2.127)

Here, the additional statistical factor1/2 in Eq. (2.126) appears only for a final stateggg splitting
because the two gluons are identical. Instead of using Eq. (2.126) as a dipole subtraction term,
however, we will use a slightly modified splitting function in order to well separate the singular-
ities in theggg splitting final state. Then we add a termv′2ggg = v22 − v23 to Eq. (2.126), where
v22 andv23 are defined in [29]. The additional termv′2ggg with the roles of the two daughter gluons
` andj interchanged does not change the result. This way, there is asingularity when daughter
gluonj becomes soft, but not when daughter gluon` becomes soft. The additional termv′2ggg is
given by

v′
2
ggg = v22 − v23 =

d− 2

2 (p̂` · p̂j)2
[p̂` ·Dj · p̂` − p̂j ·D` · p̂j ] (2.128)

In the end, we obtain

ṽ2ggg = v2ggg + v′
2
ggg =

1

2 (p̂` · p̂j)2
{
2 (d− 2) p̂` ·Dj · p̂` − k2⊥Tr [D` ·Dj ]

}

=
2 (1− ε)

(p̂` · p̂j)2
p̂` ·Dj · p̂` −

k2⊥
2 (p̂` · p̂j)2

Tr [D` ·Dj] (2.129)

Hence, the dipole, including the eikonal splitting function, is given by

ṽ2ggg − v2eik = − k2⊥
2 (p̂` · p̂j)2

Tr [D` ·Dj ] =
z (1− z)

y p` · Q̂
[
d− 2− 2∆+∆2

]
(2.130)

which, in terms of the momenta, can be rewritten as

ṽ2ggg−v2eik =
(p̂j ·Q− a` p̂j · p`) (p̂` ·Q− a` p̂` · p`)

(P` · n`)2 p̂` · p̂j

{
2− 2

p̂j · p̂`Q2

p̂` ·Q p̂j ·Q
+

(
p̂j · p̂`Q2

p̂` ·Q p̂j ·Q

)2
}

(2.131)
Averaging over the incoming parton spins gives an additional factor1/2/(1− ε).
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(a) (b)

(c) (d)

Figure 2.9: Initial-state splitting processes.

2.4.4 Collinear splitting functions: initial state splitt ings

In this subsection, we will again ignore the common factor4 παs and the colour factors for a
moment. In (m+1)-parton phase spaces we always work in four dimensions. Theeikonal factor
will be considered if the emitted partonj is a gluon. For the initial state splittings, there is an
additional scattering process in which the daughter quark comes in and splits a mother gluon that
enters the hard interaction (see Fig. 2.9).

Kinematics: integration variables

For initial state splitting, we use the following integration variables:

x =
p̂a · pb − p̂a · p̂j − pb · p̂j

p̂a · pb
= 1− 2 pA · p̂j

ηb s
− 2 pB · p̂j

η̂a s
=

ηa
η̂a

y =
p̂a · p̂j
p̂a · pb

=
η̂a pA · p̂j
1
2
η̂a ηb s

=
2 pA · p̂j
ηb s

(2.132)
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Turning the equations above around, we then obtain

pA · p̂j =
y ηb s

2
, pB · p̂j =

ηa s

2 x
(1− x− y), p̂j · Q̂ =

ηa ηb s

2 x
(1− x) (2.133)

and

η̂a =
ηa
x
, 0 < η̂a < 1 ⇒ x > ηa (2.134)

Here,η̂a andηa are momentum fractions after and before the splittings. As in the final state inter-
ference integrals, we also need to parametrize the additional angle which appears in interference
terms. We define

v =
η̂a ηb s p̂j · p̂k
2 p̂k · Q̂ p̂j · Q̂

=
1

1− x

p̂j · p̂k
p̂k · Q̂

(2.135)

and

z̄ =
p̂a · p̂k
p̂k · Q̂

, y′ =
y

1− x
(2.136)

As in the final state interference case, it is convenient to introduce the anglesθ, θk andϕ in the
integration measure such that in the center of mass system wehave

p̂a =

√
ŝ

2




1
0
0
1


 , p̂j = Aj




1
sin θ cosϕ
sin θ sinϕ

cos θ


 , p̂k = Ak




1
sin θk
0

cos θk


 (2.137)

In the integration measure, we will need an additional change of variable,

v′ =
1

2
(1− cosϕ) =

v − vmin

vmax− vmin
(2.138)

where

v =
1

2
(1− sin θ sin θk cosϕ− cos θ cos θk)

vmax =
1

2
(1 + sin θ sin θk − cos θ cos θk)

vmin =
1

2
(1− sin θ sin θk − cos θ cos θk) (2.139)

We can also writēz andy′ in terms of the anglesθk andθ,

z̄ =
1

2
(1− cos θk), y′ =

1

2
(1− cos θ) (2.140)
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The subprocessqq(x)g splitting

We assume that the gluonj is emitted from the partona. For massless quarks, the unaveraged
qq(x)g splitting function is given by

v2qqg = (d− 2)
2 pB · p̂j

ηa η̂a s (pA · p̂j)
+

2 η2b pB · p̂j s
(p̂j · Q̂)2 pA · p̂j

(2.141)

wheres = 2 pA · pB. Here,η̂a andηa are momentum fractions after and before the splittings.
With our kinematics, the momentum fraction of partonb remains unchanged,i.e. η̂b = ηb. We
denote the total momentum of the final state partons before the splitting byQ = pa + pb and
after the splitting byQ̂ = p̂a + pb. In the splitting function, we choose the lightlike vector to be
na = pB and it will be convenient to definePa = p̂a − p̂j. Using the variablesx andy (defined
in previous subsection), Eq. (2.141) can be rewritten as

v2qqg =
2 (1− x− y)

ηa ηb y s

(
d− 2 +

4 x

(1− x)2

)
(2.142)

We also define the eikonal approximation for soft gluon emission as discussed in Section 2.4.2,

Feik =
p̂a ·D(p̂j, Q̂) · p̂a

p̂a · p̂j
(2.143)

or equivalently we can write the unaveraged eikonal splitting function as

v2eik =
2 η2b pB · p̂j s

(p̂j · Q̂)2 pA · p̂j
=

8 x (1− x− y)

(1− x)2 ηa ηb y s
(2.144)

Using the variablesx andy, the unaveraged splitting function including the eikonal factor is
given by

v2qqg − v2eik =
(d− 2) 2 pB · p̂j
ηa η̂a s (pA · p̂j)

=
(d− 2) 2 pb · p̂j
x Q̂2 (p̂a · p̂j)

=
(d− 2) 2 (1− x− y)

ηa ηb y s
(2.145)

Averaging over the incoming parton spins gives an additional factor 1/2. For massless quarks,
the q̄q̄(x)g splitting function is the same.

The subprocessqqg(x) splitting

For the initialqqg(x) splitting process, in which the daughter quark with momentum p̂a comes in
and splits a mother gluon with momentumpa which enters the hard interaction, only the collinear
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singularity is present. Hence, we do not subtract the eikonal splitting function in this case. The
unaveragedqqg(x) splitting function for massless quarks is given by

v2qqg =
2 (d− 2) x

ηa ηb y s
+

8 x (1− x− y)

ηa ηb s y (x+ y)2
(2.146)

which, in terms of the momenta, can be rewritten as

v2qqg =
d− 2

η̂a pA · p̂j
+

2

ηb pB · Pa

{
−1 +

1

η̂a pA · p̂j

(
p̂j · Q̂+ ηb pB · p̂j +

2 ηb (pB · p̂j)2
pB · Pa

)}

=
d− 2

p̂a · p̂j
+

2

pb · Pa

{
−1 +

1

p̂a · p̂j

(
p̂j · Q̂+ pb · p̂j +

2 (pb · p̂j)2
pb · Pa

)}
(2.147)

Averaging over the incoming parton spins gives an additional factor 1/2. For massless quarks,
the q̄q̄g(x) splitting function is the same.

The subprocessgqq̄ splitting

Only the collinear singularity is present for thegqq̄ splitting, so we do not subtract the eikonal
splitting function in this case. The unaveraged splitting function for massless quarks is given by

v2gqq̄ =
2 (d− 2)

ηa ηb y s
+

8 (x+ y)

ηa ηb y s
(x+ y − 1) (2.148)

which, in terms of the momenta, can be rewritten as

v2gqq̄ =
d− 2

ηa pA · p̂j
+

4

ηa ηb s

{
1− 1

η̂a pA · p̂j

(
p̂j · Q̂+ ηb pB · p̂j

)
+

4 pB · p̂j
η̂a s

(
−1 +

p̂j · Q̂
η̂a pA · p̂j

)}

=
d− 2

x p̂a · p̂j
+

4

x Q̂2

{
1− 1

p̂a · p̂j

(
p̂j · Q̂+ pb · p̂j

)
+

4 pb · p̂j
Q̂2

(
−1 +

p̂j · Q̂
p̂a · p̂j

)}

(2.149)

Averaging over the incoming parton spins gives an additional factor 1/2/(1 − ε). For massless
quarks, thegq̄q splitting function is the same.

The subprocessggg splitting

The unaveragedggg splitting function is given by

v2ggg =
1

(p̂a · p̂j)2

{
2 (1− ε)

η̂2a η
2
b s pA · p̂j pB · p̂j
(p̂j · Q̂)2

+
4 pA · p̂j pB · p̂j

s

[
2 (1− ε)

(
1 +

η̂2a s
2

4 (pB · Pa)2
)
− s η̂2a pA · p̂j
pB · Pa p̂j · Q̂

]}
(2.150)
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which, in terms of the variablesx andy, can be rewritten as

v2ggg =
4 x (1− x− y)

y ηa ηb s
(d−2)

[
1 +

1

(1− x)2
+

1

(x+ y)2

]
− 8 x (1− x− y)

ηa ηb s (1− x) (x+ y)
(2.151)

If we include the eikonal factor, we obtain

v2ggg − v2eik =
8 x (1− x− y)

ηa ηb y s

[
(1− ε)

(
1 +

1

(x+ y)2

)
− ε

(1− x)2

]
− 8 x (1− x− y)

ηa ηb s (1− x) (x+ y)

(2.152)
Averaging over the incoming parton spins gives an additional factor 1/2/(1 − ε). Using the
variablesp̂a, p̂j , pb andQ̂, we then have

v2ggg − v2eik =
4 pA · p̂j pB · p̂j
s (p̂a · p̂j)2

[
2

(
1 +

η̂2a s
2

4 (pB · Pa)2
)
− s η̂2a pA · p̂j
pB · Pa p̂j · Q̂

]

=
4 p̂a · p̂j pb · p̂j
Q̂2 (p̂a · p̂j)2

[
2

(
1 +

Q̂4

4 (pb · Pa)2

)
− Q̂2 p̂a · p̂j
pb · Pa p̂j · Q̂

]
(2.153)

This is the dipole subtraction term for (m+ 1)-parton phase spaces, so we can safely putd = 4.

2.4.5 Soft splitting functions

We have discussed the spin-averaged splitting functionsW `` in which the partonj is emitted
from the emitter̀ in the scattering amplitude and partonj is emitted from that same emitter` in
the complex-conjugate scattering amplitude. In higher-order QCD calculations, double poles in
splitting functions only arise if the emitted partonj is a gluon. In this case, interference diagrams
between different emitters have to be taken into account. This means that the emitted partonj
can be emitted from emitter̀in the amplitude and partonj can also be emitted from different
emitterk in the complex-conjugate amplitude (Fig. 2.8). The interference splitting function is
then

v`({p̂, f̂}m+1, ŝj, ŝ`, s`) vk({p̂, f̂}m+1, ŝj, ŝk, sk)
∗ δŝ`,s` δŝk,sk (2.154)

The splitting function Eq. (2.154) contains a singularity when the emitted gluonj is soft. How-
ever when gluonj is collinear with partoǹ or partonk, it does not contribute a leading singu-
larity. In the special case thatp̂j is soft, or possibly soft and collinear witĥp`, a simpler splitting
amplitude can be used. Whenp̂j is soft, we have

| M({p̂, f̂}m+1) >∼
∑

`

| Msoft
` ({p̂, f̂}m+1) > (2.155)

where

| Msoft
` ({p̂, f̂}m+1) >= t†`(f` → f̂` + f̂j) V

† soft
` ({p̂, f̂}m+1) | M({p, f}m) > (2.156)
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The spin dependent splitting operator can be described in the spin space| {s}m >,

< {ŝ}m+1 | V † soft
` ({p̂, f̂}m+1) | {s}m >=




∏

n/∈{`,j=m+1}
δŝn,sn



 vsoft
` ({p̂, f̂}m+1, ŝj, ŝ`, s`)

(2.157)

If parton j is a quark or antiquark,vsoft
` = 0. When partonj is a gluon, we can use a simple

eikonal approximation to the splitting amplitude,

vsoft
` ({p̂, f̂}m+1, ŝj, ŝ`, s`) =

√
4παs δŝ`,s`

ε(p̂j, ŝj, Q̂)
∗ · p̂`

p̂j · p̂`
(2.158)

Having used the eikonal approximation, the interference splitting function becomes

W `k ∼ vsoft
` ({p̂, f̂}m+1, ŝj, ŝ`, s`) v

soft
k ({p̂, f̂}m+1, ŝj, ŝk, sk)

∗ δŝ`,s` δŝk,sk (2.159)

In the Nagy-Soper scheme, we split the collinear and soft parts of the respective spin-averaged
splitting functions according to

W `` −W `k =
(
W `` −W

eikonal
``

)
+
(
W

eikonal
`` −W `k

)
(2.160)

where the spin-averaged soft splitting functionW `k is given by

W `k = 4 π αs 2A`k
p̂` ·D(p̂j, Q̂) · p̂k
p̂j · p̂` p̂j · p̂k

(2.161)

Here,A`k is the partitioning weight function, which in principle candepend on the momenta
{p̂}m+1. It specifies how the two interference diagrams in Fig. 2.8 are partitioned into separate
terms. In [28], the default value is taken to beA`k = Ak` = 1/2. We can also define the
partitioning function as function of momentaA`k({p̂}m+1) andAk`({p̂}m+1), so another choice
would be

A`k({p̂}m+1) =
B`k({p̂}m+1)

B`k({p̂}m+1) +Bk`({p̂}m+1)
(2.162)

where

B`k({p̂}m+1) =
p̂j · p̂k
p̂j · p̂`

p̂` ·D(p̂j, Q̂) · p̂` (2.163)

Here,D(p̂j , Q̂) is defined in Eq. (2.99). The partitioning functions are non-negative and obey
A`k({p̂}m+1) + Ak`({p̂}m+1) = 1.

One of the advantages from dividing the splitting functionsinto two parts is that the two terms
W `` −W

eikonal
`` andW

eikonal
`` −W `k are positive, and thus we can use these splitting functions as

dipoles to construct a parton shower Monte Carlo program without needing separate partitioning
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weight function. Another result from splitting Eq. (2.160)into two pieces is that the first term of
Eq. (2.160) only contains a collinear singularity, while the second term of Eq. (2.160) has both
the soft singularity and the soft⊗collinear singularity.

The second part of Eq. (2.160) can be then expressed in terms of dipole partitioning functions
A′
`k, which is given in [30]:

W
eikonal
`` −W `k = 4 π αsA

′
`k

−P̂ 2
`k

(p̂j · p̂` p̂j · p̂k)2
(2.164)

whereP̂`k = p̂j · p̂` p̂k − p̂j · p̂k p̂`. Several choices forA′
`k have been proposed in [30]. All

results given here have been obtained using Eq. (7.12) therein, which is given by

A′
`k({p̂}m+1) =

p̂j · p̂k p̂` · Q̂
p̂j · p̂k p̂` · Q̂ + p̂j · p̂` p̂k · Q̂

(2.165)

The partitioning weight functionA′
`k also obeys the relationA′

`k({p̂}m+1) + A′
k`({p̂}m+1) = 1.

The general form of the interference spin-averaged splitting function is then given by

∆W = W
eikonal
`` −W `k =

2 p̂` · p̂k p̂` · Q̂
p̂` · p̂j

(
p̂j · p̂k p̂` · Q̂+ p̂` · p̂j p̂k · Q̂

) (2.166)

Here, we have removed the common factor4 παs, which we will add back in the end. The only
singularity in Eq. (2.166) arises from the factorp̂` · p̂j in the denominator. The interference term
is constructed in such a way that it vanishes forp̂j · p̂k → 0. We also assume that the variables
considered are such that they are finite forp` · pk → 0, i.e. singularities arising in this limit
should be taken care of by the definition of the jet function. The interference term only needs
to be considered if the emitted partonj is a gluon. If partonj is a quark or antiquark, this term
vanishes.

Eq. (2.166) corresponds to interference between final states. It is worth mentioning that if we
replacêp` by p̂a in Eq. (2.166), then the interference spin-averaged splitting function corresponds
to interference between initial and final states,

∆Wak =
2pA · p̂k ηb s

pA · p̂j
(
p̂j · p̂k ηb s+ 2 pA · p̂j p̂k · Q̂

)

=
2 p̂a · p̂k Q̂2

p̂a · p̂j
(
p̂j · p̂k Q̂2 + 2 p̂a · p̂j p̂k · Q̂

)

=
4 z̄ x

ηa ηb s y′ (1− x)2 (v + y′)
(2.167)
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where the variables̄z , y′ , x andv are defined in Section 2.4.4. The Eq. (2.167) can be further
reduced by the following replacement

p̂k → pb or z̄ =
p̂a · p̂k
p̂k · Q̂

→ 1 (2.168)

in which case the soft splitting function Eq. (2.166) corresponds to interference between initial
states:

∆Wab =
ηb s

pA · p̂j p̂j · Q̂
=

Q̂2

p̂a · p̂j p̂j · Q̂
=

4 x

(1− x) ηa ηb y s
(2.169)

Again, if we replacêpk by p̂a in Eq. (2.166), then the interference splitting function corresponds
to interference between final and initial states (seee.g.Eq. (2.204) or Eq. (2.205)).

2.5 Integrated splitting functions

In this section we will list all the integrated splitting functions, which are needed for them-
parton phase spaces. The integrated splitting functions contain all the singularities inε that
are necessary to cancel the poles in one-loop virtual matrixelement. In order to achieve the
cancellation of singularities we have to define good parametrizations in the integration measures
which we will discuss in Section 5.2. We will consider the collinear integrals in both the initial
state and final state splittings as well as the interference terms.

For the initial and final state collinear integrals we have been using the colour algebra relations
defined by

T2
` ≡ Ci (2.170)

whereCi = CA (CF ) in theggg (qqg) splitting. For the splitting processgqq̄ we use the colour
chargeTR. For the soft splitting functions the appropriate colour charges are given by

(
−
∑

k 6=`
T` · Tk

)
≡ Ci (2.171)

We will discuss this issue in more detail in Section 5.3. Notethat partoǹ is the emitter and
partonk is the spectator.
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2.5.1 Collinear integrals: final state splittings

The subprocessqqg

After subtracting the eikonal factor, which will be combined with the interference term, the
collinear part of the integrated splitting function is given by

4παs
2

CF µ
2ε

∫
dζp

[
v2qqg − v2eik

]
=

αs
4 π

CF

(
4 π µ2

2 p` ·Q

)ε
1

Γ(1− ε)
×

{
−1

ε
− 2

[
2 a` + 1 + 2 (a` − 1)2 ln(a` − 1) + 2 a` (2− a`) ln a` − 4 (a` − 1) ymax

+ y2max + 2 ln ymax

]
+

1

2

[
2 (1− 2 a`) ymax +

1

2
y2max + ln ymax −

7

2

+ a` + (a2` − 1) ln(a` − 1) − a2` ln a`

]
+ 4 Ifin(a`)

}
(2.172)

where

Ifin(a`) = −
∫ ymax

0

dy
(λ− 1 + y)2 + 4 y

4y

(1 + x0) ln x0
1− x0

(2.173)

Fora` = 1, this simplifies to

4παs
2

CF µ
2ε

∫
dζp
[
v2qqg − v2eik

]
=
αs
4 π

CF

(
4πµ2

Q2

)ε
1

Γ(1− ε)

(
−1

ε
− 14 +

4π2

3
+O(ε)

)

(2.174)
which has been used in dijet production at NLO.

The subprocessgqq̄

Including all prefactors, we obtain

4παs
2 (1− ε)

TR µ
2ε

∫
dζp v

2
gqq̄ =

αs
π
TR

(
4 π µ2

2 p` ·Q

)ε
1

Γ(1− ε)

[
− 1

3 ε
− 8

9
+

1

3

[
(a` − 1) ln(a` − 1)− a` ln a`

]]
(2.175)

For a` = 1, we exactly reproduce the result in [22]. Note that the first two terms in Eq. (2.175)
are exactly the same as in [22]; differences in the finite terms stem from the difference in the
(m+ 1)- tom-parton momentum matching.
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The subprocessggg

Including all prefactors, we obtain

4 π αs
2 (1− ε)

CA µ
2ε

∫
dζp

[
ṽ2ggg − v2eik

]
=

αs
2 π

CA

(
4 π µ2

2 p` ·Q

)ε
1

Γ(1− ε)

×
[
− 1

6 ε
− 4

9
+

1

6

[
(a` − 1) ln(a` − 1) − a` ln a`

]
+ Ifin(a`)

]
(2.176)

where

Ifin(a`) = −2 a`

∫ ymax

0

dy

λ (1 + y)2

{[
(1 + y)2 + 2 a` y

]
+ 4 a`

y ln x0
λ (1 + y)

[
(1 + y)2 − a` y

]}

a` 6=1
= a`

{
1−√

a` ln

(√
a` + 1√
a` − 1

)
− ln

(
a`

a` − 1

)
+ 8 a`

∫ ymax

0

dy
y ln x0

λ2 (1 + y)3
[
a` y − (1 + y)2

]}

a`=1
= −3

8
π2 +

7

2
(2.177)

2.5.2 Collinear integrals: initial state splittings

The subprocessqq(x)g

Using the variables defined in Section 2.4.4, the unaveragedqq(x)g splitting function is given by

v2qqg =
2 (1− x− y)

ηa ηb y s

(
d− 2 +

4 x

(1− x)2

)
(2.178)

Including all prefactors, we obtain

4παs
2

CF µ
2ε

∫
dζp v

2
qqg

=
αs
2 π

CF

(
4πµ2

ηa ηb s

)ε
1

Γ(1− ε)

∫ 1

0

dx

x

[
δ(1− x)

(
1

ε2
+

5

2 ε

)
− 1

ε

(
1 + x2

1− x

)

+

+B(x, ε0)

]

(2.179)

where

B(x, ε0) = −(1− x) ln x+ 2 (1− x) ln(1− x) + 4 x

(
ln(1− x)

1− x

)

+

− 2 x (1 + ln x)

(1− x)+
+ 2 δ(1− x)

(
1− π2

12

)
(2.180)

The leftover factor1/x will be reabsorbed into the flux factor. Note that we should take the
eikonal splitting function into account, when we consider the interference term. The integrated
eikonal splitting function will be discussed later in more detail.



62 CHAPTER 2. NAGY-SOPER DIPOLES

The subprocessqqg(x)

Using the variables defined in Section 2.4.4, the unaveragedqqg(x) splitting function is given by

v2qqg =
2 (d− 2) x

ηa ηb y s
+

8 x (1− x− y)

ηa ηb s y (x+ y)2
(2.181)

Including all prefactors, we obtain

4παs
2

CF µ
2ε

∫
dζp v

2
qqg

=
αs
2 π

CF

(
4πµ2

ηa ηb s

)ε
1

Γ(1− ε)

∫ 1

0

dx

x

[
−1

ε

(
1 + (1− x)2

x

)
+B(x, ε0)

]
(2.182)

where

B(x, ε0) =
x2 − 2 (1− x)

x
− x ln x+ 2 ln(1− x)

(
1 + (1− x)2

x

)
(2.183)

The leftover factor1/x will be reabsorbed into the flux factor.

The subprocessgqq̄

The unaveragedgqq̄ splitting function is given by

v2gqq̄ =
2 (d− 2)

ηa ηb y s
+

8 (x+ y)

ηa ηb y s
(x+ y − 1) (2.184)

Including all prefactors, the integrated splitting function is given by

4παs
2 (1− ε)

TR µ
2ε

∫
dζp v

2
gqq̄

=
αs
2 π

TR

(
4πµ2

ηa ηb s

)ε
1

Γ(1− ε)

∫ 1

0

dx

x

[
−1

ε

[
x2 + (1− x)2

]
+ B(x, ε0)

]
(2.185)

where

B(x, ε0) = 6 x− 5 x2 − 1 + [ 2 ln(1− x) − ln x]
[
x2 + (1− x)2

]
(2.186)

The leftover factor1/x will be reabsorbed into the flux factor.



2.5 Integrated splitting functions 63

The subprocessggg

The unaveragedggg splitting function is given by

v2ggg =
4 x (1− x− y)

y ηa ηb s
(d− 2)

[
1 +

1

(1− x)2
+

1

(x+ y)2

]
− 8 x (1− x− y)

ηa ηb s (1− x) (x+ y)

(2.187)
Including all prefactors, the integrated splitting function is given by

4παs
2 (1− ε)

CA µ
2ε

∫
dζp v

2
ggg =

αs
2 π

CA

(
4πµ2

ηa ηb s

)ε
1

Γ(1− ε)

×
∫ 1

0

dx

x

[
1

ε2
δ(1− x) +

1

ε

[
δ(1− x)− 2

(
x

(1− x)+
+ x (1− x) +

1− x

x

)]
+B(x, ε0)

]

(2.188)

where

B(x, ε0) = 4 x

(
ln(1− x)

1− x

)

+

− 2 x(1− x) ln x+ 4 (1− x) ln(1− x)

(
1 + x2

x

)

+ 2

(
x2 − 1− x

x
− x

(1− x)+

)
+ 2

(
1− π2

12

)
δ(1− x) (2.189)

The leftover factor1/x will be reabsorbed into the flux factor.

The subprocessggg with eikonal splitting function

Now we consider the eikonal factor. Using the variables defined in Section 2.4.4, the averaged
eikonal splitting function is given by (see also Section 2.4.2)

v̄2eik =
4 x (1− x− y)

(1− x)2 ηa ηb y s
(2.190)

Integrating it out, we obtain

4 π αs Ci µ
2ε

∫
dζp v̄

2
eik =

αs
2 π

Ci

(
4πµ2

ηa ηb s

)ε
1

Γ(1− ε)

×
∫ 1

0

dx

[
1

ε2
δ(1− x) +

1

ε

(
δ(1− x)− 2

(1− x)+

)
+ 2

(
1− π2

12

)
δ(1− x)

−2
1 + ln x

(1− x)+
+ 4

(
ln(1− x)

1− x

)

+

]
(2.191)
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Here,Ci is given by Eq. (2.170). Hence the collinearggg splitting including eikonal factor is
given by

4παs
2 (1− ε)

CA µ
2ε

∫
dζp

[
v2ggg − v2eik

]
=

αs
2 π

CA

(
4πµ2

ηa ηb s

)ε
1

Γ(1− ε)

×
∫ 1

0

dx

x

[
− 2

ε

(
x

(1− x)+
+ x(1− x) +

1− x

x

)
+

1

ε

2 x

(1− x)+
+ A(x, ε0)

]
(2.192)

where

A(x, ε0) = −2 x (1− x) ln x+ 4 (1− x) ln(1− x)

(
1 + x2

x

)
+ 2

(
x2 − 1− x

x

)
+ 2 x

ln x

(1− x)+
(2.193)

The complete integratedggg splitting function including collinear and interference terms (see
Section 2.5.3) is then given by

4παs
2 (1− ε)

CA µ
2ε

∫
dζp

[
v2ggg − v2eik

]
+ 4 π αsCA µ

2ε

∫
dζp ∆Wab =

αs
2 π

CA

(
4πµ2

ηa ηb s

)ε
1

Γ(1− ε)

×
∫ 1

0

dx

x

[(
1

ε2
− π2

6

)
δ(1− x)− 2

ε

(
x

(1− x)+
+ x(1− x) +

1− x

x

)
+ J(x, ε0)

]
(2.194)

where

J(x, ε0) = 4 x

(
ln(1− x)

1− x

)

+

− 2 x (1− x) ln x+ 4(1− x) ln(1− x)

(
1 + x2

x

)
+ 2

(
x2 − 1− x

x

)

(2.195)

2.5.3 Interference between initial states

After adding back the eikonal factor, which we have subtracted in the collinear integrals, the
interference part of the integrated splitting function (see Eq. (2.169)) including all prefactors is
given by

4 π αsCi µ
2ε

∫
dζp∆Wab =

αs
2 π

Ci

(
4 π µ2

ηa ηb s

)ε
1

Γ(1− ε)

×
∫ 1

0

dx

{
1

ε2
δ(1− x)− 2

ε

1

(1− x)+
− π2

6
δ(1− x)− 2

ln x

(1− x)+
+ 4

(
ln(1− x)

1− x

)

+

}

(2.196)

whereCi is given by Eq. (2.171). Note that the individual part of the unaveraged soft splitting
function is given by

v2soft = −16
x (1− x− y)2

ηa ηb s (1− x)2 (y2 + (1− x− y)2)
(2.197)
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Integrating it out, we obtain

4παs
2

Ci µ
2ε

∫
dζp v

2
soft

=
αs
2 π

Ci

(
4πµ2

ηa ηb s

)ε
1

Γ(1− ε)

∫ 1

0

dx

[
1

ε
δ(1− x) + 2 δ(1− x)− 2

(1− x)+

]
(2.198)

2.5.4 Interference between initial and final states

The initial-final state interference splitting function isgiven by Eq. (2.167), which is derived
from Eq. (2.166) by the replacementp̂` → p̂a. Using the initial state integration measure given
by Eq. (5.43), we obtain

4 π αsCi µ
2ε

∫
dζp∆Wak =

αs
2 π

Ci

(
4πµ2

ηa ηb s

)ε
1

Γ(1− ε)

×
∫ 1

0

dx

{
1

ε2
δ(1− x)− 1

ε

[
2

(1− x)+
+ δ(1− x) ln z0

]
+ 4

(
ln(1− x)

1− x

)

+

− 2 ln x

(1− x)+

+ ln(16) ln z0 δ(1− x) +
2

π
Iafin(x, z̄)

}
(2.199)

whereCi is given by Eq. (2.171). In Eq. (2.167),z̄ = 0 corresponds to a singularity in them-
particle phase space. This singularity should be excluded by an appropriate jet function definition
since we only consider infrared safe observables. The function z̄ = z̄(x, y′) in Eq. (2.167)
contains Lorentz-transformed variables. Only in the limitof x → 1 (soft limit) or y′ → 0 (soft
or collinear limit) this dependence disappears; in this case thez̄ is denoted byz0. Hence we have

z̄ = z̄(x, y′), z0 = z̄(1, y′) = z̄(x, 0), 0 < z0 < 1 (2.200)

The finite termIafin is given by

Iafin = Iafin(x, z̄) = π δ(1− x)

{
− ln 4 ln z0 −

1

8

[
2 Li2

(
z0 − 1

z0

)
− ln2 z0

]

+

∫ 1

0

dy
z0

y
√
4 y2 (1− z0) + z20

ln
2
√
4 y2 (1− z0) + z20

√
1− y

2 y (1− z0) + z0 +
√
4 y2 (1− z0) + z20

}

+
1

(1− x)+

∫ 1

0

dy

y

{[∫ 1

0

dv√
v (1− v)

z̄(x, y)

N(x, y, v, z̄)

]
− π

}
(2.201)

with
N(x, y, v, z̄) = (4v − 2)

√
y (1− y) z̄ (1− z̄) + 2 y + z̄ − 2 y z̄ (2.202)

Here,v andy are dummy variables, which we denoted withv′ andy′ previously. So the function
z̄ in Eq. (2.201) is now a function ofx andy. Note that we can only use Eq. (2.200) in the
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singular limits (x → 1 or y′ → 0) where the dependence onv′ disappears. For the finite parts,
i.e. Eq. (2.201), we need to use the original definition ofz̄ given by Eq. (2.136)

z̄ =
p̂a · p̂k
p̂k · Q̂

Additionally we use the original definition ofv given by Eq. (2.135)

v =
η̂a ηb s p̂j · p̂k
2 p̂k · Q̂ p̂j · Q̂

=
1

1− x

p̂j · p̂k
p̂k · Q̂

where p̂k needs to be calculated using the Lorentz transformation:p̂µk = Λ(K̂,K)µν p
ν
k and

p̂j is parametrized according to Sudhakov parametrization9. In the singular limits, we obtain
p̂k → pk. For z̄ → 1 (which meanŝpk → pb), we get

Iafin = −π
3

12
δ(1− x) (2.203)

in which case the initial-final state integrated splitting function is reduced to initial-initial state
interference term (see Section 2.5.3).

2.5.5 Interference between final (final and initial) states

The final-final and final-initial state interference terms have the same structure. The Eq. (2.166)
corresponds to final-final state interference term. If we replace p̂k by p̂a in Eq. (2.166), then
the interference splitting function corresponds to final-initial state interference term. Fora` = 1

(which corresponds to only two particles in the final state),there are two situations:̃a = 0 and
ã 6= 0, which corresponds to final-final and final-initial state splittings, respectively. Using the
variables defined in Section 2.4.3, the interference splitting function Eq. (2.166) can be rewritten
as

∆W =
1

y (p` ·Q)


 2 (1− v) (1− z (1− x0))

v (1− z (1− x0)) + x0

[
λ ã
a`
+ 1
]


 (2.204)

whereã = ã(y) and the parameterv is given by Eq. (5.23). We can split this function into a
singular and a non-singular part, leading to

∆W =
1

y (x0 + z (1− x0))
∆Wfin =

1

x y
∆Wfin (2.205)

with
z =

x− x0
1− x0

(2.206)

9See also the discussions in Section 5.2.1 and Section 5.2.2.
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and

∆Wfin =
2

(p` ·Q)


(x0 + z (1− x0)) (1− v) (1− z (1− x0))

v (1− z (1− x0)) + x0

[
λ ã
a`

+ 1
]




=
2

(p` ·Q)
(x0 + z (1− x0))




(1− z (1− x0)) + x0

[
λ ã
a`

+ 1
]

v (1− z (1− x0)) + x0

[
λ ã
a`

+ 1
] − 1




=
2

(p` ·Q)
x




1− x+ x0

[
λ ã
a`

+ 2
]

v (1 + x0 − x) + x0

[
λ ã
a`

+ 1
] − 1



 (2.207)

In the following we will discussa` = 1 anda` 6= 1 cases, respectively.

Simplified case:a` = 1 and ã = 0 (Interference between final states)

If p̂k is the final state spectator, it is straightforward to show that ã = 0 from Eq. (2.112). Hence,
ã = 0 corresponds to final-final state splitting. The averaged splitting function is then given by

∆W =
1

ux2
2

p` ·Q
x

(
(1− x) + ux [(1− ux)ã + 2]

v(1 + ux− x) + ux [(1− ux)ã + 1]
− 1

)
=

1

ux2
∆Wfin (2.208)

where∆Wfin satisfies the following limits

lim
u→0

∆Wfin =
2

p` ·Q
(1− x),

lim
x→0

∆Wfin =
2

p` ·Q
1

vr(x = 0) + u (a0 + 1)
,

lim
u→0,x→0

∆Wfin =
2

p` ·Q
(2.209)

and
lim
x→0

ã = lim
u→0

ã = a0 (2.210)

which for final-final state interference term equals zero (a0 = 0). The functionvr(x = 0) is
given by

lim
x→0

v = x vr(x = 0) = x
[
(4v′ − 2)

√
u(1− u) a0 + 1− u+ u a0

]
(2.211)

Including all prefactors, the integrated splitting function is given by

4παsCi µ
2ε

∫
dζp∆W =

αs
π
Ci

(
4πµ2

2p` ·Q

)ε
1

Γ(1− ε)

(
1

2 ε2
+

1

ε
+ 3− π2

4
+O(ε)

)

(2.212)

whereCi is given by Eq. (2.171).
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Simplified case:a` = 1 and ã 6= 0 (Interference between final and initial states)

Now, if p̂k is the initial state parton (̂pk is replaced bŷpa), then

ã =
p̂a · p̂k

(1− y) p̂a · (p̂` + p̂j)
6= 0 (2.213)

It follows that,ã 6= 0 corresponds to final-initial state interference term. Including all prefactors,
the integrated splitting function is

4παsCi µ
2ε

∫
dζp∆W =

αs
π
Ci

(
4πµ2

2 p` ·Q

)ε
1

Γ(1− ε)

{
1

2ε2
+

1

ε

[
1 +

1

2
ln(1 + a0)

]

−π
2

6
+ 3− 2 ln 2 ln(1 + a0) +

1

π

(
Ibfin + Icfin

)}
(2.214)

whereCi is given by Eq. (2.171) and the finite terms are given by

Ibfin(a0) =
π

2

∫ 1

0

du

u


2 ln 2 +

1√
1 + 4a0(1 + a0)u2

ln




(1− u)
(
1 + 2a0u+

√
1 + 4a0(1 + a0)u2

)2







+
π

2

(
2 ln 2 ln(1 + a0) +

1

2
ln2(1 + a0) +

5

2
Li 2

(
a0

a0 + 1

)
− 1

2
Li 2

[(
a0

a0 + 1

)2
])

Icfin(ã) =

∫ 1

0

du

u

∫ 1

0

dx

x

∫ 1

0

dv′ [v′ (1− v′)]
− 1

2

×
{

x (1− x+ u x [(1− u x) ã + 2])

v [1 + u x− x] + u x [(1− u x) ã+ 1]
− 1

1 + 2 a0 u + (4v′ − 2)
√
u (1− u) a0

}

= π

∫ 1

0

du

u

∫ 1

0

dx

x

{
x (1− x+ u x [(1− u x) ã + 2])

k(u, x, ã)
− 1√

1 + 4 a0 u2 (1 + a0)

}

(2.215)

We have introduced

k2(u, x, ã) = [(1 + u x − x)(z − z̄) + u x ((1− u x) ã+ 1)]2

+ 4 u x z̄ (1− z) (1 + u x− x) ((1− ux) ã+ 1) (2.216)

and

z =
x (1− u)

1− u x
, z̄ = u x ã, ã =

pa · n`
pa · p` + y pa · n`

, a0 = ã(y = 0) =
pa · n`
pa · p`

(2.217)

Here, the parameterv is given by Eq. (5.23). For̃a = 0, the finite termsIbfin andIcfin can be
reduced to

Ibfin = −π
3

12
, Icfin = 0 (2.218)
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and we of course obtain the result in the last subsection. Allleftover integrals are finite in the
limits u → 0 andx → 0.

General case:a` 6= 1

We will now consider the integrated splitting function fora` 6= 1. We have again the factorizia-
tion into a finite and a singular term (see Eq. (2.205)), with the limits of the finite term∆Wfin

being given by

lim
u→0

∆Wfin =
2

p` · Q̂
(1− x),

lim
x→0

∆Wfin =
2

p` · Q̂
1

vr(x = 0) + u
(
a0
a`

+ 1
) ,

lim
u→0,x→0

∆Wfin =
2

p` · Q̂
(2.219)

Here, the parametervr(x = 0) is

vr(x = 0) = (4v′ − 2)

√
u(1− u)

a0
a`

+ 1 + u

(
a0
a`

− 1

)
(2.220)

Including all prefactors, the integrated splitting function is

4παsCi µ
2ε

∫
dζp∆W =

αs
π
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(
4πµ2

2 p` · Q̂

)ε
1

Γ(1− ε)

{
1

2ε2
+

1

ε

[
1 +

1

2
ln (a` + a0)

]

−π
2

6
+ 3− 2 ln 2 ln(a` + a0) +

1

π

[
Ibfin

(
a0
a`

)
+ Idfin + Iefin

]

+ ln a`

[
2 ln 2− 1

4
ln a` +

1

2
ln (a` + a0) + 1

]}
(2.221)

whereCi is given by Eq. (2.171) and the finite terms are

Idfin =

∫ 1

0

du

u

∫ 1

0

dx

x

∫ 1

0

dv′ [v′ (1− v′)]
− 1

2

×



γ x




1− x+ x0

[
λ ã
a`

+ 2
]

v [1 + x0 − x] + x0

[
λ ã
a`
+ 1
] − 1


+ x − 1

vr(x = 0) + u
(
a0
a`

+ 1
)





Iefin = π

∫ 1

0

dx

(
1− x

x

)
ln

[
δ a`
x

]
(2.222)
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with v now being given by

v =
1

1− x0

{
(4v′ − 2) [(1− x) (x− x0) z̄(1− z̄)]

1
2 + x − x0 + z̄ (1− x0) − 2 z̄ (x− x0)

}

(2.223)
We use Eq. (2.113) for̃a and Eq. (2.111) for̄z. The spectator̂pk needs to be calculated using the
Lorentz transformation

p̂µk = Λ(K̂,K)µν p
ν
k .

Note that for the initial-state splitting, we need to use theoriginal definition ofv. The problem
for the initial state is that an additional angle appears in the Lorentz transformation; this is not
the case for the final state, where we takeP` as given by Eq. (2.22), without any reference to the
additional angle and/or use ofp̂j . Hence, we never need to use the Sudhakov parametrization for
p̂j in the final state10.

The finite termIbfin (a0/a`) in Eq. (2.221) means thata0 is now being replaced bya0/a` in Ibfin(a0),
which is already given in the last subsection. Fora` = 1, Iefin = 0 andIdfin = Icfin. Hence, we
obtain the result in the last subsection. All leftover integrals are finite in the limitsu → 0 and
x → 0. Note also that the treatment of interference terms significantly differs from [22]. Here,
our choice of momentum mapping leads to more complicated integrated finite terms, which we
choose to evaluate numerically.

10See also the discussions in Section 5.2.1 and Section 5.2.2.



Chapter 3

Applications

For Nagy-Soper scheme, all collinear as well as singular parts of the soft splitting functions have
been tested. In this chapter, we give a numerical comparisonfor Drell-Yan process at NLO
using [22] as well as the Nagy-Soper scheme. We also give the analytic result of our splitting
functions when applied to dijet production at lepton colliders, as well as the Higgs production at
hadron colliders and decay.

3.1 SingleW production

3.1.1 Tree level

We start with a simple process: singleW production at hadron collider. TheW production
provides one of the cleanest processes with a large cross section at the Tevatron and at the LHC.
This process is not only suited for a precise determination of theW boson massMW , it also
yields valuable information on the parton structure of the proton. The QCD NLO calculations
have been available in the literatures for some time [37–40].

The cross section forW production at hadron collider is

A+B → W± + anything (3.1)

The parton level subprocess in this case is (Fig. 3.1)

q q̄′ →W+ (3.2)

whereq is a quark with charge2/3 (or an antiquark with charge1/3) from hadronA andq̄′ is an
antiquark with charge1/3 (or a quark with charge2/3) from hadronB. Labelling the momenta
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by q(p2) q̄′(p1) → W+(P ), we have

M = −i Vqq′
g√
2
ελ∗α (P ) v̄(p1) γ

α 1

2

(
1− γ5

)
u(p2) (3.3)

Neglecting the quark masses and squaring the matrix elementgives

1

4

∑

spins

| M |2= g2

4
| Vqq′ |2

(
p1 · p2 + 2

p1 · P p2 · P
M2

W

)
(3.4)

where we have averaged over the incoming parton spins. For the massive on-shell vector boson,
we use ∑

σ

εµ∗σ (P ) ενσ(P ) = −gµν + P µ P ν

M2
W

(3.5)

Using nowP = p1 + p2 andP 2 = M2
W , we get

1

4

∑

spins

| M |2= g2

4
| Vqq′ |2 M2

W (3.6)

If we average over the parton colours, we obtain an additional factor3× 1
3
× 1

3
= 1

3
leading to

| MB |2= 1

4

1

9

∑

spins, colours

| M |2= g2

12
| Vqq′ |2 M2

W (3.7)

The one-particle phase space is given by

∫
dPS1 =

∫
d3 ~P

(2π)3 2P 0
(2π)4 δ4(P − p1 − p2) = 2 π δ+(ŝ−M2

W ) (3.8)

Here,ŝ is the center of mass energy of the colliding partons.

3.1.2 Real emission, virtual correction and dipole subtraction

There are two subprocesses needed to be considered (Fig. 3.2and Fig. 3.3):qq̄ → gW and
qg → qW . For the subprocessqq̄ → gW , a gluon can be emitted from either the incoming
quark or the incoming antiquark. Labelling the momenta byq(p) q̄(p′) → g(k′)W (k), we have

iM =
−i g gs√

2
tAij ε

∗
µ(k

′) ε̃∗ν(k) Vqq̄

× v̄(p′)

[
γµ

(p/′ − k/′)

(p′ − k′)2 + iε
γν

1

2
(1− γ5)− γν

1

2
(1− γ5)

(p/− k/′)

(p− k′)2 + iε
γµ
]
u(p) (3.9)
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Figure 3.1: LO and virtual diagrams.
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Figure 3.2: Real emission diagrams:qq̄ → gW

g

q

q

W

g

q W

q

Figure 3.3: Real emission diagrams:qg → q W
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Figure 3.4: Collinear splittings.

Here we have neglected the quark/antiquark masses, theεµ andε̃µ denote the polarization vectors
of gluon andW boson, respectively. They satisfy

∑

σ

εµ∗σ (k′) ερσ(k
′) = −gµρ

∑

τ

ε̃ν∗τ (k) ε̃στ (k) = −gνσ + kν kσ

M2
W

(3.10)

Squaring the amplitude and averaging over the parton spins and colours, we obtain the matrix
element for NLO real emission processqq̄ → gW

| MR |2= 1

4

1

9

∑

spins, colours

| M |2 = π αs
√
2GF M

2
W | Vqq′ |2

32

9

t̂2 + û2 + 2M2
W ŝ

t̂ û

=
8

9
g2 π αs | Vqq′ |2

t̂2 + û2 + 2M2
W ŝ

t̂ û
(3.11)

whereŝ, t̂, û are the Mandelstam variables. There are both soft and collinear singularities corre-
sponding tôt → 0 andû → 0. The coupling constantg and the mass of gauge bosonMW are
related to the Fermi coupling constantGF by

GF√
2

=
g2

8M2
W

(3.12)

The two-particle phase space is given by

∫
dPS2 =

∫
d3~k

(2 π)3 2 k0

d3~k′

(2 π)3 2 k′0
(2 π)4 δ4(Q− k − k′) (3.13)
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Figure 3.5: Interference splittings.

Nagy-Soper dipoles

The calculations of the subtracted splitting functions contain two dipole contributions:Dqqg and
Dq̄q̄g, each of which contains both collinear and soft splittings (Fig. 3.4 and Fig. 3.5). Their
explicit expressions are given in Eq. (2.141) and Eq. (2.161). We find

Dqqg =
ŝ

M2
W

[
4 û

ŝ t̂
+

8 (ŝ+ û)

t̂ (t̂+ û)
− 8 ŝ

(t̂+ û)2

]
+

16 ŝ û2

(t̂2 + û2) (t̂+ û)2
(3.14)

The dipole contributionDq̄q̄g can be obtained from Eq. (3.14) by the replacementt̂ ↔ û. The
final expression for the two-particle cross section is givenby

σNLO {2} =

∫

2

[
dσRε=0 − dσAε=0

]

=
1

2 ŝ

∫
dPS2

{
| MR |2 −

(
4 π αs
2

)
CF (Dqqg +Dq̄q̄g) | MB |2

}
(3.15)

Eq. (3.15) is completely finite after subtracting the dipoles. For them-parton phase space we use
the results of the integrations of the splitting functions over the emitted one-parton phase space.
All the collinear and soft integrals are given in Section 2.5. Using Eq. (2.16), we have

∫

1

dσBab(xpa, pb)

{
4παs
2

CF µ
2ε

∫
dζp

[
v2qqg − v2eik

]
+ 4 π αsCF µ

2ε

∫
dζp ∆Wab

}

+

∫

1

dσBab(pa, xpb)

{
4παs
2

CF µ
2ε

∫
dζp

[
v2qqg − v2eik

]
+ 4 π αsCF µ

2ε

∫
dζp ∆Wab

}

+

∫

1

dσCab(pa, pb, µ
2
F )

=

∫

1

dσBab(pa, pb)⊗ I(ε) +

∫ 1

0

dx

∫

1

dσBab(xpa, pb)⊗
[
Ka(xpa) + P (x, µ2

F )
]

+ (a↔ b) (3.16)
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where the universal collinear counter terms for any finite hard scatteringm-parton cross section
are defined by Eq. (2.14). The correspondingI,K andP terms are given by

I(ε) =
αs
2π
CF

1

Γ(1− ε)

(
4πµ2

Q2

)ε(
2

ε2
+

3

ε
− π2

3
+O(ε)

)

Ka(xpa) =
αs
2π
CF

1

Γ(1− ε)

[
−(1− x) ln x+ 2(1− x) ln(1− x) + 4x

(
ln(1− x)

1− x

)

+

− 2x lnx

(1− x)+
−
(
1 + x2

1− x

)

+

ln

(
4πµ2

2xpa · pb

)]

P (x, µ2
F ) =

αs
2π
CF

1

Γ(1− ε)

(
1 + x2

1− x

)

+

ln

(
4πµ2

µ2
F

)
(3.17)

The plus prescription is defined by
∫ 1

0

dx f(x)F (x)+ =

∫ 1

0

dx [f(x)− f(1)] F (x) (3.18)

or alternatively,

F (x)+ = lim
ε→0

[
θ(1− x− ε)F (x)− δ(1− x)

∫ 1−ε

0

dx′ F (x′)

]

= F (x)− δ(1− x)

∫ 1

0

dx′ F (x′) with θ(1− x) = 1 (3.19)

From that it follows immediately that
∫ 1

0

dxF (x)+ = 0 (3.20)

and

Pqq(x) = CF

(
1 + x2

1− x

)

+

= CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
, CF =

4

3
(3.21)

appearing in theK terms is the famous Altarelli-Parisi splitting function. The virtual matrix
element in theMS renormalization scheme is given by

| MV |2= | MB |2 αs
2 π

CF

(
4 π µ2

Q2

)ε
1

Γ(1− ε)

{
− 2

ε2
− 3

ε
− 8 + π2 +O(ε)

}
(3.22)

We see that the singularities cancel each other between| MV |2 andI(ε) as they must.

Now we consider the gluon induced processqg → qW . The matrix element can be obtained
from Eq. (3.11) by crossing symmetry. If we include the colours and spins, we obtain

| MR |2= 1

4

1

24

∑

spins, colours

| M |2= 1

3
g2π αs | Vqq′ |2

ŝ2 + û2 + 2M2
W t̂

−ŝ û (3.23)



3.1 SingleW production 77

It is worth mentioning that no soft singularity is present inthe processqg → qW ; û → 0

corresponds to collinear singularity. There is only one dipole needed in this caseg → qq̄, which
in terms of Mandelstam variables, is given by

Dgqq̄ = −
(

4

M2
W

)
ŝ2 + 2 ŝ t̂ + 2 t̂2

ŝ û
(3.24)

We found that

σNLO {2} =

∫

2

[
dσRε=0 − dσAε=0

]
=

1

2 ŝ

∫
dPS2

{
| MR |2 −

(
4 π αs
2

)
TRDgqq̄ | MB |2

}

=
1

2 ŝ

∫
dPS2

{
−1

3
g2 π αs

(2 t̂+ û)

ŝ

}
(3.25)

The collinear singularity appearing inm-parton phase spaces will be absorbed into PDFs, when
we combine the integrated splitting function with the collinear counter term Eq. (2.14).

∫

1

dσBab(xpa, pb)

{
4 π αs

2 (1− ε)
TR µ

2ε

∫
dζp v

2
gqq̄

}
+

∫

1

dσCab(pa, pb, µ
2
F )

=

∫ 1

0

dx

∫

1

dσBab(xpa, pb)⊗
[
K(xpa) + P (x, µ2

F )
] (3.26)

where

K(xpa) =
αs
2π

1

Γ(1− ε)

{
TR(6x− 5x2 − 1) + [2 ln(1− x)− ln(x)]Pqg(x)

− Pqg(x) ln

(
4πµ2

2xpa · pb

)}
(3.27)

P (x, µ2
F ) =

αs
2π

1

Γ(1− ε)
Pqg(x) ln

(
4πµ2

µ2
F

)

Pqg(x) = TR
[
x2 + (1− x)2

]
, TR =

1

2

andPqg(x) is the standard Altarelli-Parisi splitting function.

Catani-Seymour dipoles

Using Catani-Seymour dipoles, theK andP terms for processqg → qW are given by

K(xpa) =
αs
2π

1

Γ(1− ε)

{
2Pqg(x) ln(1− x) + TR2x(1− x)− Pqg(x) ln

(
4πµ2

2xpa · pb

)

− Pqg(x) lnx
}

P (x, µ2
F ) =

αs
2π

1

Γ(1− ε)
Pqg(x) ln

(
4πµ2

µ2
F

)
(3.28)
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and theI,K andP terms for processqq̄ → gW are given by

I(ε) =
αs
2π
CF

1

Γ(1− ε)

(
4πµ2

Q2

)ε(
2

ε2
+

3

ε
− π2

3
+O(ε)

)

Ka(xpa) =
αs
2π
CF

1

Γ(1− ε)

[
4

(
ln(1− x)

1− x

)

+

+ (1− x)− 2(1 + x) ln(1− x)

−
(
1 + x2

1− x

)

+

ln

(
4πµ2

2xpa · pb

)
−
(
1 + x2

1− x

)

+

ln x

]

P (x, µ2
F ) =

αs
2π
CF

1

Γ(1− ε)

(
1 + x2

1− x

)

+

ln

(
4πµ2

µ2
F

)
(3.29)

Results

In summary, we see that the pole structures inI(ε) terms are equivalent between Catani-
Seymour’s scheme and Nagy-Soper’s scheme as they should. The finite terms inK andP are
shifted around due to different momentum mapping. However the final results are the same. For
a comparison, we calculated singleW production for app initial state at NLO, using both the
scheme in [22] as well as Nagy-Soper scheme, including PDFs1 (CTEQ6M [101]) and varying
the hadronic center of mass energy of the process. Here we have used routines from the CUBA
library (Vegas) [99] as a Monte Carlo algorithm to implementour numerical phase space calcu-
lations. Fig. 3.6 shows the relative difference between thetwo implemented schemes. We see,
that the numerical differences are on the permill level and consistent with zero. Fig. 3.7 plots the
NLO corrections to singleW production at the LHC as a function of the hardonic center of mass
energy.

3.2 Dijet production in e+e− annihilation

Next we consider dijet production at NLO. The LO and NLO diagrams of dijet production are
shown in Fig. 3.8 and Fig. 3.9. The kinematics of two-jet production is defined as follows: The
variables arexi = 2 pi · Q/Q2, yij = sij/Q

2 andsij = (pi + pj)
2. The squared expression of

Q corresponds to the square of the center of mass energy andpi is the momentum of any QCD
parton in the final state. They are related byx1 = 1 − y23, x2 = 1 − y13 andx3 = 1 − y12.

We can choose the center of mass frame in whichQ =
(√

s,~0
)

andpi = (Ei, ~pi ), hence
∑

i Ei =
√
s and

∑
i ~pi = ~0.

√
s is the center of mass energy. It is straightforward to show

thatx1 + x2 + x3 = 2.

1c.f. [102].
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Figure 3.6: Relative difference between NLO corrections tosingleW production using Catani-
Seymour and Nagy-Soper dipoles respectively, as a functionof the hardonic center of mass
energy. The results agree on sub-permil level. Additionally the numerical integration errors are
shown.

σNLO − σBorn
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Figure 3.7: NLO corrections(σNLO−σBorn)/σBorn to singleW production at the LHC as a function
of the hardonic center of mass energy. The result was obtained using the CTEQ6M parton
distribution function [101].
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e+ q̄

q

γ, Z

e−

e+ q̄

q

γ, Z

Figure 3.8: LO and virtual diagrams.

The LO contribution is the parton model processe+e− → q(p1) q̄(p2) with matrix elementM2.
We average over the event orientation in the LO process. In this case, the momentum dependence
of the Born contribution vanishes. The NLO real emission process is

e+ e− → γ∗(Q) → q(p1) q̄(p2) g(p3) (3.30)

The scattering amplitude fore+(p′)e−(p) → q(p1) q̄(p2) g(p3) is

iM = −e
2 gs
Q2

tAij Qq ε
λ∗(p3) v̄(p

′) γµ u(p)

{
ū(p1) γλ

1

p1/ + p3/
γµ v(p2)− ū(p1) γ

µ 1

p2/ + p3/
γλ v(p2)

}

(3.31)

whereQ = p1+p2+p3 andελ(p3) is the polarization vector of the gluon. Squaring the scattering
amplitude gives then

1

4

∑
| M |2= −1

4

e4 g2s
Q4

(
tAij
)2
Q2
q Tr(p

′/ γµ p/ γν) Tr(p1/ Λλµ p2/ Λνλ) (3.32)

where

Λλµ =

(
γλ

−1

p1/ + p3/
γµ + γµ

1

p2/ + p3/
γλ

)

=

( −1

Q2 (1− x2)
γλ (p1/ + p3/ ) γµ +

1

Q2 (1− x1)
γµ (p2/ + p3/ ) γλ

)
(3.33)

After a straightforward calculation we find the matrix elementM3(p1, p2, p3)

|M3(p1, p2, p3)|2 = CF
8 π αs
Q2

x21 + x22
(1− x1) (1− x2)

|M2|2 (3.34)

The final-state parton momenta are denoted bypi, where,

s12 = (p1 + p2)
2 , s13 = (p1 + p3)

2 , s23 = (p2 + p3)
2

s123 = (p1 + p2 + p3)
2 = s12 + s13 + s23 = Q2

y12 = s12/Q
2, y13 = s13/Q

2, y23 = s23/Q
2, y12 + y13 + y23 = 1 (3.35)
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e−

e+ q̄

q

g

γ, Z

e−

e+ q̄

q

g
γ, Z

Figure 3.9: Real emission diagrams:e+e− → qq̄ g.

or equivalently we have

sij = (pi + pj)
2 , sijk = (pi + pj + pk)

2 , yij = sij/Q
2, (i < j < k) (3.36)

For the two-parton phase space integration, we follow the Catani-Seymour’s convention, which
is slightly different from the standard convention up to a factor of8 π. Hence

∫

CS

dPS2 =

∫
dy12 δ(1− y12) = 8 π

∫
dPS2 (3.37)

and the LO cross section is given by

σLO =

∫

CS

dPS2 |M2|2 F (2)
J (p1, p2)

= |M2|2
∫

dy12 δ(1− y12)F
(2)
J (p1, p2) → |M2|2 (3.38)

The three-parton phase space is given by
∫

CS

dPS3 =
Q2

16 π2

∫ 1

0

dx1

∫ 1

0

dx2 θ(x1 + x2 − 1) = 8 π

∫
dPS3

=
Q2

16 π2

∫ 1

0

dy23

∫ 1

0

dy13 θ(1− y23 − y13) (3.39)

The calculation of the subtracted splitting functions contains two dipole contributions:Dqqg and
Dq̄q̄g, each of which contains both collinear and soft contributions (see Fig. 3.10). Their definition
is given in Eq. (2.119) and Eq. (2.161). We find that

Dqqg =
4

Q̂2

{(
1

x2

)[
2

(
x1

2− x1 − x2
− 1− x2

(2− x1 − x2)2

)
+

1− x1
1− x2

]

+ 2

(
x1 + x2 − 1

1− x2

)
x1

(1− x1) x1 + (1− x2) x2

}
(3.40)
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Figure 3.10: Soft and collinear diagrams.

wherex1, x2 andx3 are defined by

x1 =
2 p̂` · Q̂
Q̂2

, x2 =
2 p̂k · Q̂
Q̂2

, x3 =
2 p̂j · Q̂
Q̂2

, Q̂ = p̂` + p̂j + p̂k = Q (3.41)

The dipole contributionDq̄q̄g can be obtained from Eq. (3.40) by the replacementx1 ↔ x2. The
final expression for the three-parton cross section is givenby

σNLO {3} =

∫

3

[
dσRε=0 − dσAε=0

]

=

∫

CS

dPS3

{
| M3(p1, p2, p3) |2 F (3)

J (p1, p2, p3)

−
(
4παs
2

)
CF

(
Dqqg F

(2)
J (p̃13, p̃2) +Dq̄q̄g F

(2)
J (p̃23, p̃1)

)
| M2 |2

}

=
( αs
2 π

CF

)
| M2 |2

∫ 1

0

dx1 dx2 θ(x1 + x2 − 1)

{
x21 + x22

(1− x1) (1− x2)
F

(3)
J (p1, p2, p3)

−
[(

1

x2

)(
2

(
x1

2− x1 − x2
− 1− x2

(2− x1 − x2)2

)
+

1− x1
1− x2

)

+ 2

(
x1 + x2 − 1

1− x2

)
x1

(1− x1)x1 + (1− x2)x2

]
F

(2)
J (p̃13, p̃2)

−
[(

1

x1

)(
2

(
x2

2− x1 − x2
− 1− x1

(2− x1 − x2)2

)
+

1− x2
1− x1

)

+ 2

(
x1 + x2 − 1

1− x1

)
x2

(1− x1)x1 + (1− x2)x2

]
F

(2)
J (p̃23, p̃1)

}
(3.42)

which for any infrared safe observable (implying thatF
(3)
J → F

(2)
J asxi approaches 1) is finite

and which forF (3)
J = F

(2)
J = 1 can be reduced to

σNLO {3} =
αs
2 π

CF

(
23

2
− 4

3
π2

)
σLO (3.43)



3.2 Dijet production ine+e− annihilation 83

Figure 3.11: Vertex and quark self energy diagrams.

where we have used the formulae
∫ 1

0

∫ 1

1−x1
dx1 dx2

(1− x1)
3

x2 (2− x1 − x2)2
=

1

6
(−29 + 3 π2)

∫ 1

0

∫ 1

1−x1
dx1 dx2

(1− x1) (1− x2)
2

x2 (2− x1 − x2)2
=

1

12
(−19 + 2 π2)

∫ 1

0

∫ 1

1−x1
dx1 dx2

2 x1 (1− x1)

(2− x1 − x2)2
=

2

3

Now we have to use the results of the integrated splitting functions for them-parton phase space
contributions which, in general, can be devided into two pieces: soft integral and collinear in-
tegral. In the end we have to combine the integrated splitting functions with the virtual cross
section leading to finite result. The one-loop matrix element (Fig. 3.11) in theMS renormal-
ization scheme is given by Eq. (3.22), and the collinear and soft integrals can be looked up in
Section 2.5. Combining these contributions, we obtain a finite (ε → 0) expression for the two-
parton cross section:

σNLO {2} =

∫

2

[
dσV +

∫

1

dσA
]

ε=0

=

∫

CS

dPS2

{
| MV |2 +2 | M2 |2

×
[
4παs
2

CF µ
2ε

∫
dζp
[
v2qqg − v2eik

]
+ 4παsCF µ

2ε

∫
dζp∆W

]}
F

(2)
J (p1, p2)

=
αs
2 π

CF

(
−10 +

4π2

3

)
| M2 |2

∫
dy12 δ(1− y12)F

(2)
J (p1, p2)

=
αs
2 π

CF

(
−10 +

4

3
π2

)
σLO (3.44)
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2Eg/
√
s 3 · 10−4 3 · 10−8

σreal [pb] −0.0051499031± 0.0000051413 −0.0051496084± 0.0000051484

Table 3.1: Variation of the real radiation subtracted crosssectionσreal for two different values of
Eg. If 2Eg/

√
s < 3 · 10−4, the result is the same. Here

√
s = 500 GeV.

Results

Summing Eq. (3.42) and Eq. (3.44), it is straightforward to show that the total NLO cross section
(for F (3)

J = F
(2)
J = 1) agrees with the well known result [22,109],

σNLO = σNLO {2} + σNLO {3} =
3

4

αs
π
CF σ

LO (3.45)

whereσLO is given by

σLO = σ0 =
4 π α2

3Q2

(
3

nf∑

q=1

Q2
q

)
(3.46)

Note, that here we can set jet functions being equal to one safely. Non-unit jet functions need to
account for the mappings fromm+ 1 tom-phase space.

We also show our numerical results for dijet production. Forthe numerical computation we used
the following parameters2

αs = 0.118055085612548 , α = 7.54677226134035754× 10−3

and vary the center of mass energy. The Fig. 3.12 plots the relative difference between the two
implemented schemes. We see that the schemes are equivalentwith agreement on the permill
level and consistent with zero3. Fig. 3.13 and Fig. 3.14 plot a comparison of analytical result and
results using Nagy-Soper and Catani-Seymour dipoles, respectively. We also show a comparison
of analytical and numerical results using Nagy-Soper dipoles for the real emission subtracted
cross section (see Fig. 3.15). Here we used routines from theCUBA library [99] as a Monte
Carlo algorithm to implement our numerical evaluations4.

2Here we set quark flavour to bed quark and henceQq = − 1

3
.

3We also found that the number of total iterations of Vegas Monte Carlo integrations for the Nagy-Soper scheme
is less than the Catani-Seymour scheme under the same accuracy, e.g.259 for NS scheme and 498 for CS scheme.
So we are confident that for a multi-particle process in the final state the CPU run time for NS scheme would be
much less than the CS scheme.

4We also performed the Lorentz boost using our routines to check the Lorentz invariance of the real emission
matrix element and all the dipoles; they completely agree with each other before and after the boost.
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Figure 3.12: Relative difference between NLO corrections to dijet production using Catani-
Seymour and Nagy-Soper dipoles respectively, as a functionof the center of mass energy. The
results agree on sub-permil level, shown are the numerical integration errors.

We have also checked, that the final result is insensitive to variations of the gluon energy, if the
ratio 2Eg/

√
s is below3 · 10−4. The Table 3.1 shows the real radiation subtracted cross section

σreal , where we vary the ratio between3 · 10−4 and3 · 10−8. Here we choose
√
s = 500 GeV.

3.3 Higgs production in gluon-gluon fusion:gg → H

One of the most crucial experimental challenges for presentand future high-energy physics is
to search for Higgs boson, which is a fundamental ingredientof the Standard Model (SM). The
discovery of Higgs boson will also enable us to well establish the Higgs mechanism, one of the
cornerstones of the SM. The Higgs mechanism can not only explain the source of Electroweak
Symmetry Breaking (EWSB) but also the generation of elementary particle masses.

For Higgs boson masses up to 700GeV the dominant production process in the Standard Model
is gluon-gluon fusiongg → H via a virtual top quark loop. Higher mass values may also
be realized in extensions of the Beyond Standard Model,e.g. Supersymmetry [100]. In the
following we will re-calculate QCD radiative corrections of O(α3

s) to Higgs boson production in
hadronic collisions using both the Catani-Seymour and Nagy-Soper dipoles. These include the
one-loop virtual contributions (Fig. 3.16) to the lowest-order processgg → H as well as real
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Figure 3.13: Analytic result vs Nagy-Soper scheme.
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Figure 3.14: Analytic result vs Catani-Seymour scheme.
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Figure 3.15: Nagy-Soper scheme: a comparison of analyticaland numerical results for the real
subtracted cross section.

gluon emissions (Fig. 3.17)

gg → g H, qg → q H, qq̄ → g H (3.47)

The corrections increase the LO cross section by approximately 50 %. This correction is
larger than the corresponding correction to the Drell-Yan process. This is related to the inte-
ger/fractional colour charges of gluons/quarks. The lowest-order cross section has been available
for some time [44–47],

σ̂0(gg → H) =
α2
s

π

M2
H

256 v2
|A|2 δ

(
ŝ−M2

H

)
(3.48)

where

|A|2 =

∣∣∣∣∣
∑

q

τq (1 + (1− τq) f(τq))

∣∣∣∣∣

2

τq =
4M2

q

M2
H

, v2 =
4M2

W

g2
=

1√
2GF

= (246GeV)2 (3.49)

and

f(τq) =





[
sin−1

(√
1/τq

)]2
if τq ≥ 1

−1
4

[
ln

(
1+
√

1−τq
1−
√

1−τq

)
− iπ

]2
if τq < 1

(3.50)
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Figure 3.16: Generic diagrams for the Higgs production in gluon-gluon collisionsgg → H at
LO and its one loop virtual corrections.
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Figure 3.17: Generic diagrams for real corrections:gg → gH, qg → qH andqq̄ → gH.
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The Lagrangian ofggH coupling has a closed form

LggH =
αs
12 π

GA
µν G

µν
A ln

(
1 +

H

v

)
(3.51)

with

ln(1 + x) = −
∑

n=1

(−x)n
n

(3.52)

whereGA
µν is the gluon field strength tensor. Eq. (3.51) is very convenient for simple calculations,

but forgg + jets production it only holds in the limit that all jet momenta are much smaller than
top quark mass. It also becomes problematic in thegg → HH or gg → HHH processes close
to threshold, where the momenta of slow-moving Higgs bosonslead to an additional scale in the
process.

In the limit that the top quark mass is infinitely large,τq → ∞,A→ 2
3

and

σ̂0(gg → H) → α2
s

π

M2
H

576 v2
δ
(
ŝ−M2

H

)
(3.53)

In this thesis we will consider only heavy quark limit (Fig. 3.18, Fig. 3.19 and Fig. 3.20). When
the momentum transfer to the Higgs boson is small, or equivalently in the limit whereMtop �
MH , the cross section toO(α3

s) can be obtained from the effective Lagrangian [48–50]

Leff =
αs

12 π v
H GA

µν G
µν
A (3.54)

The full NLO QCD cross section contains
∫
dσNLO =

∫
dσqq̄→gH +

∫
dσqg→qH +

∫
dσgg→gH +

∫
dσV (3.55)

In the following we will discuss each subprocess and its corresponding dipoles. The NLO QCD
calculations have already been available in the literatures for some time [51–55].

3.3.1 The subprocessqq̄ → gH

Using the effective Lagrangian Eq. (3.54), the matrix element for NLO real emission process
qq̄ → gH in four dimensions is found to be

|M(qq̄ → gH)|2 =
16

9

α3
s

πv2
t̂2 + û2

ŝ
(3.56)

The cross section for this process is completely finite. The spin and colour averages yield an
additional factor which equals1/2× 1/2× 1/3× 1/3 = 1/36. It is straightforward to integrate
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Figure 3.18:gg → H: Heavy quark limit.
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Figure 3.19: Heavy quark limit forgg → gH, qg → qH andqq̄ → gH.
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over the phase space to obtain the cross section.

σ(qq̄ → gH) =
1

2ŝ

∫
dPS2 |M(qq̄ → gH)|2

=
1

486

(
α3
s

π2 v2

) (
1− M2

H

ŝ

)3

(3.57)

The two-particle phase space integration is given by

dPS2 =
1

32 π2

(
1− M2

H

ŝ

)
dΩ (3.58)

provided that
ŝ > M2

H , ŝ = ηa ηb s (3.59)

Here,ηa andηb are the momentum fractions of the incoming partons. The parameterŝ is the
center of mass energy of the colliding partons, whiles is the center of mass energy of incoming
hadrons.

3.3.2 The subprocessqg → qH

Nagy-Soper dipoles

The matrix element for NLO real emission processqg → qH in four dimensions can be obtained
by crossing from that forqq̄ → gH. We find

|M(qg → qH)|2 = −16

9

α3
s

π v2
ŝ2 + û2

t̂
(3.60)

which has a singularity when̂t → 0 (collinear singularity). The spin and colour averages yield
an additional factor1/2 × 1/2/(1 − ε) × 1/3 × 1/8 = 1/96/(1 − ε). This singularity can be
regularized by subtracting the dipole (defined in Section 2.4) which, in terms of the Mandelstam
variables, is given by

Dqqg = −4

t̂

ŝ2 + û2

(ŝ+ û)2
(3.61)

Hence we obtain

4 π αs
2

CF Dqqg |MLO|2 = − 1

54

(
α3
s

π v2

)
ŝ2 + û2

t̂
− 1

54

(
α3
s

π v2

)
(ŝ2 + û2)

[
t̂+ 2 (ŝ + û)

]

(ŝ+ û)2

(3.62)
where the lowest-order matrix element is given by

|MLO|2 =
α2
sM

4
H

576 π2 v2
1

(1− ε)
(3.63)
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The subtracted cross section is

σ(qg → qH) =
1

2 ŝ

∫
dPS2

{
|M(qg → qH)|2 − 4 π αs

2
CF Dqqg |MLO|2

}

NS

=
1

1728 ŝ

(
α3
s

π2 v2

)(
1− M2

H

ŝ

)(
3M2

H + ŝ+ 4 ŝ ln

(
ŝ

M2
H

))
(3.64)

The collinear singularity appearing inm-parton phase spaces will be absorbed into PDFs when
we combine the integrated splitting function with the collinear counter term Eq. (2.14).

∫

1

dσBab(xpa, pb)

{
4 π αs
2

CF µ
2 ε

∫
dζp v

2
qqg

}
+

∫

1

dσCab(pa, pb, µ
2
F )

=

∫ 1

0

dx

∫

1

dσBab(xpa, pb)⊗
[
K(xpa) + P (x, µ2

F )
] (3.65)

where

K(xpa) =
αs
2π

1

Γ(1− ε)

{[
x2 − 2(1− x)

x
− x ln x

]
CF + 2 ln(1− x)Pgq(x)

−Pgq(x) ln
(

4πµ2

2xpa · pb

)}

P (x, µ2
F ) =

αs
2π

1

Γ(1− ε)
Pgq(x) ln

(
4πµ2

µ2
F

)

Pgq(x) = CF
1 + (1− x)2

x
, CF =

4

3
(3.66)

HerePgq(x) denotes the standard Altarelli-Parisi splitting function.

The collinear integrated splitting function is given in Section 2.5. It is worth mentioning that
no soft singularity is present in the processqg → qH. To this order, the appropriate scale at
which to calculateαs is not determined. We can takeαs = αs(µ

2), whereµ is an arbitrary
renormalization scale. The hadronic cross section is independent ofµ to O(α3

s).

Catani-Seymour dipoles

Using Catani-Seymour’s scheme the dipole subtraction termis

4 π αs
2

CF Dqqg |MLO|2 = − 1

54

(
α3
s

π v2

)
M4

H + 2 ŝ (ŝ−M2
H)

t̂
(3.67)

and the subtracted cross section is given by

σ(qg → qH) =
1

2 ŝ

∫
dPS2

{
|M(qg → qH)|2 − 4 π αs

2
CF Dqqg |MLO|2

}

CS

= − 1

576

(
α3
s

π2 v2

)(
1− M2

H

ŝ

)2

(3.68)
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TheK andP terms are

K(xpa) =
αs
2π

1

Γ(1− ε)

{
CFx+ [2 ln(1− x)− ln x]Pgq(x)− Pgq(x) ln

(
4πµ2

2xpa · pb

)}

P (x, µ2
F ) =

αs
2π

1

Γ(1− ε)
Pgq(x) ln

(
4πµ2

µ2
F

)
(3.69)

3.3.3 The subprocessgg → gH

To calculate the QCD corrections to the inclusive production of the Higgs boson fromgg → H,
we also need the real contributions fromgg → gH. The matrix element for NLO real emission
process in four dimensions is given by [56,57]

|M(gg → gH)|2 =
α3
s

v2
32

3 π

M8
H + ŝ4 + t̂4 + û4

ŝ t̂ û
(3.70)

Collinear and soft singularities come from̂t → 0 or û → 0. The spin and colour averages yield
an additional factor1/2/(1− ε)× 1/2/(1− ε)× 1/8× 1/8 = 1/256/(1− ε)2.

Nagy-Soper dipoles

The subtracted dipole term contains botht-channel andu-channel contributions. Their explicit
expressions are defined in Section 2.4. We find

Dggg =
8 û

t̂

{
ŝ

(
t̂+ û

)2 +
1

ŝ

[
(ŝ+ û)2 + ŝ2

(ŝ + û)2
− ŝ t̂

(ŝ+ û)
(
t̂ + û

)
]}

+ (t̂↔ û) +
16 ŝ

(
t̂+ û

)2
(3.71)

It is straightforward to integrate over the phase space to obtain the subtracted cross section

σ(gg → gH) =
1

2 ŝ

∫
dPS2

{
|M(gg → gH)|2 − 4 π αs

2
CADggg |MLO|2

}

NS

=
1

384 ŝ

(
α3
s

π2 v2

)(
1− M2

H

ŝ

){
4 ŝ (2M4

H − 2M2
H ŝ+ ŝ2)

(M2
H − ŝ)2

ln

(
ŝ

M2
H

)

+
M4

H + 34M2
H ŝ+ ŝ2

3 ŝ
+

4M2
H ŝ

M2
H − ŝ

}
(3.72)
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Next we have to consider them-parton phase space contributions. All collinear and soft integrals
can be looked up in Section 2.5. Using Eq. (2.16), we find

∫

1

dσBab(xpa, pb)

{
4παs

2(1− ε)
CA µ

2ε

∫
dζp

[
v2ggg − v2eik

]
+ 4 π αsCA µ

2ε

∫
dζp ∆Wab

}

+

∫

1

dσBab(pa, xpb)

{
4παs

2(1− ε)
CA µ

2ε

∫
dζp

[
v2ggg − v2eik

]
+ 4 π αsCA µ

2ε

∫
dζp ∆Wab

}

+

∫

1

dσCab(pa, pb, µ
2
F )

=

∫

1

dσBab(pa, pb)⊗ I(ε) +
αs
2 π

1

Γ(1− ε)

∫

1

dσBab(pa, pb)

(
4πµ2

µ2
F

)ε(
2

ε

)(
11

6
CA − 2

3
nf TR

)

+

∫ 1

0

dx

∫

1

dσBab(xpa, pb)⊗
[
Ka(xpa) + P (x, µ2

F )
]
+ (a↔ b) (3.73)

Here, we always keep in mind that the factor1/(1− ε) is already included in the soft terms. The
universal collinear counter terms are defined by Eq. (2.14).The standard Altarelli-Parisi splitting
functionPgg(x) is now

Pgg(x) = 2CA

(
x

(1− x)+
+ x(1 − x) +

1− x

x

)
+ δ(1− x)

(
11

6
CA − 2

3
nf TR

)
, CA = 3

(3.74)
The correspondingI,K andP terms are given by

I(ε) =
αs
2π
CA

1

Γ(1− ε)

(
4πµ2

Q2

)ε(
2

ε2
− π2

3
+O(ε)

)

Ka(xpa) =
αs
2π
CA

1

Γ(1− ε)

{
4x

(
ln(1− x)

1− x

)

+

− 2x(1− x) ln x+ 4(1− x) ln(1− x)

(
1 + x2

x

)

+ 2

(
x2 − 1− x

x

)
− 2

(
x

(1− x)+
+ x(1− x) +

1− x

x

)
ln

(
4πµ2

2xpa · pb

)}

P (x, µ2
F ) =

αs
2π
CA

1

Γ(1− ε)

{
2

(
x

(1− x)+
+ x(1− x) +

1− x

x

)
ln

(
4πµ2

µ2
F

)}
(3.75)

Catani-Seymour dipoles

Using Catani-Seymour’s scheme the dipole subtraction termis

4 π αs
2

CADggg |MLO|2 = − 1

12

(
α3
s

π v2

) (
1

t̂
+

1

û

) {
ŝ (ŝ−M2

H) +
ŝM4

H

ŝ−M2
H

+
M4

H (ŝ−M2
H)

ŝ

}

(3.76)
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Figure 3.20: Heavy quark limit for virtual corrections.

and the subtracted cross section is given by

σ(gg → gH) =
1

2 ŝ

∫
dPS2

{
|M(gg → gH)|2 − 4 π αs

2
CADggg |MLO|2

}

CS

= − 11

1152

(
α3
s

π2 v2

)(
1− M2

H

ŝ

)3

(3.77)

TheI,K andP terms are

I(ε) =
αs
2π
CA

1

Γ(1− ε)

(
4πµ2

Q2

)ε(
2

ε2
− π2

3
+O(ε)

)

Ka(xpa) =
αs
2π
CA

1

Γ(1− ε)

{
4

(
ln(1− x)

1− x

)

+

+ 4

(
−1 + x(1− x) +

1− x

x

)
ln(1− x)

− 2

(
x

(1− x)+
+ x(1− x) +

1− x

x

)
ln

(
4πµ2

2xpa · pb

)

− 2

(
x

(1− x)+
+ x(1− x) +

1− x

x

)
ln x

}

P (x, µ2
F ) =

αs
2π
CA

1

Γ(1− ε)

{
2

(
x

(1− x)+
+ x(1 − x) +

1− x

x

)
ln

(
4πµ2

µ2
F

)}
(3.78)

3.3.4 One-loop virtual corrections

Now we compute the one-loop virtual matrix element (Fig. 3.20) in the MS renormalization
scheme. In the heavy quark limitMtop → ∞ the Higgs boson couples to the trace of the energy
momentum tensor [48–50,58,59]

θ ≡ θµµ = ∂µsµ =
β(gs)

2 gs
GA
µν G

µν
A + (1 + δ)Mtop t̄ t (3.79)
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wheresµ is the scale current. The(1 + δ) term arises from the low energy theorem [53, 60–62].
Since the Higgs coupling to heavy fermions isMtop (1 +H/v) t̄ t, the counterterm for the Higgs
Yukawa interaction is fixed in terms of the fermion mass and wave function renormalization. We
haveδ = 2αs/π. Hence, in the heavy quark limitMtop → ∞ we have

Leff =
H

2 v

β(gs)

gs (1 + δ)
GA
µν G

µν
A (3.80)

Since theggH coupling results from heavy quark loops, only processes with heavy fermions
contribute to theβ function. The heavy fermion contribution to the QCDβ function is [63,64]

β(gs)

gs

∣∣∣∣
heavy fermions

= NH
αs
2 π

(
1

3
+
αs
π

19

12

)
(3.81)

Here,NH denotes the number of heavy fermions. Therefore, to second order

Leff =
αs

12 π v
H GA

µν G
µν
A

(
1 +

11

4

αs
π

)
(3.82)

As a consequence of the non-abelian gauge invariance, the Lagrangian Eq. (3.82) can not only
describe theHgg coupling, but also theHggg andHgggg interactions (see Fig. 3.21). After a
tedious calculation the one-loop virtual matrix element isgiven by [51,53]

|MV |2 = |MLO|2
αs
2 π

CA

(
4πµ2

M2
H

)ε
Γ(1 + ε)

(
− 1

ε2
+

2

3
π2 +O(ε)

)
× 2 (3.83)

Hence, we obtain
∫

1

dσBab(pa, pb)⊗ I(ε) +

∫
dσV =

∫

1

dσBab(pa, pb)
αs
2 π

CA

(
2 π2

3

)
(3.84)

The leftover1/ε pole can be regularized by performing charge renormalization. The charge
counterterm in theMS renormalization scheme is (seee.g.[104,106])

σch = (4Zg) σ̂0(gg → H) (3.85)

where

Zg = −αs
2 ε

(
4πµ2

µ2
F

)ε
b0 Γ(1 + ε)

(
µ2
F

µ2

)ε

= −
(
11

6
CA − 2

3
nf TR

)
αs
4 π

(
4πµ2

µ2
F

)ε
Γ(1 + ε)

(
1

ε
+ ln

µ2
F

µ2

)
,

b0 =
1

2 π

(
11

6
CA − 2

3
nf TR

)
(3.86)
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andnf is the number of light quarks. So we write for the charge renormalization cross section

σch =
αs
2 π

1

Γ(1− ε)

∫

1

dσBab(pa, pb)

(
4πµ2

µ2
F

)ε(
−2

ε
− 2 ln

µ2
F

µ2

)(
11

6
CA − 2

3
nf TR

)
(3.87)

Now if we combine real contributions, virtual contributions, charge renormalization and collinear
counter terms the physical cross section forgg → H is completely finite.

In summary, we see, that the pole structures inI(ε) terms are equivalent between Catani-
Seymour’s scheme and Nagy-Soper’s scheme as they should. The finite terms inK andP are
shifted around due to different momentum mapping. However the final numerical/analytical
results are the same.

Result

In this subsection, we again summarize the results we obtainusing Nagy-Soper dipoles from
the different subprocesses of the Higgs production. The results shown here include one-particle
phase space cross sections, two-particle phase space subtracted cross sections, collinear coun-
terterms, virtual contributions, charge renormalizationas well as the effective Lagrangian cor-
rection5.

σ(gg → H) = σ(qq̄ → gH)
+∆σ(qg → qH) + σC(qg → qH) quark induced
+∆σ(gg → gH) + σC(gg → gH) + σV + σch + σeff gluon induced

(3.88)

where

∆σqq̄ = σ(qq̄ → gH) =
1

486

(
α3
s

π2 v2

)
(1− z)3

∆σqg = ∆σ(qg → qH) + σC(qg → qH)

=
αs
π
σ0

{
−1 + 2 z − 1

3
z2 − 1

2
z Pgq(z)

[
ln
Q2

ŝ
− 2 ln(1− z)

]}

∆σgg = ∆σ(gg → gH) + σC(gg → gH) + σV + σch + σeff

=
αs
π
σ0

{
δ(1− z)

[
11

2
+ π2 +

(
11

6
CA − 2

3
nf TR

)
ln

(
µ2

µ2
F

)]}

+
αs
π
σ0

{
12

[(
ln(1− z)

1− z

)

+

− z [2− z (1− z)] ln(1− z)

]

−11

2
(1− z)3 − z Pgg(z) ln

Q2

ŝ

}

(3.89)

5See talks given by F.J. Petriello at PSI Zuoz Summerschool 2010: http://ltpth.web.psi.ch/zuoz2010/index.htm
and Fourth Graduate School in Physics at Colliders (Torino)2009:http://www.ph.unito.it/dft/scuola09/
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with

σeff = σ̂0
αs
π

11

2
, σ̂0 = σ0 δ(1− z) , σ0 =

α2
s

576 π v2
and z =

M2
H

ŝ

Here,∆σ(qg → qH) and∆σ(gg → gH) in Eq. (3.88) and Eq. (3.89) mean the sum of one-
particle and two-particle phase space contributions. We find total agreement with the results
in [51,53]. In the following sections we will show that the results of Nagy-Soper scheme, Catani-
Seymour scheme and literature [51,53] for the processgg → H are identical.

3.3.5 Proof: Nagy-Soper scheme and Catani-Seymour scheme

In this section, we prove that the results of Nagy-Soper scheme and Catani-Seymour scheme for
the processgg → H are equivalent. We only compare with real emission subtracted terms and
K terms. The remainingI andP terms are exactly the same in both schemes.

The subprocessgg → gH

The real emission subtracted cross section including PDFs for Catani-Seymour scheme is given
by

RCS =

∫ 1

0

dη

∫ 1

0

dη̄ g(η,Q2) g(η̄, Q2) θ(η η̄ s−M2
H)

[
− 11

1152

(
α3
s

π2 v2

)(
1− M2

H

ŝ

)3
]

=

∫ 1

τH

dτ
dLgg
dτ

[
− 11

1152

(
α3
s

π2 v2

)(
1− M2

H

ŝ

)3
]
, τ = η η̄, ŝ = τ s > M2

H , τH =
M2

H

s

where the differential parton luminosities are defined by

dLgg
dτ

= g ⊗ g(τ, Q2)

dLgq
dτ

= g ⊗ q(τ, Q2) + q ⊗ g(τ, Q2)

dLqq̄
dτ

= q ⊗ q̄(τ, Q2) + q̄ ⊗ q(τ, Q2) (3.90)

and the notation⊗ is given by

f ⊗ g
(
x, µ2

)
=

∫ 1

x

dz

z
f
(
z, µ2

)
g
(x
z
, µ2
)

(3.91)

The variablesη andη̄ denote momentum fractions of the partons. Furthermore,ŝ ands are the
center-of-mass energies of partons and hadrons, respectively, whileq(q̄) andg in Eq. (3.90) are
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PDFs of quark (antiquark) and gluon. The PDFs belong to the long-distance physics process
of the scattering and hence belong to the non-perturbative part. But their evolutions follow the
master equation of QCD: DGLAP equation, by which we can predict how PDFs evolve from one
scale to another scale.

t
d

dt
qa(x, t) =

αs(t)

2π

∫ 1

x

dξ

ξ
Pab

(
x

ξ
, αs(t)

)
qb(ξ, t) (3.92)

wheret = µ2 andPab is the splitting function. More generally, the DGLAP equation in(2nf+1)-
dimension in the flavour space (flavour= quarks, antiquarks and gluons) is

t
∂

∂t

(
qi(x, t)
g(x, t)

)
=

αs(t)

2 π

∑

qj ,q̄j

∫ 1

x

dξ

ξ


 Pqiqj

(
x
ξ
, αs(t)

)
Pqig

(
x
ξ
, αs(t)

)

Pgqj

(
x
ξ
, αs(t)

)
Pgg

(
x
ξ
, αs(t)

)


(
qj(ξ, t)
g(ξ, t)

)

(3.93)
The real emission subtracted cross section including PDFs for Nagy-Soper scheme is given by

RNS =

∫ 1

τH

dτ
dLgg
dτ

[
1

384 ŝ

(
α3
s

π2 v2

)(
1− M2

H

ŝ

){
4 ŝ (2M4

H − 2M2
H ŝ+ ŝ2)

(M2
H − ŝ)2

ln

(
ŝ

M2
H

)

+
M4

H + 34M2
H ŝ+ ŝ2

3 ŝ
+

4M2
H ŝ

M2
H − ŝ

}]
(3.94)

Define∆K = KCS −KNS and we found

∆Ka =
αs
2 π

CA (−2)

{(
x

1− x
+

1− x

x

)
ln x+

(
x2 − 1− x

x

)}

Convoluting former expression with PDFs and an additional one-dimensional integration yield
∫

∆Ka +

∫
∆Kb =

∫ 1

τH

dτ
dLgg
dτ

[
− 6

576

(
α3
s

π2 v2

)(
M2

H

ŝ

){(
M2

H

ŝ

)2

− ŝ

M2
H

(
1− M2

H

ŝ

)

−
(

ŝ

M2
H

(
1− M2

H

ŝ

)
+

M2
H

ŝ (1−M2
H/ŝ)

)
ln

ŝ

M2
H

} ]
(3.95)

Hence, it is straightforward to show that
∫
∆Ka+

∫
∆Kb+RCS−RNS = 0 , where the symbolic

notation
∫
∆K simply means the convolution with PDFs and an additional one-dimensional

integration.

The subprocessqg → qH

The real emission subtracted cross section including PDFs for Catani-Seymour scheme is given
by

RCS =
∑

q,q̄

∫ 1

τH

dτ
dLgq
dτ

[
− 1

576

(
α3
s

π2 v2

)(
1− M2

H

ŝ

)2
]

(3.96)
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The real emission subtracted cross section including PDFs for Nagy-Soper scheme is given by

RNS =
∑

q,q̄

∫ 1

τH

dτ
dLgq
dτ

[
1

1728 ŝ

(
α3
s

π2 v2

)(
1− M2

H

ŝ

)(
3M2

H + ŝ+ 4 ŝ ln

(
ŝ

M2
H

))]

(3.97)

From the definition of∆K = KCS −KNS it follows that

∆K =
αs
2 π

CF
2 (1− x)

x
(1− ln x)

Convolution with PDFs and an additional one-dimensional integration yield

∫
∆K =

∑

q,q̄

∫ 1

τH

dτ
dLgq
dτ

[
1

576

4

3

(
α3
s

π2 v2

)(
1− M2

H

ŝ

)(
1 + ln

ŝ

M2
H

)]
(3.98)

Hence, it is straightforward to show that
∫
∆K +RCS − RNS = 0 .

3.3.6 Proof: Catani-Seymour scheme and literature results

In this section, we show that the results of Catani-Seymour scheme for the processgg → H are
identical to literature results [51,53] and hence we complete our proofs that CS, NS and literature
results agree with each other. Here, we only compare with thereal emission part,K term andP
term; terms proportional toδ function are straightforward and hence we will not list the proofs.

The subprocessgg → gH

In the limit that the top quark mass is infinitely large, the parton level cross section is given by6

σ̂0(gg → H) =
α2
s

π

M2
H

576 v2
δ
(
ŝ−M2

H

)
=

α2
s

576 π v2
δ (1− z) = σ0 δ (1− z) (3.99)

with

σ0 =
α2
s

576 π v2
and z =

M2
H

ŝ
(3.100)

The real emission subtracted cross section is then

σ(gg → gH) = − 11

1152

(
α3
s

π2 v2

)
(1− z)3 =

αs
π
σ0

[
−11

2
(1− z)3

]
(3.101)

6Here we put a hat on cross sectionσ0 in order to indicate that we only work on parton level.
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Next we consider theK term and theP term contributions. They can be written as
∫ 1

0

dx

∫
dσB(x)⊗ [K(x) + P (x)]× 2 =

∫ 1

0

dx
[
σ0M

2
H δ
(
xŝ−M2

H

)]
⊗ [K(x) + P (x)]× 2

= σ0
M2

H

ŝ
[K(x) + P (x)]× 2 , with x =

M2
H

ŝ

=
αs
π
σ0

{
12

[
x

(
ln(1− x)

1− x

)

+

− x [2− x (1− x)] ln(1− x) + ln(1− x)

]
− xPgg(x) ln

Q2

ŝ

}

(3.102)

where we have added an extra term

0 = − δ(1− x)

(
11

6
CA − 2

3
nf TR

)
ln x (3.103)

in Eq. (3.102) and we have also used the plus prescription in such a way that

x

(
ln(1− x)

1− x

)

+

+ ln(1− x) →
(
ln(1− x)

1− x

)

+

(3.104)

Here, the test function is simply the LO cross section. Combining Eq. (3.101) and Eq. (3.102),
we obtain Eq. (10) of [53].

The subprocessqg → qH

The real emission subtracted cross section is

σ(qg → qH) =
αs
π
σ0
(
−1 + 2 z − z2

)
(3.105)

TheK term and theP term contributions are given by
∫ 1

0

dx

∫
dσB(x)⊗ [K(x) + P (x)] =

αs
π
σ0

{
2

3
z2 − 1

2
z Pgq(z)

[
ln
Q2

ŝ
− 2 ln(1− z)

]}

(3.106)

Here,x = z =
M2

H

ŝ
. Combining Eq. (3.105) and Eq. (3.106), we obtain Eq. (11) of[53].

3.4 Higgs decay:H → gg

A closely related problem to the processgg → H at NLO is the QCD radiative corrections to
the gluonic decay modes of the Higgs boson. Two different emissions appear at NLO: either the
emission of an additional gluon or the splitting of one gluoninto aqq̄ pair.

H → g g g, H → g q q̄ (3.107)
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for which we can test the final pieces of splitting processes in the final state using Nagy-Soper
dipoles:g → gg andg → qq̄. The lowest-order, real emissions and virtual diagrams areshown in
Fig. 3.21 and Fig. 3.22. The NLO QCD calculations have already been available in the literatures
for some time [53–55].

3.4.1 The subprocessH → gqq̄

We consider the heavy quark limitMtop � MH . Using again the effective Lagrangian shown in
Eq. (3.54), the lowest-order matrix element forH(Q) → g(p1)g(p2), which includes a symmetry
factor1/2! for identical gluons in the final state, is given by

|MLO|2 =
2

9

α2
sM

4
H

π2 v2
(1− ε) (3.108)

Here, we calculate ind = 4− 2 ε dimensions. The matrix element forH(Q) → g(p1)q(p2)q̄(p3)

is

|M(H → gqq̄)|2 = 16

9

α3
s

π v2
(p1 + p2)

4 + (p1 + p3)
4

(p2 + p3)2

=
16

9

α3
s

π v2
Q̂2 (x1 + x2 − 1)2 + (1− x2)

2

(1− x1)
(3.109)

wherex1, x2 andx3 are defined by

x1 =
2p̂k · Q̂
Q̂2

, p̂k → p1, Q̂2 = Q2 =M2
H

x2 =
2p̂` · Q̂
Q̂2

, p̂` → p2

x3 =
2p̂j · Q̂
Q̂2

, p̂j → p3 (3.110)

The collinear singularity arises fromx1 → 1. Introducing the dipoleDgqq̄, defined in Section 2.4,
we find

4 π αs
2

TRDgqq̄ |MLO|2 × 2

=
4 π αs
2

TR |MLO|2
2

(p̂` · p̂j)2
{
p̂` ·Q p̂j · p` + p̂j ·Q p̂` · p`

p` ·Q
− Q2 p̂` · p` p̂j · p`

(p` ·Q)2
}
× 2

=
8

9

α3
s

π v2
Q̂2 1

1− x1

{
x2 (x1 + x2 − 1) + (2− x1 − x2) (1− x2)

x1

−2
(1− x1) (1− x2) (x1 + x2 − 1)

x21

}
+ (x2 ↔ x3) (3.111)
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Here, the dot productŝpj · p` andp̂` · p` are related toλ, x, y anda` via

p` · p̂j =
1

λ

(
y − 1− λ+ y

2 a`
x (1 + y)

)
p` ·Q

p` · p̂` =
1

λ

(
y − 1− λ+ y

2 a`
(1− x) (1 + y)

)
p` ·Q (3.112)

whereλ, x, y anda` are defined in Section 2.3 and Section 2.4. It is worth mentioning that the
second term in Eq. (3.111) is exactly the same as the first term, so we can just simply multiply by
a factor of 2 in the end. Integrating over the three particle phase space and summing over final
state quark flavours yields the subtracted decay rate

dΓ(H → gqq̄) =
1

2MH

∫
dPS3

∑

q

(
|M(H → gqq̄)|2 − 4 π αs

2
TRDgqq̄ |MLO|2 × 2

)

=
GF M

3
H α

2
s

36
√
2 π3

(
− 5

18
nf

)
αs
π

(3.113)

Next we use the results of the integrated splitting functions for them-parton phase space contri-
butions (Section 2.5), which in the case ofgqq̄ splitting only involves collinear integral. Hence,
the integratedgqq̄ splitting function, which sums over final state quark flavours, is given by

4παs
2 (1− ε)

TR µ
2ε
∑

q

∫
dζpv

2
gqq̄ × 2 =

αs
2 π

TR

(
4πµ2

2p` · Q̂

)ε
1

Γ(1− ε)
nf

(
− 2

3 ε
− 16

9

)
× 2 .

(3.114)

3.4.2 The subprocessH → ggg

The matrix element forH(Q) → g(p1)g(p2)g(p3), which includes a symmetry factor1/3! for
identical gluons in the final state, is given by

|M(H → ggg)|2

=
α3
s

π v2
32

3

1

3!

[(p1 + p2)
2 + (p1 + p3)

2 + (p2 + p3)
2]

4
+ (p1 + p2)

8 + (p1 + p3)
8 + (p2 + p3)

8

(p1 + p2)2(p1 + p3)2(p2 + p3)2

=
α3
s

π v2
32

3

1

3!

{
2s2123s12
s13s23

+
2s2123s13
s12s23

+
2s2123s23
s12s13

+
2s12s13
s23

+
2s12s23
s13

+
2s13s23
s12

+ 8s123

}

(3.115)

where the first three terms correspond to soft singularities(interference terms) and the next three
terms correspond to collinear singularities. Since there are three identical gluons in the final
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Figure 3.21: Decays of the Higgs boson: LO diagrams andH → ggg,H → gqq̄ diagrams.

g

g

H Q

g

g

H

g

g

H Q

g

g

H

Figure 3.22: Decays of the Higgs bosonH → gg : virtual diagrams.
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state, the labelling of the gluon, denoted withp̂j (j = 1, 2, 3), is arbitrary. So we have to take all
combinations into account:

A : p̂j = p1 → emitted gluon p2/p3 → emitter/spectator(or spectator/emitter)

B : p̂j = p2 → emitted gluon p1/p3 → emitter/spectator(or spectator/emitter)

C : p̂j = p3 → emitted gluon p1/p2 → emitter/spectator(or spectator/emitter)

so the dipoles corresponding to soft part can be written as three different configurationsA,B,C

Ds =
4 π αs
2

CA |MLO|2
1

3

(
v2s(A) + v2s(B) + v2s(C)

)
× 2

=
α3
s

π v2
32

3

1

3!

{
2s2123s12
s13s23

+
2s2123s13
s12s23

+
2s2123s23
s12s13

}
(3.116)

where

v2s = v2eik − v2soft =
4 p̂` · p̂k p̂` · Q̂(

p̂j · p̂k p̂` · Q̂ + p̂` · p̂j p̂k · Q̂
)
p̂` · p̂j

, (`, j, k = 1, 2, 3)(3.117)

and factor of2 in Eq. (3.116) is present due to the fact that emitters and spectators are inter-
changeable. The dipole corresponding to collinear part is

Dc =
4 π αs
2

CA |MLO|2
1

3

(
v2c (A) + v2c (B) + v2c (C)

)
× 2

=
4

3

α3
s

π v2
Q̂4 1

3





4s12s13

s23(s12 + s13)2


2− 4s23Q̂

2

(s12 + s23)(s13 + s23)
+

[
2s23Q̂

2

(s12 + s23)(s13 + s23)

]2


+
4s12s23

s13(s12 + s23)2



2− 4s13Q̂
2

(s12 + s13)(s13 + s23)
+

[
2s13Q̂

2

(s12 + s13)(s13 + s23)

]2



+
4s13s23

s12(s13 + s23)2



2− 4s12Q̂
2

(s12 + s23)(s12 + s13)
+

[
2s12Q̂

2

(s12 + s23)(s12 + s13)

]2





 (3.118)

where

v2c = ṽ2ggg − v2eik

=
(p̂j ·Q− p̂j · p`) (p̂` ·Q− p̂` · p`)

(p` ·Q)2 p̂` · p̂j

{
2− 2

p̂j · p̂`Q2

p̂` ·Q p̂j ·Q
+

(
p̂j · p̂`Q2

p̂` ·Q p̂j ·Q

)2
}

(`, j, k = 1, 2, 3) (3.119)
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Here, factor of 2 is present for the same reason as explained above. Integrating over the three
particle phase space yields the subtracted decay rate

dΓ(H → ggg) =
1

2MH

∫
dPS3

(
|M(H → ggg)|2 −Dc −Ds

)

=
GF M

3
H α

2
s

36
√
2π3

(−214 + 27 π2

24

)
αs
π

(3.120)

Next we have to consider them-parton phase space contributions, the integrated splitting func-
tions in the case ofggg splitting involve both the collinear and soft integrals (see Section 2.5)
which are given by

(
4παs

2 (1− ε)
CA µ

2ε

∫
dζp

[
ṽ2ggg − v2eik

]
+ 4 π αs CA µ

2ε

∫
dζp∆W

)
× 2

=
αs
2 π

CA

(
4πµ2

2p` · Q̂

)ε
1

Γ(1− ε)

(
2

ε2
+

11

3 ε
+

163

9
− 7

4
π2

)
(3.121)

Here, the1/(1− ε) is already included in the soft term. The virtual matrix element forH → gg

in the MS scheme is given in Eq. (3.83). Now, if we combine the real emission contributions
H → gqq̄, H → ggg and virtual contribution, the1/ε2 pole is cancelled

dΓ(H → gg(g) + gqq̄)

=
1

2MH

∫
dPS2

{
|MV |2 +

∑

q

∫
dζpD(gqq̄) |MLO|2 +

∫
dζpD(ggg) |MLO|2

}

+ dΓ(H → ggg) + dΓ(H → gqq̄)

= ΓLO

(
4πµ2

µ2
F

)ε
1

Γ(1− ε)

( αs
2 π

)
β0

2

ε
+ ΓLO

(
73

4
− 7

6
nf

) (αs
π

)
(3.122)

and the leftover1/ε pole has to be renormalized by performing charge renormalization. Here,
D(gqq̄) andD(ggg) are symbolic notations for splitting functions with appropriate prefactor
neglected, and their explicit expressions are given in Eq. (3.114) and Eq. (3.121). The charge
counterterm in theMS renormalization scheme is

Γch = (4Zg) ΓLO(H → gg) (3.123)

where

Zg = −αs
2 ε

(4 π)ε b0 Γ(1 + ε), b0 =
1

2 π

(
11

6
CA − 2

3
nf TR

)
=

1

2π
β0 (3.124)

andnf is the number of light quarks. Hence

Γch = −ΓLO
1

Γ(1− ε)

(
4πµ2

µ2
F

)ε (αs
π

)
β0

1

ε
− ΓLO

(αs
π

)
β0 ln

µ2
F

µ2
(3.125)
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If we treat everything equivalently in the effective theory, we need to add the effective Lagrangian
correction term, which is given by7

ΓLO
αs
π

11

2
(3.126)

Result

Combining all contributions to the total decay rate forH → gg at NLO, the result is completely
finite

ΓLO + Γ(H → gg(g) + gqq̄) + Γch

= ΓLO

[
1 +

[(
95

4
− 7

6
nf

)
+

(
11

6
CA − 2

3
nf TR

)
ln
µ2

µ2
F

]
αs (M

2
H)

π

]
(3.127)

where

ΓLO(H → gg) =
GF M

3
H α

2
s

36
√
2π3

(3.128)

The result shown here is in agreement with [53].

7See talks given by F.J. Petriello at PSI Zuoz Summerschool 2010: http://ltpth.web.psi.ch/zuoz2010/index.htm
and Fourth Graduate School in Physics at Colliders (Torino)2009:http://www.ph.unito.it/dft/scuola09/



Chapter 4

Conclusions

In this thesis we have proposed an alternative subtraction method at NLO QCD calculations.
The traditional way of regularizing the infrared singularities in both one-loop diagrams and real
radiation corrections in the context of dimensional regularization scheme is straightforward for
the analytic cancellation of the respective divergences. However, numerical implementations for
multi-particle processes prove to be challenging.

The subtraction method provides a way of achieving this. Thegoal of subtraction formalism
is to extract infrared divergences from real radiation matrix elements in order to combine them
with the one-loop virtual contributions. The key observation for the subtraction scheme is that a
(m + 1)-parton matrix element can be factorized into am-parton matrix element multiplied by
the generalised splitting functions (which contain the singularity structure of the(m+ 1)-parton
matrix element) in the soft and collinear limits based on thefactorization theorems (see Eq. (4.1)).
An important message is that the splitting functions are universal and process independent; this
means we calculate them once and for all. The symbolic expression is

Mm+1({p̂}m+1) ≈ v`({p̂}m+1) · Mm({p}m) . (4.1)

In this new scheme, dipoles (≈ |v`|2) are based on the momentum mappings and on the splitting
functions derived from an improved parton shower formulation with quantum interference [28].
Momentum mappings must guarantee total energy momentum conservation as well as the on-
shell condition for all external partons both before and after the mappings. One important feature
of our scheme is that we use a global momentum mapping in whichthe mapping takes all the
partons into account at once when going from(m + 1)- to m-particle phase space, instead of
separately summing over all possible emitter/spectator pairs like Catani-Seymour scheme. As
a result, the number of dipole terms is greatly smaller than the standard subtraction schemes.
Another essential point of our formalism is that we split thecollinear and soft (based on the
eikonal approximation) splitting functions according to Eq. (2.160) in such a way that the two
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termsW `` −W
eikonal
`` andW

eikonal
`` −W `k are positive and hence we can use these splitting func-

tions as dipole subtraction terms to construct a parton shower Monte Carlo program. The use
of the shower splitting functions as dipoles also significantly facilitates the matching of NLO
calculations with the corresponding parton shower.

We have also achieved the analytical integrations of the splitting functions over an unresolved
one parton integration measure, obtaining the correct softand collinear singularities inε that are
necessary to cancel the soft divergences in the virtual diagrams.

To establish our formalism we have investigated some simpleprocesses at colliders with up
to two massive/massless particles in the final state. We havepresented all subtraction terms
and their integrated splitting functions and have applied our scheme to a variety of well-known
processes at NLO, showing that the singular behaviours of the shower splitting functions in-
deed match the behaviours of real radiation matrix elementsand one-loop contributions in the
soft and collinear limits. In more detail1, we have investigated singleW production at hadron
colliders (initial-stateqq(x)g andgqq̄ collinear splittings, interference between initial states), di-
jet production at lepton colliders (final-stateqqg collinear splittings, interference between final
states), Higgs production at hadron colliders (initial-stateqqg(x) andggg collinear splittings,
interference between initial states), Higgs decay to two gluons (final-stategqq̄ andggg collinear
splittings, interference between final states). The discussions about interference between initial
and final states or interference between final and initial states can be found in [87] in which we
have used deep-inelastic scattering (DIS) process. In all cases, we have reproduced the results
from the literature and have shown that our implementation agrees with results obtained using
the Catani-Seymour scheme.

In this thesis, we have demonstrated that the global momentum mappings combined with the
shower splitting functions as dipoles indeed can be used as the subtraction terms for some simple
processes; the advantages of the two features will become apparent when applying to more in-
volved multi-parton processes at NLO or matching the NLO calculations with the corresponding
improved parton shower2. Due to the different momentum mapping prescription, our scheme
leads to more complicated finite parts of the integrated splitting functions when considering pro-
cesses with three or more final-state partons, and an exampleof the general case (a` 6= 1) for the
final-state splitting functiong → q q̄ has been presented in [86]. Nevertheless all these finite
parts can be integrated numerically in the respective MonteCarlo program. A generic application
to a more non-trivial scattering process is still work in progress. However, we are confident that
we will obtain some interesting results for multi-parton final states using our new scheme.

1c.f. Table 4.1
2We note that the work [89] is to implement the new scheme into the Helac Event Generator [90].
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Splitting function Process

Initial state:
qq(x)g singleW production, DIS
gqq̄ singleW production
qqg(x) Higgs production
ggg Higgs production
interference between initial states singleW production, Higgs production
interference between initial and final statesDIS

Final state:
qqg Dijet production, DIS
gqq̄ Higgs decay
ggg Higgs decay
interference between final states Dijet production, Higgs decay
interference between final and initial statesDIS

Table 4.1: List of all splitting functions presented in Chapter 2 and test processes used for the
scheme validation in Chapter 3 and [87].



Chapter 5

Appendix

5.1 Useful mathematical formulae

Here are some formulae that I find useful from time to time.

5.1.1 Gamma function, Beta function and Hypergeometric function

Gamma function

We make frequent use of the EulerΓ-function, which can be defined by the convergent integral

Γ(z) =

∫ ∞

0

dt tz−1 e−t, Re{z} > 0 (5.1)

Integration by parts can confirm the identity

Γ(1 + z) = z Γ(z) (5.2)

Hence, for positive, integer values ofz, we have

Γ(z) = (z − 1)! (5.3)

Eq. (5.2) can also be used to shift the argument and define theΓ-function whenRe{z} < 0. This
shows that there are simple poles atz = 0,−1,−2, · · · . The following expansion is also useful

Γ(1 + ε) = 1− γE ε+

(
π2

12
+

1

2
γ2E

)
ε2 +O(ε3) (5.4)

whereγE = 0.577 215 664 901 53 · · · is the Euler-Mascheroni constant.
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Beta function

We will also sometimes use theβ-function integral, which is defined by

B(1 +m, 1 + n) =

∫ 1

0

dx xm (1− x)n =
Γ(1 +m) Γ(1 + n)

Γ(2 +m+ n)
, Re{m,n} > −1 (5.5)

Hypergeometric function pFq(a1, · · · , ap; b1, · · · , bq; x)

Next we list a couple of useful relations for the Hypergeometric functions; further details can be
found in [119,120].

pFq(a1, · · · , ak−1, ak, ak+1, · · · , ap; b1, · · · , bm−1, ak, bm+1, · · · , bq; x)
= p−1Fq−1(a1, · · · , ak−1, ak+1, · · · , ap; b1, · · · , bm−1, bm+1, · · · , bq; x) (5.6)

∫ 1

0

dx xm−1 (1− x)n−1
pFq(a1, · · · , ap; b1, · · · , bq; xt)

=
Γ(m) Γ(n)

Γ(m+ n)
p+1Fq+1(m, a1, · · · , ap;m+ n, b1, · · · , bq; t) (5.7)

2F1(a1, a2; b; x) =
Γ(b)

Γ(a2)Γ(b− a2)

∫ 1

0

dt ta2−1(1− t)b−a2−1(1− xt)−a1

2F1(a1, a2; b; 1) =
Γ(b)Γ(b− a1 − a2)

Γ(b− a1)Γ(b− a2)
(5.8)

5.1.2 Dilogarithm function

The dilogarithm function can be defined by the sum

Li 2(z) =
z1

12
+
z2

22
+
z3

32
+ · · · =

∞∑

n=1

zn

n2
(5.9)

or the integral

Li 2(z) = −
∫ 1

0

dt
ln(1− t z)

t
= −

∫ z

0

dt
ln(1− t)

t
(5.10)

The derivative of the dilogarithm function is given by

d

dz
Li 2(z) = − ln(1− z)

z
(5.11)
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The major functional equations for the dilogarithm function are given by

Li2(1− z) = −Li 2(z)− ln(z) ln(1− z) + ζ(2)

Li2

(
1

z

)
= −Li 2(z)−

1

2
ln2(−z) − ζ(2)

Li 2

(
1

1− z

)
= Li2(z) + ln(1− z) ln(−z)− 1

2
ln2(1− z) + ζ(2)

Li2

(
−1− z

z

)
= Li2(z) + ln(z) ln(1− z)− 1

2
ln2(z)− ζ(2)

Li2

(
− z

1− z

)
= −Li 2(z)−

1

2
ln2(1− z)

Li2(z
2) = 2 [Li2(z) + Li2(−z)] (5.12)

where the Riemann zeta function is defined by

ζ(n) =
∞∑

k=1

1

kn
(5.13)

The values ofζ(n) for small positive integer values ofn are

ζ(2) =
π2

6
ζ(3) = 1.202 056 903 159 59 · · ·

ζ(4) =
π4

90
(5.14)

5.1.3 The volume element ind dimensions

We consider general formula of the volume element ind dimensions

dVd = ddr = rd−1 dr dΩd (Euclidean space) (5.15)

where the area element in Euclidean space is

dΩd =

d−1∏

`=1

sind−1−` θ` d θ` =

∫ π

0

d θ1 sin
d−2 θ1 · · ·

∫ π

0

d θd−2 sin θd−2

∫ 2π

0

d θd−1

=

∫ 2π

0

d φ

d−2∏

`=1

∫ π

0

d θ` sin
` θ` where θ ∈ [0, π], φ ∈ [0, 2 π] (5.16)

and the following relations hold
∫ π

0

d θ sin` θ =
√
π
Γ
(
`+1
2

)

Γ
(
`+2
2

) ,
d−2∏

`=1

∫ π

0

d θ` sin
` θ` =

π
d
2
−1

Γ (d/2)
(5.17)



114 CHAPTER 5. APPENDIX

d Γ(d/2)
∫
dΩd

1
√
π 2

2 1 2 π
3

√
π/2 4 π

4 1 2 π2

Table 5.1: The values ofΓ(d/2) anddΩd.

The relation betweendΩd−1 anddΩd−2 is given by

dΩd−1 = dΩd−2

∫ π

0

dθ sind−3 θ = dΩd−2

∫ 1

−1

d cos θ
(
1− cos2 θ

) d−4
2

=

∫ 2π

0

d φ

d−3∏

`=1

∫ π

0

d θ` sin
` θ` (5.18)

Finally, we give the values ofΓ(d/2) anddΩd for d = 1, · · · , 4 in Table 5.1.

5.2 Integration measures

In this subsection we will first derive the integration measures for both the initial state and final
state splittings. In order to extract the correct pole structures we have to define good parametriza-
tions of the kinematics. Then we will also list master integrals and general formulae that are used
to extract singularities and finite terms in Section 2.5.

5.2.1 Final state splitting

Integration measure: a` = 1

With the kinematics as defined in Section 2.4.3, we obtain theintegration measure

dζp =
(2 p` ·Q)1−ε

16 π2

(4 π)ε

Γ(1− ε)

∫ ymax

0

dy y−ε λ1−2 ε

∫ 1

0

dz [z (1− z)]−ε
∫
dd−2Ω

Ωd−2
(5.19)

for the integration ind = 4− 2 ε dimensions. Here,

ymax =
(√

a` −
√
a` − 1

)2
= 2 a` − 1 − 2

√
a` (a` − 1) (5.20)
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For the integration of the interference terms, we need to consider the additional azimuthal angle
of the emitted particle. Hence we keep the second angular integration,

dΩd−2 = dΩd−3

∫ 1

−1

d cosϕ
(
1− cos2 ϕ

)− (1+2ε)
2

=
21−2επ

1
2
−ε

Γ
(
1
2
− ε
)
∫ 1

0

dv′ [v′(1− v′)]
− (1+2ε)

2 ,

∫
dΩd =

2 πd/2

Γ (d/2)
(5.21)

whereϕ is now the azimuthal angle of the emitted parton. So the integration measure becomes

dζp =
(2 p` · Q̂)1−ε

16

π− 5
2
+ε

Γ
(
1
2
− ε
)
∫ ymax

0

dy y−ε λ1−2 ε

∫ 1

0

dz [z (1− z)]−ε
∫ 1

0

dv′ [v′ (1− v′)]
− (1+2ε)

2

(5.22)
In the integration, we will usev′ as a variable; however, the splitting functions are writtenin
terms ofv = v[z̄(y), z, v′]

v = (4v′ − 2) [z(1 − z)z̄(1− z̄)]
1
2 + z + z̄ − 2 z z̄ (5.23)

Note that Eq. (5.23) has been derived in a specific frame whichgenerally does not coincide with
the frame following in the inverse transform fromm- to (m+1)-particle phase space. In general,
v is defined in Eq. (2.111),i.e.

v =
p̂j · p̂k
p̂k · P`

,

wherep̂k needs to be calculated using the Lorentz transformation

p̂µk = Λ(K̂,K)µν p
ν
k .

We now consider the special case in whicha` = 1 ( which corresponds toλ = 1 − y). We start
with the integral

I =

∫ 1

0

dy y−ε (1− y)1−2ε

∫ 1

0

dz [z (1− z)]−ε (5.24)

We now make a change of variable such that

x = y + z (1− y) (5.25)

thus we have

I =

∫ 1

0

dy y−ε
∫ 1

y

dx [(x− y) (1− x)]−ε (5.26)

We now change the integration order

∫ 1

0

dy

∫ 1

y

dx −→
∫ 1

0

dx

∫ x

0

dy
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and obtain

I =

∫ 1

0

dx

∫ x

0

dy y−ε [(x− y) (1− x)]−ε (5.27)

We now make a change of variable once again

u =
y

x

finally leads to

I =

∫ 1

0

dx x1−2ε (1− x)−ε
∫ 1

0

du u−ε (1− u)−ε (5.28)

Now the integration measure becomes

dζp =
(2p` · Q̂)1−ε

16

π− 5
2
+ε

Γ
(
1
2
− ε
)
∫ 1

0

du u−ε (1− u)−ε
∫ 1

0

dx x1−2ε (1−x)−ε
∫ 1

0

dv′ [v′ (1− v′)]
− (1+2ε)

2

(5.29)
Hereu andx can be expressed in terms of momenta, we have

x =
p̂j ·Q
γ p` ·Q

, u = γ
p̂` · p̂j
p̂j ·Q

(5.30)

For a` = 1 case we haveγ = 1. It follows immediately thatx is purely soft variable and
u is purely collinear variable. Note that the collinear integrations do not depend onv′ (or the
azimuthal angleϕ), while the soft integrations do depend onv′ or ϕ.

Integration measure: general casea` 6= 1

Again, we start with the integral

I =

∫ ymax

0

dy y−ε λ1−2ε

∫ 1

0

dz [z (1− z)]−ε (5.31)

The first variable transformation is defined via

z =
x− x0
1− x0

(5.32)

leading to

I =

∫ ymax

0

dy y−ε γ1−2 ε

∫ 1

x0

dx [(1− x) (x− x0)]
−ε (5.33)

Next we use the rescaling parameterδ defined as

1 + δ =
a` −

√
a2` − a`

4x
(1+x)2

2 x
(1 + x)2 ≥ 1 (5.34)
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and redefine

y = δ u (5.35)

We then obtain

I =

∫ 1

0

du u−ε
∫ 1

0

dx δ1−ε γ1−2ε [(1− x) (x− x0)]
−ε (5.36)

Finally the complete integration measure is

dζp =
(2 p` · Q̂)1−ε

16

π− 5
2
+ε

Γ
(
1
2
− ε
)

×
∫ 1

0

du u−ε
∫ 1

0

dx δ1−ε γ1−2 ε [(1− x) (x− x0)]
−ε
∫ 1

0

dv′ [v′ (1− v′)]
− 1+2 ε

2 (5.37)

Fora` = 1 we of course obtain the result in the last subsection.

5.2.2 Initial state splitting

Integration measure

For the initial state splitting, the integration measure isgiven by

dζp =
ddp̂j
(2 π)d

2 π δ+(p̂2j )
α

α̂
=

ddp̂j
(2 π)d

2 π δ+(p̂2j )
dη̂a
dηa

(5.38)

whereα = ηbs andα̂ = ηb s−2 pA · p̂j. The factorα/α̂ is just the derivativedη̂a/dηa calculated
from the relationK̂2 = K2. Using the identity

ddp δ+(p2) =
1

2
(p0)d−3 dp0 dΩd−2 d cos θ

(
1− cos2 θ

) d−4
2 (5.39)

We then obtain

dζp = dx dy
(ηa ηb s)

1−εxε−1

Γ(1− ε)(4 π)2−ε
(1− x)−2ε

[
y

1− x

(
1− y

1− x

)]−ε
1

x
θ(x− ηa)

× θ(x (1− x)) θ(y) θ

(
1− y

1− x

)
(5.40)

where we calculated ind = 4 − 2 ε dimensions. However, note that the change of variables in
ηa corresponds to

∫ 1

0

dη̂a =
1

x

∫ x

0

dηa (5.41)
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so we have to impose the conditionx > ηa; alternatively, we can not make the change of
variables and keep̂ηa = ηa/x as the integration variable; this is the approach followed in [22].
For comparison, we will instead use

dζp → dζp
1

x
θ(x− ηa) (5.42)

For the integration of the interference terms, we need to keep the additional azimuthal angleϕ
of the emitted particle indΩd−2; see Eq. (5.21). Using the variables as defined in Section 2.4.4,
we obtain for the integration measure including the additional angle,

dζp = dx dy dv′
(ηa ηb s)

1−εxε−1

(4 π)2
(1− x)−2ε

[
y

1− x

(
1− y

1− x

)]−ε

× πε−
1
2

Γ
(
1−2ε
2

) (v′ (1− v′))
− (1+2ε)

2
1

x
θ(x− ηa)

× θ(x (1− x)) θ(y) θ

(
1− y

1− x

)
θ(v′ (1− v′)) (5.43)

In the integration, we will usev′ as a variable; however, the splitting functions are writtenin
terms ofv = v(z̄, y′, v′)

v = (4v′ − 2) [y′ (1− y′) z̄ (1− z̄)]
1
2 + y′ + z̄ − 2 y′ z̄ (5.44)

hence we have

vmax = y′ + z̄ − 2y′z̄ + 2 [y′(1− y′)z̄(1− z̄)]
1
2

vmin = y′ + z̄ − 2y′z̄ − 2 [y′(1− y′)z̄(1− z̄)]
1
2 (5.45)

Note, however, that we can only use Eq. (5.44) in the singularlimits (x → 1 or y′ → 0) where
the dependence onv′ disappears; for the finite parts, we need to use the original definition given
by Eq. (2.135)

v =
η̂a ηb s p̂j · p̂k
2 p̂k · Q̂ p̂j · Q̂

=
1

1− x

p̂j · p̂k
p̂k · Q̂

wherep̂k needs to be calculated using the Lorentz transformation

p̂µk = Λ(x, y′)µν p
ν
k = Λ(K̂,K)µν p

ν
k . (5.46)

In the limits x → 1 or y′ → 0, we obtainp̂k → pk; and p̂j is parametrized according to
Sudhakov parametrization (e.g.[109]). The change of variables defined in Section 2.4.4 always
requires that the integration overv′ is performed before the integration overy in Eq. (5.43). It is
worth mentioning that̄z is not integrated out and therefore still depends onx, y′ andv′ through
the Lorentz transformation of̂pk. Also note that the collinear integrations do not depend onv′

(or the azimuthal angleϕ), while the soft integrations do depend onv′ or ϕ.
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5.2.3 Master integrals

Interference between initial and final states

The general master integrals appearing in Section 2.5.4 are
∫ 1

0

dy

y

{
z0√

4y2(1− z0) + z20
− 1

}
= ln z0 (5.47)

and
∫ 1

0

dv
[v (1− v)]−

1+2 ε
2

(4 v − 2) [y (1− y)z (1− z)]
1
2 + 2y + z − 2yz

=
π√

4y2(1− z) + z2



1− 2 ε ln




√
4y2(1− z) + z2

2
(
2y + z − 2yz +

√
4y2(1− z) + z2

)






+O(ε2)

(5.48)

Interference between final (final and initial) states

The general master integrals appearing in Section 2.5.5 are
∫ 1

0

du

u

1√
1 + 4a0(1 + a0)u2

ln
(
1 + 4a0(1 + a0)u

2
)

= −
[
π2

12
+ ln(1 + 2a0) ln [2(1 + a0)] + Li2 (−(1 + 2a0)) + Li 2 (−2a0)

]
(5.49)

∫ 1

0

dv
ln[v(1− v)]√
v(1− v)(av + b)

=
2π√

b
√
a + b

ln

√
b
√
a + b

(√
a+ b+

√
b
)2

∫ 1

ε

du
ln u

u
√
1 + bu2

=
1

2
ln2

(
2√

1 + b+ 1

)
+

1

2
Li 2

(√
1 + b− 1√
1 + b+ 1

)
− 1

2
ln2 ε

∫ 1

ε

du
ln u

u
= −1

2
ln2 ε (5.50)

and
∫ 1

0

dx
ln (1 + ax2)

x
√
1 + ax2

= −
[
π2

12
+

1

2
ln(a+ 1) ln

[√
a+ 1 + 1

]
+ Li 2

(
−
√
a + 1

)
+ Li2

(
1−

√
a+ 1

)]
(5.51)

Here,ε in Eq. (5.50) is just an infinitesimal parameter.
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5.2.4 Pole extractions

Single poles

For a function having a single pole,e.g.x = 0, we use
∫ 1

0

dx x−(1+ε)g(x) =

∫ 1

0

dx x−(1+ε) [g(x)− g(0)]− g(0)

ε
(5.52)

whereg(x) is nonsingular function atx = 0. For a general case where we integrate only up to
xmax instead of1, the equation above becomes

∫ xmax

0

dx x−(1+ε)g(x) =

∫ xmax

0

dx x−(1+ε) [g(x)− g(0)]− g(0)

ε
+ g(0) lnxmax (5.53)

Double poles

In order to extract the double poles,e.g.x = 0 andy = 0, we consider the following integral

I =

∫ 1

0

dx

∫ 1

0

dy
1

x1+ε
1

y1+ε′
g(x, y) (5.54)

whereg(x, y) is nonsingular function atx = 0 andy = 0. We use Eq. (5.52) twice and obtain
the general formula

I =

∫ 1

0

dx

∫ 1

0

dy
1

x1+ε
1

y1+ε′
[g(x, y)− g(x, 0)− g(0, y) + g(0, 0)]

− 1

ε′

∫ 1

0

dx
1

x1+ε
[g(x, 0)− g(0, 0)]− 1

ε

∫ 1

0

dy
1

y1+ε′
[g(0, y)− g(0, 0)] +

g(0, 0)

εε′
(5.55)

5.3 Colour algebra

Notations

In this section we will give a brief descriptions about the manipulations of colour algebra;
we will follow Catani-Seymour’s notations very closely. Here we will only consider the pro-
cesses that involve the final state QCD partons; in the case ofprocesses that involve the ini-
tial state QCD partons please refer to [22]. First, it will beconvenient to introduce a basis
{ | c1 · · · cm > ⊗ | s1 · · · sm > } in colour+ helicity space in such a way that

Mc1···cm , s1···sm
m (p1, · · · , pm) = {< c1 · · · cm | ⊗ < s1 · · · sm | } | 1, · · · , m >m (5.56)
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where | 1, · · · , m >m is a vector in colour+ helicity space;{c1 · · · cm} and{s1 · · · sm} are
colour indices (for gluons the values take1 · · ·N2 − 1, while the values take1 · · ·N for quarks
or antiquarks) and spin indices (the values takeµ = 1, · · · , d − 2 for gluons ands = 1, 2

for massless fermions), respectively. According to this notation, the matrix element squared
(summed over final-state colours and spins) can be written as

|Mm|2 = m< 1, · · · , m|1, · · · , m >m (5.57)

It is useful to define the square of colour-correlated tree-amplitudes according to

|Mi,k
m |2 = m< 1, · · · , m |Ti · Tk | 1, · · · , m >m

=
[
MA1···Bi···Bk···Am

m (p1, · · · , pm)
]∗ (

TC
)
BiAi

(
TC
)
BkAk

MA1···Ai···Ak···Am

m (p1, · · · , pm)
(5.58)

where we have associated a colour charge Ti with the emission of a gluon from each partoni.
Here we follow the notations in Chapter 1 where

(
TA
)
BC

≡ − i fABC (colour-charge matrix in
the adjoint representation) if the emitting partoni is a gluon andTAab ≡ tAab (colour-charge matrix
in the fundamental representation) if the emitting partoni is a quark; if the emitting partoni is a
antiquark, then we haveTAab ≡ t̄Aab = − tAba). It is straightforward to check that the colour-charge
algebra obeys

Ti · Tj = Tj · Ti if i 6= j, T2
i = Ci (5.59)

whereCi is the Casimir operator,i.e. , Ci = CF = (N2 − 1)/(2N) if i is a quark or antiquark
andCi = CA = N if i is a gluon. Each vector| 1, · · · , m >m is a colour-singlet state, therefore
colour conservation is

m∑

i=1

Ti | 1, · · · , m >m= 0 (5.60)

Examples

In this subsection we will practice with the simplest cases of colour algebra. For the cases with
two or three partons, the colour algebra can be computed in factorized form. First, we consider
the case with two partons. Using colour conservation relation, we have

T1 · T2 |1, 2 >= −T1 · T1 |1, 2 >= −T2
1 |1, 2 >= −T2

2 |1, 2 > (5.61)

so that all the charge operators{T2
1,T

2
2,−T1 · T2 } are factorizable in terms of the Casimir oper-

ator. Now we consider the case with three partons, using colour conservation, we have

0 =

(
3∑

i=1

Ti

)2

|1, 2, 3 >=
(
T2
1 + T2

2 + T2
3 + 2T1 · T2 + 2T1 · T3 + 2T2 · T3

)
|1, 2, 3 >

(5.62)
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and
(T1 · T2 + T1 · T3) |1, 2, 3 >= −T2

1 |1, 2, 3 > (5.63)

Combining these two equations we obtain

2T2 · T3 |1, 2, 3 >=
(
T2
1 − T2

2 − T2
3

)
|1, 2, 3 > (5.64)

and similarly for T1 · T3 and T1 · T2. Hence, all the charge operators are factorizable in terms of
linear combinations of the Casimir operatorsC1, C2 andC3.

The colour algebra does not factorize any longer when the total numbern of partons isn ≥ 4,
e.g., if n = 4 we have

T2
i |1, 2, 3, 4 >= Ci |1, 2, 3, 4 >, i = 1, · · · , 4 (5.65)

and

Ti ·
4∑

j=1

Tj |1, 2, 3, 4 >= 0, i = 1, · · · , 4 (5.66)

in order to single out two independent charge operators, we can write

T3 · T4 |1, 2, 3, 4 > =

[
1

2
(C1 + C2 − C3 − C4) + T1 · T2

]
|1, 2, 3, 4 >,

T2 · T4 |1, 2, 3, 4 > =

[
1

2
(C1 + C3 − C2 − C4) + T1 · T3

]
|1, 2, 3, 4 >,

T2 · T3 |1, 2, 3, 4 > =

[
1

2
(C4 − C1 − C2 − C3)− T1 · T2 − T1 · T3

]
|1, 2, 3, 4 >,

T1 · T4 |1, 2, 3, 4 > = − [C1 + T1 · T2 + T1 · T3] |1, 2, 3, 4 > (5.67)

and express all the charge operators in terms of Casimir invariants and T1 · T2 and T1 · T3.

5.4 Phase space integration

In this section, we present the parameterization of the n-particle phase space that we use to
evaluate the cross sections. The n-body phase space ind dimensions is

dPSn = (2 π)d δd

(
pa + pb −

n∑

i=1

pi

)
n∏

i=1

ddpi
(2 π)d−1

δ+(p2i −m2
i )

= (2 π)d δd

(
pa + pb −

n∑

i=1

pi

)
n∏

i=1

dd−1~pi
(2 π)d−1 2Ei

(5.68)
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whereδ+(q2 −m2) = δ(q2 −m2) θ(q0) ensures that we only consider positive-energy particles.
The case ofn = 1 is particularly simple

dPS1 = 2 π δ+(Q2 −m2)|Q=pa+pb (5.69)

For the two-body phase space (n = 2), Eq. (5.68) reduces to

dPS2(Q→ p1 + p2) =

∫
dd−1~p1

(2 π)d−1 2E1

∫
dd−1~p2

(2 π)d−1 2E2

(2 π)d δd(Q− p1 − p2)

=
1

4 (2 π)d−2

∫
dd−1~p1
E1E2

∫
dd−1~p2 δ

d−1( ~Q− ~p1 − ~p2)
︸ ︷︷ ︸

=1

δ(Q0 − E1 −E2)

=
1

4 (2 π)d−2

∫
dd−1~p1
E1E2

δ(Q0 −E1 − E2) (5.70)

whereEi =
√
~pi · ~pi +m2

i . We now consider the massive case in whichp2i = m2
i (i = 1, 2).

Using the identities
∫
dp02 δ

(
p02 −

√
~p2 · ~p2 +m2

2

)
= 1 and δ(p22 −m2

2) θ(p
0
2) =

1

2 p02
δ

(
p02 −

√
~p2 · ~p2 +m2

2

)

(5.71)
Hence we have

d3~q

2 q0
= d4q δ(q2 −m2) θ(q0) with q = p2 (5.72)

Using
d3~p1 = ~p1 · ~p1 d|~p1| dΩ , dΩ = d cos θ dφ, |~p1| d|~p1| = p01 dp

0
1 (5.73)

then we obtain

dPS2 =
1

8 π2
|~p1| dp01 dΩ θ

(√
s− p01

)
δ

(
p01 −

s+m2
1 −m2

2

2
√
s

)
1

2
√
s

=
1

32 π2

√
λ(s,m2

1, m
2
2)

s
dΩ θ

(√
s− s+m2

1 −m2
2

2
√
s

)
(5.74)

with

|~p1| =
√
λ(s,m2

1, m
2
2)

2
√
s

and λ(x, y, z) = x2 + y2 + z2 − 2 (x y + y z + z x) (5.75)

Here we work in the CM frame in whichQ = (
√
s,~0 ). If only one of the two final state particles

is massive with massm1 = m (m2 = 0), then the two-particle phase space integration is

dPS2 =
1

32 π2

(
1− m2

s

)
dΩ, provided that s > m2 (5.76)
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Multiparticle phase space decomposition

Now consider a systemZ with particles of momentap1, p2, · · · , pn in the final state. We partition
the final state particles into two subsystemsX andY :

Z −→ X(p1p2 · · · pj) + Y (pj+1 · · · pn) (5.77)

Then-body phase space can be decomposed as follows:

dPSn(Z → p1p2 · · · pn) = dPS2(Z → X Y )
dm2

X

2 π

dm2
Y

2 π
· dPSj(X → p1p2 · · · pj) dPSn−j(Y → pj+1 · · · pn) (5.78)

wheremX andmY are resonant masses of the decaying particlesX andY , respectively. The
ranges of the invariant massmX andmY are

j∑

i=1

mi ≤ mX ,

n∑

i=j+1

mi ≤ mY , mX +mY ≤ mZ (5.79)

Hence a particle decays into another two particles (with resonance of massesmX andmY , re-
spectively) which later decay intoj andn − j particles, respectively. The subsystemsX andY
can be further reduced recursively until we obtain the products of two-particle phase spaces. In
the special case whereY is a single particlepn, then we have

dPSn(Z → p1p2 · · · pn) = dPS2(Z → X Y ) · dm
2
X

2 π
· dPSn−1(X → p1p2 · · · pn−1)

m1 +m2 + · · ·+mn−1 ≤ mX ≤ mZ −mn (5.80)

We now consider the parametrization of the three-particle phase space [97]

Z −→ X(p1p3) + Y (p2) (5.81)

In this caseY is a single particlep2. We decompose the three-particle phase space into two
two-particle phase spaces as follows

dPS3(Z → p1p2p3) = dPS2(Z → X Y ) · ds13
2 π

· dPS2(X → p1p3) (5.82)

wheresij = (pi + pj)
2 = p2ij andp1 + p2 + p3 = Q. We work in the CM frame in which

Q = (
√
s,~0 ), hence we have~p13 = −~p2 and|~p13| = 1/2

√
λ(s, s13, m

2
2)/s. Using

dPS2(Z → X Y ) =
1

32 π2

√
λ(s, s13, m2

2)

s
d cos θ13 dφ13 θ

(√
s− s+ s13 −m2

2

2
√
s

)
,

dPS2(X → p1p3) =
1

(4 π)2 |~p13|
dp01 dφ1 (5.83)
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Thus we obtain

dPS3(Z → p1p2p3) =
1

(2 π)5
s

32
d cos θ13 dφ13 dφ1 dx1 dx2 (5.84)

whereθ13, φ13 andφ1 are Euler angles;θ13 andφ13 are the polar and azimuthal angles of~p13,
respectively, andφ1 is the azimuthal angle of~p1 with respect to the axis pointing along~p13. If
we integrate out the Euler angles then the phase space depends only onx1 andx2. We now
parametrize the four-particle phase space according to

Z −→ X(p1p2) + Y (p3p4) (5.85)

We decompose the four-particle phase space into three two-particle phase spaces as follows

dPS4(Z → p1p2p3p4) = dPS2(Z → X Y ) · ds12
2 π

ds34
2 π

· dPS2(X → p1p2) dPS2(Y → p3p4)

(5.86)

wherep1+p2+p3+p4 = Q. We work in the CM frame and choose thex axis arbitrarily, hence
we have~p12 = −~p34 and|~p12| = (1/2)

√
λ(s, s12, s34)/s. Using

dPS2(Z → X Y ) =
1

32 π2

√
λ(s, s12, s34)

s
dΩ12 θ

(√
s− s + s12 − s34

2
√
s

)
,

dPS2(X → p1p2) =
1

(4 π)2 |~p12|
dp01 dφ1,

dPS2(Y → p3p4) =
1

(4 π)2 |~p34|
dp03 dφ3 (5.87)

wheredΩ12 = d cos θ12 dφ12; θ12 andφ12 are the polar and azimuthal angles of~p12, respectively,
andφi (i = 1, 3) is the azimuthal angle of~pi with respect to the axis pointing along~pij, hence
we obtain

dPS4(Z → p1p2p3p4) =
8

(4 π)8
√
λ(s, s12, s34)

ds12 ds34 d cos θ12 dφ12 dp
0
1 dφ1 dp

0
3 dφ3

(5.88)
The integration overφ12 is trivial due to the azimuthal symmetry. We can choose the coordinate
system in such a way that~p12 points along thez axis and~p1 lies in thex-z plane, hence we have
θ = θ12 andφ = π − φ1. Introducingyij = sij/Q

2 andxi = 2 pi ·Q/Q2, we thus have

dPS4(Z → p1p2p3p4) =
s2

(4 π)7
√
λ(1, y12, y34)

dy12 dy34 dx1 dx3 dφ3 d cos θ dφ (5.89)
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Here the limit of integration variableφ is −π < φ < π; the scalar products we need are

p1 · p3 =
s

4
x1 x3 [1 − (sin θ1 sin θ3 cosφ3 − cos θ1 cos θ3)],

p1 · p4 =
s

2
(x1 − y12)− p1 · p3,

p2 · p3 =
s

2
(x3 − y34)− p1 · p3,

p2 · p4 =
s

2
(1− x1 − x3) + p1 · p3 (5.90)

which in terms of the dimensionless quantitiesyij can be rewritten as

y13 =
1

2
x1 x3 [ 1− (sin θ1 sin θ3 cosφ3 − cos θ1 cos θ3) ],

y14 = x1 − y12 − y13,

y23 = x3 − y34 − y13,

y24 = 1− x1 − x3 + y13 (5.91)

whereθi is the angle enclosed between~pij and~pi. It is determined by

cos θi =
xi (1 + yij − ykl)− 2 yij

xi
√
λ(1, yij, ykl)

(5.92)

with (i, j), (k, l) = (1, 2), (3, 4) and(i, j) 6= (k, l). Furthermore, we have

xj = 1− xi + yij − ykl (5.93)

The limits of integration boundary are




0 < y12 < 1 x−i < xi < x+i

0 < y34 < (1−√
y12)

2 0 < φ3 < 2 π
(5.94)

where

x±i =
1

2

[
(1 + yij − ykl) ±

√
λ(1, yij, ykl)

]
(5.95)

The four-particle phase space with massive particles is discussed in [97]. Finally we summarize
this subsection by writing the three-particle and four-particle phase spaces in terms of kinematic
invariantssij = 2 pi · pj and thed-dimensional hyperspheredΩd. Using Eq. (5.68), the three-
particle phase space is [98]

dPS3 = (2 π)3−2d 2−1−d (Q2)
2−d
2 dΩd−1 dΩd−2 (s12 s13 s23)

d−4
2

· ds12 ds13 ds23 δ
(
Q2 − s12 − s13 − s23

)
(5.96)
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and the four-particle phase space is

dPS4 = (2 π)4−3d (Q2)1−
d
2 21−2 d(−∆4)

d−5
2 θ(−∆4) δ(Q

2 − s12 − s13 − s14 − s23 − s24 − s34)

· dΩd−1 dΩd−2 dΩd−3 ds12 ds13 ds14 ds23 ds24 ds34 (5.97)

where the Gram determinant∆4 is given by+∆4 = λ(s12s34, s13s24, s14s23) andλ is the Källen
functionλ(x, y, z) = x2 + y2 + z2 − 2 (x y+ y z + z x). If we take the unit matrix element and
integrate out the three-particle and four-particle phase spaces, respectively, we obtain
∫

CS

dPS3 = 8 π

∫
dPS3 =

Q2

32 π2
,

∫

CS

dPS4 = 8 π

∫
dPS4 =

Q4 S

3072 π4
(5.98)

An alternative parametrization of four-particle phase space is [15]

∫
dPS4 = A0

(
1

8 π2

)2
1

16
S Q2

∫
dy123

∫
dy134

∫
dy13 θ(y13) θ(y123y134 − y13)

· θ(y13 + 1− y123 − y134) ·
∫ 1

0

dv · 1

π

∫ π

0

dθ′ (5.99)

Here,A0 = Q2/(2 π), yijk = sijk/Q
2 andS is the symmetry factor. The variablesv andθ′ in

Eq. (5.99) will be given in the next subsection. The lower limit of they13 integration is specified
by theθ functions

θ(y13) θ(y13 + 1− y123 − y134) → θ(y13) θ(1− y123 − y134)

+ θ(y123 + y134 − 1) θ(y13 + 1− y123 − y134) (5.100)

so the range of they13 integration can be split so that
∫
dy13 → θ(1− y123 − y134)

∫ y123 y134

0

dy13 + θ(y123 + y134 − 1)

∫ y123 y134

y123+y134−1

dy13 (5.101)

Parametrizations of the four-momenta: four-particle phase space

In order to calculate the momentum mappings between(m + 1)- andm-particle phase space
in the subtraction terms (dipoles), we need to find the explicit expressions of the four-momenta
p1, p2, p3 andp4 in terms of the integration variablesy12, y34, x1, x3 andφ3. We can choose
that ~p12 points along thez axis and~p1 lies in thex-z plane. Here we work in the CM frame,
i.e.~p12 = |~p12| ẑ , ~p34 = − |~p12| ẑ and hence~p12 = −~p34 is fulfilled.

Q =




√
s
0
0
0


 , p1 =

√
s

2
x1




1
sin θ1
0

cos θ1


 , p3 =

√
s

2
x3




1
sin θ3 cos φ3

sin θ3 sinφ3

− cos θ3


 (5.102)
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whereθi is the angle enclosed between~pij and~pi, andφ3 is the azimuthal angle of~p3 with respect
to the axis pointing along~p34. Note that there is a minus sign in thez-component of~p3 reflecting
the fact that thez-component of~p3 is in the direction of− z axis, while thex-component and
y-component of~p3 point along the+ x axis and+ y axis, respectively.

p12 =




p012
0
0

|~p12|


 , p34 =




p034
0
0

− |~p12|


 (5.103)

We can write|~p12| in terms ofyij, i.e.

|~p12| =
√
s

2

√
λ(1, y12, y34) (5.104)

Using Eq. (5.102), Eq. (5.103) and the identities

x1 + x2 = 1− y34 + y12 , x3 + x4 = 1− y12 + y34 (5.105)

we obtain

p2 =

√
s

2




1− y34 + y12 − x1
−x1 sin θ1

0√
λ(1, y12, y34)− x1 cos θ1


 , p4 =

√
s

2




1− y12 + y34 − x3
−x3 sin θ3 cosφ3

−x3 sin θ3 sin φ3

−
√
λ(1, y12, y34) + x3 cos θ3




(5.106)
Eq. (5.102) and Eq. (5.106) will be useful when we compute thedipoles. An alternative
parametrizations of the four-momenta is given by [15]1

p1 =
√
s13/2 (1, sin θ sin θ

′, sin θ cos θ′, cos θ) , p2 = (s123 − s13)/(2
√
s13) (1, 0, 0, 1)

p3 =
√
s13/2 (1,− sin θ sin θ′,− sin θ cos θ′,− cos θ) , p4 = (s134 − s13)/(2

√
s13) (1, 0, sin β, cosβ)

(5.107)

Parametrizations of the four-momenta: three-particle phase space

We will do the same thing for the momentum mappings in three-particle phase space. We need
to find the explicit expressions of the four-momentap1, p2 andp3 in terms of the integration

1Here, we set up the reference frame wherep13 = p1 + p3 is at rest. We shall refer to this as the1 − 3
system. The parametersv andθ are related byv = 1/2 (1− cos θ) and the variablecosβ is determined by using
energy-momentum conservation

1

2
(1− cosβ) =

s13 (Q
2 − s123 − s134 + s13)

(s123 − s13) (s134 − s13)
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variablesy13 andy23. We can choose that~p3 points along thez axis and~p1 lies in thex-z plane.
Here we work in the CM frame, hence

p1 =

√
s

2
x1




1
sin θ13

0
cos θ13


 , p2 =

√
s

2
x2




1
sin θ23 cosφ
sin θ23 sin φ

cos θ23


 , p3 =

√
s

2
x3




1
0
0
1




(5.108)
whereθ13 is the angle enclosed between~p1 and~p3 , θ23 is the angle enclosed between~p2 and~p3
andφ is the azimuthal angle of~p2 with respect to thez axis2. We find

y12 =
1

2
x1 x2 (1− sin θ13 sin θ23 cosφ− cos θ13 cos θ23)

y13 =
1

2
x1 x3 (1− cos θ13) , y23 =

1

2
x2 x3 (1− cos θ23) (5.109)

Using the identity:x3 = y13 + y23 = 1− y12 , we then obtain

cos θ13 = 1− 2 y13
(1− y23) (y13 + y23)

, cos θ23 = 1− 2 y23
(1− y13) (y13 + y23)

cosφ =
1

sin θ13 sin θ23

[
1− cos θ13 cos θ23 −

2 (1− y13 − y23)

(1− y13) (1− y23)

]
(5.110)

5.5 Soft photon radiation

In this section, we will discuss the emission of a soft photonin the final state3. We will first
derive the amplitude for a soft photon emitted from a single outgoing fermion; then we sum over
all external fermions, obtaining the amplitude for a singlesoft photon emitted from all external
particles. Finally we generalize to the emission of an arbitrary number of photons in the soft
limit. The emission of a photon from an incoming particle (initial state radiation) can be dealt
with in the same way. In this section, we only discuss final state radiation.

Final state radiation

The LO amplitude can be written as

MBorn(p) = ū(p)A(p) (5.111)

2Here we have used slightly different notations for the angles.
3For the gluon radiation in QCD we just simply replace photon field with gluon field and take the colour factors

and QCD coupling constantgs into account,i.e.we make the following substitution for vertex:

− i eQf γµ → − i gs t
A
ab γµ

and henceeQf → gs t
A
ab wheretAab are generators ofSU(3)C in the fundamental representation.
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whereū(p) is the spinor of the fermion andA(p) the remaining part (hard part) of the amplitude.
The amplitude for the emission of a photon with momentumk in final state (see Fig. 5.1) reads

iM(p, k) = ū(p) [− i eQf γµ] ε
∗µ(k)

i(p/+ k/ +m)

(p+ k)2 −m2 + i ε
A(p+ k) (5.112)

In the soft-photon approximation,i.e.k → 0, we have

iM(p, k) ≈ eQf ū(p)
γµ (p/+m)

2 p · k + i ε
A(p) ε∗µ(k) (5.113)

Using the identity
γµ (p/+m) = 2 pµ − p/ γµ +mγµ (5.114)

and Dirac equation̄u(p) (p/−m) = 0, Eq. (5.113) can be rewritten as4

iM(p, k) ≈ 2 eQf pµ ε
∗µ(k)

2 p · k + i ε
ū(p)A(p) ≈

[
2 eQf p · ε∗(k)
2 p · k + i ε

]
MBorn(p) (5.115)

For a photon emitted from an outgoing scalar particle, the result is the same,i.e. the result is
independent of the spin of the charged particle. Spin-dependent terms are IR regular.

The emission of a photon from an incoming particle can be dealt with in the same way; for the
initial state radiation the charged particle has momentump− k instead ofp+ k.

If we sum over all external particles, we obtain the amplitude for the emission of a single soft
photon,i.e.k → 0

iM(pj, k)
k→ 0≈

∑

`

[
2 eQ` p` · ε∗(k)
2 η` p` · k + i ε

]
MBorn(pj) (5.116)

whereQ` andp` are the charges and momenta of the`th external particle;η` = 1 for outgoing
particles (final state radiation) andη` = −1 for incoming particles (initial state radiation). Here
pj means the emitter that emits a soft photon.

The generalization to multi-photon emissions is straightforward. Let us now consider the emis-
sion of an arbitrary number of photons; the corresponding result can be derived by induction and
as a consequence, soft photons are emitted independently. The amplitude for the emission ofn
soft photons with momentak1, k2, · · · , kn in the limit ki → 0 is given by

iM(pj, ki)
ki → 0≈

n∏

m=1

[
∑

`

2 eQ` p` · ε∗(km)
2 η` p` · km + i ε

]
MBorn(pj) (5.117)

4For QCD scattering the prefactor ofMBorn(p) is actually the eikonal factor, which corresponds to a soft gluon
emission,i.e.k → 0.
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5.6 Collinear photon radiation

In this section, we will discuss the emission of a photon in the collinear limit5; we will derive
the matrix elements of the emission of a collinear photon forboth final state and initial state
radiations.

5.6.1 Final state radiation

The Born matrix element is given by (see Fig. 5.2)

|MBorn(p)|2 = |ū(p)A(p)|2 = A(p) u(p) ū(p)A(p) = A(p) (p/+m)A(p) (5.118)

where the projection operator is
∑

spins

u(p) ū(p) = p/+m (5.119)

and ū(p) is the spinor of the fermion;A(p) the remaining part (hard part) of the amplitude.
Here the spin indices have been suppressed and sum over spins(polarizations) is also implicitly
understood. Let us now consider the emission of a collinear photon with momentumk (see
Fig. 5.3). The corresponding matrix element is given by

|M(p′, k)|2 =
∣∣∣∣ū(p

′) [− i eQf γµ] ε
∗µ(k)

i(p/+m)

p2 −m2 + i ε
A(p)

∣∣∣∣
2

= e2Q2
f

∣∣∣∣ū(p
′) γν ε

∗ν(k)
(p/+m)

p2 −m2 + i ε
A(p)

∣∣∣∣
2

=
e2Q2

f

(p2 −m2)2
|ū(p′) γµ ε∗µ(k) (p/+m)A(p)|2

=
e2Q2

f

(p2 −m2)2
A(p) (p/+m) γν ε

ν(k) u(p′) ū(p′) γµ ε
∗µ(k) (p/+m)A(p)

=
e2Q2

f

(p2 −m2)2
A(p) (p/+m) γν u(p

′) ū(p′) γµ (p/+m)A(p) ε∗µ(k) εν(k)

=
e2Q2

f

(p2 −m2)2
A(p) (p/+m) γν (p/

′ +m) γµ (p/+m)A(p) dµν(k) (5.120)

5Similarly for the gluon radiation we replace photon field with gluon field and make the following substitution
for vertex:

− i eQf γµ → − i gs t
A
ab γµ

and hence
e2 Q2

f → g2s t
A
ad t

A
db

.
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where we have used Eq. (5.119) and

dµν(k) =
∑

pol

ε∗µ(k) εν(k) = − gµν +
kµnν + kνnµ

k · n (5.121)

again the spin indices have been suppressed and sum over spins (polarizations) is also implicitly
understood. The four vectorn anddµν(k) satisfy the light-cone gauge conditions

n2 = 0 , − gµν dµν(k) = d− 2 = 2− 2 ε , kµ dµν(k) = kν dµν(k) = 0

nµ dµν(k) = nν dµν(k) = 0 (5.122)

Kinematics

We need a bit kinematics for the massless photon and massive fermions

p = p′ + k

k2 = 0 , p′2 = m2 ; p2 −→ O(m2) in collinear limit

kµ = z pµ + kµ⊥ + kµr , z := k0/p0 , p · k⊥ = 0 , ~kr = ~0

p′µ = pµ − kµ = (1− z) pµ − kµ⊥ − kµr (5.123)

From Eq. (5.123), we obtain immediately

k0r = − k0⊥ ,
~k 2
⊥ = O(m2) , k0⊥ = O(m2/p0) (5.124)

The matrix element with photon emission now reads

|M(p′, k)|2 =
e2Q2

f

(2 p′ · k)2 A(p) (p′/ + k/ +m) γν (p/
′ +m) γµ (p

′/ + k/ +m)A(p) dµν(k) (5.125)

Using the identity

(p′/ + k/ +m) γν (p/
′ +m) = k/ (−p/′ +m) γν + 2 p′ν (p

′/ + k/ +m) (5.126)

hence

|M(p′, k)|2 =
e2Q2

f

(2 p′ · k)2 A(p)
[
k/ (−p/′ +m) γν γµ + 2 p′ν (p

′/ + k/ +m) γµ
]
(p′/ + k/ +m)A(p) dµν(k)

(5.127)

Using the identities
γν γµ d

µν = gµν d
µν = − d+ 2 (5.128)
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and
(p′/ + k/ +m) γµ = 2 p′µ + 2 kµ + γµ (−p′/ − k/ +m) (5.129)

Hence we have

|M(p′, k)|2 =
e2Q2

f

(2 p′ · k)2 A(p)
[
− 2 p′ · k k/ gµν + 4 p′ν p

′
µ (p

′/ + k/ +m)− 4 p′ν γµ p
′ · k
]
A(p) dµν(k)

=
e2Q2

f

(2 p′ · k) A(p)

[
2 (1− ε) k/ − 2m2

p′ · k (p′/ + k/ +m) + 4
p′ · n
k · n (p′/ + k/ +m)

+2 p′/ − 2
k/ p′ · n + p′ · k n/

k · n

]
A(p) (5.130)

In high-energy limit, a charged fermion energyp0 is much larger than its massm and hence
we can neglect the fermion mass. Now we consider the collinear limit: kµr = kµ⊥ = 0 and
p2 −→ O(m2)

k/ ≈ z p/ , p/′ ≈ (1− z) p/ ,
m2

2 p′ · k = O(1) ,
p′ · n
k · n =

1

z
− 1 +O(m/p0) (5.131)

The photon emission matrix element in the collinear limit now becomes

|M(p′, k)|2 ≈
e2Q2

f

2 p′ · k A(p)

[
2 (1− ε) z p/− 2m2

p′ · k p/+ 4

(
1

z
− 1

)
p/

+2 (1− z) p/ − 2 z p/

(
1

z
− 1

)
− 2

p′ · k
k · n n/

]
A(p) (5.132)

The last term in Eq. (5.132) vanishes sincep′ · k ≈ O(m2). Finally we obtain

|M(p′, k)|2 ≈
e2Q2

f

2 p′ · k A(p)

[
2 (1− ε) z p/ − 2m2

p′ · k p/+ 4

(
1− z

z

)
p/

]
A(p)

=
e2Q2

f

p′ · k A(p)

[
(1− ε) z − m2

p′ · k + 2

(
1− z

z

)]
p/A(p)

=
e2Q2

f

p′ · k A(p)

[
−ε z − m2

p′ · k +
1 + (1− z)2

z

]
p/A(p)

=
e2Q2

f

p′ · k

[
Pγf(z)−

m2

p′ · k

]
|MBorn(p)|2 (5.133)

where we have introduced the photon splitting function6 in d dimension

Pγf (z) :=
1 + (1− z)2

z
− ε z (5.134)

6For the gluon radiation in QCD, this is exactly the Altarelli-Parisi splitting functionPqq(x) with appropriate
substitution [6]

z → 1− x

.



134 CHAPTER 5. APPENDIX

5.6.2 Initial state radiation

The Born matrix element is given by (see Fig. 5.4)

|MBorn(p)|2 = A(p) (p/+m)A(p) (5.135)

Kinematics

We need a bit kinematics for the photon emission in the initial state radiation (see Fig. 5.5)

x :=
k0

p0
, z =

k0

p′0
, p = p′ + k (5.136)

Substitutions from final state radiation, then we have

k → − k , p↔ p′ (5.137)

and

z → − z =
x

x− 1
, Pγf (−z) =

1 + (1 + z)2

−z + ε z =
1

x− 1
Pγf (x) (5.138)

Hence the matrix element for an emission of a collinear photon with momentumk is given by

|M(p, k)|2 ≈
e2Q2

f

p · k
1

1− x

[
Pγf (x)− (1− x)

m2

p · k

]
|MBorn((1− x) p)|2 (5.139)

with
p′ ≈ (1− x) p , k ≈ −x p (5.140)

in the collinear limit.

5.7 One-loop calculations: examples

The quark self-energy contributions

For simplicity we consider the Feynman gauge in whichα = 1; so the expression for the quark
self-energy term (see Fig. 5.6) to orderαs in the dimensional regularization scheme is7

−iΣab(p) = µε
∫

ddk

(2 π)d
−i gµν
k2 + iε

(
−i gs tCad γµ

) i

(p/− k/)−mq + iε

(
−i gs tCdb γµ

)

= −g2s µε
∫

ddk

(2 π)d
gµν

k2 + iε
γµ

1

(p/− k/)−mq + iε
γν tCad t

C
db

= −iΣQED t
C
ad t

C
db (5.141)

7Here we work ind = 4− ε dimensions.
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∑

pol p+ k p

k

Figure 5.1: Final state radiation: soft photon emission.

∑

pol

A A

p p

Figure 5.2: Final state radiation: Born diagram.

∑

pol
p p′

k

Figure 5.3: Final state radiation: collinear photon emission.
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∑

pol

A A

p p

Figure 5.4: Initial state radiation: Born diagram.

∑

pol p′ p

k

p′p

Figure 5.5: Initial state radiation: collinear photon emission.

k

p µ p− k ν p

Figure 5.6: The one-loop contribution to the quark self-energy diagram in QCD.
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p− k

p

k

k′

p′

q

ρ

ν

µ

Figure 5.7: The one-loop contribution to the gluon vertex diagram in QCD.

where ∑

A

tAab t
A
bc = CF δac, CF =

N2 − 1

2N
(5.142)

and

−iΣQED = −g2s µε
∫

ddk

(2 π)d
γµ [p/ − k/ +mq] γ

µ

(k2 + iε)
[
(p− k)2 −m2

q + iε
] (5.143)

Here we consider the massless and on mass-shell quark (antiquark), so we have

−iΣQED = −g2s µε
∫

ddk

(2 π)d
γµ [p/ − k/] γµ

(k2 + iε) [(p− k)2 + iε]
(5.144)

The infrared divergence (mass singularity) comes from the massless quark and antiquark. After
some tedious calculations, we find

−iΣQED = −i g2s µε (2− d) p/

∫ 1

0

dz (1− z)

∫
ddk′

(2 π)d
1

i

1

(k′)4

≈ 1

εUV
− 1

εIR
= 0 (5.145)

↑
εUV = εIR

wherek′ = k − p z and we have used the scaleless integral
∫
ddk

1

[k2]n
∝ 1

εUV
− 1

εIR
= 0 (5.146)

Here theεUV andεIR poles are used to regularize the ultraviolet and infrared divergences, re-
spectively. So the final result is independent of any scale (p2 = 0). Eq. (5.146) is very useful as
long as we do not specifically care about the pole coefficients.
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The vertex corrections

In this section we compute the order ofαs vertex corrections (see Fig. 5.7) to the quark and
antiquark annihilation in QCD. Applying the Feynman rules,we find Γµ = γµ + δΓµ, where

δΓµ(p′, p) = µε
∫

ddk

(2 π)d

[ −i gνρ
(k − p)2 + iε

] [
−i gs γν tAcj

] i

k′/ −mq̄ + iε

×
[

1√
2
γµ

1

2

(
1− γ5

)
Vji

]
i

k/ −mq + iε

[
−i gs γρ tAib

]
(5.147)

Assume thatmq ' mq̄ = 0, thenδΓµ becomes

δΓµ(p′, p) = −i g2s
µε√
2

(
tAcj Vji t

A
ib

)
× Iµ (5.148)

where

Iµ =

∫
ddk

(2 π)d
γν(k/ + q/)γµ 1

2
(1− γ5) k/ γν

(k − p)2 (k + q)2 k2
=

∫
ddk

(2 π)d
[γν k/ γµ k/ γν + γν q/ γµ k/ γν]

(k − p)2 (k + q)2 k2
1

2

(
1− γ5

)

(5.149)
wherek′ = k + q. The gamma matrices ind = 4− ε dimensions satisfy

γν k/ γµ k/ γν = (2− d) k/γµk/ and γν q/ γµ k/ γν = −2 k/ γµ q/− (d− 4) q/ γµ k/ (5.150)

SoIµ becomes

Iµ = −2

∫
ddk

(2 π)d

[
d−2
2
k/ γµ k/ + k/ γµ q/+ d−4

2
q/ γµ k/

]

(k − p)2 (k + q)2 k2
1

2

(
1− γ5

)
(5.151)

Using the Feynman parametrization prescription, the denominator can be expressed as

1

(k − p)2 (k + q)2 k2
=

∫ 1

0

dx dy dz δ(x+ y + z − 1)
2

D3
(5.152)

where
D = `2 −4+ iε , ` = k + y q − z p and 4 ≡ −x y q2 (5.153)

or more generally

1

An1
1 A

n2
2 · · ·Ank

k

=
Γ(n1 + n2 + · · ·+ nk)

Γ(n1)Γ(n2) · · ·Γ(nk)

∫ 1

0

dα1 · · · dαk
αn1−1
1 αn2−1

2 · · ·αnk−1
k δ (1−∑i αi)

(α1A1 + · · ·+ αkAk)n1+n2+···+nk
(5.154)

Now let us calculate the numerator of Eq. (5.151)

v̄(p′)

[
d− 2

2
k/γµk/ + k/γµq/+

d− 4

2
q/γµk/

]
1

2
(1− γ5) u(p) (5.155)
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after some tedious calculations, we obtain

v̄(p′)

[
−(2− d)2

2 d
`2 + (1− x)

(
1− y

d− 2

2

)
q2 +

d− 4

2
y q2
]
γµ

(1− γ5)

2
u(p) (5.156)

where we have used

/̀ γµ /̀ =
2− d

d
`2 γµ and

∫
dd`

(2 π)d
`µ

D3
= 0 (5.157)

Finally, we have to compute the following expression

v̄(p′) Iµ u(p) = −2

∫
dd`

(2 π)d

∫ 1

0

dx dy dz
2 δ(x+ y + z − 1)

(`2 −4+ iε)3
×
[
v̄(p′) γµ

(1− γ5)

2
u(p)

]

×
[
−(2− d)2

2 d
`2 + (1− x)

(
1− y

d− 2

2

)
q2 +

d− 4

2
y q2
]

= v̄(p′) γµ
(1− γ5)

2
u(p)× A(q2) (5.158)

We can divideA(q2) into two termsA = Aa(q2)+Ab(q2). In order to calculateA(q2), we could
resort to the following integration formulae,

∫
dd`

(2 π)d
`2

(`2 −4+ iε)3
=

i

4

d

(4 π)d/2
Γ(2− d/2)4d/2−2

∫
dd`

(2 π)d
1

(`2 −4+ iε)3
=

1

2

−i
(4 π)d/2

(2− d/2) Γ(2− d/2)4d/2−3 (5.159)

hence we have

Aa(q2) =
i

(4 π)d/2
(−q2)d/2−2 Γ(d/2− 2) Γ(d/2)

Γ(d− 2)
Γ(2− d/2) (d/2− 2)

Ab(q2) = −2
i

(4 π)d/2
(−q2)d/2−2 (2− d/2) Γ(2− d/2)

Γ(d/2− 2) Γ(d/2)

Γ(d− 2)

×
[
−2

ε
− d

(d− 2)2
d− 2

2
+
d− 4

d− 2

]
(5.160)

Finally we obtain the expression forv̄(p′) δΓµ u(p):

v̄(p′) δΓµ u(p) = −i g2s
µε√
2

(
tAcj Vji t

A
ib

)
× v̄(p′) γµ

(1− γ5)

2
u(p)×

(−q2)d/2−2 i

(4 π)d/2
1

Γ(1− ε)

Γ(2− ε/2)

1− ε
Γ(ε/2)Γ(−ε/2)×

{
− ε

2
− 2

ε

2

[
−2

ε
+

ε− 4

2 (2− ε)
− ε

2− ε

]}

=
αs
4 π

(
4

3

)(
4πµ2

q2

) ε
2

× v̄(p′)
1√
2
γµ

(1− γ5)

2
u(p)×

Γ(1 + ε
2
) Γ2(1− ε

2
)

Γ(1− ε)

(
− 8

ε2
− 6

ε
− 8 + π2 +O(ε)

)
(5.161)
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5.8 A review of the Standard Model (SM)

5.8.1 Abelian gauge theory: Quantum electrodynamics (QED)

We start with a Lagrangian
L0 = ψ(x) (i∂/ −m)ψ(x) (5.162)

which is invariant under a globalU(1) symmetry:

ψ(x) → ψ′(x) = ei q θψ(x)

∂µψ(x) → ∂µψ
′(x) = ei q θ∂µψ(x) (5.163)

with spacetime independent group parameterθ. There is a conserved current according to
Noether’s theorem:

Jµ(x) = q ψ(x) γµ ψ(x) =⇒ ∂µJµ(x) = 0 (5.164)

In the case of quantum electrodynamics, the phase invariance is promoted to the level of a local
transformation in order to describe the gauge interactionsbetween electrons and photons,i.e. the
phaseθ depends on the spacetime point. So we demand the globalU(1) symmetry to local
symmetry, this means

θ → θ(x) (5.165)

so

ψ(x) → ψ′(x) = ei q θ(x)ψ(x)

∂µψ(x) → ∂µψ
′(x) = ei q θ(x)∂µψ(x) + i q ei q θ(x)ψ(x)∂µθ(x) (5.166)

To maintain the local gauge invariance, we introduce the covariant derivative.

Dµ = ∂µ + i q Aµ(x) (5.167)

in such a way that

ψ(x) → ψ′(x) = ei q θ(x)ψ(x) = U(x)ψ(x)

Dµψ(x) → D′
µψ

′(x) = ei q θ(x)Dµψ(x) = U(x)Dµψ(x) (5.168)

i.e.bothψ(x) andDµψ(x) transform the same way underU(1) local symmetry.Aµ is the spin 1
gauge field (photon field) and transforms under the local gauge symmetry as

Aµ(x) → A′
µ(x) = Aµ(x)− ∂µθ(x) (5.169)

Note that the transformation property ensures that
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• Dµψ(x) → D′
µψ

′(x) = U(x)Dµψ(x)

• gauge invariance of field strength tensorFµν = ∂µAν − ∂νAµ

The commutator of covariant derivatives obeys

Fµν =
1

iq
[Dµ, Dν ] =

1

iq
[∂µ + iqAµ, ∂ν + iqAν ] = ∂µAν − ∂νAµ (5.170)

Then obviously the generalized Lagrangian

Lψ = ψ(x) (iγµDµ −m)ψ(x)

= ψ(x) (iγµ∂µ −m)ψ(x)− q ψ(x) γµ ψ(x)A
µ (5.171)

is invariant under the local gauge transformations. The complete QED Lagrangian has two con-
tributions: matter and gauge field contributions:

L = Lψ + Lgauge (5.172)

with

Lgauge= −1

4
Fµν(x)F

µν(x) (5.173)

The electron-photon coupling in Eq. (5.171) is called minimal coupling of the photon fieldAµ to
the electromagnetic currentJµ = q ψ(x) γµ ψ(x); andLgaugecannot contain a term proportional
to

AµA
µ

since this term is not gauge invariant under Eq. (5.169).

5.8.2 Non-abelian gauge theory

The starting point is a Lagrangian of free or self-interacting fields,i.e.symmetric under a global
symmetry.

Lψ(ψ, ∂µψ) = ψ(x) (i∂/ −m)ψ(x) (5.174)

where

ψ =




ψ1
...
ψn


 = multiplet of a compact Lie groupG (5.175)

The Lagrangian is symmetric under the transformation

ψ → ψ′ = U(θ)ψ, U(θ) = exp{i tA θA}, U †U = UU † = 1 (5.176)
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If U is unitary, thetA are hermitian matrices, called group generators.θA (A = 1, · · · , N2−1 =

dimG) are spacetime independent parameters. We can expand the unitary matrix around the unit
element of the groupG

U(θ) = 1 + i tA θA +O(θ2) (5.177)

this means that thetA generate infinitesimal transformation around the unit matrix element of
the group. ForSU(N) matrix (unitary anddetU = 1), there areN2 − 1 traceless, hermitian
generators

tA =
λA

2
(5.178)

The generators for any representation ofG satisfy the Lie Algebra relation

[
tA, tB

]
= i fABC tC (5.179)

where thefABC are called the structure constants of the groupG. The starting hypothesis is that
Lagrangian is invariant underG

Lψ(ψ, ∂µψ) = Lψ(ψ′, ∂µψ
′), ψ′ = U(θ)ψ (5.180)

Now we promote the global symmetry to local symmetry by gauging the theory, which means
that we allow the parametersθA to be function of the spacetime coordinates.

θA → θA(x) =⇒ U → U(x) (5.181)

so now we have

U(x) = 1 + i tA θA(x) +O(θ2) (5.182)

We obtain a local invariant Lagrangian if we make the substitution

Lψ(ψ, ∂µψ) → Lψ(ψ,Dµψ) (5.183)

with

Dµ = ∂µ + i g AAµ (x) t
A ≡ ∂µ + i g Aµ(x), Aµ ≡

∑

A

AAµ t
A = Aµ · t (5.184)

whereg is the gauge coupling,tA is the generator of the groupG in ψ representation andAAµ are
gauge fields. HereAµ is anN ×N matrix.Lψ(ψ,Dµψ) is local gauge invariant if

ψ(x) → ψ′(x) = U(x)ψ(x)

Dµψ(x) → D′
µψ

′(x) = U(x)Dµψ(x) = U(x)DµU
−1(x)U(x)ψ(x) (5.185)
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i.e. the covariant derivative transforms as

Dµ → U(x)DµU
−1(x) (5.186)

implying that

AAµ → A′A
µ = AAµ − fABC θB ACµ − 1

g
∂µθ

A +O(θ2) (5.187)

We can build the kinetic term for theAAµ fields from the field strength:

[Dµ, Dν ] = i g t · Fµν = i g tAFA
µν = i g Fµν , Fµν ≡ tAFA

µν (5.188)

HereFµν is anN ×N matrix and

FA
µν = ∂µA

A
ν − ∂νA

A
µ − gfABCABµA

C
ν (5.189)

which transforms homogeneously under a local gauge transformation

Fµν → F ′
µν = UFµνU

−1 (5.190)

We also note thatTrFµν F µν is invariant:

FA
µνF

µν
A ∼ TrFµν F

µν → TrUFµνU
−1UF µνU−1 = TrFµν F

µν (5.191)

This is true only for finite dimensional representation of the gauge group. Now we can construct
the gauge invariant Lagrangian for gauge and matter fields,

LYM = −1

2
TrFµν(x)F

µν(x) + ψ(x) (iD/ −m)ψ(x) (5.192)

Normalizing the generatorstA as

Tr tA tB =
1

2
δAB (5.193)

we have−1
2
TrFµνF

µν = −1
4
FA
µνF

µν
A . As in the abelian case, the fermion/gauge field coupling

is of the form
Lint ∼ g JµAA

A
µ (5.194)

whereJAµ = ψ γµ t
A ψ is the fermionic part of the Noether current. There are some remarks

about the non-abelian gauge theory:

• AAµA
µ
A are not gauge invariant, this means that gauge bosons of unbroken non-abelian

gauge theories are massless.

• We have cubic and quartic gauge boson self-interactions dueto FA
µνF

µν
A

(∂A)A2, A4
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• Gauge invariance+ renormalizability (absence of higher powers of fields and covariant
derivatives in Lagrangian) determine gauge boson/matter couplings and gauge boson self-
interactions.

• If G = SU(3)C and the fermions are in triplets,

ψ =




ψred

ψblue

ψgreen


 =




ψ1

ψ2

ψ3


 (5.195)

we have the QCD Lagrangian with32 − 1 = 8 gluons.

5.8.3 Electroweak theory

Gauge boson interactions

The standard electroweak theory [76–78] is based on the morecomplicated gauge groupSU(2)×
U(1). Here we have suppressed the indicesL andY for SU(2) andU(1), which mean left-
handed structure and weak hypercharge, respectively. Essentially, anSU(2) gauge symmetry is
applied to left-handed fermion fields only and an independent U(1) gauge symmetry is present in
order to incorporate the electric chargeQ and unify the weak and electromagnetic interactions in
a common gauge structure. Initially the Lagrangian of this model contains three massless gauge
bosonsAaµ (a = 1, 2, 3) of SU(2) gauge group and one massless gauge boson,Bµ, associated
with theU(1) gauge group. The gauge symmetry does not allow any mass term for W andZ
bosons. More precisely, local gauge invariance and renormalizability completely determine the
kinetic terms for the gauge bosons. The Lagrangian of the gauge bosons is

Lgauge= −1

4
F a
µν F

µν
a − 1

4
Bµν B

µν (5.196)

The field strength tensors of theSU(2) gauge fieldsAa and theU(1) gauge fieldB are

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gεabcAbµA

c
ν

Bµν = ∂µBν − ∂νBµ (5.197)

g being theSU(2) gauge coupling. Note that the vector bosonsAa already have self-interactions
because of the non-abelian property of their symmetry groupSU(2). This is similar to the fact
that gluons carry colour charge in QCD. The coupling of the gauge fields to matter fields is
achieved via the covariant derivative

Dµψ =
(
∂µ − i g T aAaµ − i g′ Yψ Bµ

)
ψ (5.198)
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and the Lagrangian of the interaction is given by

Lint = ψ iγµDµ ψ (5.199)

g′ is theU(1) gauge coupling. The matricesT a are a representation of theSU(2) weak isospin
algebra andYψ is the weak hypercharge of theU(1). In order to specify the coupling to matter we
have to choose theSU(2) representationT a and theU(1) gauge chargeYψ for the matter fields.
Here the value of the generator (charge)Yψ depends on the fermion field. Three group generators
T a correspond to three gauge bosonsA1

µ, A
2
µ, A

3
µ; the group generators for gauge doublets are

T a =
τa

2
, a = 1, 2, 3 (5.200)

and for gauge singlets (eiR, ν
i
R)

T a = 0 (5.201)

They all satisfy theSU(2) commutation relations:
[
T a, T b

]
= i εabc T c, ε123 = 1 (5.202)

and the explicit expression of Pauli matrices are

τ 1 =

(
0 1
1 0

)
, τ 2 =

(
0 −i
i 0

)
, τ 3 =

(
1 0
0 −1

)
(5.203)

Defining

W±
µ =

A1
µ ∓ i A2

µ√
2

and T± = T 1 ± i T 2 (5.204)

we have

T aAaµ =
1√
2
T+W+

µ +
1√
2
T−W−

µ + T 3A3
µ (5.205)

where the matricesT± andT 3 satisfy the relations
[
T+, T−] = 2 T 3

[
T 3, T±] = ±T± (5.206)

T+ andT− are raising and lowering operators. In the doublet representation ofSU(2) we have

T+ =

(
0 1
0 0

)
, T− =

(
0 0
1 0

)
, T 3 =

(
1
2

0
0 −1

2

)
(5.207)

It is worth mentioning thatA3
µ andBµ carry identical quantum numbers (T 3 = 0, Yψ = 0), so at

the end they will combine to produce two neutral gauge bosons: Aµ andZµ. The neutral weak
current was discovered at CERN in 1973, while theZ boson was discovered at CERN in 1983.
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The Higgs mechanism: Spontaneous symmetry breaking

Experimentally, the weak gauge bosons are massive, there isonly one massless gauge boson in
nature, the photon. The Lagrangian Eq. (5.196) describes four massless vector bosons forming
a singlet (Bµ) and a triplet (W±

µ , A
3
µ). So the model cannot describe the real world. If we add

the explicit mass terms for the three weak bosons, then it would violate local gauge invariance
and spoil the renormalizability of the theory. Therefore itis necessary to introduce a mechanism
of symmetry breaking by which the three weak bosons obtain masses. The mass generation can
be implemented through the Higgs mechanism [41–43]: generate mass terms from the kinetic
energy term of a scalar doublet fieldφ that undergoes spontaneous symmetry breaking (SSB).

In the standard electroweak theory, the gauge groupSU(2)×U(1) is broken by the Higgs mech-
anism. Introducing a single complex doublet of scalar Higgsfields

φ =

(
φ1

φ2

)
=

(
φ+

φ0

)
(5.208)

on which the matricesτa act. The Higgs Lagrangian is given by

LHiggs = (Dµφ)
†Dµφ− V (φ†φ) (5.209)

which is gauge invariant under localSU(2)× U(1) transformations. The coupling of the gauge
fields to the scalar field is achieved using the covariant derivative

Dµφ =
(
∂µ − i g T aAaµ − i g′ YφBµ

)
φ, Yφ =

1

2

=

(
∂µ − i g

τa

2
Aaµ − i g′

1

2
Bµ

)
φ (5.210)

The Higgs potential is chosen to be of the form

V (φ†φ) = V0 + λ
(
φ†φ
)2 − µ2φ†φ, µ2, λ > 0 (5.211)

Note that this potential has a wrong sign for the mass term. Asa result, with the parameters
µ2, λ > 0, this potential has a classical minimum which is not atφ = 0; instead the potential has
minima at

|φ| =
√
µ2

2 λ
=

v√
2

(5.212)

All these minimum configurations (ground states) are connected by gauge transformations, that
change the phase of the complex fieldφ without altering its modulus.v is called the vacuum
expectation value (VEV) of the neutral component of the scalar Higgs doublet. When the system
chooses one of the ground states, this ground state is no longer symmetric under the gauge trans-
formation. However the Lagrangian is still gauge invariantunder the gauge transformation and
all properties connected with it still hold (e.g.current conservation). This phenomenon is called
spontaneous symmetry breaking. We will discuss the consequences of the Higgs mechanism in
more detail in next subsection.
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Glashow-Weinberg-Salam theory

We start with the gauge and scalar sector of the theory. TheSU(2) × U(1) gauge invariant
Lagrangian is

L = −1

4
F a
µνF

µν
a − 1

4
BµνB

µν + (Dµφ)
†Dµφ− V (φ†φ) (5.213)

where the field strength tensors are given by Eq. (5.197); thecovariant derivative connecting
gauge fields and scalar field is given by Eq. (5.210). We choosethe ground state to be

Aaµ = Bµ = 0

< φ > =
1√
2

(
0
v

)
= φ0 (5.214)

Note that only a scalar field can have a VEV. The VEV of a fermionor vector field would break
Lorentz invariance. The generators of the gauge groupSU(2) × U(1) are matricesT a = τa

2

andYφ = 1
2
. Now we would like to show that the ground state breaks the gauge symmetry. An

arbitrary stateΦ is invariant under a symmetry operationexp (i T a θa) if

ei T
a θaΦ = Φ (5.215)

This means that a state is invariant if
T aΦ = 0 (5.216)

For theSU(2)× U(1) case we have

τ 1 φ0 6= 0

τ 2 φ0 6= 0

τ 3 φ0 6= 0

Yφ φ0 =
1

2
φ0 6= 0 (5.217)

Here the generatorsτa andYφ correspond to broken generators , the consequence of which is that
all the gauge bosons will receive positive masses. However,it may be the case that the generators
of the group leave the vacuum (ground state) invariant, in which case the corresponding gauge
bosons will remain massless; and the corresponding generators are called unbroken generators.
Now we examine the effect of the electric charge operatorQ on the vacuum state. The generator
Q satisfies

Qφ0 = (T 3 + Yφ)φ0 =

(
1 0
0 0

)
φ0 = 0 (5.218)

the electric charge symmetry is unbroken. So there is an unbroken subgroup with a single gener-
atorQ: This is the subgroupU(1)Q of SU(2)× U(1). This subgroup corresponds to a massless
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gauge field, which is the electromagnetic field ( photonAµ). The choice of the vacuum expecta-
tion value in Eq. (5.214) breaks theSU(2)× U(1) gauge symmetry, since it identifies a specific
direction in the internal group space. Now we shall considersmall perturbations of the fields
around the vacuum,

φ(x) =

(
φ+

φ0

)
=

(
φ+

1√
2
[v + χ(x) + iη(x)]

)
=

1√
2
exp

(
iT aθa(x)

v

)(
0

v + χ(x)

)

(5.219)
We still have four real degrees of freedom, (threeθa and oneχ), equivalent to the two complex
fields. We can use the unitary gauge in which

φ(x) =
1√
2

(
0

v + χ(x)

)
(5.220)

In this gauge, the Goldstone fieldsθa(x) have been rotated away by anSU(2) gauge transforma-
tion.

φ(x) → φ′(x) = U(x)φ(x), U(x) = exp

(
−iT

aθa(x)

v

)

T · Aµ → T ·A′
µ = U T ·Aµ U−1 − i

g
(∂µ U) U

−1 (5.221)

Theθa(x) degrees of freedom no longer appear in the Higgs Lagrangian,they will reappear as
the longitudinal modes of the massive gauge bosons. The Higgs bosonχ is the only remaining
dynamical field. In order to find the mass terms for the gauge bosons and Higgs boson, we need
to calculate the quadratic Lagrangian, which means the calculation of the covariant derivative of
the fieldφ

Dµφ =

(
− i g

2
√
2
(A1

µ − iA2
µ)(v + χ)

− i
2
√
2
(g′Bµ − gA3

µ)(v + χ) + 1√
2
∂µχ

)

=
1√
2

(
0
∂µχ

)
− i

2

(
1 +

χ

v

)( g v W+
µ

−
√

(g2 + g′2)/2 v Zµ

)
(5.222)

The physical weak bosons are linear combinations of the gauge ones, so we have defined

W±
µ =

1√
2

(
A1
µ ∓ iA2

µ

)

Zµ =
1√

g2 + g′2
(gA3

µ − g′Bµ) = cos θWA
3
µ − sin θWBµ

Aµ =
1√

g2 + g′2
(gBµ + g′A3

µ) = sin θWA
3
µ + cos θWBµ (5.223)

where

sin θW =
g′√

g2 + g′2
, cos θW =

g√
g2 + g′2

(5.224)



5.8 A review of the Standard Model (SM) 149

and it is easy to show that
Z2
µ + (Aµ)

2 = (A3
µ)

2 +B2
µ (5.225)

Hence, the covariant derivative to the quadratic part of theLagrangian is

[(Dµφ)
†Dµφ](2) =

1

2
(∂µχ)

2 +

[
g2v2

4
W+
µ W

−µ +
1

2

(
(g2 + g′2)v2

4

)
Z2
µ

](
1 +

χ

v

)2
(5.226)

To quadratic order, the kinetic term of the vector fields in the quadratic Lagrangian is

−1

4
F̂ a
µνF̂

µν
a − 1

4
BµνB

µν = −1

2
W+
µνW

µν− − 1

4
F̂ 3
µνF̂

µν
3 − 1

4
BµνB

µν

= −1

2
W+
µνW

µν− − 1

4
ZµνZ

µν − 1

4
FµνF

µν (5.227)

where

F̂ a
µν = ∂µA

a
ν − ∂νA

a
µ

W±
µν = ∂µW

±
ν − ∂νW

±
µ

Zµν = ∂µZν − ∂νZµ

Fµν = ∂µAν − ∂νAµ (5.228)

Thus, the quadratic Lagrangian contains standard kinetic terms for the complex vector fieldW±
µ

and the real vector fieldsAµ andZµ. Collecting all together, we obtain the quadratic Lagrangian

L(2) = −1

2
W+
µνW

µν− +M2
WW

+
µ W

−µ

− 1

4
FµνF

µν

− 1

4
ZµνZ

µν +
M2

Z

2
ZµZ

µ

+
1

2
(∂µχ)

2 −
M2

χ

2
χ2 (5.229)

We therefore find that theW andZ gauge bosons have acquired masses, given by

MW =
g v

2
, MZ =

√
g2 + g′2 v

2
=

MW

cos θW
(5.230)

The photon remains massless because there are no terms quadratic in the fieldAµ; the quadratic
Lagrangian also describes a massive real scalar fieldχ (Higgs boson field) with mass given by

Mχ =
√
2 λ v (5.231)

From the measured value of the Fermi constant

GF√
2

=
g2

8M2
W

(5.232)
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the vacuum expectation value of the Higgs field,v, is 246GeV .

In summary, the Higgs fieldφ acquires a non-zero vacuum expectation value at a particular point
on the circle of minima away from the point whereφ = 0 and the symmetry is spontaneously
broken. Three Goldstone bosons of the four scalar field components get eaten by the gauge
bosons to form massive vector bosons (W±

µ , Zµ), and a single physical scalar particle remains:
The Higgs bosonχ with mass given byMχ =

√
2 λ v.

There areWWχ andZZχ couplings from2χ/v term in Eq. (5.226)

LχV V =
2M2

W

v
W+
µ W

−µ χ+
M2

Z

v
ZµZµ χ = gMW W+

µ W
−µ χ+

1

2

gMZ

cos θW
ZµZµ χ (5.233)

There are alsoχχWW andχχZZ couplings fromχ2/v2 term. An important fact is that Higgs
coupling is proportional to mass. Finally we summarize somekey points of Glashow-Weinberg-
Salam theory:

• To break the symmetry spontaneously, we introduce a scalar Higgs fieldφ in the funda-
mental representation ofSU(2) with non-zero VEV:

< φ >= φ0 =
1√
2

(
0
v

)

• Broken symmetry will be applied if the original symmetry were global rather than gauge.

• LetG be a gauge group, the generators ofG can be divided into unbroken generators{th}
and broken generators{tα}.

• If G is a global symmetry group, then the theory would contain massless Goldstone fields,
with number equal to broken generators.

• If G is a gauge group, then the gauge fields corresponding to unbroken generators remain
massless, while the gauge fields corresponding to broken generators become massive.

• Goldstone bosons corresponding to broken generators{tα} disappear from the spectrum;
they get eaten by the gauge particles to form massive vector bosons.

Fermion interactions

From experimental facts, charged currents couple only to left-handed fermions and neutral
currents couple to a massless photonAµ and a neutral gauge bosonZµ, the gauge group is
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SU(2)× U(1). For the case of leptons or quarks the left-handed fields are put into doublets; the
right-handed fields are allSU(2) singlets

ψL =
1

2
(1− γ5)ψ, ψR =

1

2
(1 + γ5)ψ, ψ = ψL + ψR (5.234)

It is easy to show
ψ i ∂/ ψ = ψL i ∂/ ψL + ψR i ∂/ ψR (5.235)

Hence the first generation of left-handed lepton fields is

`L =
1

2
(1− γ5)

(
νe
e

)
=

(
νeL
eL

)
(5.236)

which isSU(2) doublet, and the first generation of right-handed lepton fields are

νeR =
1

2
(1 + γ5) νe, eR =

1

2
(1 + γ5) e (5.237)

which formSU(2) singlets. Similarly the quark fields form left-handed doublets

qL =
1

2
(1− γ5)

(
u
d′

)
=

(
uL
d′L

)
,

1

2
(1− γ5)

(
c
s′

)
,

1

2
(1− γ5)

(
t
b′

)
(5.238)

and the right-handed quark fields are singlets. The primes onthe down type quarks will be
explained later. All these relations hold for each family. Before symmetry breaking, the coupling
of the fermions to the vector bosons is given by

Lψ = ψ iD/ ψ = ψL iD/ ψL + ψR iD/ ψR

= ψL iγ
µ
(
∂µ − i g T aAaµ − i g′ YLBµ

)
ψL + ψR iγ

µ (∂µ − i g′ YRBµ)ψR (5.239)

with
Yψ ψL = YL ψL, Yψ ψR = YR ψR (5.240)

Hereψ denote left- and right-handed quarks and leptons. TheU(1) charges,YL andYR, are
chosen to satisfy the relationQ = T 3+Yψ, so that after symmetry breaking we obtain the correct
values of the electric chargesQ. Table 5.2 lists all the values of weak isospin and hypercharge
for quarks and leptons. Now we focus on one generation of leptons (quarks work the same way)

Lψ = i`LD/ `L + ieRD/ eR (5.241)

where the covariant derivative is given by Eq. (5.198) and a right-handed neutrino would have
zero coupling both toSU(2) and toU(1), so we have simply omitted this field. We will find that
it is also useful to rewrite Eq. (5.198) in terms of the gauge boson mass eigenstatesW+

µ ,W
−
µ , Aµ

andZµ fields

Dµ = ∂µ − i
g√
2
(W+

µ T
+ +W−

µ T
−)− i

g

cos θW
Zµ (T

3 − sin2 θW Q)− i e AµQ (5.242)



152 CHAPTER 5. APPENDIX

where the values ofe and the weakSU(2) chargeg are related by

g =
e

sin θW
(5.243)

To work out the physical consequences of the fermion-gauge boson couplings, we should write
Eq. (5.241) in terms of the vector boson mass eigenstates using the form of the covariant deriva-
tive given in Eq. (5.242). Thus the fermion Lagrangian can bedivided into three pieces: kinetic
term, charged current and neutral current.

Lψ = Lkin + g (W+
µ J

µ+
W +W−

µ J
µ−
W + Zµ J

µ
Z) + eAµ J

µ
EM (5.244)

where

Lkin = i`L∂/ `L + ieR∂/ eR (5.245)

LCC = g (W+
µ J

µ+
W +W−

µ J
µ−
W ) =

g√
2
`L (W

+
µ T

+ +W−
µ T

−) γµ `L

=
g√
2

[
W+
µ νeL γ

µ eL +W−
µ eL γ

µ νeL
]

(5.246)

The neutral current interactions involvingZµ vector boson is

LNC = g Zµ J
µ
Z =

g

cos θW
Zµ
[
`L (T

3 − sin2 θW Q) γµ `L + eR (T 3 − sin2 θW Q) γµ eR
]

=
g

cos θW
Zµ

[
νeL

(
1

2

)
γµ νeL + eL

(
−1

2
+ sin2 θW

)
γµ eL + eR (sin2 θW ) γµ eR

]

(5.247)

where
Qψq = q ψq (5.248)

This procedure works for leptons and also for the quarks,e.g.the charged current Lagrangian for
quark sector is

g√
2

[
W+
µ uL γ

µ dL +W−
µ dL γ

µ uL
]

(5.249)

The charged currents of lepton and quark sector for one generation is given by

Jµ+W =
1√
2
[νeL γ

µ eL + uL γ
µ dL]

Jµ−W =
1√
2

[
eL γ

µ νeL + dL γ
µ uL

]
(5.250)

Finally we comment that the theoretical motivation for grouping the quarks and leptons as shown
in Table 5.2 is that complete families are required for the cancellation of anomalies in the currents
which couple to gauge fields. This cancellation shows that Ward identities, which are crucial for
the proof of renormalizability of the gauge theory at quantum level, are still validated.
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Fermion T 3
L YL T 3

R YR Q

u c t +1
2

+1
6

0 +2
3

+2
3

d s b −1
2

+1
6

0 −1
3

−1
3

νe νµ ντ +1
2

−1
2

− − 0

e µ τ −1
2

−1
2

0 −1 −1

Table 5.2: Weak isospin and hypercharge assignments, they are related throughQ = T 3 + Yψ.

Yukawa interactions

A direct fermion mass term

mfψ ψ = mf

(
ψR ψL + ψL ψR

)
(5.251)

is not gauge invariant underSU(2) or U(1) gauge transformation. The Higgs fieldφ can
give masses to the fermions via Yukawa interactions with thefermion fields. After sponta-
neous symmetry breaking, a Yukawa interaction of the formgf fL φ fR leads to a fermion mass,
mf = gf v/

√
2. The Yukawa Lagrangian is

LYukawa = −Γijd q̄
′i
L φ d

′j
R − Γij?d d̄′iR φ

† q′jL

−Γiju q̄
′i
L φc u

′j
R + h.c.

−Γije
¯̀i
L φ e

j
R + h.c. (5.252)

where

φ(x) =
1√
2

(
0

v +H(x)

)
, φc = i τ 2 φ? =

1√
2

(
v +H(x)

0

)
(5.253)

and here we have replaced the Higgs boson notationχ withH. qL and`L are left-handed doublet
fields anddR, uR, eR are right-handedSU(2) singlet fields. The primes forq′L, d′R andu′R mean
that they are quark fields that are generic linear combination of the mass eigenstatesu andd.
Γijd , Γiju andΓije are3 × 3 complex matrices in generation space, spanned by the indices i andj.
Note that neutrino masses can be implemented viaΓijν term. Sincemν is very small so that we
neglect it in the following.LYukawa is Lorentz invariant, gauge invariant and renormalizable,and
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therefore it can be included in the Lagrangian. In the unitary gauge we have

q̄′iL φ d
′j
R =

1√
2

(
ū′iL d̄′iL

)( 0
v +H

)
d′jR =

v +H√
2
d̄′iLd

′j
R

q̄′iL φc u
′j
R =

1√
2

(
ū′iL d̄′iL

)( v +H
0

)
u′jR =

v +H√
2
ū′iLu

′j
R (5.254)

so Eq. (5.252) becomes

LYukawa = −Γijd
v +H√

2
d̄′iLd

′j
R − Γiju

v +H√
2
ū′iLu

′j
R − Γije

v +H√
2
ēiLe

j
R + h.c.

= −
[
M ij

u ū
′i
Lu

′j
R +M ij

d d̄
′i
Ld

′j
R +M ij

e ē
i
Le

j
R + h.c.

](
1 +

H

v

)
(5.255)

with mass matrices
M ij = Γij

v√
2

(5.256)

Now we would like to diagonalize the mass matricesM ij
f (f = u, d, e), which can be achieved

using a bi-unitary transformationUf
L andUf

R.

f ′i
L =

(
Uf
L

)
ij
f jL, f ′i

R =
(
Uf
R

)
ij
f jR (5.257)

with Uf
L andUf

R chosen such that
(
Uf
L

)†
Mf

(
Uf
R

)
= diagonal (5.258)

andUf
L/R must be unitary in order to preserve the form of the kinetic terms in the Lagrangian.

We give two examples of diagonalized fermion mass matrices

(Uu
L)

†MuU
u
R =




mu 0 0
0 mc 0
0 0 mt


 ,

(
Ud
L

)†
MdU

d
R =




md 0 0
0 ms 0
0 0 mb


 (5.259)

Hence Yukawa interactions Eq. (5.252) can be rewritten as

LYukawa = −
∑

f ′,i,j

M ij
f f̄

′i
L f

′j
R

(
1 +

H

v

)
+ h.c.

= −
∑

f,i,j

f̄ iL

[(
Uf
L

)†
Mf

(
Uf
R

)]

ij

f jR

(
1 +

H

v

)
+ h.c.

= −
∑

f

mf

[
f̄LfR + f̄RfL

](
1 +

H

v

)

= −
∑

f

mf f̄ f

(
1 +

H

v

)
(5.260)
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We succeed in producing fermion masses and we got a fermion-antifermion-Higgs coupling
which is proportional to the fermion mass. Obviously the Higgs Yukawa couplings are flavour
diagonal, this means there is no flavour changing Higgs interactions. Recall that the charged
current interaction is of the form

gW+
µ J

µ+
W + h.c. =

e√
2 sin θW

W+
µ ū

′i
L γ

µ d′iL + h.c. (5.261)

After the mass diagonalization described previously, thisterm becomes

e√
2 sin θW

W+
µ ū

i
L

[
(Uu

L)
† Ud

L

]
ij
γµ djL + h.c. (5.262)

We define the Cabibbo-Kobayashi-Maskawa matrixVCKM .

VCKM = (Uu
L)

† Ud
L (5.263)

The CKM matrix is not diagonal and then it mixes the flavours ofthe different quarks. It is a
unitary matrix (V †

CKM VCKM = 1) and the values of its entries must be determined from exper-
iments. The CKM matrix connects the weak eigenstates(d′, s′, b′) and the corresponding mass
eigenstates(d, s, b) through




d′

s′

b′


 =




Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb






d
s
b


 = VCKM




d
s
b


 (5.264)

For3× 3 CKM matrix, the matrix element can be parameterized by 3 angles and 1 phase, which
gives rise to CP violation in Standard Model (SM). Now we lookat the neutral current interaction,
e.g.down type quarks is given by

g Zµ J
µ
Z =

e

sin θW cos θW

[(
−1

2
+

1

3
sin2 θW

)
Zµ d̄

′i
L γ

µ d′iL +

(
+
1

3
sin2 θW

)
Zµ d̄

′i
R γ

µ d′iR

]

(5.265)
After the mass diagonalization we have

e

sin θW cos θW

(
−1

2
+

1

3
sin2 θW

)
Zµ d̄

i
L

[(
Ud
L

)†
Ud
L

]
ij
γµ djL+

e

sin θW cos θW

(
+
1

3
sin2 θW

)
Zµ d̄

i
R

[(
Ud
R

)†
Ud
R

]

ij
γµ djR

=
e

sin θW cos θW

[(
−1

2
+

1

3
sin2 θW

)
Zµ d̄

i
L γ

µ diL +

(
+
1

3
sin2 θW

)
Zµ d̄

i
R γ

µ diR

]
(5.266)

So the unitary matrices cancel and theZ boson interaction is flavour diagonal also in the mass
eigenstate. It works the same way for the other flavours. Thismechanism is called the GIM
mechanism (Glashow, Iliopoulos and Maiani) [79]. It predicts the existence of the charm quark;
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there is then a second doublet(cL, s
′
L). Hence, the transitions, liked → s ands → d, cancel

precisely. This GIM mechanism generalizes for any number ofquark generations.

Finally we summarize the key points of this section.

• The Higgs fieldφ can give masses to the fermions via Yukawa interactions withthe fermion
fields.
−→ No flavour changing Higgs interactions.

• The flavour is conserved in vertices involving neutral gaugebosons:Aµ, Zµ andGµ.
−→ GIM mechanism.
−→ Absence of flavour changing neutral current (FCNC) at the tree level.
−→ b→ sγ, · · · are loop-induced in SM (high sensitivity to new physics effects).

• The charged current processes mediated byW± are flavour violating with the strength of
violation given by theSU(2) gauge couplingg and a unitary3× 3 CKM matrix.

5.8.4 The Standard Model of particle physics

The Standard Model (SM) of elementary particle physics is a gauge theory of strong and elec-
troweak interactions. It is based on the following gauge group.

SU(3)C × SU(2)L × U(1)Y (5.267)

TheSU(3)C is the colour group of QCD, whileSU(2)L×U(1)Y is the Glashow-Weinberg-Salam
electroweak symmetry group, which is spontaneously brokendown toU(1)Q, the phase group
of the electric chargeQ, different from theU(1)Y of weak hypercharge:Q = T 3 + Y , whereT 3

is the third component of the weak isospin generator ofSU(2)L. The groupSU(3)C ×U(1)Q is
believed to be an exact gauge symmetry of nature. The gauge group Eq. (5.267) contains 12 spin
1 gauge bosons:

• 8 massless gluons ofSU(3)C , which are responsible for the strong interactions ( QCD ).

• 4 gauge bosons ofSU(2)L×U(1)Y , which are responsible for the electroweak interactions,
of which one is massless ( photon field:Aµ ) and three are massive (W± andZ gauge
bosons ) after spontaneous symmetry breaking (SSB).

These gauge bosons interact with matter fields (coloured quarks and colourless leptons) in a
gauge invariant way. The field content is the following:
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Gauge sector : Spin = 1

The gauge bosons are spin 1 vector particles belonging to theadjoint representation of the gauge
group Eq. (5.267). Their quantum numbers are:

gluons GA
µ : (8, 1, 0) SU(3)C gs

weak bosons Aaµ : (1, 3, 0) SU(2)L g

abelian bosonBµ : (1, 1, 0) U(1)Y g′

(5.268)

whereA runs over the eight colour degrees of freedom of the gluon field GA
µ (A = 1, · · · , 8)

anda denotes the isospin space (a = 1, 2, 3). In order to avoid confusion we have changed the
notation for the strong coupling constant bygs, which we denoted withg in Chapter 1.

Fermion sector : Spin =1
2

In the Standard Model the matter fields are fermions belonging to the fundamental representation
of the gauge group Eq. (5.267):

quarks SU(3)C SU(2)L U(1)Y U(1)Q : Q

qiL =

(
uL
dL

) (
cL
sL

) (
tL
bL

)
3 2 1

6

(
2
3

−1
3

)

uiR = uR cR tR 3̄ 1 2
3

2
3

diR = dR sR bR 3̄ 1 −1
3

−1
3

leptons

`iL =

(
νeL
eL

) (
νµL
µL

) (
ντL
τL

)
1 2 −1

2

(
0
−1

)

eiR = eR µR τR 1 1 −1 −1

νiR = νeR νµR ντR 1 1 0 0

where
Q = T 3 + Y (5.269)

The Standard Model is described by the following Lagrangian:

L = Lgauge+ LYukawa+ LHiggs (5.270)
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where theLYukawa is given by Eq. (5.252), theLHiggs is given by Eq. (5.209), and the gauge
interaction is given by

Lgauge = −1

4
GA
µνG

µν
A − 1

4
F a
µν F

µν
a − 1

4
Bµν B

µν

+ i¯̀iLD/ `
i
L + iēiRD/ e

i
R

+ iq̄iLD/ q
i
L + iūiRD/ u

i
R + id̄iRD/ d

i
R (5.271)

HereD/ is a notation forD/ = γµDµ andi denotes three generations. The covariant derivative
is given by

Dµψ =

(
∂µ − i g

τa

2
Aaµ − i g′ Yψ Bµ + i gs

λA

2
GA
µ

)
ψ (5.272)

which acts on quark fields and lepton fields gives

Dµ`L =

(
∂µ − i g

τa

2
Aaµ − i g′

(
−1

2

)
Bµ

)
`L

DµeR = (∂µ − i g′ (−1) Bµ) eR

DµqL =

(
∂µ − i g

τa

2
Aaµ − i g′

(
1

6

)
Bµ + i gs

λA

2
GA
µ

)
qL

DµuR =

(
∂µ − i g′

(
2

3

)
Bµ + i gs

λA

2
GA
µ

)
uR

DµdR =

(
∂µ − i g′

(
−1

3

)
Bµ + i gs

λA

2
GA
µ

)
dR (5.273)
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