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Abstract

In this thesis we address an alternative subtraction scherhgh energy colliders at Next-
to-Leading Order (NLO) QCD calculations. In particular, feeus on the treatment of real
radiation contributions in the soft and collinear limitsftéx UV-renormalization, the remaining
infrared singularities appearing both in the real radraad in the virtual contributions can be
regularized using dipole subtraction method. In this saheaiipoles are based on the momentum
mapping and on the splitting functions derived from an invpib parton shower formulation
with quantum interference effects. In our new scheme, wel@nmgpslightly altered momentum
mapping such that the number of subtraction terms is greatlyced in comparison with the
standard Catani-Seymour scheme. In addition, the new slaso facilitates the matching
of NLO calculations with parton showers using the same tamdittunctions. We also achieve
the complete integrations of the splitting functions overuaresolved one parton phase space,
obtaining the correct soft and collinear singularity stanes that are necessary to cancel the soft
divergences in the virtual contributions. We discuss theegal framework setup of the scheme
as well as some scattering processes at colliders; we fingleteragreement with the results in
the widely used Catani-Seymour dipole subtraction scheme.
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Chapter 1

A brief review of QCD

1.1 Introduction

In elementary particle physics, the fundamental theonhefdtrong interaction is described by
Quantum Chromodynamics (QCD). It describes the interastitween quarks and gluons, and
in particular how they bind together to form hadroag/( the proton and the neutron). QCD is a
guantum field theory within a special class described by atogitan gauge theory [1] (or some-
times called Yang-Mills gauge theory). It is based on $i& N) gauge group. Understanding
how to use non-abelian gauge theory, combined with the pantodel, led to the development
of QCD and it is now a very well established theory in the sehs¢ QCD predictions have
successfully accounted for all the strong interaction érpents observed at colliders, in par-
ticular the phenomena of hadronic jet structurer~ annihilation, the Drell-Yan process and
heavy quark production [100]. QCD has two peculiar propsrtivhich differ from Quantum
Electrodynamics (QED)/electroweak interactions and Wwilaiso reveal its uniqueness.

e Asymptotic freedom: this means that at very high energies, the strong force (aled
the colour force) of quarks and gluons is so weak that theyellmost as free parti-
cles when the quarks or gluons are really close to each oflmes.phenomenon is called
asymptotic freedom and it is due to the fact that the stromming coupling constant
as(Q?%) depends on the energy scélea,(Q?) becomes weaker as the sc@léncreases
To check this, one must determine the running of the cougorgstanty,, which is gov-
erned by the renormalization group equation,

dag
0Q?

In contrast to QED where the coupliagbecomes strong at high energies.

Blas) = Q*
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if B < 0, the theory is asymptotically free. The asymptotic freeddi®CD also explains
why we can apply a perturbative approach to explore the tstreiof matter at short dis-
tances € high energies). This prediction of QCD was first discoverethe early 1970s
by H. David Politzer [2] and by David J. Gross and Frank Wilcg&. For this work they

were awarded the 2004 Nobel Prize in Physics.

e Colour confinement: the strong force of quarks becomes stronger when the destanc
creases, which implies low energy. So it would take an irdiaihount of energy to move
apart two quarks; they are always confined inside hadronsifi@ment is widely be-
lieved to be true (although analytically unproven yet; adbQCD theorems are based
on assumptions ) in the sense that no free quark and gluoeeegf freedom have been
observed at collidefs

The recent progress in the understanding of strong inierechas been due to the comparison
between precise higher order perturbative QCD calculatemd accurate experimental data.
The perturbative calculation of jet cross sections is basethe QCD improved parton model
picture [4-6], which has been made rigorous since the desgoef asymptotic freedom. In
this model a hard scattering process between two hadronbec#imught of as an interaction
between the quarks and gluons, which are the constituethg @ficoming hadrons. Much of the
techniques of perturbative QCD derive from the well knowrthods of QED apart from the fact
that QCD is a non-abelian gauge theory; however, there irbigtdifferences between the two
theories.

Importantly because the quanta of QCD, quarks and gluoesrhlogues of electrons and pho-
tons in QED, are always bound into hadrons and not observae@agparticles at colliders. At
low energies, confinement effects dominate and non-pextivebapproaches become more im-
portant. The most widely used method is lattice QCD. At veighhenergies, however, one
still cannot avoid confinement effects due to the fact thatasymptotic incoming and outgoing
partons consist of hadrons. For certain quantities, fazgton theorems [7-9] allow the two
scales to be appropriately separated, and the low energgpan be treated by parametriza-
tions, model calculations or factoring them into the partistribution functions (PDF). The
remaining quantities involve only high momentum transfarsd therefore short distances and
short times) and is insensitive to long distances behawab@CD. Thus, these quantities are cal-
culable in perturbation theory because of asymptotic fveedThe factorization theorem states
that the short distance behaviour of parton scatteringt{#lrd part) does not interfere with the
long distance process that turns partons (quarks and gluaoshadrons, hadronization. This
factorization property can be proved to be valid to all osdarperturbation theory.

°Note, that all hadrons are colourless (or colour singlats)@nly colour singlet states can be observed as free
particles;i.e. we never observe a free quark/gluon since quark/gluonesacolour charge.
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Another important ingredient of perturbative QCD is in&disafety, which is the guiding princi-
ple of higher order perturbative calculations. In genexal consider any quantity that is infrared
finite. That is to say, infrared safe quantities do not depamdhe long distance behaviour of
QCD (except for the long distance effects that are factaramthe parton distribution functions),
so that it makes sense to calculate any quantity in pertveb@CD. The proof of infrared safety
comes from the KLN theorem [10, 11], which is a fundamentargum mechanical result and
which provides the theoretical argument to the problem difrear and infrared singularities
due to massless charged particles. It states that fullysingt measurements, which sum over all
degenerate initial and final states, are free from infrareergdences.

In this thesis we will only deal with the physics of hard preses at Next-to-Leading Order
precision, in which case the infrared divergences have todaged carefully. The properties of
any given hadron species will be irrelevant because of fexettoon theorems. This is why jet
production is computed as simple parton scattering. Thbgimtity that partons will produce

hadrons is unity.

1.2 Colour SU (3)¢ and quark confinement

First, let us review the addition of angular momenta in QuanMechanics. Addition of two
spin-1/2 particlesj, = jp = 1/2 hastotal spin/ = 0 or.J = 1. Symbolically, we have

22 =1®3 (1.1)
Now, combining a third spifi-/2 particle, we have
(222)®2=(103)R2=(1®2)® (3®2)=20204 (1.2)

At the end, we have a quartet of s@if2 and two doublets of spifh/2. The quarks in the spin-
3/2 baryons are in a symmetrical state of spin, space &) flavour degrees of freedom,
e.g.we consider the pion-nucleon resonghde + with spin-3/2

A gy = 3/2) = [ut,ut,ut) (1.3)

Here, J; is the third component of the total angular momentunvfdrt and the arrow represents
the spin aligned up. However, this state is not allowed bee#ue wave function has to be totally
antisymmetric under interchange of any of the two quarkstdube Fermi-Dirac statistics. To

3Here, we use the dimensioig, the size of multipleR J + 1) to label the irreducible representation.
4A** is made of three-quarks.
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reconcile the baryon spectrum and the Fermi-Dirac stesisbne can introduce an additional
guantum number, called colour [121, 122]. Hence, we cantoactcolour singlet states

1 ab — abc
—35 | @@ > and [B>~ " |q.qq >

7

for mesons and baryon% respectively, where®c is the totally antisymmetric tensor and
a,b,c(= 1,2,3) represent three colours of quarks. It is then easy to cartdtna totally anti-
symmetric wave function foA*+

[A** gy = 3/2) = e |uf 1 0l ) (1.4)

|M >~ |q,q.> or |M>=

The state Eq. (1.4) is then a singletepresentation afU (3). Next, we consider the confine-
ment effect in QCD. Quark confinement is directly relatedhe tact that quarks (gluons) are
coloured quanta and hence cannot be observed in naturehydiqal hadrons are colourless. In
order to construct colour singlet states we have to pick ini@et representation in the decom-
position of the product of two/three quarks into irredueibépresentation. For meson state, we
have

33 =108 (1.5)

For baryon state, we have
33%3=(306)®3=(303)® (603)=16868®10 (1.6)
Diquark and four-quark states belong to colour nonsinglets
lqg>: 3®3 =306
lqqqq>: 33233 =303P30D6D6015015D 150 15
|gg>: 33 =3d06
13q37>: 332323 =303030606015015015015  (1.7)
Only| ¢ g > and| q q ¢ > states belong to colour singlets. The conjecture that arityur singlet
states can be observed is the same as that of the quark coafihem

1.3 QCD Lagrangian

Strong interactions between quarks and gluons are deddsjpaon-abelian local gauge theory
and SU(3)¢ is the gauge group. Each quark field (flavour) forms a tripiethie fundamental

SMesons are quark-antiquark bound states.

5Baryons are bound states of three quarks (antiquarks).

"Quark field belongs to the fundamen@alrepresentation 06U (3) and antiquark is then assigned to the
complex-conjugat@ representation. Thé is symmetric and is antisymmetric under interchange of the two
quarks.
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representation U (3)¢

Gred
Qo = Ablue ) (G, = 17 27 3) (18)
Qgreen

and eight gluon fields}ﬁ1 form an octet in the adjoint representation (defined to haeesame

dimensions as the gauge group). The indesuns over the eight colour degrees of freedom of
the gluonfield@ = 1,---,8). The QCD Lagrangian density is given by

»CQCD = »Cclassical+ »Cgauge-fixing+ »Cghost (1-9)

where the classical Lagrangian density is

Lciassical = _i GﬁyGﬁu + Z Qa (Z@ - m)ab b (1-10)
flavours
which describes the interaction of spénquarks of massn and massless spingluons.
in Eq. (1.10) is a symbolic notation for, D* and the spinor indices of, andg, have been
suppressed. The sumin Eq. (1.10) runs oventheifferent flavours of quarks<{ v, d, c, s, ¢, ).
We follow the standard notation with metric given b§ = diag'1l,—1,—1,—1) and seth =
¢ = 1. The gamma matrices satisfy the Clifford algebra

{7 =2g" (1.11)
G;‘V is the field strength tensor, which can be derived from themfield G;‘
Gh, = 0,G)—0,G) —gf*P°GlGS . (A,B,C =1,---,8) (1.12)

whereg is the strength of the strong coupling constamtween coloured quanta (quarks and
gluons). It is the third term on the right-hand-side of Eqlg) that gives rise to cubic and
quartic gauge boson (gluon) self-interactibrisote that the mass terms’ G;‘ G", for the gauge
bosons (gluons) are not gauge invariant! Gauge bosons obke&i non-abelian gauge theory
are massless. Gauge invariance combined with renormdiiggbbsence of higher powers of
fields and covariant derivatives in Lagrangian) determugeasge boson/fermion couplings and
gauge boson self-interactions. In order to preserve thermealizability of QCD, each term in
the Lagrangian has to have mass dimension four. It follols, the dimensions of the fields
andG/} are 3/2 and 1, respectively:!*“ are the structure constants of & (3) colour group.

D is the covariant derivative, which acts on triplet and ofiedtls according to

(D) = Oubar +ig (tCGf)ab
(Dp)ap = 0Oudan +ig (TCGS)AB (1.13)

8Note that the notationg andg, can be exchanged with each other without making any diftaém the later
discussions.
9This term leads to the property of asymptotic freedom at tite e
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wheret andT" are matrices in the fundamental and adjoint represengatidsU (3)- colour
group respectively.

[t4,18] = i fABC4C
[TA, TB] — fABC TC
(TA)BC = —1 fABC (1.14)

The generatorg” can be represented by the eight Gell-Mann matrices. Thesecamare
hermitian and traceless,

A=\ (1.15)
with
010 0 — 0 1 0 O
M=1l100], X=|4i 0 0], X=[0-10],
00 0 0 0 0 0 0
00 1 00 — 000
X*:ooo,ﬁ:ooo 001/,
1 00 0 0 010
00 O 10 0
MN=100 —i |, ¥=—101 0 (1.16)
0 i O \/5 0 0 —2
The colour charges of theU (V) matrices can be chosen to be (see Fig. 1.1)
Tr tAtP = TRo4® Zt th = C op =1
R ) ab Ybe F acs a 2N
TTOTP = ) A fABD =Cy 5CD, Cp = (1.17)
A,B
The colour charge is directly related to the Casimir operdto = 72 = T4T4 where,
(T4) 5 = —if*PCif i is a gluon andly, = 2 (—t;)) if i is a quark (antiquark). The

Casimir operator commutes with all group generatoes,

— ,
antisymmetric  symmetric

Hence,T? is an invariant of the algebra. For the specific cas8©f3). we have

4
C1F = ga
For the anticommutator of thematrices in the fundamental representation, we have

N2_45C’D

Cy=3 (1.19)

1
{tA,tB} — N 5AB I + dABC tC ’ ZdABC dABD — ’ dAAC =0 (120)
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CA fABC fABD — CA 5CD
Crp thtd = Cp 04

|

|

|
Tr Tr t4t8 = Ty 648

Figure 1.1: The definitions of the colour charges in #i&(N) gauge group. Repeated indices
are summed over th&? — 1(N) values ofA, B, C(a, b, ¢) of the adjoint (fundamental) repre-

sentation. Here, the curl line means gluon field and solid fimeans quark field. We can also
defineC; = Cr = (N* — 1)/(2 N) if i is a quark or antiquark an@d; = C4 = N if i is a gluon.
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1.4 Local gauge invariance

Eq. (1.10) is invariant under local gauge transformatiofifis means the parametef$(z)
which characterize the transformation depend on the spaeebordinates and we can redefine
the quark fields independently at every spacetime poinhowuitchanging the physics.

Go(7) = ¢(2) = Ux)w p(z), Qz) = exp{it?0t(z)}, QAQ=0QQN =1 (1.21)

If (2is unitary, the” are hermitian matrices, called group generators. Theyrgenimfinitesimal
transformations around the unit matrix element of the Laugr ForSU (V) matrix (unitary and
det Q = 1), there areV? — 1 traceless, hermitian generaters= 1/2 \4.

Qz) = 1 +it* 04 (x) + O(6?) (1.22)
The covariant derivative transforms as
D,q(z) — D; ¢ (z) = Qx)D, q(x) (1.23)

Here we have omitted the colour labels of the quark fields. #veuse Eq. (1.23) to derive the
transformation property of the gluon field, (x)

D:L d(zr) = ((‘9M +igt- G;) Q(x)q(x)

= (0, Q(x)) q(z) + Qx)0uq(x) +igt - G, Qx)q(z) (1.24)
where
t-G, =Y t"G) (1.25)
A
Thus we find .
LG = Q) t- G, O (@) + é (8, Q(x)) Q7' () (1.26)

which in terms of the infinitesimal parameté(s:) can be rewritten as
, 1
Gt =Gl — fAPCOPGE - QMA +0(6?) (1.27)

The third term is similar to the abelian case. The second iegpecific to the non-abelian gauge
theory. Introducing the generatdrs' in the adjoint representation of the gauge group, one may
write the infinitesimal transformation as

1
SG = —(Dulas 0%, Gt =Gl+oG (1.28)
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It is straightforward to show that the transformation pmtyef the field strength tensda¥,,, is'°
t-Gu(x) = t- Giw(x) = Qz)t- G (z) QY (z), (1.29)
which may be derived using the relation

[D,.,D,) = igt-G,, . (1.30)

1.5 Renormalization

The running coupling constant and renormalization group eaiation (RGE)

Supposed is a dimensionless quantity which depends on a single eseagg(). By assumption
the scaleQ) is much bigger than another mass scal®: > m?. In the limitm — 0, A is
independent of) by dimensional analysis.

A= AQ*/m* o) —  Aa) as m—0 (1.31)

After quantization, the theory must be renormalized dueht gresence of ultraviolet (UV)
divergences. Hence an arbitrary mass sgdtas to be introduced.

A —  AQ*/p? a,)  after quantization (1.32)

The scaleu is arbitrary, and physical results cannot depend on it. Bathtically, they inde-
pendence oA may be expressed by

d 0 Oas 0
2 AQ* ? = 12 . A = 1.
W (Q° /1, o) = (aMQ T o 8%) 0 (1.33)
This is a renormalization group equation (RGE). In ordemives RGE, one defines
Oarg
t =WQ*/u?, Blas) = 4’ 5, (1.34)
Using
0 ot 0
- 1.
ou? ou? ot (1.35)
we have
ST CER B (1.36)
ot * Oag n '

010 contrast to QED, the field strength tensor is not gaugeriamfin QCD, because of the gluon self-
interactions. However, the track G, G*¥ is gauge invariant. Also, the gluon fields are coloured cmaint
contrast to QED, where the photons are electrically neutral
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The strong running coupling,(Q?) is then introduced

B a-ﬁ(Qz) dSC 2 _
t = /as M, as(p”) = ay (1.37)

We can then take derivatives with respect and o, (the two independent variables) on both
sides of Eq. (1.37). By takingd/dt we obtain

B 1 6(15(@2) Oag B
S TP o5y R T (1.38)

By takingd/da, we obtain

_ 1 das(@*) 1
° Blas(@Q?) Do Bla) (1.39)

These two relations show explicit the dependence of theingrsoupling ot anda,:

D0, (Q?) oy 005(Q%)  B(ay(@))
8t - 6<QS<Q ))7 8043 - 6(043) (140)
from which it follows that
A(Qz//fu(%) = A(LO‘8<Q2)) (1.41)

is a solution of Eq. (1.36). Thus, the scale dependenckistknown if that ofa, (Q?) is known.

The 3 function

Instead of discussing different UV renormalization schenfet us compute a simple renormal-
ization scale dependent parameter: the running strongliogup,. In QCD, the differential
equation for the strong coupling, is

Oayg
0Q)?
Thusa; is a function of the energy scale at which it is evaluated amd raccording to thg
function, which at the one-loop level is given by

Blas) = Q@ (1.42)

11 2

1
5(as)=—ﬁﬁoa§+'“, BO:ECA_gnfTR (1.43)

where(- - -) represents the terms beyond the one-loop level. In theWwoilpwe will explain in
detail how Eq. (1.43) is computed. Let us consider bottom paiduction at the LHCyg —
bb. The Feynman diagram is anchannel off-shell gluon. The physical parameters we can
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Figure 1.2: The one-loop contributions to the renormal@atounterterms for the gluon and

fermion self-energies and the gluon-fermion vertex. Thet lone means gluon field, solid line
means quark field and dash line means ghost field.
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renormalize in this process are the strong couplingnd the bottom quark mass. Wave function
renormalization constants are not physical. Here we asshateall quarks are massless. To
compute thes function, one has to calculate three types of virtual diaggdésee Fig. 1.2): the
internal gluon self-energies with a renormalization cantt 4, the external quark self-energies
with a renormalization constaif, and the gluon-fermion verteX, ;. The strong coupling
renormalization constaif, is related ta” ,;,,, Z4 andZ, by

1/2
Zigy = Z4 2" Zy (1.44)
wheré!
a 5 4
Z4 = 1+—=(=Cy—=n;Tp| T —2e
A +47T (3 A= 3Ny R) (€)
(6%
Zy = 1= =CpT(e)u™
Y 1. CF (6) p
Qg 9
ZA%ZJ = 1+E(CF+CA) F(e),u 2 (145)

For the gluon self-energies (see the first block of Fig. h2)fermion loop contribution gives

. v v Qg 4 —el
; (ngM — qtq ) §AB <—E§nfTRM 2 ;+) (1.46)

while the rest of the diagrams give

. y y as 5 =
Z((]QQM —qMQ)(SAB (_W_CAM2E+...) (1.47)

For the fermion self-energies (see the second block of F&), ive have

a 1
PO =+ 1.48
Z47r]é F I e+ ( )

and for the gluon-fermion vertex (see the last block of Fig),lwe have

s o 1
ia—gstA7” (Cp+Cy) p 2=+ (1.49)
4 €

We define the functiord(g,) via the relation(c,,) = g, B(gs)/(47), wherea, and g, are
related byy?> = 47 a,. Hence, the result fas(g,) is'?

~ 3
Blgs) = (=2) (4g;>2 (Cp+Ca) = Cr + % (g Ca— %nf TR)} (1.50)

Here we calculate id = 4 — 2 e dimensions.
?Here we have changed the notation for the strong couplingtaahbyg,, which we denoted witly in the last
section.
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or equivalently
2
as
Blas) = o Bo (1.51)

The coupling constant, has an expression, which relates two different scal¥sat whicha
is calculated and the renormalization scate At leading order in the perturbative expansion,
we can solve Eq. (1.42) with Eq. (1.43) to obtain

2 as(MQ) BO
(0?) = . by = 2 1.52
In QCD withn; < 16 (or 8 < 0) the strong coupling; becomes weaker as the energy scale
increases. This is known as asymptotic freedom. This behawf asymptotic freedom is in
contrast to QED where the coupling becomes strong at higlyese In QED thes function is
1

BQED(O() = 5 (12 + s (153)

1.6 Parton branching at Next-to-Leading Order

In this section we will discuss in detail infrared and caglam singularity® that we used through-
out the main part of this thesis. Fig. 1.3 shows the kinematid notation for the splitting of
partona into b andc in the final statee.g.a virtual quark splits into a real quark plus a real gluon.

For the propagator we ha\le

1 1 1
propagator= =

= 1.54
(p+k)2—m2 2p-k 2E,E.(1 — A cos?) (1.54)

We have to take the square of the amplitude and integratetbegdinal state phase space, all
together, we getd3l§/Eb -1/E} ~ EydE,-1/E} ~ dE,/E,. When E, goes to zero this
corresponds to a soft singularity. Fer — 0 we haveA — 1 and(1 — A cos) vanishes
atcos? = 1. This corresponds to a collinear mass singularity. Howewérared (soft plus

13We will explain this in more detail in Section 5.5 and Sectio®, where we discussed soft and collinear photon
radiations. The generalization to soft and collinear gluadiations in QCD is straightforward, one can simply
replace photon field with gluon field and take the colour fextnd QCD coupling constagt into accountj.e.we
make the following substitution for vertex:

—1eQfYu — figstaAb’y#.
14Here we choosp = (E., p. ) ,k = (Ey, ), hencdp.| = E.\/1 — m2/E2 = E.Aand|p,| = Ej.

Note also that the notatign, andk can be exchanged with each other without making any diftergre. we will
use both notations interchangeably without being notiGsahilarly for p. andp.
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. p+k ]

p

Figure 1.3: A final-state parton branching.

collinear) singularities cancel, if we add virtual diagsa(seee.g.Fig. 1.2). This is a conse-
qguence of the KLN theorem [10, 11].

In QCD there is a generic property, that the real emissionitude ((m+ 1)-parton phase space)
can be factorized into a Born-level amplitude-parton phase space) in the soft and collinear
limits based on the factorization theorems

(M1 = vy - M,y | (1.55)

wherewv, means the singular factor. One can also refer to Eq. (5.1l&)ppendix for soft-gluon
approximation and Eg. (5.133) in appendix for collinearogiilemissiotr, e.g.for a collinear
final-stategqg parton branching (see Fig. 1.3) we have

Monir ~ a(p) [=i gs toy v € (k) % A(pa) ~ %U(p) (95t ] €7 (k) D w(pa) ©(pa) Alpa)

a spins — M

~ Z %u(p) [gs tab ’YIJ (k) u(pa) Mm (156)

whereii(p) is the spinor of the fermion and(p,) the remaining part of the amplitude. Hefte

1+ 22
1—=z2

15In Section 5.5 and Section 5.6 we discussed photon radgtfon the gluon radiations we simply make the
following substitution for vertex:

1 :
[vg|?> ~ zqu(z) with P, (2) = Cr (1.57)

—1eQfYu — figstaAb’y#.

%Here P, (z) is the spin-averaged splitting function [6]. In the collmdimit, the radiation of additional partons
is described by universal splitting functions, indeperiddrthe hard interaction. The Eq. (1.57) shows that the
m — m+ 1 amplitude factorizes into a soft/collinear payt from the propagator, the splitting functid®, (=) and
a hardm — m amplitude without IR singularities.
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Here we have assumed tHat

pi=(p+p.)’ =t> ;.0 (1.58)
and the energy fraction is defined by
= FE,/E, = 1—E,/E, (1.59)

Hence for small angles we obtain
t=p2=2FEE.(1—cos?) = z(1 —z) E29? (1.60)

The limit wherep, andp. become collinear can be precisely defined using Sudakowvezsi-
tion

Py = ZPat+pr+Gn

pe = (1—=2)ps—pr+¢n
2
br

2 *Pe — T —0
Dy-Pp 2(1—2) br
%A

2
=0 = = -
Dy G 221

2
2 _ g = Pr 1.61
P = G =2 n (1.61)

wherepr - p, = pr-n = n?> = 0. In Eq. (1.61),n* is an auxiliary lightlike vector, that
is necessary to specify the transverse compoper(pz < 0). We can split the anglé for
massless partons according to Fig. 5.2 of [109]

O  pr (pr\ 11—z O e
9 = 9y + 9. d — == [—= = Y = = — 1.62
bt an . B, (Ec) z < 1—2 z ( )

In order to calculate the cross section for the varioustsmditprocesses, we need to know the
factorization of the phase space frgm + 1)-parton phase space inte-parton phase space. We
consider the multi-particle phase space decompositiangls® appendix). For the branching of
partona into b + ¢, we can decompose the collinear phase space accordfhg to

d’py d*p.  dp;
(27)32E, (27)32E, 27

dPS, 11 = dPS,, (27)*6* (pa — py — pe)

1 1
= dPS,, —— 4 o 5o 3o
5m (2m)? 4EbE05 (Pa = Po — pe) A’y d°pic dt
! dz ,
= dpsmm /Edebﬁbdﬁbdcpdt:(;(t_EbEcﬁ )5(Z—Eb/Ea)
1
= dPS,, —=— dtdzd e

"Here we choosg, = (E,, 7. ).
18435, = d*p, atfixedpy, , d*p, = E2dEy 9 d¥yde and sindy, ~ 0.
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whereyp is the azimuthal angle. Adding the matrix elements to thisoiazation of the collinear
phase space we can derive the cross section for one coleng@asion

domy1 ~ |Mm+1|2dPSm+1
1
= |[Myy1[?dPS,, 1738 dt dzdyp

(2m)?
1 . .
= |Mys1|?dPS,, ——— dtdz  spherically symmetric
4(2m)?
2 g? dtd _ 2 g?
- %Pab(z) |Mm|2dPSmT7TZQ assuming | [M,..1|> = tgs P (2) M, ]?

(1.64)

Here we have neglected the initial-state flux fackorUsingdo,, ~ |M,,|* dPS,, we can write
the most general form of Eq. (1.64)

dom1 = dopy, dt dz s Py(2) (1.65)
T

The Eq. (1.65) means that we can calculate(the- 1)-particle cross section from the-particle
cross section convoluted with the universal splitting tioes P,,(z). In Chapter 2 we will
discuss various branching processeg,a quark splitting into a quark and a glugpyg), a gluon
splitting into two quarkggqq), a gluon splitting into two gluongggg) and derive alternative
splitting functions in the final (initial) states using agdltly different kinematics and momentum
mapping. Our new subtraction scheme is based on these isgbsplitting functions.



Chapter 2

Nagy-Soper dipoles

2.1 Motivation

The main topic of this thesis is the calculation of QCD crosstisns in high energy hadron
colliders or lepton colliders at Next-to-Leading Order @Laccuracy. For the LHC we will
be faced with complex hadronic scatterings with many pladian the final state and we need
to understand the standard model (SM) predictions pregcisedrder to dig out any signal from
physics beyond the SM (BSM). Therefore, processes havenargkto be calculated at least
to NLO precision. Another reason why we bother with highedesrcalculations is that the
naive parton model picture corresponds to the LeadingQitdD) approximation; and the LO
calculations only predict the rough order of magnitude ofiaery cross section due to poor
convergence of perturbative expansion; there is still@sfidependence on the unphysical input
scales (renormalization and factorization scales). NLQ@@lculations can help us to reduce
dependence on the renormalization scale for observabtésding o (%), which at the end
leads to stable predictions for the cross sections. In higttker calculations, we have to consider
real emission corrections and virtual contributions. Remnore we will often be facing two
different sources of singularities: ultraviolet (UV) digences and infrared (IR) divergences;
the UV singularities, which are only present in the virtua@gtams, can be removed by the
standard renormalization procedure and infrared singigsi(soft and collinear), which instead
can appear both in the real and in the virtual contributiatsxy cancel when we sum over real and
virtual contributions. That is a consequence of the KLN tken In general, when we compute
cross sections with initial state hadrons; there are sttidver collinear singularities, which
need to be factorized into the universal and process inadlgmgrparton distribution functions
(PDFs). As a result, cross sections are finite at the partal teder by order in perturbation
theory. Recent progress for results at NLO have been alailaball 2 — 2 and2 — 3, and for
some2 — 4 processes at hadron colliders.
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There are, generally speaking, two types of algorithms lyidsed for dealing with the infrared
divergences in NLO QCD calculations: the phase space gliand the subtractiomethods.
Now suppose that we are interested in calculating the iategr

I = lim (/0 d?xa:EM(:c) +%M0) (2.1)

e—0

where)M (z) is a complicated function which is nonsingularat 0; and it depends on the hard
scattering processes. The first term on the right-hand sidée thought of the contribution from
real graphs and the second term plays the role of the cotitibfrom virtual diagrams. Here

is analogous to the energy of a gluon, or to the angle betweepartons. There is a singularity
atz = 0. Using dimensional regularization by lowering the dimensiod = 4 — 2¢, this
singularity is regularized by a facter©. The integral is divergent as— 0, but the divergence is
cancelled by the second term(1/¢) M,, which is a result of the KLN theorem. In this case KLN
theorem also ensures that, ,, M (z) = M. In practice, the functiod/(z) could be very
complicated for an increasing number of external partici¢be final state. The question is how
to calculate the value aof numerically (and efficiently) if the function/ (x) is too complicated
such that an analytic computation cannot be allowed.

¢ Slicing: the widely used method is called the phase space slicingadethtroducing an
arbitrary cutoff§ (we choose) < 1andsd >> |e|), one can split the integration region into
two pieces0 < x < dandd <z < 1. For the regior) < = < J, we can use the simple
approximation thatl/ (z) — M (0). This gives

' dx * da 1 Ydx 1 e
1:/6 xHEM(x)Jr/O x1+6M(z)+EMO:/6 — M(z)+= (1-0"°) M,

Xz €
1
d
~ / M (z) + In(8) My (2.2)
s X
Now the first integration can be integrated numerically i téspective Monte Carlo pro-
gram. As long as is small, the result will be independent@fThe details of this method
are explained by Baer, Ohnemus and Owens [12] in the confexicalculation of pho-
toproduction of jets. This method has also been applied t® Malculations of three-jet
cross sections iate~ annihilation [13, 14].

e Subtraction: the idea was first used for QCD calculations of jet structnre’ e~ annihi-
lation by R. K. Ellis, Ross and Terrano [15], and later by Z. nkmt and P. Nason [16].
The basic idea is that one can write

Udx Udx Udx 1
]:/O lerEM(:C)—/O x1+€MO+A FMQ—FEMO
U M(z) — M, 11 Ld

0 0

€ i
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The integration can now be performed numerically by MontddcCiategration. In sum-
mary, both the phase space slicing and the subtractionitlga provide the foundation
for setting up a Monte Carlo program, which can be used toempht arbitrary higher or-
der QCD calculations in a given process. As for the subtmaaigorithm, a general NLO
formalism has been applied to calculate three-jet crossosscine™ e~ annihilation and
cross sections up to two-jet production in the final stateaalréin colliders [17-19]; the
algorithm of [17] has been modified to deal with three-jessreections at next-to-leading
order [20]. This formalism is also applicablesget production ine*e™ annihilation and

in hadron collisions. The treatment of massive partons lsadxeen considered in the case
of heavy quark correlations in hadron collisions at nextetading order [20, 21].

In recent years, an important calculational tool for the lenpentation of NLO QCD correc-
tions in Monte Carlo style programs are dipole subtracticdmesmes [22—-25]. The key point
for the dipole subtraction method is that the QCD squareldeméssion matrix element can be
factorized into Born matrix element in the soft and collinkaits based on the factorization
properties of QCD matrix elements [26, 27]. Dipole subiatschemes introduce local coun-
terterms, which mimic the behaviour of the real-emissiotrim@&lement in the singular limits.
After standard UV-renormalization, the soft and collinesagularities then cancel when the in-
tegrated subtraction terms are added to the virtual crag®se Hence, the results to the NLO
cross section are finite and the further phase-space itiggaan be performed numerically by
Monte Carlo techniques.

The various schemes [22,23,25] differ in the phase-spaceantum mapping, which relates LO
and NLO kinematics. In the standard scheme of Catani and &eay[@2], the universal local
counterterms need to be re-calculated for each emittetésoe pait. Therefore, this scheme
suffers from a large number of momentum mappings neededaioate the subtraction terms.
Basically, the number of momentum mappings scales Nkefor a LO2 — N process. This
scaling leads to a rapidly rising number of momentum mappiiog a large number of exter-
nal particles in the final state. Following an approach saggkby Zoltan Nagy and Dave
Soper [28-30], we employ a subtraction scheme with a slighitered momentum mapping,
such that the number of kinematic transformations is gyeatiuced. Basically, the number of
mappings scales lik&/? fora LO2 — N process, thereby reducing the number of matrix ele-
ment computations by a factor of. In addition, the dipole subtraction terms in this alteivet
scheme are based on splitting functions which have beerpeajin the context of an improved
parton shower formulation including quantum interfereeffects. Hence, the new scheme facil-
itates numerical implementations of higher order coraagiin Monte Carlo Event Generators
and also allows for easy matching with a parton shower usiagame splitting functions.

1The number of momentum mappings = number of emitters.
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We begin in Section 2.2 by giving a brief overview of the gahsubtraction procedure. In Sec-
tion 2.3 we discuss the general framework setup and the mmimemapping betweem- and
(m + 1)-particle phase space. In Section 2.4 we will give the ekpdixpressions of splitting
functions for each process in both the initial and final stzis well as the eikonal splitting func-
tions and soft splitting functions. In Section 2.5 we wilbshthe complete integrated splitting
functions including collinear and soft integrals. In Crex@ we will show our first applications
to NLO processes at hadron and lepton colliders. Finally wieswmmarize in Chapter 4.

2.2 General structure of the NLO cross section and subtrac-
tion procedure

2.2.1 The general subtraction procedure

In this Section we explain the general subtraction procedurcalculating NLO cross sections
at lepton and hadron colliders. Suppose that we want to lesdcthe jet quantityy at NLO
accuracy

o = o0 4 VO (2.4)
Suppose also that there argpartons in the final state at LO, then we have
ol = / do® (2.5)

Here,do? is the Born-level cross section, which can be symbolicaliyten as
do® = dPS,, |M,,|* F™ (2.6)

wheredPS,, denotes the phase spacerofparticles in four dimensionsM,, is the matrix
element andF}m) is a function of cuts defining the jet observables, which wk @scuss in
Section 2.2.3. By definition, the LO cross section is finitetlsat Eq. (2.5) can be integrated
(analytically or numerically) in four dimensions.

At NLO, we have to consider both the real and virtual contidtms. There aren + 1 partons
in the final state for the real emission andpartons in the final state for the virtual one-loop
correction. So we can write

oNLO — /dUNLO :/ dot + / doV (2.7)
m—+1 m

The first integral on the right-hand side of Eq. (2.7) is thetdbution from real diagrams, which
contains IR divergences, and the second integral on théhigghd side of Eq. (2.7) is the con-
tribution from virtual diagrams, which contains both UV aiftddivergences. A traditional way
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for dealing with IR singularities is by introducing an infiesimal regulatore.g.by lowering the
dimensiontal = 4 — 2¢, the so-called dimensional regularization scheme, in vthe Feyn-
man diagrams are computeddmimensions and the singularities in the integral can beaeted
as double (soft and collinear) polég<*> and single (soft, collinear or UV) poles'e. Here we
suppose that one has already performed the renormalizatimedure inlc" so that all its UV
singularities have been removed. This way, the analytic&l#ation of the respective divergent
parts for fully inclusive measurements is straightforwafndwever, numerical implementations
of parts containing infinitesimal regulators for multi-pele processes proved to be challenging.
In subtraction schemes, the difficulty is circumvented kyoducing universal local countert-
erms (or dipole terms), which mimic the behaviour of the sgdaeal emission matrix elements
in the singular regions; adding back the respective onacpaihtegrated counterparts to the
virtual contributions results in finite integrands for bo#al contribution €. + 1-particle phase
space) and virtual correctiomfparticle phase space). Symbolically, we write

do™'0 = [do" — do?] + [do* + do"] (2.8)

wheredo” is regarded as a local counterterm (or dipole), which mirthiessingular behaviour
of do. In the next step we introduce the phase space integratioe.c@n safely perform the
limit ¢ — 0 in the first term on the right-hand side of Eqg. (2.8) by defamtiFor the second term
on the right-hand side of Eq. (2.8), one can carry out areifi the integrated dipole terav4
over the emitted one parton phase space, leading to theipel#isat are necessary to cancel the
soft singularities in virtual one-loop cross section. Thugescan perform the limi¢ — 0 after all
the divergences are cancelled. The final structure of tleailzdion is given by

oNLO  — / [dO'R—dO'A] +/ daA+/ doV
m+1 P m+1 m P

.

vV vV
finite finite

- / [dofy —dolly] + / [ / daA—i—daV} (2.9)
m+1 m 1 e=0

Both integrands are now finite, meaning that we can perforimtaigrations numerically in the
respective Monte Carlo program. The explicit expressidniseocross section for m andm + 1
particle contributions to the total NLO cross section akegiby

/ {daB + do¥ + / daﬂ = / dPS,,
m 1

/ [do® — do?'] = / dP S,
m+1

Here,e — 0 in them + 1 particle phase space is always understood. Convolutiom jeft
functions then ensures that thés infrared and collinear safe and that the Born-level abation

|Mm|2 + |Mm|(2)ne—loop+ Z By ‘Mm‘Ql
l

(Ml = > D |Mm|2] (2.10)
L
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@i - Zuw-

i andj
m+1 pecome soft and/or collinear m

Figure 2.1: Dipole factorization procedure [22]. When tlatpnsi and ; become soft and/or
collinear, the {n 4 1)-parton matrix element factorizes into theparton matrix element times a
singular factoV/;; , which in our notation is denoted with ({p}.,+1).

is well defined. In Eqg. (2.10), the sum goes over all local ¢ettarms needed to match the
complete singularity structure of the real emission cbation. For each singular limit,e.when
two partons become collinear or when one parton becomesh®fteal emission matrix element
factorizes into the Born-level matrix element according(tig. 2.1)

Moii({BYmi1) — D ve({Phm1) © Mu({p}n)  and Dy oc v} (2.11)

whereD, denote the dipoles containing the respective singulatitycture. HereD, is just a
symbolic notation. The explicit expressions for each 8plitprocess will be given in Section 2.4.
The symbol® represents properly defined phase-space, spin and colownlations. p andp
represent momenta im:+ 1)- andm-parton phase spaces, respectively|.A6,, |2 and|/\/lm|2
live in different phase spaces, a mapping of the respectormenta from(m -+ 1)- to m-particle
phase space needs to be introduced, which is defined by a mgajopiction F,,, according to
p = Fmap(p). D, and’B, are related by, = [ d¢, D,, whered(, is an unresolved one
parton integration measure. In summary, any subtractiberae needs to fulfill the following
requirements:

e dipole subtraction term®, must match the behavior of the real emission matrix element
in each soft and collinear region.

¢ the mapping functiorf . guarantees total energy momentum conservation as weleas th
on-shell condition for all external particles both beforel after the mapping.

2In Fig. 2.1 we follow Catani-Seymour’s notation to explaire tdipole factorization procedure; it is worth
mentioning that in this thesis we uséfbr the mother parton instead 6f, which Catani and Seymour used.
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Figure 2.2: Hadron collision.

e subtraction terms have to lead to correct IR poles when icayiqut the analytical integra-
tion over the one parton phase space gimensions that are necessary to cancel the soft
singularities in virtual one-loop matrix element.

2.2.2 Generalization to hadron collisions

Now we consider the cross sections in hadron collisions ER). In the case of processes with
two initial-state hadrongl and B carrying momenta, andpg, respectively, the calculation of
the QCD cross sections must be convoluted with parton digtan functions (PDFs):

1 1
o(pa,pB) = Z/ dn, fa/A(nanu%’)/ dny foy5(06s 13) [0 (Das Pb) + T C (Das Doy 13
—~ Jo 0

+0 (M) (2.12)
Qn
wherep, = n.pa andp, = n,pp are parton momenta, whilg, andn, are the momentum
fractions of the partons. The parton distribution funcsighy .1 (1., 17) gives the probability of
finding partona inside hadrond with momentum fraction), when the hadron is probed at the
scaleu . In general, the hard scattering cross sectiorisando¥° depend onv,(1:2) and the
ratio @ /2. The parametet - is the factorization scale at which long distance physi&H$)
and short distance process (hard scattering cross sectanse separately treated. The scale
wp is arbitrary that is introduced in order to renormalize theé divergences after quantization,
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and physical results cannot depend on it. The correspormdirtgn level cross sections are:

010 (pas ) = / 405 (e, 7o)

NLO(paapbauF) / dO’ (paapb) /dg (paapb) /dg (paapbnuF) (213)
m+1 m m

In general, the initial-state collinear singularities iadnon collisions do not cancel. However,
they are universal and process-independent in all ordgperiturbation theory. Therefore they
can be cancelled by universal collinear countertednfs, which are generated by the renormal-
ization of the PDFs of the incoming particles. The explioitfi is given by:

1 drp?\
/da o (Das o, 7)) = Ti—o Z/ dx/da TDa, Db) - ( Mf) P(z)
m F
1 4 p? b
p 2.14
27'(' 1—‘ 1 —6 Z/ d.I‘/ daac paapr ( MQ ) (.I‘) ( )

Here, theP*(x) are the Altarelli-Parisi kernels in four dimensions. Thdlinear counterterm
depends on the factorization scheme. Here we have chosgrot€eommonly useMS scheme.
As in the case of UV renormalization, the full hadronic cresstion is unaltered under a change
of the factorization scheme, provided that the PDFs aresalgably changed.

For processes with incoming hadrons, the subtraction proees applied teay2° (p,, py, %)
as previously described and we can write it as follows

NLO(paapbnuF) / [dO’ (paapb) dO’ (paapb)]
m+1

+/m {/da »(Pa> 1) + /1da ! (Das )+ dOC (pas oy 112) (2.15)

e=0

where [| do7} + do(, can be written as

/m {/1010 b(Pas 1) + dog, (pa,pb,,up)}

1
- / 4o (parpy) @ 1(€) + [ da / 40" (2pas py) ® [K°(2pa) + Pla, 12)]
m 0 m

s [ o [ dotiipaan) © [Km) + Pl i) (2.16)
0 m

This equation defines the insertion operatd(s), K (z), P(z, u%) at the cross section level,
where we follow the standard notation introduced in [22].e Hymbol® denotes all possi-
ble spin, colour and flavour correlations. Eq. (2.16) canibiled into two parts: the first part

3Here the splitting functiong,;, and P* can be exchanged with each other without making any diffaxen
i.e.P,, = P in the later discussions.
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is the universal insertion operaté(e¢), which contains all the poles inthat are necessary to
cancel the soft singularities in the virtual cross sectibine universal insertion operator has the
LO kinematics. The second part consists of the finite pielsasdre left over after absorbing
the initial-state collinear singularities into a redefmit of the parton distribution functions at
NLO. It involves an additional one dimensional integratover the momentum fractian of an
incoming parton with the LO cross sections and:théependent structure functions.

2.2.3 Observable-dependent formulation of the subtractio method

The jet observables which we are interested in should be dedithed experimentally or theo-
retically in such a way, that the cross sections are inframsdi collinear safe. In general, the
jet function may contai functions (which define cuts and corresponding cross sejtiand)
functions (which define differential cross sections). Torime specific, we consider the follow-
ing expressions for Born-level and the corresponding NL@3&sections

ULO = /dPSm(p17 7pm> |Mm(p17 7pm)|2 F‘gm)(pla 7pm)

FNLO _ /dP5m+1(p1,"' Pmi1) M1 (pr, - ,pm+1)\2 F}m+1)(p1,... , Pm+1)

+ /dPSm(pla e >pm) |Mm(pla e >pm)|§ne-loop Fﬁm) (pla e >pm) (2-17)
where| M., |%, M| and|Mm|§ne_loopare the squared LO matrix element, the squared NLO

real emission matrix element and the squared NLO virtuafimalement, respectively. There is

a formal requirement on the jet functidﬁm). For cases where two partons become collinear or
where one parton becomes soft, the funclﬂ@ﬁl“) reduces td7§m), i.e.in the soft and collinear
limits, the jet function fulfils the following properties

F}m-'_l)(pl?7pj:AQ77pm+1)_)F}m)(p177pm+1) if A—0
F}m—'_l)(pla"api)")pja"7p77’L+1) _)F}m)(plw')pa“apn%i-l) if Di — 2D, Dj — (1_Z)p
Fi™ (p1, -+ pm) = 0 i piop; =0 (2.18)
The first two conditions of Eq. (2.18) define the essentiapprty of the jet function that the jet
observable has to be infrared and collinear safe for any ramlof partons in the final state,

i.e.to any order in QCD perturbation theory. The last conditibR@. (2.18) guarantees that the
Born-level cross section is well defined. To summarise, weire that

Fmy o gl

in the singular limits.
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2.3 Scheme setup and momentum mapping

In the scheme presented here, the NLO dipole subtractiomstare derived from the splitting
functions introduced in [28]. The subtraction scheme igtam a physical picture that partons
can split or join. For parton splitting, one of the partons splits, producing: + 1 partons

in the final state. For parton joining, two partons can joggucing them + 1 partons back
into m partons. Parton splitting is needed to describe a partoweshaevhile parton joining is
relevant in NLO QCD calculations. A momentum mapping fumictis needed to relate different
phase spaces, and the mappings fream- 1 to m partons needed correspond to the inverse
transformation of the respective showeito m + 1 partons mappings.

In the following, the partons are labelled by an index thkésavalues: or b for the initial state
partons and, 2, - - - ,m for the final state partons. We will denoteaparton state by momenta
{p}m. The partons will be labelled b{, b, 1,2, - - -, m} with momenta

{pa7pb7p17p27 T 7pm}

After the splitting, we have am + 1 parton state with momentg},,.;. The momenta are
labelled by

{ﬁaaﬁlﬂphp% T 7]§m+1}

Now suppose that partorfsand j are produced by the splitting of a mother parton. Here the
mother parton is in am-parton statgp},,, while partong and; are in an(m + 1)-parton state
{p}m+1. There are two situations. For a final state splittihgnd;j are in the{p,, ps, - -, Pms1}
configuration. The mother parton emerges from the hardaotem and splits into partorfsand

j. Inthis case, the momentum of the mother parton is labelWed & {p1,p2,- - - , p } While the
momenta of partonéand; are labelled by, andp,;, respectively. For an initial state splitting,
jisinthe{p:,p2, -, Pmi1} configuration and is in the{p,, p,} configuration. Partod splits
into parton; and an initial state parton that enters the hard interactitence the momentum
of mother parton is labelled by, (or p,) while the momenta of partorfsand;j are labelled by
Pa (Or pp) andp,, respectively. Our description for an initial state spitfollows backwards
evolution, in which the initial state parton that enters liaed interaction is the mother parton.
In summary, the notation is that mother partosplits into partons with labeléand; for both
initial and final state splittings, while the other partoregj their labels. Following this rule, our
convention throughout will be that in &m: + 1)-parton statep, is the emitterp, the emitted
parton, ang, the spectatdr

The moment&dp},,.; after splitting are determined by the momekig,, and a momentum
splitting variable(,, which defines the momenta of the daughter partons. Here n&der an

“In contrast to [22], in our case a spectator only needs to eeifspd if 5; denotes a gluon.
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example: when we join two partorfsand j, the momentum of mother partopy, is approxi-
matelyp, ~ p, + p, for a final state splitting, ang, ~ p, — p, for an initial state splitting. As
stated previously, hatted and unhatted momenta corregpond- 1 andm-parton phase spaces,
respectively. The momenta of the other partons, which wedesiote byp,,, are approximately
unchanged, meaning that ~ p, forn ¢ {/,j}. However, these relations cannot be exact
because the momenta after parton joining should be on shelbrder for the mother parton
momentuny, to be on-shell, we have to take some momenta from the spestaty, # p,
andp, # p; = p;. So the definition of a mappinfp},, <+ {p}n+1 should guarantee that all
external partons are on-shell, as well as total energy mameoonservation.

There are many ways to define the momentum mapping. The mdstywised scheme is that
of Catani and Seymour [22]. This scheme may be called a loeglping. They define a emit-
ter/spectator pair, the momentum fraction goes to one iaddit parton only. Hence, the mo-
menta of the remaining partons are left unaltered. In thiees®e, the momentum mapping
follows the rule that two partons are mapped into three parézcording to

(péapk) A (ﬁéaﬁj)ﬁk)

for each emitter/spectator pair. Here the color connedbemveen a spectator and an emitter
has to be considered. The antenna factorization [31, 38]wes a local mapping. In the new
scheme, we apply a global mapping, in which the mapping takeke partons into account at
once when going fronpm + 1)- to m-particle phase space, instead of separately summing over
all possible emitter/spectator pairs. We will restrict expressions to subtractions on the parton
level and to the massless case; details on convolution vidfFsRare given in [28].

In the following subsections, we will first describe the fisthte splitting, then continue with
the more complicated initial state splitting case. For thalfstate splitting we first show how
{p}m+1 is obtained from{p},, and{(,}, then we reverse the transformation frdm},,,, to
{p}m and{(,}. In the same way we will derive the initial state splitting.

2.3.1 Splitting a final state parton

Parton splitting

We will neglect parton masses in the kinematics. Supposetitber partord with momentum
pe €emerges from the hard interaction and splits into daughagiops? andj with momentap,
andp;, respectively. The on-shell condition ensures ifat= p; = p; = 0. We always have
(Do +ﬁj)2 > 0. For a final state splitting, we can always leave the momeintiacoinitial state
partons unchanged:

Pa = ﬁaa Py = ﬁb (219)
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Let Q be the total momentum of the final state partons

m

Q=D pn="ratm (2.20)

n=1

Here the momenta of the incoming partons remain the sameeligr= p, + , is the same as
Q. We define ,

Q
C2p-Q
Note thata, > 1. The transformation also has to keep all of the momenta efi-dn order to
define the momentum mapping for the final state splitting, vée¢ ffiarametrize the total momenta
of the two daugther partons andp; according to

(2.21)

Qy

1—A+y

7o @ (2.22)

Py = pi+pj = Ape+

There are two parameters in this definitiop:and A. y is the measure for the virtuality of
the splitting and\ is a function ofy that we will determine later. In order for the mother parton
momentunp, to be on-shell as well as to preserve momentum conservat®have to take some
momentum fractions from the final state spectators. In eshto the Catani-Seymour scheme,
in which only a single spectator parton in the final state temthe needed momentum, we can
choose that all of the final state spectator partons, exapbs/ and j, donate a momentum
fraction. So the needed momentum from all of the final stagetspors can be obtained by a
Lorentz transformation, which relates the momenta aftdrtzafore the splitting,

Py = ME K p, ng{j=m+1} (2.23)

Here, K is the total momentum of the final state spectators beforsyhiging

K = Q-p (2.24)
and X is the total momentum of the final state spectators afterpligisg

K = Q-P (2.25)
Since each final state spectator is changed by a LorentZdrarestion, we have

K* = A", KY (2.26)
The Lorentz transformation is given by

2(K + K)*(K+K), 2K'K,
(K + K)? K?

MK, K, = g", — (2.27)
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which automatically implies
K? = K? (2.28)

In a particular case in which there are only two masslesspsarh the final state, this corresponds
toa, = 1andK? = 0. In this case, an alternative representation of the Loreatsformation
has to be introduced so that the boost in Eq. (2.27) still resnaell defined wher? = 0.

5 K K-
AK, K", = g", + (—n—l) ntn, + < n —1) ntn, (2.29)

K-n K-n

wheren andn are lightlike vectors in th&)-p, plane withn - n = 1 and(p, - n/p, - n) <
(@-n/Q-n).

The parameters andy can be determined from Eq. (2.28).

A= \/(1+y)2—4aey, y=§jl€§ (2.30)

There is a maximum value gfcorresponding ta. = 0
Ymax = (\/_ \/G,g—) =2a; — 1 —2+/as(ag—1) (2.31)
Another important relation, connecting hatted and unbdaiteantities, is given by
pe-Q = (Pe+py) Q—pe-pj (2.32)
which can also be rewritten as
2P-Q = (1+y)2p-Q (2.33)

As stated previously, the momenita},, . after splitting are determined by the momefia.,
and a momentum splitting variablg. It will be convenient to define the daughter parton mo-
menta by

G = (Pes Ds) (2.34)

Hence, the momentum mapping from theto them + 1 particle phase space is given by a
transformatioh

(B, f1mir = Re({dp, Y {6 G} (2.35)

wheref denotes the flavour of each partoh:c {g,u,u,d,d,---}. Here, the splitting variable
(y is given by the flavours of the daughter partons, so we have

&= (fo fy) (2.36)

SMore precisely, after the splittingp, £}, 1 is determined fron{p, f},, and splitting variablg¢,, ¢}, where
(p denotes the daughter momenta gpdienotes the daughter flavours.
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The flavours of the spectator partons remain unchanged

~

while the flavour of the mother partgfa obeys

fot fi=F (2.38)

e.g.if the mother partor is a quark/antiquark, then we haye = (¢/q, ¢). If the mother parton
¢is a gluon, therd; can be a pair of gluong = (g, g), which corresponds tg¢ — ¢ g splitting,
or any choice of quark/antiquark flavoufs = (¢, g), which corresponds tg — ¢ g splitting®.

Parton joining

There is an inverse transformation of Eq. (2.35), which nthpgm + 1)-parton momenta to
the m-parton momenta. So we start wiflp},, 11 and determingp},, and{¢,}. The splitting
variable for the momenta is given by the momenta of the daungiartons), = (p,, p,). Let@
be the total momentum of the final state partons:

Q= pn=rpatp (2.39)

One can determine the lightlike momentwpby rearranging Eq. (2.22)

1-A+y

2.40
2 )\CLg ( )

L.
Pe =+ (Pe +Pj) —
Here, the parameter; still depends on the mother parton momentunwhich can be mapped
into her daughterg, andp; through Eq. (2.32). Now we need the inverse Lorentz transion
to Eq. (2.23). All non-emitting final state spectators areopeal using the following Lorentz

transformation. Fronkk = Q — p, andk = Q — P,, we have
= ANK, K00, n¢{l,j=m+1} (2.41)

whereA (K, f()“u can be obtained using Eq. (2.27) withand K interchanged. Now the inverse
transformation from the: + 1 to them particle phase space is given by

{p, 1 AG Gt} = Qe (4D, msn) (2.42)

SFor final statey — qg or § — Gg splittings, we usg for the label of the gluon. For a final state— ¢ ¢
splitting, we usg for the label of they.
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The transformation of the flavours is similar to the case ofgresplitting. The splitting variable
(y is given by the flavours of the daughter part@ns = (fg, fj). The flavour of the mother
partonf, is given by

Je = fé + fj (2.43)
with the rule of adding flavours, + ¢ = ¢ andq + ¢ = ¢. The flavours of the spectators remain
unchanged

In summary, it is the transformatiaR, that is needed to describe a parton shower, wijilés
needed to describe the NLO QCD calculations.

The integration measure for final state splitting

In order to calculate the various splitting processes aticheixthe correct singularities ) we
need to know the factorization of the phase space from 1 to m partons

/ A0, Frms 905, Flmer) = / A, 1 Ay g({, i) (2.45)

whereg({p, f}m+1) is an arbitrary function. The definition of the unresolvee garton integra-
tion measure is [28]

ape-Q dp N R
de - dy@(ymin <y < ?/max) A3 éﬂ- (27T)éd 27T5+(p§) (2 ﬂ.;d 27T5+(p?)
) ) 1—-A+
x (2 W)d 5 <pz +Dj— Ape— Ty Q) (2.46)

Here,ymin = 0 for massless partons angayx is given by Eq. (2.31). The final expressions in
terms of the integration variables (see Section 2.4.3) ediolnd in Section 5.2.1.

2.3.2 Splitting an initial state parton

Parton splitting

For an initial state splitting, we follow the backwards exadn description that an initial state
daughter partoii splits into an initial state mother parton that enters threl fpart of the process
and a final state daughter partpwhen going forward in time,e. p, — p, + p;. For simplicity
we have chosen the convention that

{=a (2.47)
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For the casé = b, we just simply interchange «» b. Here the final state daughter partois in

{p1, P2, -+ , Dm+1} CONfiguration. In this subsection, we will describe hg#},,, ., is determined
from {p},, and a splitting variabl¢(,}. To describe the initial state partons momenta, we start
by assuming the incoming hadron momengaandpg to be massless, so

Pi=ph=0 and 2ps-pp = s (2.48)

wheres is the center-of-mass energy of incoming hadrons. We waliriet our expressions to
massless partons in the kinematicspgo= p; = p2 = p; = 0, where

Pa = MNaPA
P = "hPB
Pa = TNaDa (2.49)

Here,n, andn, are momentum fractions of the incoming partons before th#tisg and1),, is the
momentum fraction after the splitting. We choose the moonmarftaction of partorb to remain
unaltered

o = (2.50)

The momentum fraction, after the splitting will be determined by the final-state glater parton
p,. As in the case of a final-state splitting, the relatigr~ p, + p, cannot hold, as the momenta
after parton splitting should be on-shell. In order to allaiivpartons to be on-shell, while
conserving momentum, we choose to take the needed momentétlie final state spectator
partons. This can be achieved by a Lorentz transformatiamthe case of a final state splitting

pho= AK K, p%, ne{l,--,m} and n#j (2.51)
Here, K is the total momentum of the final state spectators beforsyhiging
K = pa+tp (2.52)

and K is the total momentum of the final state spectators afterplittisg

~

K = patp—p=Q—pj, Q= patp (2.53)
Since each final state spectator is changed by a LorentZdraretion, we have
K" = A", K” (2.54)

with the Lorentz transformation given by Eq. (2.27). In arthat X is related tak’ by a Lorentz
transformation, we neelf? = k2. Hence, we get

K? = an, = K? (2.55)
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where
o= (2.56)

From this it follows that

NaMps = (ﬁa +pb _ﬁj)Q

= NaMs—2 [Napa-Dj+ D5 - Dyl (2.57)
which defines .
- 77a77b3+2nprA'pj <1 (2.58)
NS —2pa-Dj
A consequence of Eq. (2.58) is
Na < Tla <1 (2.59)

Again, we can introduce the splitting varialglgthat defines the momenta of the daughter par-
tons:

Cp = (Pa, Dj) (2.60)
so that{p},, together with{, determineqp},,.. There is a transformatioR, relatingm to the
m + 1 particle phase space,

(b, FYme1 = Ra (40, 1o {Go 1Y) (2.61)

Here, the splitting variabl¢; is given by the flavours of the daughter partons, so we have

¢ = (fur f3) (2.62)
The flavours of the spectator partons remain unchanged
fo = fo, néd{aj=m+1} (2.63)
while the flavours of the daughter partofisand f; obey
fat Iy = fa (2.64)

Parton joining

Now we consider the inverse transformation needed in thiation, meaning that we combine
an initial-state parton with a final-state parton into a neogbarton that enters the hard part. So
we start with{p},,,.1 and determingp},, and{(,}.

The splitting variable for the momenta is given by the moraaritthe daughter partons

Cp = (Pa, Dj) (2.65)
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One can determing, by solving K2 = K2, so we can expressg in terms ofj,. This gives
_ E _ T8 =2 [apa - Pj + 0 P5 - Pj] (2.66)
a S '

Once we have,, we can construck’ = p, + p,. Further we need the inverse Lorentz transfor-
mation of Eq. (2.51). Fronk and X, we have

Na

ph = AK, K", 5%, ne{l,-~-,m} and n#j (2.67)

whereA (K, K)*, can be obtained using Eq. (2.27) wifhand K interchanged. The mapping
for the initial state parton is

Pa = (1 ~ B Q) Pa (2.68)
DPa - Po
Now the inverse transformation from tlie. + 1)- to them-particle phase space is given by
{{p. Y {6, 63} = Qu (1, f}m1) (2.69)

The transformation of the flavours is similar to the case ofguesplitting. The splitting variable
(s is given by the flavours of the daughter partaps = (fa, fj) in the sense of backwards
evolution. The flavour of the mother partgnis given by

fo = fut i (2.70)
The flavours of the spectators remain unchanged
o= fo, n¢{aj=m+1} (2.71)

The integration measure for initial state splitting

The phase space factorization from+ 1 to m partons takes a similar form as in the final state
splitting, i.e. we have again

l/ﬂﬁﬂmuﬂ@fhm)=/ﬁwjhd@ﬂ@fhﬂ) (2.72)

whereg({p, f}m+1) is an arbitrary function. The definition of the unresolve@ @arton integra-
tion measure is [28]

d4p;
(2m)
Here,& = m,s — 2pa - p;. The factora/a is just the derivativeln,/dn, calculated from the

relationk2 = K?2. The final expressions in terms of the integration variafdes Section 2.4.4)
can be found in Section 5.2.2.

«

d¢, = B

276 (p3) (2.73)
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2.4 Splitting functions

In the Nagy-Soper dipole subtraction scheme, the dipokebased on splitting functions [28,29]
that will be used to generate the shower. The new subtrastioeme also allows for easy match-
ing with a parton shower using the same splitting functionthe spin-averaged approximation.
In addition, the use of the dipoles as splitting functionti@ shower, when combined with NLO
calculations, simplifies the treatment of double counting.

Consider for a moment the QCD scattering amplitude withput,scolour or flavours. In the
singular limit the transition amplitude factorizes acaogpto

| M1 ({Prm1) >= ve{Prmir) - | Mm({D}m) > (2.74)

wherev,({p}.m+1) is the splitting amplitude proportional tQ/p, - p;. The momentum mapping
between{p},..1 and{p},, is described in Section 2.3. In reality, we have soft as wetidlinear
singularities in QCD, we also have to consider spin, color @arton flavours. We will describe
splitting amplitudes in more detail including all thesetéas in the next subsection.

It has been known, that scattering amplitudes can be faewmut in a general way by using
the factorization properties of QCD amplitudes in the soff aollinear limits [31-35]. At the
next-to-next-to-leading order and beyond, the factoigzedf QCD scattering amplitudes can be
found in [36].

2.4.1 Definition of the splitting amplitudes

The splitting functions described in [28,29] are based ersthin dependent splitting amplitudes.
The QCD scattering amplitude fot + 1 partons is a vector in colow spin space.

| M({p, f Y1) > (2.75)
when two partong and; are almost collinear, this amplitude becomes
| M{B, 1) >~ | Me{D, ) > (2.76)

In the limit, that partory becomes soft, then all of theM,({}, f}..,+1) > amplitudes contribute,
and we have (M, ) is to be defined in Eq. (2.78) )

| MUP, [Ymin) >~ D I Mel{ps frmn) > (2.77)

4

After splitting parton?, the amplitudg M, ({p, f}..+1) > can be factorized into a splitting
operator times the:-parton matrix element according to

| M4, frmer) >= th(fe = fo+ F) VIED, frmer) | MU, fm) > (2.78)
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Here, the Born amplitude for producimg partons is evaluated at momenta and flavdurs },,,
determined from{p, f}m+1 according to the transformatiof,({p, f}m+1) in Eq. (2.42) or
Eq. (2.69). VJ({ﬁ, f}m+1) is an operator acting on the spin part of the colguspin space,
while ti(f, — f, + f;) is an operator acting on the colour part of the coleuspin space. The
spin-dependent splitting operator can be described ingimespace {s},, >,

< {8Vt | VB, fmrn) | {8} > (2.79)

we can take Eq. (2.79) to be diagonal

< {é}m—i—l | VzT({ﬁa f}m—H) | {S}m > = H 5<§n,8n W({ﬁa f}m-l—lv ‘§jv ‘§47 54)
n¢{l,j=m+1}

(2.80)

Here, the splitting amplitudes, ({p, f}m+1, 55,50, 5¢) can be derived from the QCD vertices,
spinors and polarization vectors for on-shell partons. afe use the mother momentymto
describe the splitting amplitudes, and the relation between and{p, f},.+1 is given by the

transformatior, ({p, f }m+1)-

In the following, we will illustrate splitting amplitudesytgiving some examples. First we con-
sider the case of @ — ¢ g splitting. Theggg QCD vertex is given by

VY (Day s De) = 9% (P — 26) + ¢7 (06 — P)* + 97 (e — Pa)” (2.81)

In order to define the propagator for the gluon field propevlyhave to make a choice of gauge.
The choice

1
Egauge-fixing = _ﬂ (nMGﬁ)Q (2.82)

is called the axial gauge, in which we introduce an additieeator n. Here the parametey
will break the gauge invariance of the theory, however, tigspral results will be independent
of \ at the end. The advantage of the axial gauge is that ghost isédnot required. Now we
consider a special case in whish= 0 andn? = 0. This is called the light-cone gauge. We
define

PEnY + nt PY
D" (P,n) = —g" 2.83
(P,n) g + P (2.83)
In the limit P2 — 0 we have
n* D, (P,n) = 0, P*D,,(P,n) =0 (2.84)
In the axial gauge: - G4 = 0, only two physical polarization states propagate, whiah ar
orthogonal ta: and P. Hence we can use the propagator for an off-shell gluon
DM (5 5.
(Pe + Pjs ) (2.85)

(Pe + pj)?
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where the lightlike vector, is chosen to lie in the plane pf andQ (see [28, 29]),

I+y+A ag, . | .
L N B : 2.
) Q )\(pg—l—pj) (2.86)

for the final state splitting. More generally, the vectgrhas the following form for both initial
and final state splittings,

ne = Q —agpr =

PB for ¢ =a
ng = Da for (=10 (2.87)

Q—ap for ¢e{l,--- m}

In the case of a final-state— ¢ g splitting (Fig. 2.3), we derive

oA . VAT A Ak . Avs A
UZ({pa f}m-l—lasjasfasé) - mga(pjasjacg) 56(2747367@) € (péasfaQ)
J
x v (ps, be, —Bj — Pe) Dow(Pe + Dy o) (2.88)
In the case of an initial-state— ¢ g splitting (Fig. 2.4), we have
o . VAamag e ANk e AN AL,
Ve({D; fIm+1, 855 80, 80) = —213‘ iy €a(Djs 85, Q)" €5(Pe, 50, Q)" (pe, 50, Q)
J

x v (D, —Pe, Pe — D;) Dyw (e — i, o) (2.89)
Here we have the exact QCD vertex and the off-shell gluonagafor in the axial gauge G4 =
0 for both initial- and final-stategg splittings. In order for the mother gluon to be on-shell, we
can make an approximation so that the mother gluon is pegjeahto the physical degrees of
freedom as it emerges from the hard matrix element. Thigptign is contained in the on-shell

N

polarization vectoe (py, s¢, Q).

For a final-stateg — ¢ g splitting (Fig. 2.5), we derive

~ o UBe, $e) v (g + B;) 1t Ulpe, s0)

VoD, Flmats 85, 80, 80) = VATase,(pi, 8, Q) L 2.90
5<{p f} +1595, 94 5) H(pJ J Q) (pé+pj)2 2pé‘ng ( )
For an initial-statey — ¢ g splitting (Fig. 2.6), we have
. g . L Ulpe,se) by (B — 8;) v U(be, 80)
Ve({D; [ hms1, 85, 80, 50) = —VATaseu(p;s, 55, Q) AN, (2.91)

(Pe — Dj)? 2pe - 4
Here,U andU denote Dirac spinors for the quark fields satisfyigg- m) U(q7,s) = 0 and

U(q,s) (¢ —m) = 0. The Dirac spinors for the antiquark fields obgy+ m) V (7, s) = 0 and
V(q,s) (¢ +m) = 0. They are normalized to

(B 8)" U(ps) = 2p8,

U(p, s
V(5 s) " ViFs) = 2p" (2.92)
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The projection operators are
d+m =>"U@s)UGs), d-—m=>> V(s V(Gs) (2.93)

The polarization vectar, for the gluon field is defined in a timelike axial gauge so that

~

pie=Q-e=0, Q=0 (2.94)

For other flavour choices, the results can be found in [28] tiR@splitting functions, we have to
square the splitting amplitudes. In the new formalism,elee two sorts of splitting functions:
direct splitting functions (Fig. 2.7) and interferenceisplg functions (Fig. 2.8). The direct
splitting functions correspond to the scattering amptid,({p, f}.m.1) > for a parton/ to
split times its complex conjugate scattering amplitadeM,({p, f}..,1) | for that same parton

¢ to split, while the interference splitting functions capend to the interference between the
scattering amplitudé M, ({p, f}.m+1) > for a parton/ to split into partong andj and the
complex-conjugate scattering amplituge M, ({p, f}m+1) | for another partort to split into
partons with labeld andj. These functions generate leading singularities wheroparts a
soft gluon.

The direct splitting function is the product of a splittingnglitudev, and its complex-conjugate
splitting amplitudev;, so we have

UZ({ﬁv f}m+17 §]7 §57 SZ) Uf({ﬁv f}m+17 §]7 §57 SZ>* (295)

which, after summing over the daughter parton spins anchgugy over the mother parton spins,
leads to the spin averaged splitting functions

Wou=3 3

30,85,8¢

2

Ué({ﬁa f}m-l—la‘éjv‘éfasé) (296)

2.4.2 Eikonal factor

When partory is a gluon, there is a common result in the limjt— 0, in which the splitting
amplitudev, can be replaced by the eikonal approximation,

~

i ~ P A A 625',3",(02*']3
Uf'konal({p, f}m+1,5j,54784) = Vama, 535,512, ( : ﬁj 13) ¢ (2.97)
j - Pe

The eikonal approximation of the spin-averaged splittimgctionsiV, is then

be- D(p;, Q) - e
(D - De)?

——eikonal

Wy o = 4maos

(2.98)
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pj
De
Figure 2.3: Afinal-statggg splitting.
Figure 2.4: An initial-statggg splitting.
Pj
De

Figure 2.5: A final-stateqg splitting.
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Figure 2.7: Collinear diagram: partgnis emitted from partor? in the scattering amplitude
| M({p, f}m+1) > and partory is emitted from that same partdrin the complex-conjugate
scattering amplitude: M,({p, f}m+1) |-

| Me{p, Frmse) > 1 < Mu{p, fhns) |

Im+1
[

Figure 2.8: Soft diagram: partgris emitted from partoid in the scattering amplitude and parton
j is emitted from partort in the complex-conjugate scattering amplitude.
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Here,D,, is the transverse projection tensor for an off-shell gluehich is given by

A _ +p§LQ\V+QAMﬁ5 . QQpJ p]

Dy (s, Q) Guw — (2.99)

e g pj-Q ;- Q)?

It will be convenient if we define a dimensionless function
F = Z’f Piyy,, (2.100)
T Qg

then as the gluon becomes sofy; — 0, we can define the functiofi, :

Fuy = De - Dy pekonal _ Pe - DA(ﬁjaAQ) De 2}35 Q- QAQ Pe ']52]' (2.101)
4o Pe - Dj pi-Q (- Q)

We can also introduce the notatiog), or v2,, which we will use throughout in the following
——eikonal

discussions, and which is defined through the spin-aversgjéting functioniV,,
. 2 V2 for quarks
T >EelKonal
Wy = Uk = (2.102)
3= Vex  for gluons
The prefactorl /2 is the quark spin (or helicity) degrees of freedom, whilefdetor1/2/(1 —¢)
is the gluon spin degrees of freedom. More precisely, if wesater both the colour and spin
average, we can introduce a notatigfw(a), which is defined by

2N if a=gq
w(a) = (2.103)
2(l—¢)Dy if a=g

w(a) is the number of colour and spin degrees of freedom for thetlav. D4, = N? —1is the
dimension of the adjoint representation of th& (V) colour group, whileN is the dimension
of the fundamental representation of the colour graug.for SU(3). we haveD,, = 8 colour
degrees of freedom of the gluon field in the adjoint repregent andN = 3 colour degrees
of freedom of the quark field in the fundamental represemiati SU (3)¢. In principle we also
have to considef® or 647 (which equals 3 or 8) in the quark or gluon propagators, whieze
indicesa,b = 1,2,3andA,B = 1,---,8. In practice all these factors are included in the
matrix element.

In Eq. (2.102)p2, denotes the spin-unaveraged splitting function. So we have

2/ (Be - 93)°] Pe- Dby, Q) - P for quarks
v = 4Ta, X (2.104)
[2(1—¢)/ (e $;))*] Pe- D(Bj, Q) -pe  for gluons
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For the interference (soft) term, we obtain

—eikonal - % (Ugik - Ugoft) for quarks
A= B - 2.105
" W W ok L2 10 or aluons ( )
2(1—e) “eik 3 Usoft g

where the soft term is given By o, = 47 a2 Ay, pe - D(p;, Q) - P/ (Dj - DeDj - D) and Ay is
to be defined precisely in Eq. (2.162) (see also Section)2.4.5

2.4.3 Collinear splitting functions: final state splittings

In this and the next subsections, we will give the explicpmssions of splitting function for
each process. In the following, we will remove the commondia¢ ra,,, which we will add it
back in the end. We also ignore the colour factors for a moymamrith we will include when we
consider the integrated splitting functions. For the siplit functions in {n + 1)-parton phase
spaces we always work in four dimensions, meaning that wesately putd = 4 (ore = 0)

in the following discussions. We will also include the eikbfactor for the collinear splitting
functions if the emitted parton is a gluon. The eikonal splitting function will turn out to be
important when we incorporate the soft gluon interferenegrms. We will explain this in
more detail in Section 2.4.5.

Kinematics: integration variables

We can introduce the two integration variables

pj - Q Dj - Ny
T = , z = 2.106
PE'Q Py -ny ( )

Hence we could express most dot products in terms of, z, A\, a,. The parameters,, A and
y have been given in Section 2.3. Note, however, that theseadra| independent variables;
depends on the kinematics before splitting/after recoatimn respectively, and = \(ay, y).
The variabler is given by

A n 2apy
4
l+y~ (1+y) (Q4+y+AN)

(2.107)

So we are left withy,, y, z as free variables; we will usgandz in the integration. If we want
to eliminate ther dependence and go backi@ndz as integration variables and keepas a
fixed parameter coming from the-particle phase space, we can introduce

1-XA+y

AL 2.108
1+>\+y ZCQ(CL[,’y) ( )

Ty —
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Using
1
T=3 (I+y+A) (2.109)
we obtain a couple of useful relatioresg.
A 1
Zo ?/_C;e’ =29 = —, 1+$0=ﬂ
Y Y Y

r(1+y) = ywo+z(1-2)], (1-2)A+y)=7v[1-2(1-2z)] (2.110)

When integrating the interference terms, we need to makefuse additional integration vari-
able parametrizing the angle between emitter and spect@itoparametrize this in a Lorentz
invariant way, we introduce the variables

Pj " Dk _ Dr-nePe- D YDr-ne Y.
poo DitPe o PetTube P Y PR Y, (2.111)
Dr - P Pr - Peng - Py v ok B Y
and -
pe-Q =2 Natay) (2.112)
with
L Dk - Ny
a = aly) = = (2.113)
(y) 0 D,

It is convenient to introduce the anglésd, andy in the integration measure such that in the
center of mass system we have

1 1 1
. sin 6 cos L sin 6y, B 0 P
b =4 sinfsing |’ D = A 0 ’ Fo=F 0|’ A]_Q
cos 0 cos 0y, 0
(2.114)
In the integration measure, we will need an additional ckasfg/ariable,
1 _ .
vV = =(1—cosp)= U Ymin_ (2.115)
2 Umax — Umin
where
1
vo= g (1 — sin @ sin 6, cos ¢ — cos 0 cos by,)
1
Umax =5 (1 + sin @ sin 6, — cos 6 cos Oy
1
Umin = 5 (1 — sin @ sin 6y, — cos 6 cos Oy) (2.116)

"In the reference frame whei® is at rest (center of mass frame), we haye= (p9,5;) = (p9,p} @) and
pe = (p},—0;) = (pg,—pja) = (p}, —p} ). Hence, the 4-vectogs; andp, have the same energy content in
the massless casd; = p§ = pf = P/2. Here, the unit vector i8 = sin 6 cos ¢ & + sinfsin ¢ §j + cos 6 2.
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We can also write andz in terms of the angle&, andé,
1 1
z = 5(1 — cos O ), z = 5(1 — cos @) (2.117)

Finally we give a list of useful relations for dot productsvetctors, which we have used through-
out the dipole calculations,

Pr-Q = (1+y)pe-Q
pi-Q = x(1+y)pe-Q
pe-Q@ = (1—2)(1+y)p-Q

Br-pe = %M'Q

Pr-ng = wm@

pe-pj = %(?J—#x(lJﬂ/))pé'Q

pe-Pe = % (y— %ﬁ;y(l —x)(1+?/)) pe-Q (2.118)

The subprocessyqg splitting

First we consider the collinearg splitting function in the final state. Thgg final state splitting
function is the same for massless quarks. The dipole inatuthe eikonal splitting function is
given by

v

2 A—1+y)?+4y d—2
2 2
499 Veik y (pé . Q) { 4\ eik +

which, in terms of the momenta, can be rewritten as

P (1+y+/\)} (2.119)

9 9 2 Py-ny ag Pe - Dj
qug_veik:m e Q -1 2 . A2 .
’ \/(pe-Q) + (Do ;)" +2pe- Qpe-p; (1 —2a)
25, - 25 5. d—2 50 — sy
p-Q (9 Q) 4 pe-Q
where
1l—x 2a0y

Feix = 2

— 2.121

x 22 (1+vy)? ( )
The dipolevgqg — v2, denotes the spin-unaveraged splitting function. Afteragimg over the
incoming parton spins gives an additional factg. The relation, connecting hatted and un-

hatted quantities, is given in Eq. (2.32). In Eq. (2.119)lyahe collinear singularity is left
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over after subtracting the eikonal factor. Note that= ( for the final state splittings and
Pr-ng = (pe+pj) - Q — ar (Pe + p;) - pe is reduced tqy - Q if a, = 1. It corresponds to the
case in which there are only two massless partons in the fatal. 4f we want to eliminate and
switch toz, andz as variable% we obtain

(2.122)

1+z x
Feik=2(—1+ 0 0 )

zo+2(1—x9) (2o + 2 (1 — 20))

Note also that ag — 0 (which meang: = z), F turns into the standard Altarelli-Parisi splitting
function,
1+ (1—2)?

FAP(Z) = >

(2.123)

The subprocesgyqq splitting

Only the collinear singularity is present for theg splitting, so we do not subtract the eikonal
splitting function in this case. Hence the dipole for the sh@ss quarks is given by

”sqq = ypj 0 (I1—€e—22z(1-2)) (2.124)

which, in terms of the momenta, can be rewritten as

999 A5 5

1 2 hy - O D - he - O Dy - 25, 0D -
2 c {pz Qpj-pe+Di-QPe-pe  Q°De-peb; pé} (2.125)
De - D; (De - B;)

Yo = 5 T e Q e Q)

Averaging over the incoming parton spins gives an addititaor 1/2/(1 — €). For massless
qguarks, theygq splitting function is the same.

The subprocesgygg splitting

For theggg splitting, we have to do something slightly different besathere are two identical
gluons in the final state. We have to make sure that only thgltau parton; generates a
singularity. The unaveraged splitting function is given by

1 . . . .
ujgg - {(d—2) [pe D;-pe+Pj- De-ps] — k7 Tr [D, - Dy} (2.126)
2 (pe - pj)

8Herex, is a function ofa, andy, i.e.zq = zo(as,y).
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whereD; = D(p;,Q), D; = D(p,, Q) and

R R 2ype-Q Zo
-D;-pp= 1 — 2(1— _
pe- iy pe x0+z(1—xo){ 2 (1= o) $C0+Z(1—SCQ):|
R A 2ype-Q To
pf'Df'pf:m[“”“‘%“m}
kL =—2yz(1-2)p-Q
Tr[D;-Dj]=d—2—2A+ A
Ao _@Pebi 2 (2.127)

DPe-Qpj-Q  (xo+2(1—1z0)) (1—2(1—m))

Here, the additional statistical factbf2 in Eq. (2.126) appears only for a final statgy splitting
because the two gluons are identical. Instead of using EtR§2 as a dipole subtraction term,
however, we will use a slightly modified splitting functiamarder to well separate the singular-
ities in theggg splitting final state. Then we add a tem‘rjgg = v3 — v3 to Eq. (2.126), where
v3 andv? are defined in [29]. The additional temfﬁgg with the roles of the two daughter gluons
¢ andj interchanged does not change the result. This way, thersirgalarity when daughter
gluonj becomes soft, but not when daughter glddrecomes soft. The additional tem@gg is
given by

d R . R
o v — v§ = [pg ;Do — Dj - Do pjl (2.128)

In the end, we obtain

@299 = U399+U/52799 - 2 {2 _2 pg DJ' 'ﬁé—ki Tr [DZ'DJ’]}
pé p]
2(1—¢) . k2
= 75 " 2Pé'Dj'pe—7Tf[De Dj] (2.129)
(De - by) 2 (pe - p;)°

Hence, the dipole, including the eikonal splitting funatics given by

) K EEICD N FEP RPN 2.130
IRAL Tr (D, - Dj] ysz[ 2—-2A+ A?] (2.130)

~2 o
Yggg — Veik = —

which, in terms of the momenta, can be rewritten as

P s (Dj-Q—arpj-pe) (Pe-Q— agpe - pe) Dj - De @ b pe @\
Vggg ™ Veik = 2 ~ - 2-2 + 1| = ~
(P -m4)” Pe - pj pe-Qpj-Q pe-Qpj-Q
(2.131)
Averaging over the incoming parton spins gives an addititactor 1/2/(1 — €).
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Figure 2.9: Initial-state splitting processes.

2.4.4 Collinear splitting functions: initial state splittings

In this subsection, we will again ignore the common factax, and the colour factors for a
moment. In {n + 1)-parton phase spaces we always work in four dimensionseikio@al factor
will be considered if the emitted partgnis a gluon. For the initial state splittings, there is an
additional scattering process in which the daughter quamkes in and splits a mother gluon that
enters the hard interaction (see Fig. 2.9).

Kinematics: integration variables

For initial state splitting, we use the following integiativariables:

_ DPaPy —DaPi = PP _ | ZpacDi 2P D _ T
pa'pb b S ’f]aS f/a
Aa'A‘ Aa "Dy 2 " Dj
y = 13 Pj _ 711 Z?A Pj _ 2PA"Dj (2.132)
Pa " Db 5Ma b S My S
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Turning the equations above around, we then obtain
- Yy S A Na S LA
pa-pj = ;o b= S5 (l—x—y), p-Q= (2.133)
2 2x
and
fa= 0<iu<l = x>, (2.134)
T

Here,n, andn, are momentum fractions after and before the splittingsnAke final state inter-
ference integrals, we also need to parametrize the additeomgle which appears in interference

terms. We define

Aa N . D 1 N . D
= nAanAp{ PE ]?] Pk (2.135)
206 - Qp;-Q 1= p-Q
and
5= LoDk Q—— (2.136)
Pr - Q 1—=z

As in the final state interference case, it is convenienttt@duce the angleg, 0, andy in the
integration measure such that in the center of mass systemavee

1 1 1
. Vil oo . sin f cos ¢ . sin 0,
«~ 1o |’ i =4 sin # sin ¢ e = A 0 (2.137)
1 cos 6 cos 0y,
In the integration measure, we will need an additional ckasfg/ariable,
/ 1 v — Umm
v ==(1-cosp) = — (2.138)
2 Umax — Umin
where
1 . )
vo= g (1 — sin @ sin 6, cos ¢ — cos 0 cos Oy,)
1
Umax =5 (1 + sin @ sin 6, — cos 6 cos Oy
1
Umin = 5 (1 — sin @ sin 6y, — cos 6 cos Oy) (2.139)
We can also write andy’ in terms of the angleg, andé,
_ 1 , 1
z = 5(1 — cos O), Yy = 5(1 — cos®) (2.140)
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The subprocessyq(x)g splitting

We assume that the glugnis emitted from the parton. For massless quarks, the unaveraged
qq(x)g splitting function is given by

2pB - D 20 pE - P; S
2 o J b J
2y = (d—2 + : (2.141)

v N ~ N ~
Nafla$(Pa-Di)  (pj-Q)2pa- P,

wheres = 2p4 - pg. Here,n, andn, are momentum fractions after and before the splittings.
With our kinematics, the momentum fraction of partoremains unchangede.n, = n,. We
denote the total momentum of the final state partons befe&ephtting byQQ = p, + p, and
after the splitting byQ) = p. + p,. In the splitting function, we choose the lightlike vectortte

n, = pp and it will be convenient to defin, = p, — p,. Using the variables andy (defined

in previous subsection), Eq. (2.141) can be rewritten as

2(1l—z—y) 4z
A S YA ) S 2.142
Caag Na Ty S ( (1- 56)2) ( )

We also define the eikonal approximation for soft gluon emisas discussed in Section 2.4.2,

Aa -D A'a ; : Aa
Fuy = P P01 Q)P (2.143)
Pa - Pj

or equivalently we can write the unaveraged eikonal spétfunction as

UQ'k: 27713p3'ﬁj3 _ 8[[’(1-[[’—?/) (2144)
: (B - Q)2pa-p; (=2 namys

Using the variables andy, the unaveraged splitting function including the eikoradtor is
given by

d—2)2pg-p; d—2)2py-p; d—2)2(1—x—vy
i~ D2 hy (@ Doy (=22 | 2108
Naa S (Da - D) Q% (Do - Pj) NaMy S

Averaging over the incoming parton spins gives an additiéaor 1/2. For massless quarks,
the gg(x)g splitting function is the same.

The subprocessygg(x) splitting

For the initialggg(x) splitting process, in which the daughter quark with momenyfiy comes in
and splits a mother gluon with momentyinwhich enters the hard interaction, only the collinear
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singularity is present. Hence, we do not subtract the eikgpldting function in this case. The
unaveragedqg(z) splitting function for massless quarks is given by

2 _ 2(d—2)x N 8z (l—z—y)
199 Na MY S Na M5y (T +y)?
which, in terms of the momenta, can be rewritten as

d—2 2 1 " N N 27](, pB'ﬁ'2
qugz + {—1+ﬁ(pj-Q+npr'pj+M

(2.146)

NaPa-Dj  MpPB-Fa NaPA * Dj pe - P,
d—2 2 1 . . R 9 L A2

-4 {—HA . (pj-Q+pb-pj+M)} (2.147)
Pa D Do Fa Da * Dj - P

Averaging over the incoming parton spins gives an additiéaor 1/2. For massless quarks,
the ggg(x) splitting function is the same.

The subprocesgyqq splitting

Only the collinear singularity is present for theg splitting, so we do not subtract the eikonal
splitting function in this case. The unaveraged splittimgdtion for massless quarks is given by
2(d—2)  8(z+y)

2
v = + r+y—1 (2.148)
M Namys  NabyS ( )

which, in terms of the momenta, can be rewritten as

d—2 4 1 o ) 4pg - P pi-Q
Uiqqz — + 1—f<pj'Q+77pr'pj>+A7] -1+~
NaPAPj  MNa'lpS Na PA - Pj Na S NaPA - Pj
d—2 4 1 /. - ) Apy - P 5+ ()
=——+ ——<1-— (pj-Q+pb-pj>+M —1+M
T Pa - Py .TQQ Pa - Dj Q2 DPa - Dy
(2.149)

Averaging over the incoming parton spins gives an addititaor 1/2/(1 — €). For massless
qguarks, theygq splitting function is the same.

The subprocesgygg splitting

The unaveragedgg splitting function is given by

1 N2 02 D D
Uigg: S A \2 2(1_6)%%8?14 ZA)JPB b
(Pa - D) (p; - Q)?
+APARIPE R g (1 (1+ - )‘ SErL (2.150)
S 4(pB'Pa)2 pB‘Paﬁj'Q
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which, in terms of the variablesandy, can be rewritten as
2 _Az(l-=z—y) 1 N 1 ]_ 8z (l—x—vy)
999 Y70 b S (I=2)*  (z+y)?] nams(1—2)(z+y)
If we include the eikonal factor, we obtain

8z (l—z—y) [ ( 1 ) € } 8z (l—z—y)

2l = 1— 1 — —

o ek = s T U T e T =) s -0 Gty
(2.152)

Averaging over the incoming parton spins gives an additiéaetor 1/2/(1 — ¢). Using the

variablesp,, p;, p, andQ, we then have

(d—2) {1 + (2.151)

02— 2 _ 4pa-pipB-Dj 2 (1+ a 5 )_ S flaPa D;
999 ek $ (Pa - D5)? 4(pp-Fa)®)  pp-Pap;-Q
Lo Pipn- )t 2 ba - B
_ b By |y HQiz _M (2.153)
Foir 2\ T AE) hon G

This is the dipole subtraction term fan(+ 1)-parton phase spaces, so we can safelylputd.

2.4.5 Soft splitting functions

We have discussed the spin-averaged splitting functibisin which the partonyj is emitted
from the emitter in the scattering amplitude and partpis emitted from that same emittémn
the complex-conjugate scattering amplitude. In higheleoQCD calculations, double poles in
splitting functions only arise if the emitted partgis a gluon. In this case, interference diagrams
between different emitters have to be taken into accounis Mieans that the emitted partgn
can be emitted from emitterin the amplitude and partoncan also be emitted from different
emitterk in the complex-conjugate amplitude (Fig. 2.8). The interfiee splitting function is
then

el{Ds FYmrs 85, 36 50) 0 ({D: Flmrrs 355 810 58)" 05,5, Osysn (2.154)
The splitting function Eq. (2.154) contains a singularityem the emitted gluon is soft. How-
ever when gluon is collinear with partorf or partonk, it does not contribute a leading singu-
larity. In the special case that is soft, or possibly soft and collinear wih, a simpler splitting
amplitude can be used. Whgnis soft, we have

| M, Flmin) >~ D T MED, fhmir) > (2.155)
J4
where

| MED, fhmer) > = tilfe = fot ) VOB, fmin) | MU, fhn) > (2.156)
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The spin dependent splitting operator can be describeceisgn spacé{s},, >,

< {§}m+1 | V;SOﬂ({ﬁa f}erl) | {S}m >= H 5§n,sn SOﬁ({pa f}m+17 Sj, 5¢, SZ)

n¢{0,j=m-+1}
(2.157)

If parton j is a quark or antiquark;$°® = 0. When partony is a gluon, we can use a simple
eikonal approximation to the splitting amplitude,
ﬁj) §j7 Q)*

€ )
SOﬂ({pa f}m—i—la Sj, S, S@) = Vdmra, 55[,5@ ( ]5 ] ﬁg be (2158)
J

Having used the eikonal approximation, the interferendittisig function becomes

W@k ~ U;;Oﬁ({ﬁ7 f}M+17 §]7 §57 SZ) U]iOﬁ({ﬁ7 f}m+17 §]7 §k7 Sk)* 5§(,S[ 5§k73k (2159)

In the Nagy-Soper scheme, we split the collinear and sofsprthe respective spin-averaged
splitting functions according to

Wi — W = (WM — WZ;k‘)”a') (WZ}“”“ — ng) (2.160)
where the spin-averaged soft splitting functiéf, is given by

Pe - D(p;, Q) - P

Dj - PeDj - D

ng = 47'('(15 2Agk (2161)
Here, Ay, is the partitioning weight function, which in principle caepend on the momenta
{p}ms1. It specifies how the two interference diagrams in Fig. 2eBpartitioned into separate
terms. In [28], the default value is taken to He, = A, = 1/2. We can also define the
partitioning function as function of momenthy, ({p},.+1) and Ax,({p}.+1), SO another choice
would be

A _ B ({P}m+1)
Aw({Drmr1) = B (os) + Bl BT (2.162)
where
Ba({phmer) = 22 D3, @) -5 (2.163)

Here,D(pj,@) is defined in Eq. (2.99). The partitioning functions are magative and obey
Auw({Ptm+1) + Ae{D}m41) = 1.

One of the advantages from dividing the splitting functiomts two parts is that the two terms
W Wzkonal dI/VZ,kOnal W, are positive, and thus we can use these splitting functiens a

dipoles to construct a parton shower Monte Carlo prograrmawit needing separate partitioning
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weight function. Another result from splitting Eq. (2.166)0 two pieces is that the first term of
Eqg. (2.160) only contains a collinear singularity, while ttecond term of Eq. (2.160) has both
the soft singularity and the saftollinear singularity.

The second part of Eq. (2.160) can be then expressed in tdrdipate partitioning functions
Ay, which is given in [30]:

_pZQk
(Dj - DeDj - Dr)?

——eikonal

Wfé _Wék; — 477-015142]g

(2.164)

where P, = Dj - DeDr — Pj - Dk De- Several choices for;, have been proposed in [30]. All
results given here have been obtained using Eq. (7.12)ithevkich is given by

~

PEVCY ) Sy EE— @ (2.165)

~

DjPrPe- Q+Dj-Pepr - Q

The partitioning weight function!), also obeys the relatioA), ({p}m+1) + A4, ({D}my1) = 1.
The general form of the interference spin-averaged smdiftinction is then given by

N o DB By O
AW = TG~ Wy = Befeped (2:166)
De - Dj (ﬁj “PrPe- Q+ Do Dj D Q)

Here, we have removed the common factaiw,, which we will add back in the end. The only
singularity in Eq. (2.166) arises from the facfgr- p; in the denominator. The interference term
is constructed in such a way that it vanishesfprp, — 0. We also assume that the variables
considered are such that they are finite jor p, — 0, i.e. singularities arising in this limit
should be taken care of by the definition of the jet functioie Tnterference term only needs
to be considered if the emitted partgims a gluon. If partory is a quark or antiquark, this term
vanishes.

Eq. (2.166) corresponds to interference between finalsstates worth mentioning that if we
replacep, by p, in Eg. (2.166), then the interference spin-averaged sgiftinction corresponds
to interference between initial and final states,

204 - DLy S
AWak — PA - Pk .
pa - Dj (ﬁj'ﬁkﬁb8+2m'ﬁjﬁk'@>
_ 2 - Pr Q°
B by (B P Q2+ 20 3 e Q)
4zZx

— , , (2.167)
Napsy (1 —)%(v+y)
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where the variables, v’ , x andv are defined in Section 2.4.4. The Eq. (2.167) can be further
reduced by the following replacement

A

3>

b — pp or z:ﬁ“'@ - 1 (2.168)
-

in which case the soft splitting function Eq. (2.166) cop@sds to interference between initial
states:

32
4
AW, = —®s @& ‘ (2.169)

paPipjQ  Pa-pipi-Q (I—T)namys

Again, if we replacey, by p, in EqQ. (2.166), then the interference splitting functiomresponds
to interference between final and initial states (8geEq. (2.204) or Eq. (2.205)).

2.5 Integrated splitting functions

In this section we will list all the integrated splitting fatons, which are needed for the-
parton phase spaces. The integrated splitting functionsago all the singularities ir that
are necessary to cancel the poles in one-loop virtual meteément. In order to achieve the
cancellation of singularities we have to define good paramaions in the integration measures
which we will discuss in Section 5.2. We will consider thelwaar integrals in both the initial
state and final state splittings as well as the interferesiceg.

For the initial and final state collinear integrals we haverbasing the colour algebra relations
defined by

T2 = ¢ (2.170)

whereC; = C4 (Cr) in theggg (gqg) splitting. For the splitting process;g we use the colour
charg€el’r. For the soft splitting functions the appropriate colouaigies are given by

(- > Tg-Tk> = C, (2.171)
k40

We will discuss this issue in more detail in Section 5.3. Nbi& partorn/ is the emitter and
partonk is the spectator.
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2.5.1 Collinear integrals: final state splittings
The subprocessyqg

After subtracting the eikonal factor, which will be combiheith the interference term, the
collinear part of the integrated splitting function is gMey

dag o ) ) Qg 4rp? "1
9 CFM / de [qug _Ueik] = ECF (2]?( Q F(l —E) X

1
{_Z -2 [2a4+1+2(a4—1)2 In(ag—1) + 2a,(2—ay)In ap —4(ag — 1) Ymax

+ i+ 2 1n ymax} + % {2(1 — 2ay) Ymax + %y?nax + In Ymax — g
a4+ (@2 —1) In(ag—1) —a? In ag] + 4 In(ar) } (2.172)
where
Iin(ay) = — /Oymax dy (A-1 25)2 tay Jrlx_o)xl: 0 (2.173)

Fora, = 1, this simplifies to

4o . Qg A\ € 1 1 A?
CF,UQ /dgp [qug—vgik} :_7TCF < ) F( <———14+?+O(6))

2 4 Q)? 1—¢) €
(2.174)
which has been used in dijet production at NLO.
The subprocesyyqq
Including all prefactors, we obtain
4o 9¢ 9
2(1—¢) L / Ao Vo =
Qg 47 p®\° 1 1 8 1
—T — = = 4 = —1)1 —1)—apl 2.17
s R(ng-Q) F(l—e)l Je 9+3 [(aé ) In(ae = 1) —a nagH ( %)

Fora, = 1, we exactly reproduce the result in [22]. Note that the fingi terms in Eq. (2.175)
are exactly the same as in [22]; differences in the finite sestem from the difference in the
(m + 1)- to m-parton momentum matching.
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The subprocesgygg

Including all prefactors, we obtain

47 g 5 — ) Qs 4rp\© 1
=0 s c [ 4q 2] = s
T s / G [P0y —var] = 5 Ca (ng Q) T(1—e

1 4 1
X |—— — = 4+ = [(ag —1) In(ag—1) — asIn ag] + Iin(ay) (2.176)
6e 9 6
where
]f. (CLZ) _ _zaé /ymax L{[(1+y)2+2a6y] + 4aém [(1+y)2_a£y]}
) o A(l+y)? A1 +y)
a# 1 Vae+1 ay /ymax y In zg 2
= 1— 1 —1 dy ——— —(1
aé{ \/a_€n< ae—1> n<az—1)+8ae 0 y)\2(1+y)3 [aéy ( +y)]
R R (2.177)

2.5.2 Collinear integrals: initial state splittings
The subprocessyq(x)g

Using the variables defined in Section 2.4.4, the unaveragledg splitting function is given by

2(1—z—y) 4x
2= d-2+ — 2.178
Yoo NaThy S < - a:)Q) (.178)

Including all prefactors, we obtain

Ao

9 Cp /dgpvgqg

Qg 4y \ € 1 Udx 1 ) 1/1+2? 0
— s 51— — )=
50 (o) wma [ S Puo (Gea) (5 T

(2.179)
where
B(z,") = —(1—2)nz+2(1—z)In(l—z)+4z (%)
+
2?1(1_—21)1” +26(1— ) <1 - g) (2.180)

The leftover factorl /= will be reabsorbed into the flux factor. Note that we shoulketthe
eikonal splitting function into account, when we consider interference term. The integrated
eikonal splitting function will be discussed later in moesail.
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The subprocessyqg(x)

Using the variables defined in Section 2.4.4, the unaveraggd) splitting function is given by

2(d—2 1—z—
qug = ( L + 8o(1-x y)2 (2.181)
Namys — NaMpsy(z+y)
Including all prefactors, we obtain
4o .
9 Crp* /dgp qug
e 4y € 1 Ydoe [ 1 /14 (1 —2)?
—=C — |- — 0 2.182
27 F(nanbs) T(l—e)/o x l € ( x +B(z,€) ( )
where
2_9(1— 1+ (1—x)?
B(x, ) = St ] ) rlnz+2In(l —2x) <M) (2.183)
Xz X
The leftover factor /x will be reabsorbed into the flux factor.
The subprocesgyqq
The unaveragedqq splitting function is given by
2(d—2) S(z+vy)
Vgas = + (x+y—1) (2.184)
NabY S NaTb Y S
Including all prefactors, the integrated splitting furctiis given by
4o 9% 9
21— e RF /’Kp”gqq
Qs 4\ 1 Yde [ 1, ) 0
=—T — |- 1— 2.185
o (ons) g [ S 0] o
where
B(z, ) 6r—52"—1+[2In(l —2) — Ina] [z + (1 —2)’] (2.186)

The leftover factor /= will be reabsorbed into the flux factor.



2.5 Integrated splitting functions 63

The subprocesgygg

The unaveragedygg splitting function is given by

4x(l—x—
2, = 12 y)(d—2>[1+
Y0a b S

1 N 1 } . 8zx(l-z—y)
(1-=z)*  (@+y)?] namsl—z)(z+y)
(2.187)

Including all prefactors, the integrated splitting furctiis given by

4o

drp® \ 1
2¢ d 2 — &
2(1—c¢) Can / % Ygg 27TCA Nas) T(1—¢)

x/;d—xléa(1—x)+1l5(1—x)-2< ‘ +x(1—x)+1;x)}+%(x,eo)}

T |€ € (1—x)y
(2.188)
where
B(r,e) =4z (%) —2z(1—2z)lnx+4(1 —2)In(l — ) (1 J;xQ)
+
, l1—x T 72
+2(:p - _(1—x)+)+2(1_ﬁ)6(1_x) (2.189)

The leftover factor /= will be reabsorbed into the flux factor.

The subprocesggg with eikonal splitting function

Now we consider the eikonal factor. Using the variables aefim Section 2.4.4, the averaged
eikonal splitting function is given by (see also Section2)4

2 4rx(l—x—vy)
K (1 —2)namys

(2.190)

Integrating it out, we obtain
« drp® \ € 1
4 SCZ' 2e d =2 — _SC@
To 2 / Cp Vaik o (ﬁanbs) F(l—e)

x/olda: L%é(l—:c)jL% (5(1—x)—ﬁ) 42 (1_7;_;)5(1—3;)
L, lting +4<1n(1—x))+] o.10)
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Here, C; is given by Eg. (2.170). Hence the collinegyg splitting including eikonal factor is
given by

Ao Q@ 4\ ¢ 1
s C 2¢ d 2,2 _ 5 C
2(1—c¢) AH / % [Uggg Ve 2r Nams) T'(1—e)

x/oldx{—2< ’ +x(1—x)—|—1_x)+1 2 +Ql(:1:,60)} (2.192)

(1—2)+ x e(1—x),

Az, ") = —2z(1—z)lnz+4(1—2)n(l —z) (123;2) +2 (5’52 - 1—737) t2w (1111:;)+

(2.193)

The complete integrateglyg splitting function including collinear and interferencams (see
Section 2.5.3) is then given by

47Tas € € Qs 47TM2 ‘ 1
7_6)(7%1”2 /de [Usgg — Ugik} —|—47T0430A/J2 /de AWab = ﬁCA ( ) F(l —6)

2(1 Mo 5
where
3, ) = 4z (%L —2zx(1—2)nz+4(1—2)In(1 — 2) (129”2) 4o (;,;2 _ 1;x

2.5.3 Interference between initial states

After adding back the eikonal factor, which we have sub&@dh the collinear integrals, the
interference part of the integrated splitting functione(&sy. (2.169)) including all prefactors is
given by

« 47 p?\° 1
4 2 | dG, AWy = =2 C;
71-Oésc’z,u / Cp Wap 271_02 <77a77b5) F(l—E)

o (R E YIRS T

where(; is given by Eq. (2.171). Note that the individual part of thewveraged soft splitting
function is given by

2 x(l—x—y)z
v = —16
soft Moty s (1—2)2 (24 (1 -z —y)?)

(2.197)
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Integrating it out, we obtain

Ao .
3 o [ G iy

_a dmp? \© 1 b 2
_ﬁCZ (nanbs) F(l—e) /0 dx |:26(1—$)+25(1—$)—m (2198)

2.5.4 Interference between initial and final states

The initial-final state interference splitting functiongs/en by Eq. (2.167), which is derived
from Eq. (2.166) by the replacemeit — p,. Using the initial state integration measure given
by Eq. (5.43), we obtain

drp? \ 1
4 %€ A -
77'0530@“ /dgp Wak C (ﬂa"]bs) F(l—E)
! 1 1 2 In(1 — x) 2Inx
—o0l—2)— - | 7—— 1—x)1 4 —
X/o d:c{€25( 7) 5[(1—37)++5< 7 nzo]—i— ( l—x )+ (1—2)y
+1In(16) In 2y 6(1 — x) + g[ﬁn(x, z)} (2.199)
T

where(; is given by Eq. (2.171). In EqQ. (2.167), = 0 corresponds to a singularity in the-
particle phase space. This singularity should be exclugteshiappropriate jet function definition
since we only consider infrared safe observables. The ifmét = ZzZ(z,v’) in Eq. (2.167)
contains Lorentz-transformed variables. Only in the liafitz — 1 (soft limit) ory’ — 0 (soft
or collinear limit) this dependence disappears; in thigdhsz is denoted by,. Hence we have

z = z(z,y), 20 = z(L,y)=2(z,0), 0<2z<1 (2.200)

The finite term/g. is given by

1 : —1
Iy = I (z,2) = mo(1 — x) {—ln4 Inzy — 3 lQ Lis <ZO ) — In? zo}

20

+/1d 2 L /AP v R VI }
0

yy¢4y21—zo>+z3 23/(1—20)+20+\/4y2(1—z0)+23
1 dy Z(x,y)
Jr(l—x / {[/ (1—0) N(z,y,v,Zz)

N(z,y,v,2) = (v =2)Vy(l—y)z2(1—2)+2y+2—2yZ (2.202)

Here,v andy are dummy variables, which we denoted witlandy’ previously. So the function
Z in Eq. (2.201) is now a function of andy. Note that we can only use Eq. (2.200) in the

- w} (2.201)

with




66 CHAPTER 2. NAGY-SOPER DIPOLES

singular limits ¢ — 1 ory’ — 0) where the dependence ohdisappears. For the finite parts,
i.e.EqQ. (2.201), we need to use the original definitiorz @fiven by Eq. (2.136)
- ﬁa : ﬁ
z = - ~
Pr - Q
Additionally we use the original definition afgiven by Eq. (2.135)

NaMpSD;j P 1 Pj- D

v = — ~ = N
2pk-Qp;-Q 1= p-Q
where p;, needs to be calculated using the Lorentz transformatfgn= A(f(, K)*,p; and
p; is parametrized according to Sudhakov parametriz&tion the singular limits, we obtain
P — pr. FOrz — 1 (which meang, — p,), we get

3

Iy = 580 —2) (2.203)

in which case the initial-final state integrated splitting¢tion is reduced to initial-initial state
interference term (see Section 2.5.3).

2.5.5 Interference between final (final and initial) states

The final-final and final-initial state interference termsdhe same structure. The Eq. (2.166)
corresponds to final-final state interference term. If wdaegp, by p, in Eqg. (2.166), then
the interference splitting function corresponds to fimadidl state interference term. Fay = 1
(which corresponds to only two particles in the final stattegre are two situations: = 0 and

a # 0, which corresponds to final-final and final-initial stateitsiplgs, respectively. Using the
variables defined in Section 2.4.3, the interference sgiifunction Eq. (2.166) can be rewritten
as

1 2(1—=v)(1—2(1—x))

:y(Pe-Q) v(l—2(1—m))+ xo [)\a%_;_l]

AW (2.204)

wherea = a(y) and the parameter is given by Eq. (5.23). We can split this function into a
singular and a non-singular part, leading to

1 1
AW = AWiin = — AWj 2.205
with -
z= 0 (2.206)
1-— Zo

9See also the discussions in Section 5.2.1 and Section 5.2.2.
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and

2 [ (@otz(1-20)) (1=v)(1—=(1—a0))
AWin:
f (pz'Q)( U<1_Z(1_x0))+x0[>\a%+1] )

2 i (1=2(1=20) + 0 A& +1] N
e T v(1—2(1—20)) +ao AL +1]

2 1—x+x0[Aa%+2]

_(pg~Q)fC v(1+;p0—x)+xo[)\f£+1}1:| (2.207)

In the following we will discuss,, = 1 anda, # 1 cases, respectively.

Simplified case:a, = 1 anda = 0 (Interference between final states)

If p,. is the final state spectator, it is straightforward to shoat éh= 0 from Eq. (2.112). Hence,
a = 0 corresponds to final-final state splitting. The averageittsyg function is then given by

1 2 (1—2)+uz|(l—uzx)a+2] 1
AW = -1 = — AWj 2.208
W u:zc2pg-@x (v(l+uz—x)+um (1 —ux)a+ 1] ux? Win )
whereAWs, satisfies the following limits
. 2
}LIL%AVVﬁn = m (1 - !E),
2 1
lim AWsn =
amp pe- Qv (x=0)+u(ap+1)’
. 2
and
lima = lim a = ag (2.210)
z—0 u—0

which for final-final state interference term equals zerp € 0). The functionv,(x = 0) is
given by

lirr(l]v =zv(r=0)=ux [(41}’ —2)Vu(l—u)ag+1—u-+ uao] (2.211)
Including all prefactors, the integrated splitting fuioctiis given by

9 O drp® \© 1 1 1 2
dras Ci /deAW = —(; (2 . ) 1= (—262 +—€ +3——4 + O(e)
(2.212)

where(; is given by Eq. (2.171).
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Simplified case:a, = 1anda # 0 (Interference between final and initial states)

Now, if p,, is the initial state partorpy, is replaced by,), then
ﬁa : ﬁk

(1 =¥) Pa - (Pe + Dy)

It follows that,a # 0 corresponds to final-initial state interference term. udahg all prefactors,

the integrated splitting function is

drp® \© 1 1 1 1
Ao, Cop [ d, AW = 2 ¢ — 4= |1+ -In(1
mas Cip /Cp T <2p4-Q> T(l—e){262+e[ +2n( +a0)}
2

1
—% +3 =221 +ao) + — (i + Iﬁn)} (2.214)

a =

(2.213)

where(; is given by Eq. (2.171) and the finite terms are given by

2

du d;z: 1
[fln / / / dv’ 1_U)]
8 t(l-—z+ux|[l-ux)a+2) 1
lT+tuz—x] +uz[(l-ux)a+1] 14 2a0u + (40" —2)y/u (1 —u)ag

—77/ du/ de Jo(l-oztuz|[l-ux)a+2]) 1
k(u,x,a) V1+4agu?(1+ ag)

CLO+1 2

d 1 1 —
Iga(a0) = / % 1212 + In (1—u) i
2 0o U \/1 + dag(1 + ag)u? (1 + 2agu + \/1 + dag(1 + ao)u2>
™ 1 9. . Q 1. . a 2
et

(2.215)

We have introduced

Bu,z,a)=[(1+uzr —2)(z—2) + vz (1 —uzx)a+1)]
+4duzz(l—2)14+ux—2z) (1 —uxr)a+1) (2.216)
and
1— . Y
227:10( u),,?:uxd,d: Pa T ,agp = a(y =0) _ Patu (2.217)
l-ux Pa-Pe + YPa -1y Pa " Pe

Here, the parameter is given by Eq. (5.23). Foii = 0, the finite termsl, and I, can be
reduced to

7T3

Ea

I =— If =0 (2.218)




2.5 Integrated splitting functions 69

and we of course obtain the result in the last subsectionleftiver integrals are finite in the
limitsw — 0 andz — 0.

General caseia, # 1

We will now consider the integrated splitting function tor # 1. We have again the factorizia-
tion into a finite and a singular term (see Eq. (2.205)), wiih limits of the finite termA W,
being given by

2
u—0 Pe -
2 1
lim AI/Vfin = A )
w0 pé‘@vr(:p:0)+u<g—‘;+1)
2
lim AWy = (2.219)
u—0,2—0 Pe -
Here, the parametey.(x = 0) is
/ Qo ao
v(r=0) = (' =2)Ju(l—u)—+1+4+u (— —1) (2.220)
Qy Ay
Including all prefactors, the integrated splitting furctiis
drp? \© 1 11 1
dra, O 2 [ de, AW = 22 ¢ — 4+ - [1+=1
. [ g aw = e () (1_@{262*6{ gt
2
_%+3—21n21n(ag+a0 {[ﬂn( )+Iﬁn+lﬁn}
1 1
+Inay [21n2— ZIHCLg—F 21n(ag+a0)+1}} (2.221)
where(; is given by Eq. (2.171) and the finite terms are
du dx 1
[fln / / / 1 - v )] :
1—37_'_.1'0 |:)\aip+2:| 1
X 8T ——— -1 +x—
v[1+mzo—2x] + 20 [)\a%+1} vr(x:0)+u(2—2+1>

1 JE—
e = w/ dx (1 ”3) In {@} (2.222)
0 x x
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with v now being given by

1

1—1‘0

v = {4 =2)[(1-2) (@ —20) 20 = )P + 7 — mo+ 2 (1 — m) =22 (x —20) }

(2.223)
We use Eq. (2.113) far and Eqg. (2.111) foe. The spectatop, needs to be calculated using the
Lorentz transformation

Py = MK, K", pf

Note that for the initial-state splitting, we need to use @higinal definition ofv. The problem

for the initial state is that an additional angle appearhaliorentz transformation; this is not
the case for the final state, where we t@keas given by Eq. (2.22), without any reference to the
additional angle and/or use pf. Hence, we never need to use the Sudhakov parametrization fo
p; in the final staté®.

The finite termif, (ag/a,) in Eq. (2.221) means thag is now being replaced by, /a, in I, (a),
which is already given in the last subsection. kpr= 1, I, = 0 and I, = I¢,. Hence, we
obtain the result in the last subsection. All leftover intdg are finite in the limitss — 0 and
x — 0. Note also that the treatment of interference terms sigmiflg differs from [22]. Here,
our choice of momentum mapping leads to more complicategjrated finite terms, which we
choose to evaluate numerically.

105ee also the discussions in Section 5.2.1 and Section 5.2.2.



Chapter 3

Applications

For Nagy-Soper scheme, all collinear as well as singuldsdithe soft splitting functions have
been tested. In this chapter, we give a numerical compaf@obDrell-Yan process at NLO
using [22] as well as the Nagy-Soper scheme. We also giverthlytac result of our splitting
functions when applied to dijet production at lepton cahsl as well as the Higgs production at
hadron colliders and decay.

3.1 SinglelV production

3.1.1 Tree level

We start with a simple process: singdlé production at hadron collider. Thié” production
provides one of the cleanest processes with a large crosrsatthe Tevatron and at the LHC.
This process is not only suited for a precise determinatioth@V boson mass//yy, it also
yields valuable information on the parton structure of thetgn. The QCD NLO calculations
have been available in the literatures for some time [37—40]

The cross section fdl” production at hadron collider is
A+ B — W¥* + anything (3.1)
The parton level subprocess in this case is (Fig. 3.1)
qq — W+ (3.2)

whereq is a quark with charge/3 (or an antiquark with charge/3) from hadronA andq’ is an
antiquark with chargé /3 (or a quark with charge/3) from hadronB. Labelling the momenta
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by ¢(p2) 7 (p1) — WT(P), we have

(1=1°) u(ps) (3.3)

N | —

. g * — a
M = =iV NG ea’(P)o(p1)y
Neglecting the quark masses and squaring the matrix elegness

1 g° 2 p1-Ppy- P
Y IMP= 2 |V | <p1-p2+27
4 g | Vaa Mg,

spins

(3.4)

where we have averaged over the incoming parton spins. Ean#issive on-shell vector boson,
we use

P pY
> e (P)ey(P) = —g" + Ve (3.5)
o w
Using nowP = p; + p, andP? = M}, we get
1 2 _ g9 2 242
T MP = [ Vay P M (3.6)
spins
If we average over the parton colours, we obtain an additi@ctor 3 x % X % = % leading to
11 g°
(M PP= 25 Y IMP= 5 Vi I My (3.7)
49 12
spins, colours
The one-particle phase space is given by
dPS, = L]3(2 YU P —py—po) = 2761 (§ — M) (3.8)
1 — (27T)32P0 m P1 P2) = m S W .

Here,s is the center of mass energy of the colliding partons.

3.1.2 Real emission, virtual correction and dipole subtraiton

There are two subprocesses needed to be considered (Fign®.Rig. 3.3):q¢ — ¢ W and
qg9 — qW. For the subprocesg; — ¢ W, a gluon can be emitted from either the incoming
quark or the incoming antiquark. Labelling the momentay q(p’') — g(k') W (k), we have

M = = ) ) Vi
N R SR 5y vl s @—F)
x o(p) |7 =i 5(1—7)—7 5(1—7)W7 u(p) (3.9)
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Figure 3.1: LO and virtual diagrams.

q g q
w
w
q q g

Figure 3.2: Real emission diagramg. — g W

g q 9 q
% >—<
q q w

Figure 3.3: Real emission diagramg. — q W
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Figure 3.4: Collinear splittings.

Here we have neglected the quark/antiquark masses, teds,, denote the polarization vectors
of gluon andiW’ boson, respectively. They satisfy

ZSM* ) el ( k:’ = g

~V* vo ]{:V]{:U
Z = e (3.10)

Squaring the amplitude and averaging over the parton spid<alours, we obtain the matrix
element for NLO real emission procegs— g W

11 32 2 4 42+ 2 M2,
(MrP=35 D IMP = maaV2Gr M |V [P 5 ——
49 spins, colours 9 tu
8 2 +a* +2 M}, 3
= g9 mas | Vo |” " (3.11)

wheres, ¢, o are the Mandelstam variables. There are both soft and eallisingularities corre-
sponding tat — 0 anda — 0. The coupling constant and the mass of gauge bosbfy, are
related to the Fermi coupling constart by

ZE = (3.12)

The two-particle phase space is given by

Bk 3K )
/dP52 = / L 2m)* 6" Q —k — k) (3.13)
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Figure 3.5: Interference splittings.

Nagy-Soper dipoles

The calculations of the subtracted splitting functionstaomtwo dipole contributionsD,,, and
D444, €ach of which contains both collinear and soft splitting®( 3.4 and Fig. 3.5). Their
explicit expressions are given in Eq. (2.141) and Eg. (218 find
B [411 8(5+ 1) 83 } 16 542

st t(t+a)  (E+a)?] (242 (E+a)?
The dipole contributiorD;;, can be obtained from Eq. (3.14) by the replacentent . The
final expression for the two-particle cross section is given

oNLO{2} _ / [daio _ dU;A:()]

2

1 4 .
= ¥ dPS, {\ Mg ‘2 _ ( 71'204 ) Cr (Dygg + Dagg) | M5 |2} (3.15)

Eqg. (3.15) is completely finite after subtracting the digoléor them-parton phase space we use
the results of the integrations of the splitting functioneiothe emitted one-parton phase space.
All the collinear and soft integrals are given in Section.2JSing Eq. (2.16), we have

471'0[3 €
Jdotiemm { T3 i [[dg, [, - v+ amancr i [ dg awl

471'043 €
paapr { C /dgp [ qqg gik] +47T055 CF ,u2 /dCP AI/I/vab}

o ;
/d (Pa> Pos 17)
/

D

w = (3.14)

+

+

3 (Do, Db) ® 1 (€ /dx/da TPa, pb) @ [K*(xpa) + Pz, 1))
(a < b) (3.16)
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where the universal collinear counter terms for any finitellszatteringn-parton cross section
are defined by Eq. (2.14). The correspondingd and P terms are given by

oy 1 4\ (2 3 w2
](6)_§CFF(1—E)<Q2> (6—2+E—§+O(6))

" _ag 1 In(1 — x)
K(zp,) = %CFﬁ {—(1 —z)lnx+2(1 —z)In(1 —z) + 4z (ﬁ)_i_
_ 2zlnw <1+x2) ln( 4y )]

(1—-2), l—z/, 2P Py

9y Qs 1 1+ 22 44
P(x,uF)_gCFFO_G) (1_x)+ln( i ) (3.17)

The plus prescription is defined by
[ e f@ @) = [ do (5@ - 50) F@) 3.18)
0 0

or alternatively,

e—0

Flz), = lim [9(1 e — e F(x)—8(1—2) /0 T F(az’)}

1
= F(z)—46(1—2x) / de' F(z') with 6(1—=x)=1 (3.19)
0
From that it follows immediately that
1
/ dzF(z); =0 (3.20)
0
and
1+ 22 1+ 22 3 4
PQQ(x)—CF(l_x)+—CF [m+§5(1—$)], CF—g (3.21)

appearing in thel terms is the famous Altarelli-Parisi splitting function.hd virtual matrix
element in théViS renormalization scheme is given by

2 __ 2% 471-”2 ‘ 1 _z_%_ 2
| My |"=| Mg | Qﬂ_CF( 02 ) F(l—e){ SR 8+ —l—(’)(e)} (3.22)

We see that the singularities cancel each other betwadp |> and/(¢) as they must.

Now we consider the gluon induced procegs— ¢ W. The matrix element can be obtained
from Eq. (3.11) by crossing symmetry. If we include the cofoand spins, we obtain

1 1 2+ 02+ 2M2 1t
2 IMP= g |V P (3.23)

1
424 —51
spins, colours

| Mp |?=
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It is worth mentioning that no soft singularity is presenttive procesgyg — qW; @« — 0
corresponds to collinear singularity. There is only onetimeeded in this cage— ¢g, which
in terms of Mandelstam variables, is given by

4\ 2425t + 242
Dygq = — <M5V> 0 (3.24)
We found that
1 47 oy
oMo — / [dofy —dolly] = Qé/dP52 {\ Mg > - 5 ) TrDyeq | Mp |2}
2
1 1 21 + 1
_ A/dPSQ 12, 20 (3.25)
238 3 S

The collinear singularity appearing in-parton phase spaces will be absorbed into PDFs, when
we combine the integrated splitting function with the audar counter term Eq. (2.14).

47 oy .
/daﬁy(xpaapb) {2 (1 — E) TR lu2 /dcp Uiqq} + /do-gl;(paapba M%‘)
1 1

) (3.26)
— [ dn [ dot o) @ [ (o) + Plopi)]
0 1
where
O 1 9
K(p) = 37— { Tr(6z — 52° — 1) + [2In(1 — 2) — In(z)] Py (z)
4y
- P 1 3.27
49(7) n<2$pa'pb)} ( )
1 4ty
P(a,p2) = =—— P ()]
i) = g Puom ()
1
Py(r) = Trle*+(1—-2)],  Tr=3
andP,,(x) is the standard Altarelli-Parisi splitting function.
Catani-Seymour dipoles
Using Catani-Seymour dipoles, tihé and P terms for procesgg — ¢ W are given by
Qg 1 4y
K(zp,) = 5T o) {Qqu(:c) In(1 —z) + Tg2z(1 —x) — Ppy(x)In <2:Cpa 'pb)

— Py(x)Inx }

1 4y
Ple2)=__ " p ()1 3.28
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and the/, K and P terms for procesg; — g W are given by

oy 1 dep\ (2 3 w?
](6)_%CFF(1—E) ( QQ) <€—2+E—?+O(E))

a(py ) — O 1 In(1 —z) ) Ol — 2
Ke(en) = 52 Crg [1(Ff=52) +0-n)—20+0)h0-n

(1—¢ 1—=z
2 2 2
(7)) - (75) o
l—z ) 2xp, - Dy l—x ),
a 1 1+ 22 Ay
P 2)=—=C 1 3.29
(.Z',,LLF) 27T FF(1—€)(1—.T)+D( ILL%‘ ( )

Results

In summary, we see that the pole structures/ {n) terms are equivalent between Catani-
Seymour’s scheme and Nagy-Soper’s scheme as they shouddfirilte terms inK” and P are
shifted around due to different momentum mapping. Howdwefinal results are the same. For
a comparison, we calculated singlé production for app initial state at NLO, using both the
scheme in [22] as well as Nagy-Soper scheme, including PREFEEQ6M [101]) and varying
the hadronic center of mass energy of the process. Here veeusad routines from the CUBA
library (Vegas) [99] as a Monte Carlo algorithm to implemeat numerical phase space calcu-
lations. Fig. 3.6 shows the relative difference betweeneeimplemented schemes. We see,
that the numerical differences are on the permill level amtststent with zero. Fig. 3.7 plots the
NLO corrections to singl&/ production at the LHC as a function of the hardonic center afsn
energy.

3.2 Dijet production in e*e~ annihilation

Next we consider dijet production at NLO. The LO and NLO days of dijet production are
shown in Fig. 3.8 and Fig. 3.9. The kinematics of two-jet prctebn is defined as follows: The
variables arer; = 2p; - Q/Q?, yi; = s:;/Q? ands;; = (p; + p;)°. The squared expression of
() corresponds to the square of the center of mass energy; anthe momentum of any QCD
parton in the final state. They are relatedy= 1 — o3, x5 = 1 — y13 andzz = 1 — yis.
We can choose the center of mass frame in wiijch= (ﬁ,ﬁ) andp, = (E;,p;), hence

Y. B = sand) . pi = 0. /s is the center of mass energy. It is straightforward to show
thatﬂfl + a0+ 123 = 2.

lc.f [102].
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Figure 3.6: Relative difference between NLO correctionsitgle IV production using Catani-
Seymour and Nagy-Soper dipoles respectively, as a funaiadhe hardonic center of mass
energy. The results agree on sub-permil level. Additigniddé numerical integration errors are
shown.

0.35
ONLO — OBorn
N N0 T Born
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0.3 1
\‘\
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.
0.2
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Figure 3.7: NLO correction&n.o—som)/0sorn t0 Singlel’ production at the LHC as a function
of the hardonic center of mass energy. The result was olgtaiseng the CTEQ6M parton
distribution function [101].
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Figure 3.8: LO and virtual diagrams.

The LO contribution is the parton model process~ — ¢(p1) ¢(p2) with matrix elementM,.
We average over the event orientation in the LO processidmcéise, the momentum dependence
of the Born contribution vanishes. The NLO real emissiorcpss is

efem = Q) = q(p1) @(p2) 9(ps) (3.30)

The scattering amplitude fer (p")e~(p) — q(p1) @(p2) g(ps) is

o ngS £ 0y (pa) 5() 0 up) {u(p1) a 7 Jlrp’g Y v(p2) — w(p1) v* J2 ip’g(zk;(i?z)}

whereQ = p, +p,+ps ande*(p3) is the polarization vector of the gluon. Squaring the sciaige
amplitude gives then

P IMP s 1 ) QT ) Tl Ak A (332

where

-1 1
ISV (7/\ m Yo+ Yu m %\)
- (Qz (1— - 72) Y (@ +98) Y+ 02 ( ! 1) Yo (B +15) Y ) (3.33)

After a straightforward calculation we find the matrix elerhd1;(p;, p2, ps)

8T Qg 2?2 + 23
Q% (1 —a1) (1 —22)

The final-state parton momenta are denoteg,bwhere,

|Ms(pr,p2,p3)|° = Cp IM,|? (3.34)

si2 = (;m +p2)2 . s13=(m +p3)2 . Sa3 = (P2 +p3)2
S123 = (p1 + po +p3)2 = S12 + S13 + So3 = Q2
Y12 = S12/Q27 Y13 = 313/Q27 Ya3 = 823/Q27 Yiz + Y13+ Y23 =1 (3.35)
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Figure 3.9: Real emission diagrams:e™ — ¢q g.

or equivalently we have
sij = (pi +pj)27 sijk = (pi + pj +pk)27 Yij = Sij/QQa (i<j<k) (3.36)

For the two-parton phase space integration, we follow thi@&eymour’s convention, which
is slightly different from the standard convention up to etda of 8 7. Hence

/ dPSQ = /dy125(1—y12) = 87T/dPSQ (3.37)
cs

and the LO cross section is given by
O'LO :/ dPSQ |M2|2 F}Q)(pl,pg)
cs

:‘M2|2/d3/125(1—y12)F§2)(p17p2) — |M2\2 (3.38)

The three-parton phase space is given by

2 1 1
/ dPS3 = Q 5 / dZC1/ d.TQG(SCl + Ty — 1) = 87 / dPSg
cs 1672 Jo 0

QQ 1 1
T 1672 / dy23/ dy13 0(1 — Yoz — y13) (3.39)
™ Jo 0

The calculation of the subtracted splitting functions eamd two dipole contributionsp,,, and
D444, €ach of which contains both collinear and soft contrimgi¢see Fig. 3.10). Their definition
is givenin Eqg. (2.119) and Eq. (2.161). We find that

4 1 x 1—=x 1—=z
Dyg = — 4 [ — | |2 L 2 + .
Q2 ) 2—1‘1—[[’2 (2—1‘1—[[’2)2 l—ZL‘Q

Ty + 29— 1 1
+ 2 3.40
( 1—1‘2 )(1—[L‘1)[L‘1+(1—l‘2)[[’2} ( )
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~@ O~

Figure 3.10: Soft and collinear diagrams.

wherezx,, z, andz; are defined by

25 Q 2P Q C2pQ A L
- QQ ) To = QQ ) T3 = Q2 ) Q De +p] +pk - Q (341)

The dipole contributiorDg;, can be obtained from Eq. (3.40) by the replacemgnt+ z,. The
final expression for the three-parton cross section is giyen

oNLO{3} _ / [daio - dU?:O}
3

=/ dPSs{ | M3(p1, 2, p3) | F§3)(P1,p2,p3)
cs

Ao N -
- ( 2 ) Cr (qug F( (p13,p2) +Dq@ F§2)(p23,p1)> |M2 |2}

12 + 22

ECF) |M2 | / dl‘l de’Q e(l‘l +ZL‘2 1) {(1 _xl) (1 _xQ)
1 Ty I — 1 —m
(;2) (2( —$1—$2_(2—x1—x2)2)+1—x2)

T+ a9 — 1 Zq 2~ =~
E ,
1-— i) ) (1 — ZC1>3§'1 -+ (1 — SCQ).TQ:| J (p13 p2)

J— - 2 o
Kfcl) < <2—371—5’32 (2—$1—x2)2)+1—x1)
l‘1+$2—1 To @ - i }
i Fy (P23, 3.42
< L= ) (1 —a1)z + (1 - xQ)xJ J (P23, P1) (3.42)
2)

which for any infrared safe observable (implying th}%ﬁ’) — Fﬁ
and which for® = F{®) — 1 can be reduced to

23 4
O'NLO (8} = ﬁ CF <? - §7T2> O'LO (343)

3
F} )(p17p27p3)

_|_

asx; approaches 1) is finite
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-0 ~O-

Figure 3.11: Vertex and quark self energy diagrams.

where we have used the formulae

1—1)3 1
/ / dxq dSCz 1=z = 3 (=29 + 3 7%)

2—1‘1 —l‘2)2

// dxlde )(1_“)5 - Liciosam

2 — 1 — IL’Q)
2 1—
/ / dl‘l d[[’g xl( xl)Q =
— 1 — T3)

Now we have to use the results of the integrated splittingtions for them-parton phase space
contributions which, in general, can be devided into twaege soft integral and collinear in-
tegral. In the end we have to combine the integrated spifiimctions with the virtual cross
section leading to finite result. The one-loop matrix elen(&ig. 3.11) in theMS renormal-
ization scheme is given by Eq. (3.22), and the collinear aftistegrals can be looked up in
Section 2.5. Combining these contributions, we obtain &efifai — 0) expression for the two-
parton cross section:

O_NLO{Q} :/ |:dO_V+/dO_A:|
2 1 e=0

:/ aPs, { | My [P +2| Ms P
CSs

{47“15
X

[GVRI ) H|

Cr H%/d(p [Ur?qg o Ugik} +dmas Cr Mze /dgp AW} } F}Q) (P1,p2)
Qo Am?
= ECF (—10+ ?) | My |? /dy125 (1 —912)F}2)(p1,p2)

s 4
= & op (—10 4 2a2) oF (3.44)
27 3
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2E,/\s | 3-107 | 3-107°

Oreal [PD] H —0.0051499031 £ 0.0000051413 | —0.0051496084 + 0.0000051484

Table 3.1: Variation of the real radiation subtracted csmssgions,.,; for two different values of
E,. f2E,/\/s < 3-107, the result is the same. Heggs = 500 GeV.

Results

Summing Eq. (3.42) and Eq. (3.44), itis straightforwardows that the total NLO cross section
(for F}g) = F}z) = 1) agrees with the well known result [22,109],

3 ag
GNLO _  NLO{2} | [NLO{3} _ - % Cro (3.45)
wheres”© is given by
LO 47 042 znf: 2

Note, that here we can set jet functions being equal to oreys&fon-unit jet functions need to
account for the mappings from + 1 to m-phase space.

We also show our numerical results for dijet production. thernumerical computation we used
the following parametefs

a, = 0.118055085612548 , « = 7.54677226134035754 x 10~°

and vary the center of mass energy. The Fig. 3.12 plots théweldifference between the two
implemented schemes. We see that the schemes are equivileagreement on the permill
level and consistent with zetoFig. 3.13 and Fig. 3.14 plot a comparison of analytical itezd
results using Nagy-Soper and Catani-Seymour dipolesgeotisply. We also show a comparison
of analytical and numerical results using Nagy-Soper @pdor the real emission subtracted
cross section (see Fig. 3.15). Here we used routines fronCW&A library [99] as a Monte
Carlo algorithm to implement our numerical evaluatibns

2Here we set quark flavour to iequark and henc@, = — %

3We also found that the number of total iterations of Vegas td@arlo integrations for the Nagy-Soper scheme
is less than the Catani-Seymour scheme under the same eg@itp259 for NS scheme and 498 for CS scheme.
So we are confident that for a multi-particle process in thal fitate the CPU run time for NS scheme would be
much less than the CS scheme.

4We also performed the Lorentz boost using our routines takckige Lorentz invariance of the real emission
matrix element and all the dipoles; they completely agreh a@ach other before and after the boost.
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Relative difference between CSand NS ( 0¢g- Ong) / Ocg
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Figure 3.12: Relative difference between NLO correctianglifet production using Catani-
Seymour and Nagy-Soper dipoles respectively, as a funofidime center of mass energy. The
results agree on sub-permil level, shown are the numentagration errors.

We have also checked, that the final result is insensitivat@tions of the gluon energy, if the
ratio2 F,/+/s is below3 - 10~*. The Table 3.1 shows the real radiation subtracted cros®sec
0 real, Where we vary the ratio betweén 10~* and3 - 107%. Here we choosg/s = 500 GeV.

3.3 Higgs production in gluon-gluon fusion:gg — H

One of the most crucial experimental challenges for preaedtfuture high-energy physics is
to search for Higgs boson, which is a fundamental ingredéttie Standard Model (SM). The
discovery of Higgs boson will also enable us to well estdbliee Higgs mechanism, one of the
cornerstones of the SM. The Higgs mechanism can not onlyagxfie source of Electroweak
Symmetry Breaking (EWSB) but also the generation of eleargrgarticle masses.

For Higgs boson masses up to 766V the dominant production process in the Standard Model
is gluon-gluon fusioryg — H via a virtual top quark loop. Higher mass values may also
be realized in extensions of the Beyond Standard Modg), Supersymmetry [100]. In the
following we will re-calculate QCD radiative corrections@(a?) to Higgs boson production in
hadronic collisions using both the Catani-Seymour and Nager dipoles. These include the
one-loop virtual contributions (Fig. 3.16) to the lowestler procesgg — H as well as real
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Relative difference between Analytic resultsand NS: (0 - Oyg) / Op
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Figure 3.13: Analytic result vs Nagy-Soper scheme.
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Figure 3.14: Analytic result vs Catani-Seymour scheme.
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Relative difference: analytical and numerical NS(Real): (0,4 - 0y )/ 0p
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Figure 3.15: Nagy-Soper scheme: a comparison of analdmméinumerical results for the real
subtracted cross section.

gluon emissions (Fig. 3.17)
99—~ 9H, q9—qH, q7—gH (3.47)

The corrections increase the LO cross section by approelgn&0 %. This correction is
larger than the corresponding correction to the Drell-Yaocpss. This is related to the inte-
ger/fractional colour charges of gluons/quarks. The ldvaeeder cross section has been available
for some time [44-47],

2 272
of My

6olgg — H) = ?325602 |AP” 6 (8 — M) (3.48)
where
2
AP = D or 0+ (1=7) f(r)
q
2
T, = Z%{q, v? = 42@ = ﬂlc:F = (246 GeV)? (3.49)
and

flrg) = (3.50)
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¥
VAYAY,
AAY

Figure 3.16: Generic diagrams for the Higgs production wogtgluon collisiongjg — H at
LO and its one loop virtual corrections.

q
Figure 3.17: Generic diagrams for real corrections— gH, qg — ¢H andqq — gH.
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The Lagrangian ofig H coupling has a closed form

Qs 4 y H
with
In(1+2) = —Z% (3.52)
n=1

Wherer}V is the gluon field strength tensor. Eq. (3.51) is very conmetiior simple calculations,
but for gg + jets production it only holds in the limit that all jet momardare much smaller than
top quark mass. It also becomes problematic ingihe~ H H or g9 — H H H processes close
to threshold, where the momenta of slow-moving Higgs boseas to an additional scale in the

process.
In the limit that the top quark mass is infinitely large,— oo, A — 2 and

2 272
o My

T 57602
In this thesis we will consider only heavy quark limit (Figl18, Fig. 3.19 and Fig. 3.20). When
the momentum transfer to the Higgs boson is small, or eqemil in the limit whereMq, >
My, the cross section 10 (a?) can be obtained from the effective Lagrangian [48-50]

60(gg — H) — § (58— Mp) (3.53)

Qs

Lo =
ef 127v

HG,, GY (3.54)

The full NLO QCD cross section contains

/ do™NO = / dogqsgm + / Aoy sqm + / doggsgrr + / do" (3.55)

In the following we will discuss each subprocess and itsesponding dipoles. The NLO QCD
calculations have already been available in the literattoesome time [51-55].

3.3.1 The subprocesgqg — gH

Using the effective Lagrangian Eq. (3.54), the matrix eletrfer NLO real emission process
qq — gH in four dimensions is found to be
~ 16 a3 #2442
M(qq — gH)I* = — (3.56)

9 mo? 5

The cross section for this process is completely finite. Te and colour averages yield an
additional factor which equally/2 x 1/2 x 1/3 x 1/3 = 1/36. It is straightforward to integrate
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0 - -

Figure 3.18:9g — H: Heavy quark limit.
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Figure 3.19: Heavy quark limit fogg — gH, qg — qH andqq — gH.
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over the phase space to obtain the cross section.

1
olag—gH) = 5 [dPSi|Miag > gt

1 o M3, ’
R e

The two-particle phase space integration is given by

2
dPSy = L (1 — MH) Q2 (3.58)

32 72 s

provided that
5> M3, S =N s (3.59)

Here,n, andn, are the momentum fractions of the incoming partons. Thenpeier s is the
center of mass energy of the colliding partons, whils the center of mass energy of incoming
hadrons.

3.3.2 The subprocesgg — qH

Nagy-Soper dipoles

The matrix element for NLO real emission procegs— ¢H in four dimensions can be obtained
by crossing from that fogg — gH. We find
16 o §+a?

—qH)|? = == ~
(M(qg — qH)| 0 T ]

(3.60)

which has a singularity wheh— 0 (collinear singularity). The spin and colour averagesdyiel
an additional factott /2 x 1/2/(1 —¢) x 1/3 x 1/8 = 1/96/(1 — €). This singularity can be
regularized by subtracting the dipole (defined in Sectidn &hich, in terms of the Mandelstam
variables, is given by

Dy = —

qaq9

S

§% 4+ 42
AN\ 2
u

3.61
(8 +a) (3-61

Hence we obtain

4T ay 1 (a2 &+a> 1 (@ (+a) [t+2(5+a
Cr Dygq |-/\/lLO|2 = T 82 R Ty 82 ( )A[ N 2( )]
2 54 \ 7o t 54 \mv (§+ )
(3.62)
where the lowest-order matrix element is given by
2 M 1
Miof? = ——H (3.63)

5767202 (1 —€)
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The subtracted cross section is

1

47 oy
olag i) = g [ aPs.{IMag > 4t - 5 oDy, Mool
NS

1 ol M? 5
= ) (1-—H Mp+5+45n | — 3.64
1728 5 (7r21)2) ( ; ) (3 grsTas H(M};)) (3.69)

The collinear singularity appearing in-parton phase spaces will be absorbed into PDFs when
we combine the integrated splitting function with the aa#far counter term Eq. (2.14).

47 oy .
/ daf%(xpa,pb){ 5 Cr i’ / dc, vﬁqg} + / do Sy (pa, Dy, 117)
1 1

1 (3.65)
= [ o [aotiapam) @ (Kem) + Pl
0 1
where
A 1 2?2 —2(1 — l‘)
K(zp,) = %T(l—e) {[ . —xlnx} Cr+2In(1 — x)Pyy(x)
Ay
qu(x) In <2$pa m)}
oy s 1 4
P(z, pp) or (1 — >qu(x)ln< 12 )
1+ (1 —x)? 4
Pyq(x) = Cr (:1: 7) ; Cr = 3 (3.66)

Here P,,(x) denotes the standard Altarelli-Parisi splitting function

The collinear integrated splitting function is given in 8en 2.5. It is worth mentioning that
no soft singularity is present in the procegs — ¢H. To this order, the appropriate scale at
which to calculaten, is not determined. We can take = «,(u?), wherey is an arbitrary
renormalization scale. The hadronic cross section is iedéent ofu to O(a?).

Catani-Seymour dipoles

Using Catani-Seymour’s scheme the dipole subtraction term

47 9 1 [ a2\ My+25(8— M%)
5 Cr Dygg [IMrol™ = "5 <7TU2) 7 (3.67)
and the subtracted cross section is given by
1 47 o
o(qg — qH) = 53 /dP52 {\M(qg — qH)> — 5 Cr Dyyq \ML0|2}
()

1 ol M3, ?
~ 576 <7T21)2) <1_ 5 ) (3.68)
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The K and P terms are

K(zpa) = ;IS ﬁ {CFx + 2In(1 —z) —Inz] Pyy(x) — Pyy(x)In <%)}
P(z, pp) = ;ﬁpgq(m) In <4Z§: ) (3.69)

3.3.3 The subprocesgg — gH

To calculate the QCD corrections to the inclusive productbthe Higgs boson fromg — H,
we also need the real contributions frgm — gH. The matrix element for NLO real emission
process in four dimensions is given by [56, 57]

3 32 M8 a4 54 ~4
M(gg = gH)P = o2 M T8 £1 F 0

— _ 3.70
v2 37 S$ta ( )

Collinear and soft singularities come fram- 0 or & — 0. The spin and colour averages yield
an additional factot /2/(1 —€) x 1/2/(1 —€) x 1/8 x 1/8 = 1/256/(1 — ¢)2.
Nagy-Soper dipoles

The subtracted dipole term contains bétthannel and:-channel contributions. Their explicit
expressions are defined in Section 2.4. We find

81 5 L[ (5+a)°+3 st . 16
o {(fﬂl)2 sl oG+ >2 (3+a) (i +a) } e (t+?32271)

It is straightforward to integrate over the phase space tainlthe subtracted cross section

47ras

1
otog > 9i) = 5 [ aPSa{IMlag — g~ 25 CaDyy Mol
NS
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_ ol 1_M,3 4@(2M§;—2M§§+§2)ln 3
384 5 \ w2 v2 B (M3 — 3)2 M3
+M}§+34M};§+§2 4 M% 5 }

35 MZ% =3

(3.72)
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Next we have to consider the-parton phase space contributions. All collinear and siégrals
can be looked up in Section 2.5. Using Eq. (2.16), we find

4o . .
/dof;(:tpa,pb) {m Cap? /de [vﬁgg - Ugik] +dma, Cap? /de AWab}
. _
4o

+/dafb(pa,pr) {m Ca MQE/dCP [vsgg — v;k] + 47 ag, Cy p* /de AWab}
1

+ /dagl;(paapba M%’)
1

1 Arp?\© (2 (11 2
= [ doB(p, I Qs doB Z - -z
/1 Uab(p 7pb) ® (6) + 92 F(l _ 6) [ Uab(paapb) ( ,u% ) (6) ( 6 CA 3 ny TR)

+/ d:c/dafb(a:pa,pb) ® [K*(xpa) + Pz, u7)] +  (a <> b) (3.73)
0 1

Here, we always keep in mind that the factg(1 — ¢) is already included in the soft terms. The
universal collinear counter terms are defined by Eq. (2. TH& standard Altarelli-Parisi splitting
function P, (z) is now
11 2
(3.74)

T 1—=z
1
(1_x)+—|—:1:( x) + .

ng(x) =2 CA (
The corresponding, K and P terms are given by

0= 5onri— (G ) (5~ +00)

K*(2pa) = 22 Cyr— {420 (M)+ —22(1 —2)lnz +4(1 — ) In(1 - x) (1 ”2)

2 AT(l—e) 1—=z x
AN x B 1—2 N 4 p?
I e B (e e A G
2y Qs 1 x . 11—z N 4 p?
Pl te) = 5 Capa =) {2<<1—x>+”“ I+ ) 1 (u% )} (3.79)

Catani-Seymour dipoles

Using Catani-Seymour’s scheme the dipole subtraction term

Ama ) 1 /e /1 1 GMY ML (35— M2)
*CusD = —— cl B 5(s8 — M? H H H
3 Ca D Mol = =53 <m2> (t +a) {3<3 R T
(3.76)
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Figure 3.20: Heavy quark limit for virtual corrections.

and the subtracted cross section is given by

47 oy

1
otag > 9tt) = 5 [ aPsa{|Mlag = g = 2 CaDy, Mol
S 2 cs
11 [ a? MEN?
T1152 <7T2v2) (1_ 5 ) (3.77)
Thel, K andP terms are
Qg 1 47T,u2 /2 2
I = - ~
(€) QWCAF(l—e) ( Q? ) (62 3 +O(E))
" _ag 1 In(l —x) 1—x
K<xpa)_27rCAF(1—e){4( T )++4( l+a2(l—x)+ . )ln(l x)
x 1—x 47y )
-2 —+2(l—2)+ In
(o 00 ) (gl
T 1—2z

Pla, ) = ;‘—;cAﬁ {2 (ﬁ b —2)+ 2 . ‘”) In (42%’;‘2)} (3.78)

3.3.4 One-loop virtual corrections

Now we compute the one-loop virtual matrix element (Fig.03.th the MS renormalization

scheme. In the heavy quark limit;,, — oo the Higgs boson couples to the trace of the energy
momentum tensor [48-50, 58, 59]

0= 0", = s, = ﬁ;zs) GA G+ (14 6) Myt t (3.79)



96 CHAPTER 3. APPLICATIONS

wheres,, is the scale current. Tha + §) term arises from the low energy theorem [53, 60-62].
Since the Higgs coupling to heavy fermionslig,, (1 + H/v) t t, the counterterm for the Higgs
Yukawa interaction is fixed in terms of the fermion mass andesanction renormalization. We
have) = 2 o, /7. Hence, in the heavy quark limit/;,, — co we have
H 5(98) A
Lef = — ———— G, G 3.80
T dug (i) o0

Since theggH coupling results from heavy quark loops, only processeh tvavy fermions
contribute to the5 function. The heavy fermion contribution to the Q@unction is [63, 64]

B(9s) _ N, O <1 LG E) (3.81)

9s  |heavy fermions 2m \3 T 12
Here, Ny denotes the number of heavy fermions. Therefore, to secalet o

Qg
127v

Eeff =

11 a.
HGA G (1 +— 0‘7) (3.82)

As a consequence of the non-abelian gauge invariance, tir@hgian Eq. (3.82) can not only
describe thed gg coupling, but also thé ggg and H gggg interactions (see Fig. 3.21). After a
tedious calculation the one-loop virtual matrix elemergiien by [51, 53]

Qg Arp®\ € 1 2
IMy[* = Mol ECA < Ml}i ) I'(1+e) <—€—2 + §7T2 + O(e)) X 2 (3.83)

Hence, we obtain

(2
Jaotimmer+ [a" = [adoamizes (3) e
1 1

The leftoverl/e pole can be regularized by performing charge renormatinatiThe charge
counterterm in théS renormalization scheme is (segy.[104, 106])

och = (42,) 60(99 — H) (3.85)
where
a, (4mp*\° A%
Z, = —— by I'(1 ald
g e<ufv)°(+€)<u2
1 2 as (Arp?\° 1 w2
= —(=Ccu—ZnTR) = (1 S 4+IntE
(Gor=5mm) iz (G) revo (Gomid).

6
11
bo = < CA e TR) (386)



3.3 Higgs production in gluon-gluon fusiopg — H 97

andn; is the number of light quarks. So we write for the charge revadization cross section

o 1 4 € 2 2 11 2
= > [ do5(p, — S 2L ) (O T 3.87
Och 27 T(1— 6)/1 Oab(Pa; Db) ( 1 ) ( c 1l 2 G “AT 3R ( )

Now if we combine real contributions, virtual contributgrcharge renormalization and collinear
counter terms the physical cross sectionggr— H is completely finite.

In summary, we see, that the pole structured/ (n) terms are equivalent between Catani-
Seymour’s scheme and Nagy-Soper’s scheme as they shouddfirilte terms ink and P are
shifted around due to different momentum mapping. Howekerfinal numerical/analytical
results are the same.

Result

In this subsection, we again summarize the results we obtgitg Nagy-Soper dipoles from
the different subprocesses of the Higgs production. Thdtseeshown here include one-particle
phase space cross sections, two-particle phase spacactatitcross sections, collinear coun-
terterms, virtual contributions, charge renormalizatasnwell as the effective Lagrangian cor-
rectior?.

o(g9 — H) = o(qq — gH)

+Ao(q9 — qH) +0%(q9 — qH) quark induced
+Ao(g99 — gH) +0%(g9 — gH) + 0" + 0ch + et gluon induced
(3.88)

where

_ 1 O‘i 3
Aoy =0lqq — gH) = o= (1-2)

w22
Aoy, = Ao(qg — qH) + ac(qg — qH)
2
Qs

= —00 {—1+22—%22—%ngq(z) [anT—an(l—z)}}

S
Aoy, = Ao(gg — gH) + (99 — gH) + 0" + ocn + et

g, {5(1—,2) {12—1+7r2+ (%CA—gnfTR) In <£)H
+%UO{12 K%L_Z [2—2(1—2)]111(1—2)}

11

3 Q
3 (1—-2)" —2P,(2)In 3 }

(3.89)

5See talks given by F.J. Petriello at PSI Zuoz Summerschatd:2tp: /Itpth.web.psi.ch/zu0z2010/index.htm
and Fourth Graduate School in Physics at Colliders (Tor2@@Q: http: //mww.ph.unito.it/dft/scucla09/



98 CHAPTER 3. APPLICATIONS

with
oo 11 R ozg MIQJ
Oef = 00— 0o =000(1 — 2), 00 = g and z = 3

Here,Aco(qg — qH) andAo(g9 — ¢gH) in Eq. (3.88) and Eq. (3.89) mean the sum of one-
particle and two-particle phase space contributions. W timal agreement with the results

in[51,53]. In the following sections we will show that thestdts of Nagy-Soper scheme, Catani-
Seymour scheme and literature [51, 53] for the progess> H are identical.

3.3.5 Proof: Nagy-Soper scheme and Catani-Seymour scheme
In this section, we prove that the results of Nagy-Sopermehand Catani-Seymour scheme for

the procesgg — H are equivalent. We only compare with real emission suldchtgrms and
K terms. The remaining and P terms are exactly the same in both schemes.

The subprocesyyg — gH

The real emission subtracted cross section including PDFSditani-Seymour scheme is given
by

L 11 : MEN
Res :/0 dn/o dij g(n, Q%) (77, Q*) 0(n 7 s — M) [—@ (W(;vz) (1_ SH) ]

Lodeo |11 of MZ\* . ) M2
:/THdT 7 | 152 <7T2U2) (1— F ) , TZ’I]’I],S:TS>MH,TH:T
where the differential parton luminosities are defined by
dL99
— = 9®9(nQ°)
-
dL91
— = 994(1Q) +q® (1, Q")
L - o )
T = 4®anQ) +qeq(1.QY) (3.90)
and the notatiom is given by
fog(r 2)—/1@f(z 2) (f 2) (3.91)
g ) - . 2 ) g Z?/’L .

The variables) and7 denote momentum fractions of the partons. Furthermosasnds are the
center-of-mass energies of partons and hadrons, resplgctithile ¢(¢) andg in Eq. (3.90) are
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PDFs of quark (antiquark) and gluon. The PDFs belong to thg-ftistance physics process
of the scattering and hence belong to the non-perturbasivie But their evolutions follow the
master equation of QCD: DGLAP equation, by which we can mtdtbw PDFs evolve from one
scale to another scale.

d
t—q, (2, 1) =
dta( )

ER ARG

wheret = 2 andP,, is the splitting function. More generally, the DGLAP equatin (2 n;+1)-
dimension in the flavour space (flavodrquarks, antiquarks and gluons) is

, 9 0 ( ¢z, ) B df quqg (57 (t>> FPlig (%,Ozs(t)> ( q;(&1) )
o\ g o w (£000) Poy (2000) )\ 9060
(3.93)
The real emission subtracted cross section including PBRSdgy-Soper scheme is given by

1 3 2 A 4 92 A ~9 N
acoe [ 1 M 452Mp; —2M
NSZ/dTL { A((;SQ)(l_ H){ : i A%SJrS)ln(SQ)
- dr 3845 \n%v § (M3z —3) M3,

Mg +34 M55 +5%  AMEs

- +

35 Mg — 5

DefineAK = K3 — K¢ and we found

1-— 1-—
AK“:&CA(—Q) T4 “Vinz+ (22 - °
27 1l—x T T
Convoluting former expression with PDFs and an additioma-dimensional integration yield

L dLs 6 ol M2 M2\? 3 M?2
AK® AK'= [ d - s i HY) __° (1_2ZH
/ +/ /THTdT 576(7r2v2)(§) (3) Mg( 3

S M?2 M?2 S
S (G [ i ] 3.95
(Mz( s)*gu—M@@)“M%}} (3.93)

Hence, it is straightforward to show thAtA K+ [ AK®+ Rcs— Rys = 0, where the symbolic
notation [ AK simply means the convolution with PDFs and an additionatdingensional
integration.

ﬁo%@w (3.02)

(3.94)

The subprocessyg — qH

The real emission subtracted cross section including PDFSditani-Seymour scheme is given

by
1 s M? 2
— s 1-—A .
SE )] e

Res = Z / £:q
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The real emission subtracted cross section including PDRYdgy-Soper scheme is given by

Ldrea 1 o’ M? §
R :E d s 1— 2 ) (3M%+5+45In| —
" / " [1728@@%2)( E )( e (MH))]

(3.97)

From the definition oA K = K-g — Ky it follows that

AKzﬁCFM(l—lnx)
2m x

Convolution with PDFs and an additional one-dimensionggration yield

Looqroe [ 1 4/ o M?2 5
AK = d — = s 1— =2 ) (14+In-— 3.98
Jor=S [ arf s () (-7 (o) o9

Hence, it is straightforward to show thAAK + Rcs — Rys = 0.

3.3.6 Proof: Catani-Seymour scheme and literature results
In this section, we show that the results of Catani-Seymohesie for the procesg) — H are
identical to literature results [51,53] and hence we comepderr proofs that CS, NS and literature

results agree with each other. Here, we only compare withelileemission partl” term andP
term; terms proportional td function are straightforward and hence we will not list thegds.

The subprocesyyg — gH

In the limit that the top quark mass is infinitely large, thetpa level cross section is given by

ol M% ) a?
5 S H)=—-2 0(5s—Mz) = 5 0 (l—2)=096 (1 — 3.99
5099 )= e g0 (3= Mp) = =25 0(1—2) =005 (1 - 2) (3.99)
with , ,
a M
= s and =1 3.100
70T 576w 02 T (3.100)
The real emission subtracted cross section is then
11 ol 3 Oy 11 3
H)=—— 5 1-— = —— (1-— 3.101

SHere we put a hat on cross sectigin order to indicate that we only work on parton level.
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Next we consider thé& term and the” term contributions. They can be written as

2
H

~

S

/O dx/ng(x) ® [K(z) + P(x)] x 2 = /0 dx [og M}, 6 (28 — M})] @ [K(z) + P(z)] x 2
M

= 00— [K(x)+ P(x)] x 2, with z=

— 2
= %O'Q {12 [x <M) —z[2—2(1—2)]In(1 —2z)+In(1 - x)} — x Pyy(x) anT}
s 1—=x n S

(3.102)
where we have added an extra term
0=—-6(1—x) <1_610A_§nfTR) Inx (3.103)
in Eq. (3.102) and we have also used the plus prescriptionah a way that
x <M) +In(l—2z) — (M) (3.104)
1—=z n 1—=z n

Here, the test function is simply the LO cross section. Cannigi Eq. (3.101) and Eq. (3.102),
we obtain Eq. (10) of [53].

The subprocessyg — qH

The real emission subtracted cross section is
olag— qH) = oy (~1+22—2?) (3.105)
T

The K term and theP term contributions are given by

[t [0 ) + )] = %o G seme nE -2 -]}
(3.106)

2

Here,x = z = % Combining Eq. (3.105) and Eq. (3.106), we obtain Eq. (11p8f.
S

3.4 Higgs decay:H — gg

A closely related problem to the proceggs — H at NLO is the QCD radiative corrections to
the gluonic decay modes of the Higgs boson. Two differenssions appear at NLO: either the
emission of an additional gluon or the splitting of one glilmio a ¢q pair.

H—ggg, H—gqq (3.107)
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for which we can test the final pieces of splitting processdabe final state using Nagy-Soper
dipoles:g — gg andg — ¢g. The lowest-order, real emissions and virtual diagramslaog/n in
Fig. 3.21 and Fig. 3.22. The NLO QCD calculations have alydrabn available in the literatures
for some time [53-55].

3.4.1 The subproces#l — gqq

We consider the heavy quark limit,, > My. Using again the effective Lagrangian shown in
Eq. (3.54), the lowest-order matrix element f8(Q)) — g(p1)g(p2), which includes a symmetry
factor1/2! for identical gluons in the final state, is given by

(1—¢) (3.108)

Here, we calculate id = 4 — 2 e dimensions. The matrix element fék(Q) — g(p1)q(p2)G(p3)
is

16 ozf;f’ (p1+ p2)* + (p1 +p3)*

M(H = gqq)|” = —
| M( 999)| 0 o7 (02 + 3)°
_ 16 ol o (11 + 29 — 1) + (1 — 25)? (3.109)
9 mo? (1 —mq)
wherez, x, andxs are defined by
2%, - O X .
ry = pkA Q) Pk — D1, QQZQZZM]%I
QQ
2 - G )
Ty = pé?QQ, De — D2
2p; - Q .
r3 = é?Q s Dj — P3 (3110)

The collinear singularity arises from — 1. Introducing the dipol®,;, defined in Section 2.4,
we find

47 oy
TTRngq Mool* x 2

47 ay 2 5, - O D - 5. O Py - 25, Dy D, -
_ 71'204 T [Myof? —— {pz Qpj-pe+Pi-Qbe-pe QP Peby pe} w
(De - D) pe-Q (e~ Q)
:§oz‘:’ Ay 1 To (1 + 20— 1)+ (2— 21 — 29) (1 — 22)
9mv?2 ° 11— x

—2 (12 (1= £U22) (@1 72— 1) } + (29 > x3) (3.111)

Ty
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Here, the dot products; - p, andp, - p, are related ta\, =, y anda, via

. 1 1-X+y
B S AN e | )
De - P A(?/ %  ( +y)) pe-Q
. 1 1-X+y
Pe-pe = ¥ <y—72 (1—x)(1+y)) P Q (3.112)
ag

where), z, y anda, are defined in Section 2.3 and Section 2.4. It is worth memtgthat the
second termin Eqg. (3.111) is exactly the same as the first srmve can just simply multiply by
a factor of 2 in the end. Integrating over the three partitlage space and summing over final
state quark flavours yields the subtracted decay rate

1 47 oy
dl'(H — gqq) = m/dps?)Z (|M(H — 9q9)|” - 5 Tr Dygz | Mrol” x 2)
q
M3 2
_GrMya (jnf) as (3.113)
36 /273 18 T

Next we use the results of the integrated splitting functifor them-parton phase space contri-
butions (Section 2.5), which in the casegqf; splitting only involves collinear integral. Hence,
the integratedqq splitting function, which sums over final state quark flawgus given by

Ao « drp® \© 1 2 16
T e e dCpt %2 = 27 : 2 2) %2
2(1—e) TH ;/ Glgag X2 = 50 R(ng.Q) r(1—e)"f( 3e 9)

(3.114)

3.4.2 The subproces# — ggg

The matrix element fof (Q) — g(p1)g(p2)g(ps), which includes a symmetry factay'3! for
identical gluons in the final state, is given by

IM(H — gg9)|*

_ aj 321 [(;m +p2)% + (1 +3)* + (P2 +13)Y + (01 + p2)* + (p1 +p3)° + (P2 + p3)°®
mv? 3 3! (1 + p2)2(p1 + p3)?(p2 + ps3)?
a? 321 (25%.s 25%,.5 252,58 25198 25198 25138
52__ 123212 + 123°13 + 12323 + 12213 + 12923 + 13923
Tv? 3 3!

+ 88123}
(3.115)

513523 512523 512513 523 513 S12

where the first three terms correspond to soft singulafititsrference terms) and the next three
terms correspond to collinear singularities. Since theeetlaree identical gluons in the final
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Figure 3.21: Decays of the Higgs boson: LO diagramsdnéd> ggg, H — gqg diagrams.
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Figure 3.22: Decays of the Higgs bosfin— gg : virtual diagrams.
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state, the labelling of the gluon, denoted with(j = 1,2, 3), is arbitrary. So we have to take alll
combinations into account:

A: p; =p; — emitted gluon p2/p3 — emitter/spectator(or spectatofemitten
B: p; = p, — emitted gluon p1/p3 — emitter/spectatoror spectatofemitter
C: p; =ps — emitted gluon p1/p2 — emitter/spectatoror spectatofemitter

so the dipoles corresponding to soft part can be writtenrag ttifferent configurationd, B, C'

47 o 1
D, = ——Ca Mol 5 (v2(A) +v3(B) +v(C)) x 2
_ ai’ %l 28%23512 i 23%23513 i 23%23523 (3.116)
7T’U2 3 3! 513523 S12523 512513 .
where
A Dy - DDy - 9
2 om iy peprpe O - (6 F=1,2,3)3.117)

(ﬁj'ﬁkﬁé‘Q+ﬁé‘ﬁjﬁk‘Q) Pe - Dj

and factor of2 in Eq. (3.116) is present due to the fact that emitters andtafmes are inter-
changeable. The dipole corresponding to collinear part is

47 o 1
D, = 5 C4 |./\/lLO|2 3 (vf(A) +v§(B) +U?(C)) X 2
. R 2
4 Ozg A4 1 4512813 4523@2 2823@2
= — 5 Q _ — _
3mv 3 | sa3(s12 + s13) (s12 + S23) (513 + S23) (s12 + S23) (513 + S23)
_ A ) ) .
4812823 4513@2 2813@2
s13(S12 + S23) (s12 + s13)(s13 + S23) _(512 + s13)(s13 + 523)_
- A _ R ) 2:
4 4 2 2 2
513523 _ 9 _ 5120 512Q) (3.118)
s12(s13 + S23) (s12 + s23) (812 + S13) _(512 + S93)(S12 + 513)_
where
Uc2 = f)ggg - Uzik
(B Q=P p) (P Q—pepe) [, B 0@ ( b peQ’ )
= 2 . - — - - + | = ~
(pZ'Q) Pe - Dy pZ'ij'Q pZ'ij'Q

(6,j,k=1,2,3) (3.119)
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Here, factor of 2 is present for the same reason as explaim@¢ka Integrating over the three
particle phase space yields the subtracted decay rate

dU'(H — gg9) = ﬁ/dPSs (IM(H = gg9)" — D. — D)
_ Gr M3 a2 (—214 + 27%2) as
36 /2 73 24
Next we have to consider the-parton phase space contributions, the integrated syjittinc-

tions in the case ofgg splitting involve both the collinear and soft integralsgsgection 2.5)
which are given by

4o . B 5
(ﬁ Capt’ /dgp [Upgg — Vai] + 47 Cap® /dgpAW) X 2

o 4\ 1 2 11 163 7
_ % _ Sy e 3.121
o A(gpé.Q) T(1—e) (e2+3e+ 9 4”) (3.121)
Here, thel /(1 — ¢) is already included in the soft term. The virtual matrix etamfor H — gg

in the MS scheme is given in Eq. (3.83). Now, if we combine the reailssinn contributions
H — gqq, H — ggg and virtual contribution, thé/¢* pole is cancelled

(3.120)

™

dI'(H = gg(g) + 9qq)

1
= 737y | 75 {'W > [ d6,D(aa) |Msof* + [ d¢, Dlgag) |MLO\2}
+dl'(H — ggg) + dU(H — gqq)

4\ € 1 Qg 2 73 7 Qg
=Tro ( 2 ) 0= (32) 6o + 10 <Z—6”f) (5) (3.122)

F

and the leftover /e pole has to be renormalized by performing charge renorat#iz. Here,
D(gqq) andD(ggg) are symbolic notations for splitting functions with appriagpe prefactor
neglected, and their explicit expressions are given in Bd.14) and Eqg. (3.121). The charge
counterterm in théS renormalization scheme is

Len = (4 Zg) 1—‘LO(I{ - gg) (3123)

where

Qs P 1 11 2 1
andn; is the number of light quarks. Hence

1 A\ € [ 1 Qg 2
Fenh = —T'ro 5 <—> Bo——Tro (—> fo In M—I; (3.125)
L(l—e) \ un T € T 1
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If we treat everything equivalently in the effective theame need to add the effective Lagrangian
correction term, which is given By

11
[ (3.126)
T 2

Result

Combining all contributions to the total decay rate f6r— gg at NLO, the result is completely
finite

I'ro +T(H — gg(g9) + 99q) + Cen
11 2 2 M?
= FLO [1 + |:<% - an) + <€ CA — 5Ny TR) In M—2:| w] (3127)

4 6 3 12
where C s
M3 «

Dro(H — = TF T Hs 3.128

ro( 99) 36 V2 ( )

The result shown here is in agreement with [53].

’See talks given by F.J. Petriello at PSI Zuoz Summerschatd:2tp: /Itpth.web.psi.ch/zu0z2010/index.htm
and Fourth Graduate School in Physics at Colliders (Tor2@@Q: http: //mww.ph.unito.it/dft/scucla09/
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Conclusions

In this thesis we have proposed an alternative subtractiethod at NLO QCD calculations.
The traditional way of regularizing the infrared singuti@s in both one-loop diagrams and real
radiation corrections in the context of dimensional regaéion scheme is straightforward for
the analytic cancellation of the respective divergencesvéver, numerical implementations for
multi-particle processes prove to be challenging.

The subtraction method provides a way of achieving this. b& of subtraction formalism
is to extract infrared divergences from real radiation malements in order to combine them
with the one-loop virtual contributions. The key observatior the subtraction scheme is that a
(m + 1)-parton matrix element can be factorized intmgparton matrix element multiplied by
the generalised splitting functions (which contain theysiarity structure of thé¢m + 1)-parton
matrix element) in the soft and collinear limits based orftiogorization theorems (see Eq. (4.1)).
An important message is that the splitting functions ar@ensial and process independent; this
means we calculate them once and for all. The symbolic egjmess

Mpa({PYmi1) = ve({Prmir) - Mm({phm) (4.1)

In this new scheme, dipoles:(|v,|*) are based on the momentum mappings and on the splitting
functions derived from an improved parton shower formolatvith quantum interference [28].
Momentum mappings must guarantee total energy momentusenation as well as the on-
shell condition for all external partons both before andratie mappings. One important feature
of our scheme is that we use a global momentum mapping in whielmapping takes all the
partons into account at once when going from + 1)- to m-particle phase space, instead of
separately summing over all possible emitter/spectatws fike Catani-Seymour scheme. As

a result, the number of dipole terms is greatly smaller thenstandard subtraction schemes.
Another essential point of our formalism is that we split ttedlinear and soft (based on the
eikonal approximation) splitting functions according tq.E2.160) in such a way that the two
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= ——eikonal —eikonal —= . .
termsW, — W, andW, — — Wy, are positive and hence we can use these splitting func-

tions as dipole subtraction terms to construct a parton shdonte Carlo program. The use
of the shower splitting functions as dipoles also signifiafacilitates the matching of NLO
calculations with the corresponding parton shower.

We have also achieved the analytical integrations of thetisgl functions over an unresolved
one parton integration measure, obtaining the correcesaficollinear singularities inthat are
necessary to cancel the soft divergences in the virtuataiag.

To establish our formalism we have investigated some sirppdeesses at colliders with up
to two massive/massless particles in the final state. We pessented all subtraction terms
and their integrated splitting functions and have appliedszcheme to a variety of well-known
processes at NLO, showing that the singular behavioursefthower splitting functions in-
deed match the behaviours of real radiation matrix elemamtisone-loop contributions in the
soft and collinear limits. In more detailwe have investigated singl& production at hadron
colliders (initial-stateyq(z)g andgqq collinear splittings, interference between initial s&teli-
jet production at lepton colliders (final-stajeg collinear splittings, interference between final
states), Higgs production at hadron colliders (initi@tsyqg(z) andggg collinear splittings,
interference between initial states), Higgs decay to twogs (final-statgqg andggg collinear
splittings, interference between final states). The dsoas about interference between initial
and final states or interference between final and initiaéstean be found in [87] in which we
have used deep-inelastic scattering (DIS) process. lraabs; we have reproduced the results
from the literature and have shown that our implementatgnees with results obtained using
the Catani-Seymour scheme.

In this thesis, we have demonstrated that the global momentappings combined with the
shower splitting functions as dipoles indeed can be usdueasubtraction terms for some simple
processes; the advantages of the two features will becopereqt when applying to more in-
volved multi-parton processes at NLO or matching the NL@ulaltions with the corresponding
improved parton showet Due to the different momentum mapping prescription, olneste
leads to more complicated finite parts of the integratedtspiifunctions when considering pro-
cesses with three or more final-state partons, and an exafible general case( +# 1) for the
final-state splitting functioy — ¢ ¢ has been presented in [86]. Nevertheless all these finite
parts can be integrated numerically in the respective MGaté program. A generic application
to a more non-trivial scattering process is still work ingmess. However, we are confident that
we will obtain some interesting results for multi-partorefistates using our new scheme.

lc.f. Table 4.1
2We note that the work [89] is to implement the new scheme iméoHelac Event Generator [90].
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Splitting function | Process

Initial state:

qq(x)g singleW production, DIS

9qq singleW production

qq9(x) Higgs production

999 Higgs production

interference between initial states singleW production, Higgs production

interference between initial and final state®IS

Final state:

qq9 Dijet production, DIS

999 Higgs decay

999 Higgs decay

interference between final states Dijet production, Higgs decay

interference between final and initial state®IS

Table 4.1: List of all splitting functions presented in Ctex®2 and test processes used for the
scheme validation in Chapter 3 and [87].
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Appendix

5.1 Useful mathematical formulae

Here are some formulae that | find useful from time to time.

5.1.1 Gamma function, Beta function and Hypergeometric funtion
Gamma function

We make frequent use of the Eulesfunction, which can be defined by the convergent integral
I['(z) = / dtt*te ™, Re{z} >0 (5.1)
0

Integration by parts can confirm the identity
IF'1+2) = 2T(2) (5.2)
Hence, for positive, integer values gfwe have
['(z) = (z—1)! (5.3)

Eq. (5.2) can also be used to shift the argument and defirié-thiection wherRe{z} < 0. This
shows that there are simple polesat 0,—1, —2,---. The following expansion is also useful
2

1
['l14+¢€ =1—vype+ (% + 5%%3) e+ O(e) (5.4)

whereygy = 0.577215664 90153 - - - is the Euler-Mascheroni constant.
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Beta function

We will also sometimes use thiefunction integral, which is defined by

1+m)T(1+n)
['(2+m+n)

B(l1+m,14+n) = /1 dea™ (1 —2z)" = I , Re{m,n} > —1 (5.5)
0

Hypergeometric function ,F, (a1, -+, ap; by, -+, by x)

Next we list a couple of useful relations for the Hypergeameétinctions; further details can be
found in [119, 120].

qu(afla"' y Ak —1, Qfy Afet-1, " " * 7a'p;bla"' 7bm—1aafk7bm+17"' 7bq;x)

- p—qu—l(afla Ty A1, A1, " 7t 7a'p;bla' T 7bm—17bm+17 e 7bq;x) (56)

1
/ g (1— :15)"_1 oFylar, -+ ay; by, -+ by at)
0
['(m)T(n)

= mpHFqH(m,al,--- Jap;m 4 n, by, - by t) (5.7)

F(b) 1 as—1 b—as—1 L
[(as)0(b — a2)/0 dtt (1 —1)" 7 (1 - at)
LT — a1 — as)

2F1(a1,a2;b;:c) =

F b 1) = 5.8
2 1(a17a27b7 ) F(b—al)r(b—ag) ( )
5.1.2 Dilogarithm function
The dilogarithm function can be defined by the sum
. 2t 2228 2\ 2"
L|2<Z):§+?—|—?+...: ﬁ (59)
n=1
or the integral
oIn(1 - * In(1—
Lis(2) = —/ dtu:—/ PP Gl (5.10)
0 t 0 t
The derivative of the dilogarithm function is given by
4 Lis(2) = — In(1 = 2) (5.11)

dz z
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The major functional equations for the dilogarithm funaotare given by

Lio(1 —2) = —Lis(z) —In(2) In(1 — 2) + {(2)

Li2<— _ —Liz(z)—%lnz(—z)—g@)
Li2< iz
i
Li2<—1_z

L|2(Z

IS

N—— N

— Lis(2) + In(1 — 2) In(—2) — % (1 2) + C(2)

= Lig(2) +1In(z) In(1 — 2) — % In?(2) — ¢(2)

N W

= —Liy(z) — % In?(1 — 2)

[\

) = 2 [Liag(2) + Lis(—2)] (5.12)

where the Riemann zeta function is defined by

o0

=3+ (5.13)

k=1
The values of (n) for small positive integer values afare

2

(2) = %
¢(3) = 1.202056 90315959 - -
7.(.4
‘W =5 (5.14)

5.1.3 The volume element ind dimensions

We consider general formula of the volume element camensions
dVy = d%r = r*1drdQ,;  (Euclidean spage (5.15)

where the area element in Euclidean space is

d—1

T T 27
de:Hsmd*‘f@de@ = / dfysin? 26, --- / dBy_osinby o / db, 4
—1 0 0 0
27 d—2 ™
:/ d¢H/ df,sin‘6, where 0€l0,7], ¢€0,2m] (5.16)
0 7—1 JO

and the following relations hold

" -y r(%) o/ -y w1
/o dﬁsm@:ﬁr(%), ﬂ/o d , sin @zm (5.17)
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d | T@d/2) | [d
1 VT 2
2 1 2
3 \V/7/2 4
4 1 2 72

Table 5.1: The values df(d/2) andd ;.

The relation betweed 2,_; andd €2,;_, is given by

T 1 _
dQy_1 =dQy_s / df sin? 36 = deg/ dcosf (1 — cos? 9)%
0 ~1
27 d—3 T
:/ d¢H/ d0,sin’ 6, (5.18)
0 v21 Jo

Finally, we give the values df(d/2) andd ), ford = 1,--- ,4in Table 5.1.

5.2 Integration measures

In this subsection we will first derive the integration measuor both the initial state and final
state splittings. In order to extract the correct pole $tmes we have to define good parametriza-
tions of the kinematics. Then we will also list master intdgiand general formulae that are used
to extract singularities and finite terms in Section 2.5.

5.2.1 Final state splitting
Integration measure: a, = 1

With the kinematics as defined in Section 2.4.3, we obtainrttegration measure

_ (Qpé'Q)l_e (47T)6 ymex —e y1-2¢ ! —€ dd_QQ
W= g r(1_e)/0 dyy A /O dz [z (1~ 2)] /QH (5.19)

for the integration inl = 4 — 2 e dimensions. Here,

Ymax = (\/a_é_vaz_l)QIQCLé_l_Q ag(ag — 1) (5.20)
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For the integration of the interference terms, we need tgiden the additional azimuthal angle
of the emitted particle. Hence we keep the second angukgration,

1 _ (1+42¢)
dQg_o = dQ4_3 / dcos (1 — cos? gp) 2

1

21—2%%76 /1 (142¢) 9 /2
= — [ DW=V, /de = (5.21)

wherey is now the azimuthal angle of the emitted parton. So the rategn measure becomes

_ (QPZ'Q)lie 7T_g+e ymax —e y1-2¢ ! —€ ! / / / 7<1+T26)
d¢, = o )/0 dyy A / dz [z (1 = 2)] / dv' [v" (1 —v")]

— € 0 0
(5.22)
In the integration, we will use’ as a variable; however, the splitting functions are wrifiten
terms ofv = v[Z(y), 2z, V']

N[

v=(4-2)z1-2)z21-2)]24+2+2—22% (5.23)

Note that Eq. (5.23) has been derived in a specific frame wdeclerally does not coincide with
the frame following in the inverse transform from to (m + 1)-particle phase space. In general,
v is defined in Eq. (2.111),e. o
v — Pj - Pk
P Py
wherep,. needs to be calculated using the Lorentz transformation

Py = MK, K)", pf

We now consider the special case in whigh= 1 ( which corresponds td = 1 — y). We start
with the integral

I = /1 dyy (1 —y) > /1 dz [z(1—2)]° (5.24)
We now make a change of v;riable such that 0
r=y+z(1-y) (5.25)
thus we have . )
I = /0 dyy=* /y de [(x —y) (1 —2)] ¢ (5.26)

We now change the integration order

1 1 1 @
/ dy / de —> / dx / dy
0 y 0 0
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and obtain ) i
1= [ o [ gy i@-p o) (5.27)
0 0
We now make a change of variable once again
Yy
u=2
Xz
finally leads to
1 1
I = / do x' 72 (1 - az)_g/ duu™ (1 —u)"" (5.28)
0 0
Now the integration measure becomes
I, - I\ 1—e —54¢ 1 1 1 429
d¢, = (2pe- Q) 7T12 / duu™° (1 —u)_e/ dx:pl_Qe(l—x)_e/ dv' [v' (1 —")] e
16 T (5 — E) 0 0 0
(5.29)

Hereu andz can be expressed in terms of momenta, we have

P Q De - Dj
_  u=p 5.30
Ype- @ fypj'Q ( )

Fora, = 1 case we have = 1. It follows immediately thatr is purely soft variable and
u is purely collinear variable. Note that the collinear ingggns do not depend om (or the
azimuthal angler), while the soft integrations do depend @ror .

T

Integration measure: general case, # 1

Again, we start with the integral

Ymax 1
I = / dyy N / dz [z (1 —2)]° (5.31)
0 0
The first variable transformation is defined via
= T %0 (5.32)
1-— Zo
leading to
Ymax 1
r= [Ty [ do (- a) - o) (5.33)
0 o
Next we use the rescaling parametatefined as
2 4z
e = £/ Gg — Q2
146 = T ()2 > 1 (5.34)

2z
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and redefine
y=0ou (5.35)

We then obtain ) )
I= / du ue/ dr 6y 7% (1 —2) (2 — 20)] € (5.36)
0 0
Finally the complete integration measure is

(2 Py - Q)lfe ﬂ.—%-‘rs
16 I'(3—¢

2

d¢, =

142¢

X /01 duu* /01 dr 6y 2 (1 — 2) (x — 20)] € /01 dv' [v' (1 —o")]” E (5.37)

Fora, = 1 we of course obtain the result in the last subsection.

5.2.2 Initial state splitting

Integration measure

For the initial state splitting, the integration measurgiien by

dp;
(2m)

o ddﬁj + 2y AMa
— = p:) —— 5.38

d¢, = D

270" 7%)

wherea = m,s anda = 7, s —2pg4 - p;. The factora/& is just the derivatives), /dn, calculated
from the relationk? = K2. Using the identity

dpot(p?) = % (p°)4=3 dp° dQ0g_ d cos 6 (1 — cos? 8) = (5.39)
We then obtain
_ (amps)' "t ] Y oy N\,
dop = dedyr =S U0 T 1=y ) | 20—
< 0(z (1 —x))0(y) 0 <1 - ! x) (5.40)

where we calculated id = 4 — 2 e dimensions. However, note that the change of variables in

7, corresponds to
1 1 T
/ dn, = —/ dna (5.41)
0 L Jo
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so we have to impose the conditian > 7,; alternatively, we can not make the change of
variables and keef), = 7,/z as the integration variable; this is the approach followef2P].
For comparison, we will instead use

d¢, — d¢, % O(x —n,) (5.42)

For the integration of the interference terms, we need tp kiee additional azimuthal angle
of the emitted particle id(2;_»; see Eq. (5.21). Using the variables as defined in Sectian,2.4
we obtain for the integration measure including the addal@angle,

l—e,.e—1 —€
de — d$ dy dUl (?70« b 8) x (1 _ $)_26 [ Y <1 _ Yy ):|

(47)2 1—z l—x
) L
L) T
< 0(z (1 —x))0(y) 0 <1 - ! x) oV (1 — ")) (5.43)

In the integration, we will use’ as a variable; however, the splitting functions are wriften
terms ofv = v(z,y/,v')

V= M =D (1—y)Z(1 -2+ y +5—2yZ (5.44)

hence we have

Umax = y/ +ZzZ- 23//5 +2 [3//(1 - y')Z(l - 5)]
Vmin = Y +2-2y2-2[y'(1-y")z(1 - 2)]

NI N

(5.45)

Note, however, that we can only use Eq. (5.44) in the sindutais (r — 1 ory’ — 0) where
the dependence an disappears; for the finite parts, we need to use the origefaiition given
by Eq. (2.135)
_ MasPiPe 1 Pi-Pe
20, Qp;-Q  1—T pp-Q
wherep,. needs to be calculated using the Lorentz transformation

P = Ma,y)'opl = MK K", pp (5.46)

In the limitsz — 1 ory — 0, we obtainp, — p,; andp, is parametrized according to
Sudhakov parametrizatioe.(g.[109]). The change of variables defined in Section 2.4.4 ydwa
requires that the integration overis performed before the integration ovein Eq. (5.43). It is
worth mentioning that is not integrated out and therefore still depends:pff andv’ through
the Lorentz transformation gf,. Also note that the collinear integrations do not depend’on
(or the azimuthal angle), while the soft integrations do depend @ror ¢.
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5.2.3 Master integrals

Interference between initial and final states

The general master integrals appearing in Section 2.5.4 are

1d?/ 20 _ —In
/0 ?{\/43/2(1—20)—1-,28 1}_1 w0 (5.47)
and
[\a (-0
0 (4u=2)y(1-y)z(1-2)>+2y+2-2yz
" VIFI =1 2 :
= 1—2¢ln + O(e?)
VA (1 — z) + 22 2 (23/ + 2= 2yz 4+ /Ay2(1 — 2) + 22> (
(5.48)

Interference between final (final and initial) states

The general master integrals appearing in Section 2.5.5 are

/1du ! In (1 + 4ag(1 + ag)u®)
0 U /1+4ao(1+ ag)u? ’ ’

= =[5 I+ 200) I 20 )] + Lis (<1 200) + L (200)]  (549)
1d Infv(1 —v)] 27 Vbva +b

v = In
0 Vol —v)(av +b)  VbVa+b (\/m+\/l_)>2

! Inu 1., 2 1. (V1I+b-1 1,
dy ———=-In"{ ——— ) + =Lisg | ——— | — = In“¢
e uv1+bu? 2 vV1i+b+1 2 vV1i+b+1 2
Lol 1
/duﬂz——lrfe (5.50)
. U 2
and
1d In (1 + az?)
p 2T ar)
0 V1 + ax?
2 1 . .
_— {7;—2+§ In(a + 1) In [\/a+1+1] + Li, (—\/a+1> + Liy (1—\/a+1>} (5.51)

Here,e in EQ. (5.50) is just an infinitesimal parameter.
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5.2.4 Pole extractions
Single poles

For a function having a single pole,g.z = 0, we use

/ a0+ a) = / a9 [g(a) — () - 2O (5.52)

€

whereg(x) is nonsingular function at = 0. For a general case where we integrate only up to
Tmax INStead ofl, the equation above becomes

/ " a0+ (a) = / a0 [g(2) — g(0) - L2 1 g(0) nema (653)
0 0 €

Double poles

In order to extract the double polesg.x = 0 andy = 0, we consider the following integral

1 1 1 1
0 0

whereg(z, y) is nonsingular function at = 0 andy = 0. We use Eqg. (5.52) twice and obtain
the general formula

1 1 1 1
1= [ do [ dy s lo(e) = 9(0.0) = 9(0,3) + 9(0,0)]
1
1

- / de —- [o(.0) — (0.0)] - - / dyyief 500.9) ~ (0,0 + 0

€ €

(5.55)

5.3 Colour algebra

Notations

In this section we will give a brief descriptions about thenipalations of colour algebra;

we will follow Catani-Seymour’s notations very closely. tdewve will only consider the pro-

cesses that involve the final state QCD partons; in the cagpeooksses that involve the ini-
tial state QCD partons please refer to [22]. First, it will d@nvenient to introduce a basis
{le1-cpm > ® | s1---s, >} incolour+ helicity space in such a way that

M%---Cm,sr--sm(pl’... 7pm) — {<Cl"'cm| ® <Sl"'8m ‘} ‘1’ ’m >m (556)
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where| 1,---,m >, is a vector in colour+ helicity space;{c,---¢,,} and{s;---s,} are
colour indices (for gluons the values take- - N? — 1, while the values také- - - N for quarks
or antiquarks) and spin indices (the values take-= 1,--- d — 2 for gluons ands = 1,2
for massless fermions), respectively. According to thisation, the matrix element squared
(summed over final-state colours and spins) can be written as

|Mm|2:m< 1’...’m|1’...’m>m (5.57)
It is useful to define the square of colour-correlated tnegldudes according to

|M£7%k‘2:m< 177m|TZTk‘177m>m

= MBI ()] (1) (T€) g M )

(5.58)

B; A; B Ay
where we have associated a colour chargwith the emission of a gluon from each parton
Here we follow the notations in Chapter 1 whéf®') , . = —i f*7“ (colour-charge matrix in
the adjoint representation) if the emitting partds a gluon and’/; = ¢4 (colour-charge matrix

in the fundamental representation) if the emitting pait@a quark; if the emitting partonis a
antiquark, then we havg; = t4 = —t{}). Itis straightforward to check that the colour-charge

algebra obeys

T,-T,=T,-T, ifitj T, =¢C (5.59)
where(C; is the Casimir operator.e., C; = Cr = (N? — 1)/(2 N) if i is a quark or antiquark
andC; = C4 = N if iis a gluon. Each vectdrl, - -- ;m >,, is a colour-singlet state, therefore
colour conservation is .

Tl m>p=0 (5.60)
=1

Examples

In this subsection we will practice with the simplest casiesotour algebra. For the cases with
two or three partons, the colour algebra can be computediarfaed form. First, we consider
the case with two partons. Using colour conservation @tative have

T, -Tel1,2>= —T,- Ty [1,2>= -T7|1,2>= —-T3[1,2 > (5.61)

so that all the charge operatdr3?, T2, —T; - T, } are factorizable in terms of the Casimir oper-
ator. Now we consider the case with three partons, usingicalenservation, we have

3 2
0= <ZT> 11,2,3>= (TT+T3+T534+2T, - To+2T1 - T3 +2T, - T3) [1,2,3 >
i=1
(5.62)
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and
(Ty-Te+T,1-T3) |1,2,3>= —T?|1,2,3 > (5.63)

Combining these two equations we obtain
2T, -T3]1,2,3>= (T} - T3 —T3) |1,2,3 > (5.64)

and similarly for T, - Tz and T, - T,. Hence, all the charge operators are factorizable in tefms o
linear combinations of the Casimir operatéts C, andCs.

The colour algebra does not factorize any longer when tfa moimbern of partons isn > 4,
e.g., if n = 4 we have

T21,2,3,4>= C;]1,2,3,4 >, i=1,---,4 (5.65)

and .
T, ) TilL2,34>=0  i=1---.4 (5.66)
j=1
in order to single out two independent charge operators,amencite
T3 'T4|1,2,3,4 > = (01 +CQ —Cg — 04) +T1 T2:| |1,2,3,4 >,

TQ'T4|1,2,3,4>I (Cl+C3—CQ—C4)+T1'T3:| |1,2,3,4>,

T2'T3|1,2,3,4>: (04—01 02—03)—T1'T2—T1'T3:| |1,273,4>,

Tl'T4|1,273,4>:—[Cl+T1'T2+T1'T3] |1,2,3,4> (567)

and express all the charge operators in terms of Casimiriantg and T- T, and T, - Ts.

5.4 Phase space integration

In this section, we present the parameterization of thertigta phase space that we use to
evaluate the cross sections. The n-body phase spatdiinensions is
=1

dPS, = (27T) (pa+pb sz)
dd :L n de— 1
= (2m)70 pa+pb—;pi 11 BIE, 12E (5.68)

=1

dd

b O )

’:]:
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whered ™ (¢2 — m?) = §(¢> — m?) 0(¢°) ensures that we only consider positive-energy particles.
The case oh = 1 is particularly simple

dPS; = 275 (Q% — m2)| gmpuim (5.69)

For the two-body phase space£ 2), Eq. (5.68) reduces to

ddflﬁ1 ddflﬁ2 i d
dPSy(Q — p1+p2) = / Qm12E, / 27) 12 E, (2m)*6UQ — p1 — p2)

= ! / ddlﬁl/ddlﬁQ 5d71(@ — P — 2)8(Q° — Ey — Ey)
I2n) ) ’
]

by By
1 ddilﬁl
= §(Q"—E - E 5.70
4 (2 7T)d_2 / E11 E2 (Q 1 2) ( )
whereE; = \/p; - p; + m?. We now consider the massive case in whigh= m? (i = 1,2).

Using the identities

— — ]' — —
/dp35 <p3 —\/P2 Pa +m%) =1 and §(p; —m3)0(ph) = 200 <p8 —\/ P2 - P +m%)
2
(5.71)
Hence we have

> = d'qd(¢* —m*)0(¢") with ¢ = p (5.72)

Using
&E’py = py-prdlpi| A, dQY = deosOdg,  |p|dlpi| = pidp! (5.73)

then we obtain

1 s+ m?2 —m? 1
dPS, = ﬁlpﬂdp?dﬁﬁ(\@—p?w(p?— - 2)2

24/s Vs
1 A(Svm%m%) S+m%_m%
= dQ o - = 5.74
3272 s Vs 2/ (.74)

with
A(s,m3, m3)

Here we work in the CM frame in whic = (1/s,0). If only one of the two final state particles
is massive with mass;; = m (ms = 0), then the two-particle phase space integration is

and A\(z,y,2) = 22 +9y* + 2> —2(vy+yz+21) (5.75)

m2

1 .
dPS, = T (1 — —) d), providedthat s> m? (5.76)
m S
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Multiparticle phase space decomposition

Now consider a systerd with particles of momenta,, po, - - - , p, in the final state. We partition
the final state particles into two subsystemandY:

Z — X(pip2---p;) + Y (Pijsr-- - pn) (6.77)

Then-body phase space can be decomposed as follows:

dm?2 dm?
dPS,(Z — pipa--+pn) = dPSy(Z — X Y) QFX QWY
- dPSj(X = pip2 -+ -p;) dPSj(Y = pjs1-- - pn) (5.78)

wheremyx andmy are resonant masses of the decaying partigleendY’, respectively. The
ranges of the invariant massy andmy are

J n
Zmi < mx, Z m; < my, mx +my < my (5.79)

i=1 i=j+1
Hence a particle decays into another two particles (witbmaace of masses x andmy, re-
spectively) which later decay intbandn — j particles, respectively. The subsystemandY
can be further reduced recursively until we obtain the petglof two-particle phase spaces. In
the special case whetéis a single particle,,, then we have

dm’

- ~dPS,—1(X = pip2- - Pr_1)

my+mo+ - +my <myxy <my—m, (5.80)
We now consider the parametrization of the three-particksp space [97]
Z — X(pps) +Y(p2) (5.81)
In this caseY is a single particle,. We decompose the three-particle phase space into two

two-particle phase spaces as follows

ds
dPS5(Z — pipops) = dPSy(Z — X Y) - 2—13 - dPSy(X — pips) (5.82)

™

wheres;; = (p; +p;)* = pj; andp, + p, + ps = Q. We work in the CM frame in which
Q = (v/5,0), hence we havgis = —p, and|pis| = 1/2+/A(s, s13,m2)/s. Using

1 )\(S, Slg,m%) S+ S13 —m%
dPSQ(Z — XY) = 3072 5 dCOSng dgbng \/5 — 2—\/5 ,
dPSy(X — pips) = dp de (5.83)

(47)2 |pus|
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Thus we obtain

1
2 dcos By dns dey day dry (5.84)

wheret,3, ¢13 and¢, are Euler angles;3 and ¢,3 are the polar and azimuthal anglesgf,
respectively, an@, is the azimuthal angle gf; with respect to the axis pointing alompgs. If
we integrate out the Euler angles then the phase space depahlydonz; andx,. We now
parametrize the four-particle phase space according to

Z — X(pip2) + Y (pspa) (5.85)

We decompose the four-particle phase space into three &ntale phase spaces as follows

dsyo ds
dPS4(Z — p1p2p3p4) = dPSQ(Z — XY) .12 2—34 . dPSQ(X —)plpg) dPSQ(Y — p3p4)

2m T
(5.86)

wherep; + p. +p3s +ps = Q. We work in the CM frame and choose thexis arbitrarily, hence
we haV@lg = —]734 and|ﬁ12| = (1/2) \/)\(S, S12, 834)/5. USing

1 A(S, S12, S34) S+ 812 — S34
dPSQ(Z%XY)— 3072 . d9129 \/_——2\/g ,
dPSy(X — pip2) = @ il dp doy,
1
dPSy(Y — p3ps) = a2 ] dpg deps (5.87)

whered, = dcos b5 dois; 612 andg,, are the polar and azimuthal angle$of, respectively,
and¢; (i = 1, 3) is the azimuthal angle qf; with respect to the axis pointing alonpgj, hence
we obtain

8
dPSy(Z — p1popsps) = dsya dssy d cos 019 Ao dp! déy dpf dbs
(4 77)8 )\(57 512, 334)

(5.88)
The integration ovet,, is trivial due to the azimuthal symmetry. We can choose tledioate
system in such a way that, points along the axis andp; lies in thez-z plane, hence we have
6 = 012 andp = 7 — ¢;. Introducingy;; = s;;/Q* andz; = 2p; - Q/Q?, we thus have

82

dPSy(Z — pipapsps) = A o s )dy12 dyss dzy drs dpzdcosfdg  (5.89)
s Y12, Y34
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Here the limit of integration variablg is —m < ¢ < ; the scalar products we need are

P1°pP3 = le x3 [l — (sin 6y sinf3 cos ¢3 — cos by cos bs)],
s
P1-Ps= 5(% —y12) — P1°P3,
s
b2 - p3 = 5@3—?/34) — P11 D3,
s
p2'p4=§(1—£€1—x3)+p1~p3 (5.90)

which in terms of the dimensionless quantitigscan be rewritten as

Y13 = 5 T13 [1— (sin#; sinfs cos ¢z — cos By cosbs) ],

Y14 = T1 — Y12 — Y13,
Y23 = T3 — Y34 — Y13,

You = 1 — 21 — 3 + Y13 (5.91)
whered; is the angle enclosed betwegn andp;. It is determined by

i (L4 Yij — Ym) — 295 (5.92)
zi /AL, Yij, Yk

cos b, =

with (i, 7), (k,1) = (1,2),(3,4) and(, j) # (k,1). Furthermore, we have
Ty = 1=2+Yij — Yu (5.93)

The limits of integration boundary are

0 <y <1 vy < m < xf
(5.94)
0<y34< (1—1/y12)2 O<¢3<27T

where

1 /
T = 3 (14 yij —yw) £ )‘(Lyij7ykl>:| (5.95)

The four-particle phase space with massive particles @idged in [97]. Finally we summarize
this subsection by writing the three-particle and fourtiole phase spaces in terms of kinematic
invariantss;; = 2p; - p;, and thed-dimensional hypersphet#,. Using Eq. (5.68), the three-
particle phase space is [98]

d—4

dPSg = (2 7T)3_2d 2_1_d (Q2)¥ de—l de_2 (512 513 SQg)T
- dsyg ds13dsg3 0 (Q2 — S12 — S13 — 823) (5.96)
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and the four-particle phase space is

d—>5

dPS; =(2m)* 3¢ (Qz)k% 21729 (—Ay) 7 0(—Ay) 6(Q — s12 — S13 — S14 — S23 — S24 — S34)
. de—l de_2 de_g d512 d513 d514 d523 d524 d534 (597)

where the Gram determinadt; is given by+ Ay = A(S12534, S13524, S14523) and\ is the Kallen
function\(z,y, 2) = 2 +y*+ 22 — 2 (zy +y 2 + 2z z). If we take the unit matrix element and
integrate out the three-particle and four-particle phaseass, respectively, we obtain

/ iPS —87r/dPS A / iPS —SW/dPS _ @9 5
s 0T T 3272 s b T 3072 '

An alternative parametrization of four-particle phasecgpa [15]

1\? 1
/dPS4 = A (ﬁ) 1—65Q2 / dy123/ dy134/ dy13 0(y13) O(Y123y134 — Y13)

1 1 ™
O0(y13 + 1 — Y123 — yi3a) - / dv - — / e’ (5.99)
0 0

™

Here,Ay = Q?/(27), yijr = six/Q* andS is the symmetry factor. The variablesand¢’ in
Eqg. (5.99) will be given in the next subsection. The lowertiof the 1,5 integration is specified
by the# functions

9(%3) 9(3/13 +1—yi23 — y134) — 9(y13) 9(1 — Y123 — y134)
+ 0(y123 + y13a — 1) 0(y13 + 1 — Y123 — Y134) (5.100)

so the range of thg,; integration can be split so that

Y123 Y134

Y123 Y134
/dy13 — 0(1 — Y123 — Y134) / dy13 + 0(y123 + Y134 — 1) / dyiz (5.101)
0 y

123+y134—1

Parametrizations of the four-momenta: four-particle phase space

In order to calculate the momentum mappings betweent 1)- and m-particle phase space
in the subtraction terms (dipoles), we need to find the exm@igressions of the four-momenta
P1, P2, p3 @andpy in terms of the integration variableg., ys4, 1, x3 and¢s. We can choose

that pi» points along the: axis andp; lies in thez-z plane. Here we work in the CM frame,

i.e.ﬁ12 - ‘ﬁ12| 2, ﬁ34 - — |ﬁ12‘ 2 and henC@iQ - —ﬁ34 iS fUlﬂ”ed
NG 1 1
B 0 B NG sin 0 - NG sin 03 cos ¢3
C=l o | E 0 |0 BT simbysing, | ©102
0 cos — cos s
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whered; is the angle enclosed betwegnandp;, andg; is the azimuthal angle gf; with respect
to the axis pointing alongsz,. Note that there is a minus sign in thkecomponent ofp; reflecting
the fact that the-component ofy; is in the direction of— z axis, while thexr-component and
y-component op; point along thet = axis and+- y axis, respectively.

P P34
0 0
D12 = 0 ;o P34 = 0 (5.103)
P12 — |Pia]
We can write|py,| in terms ofy;;, i.e.
N S
[P12| = g AL, Y12, Y34) (5.104)

Using Eq. (5.102), Eqg. (5.103) and the identities

T+ a0 = 1— Ysa + Y12, T3+xy = 1— Y12 + Y34 (5105)
we obtain
1 —y3s +y10 — 11 1 —y12+ yss — 3
s — 24 sinb, s — 23 sin 03 cos ¢
P2 =9 0 » Pa =g — 23 8in 03 sin ¢

VAL, Y12, y34) — 21 cos by — VAL, Y12, y34) + w3 cos b3

(5.106)
Eg. (5.102) and Eq. (5.106) will be useful when we compute dipoles. An alternative
parametrizations of the four-momenta is given by f15]

p1 = +/513/2 (1,sin@sin @', sin 6 cos 0’ cos 0) , po = (s123 — $13)/(2 v/$13) (1,0,0,1)

ps = +/S13/2 (1, —sinfsinf’, —sinf cos @', —cos @), ps = (s134 — $13)/(2/s13) (1,0,sin 3, cos 5)
(5.107)

Parametrizations of the four-momenta: three-particle phase space

We will do the same thing for the momentum mappings in thragigde phase space. We need
to find the explicit expressions of the four-momepta p, and ps in terms of the integration

'Here, we set up the reference frame where = p; + ps is at rest. We shall refer to this as tile- 3
system. The parametersandd are related by = 1/2(1 — cos#) and the variableos  is determined by using
energy-momentum conservation

513 (Q? — S123 — S134 + 513)
(8123 - 813) (8134 - 813)

%(lfcosﬂ) =
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variablesy,3 andy,3. We can choose that points along the axis andp; lies in thez-z plane.
Here we work in the CM frame, hence

1 1 1
/s sin 03 s sin Oy3 cos ¢ /s 0
P = 7901 0 y P2 = 7902 sinfys sing | ps = 7!703 0
cos 613 cos B3 1
(5.108)

whered,; is the angle enclosed betwegnandps , 6,3 is the angle enclosed betwegnandps
andg¢ is the azimuthal angle gf, with respect to the axis®. We find

1
yiz = 5012 (1 — sin fq3 sin a3 cos ¢ — cos by3 cos ba3)
1 1
vz = 5T (1 —cosbs) , Y = 523 (1 — cosbq3) (5.109)
Using the identityxs = 13 + y23 = 1 — 312, We then obtain
2113 2 Y23
cos B = 1—- , cosly; = 1 —
o (1 — yo3) (Y13 + y23) % (1 = v13) (13 + yo3)
1 2(1 =313 — yo3)
= — 1 - 0 Oog — 5.110
cos ¢ sin 013 sin fq3 oS3 CO5 T2 (1 —y13) (1 — ya3) ( )

5.5 Soft photon radiation

In this section, we will discuss the emission of a soft phdtothe final statd We will first
derive the amplitude for a soft photon emitted from a singitgoing fermion; then we sum over
all external fermions, obtaining the amplitude for a singit photon emitted from all external
particles. Finally we generalize to the emission of an eabytnumber of photons in the soft
limit. The emission of a photon from an incoming particleit{al state radiation) can be dealt
with in the same way. In this section, we only discuss fingkstadiation.

Final state radiation

The LO amplitude can be written as

Mpomm(p) = u(p) A(p) (5.111)

2Here we have used slightly different notations for the asgle
3For the gluon radiation in QCD we just simply replace photefdfivith gluon field and take the colour factors
and QCD coupling constapt into accountj.e.we make the following substitution for vertex:

—ieQf v = —igsthy Tu
and hencee Q; — g, t2 wheret?; are generators U (3)c in the fundamental representation.
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whereu(p) is the spinor of the fermion and(p) the remaining part (hard part) of the amplitude.
The amplitude for the emission of a photon with momentuim final state (see Fig. 5.1) reads

i(p+Hk+m)

. = _ *MU
iM(p, k) =ulp) [-1e Qs e™(k) RSB AP R) (5.112)
In the soft-photon approximatione. k. — 0, we have
. (P +m) »
~ Y A1
iM(p, k) leu(p)2p~k+ieA<p)8 (k) (5.113)
Using the identity
Yu(P+m) =2p, =Py +my, (5.114)

and Dirac equatiom(p) (p — m) = 0, Eq. (5.113) can be rewritten‘as

. 2e e (k) _ 2e -e*(k
iMip. k)~ z?gf-l;:ﬂi i) Alp) { Q%ZH(E)

] M Born (D) (5.115)

For a photon emitted from an outgoing scalar particle, tlseltas the samei.e. the result is
independent of the spin of the charged particle. Spin-dégetrterms are IR regular.

The emission of a photon from an incoming particle can betdwtth in the same way; for the
initial state radiation the charged particle has momentun% instead ofp + k.

If we sum over all external particles, we obtain the ampktfior the emission of a single soft
photon,.e.k — 0

. ‘ kz(] 26@(}7@'6*(/{3) ‘
iM(p; k) =~ %: [MW%HE M Born(pj) (5.116)

where(@, andp, are the charges and momenta of tieexternal particley), = 1 for outgoing
particles (final state radiation) amd = —1 for incoming particles (initial state radiation). Here
p; means the emitter that emits a soft photon.

The generalization to multi-photon emissions is stragthrd. Let us now consider the emis-
sion of an arbitrary number of photons; the correspondisgltean be derived by induction and
as a consequence, soft photons are emitted independeh#yarmplitude for the emission af
soft photons with momentea, k-, - - - , k,, in the limitk; — 0 is given by

iMpy k) =T [Z 2¢Qcpe € (km) M Born(p;) (5.117)

- 2N0pe - km + i€

m=1

4For QCD scattering the prefactor 8fl 5., (p) is actually the eikonal factor, which corresponds to a shivg
emissionj.e.k — 0.
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5.6 Collinear photon radiation

In this section, we will discuss the emission of a photon & ¢bllinear limif; we will derive
the matrix elements of the emission of a collinear photonbfath final state and initial state
radiations.

5.6.1 Final state radiation

The Born matrix element is given by (see Fig. 5.2)

Mo (p)]* = |u(p) A(p)]* = Alp) u(p) ulp) Alp) = A(p) (p+m) A(p)  (5.118)

where the projection operator is

> ulp)u(p) = p+m (5.119)
spins
andu(p) is the spinor of the fermionA(p) the remaining part (hard part) of the amplitude.
Here the spin indices have been suppressed and sum ove(plizszations) is also implicitly
understood. Let us now consider the emission of a collinbatgn with momentunk (see
Fig. 5.3). The corresponding matrix element is given by

u(p') [—ieQp ] e™(k) ]%

— Q2 |al) e (k) P )

pP—m?+ie
- ﬁ [a(p) ™ (k) ( -+ m) A(p)[*
- % Alp) (P +m) v (k) u(p) u(p) vue™ (k) (p + m) Alp)
= % A(p) (p+m) v w(p) a(p') v, (p +m) A(p) e (k) €” (k)

2

M@ k) = A(p)

2

— m?)

= T AW G )+ ) G ) A ) (5120

SSimilarly for the gluon radiation we replace photon fieldwgluon field and make the following substitution
for vertex:

—1eQfYu — figstaAb’y#
and hence
e? Q?r — gZtiita,
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where we have used Eq. (5.119) and

kPnY 4+ kVnH

(k) = Y k) (k) = —g" +

pol

(5.121)

again the spin indices have been suppressed and sum ovefpplarizations) is also implicitly
understood. The four vectarandd"” (k) satisfy the light-cone gauge conditions

n? =0, —g"d,k)=d—2=2-2¢, k'duk) =k dy,E) =0
n'd,, (k) = n"d, (k) =0 (5.122)

Kinematics

We need a bit kinematics for the massless photon and massimeohs

p=p+k

=0, p? =m? p*— O@m? incollinear limit
kt=2pt+ K kR 2 =k, pekL =0, k, =0
ph=p'—k=(1—-2)p" =k — k" (5.123)

From Eq. (5.123), we obtain immediately

—

ki = -k, ki =0m"), Kk =0m)p) (5.124)

T

The matrix element with photon emission now reads
2 M2
a
(2p" - k)

Using the identity

M@, k)| = Alp) (f + E+m)v (B +m) v, (f + k+m) Alp) d* (k) (5.125)

W+ E+m)y (F+m) = k(= +m)v + 20, (F + §+m) (5.126)

hence

- %7‘(7’) [ (= 4 m) v+ 20, (0 + K+ m) 7] (0 + K+ m) Alp) d (k)

(5.127)

M, k)|

Using the identities

Yo Yu d" = Guv A" = —d+2 (5128)
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and

W +E+m)y, =20, + 2k, + 7. (—F —F+m) (5.129)

Hence we have

M@, k)| = (;p Q;;) Alp) [=29 - kFguw +4p,p, (F + ¥ +m) —4p, 7.0 - k] Alp) d* (k)
e’ Q3

_ f

(2p' - k)

L

¥+ kE+m)

A(){a—ak— k) el

=%

In high-energy limit, a charged fermion energy is much larger than its masa and hence
we can neglect the fermion mass. Now we consider the colliimeé: k' = & = 0 and
p* — O(m?)

m? pon 1

~zp, Pr(l-2)p, TS =1+ 0mfy") (5131

The photon emission matrix element in the collinear limivrimecomes

MORE ~ 5 ) [0 -z 2 e (21) 5

42(l—2)p—22p (2—1)—279/"5%] Alp) (5.132)

The last term in Eq. (5.132) vanishes sinptek ~ O(m?). Finally we obtain

MG~ ) 20— 02— 22 g g (122 4] A
P, T P €) 2 ok ~ P
e*QF — m? 1—=2
A [a-gs - v (B0 paw
62@?— m? 1+(1—z)2
o A {—ez - : } pA(p)
B e* Q7 m? )
=Tk {Pvf(z) - ﬂ} | M Born(D)] (5.133)
where we have introduced the photon splitting funciiimnd dimension
_ 2
P i(2) = 1+0=2) €2z (5.134)

z

SFor the gluon radiation in QCD, this is exactly the AltaréMarisi splitting functionP,, (=) with appropriate
substitution [6]
z > 1—=x
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5.6.2 Initial state radiation

The Born matrix element is given by (see Fig. 5.4)
(Meora(p)* = Ap) (p +m) A(p) (5.135)

Kinematics

We need a bit kinematics for the photon emission in the irstzte radiation (see Fig. 5.5)

KO KO ,
x::F, z:ﬁ, p=p+k (5.136)
Substitutions from final state radiation, then we have
k— -k, peyp (5.137)
and
T 1+ (1+2)? 1
P = P(—2) = ——, ter=_—— () (5.138)
Hence the matrix element for an emission of a collinear phatibth momentunt: is given by
62 QQ 1 mg
B~ —L —— |Py(2) — (1 —2) — orn (1 — ? 5.139
Mp ) = = [ Py() = (1= 2) o [ M (L =) ) (5139)
with
P~ (1—x)p, k=~ —zp (5.140)

in the collinear limit.

5.7 One-loop calculations: examples

The quark self-energy contributions

For simplicity we consider the Feynman gauge in whick= 1; so the expression for the quark
self-energy term (see Fig. 5.6) to orderin the dimensional regularization scheme is
1

. € ddkj _Zg v . . C
—1i Nap(p) = /W 2 +Mz'e (—Z Js tgd ’Y”) B—F) —my +ic (—ng Lap ”Y“)

dk g 1
— _ 2 € g o th’ tC’
gs K /(27T)dk2+’l€’y (ﬁ_%)_mq_i_,lefy ad Ydb
= —iYoent$, 15, (5.141)

"Here we work ind = 4 — ¢ dimensions.
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ki
s @t @

pol

Figure 5.1: Final state radiation: soft photon emission.

b

Z‘%EP"

Figure 5.2: Final state radiation: Born diagram.

pol

Figure 5.3: Final state radiation: collinear photon enaissi
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Figure 5.4: Initial state radiation: Born diagram.

pol p p

Figure 5.5: Initial state radiation: collinear photon esnis.

Figure 5.6: The one-loop contribution to the quark selfrgpeliagram in QCD.
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Figure 5.7: The one-loop contribution to the gluon verteagdam in QCD.

where N2
—1
ZtA t) = Cpbee, Cp = v (5.142)
and
: d’k Vu [P — f +mg]
—i % —g2 i £ g 5.143
! SQED 9s # / (2m) (k2 +ie) [(p— k)? — m2 + ie] ( )

Here we consider the massless and on mass-shell quarku@arifjgso we have
d'k o [P — K] 2"
—i 3 = —g2u £ 5.144
e = i | G o o449
The infrared divergence (mass singularity) comes from thesiess quark and antiquark. After
some tedious calculations, we find

K11
i ¥ — — = -
1 2.QED igp d) p / dz (1 / 2m)d i (k)
1
~ v 5 = (5.145)
/l\
€yv = €IR
wherek’ = k — p z and we have used the scaleless integral
1 1 1

dk — =0 5.146
/ [k2]" * €UV €IR ( )

Here thee;y ande;r poles are used to regularize the ultraviolet and infraredrdences, re-
spectively. So the final result is independent of any sqg&lle<{ 0). Eq. (5.146) is very useful as
long as we do not specifically care about the pole coefficients
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The vertex corrections

In this section we compute the order @f vertex corrections (see Fig. 5.7) to the quark and
antiquark annihilation in QCD. Applying the Feynman rubles, find I'* = ~+* + 6I'#, where

dk —1g 7
STH (0 — € vp —i g, VtA-
(p,p) 12 /(27T)d |:(k’—p)2+26:| [ tgs7y CJ] k//_mq+l'€
1 1 i
— = (1=7°) Vii| o [~igan" ty 147
Assume thatn, ~ m; = 0, thenéI'* becomes

or*(p,p) = —igfji(tfj%it;‘},)xl“ (5.148)

where

W [ A% A EED A=) B A% R R R L
e[ ( -/ (=)

2m)d (b —p)*(k+q)*k? 2m) (k—p)?(k+q?2k> 2

(5.149)
wherek’ = k + ¢q. The gamma matrices ih = 4 — ¢ dimensions satisfy
VRN Ky = 2—d)fy'F and gtk = =2k — (d—4)¢y"F  (5.150)
SoI* becomes

. dk [P E g+ S ] 1 5
= _2/<27T)d (k—p)2 (k+ q)2 k2 9 (1_7)

Using the Feynman parametrization prescription, the démator can be expressed as

(5.151)

1 ! 2
= drdydzd —1)—=— 5.152
(k—p)? (k+q)* K /0 rdydzotey e = (5.152)
where
D=0r-AN+ie, { =k+yq—zp and A = —zyg* (5.153)

or more generally
1
n n n
A11A22 .. Akk

_ Dlutnat-+m) /1 do - - dog 08 a1 -3 ) (5.154)
F(nl)F(HQ) T F(nk) 0 (a1A1 + 4 akAk)nl—I—nz-f—m—I—nk

Now let us calculate the numerator of Eq. (5.151)

(1=7°) u(p) (5.155)

o) | g ]
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after some tedious calculations, we obtain

@@q[—@‘dyﬁ+41_x)<1—yg33)q +§_£yq}7A1;75u@) (5.156)

2d 2 2
where we have used
2 — N die o
{1 = Tﬁ and / ) DF (5.157)

Finally, we have to compute the following expression

o(p) I u(p) = —2/ i /01 drdydz 22Ty 1) lv(p’)v" t-7) U(p)]

(2m)d (2 — A +ie)3 2
X [_Egégéﬁ—EQ%(l——x) <1-—@/g€;2) q +g7?é1/q}
o) v L7 () x Al (5.158)

We can divideA(q?) into two termsA = A%(¢?) + A%(¢?). In order to calculatei(q?), we could
resort to the following integration formulae,

/CM I B
QM2 —Atiep

d/ 1 B
/@@M@—A+@3_

hence we have
Ay = o (et A2 Z2E AR py o) (a2 -

(4 7)d/2 I'(d—2)
R = 2o a2 T - g DD
2 d d—2 d—14
c =27 2 Tda—2
Finally we obtain the expression fo(p’) 6T* u(p):

d

a2 /) A7

(2—d/2)T(2—d/2) AY?*3  (5.159)

DO — | .

u%w

X

(5.160)

o) ST ulp) = i L (14 V) % 000) 2 0= )

80 gy (9(6)) (5.161)
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5.8 Areview of the Standard Model (SM)

5.8.1 Abelian gauge theory: Quantum electrodynamics (QED)

We start with a Lagrangian

Lo =) (i) — m) ¥(x) (5.162)
which is invariant under a global(1) symmetry:
() = P(x) = 1PP(x)
Oub(x) — 0. (x) = €19, (x) (5.163)

with spacetime independent group parameéterThere is a conserved current according to
Noether’s theorem:

J(x) = q(z) v, () — " J(z) =0 (5.164)

In the case of quantum electrodynamics, the phase invariamromoted to the level of a local
transformation in order to describe the gauge interacti@bseen electrons and photons, the
phasef depends on the spacetime point. So we demand the glofdal symmetry to local
symmetry, this means

0 — 0(x) (5.165)

SO

¥(@) = ¢(x) = 1" y(a)
ob(z) — 9 (x) = 1@ b(x) +iqe 1D (x)0,0(x) (5.166)

To maintain the local gauge invariance, we introduce thecamt derivative.
D,=0,+iqA,(z) (5.167)
in such a way that

P(a) = P(x) = 1 DY(r) = Ulz)y(e)
Du(z) — Diaf(z) = 9P D(x) = Ux)Dyb(x) (5.168)

i.e.bothy(x) and D, (z) transform the same way undé€(1) local symmetry.A* is the spin 1
gauge field (photon field) and transforms under the local gayg1metry as

Au(z) = Al (z) = Au(x) — 9,0(x) (5.169)

Note that the transformation property ensures that
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o D,b(x) = D! (x) = U(x) D,(x)

¢ gauge invariance of field strength tenggy, = 0,4, — 9, A,

The commutator of covariant derivatives obeys

1 1
F, v = T D 7DV =
Then obviously the generalized Lagrangian
Ly = P(x) (V" Dy —m) ()
= () (Y0 —m) ¥(x) — qp(x) yu () A (5.171)
is invariant under the local gauge transformations. Theptete QED Lagrangian has two con-
tributions: matter and gauge field contributions:

0, +iqA,, 0, + iqA,)) = 0, A, — 0, A, (5.170)

with
1
»Cgauge: _Z FMV(x) Fw/(l‘) (5.173)
The electron-photon coupling in Eq. (5.171) is called mialicoupling of the photon field, to
the electromagnetic curredt = ¢ (x) v ¥ (z); and LgaugeCannot contain a term proportional

to
A, A

since this term is not gauge invariant under Eq. (5.169).

5.8.2 Non-abelian gauge theory

The starting point is a Lagrangian of free or self-interagfiields,i.e. symmetric under a global
symmetry.

Ly(,0,) = ¢(x) (i —m) () (5.174)
where
U
Y= : = multiplet of a compact Lie grou@> (5.175)
Un

The Lagrangian is symmetric under the transformation

Y= = U@, U®) =explit*0?}, UU=UU =1 (5.176)
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If U is unitary, the are hermitian matrices, called group generatéfg(A = 1,--- N2 —1 =
dim G) are spacetime independent parameters. We can expandtidug nmatrix around the unit
element of the groupr

U@B) =1+it*0* + 0(6?) (5.177)

this means that the! generate infinitesimal transformation around the unit inaiement of
the group. FoiSU(N) matrix (unitary anddet U = 1), there areN? — 1 traceless, hermitian
generators

)\A
th = > (5.178)
The generators for any representatiortzo$atisfy the Lie Algebra relation
[t 7] = i fAPCC (5.179)

where thef42¢ are called the structure constants of the gréufhe starting hypothesis is that
Lagrangian is invariant undéy

Ly, 0) = Ly, 0,0), 4" = UO) (5.180)

Now we promote the global symmetry to local symmetry by gagdhe theory, which means
that we allow the parametef$ to be function of the spacetime coordinates.

04t = 04z) = U — U(x) (5.181)
S0 now we have
Uz) = 14+it* 04(x) + O(6?) (5.182)
We obtain a local invariant Lagrangian if we make the subistin
Ly, 0u0) = Ly(¥, Dytp) (5.183)
with
Dy=0,+igAt@)t" =0, +igAu(x), A=) ANt = A, -t (5.184)
A

whereg is the gauge coupling? is the generator of the groupin v representation anAf} are
gauge fields. Herdl,, is anN x N matrix. £, (v, D) is local gauge invariant if

U(x) = Y(x) = Ulx)(z
Dyp(z) — Dj'(x) = U(x)Dy(x) = U(x)D, U (2)U(z)(x) (5.185)
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i.e.the covariant derivative transforms as

D, — U(z)D, U !(z) (5.186)
implying that
1
A — A = A — fAPCG8 AT — gauef‘ +O(6%) (5.187)
We can build the kinetic term for thAﬁ fields from the field strength:
[D.,D,] =igt-F,, =igt'F), =igF., F.=t'F, (5.188)
HereF),, is anN x N matrix and
F,flu = 0,A} — 8VA;‘ - ngBCAfAf (5.189)

which transforms homogeneously under a local gauge tremsatoon
Fo—F, =UF,U" (5.190)
We also note thdtr F,, F'*¥ is invariant:
FAFY ~Tr F,, F* — TrUF, U 'UF*U ™" =Tr F, F* (5.191)

This is true only for finite dimensional representation @& gauge group. Now we can construct
the gauge invariant Lagrangian for gauge and matter fields,

1 — .
Lyar = =5 T Fu (@) F™ () + 9(x) (i) — m) () (5.192)
Normalizing the generators' as
1
Trid P = 3 548 (5.193)
we have—3 Tr F,, F* = —1F: F4". As in the abelian case, the fermion/gauge field coupling
is of the form
Lint ~ gJ4 A} (5.194)

wherejj = 1 ,t* 4 is the fermionic part of the Noether current. There are soenearks
about the non-abelian gauge theory:

. A;‘L‘Aj are not gauge invariant, this means that gauge bosons obkatbmon-abelian
gauge theories are massless.

¢ We have cubic and quartic gauge boson self-interactiona;angFj”

(DA)A2, A
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e Gauge invariance- renormalizability (absence of higher powers of fields andaciant
derivatives in Lagrangian) determine gauge boson/matigplongs and gauge boson self-
interactions.

o If G = SU(3)c and the fermions are in triplets,

wred wl
Y= (s = wZ (5-195)
wgreen w3

we have the QCD Lagrangian wifii — 1 = 8 gluons.

5.8.3 Electroweak theory

Gauge boson interactions

The standard electroweak theory [76—78] is based on the coonelicated gauge groufl/ (2) x
U(1). Here we have suppressed the indi¢eandY for SU(2) andU(1), which mean left-
handed structure and weak hypercharge, respectivelyntiibg an SU(2) gauge symmetry is
applied to left-handed fermion fields only and an independéh) gauge symmetry is present in
order to incorporate the electric char@end unify the weak and electromagnetic interactions in
a common gauge structure. Initially the Lagrangian of thiglei contains three massless gauge
bosonsAf. (¢ = 1,2,3) of SU(2) gauge group and one massless gauge baSpnassociated
with the U (1) gauge group. The gauge symmetry does not allow any mass oeriti aind 2
bosons. More precisely, local gauge invariance and reriaféity completely determine the
kinetic terms for the gauge bosons. The Lagrangian of thgehosons is
1 1
Lyauge= —= F, F* — ZB“” B* (5.196)

4 uy - oa
The field strength tensors of tt$/(2) gauge fieldsA* and thelUU (1) gauge fieldB are

FL, = 0,A) —0,A7 + ge“b"’AZA,‘i

B, = 0,B,—0,B, (5.197)
g being theSU (2) gauge coupling. Note that the vector bosalisalready have self-interactions
because of the non-abelian property of their symmetry gi9lif2). This is similar to the fact

that gluons carry colour charge in QCD. The coupling of theggafields to matter fields is
achieved via the covariant derivative

Dyt = (8, —igT" A% —ig' Yy B,) ¥ (5.198)
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and the Lagrangian of the interaction is given by
Lint = Y ivy" Dy ¢ (5.199)

g'is theU (1) gauge coupling. The matricd%' are a representation of th#/(2) weak isospin
algebra and’, is the weak hypercharge of th&1). In order to specify the coupling to matter we
have to choose th8U (2) representatioff' and theU (1) gauge chargé’, for the matter fields.
Here the value of the generator (charyjg)depends on the fermion field. Three group generators
T* correspond to three gauge bosoﬁtjls Ai, Ai; the group generators for gauge doublets are

a

T = % a=1,23 (5.200)
and for gauge singletg%, v%)
T* =0 (5.201)
They all satisfy the5U (2) commutation relations:

[T°,T"] = ie™ T B =1 (5.202)

and the explicit expression of Pauli matrices are

1 (01 o (0 — 3 1 0
T—<1 0), T—(Z. 0), =9 _1 (5.203)

Defining
Al 14 A2
W= Dot and TE =T 40T (5.204)
V2
we have
a @ 1 ! - 3 43
T Au = ﬁTﬂ/ijLﬁT WH + T AH (5.205)

where the matrices* and7? satisfy the relations
Tt 177] = 27°
[1°,7F] = +£T= (5.206)

T+ andT'~ are raising and lowering operators. In the doublet reptasien of SU(2) we have

T+=<8 (1]) T:(? 8) T?’:(l _Ol) (5.207)

It is worth mentioning thaﬂi and B, carry identical quantum numbers{ = 0,Y, = 0), so at
the end they will combine to produce two neutral gauge basdpsandZ,,. The neutral weak
current was discovered at CERN in 1973, while thboson was discovered at CERN in 1983.

(@I N
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The Higgs mechanism: Spontaneous symmetry breaking

Experimentally, the weak gauge bosons are massive, therdyine massless gauge boson in
nature, the photon. The Lagrangian Eq. (5.196) descrihgsni@assless vector bosons forming
a singlet (3,) and a triplet (/Vj, Af;). So the model cannot describe the real world. If we add
the explicit mass terms for the three weak bosons, then itdwadolate local gauge invariance
and spoil the renormalizability of the theory. Thereforis ihecessary to introduce a mechanism
of symmetry breaking by which the three weak bosons obtasses The mass generation can
be implemented through the Higgs mechanism [41-43]: gémenass terms from the kinetic
energy term of a scalar doublet fieldhat undergoes spontaneous symmetry breaking (SSB).

In the standard electroweak theory, the gauge g€luf2) x U(1) is broken by the Higgs mech-
anism. Introducing a single complex doublet of scalar Hifgglgs

®1 ot
= = 5.208
o= (%) (%) 5200
on which the matrices® act. The Higgs Lagrangian is given by
Lriggs = (D) Dy — V(9'9) (5.209)

which is gauge invariant under locél/(2) x U(1) transformations. The coupling of the gauge
fields to the scalar field is achieved using the covarianvegvie

. a pa . 1
Do = (0, —igT" A% —ig'VyB,) o, Y¢:§

a 1
_ (@L—z’g%Afj—ig’ﬁBu)d) (5.210)

The Higgs potential is chosen to be of the form

V(o'g) = Vo+ A (010)" —s2elo, 12X >0 (5.211)
Note that this potential has a wrong sign for the mass terma Assult, with the parameters
w2, \ > 0, this potential has a classical minimum which is nap at 0; instead the potential has

minima at
[ 1 v
— 4/ = = 5.212

All these minimum configurations (ground states) are cotatkby gauge transformations, that
change the phase of the complex fieldvithout altering its modulusw is called the vacuum
expectation value (VEV) of the neutral component of theaddiggs doublet. When the system
chooses one of the ground states, this ground state is nerlesgpmmetric under the gauge trans-
formation. However the Lagrangian is still gauge invariantler the gauge transformation and
all properties connected with it still hole(g.current conservation). This phenomenon is called
spontaneous symmetry breaking. We will discuss the corsexps of the Higgs mechanism in
more detail in next subsection.
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Glashow-Weinberg-Salam theory

We start with the gauge and scalar sector of the theory. &) x U(1) gauge invariant
Lagrangian is

L= Lo pmw EBWBW + (Do) Dyt — V(e'9) (5.213)

4 Hr—a

where the field strength tensors are given by Eq. (5.197)ctvariant derivative connecting
gauge fields and scalar field is given by Eqg. (5.210). We chtiwsground state to be

A, = B,=0
_ 4 0) = 5.214
<¢> = E(v)_gbo (5.214)

Note that only a scalar field can have a VEV. The VEV of a fermoorector field would break

Lorentz invariance. The generators of the gauge gi®U[2) x U(1) are matricesd™ = %

andY, = % Now we would like to show that the ground state breaks thggaymmetry. An
arbitrary stateb is invariant under a symmetry operatiexp (i 7'* 0%) if

eTp = @ (5.215)

This means that a state is invariant if
(5.216)

For theSU(2) x U(1) case we have

Tlébo # 0
Tzébo # 0
Tgcbo # 0
Yoo = %cbo # 0 (5.217)

Here the generators’ andY, correspond to broken generators , the consequence of véticéti

all the gauge bosons will receive positive masses. How#weay be the case that the generators
of the group leave the vacuum (ground state) invariant, irckvbase the corresponding gauge
bosons will remain massless; and the corresponding gemgrate called unbroken generators.
Now we examine the effect of the electric charge oper@ton the vacuum state. The generator
Q) satisfies

Qo = T+ Y = (g g ) =0 (5.218)

the electric charge symmetry is unbroken. So there is aroliebrsubgroup with a single gener-
ator@: This is the subgroup’(1), of SU(2) x U(1). This subgroup corresponds to a massless
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gauge field, which is the electromagnetic field ( phatgy). The choice of the vacuum expecta-
tion value in Eq. (5.214) breaks tt$##/(2) x U(1) gauge symmetry, since it identifies a specific
direction in the internal group space. Now we shall consgieall perturbations of the fields
around the vacuum,

¢(z) = ( Z@Z ) = ( %[v+x?;)+in($)] ) - %GXP (M) ( v+(>]<<x> )
(5.219)

We still have four real degrees of freedom, (thééend oney), equivalent to the two complex
fields. We can use the unitary gauge in which

() = % ( ) +(;(x) ) (5.220)

In this gauge, the Goldstone fieldq =) have been rotated away by &% (2) gauge transforma-
tion.

ox) = ¢(2)=U@)d(e),  Ule) = exp (‘M)

T-A4, — T-A, =UT-A,U" —é(@MU) U (5.221)

The#“(x) degrees of freedom no longer appear in the Higgs Lagrantiiag,will reappear as
the longitudinal modes of the massive gauge bosons. ThesHtiggony is the only remaining
dynamical field. In order to find the mass terms for the gaug®b®s and Higgs boson, we need
to calculate the quadratic Lagrangian, which means theilzion of the covariant derivative of
the fieldo

—55(9'Bu = 9A) (v + X) + 50X

1 0 1 X goW;F
- %(au )‘5(”5>(— <gz+gf2>/2vzu) (5.222)

The physical weak bosons are linear combinations of thegyangs, so we have defined

Do — ( AL - iA2) (v + ) )

1
- 142
Wu - ﬁ (Au + ZAu)
_ 1 3 / _ 3 :
Z, = W(QAM —¢'B,) = cos Oy Ar, — sin Oy B,
1 .
A, = ﬁ(gBu + g'Ai’L) = sin HWAi + cos by B, (5.223)
9°+g
where )
9 _ 9
sin Oy, = , cosby = ——— (5.224)
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and it is easy to show that
ZE+ (A)* = (A’ + B (5.225)
Hence, the covariant derivative to the quadratic part oLtgrangian is
21)2

1 1 2 2y, 2 9
(D) D"6]®) = = (9ux)* + gTWjW’“ +5 (W) Zg] (1 + %) (5.226)

To quadratic order, the kinetic term of the vector fields ia ¢fuadratic Lagrangian is

1 fa Tpy 1 v 1 v— 1 a3 2 v 1 v
_ZF,LLI/F;L - ZB,U,I/B# — —§WLWM - ZFEVF; - ZB,U,I/B#
1 1 o1 .
= W W = 22,2 — JF P (5.227)
where

Fi, = 9,AL—09,A"

Wo, = W —a,W;

Zy = 0.2,-0,2,

Fu = 0,4, — 0,4, (5.228)

Thus, the quadratic Lagrangian contains standard kinetneg for the complex vector 1‘ielid/';t
and the real vector fieldd, andZ,,. Collecting all together, we obtain the quadratic Lagrangi

1
2)  _ + v— 2 11—
L0 = =W LW+ MWW

1
_ Z WFW
1 M?2
— 7., Iy L
4" + 2
1 M?
50007 = 3K (5.229)

We therefore find that thB” andZ gauge bosons have acquired masses, given by

2 12 M
My =Y oy, = VI tov  Mw (5.230)

27 2 cos Oy

The photon remains massless because there are no termatiuisdihe field4,,; the quadratic
Lagrangian also describes a massive real scalar{i¢tiggs boson field) with mass given by

Z,7"

M, = V2 v (5.231)

From the measured value of the Fermi constant

Cr _ 9 (5.232)

Vi S
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the vacuum expectation value of the Higgs fieldis 246GeV .

In summary, the Higgs field acquires a non-zero vacuum expectation value at a parnticaiat

on the circle of minima away from the point whepe= 0 and the symmetry is spontaneously
broken. Three Goldstone bosons of the four scalar field copis get eaten by the gauge
bosons to form massive vector bosoWélj(, Z,), and a single physical scalar particle remains:
The Higgs bosorny with mass given by, = V2.

There ardV Wy andZ Zy couplings from2y /v term in Eq. (5.226)

2 M?2 M? 1 gM
ﬁxvv:—WWJWWX*‘—ZZ“ZMXZQMWWJW*“H‘—g z
v v

YA 5.233
2 cos Oy, X )

There are alsqxWW andxx~ZZ couplings fromy? /v term. An important fact is that Higgs
coupling is proportional to mass. Finally we summarize s&mepoints of Glashow-Weinberg-
Salam theory:

e To break the symmetry spontaneously, we introduce a scaggysHield ¢ in the funda-
mental representation 6fU(2) with non-zero VEV:

corma-5(2)

e Broken symmetry will be applied if the original symmetry weglobal rather than gauge.

e LetG be a gauge group, the generatorg:ofan be divided into unbroken generatéts}
and broken generatofs,, }.

e If G is a global symmetry group, then the theory would containsteas Goldstone fields,
with number equal to broken generators.

e If G is a gauge group, then the gauge fields corresponding to kevbgenerators remain
massless, while the gauge fields corresponding to brokegrgms become massive.

e Goldstone bosons corresponding to broken generdtgisdisappear from the spectrum;
they get eaten by the gauge particles to form massive veotunis.

Fermion interactions

From experimental facts, charged currents couple only fishEnded fermions and neutral
currents couple to a massless photdn and a neutral gauge bosdf),, the gauge group is
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SU(2) x U(1). For the case of leptons or quarks the left-handed fieldswtrmw doublets; the
right-handed fields are afiU (2) singlets

1 1
Vo =51=7")0, Yr=50+7)% ¥ =1vL+vr (5.234)
It is easy to show
Vi = i@ +pidvr (5.235)
Hence the first generation of left-handed lepton fields is
_ 1 5 Ve - VeL
bt () = () (5.236)
which is SU(2) doublet, and the first generation of right-handed leptodsiare
ver = 3L v er = 314 77)e (5.237)

which form SU (2) singlets. Similarly the quark fields form left-handed daaibl

qL=§<1—v5>(§)=(§§), %(1—v5>(§,), %(1—%(;) (5.238)

and the right-handed quark fields are singlets. The primetherdown type quarks will be
explained later. All these relations hold for each familgf@e symmetry breaking, the coupling
of the fermions to the vector bosons is given by

Ly = Vi = iDL +Yri P g
=, iy (0, —igT* A% —ig' YL B) Y + ¥y (0, —ig' YR By)vr  (5.239)
with
Yot = Yoo, Yytvr = Yrig (5.240)
Here denote left- and right-handed quarks and leptons. Tt charges)Y; and Yy, are
chosen to satisfy the relatigp = 7° + Y}, so that after symmetry breaking we obtain the correct

values of the electric chargés Table 5.2 lists all the values of weak isospin and hypegar
for quarks and leptons. Now we focus on one generation obtepfquarks work the same way)

Ly =il Dl +iegler (5.241)

where the covariant derivative is given by Eqg. (5.198) angyjlatthanded neutrino would have
zero coupling both t&'U (2) and toU (1), so we have simply omitted this field. We will find that
itis also useful to rewrite Eq. (5.198) in terms of the gaugedn mass eigenstatés’, W, A,
andZ, fields

D, = 0, —i%(W;W FWT) —i—L— 7, (TP —sin® 6y Q) —ie 4,Q  (5.242)

V2 cos Oy
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where the values aof and the wealsU(2) chargey are related by

g=— (5.243)

sin Oy

To work out the physical consequences of the fermion-gaogerbcouplings, we should write
Eq. (5.241) in terms of the vector boson mass eigenstateg tie form of the covariant deriva-
tive given in Eq. (5.242). Thus the fermion Lagrangian canlive&led into three pieces: kinetic
term, charged current and neutral current.

Ly=Lin+g(WHIN+ W, T + 2,05 + e Ay Ty (5.244)
where
‘Ckin == ZZL@EL +Z€R@GR (5245)
e g - I
Lec = g(WHI +W, i) = 5l (WiHTH + W, Ty 4y,
_ % (W Dep v e+ W, e ver (5.246)
The neutral current interactions involviti), vector boson is
Lne = 92,0y = ﬁ Zy, [0, (T? — sin® Oy Q) v €1, + €x (T° — sin® Oy Q) " er)
w
SR E Y v, + € —1+sin29 Y er + €g (sin? Oy ) yH e
COS HW “w el 9 el L 9 w L R w R
(5.247)
where
Qvq = qiy (5.248)

This procedure works for leptons and also for the quagksthe charged current Lagrangian for
quark sector is

g o =
ﬁ [W: ur, ’}/u dL _'_WH dL’}/u UL} (5249)
The charged currents of lepton and quark sector for one ggoelis given by
1
JT = — [Ty er + ULy d
W 7 [Der " e +upy" di
1 _
Jb = — ler Y vep +drp Y u 5.250
W \/§ [ L7 VeL LY L] ( )

Finally we comment that the theoretical motivation for gsmg the quarks and leptons as shown
in Table 5.2 is that complete families are required for thecedlation of anomalies in the currents
which couple to gauge fields. This cancellation shows that\Mdentities, which are crucial for
the proof of renormalizability of the gauge theory at quamtavel, are still validated.



5.8 A review of the Standard Model (SM) 153

| Fermion [T} Y. [T Yz] Q]

u c t|+3 +5| 0 +3|+3
d s b —% +% 0 —% —%
Ve vy Vr —1—% —% - =10
e " T —% —% 0 —-1|-1

Table 5.2: Weak isospin and hypercharge assignments, theglated througlp) = 77 + Y.

Yukawa interactions
A direct fermion mass term

mppp =mys (Ypr + ¥ Vr) (5.251)

is not gauge invariant unde§U(2) or U(1) gauge transformation. The Higgs fiefd can
give masses to the fermions via Yukawa interactions withfémmion fields. After sponta-
neous symmetry breaking, a Yukawa interaction of the fgfm; ¢ fx leads to a fermion mass,
m; = grv/v/2. The Yukawa Lagrangian is

EYukawa = _Ffjj QZ de% - Filj* J}Z% QbT q/Lj
—I'Y @ ¢} + h.c.
~T9 0 pel, +h.c. (5.252)
where
. 1 0 o2 gk 1 U+H(.T)

and here we have replaced the Higgs boson notatwith H. ¢; and/;, are left-handed doublet
fields anddg, ug, ey are right-handedU (2) singlet fields. The primes fay; , d}; andu’, mean
that they are quark fields that are generic linear combinatifothe mass eigenstatesandd.
I'J, T% andl'¥ are3 x 3 complex matrices in generation space, spanned by the Bwéel;.
Note that neutrino masses can be implementedyiderm. Sincem, is very small so that we
neglect it in the following.Lyykawa IS LOrentz invariant, gauge invariant and renormalizaiel
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therefore it can be included in the Lagrangian. In the upig@uge we have

dody = 5@ @) (|, 0y ) ="
doony = s Gt d) ()= g (5.254)
so Eq. (5.252) becomes
Cvikowa = —T% %dgdg - FZ%U%U% _ rg%egeg the.
(MY + MYEE + MYE e+ ] (1 ; %) (5.255)
with mass matrices ) o
MY =T (5.256)

Now we would like to diagonalize the mass matricMg(f = u,d, e), which can be achieved
using a bi-unitary transformatidii/ andU,.

r=(ul) o = (vh) h (5.257)
) )
with U/ andU}; chosen such that
T
(U{) M; (U;;) — diagonal (5.258)

and Ug/R must be unitary in order to preserve the form of the kinetim&ein the Lagrangian.
We give two examples of diagonalized fermion mass matrices

B MUE=( 0 m 0 |,  OH'MUL=| 0 m, 0 (5.259)
0 0 my 0 0 myp
Hence Yukawa interactions Eq. (5.252) can be rewritten as
Lyikawa = — Z Mij fio f1 1+ E + h.c.
— f JLJR v

= = |(f) ()] s (14 2) +he
EN v
—zf:mf [foR+fRfL] (1+g)

- H
- XS (1+7) (5.260)
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We succeed in producing fermion masses and we got a fernmitiieranion-Higgs coupling
which is proportional to the fermion mass. Obviously the ddigfukawa couplings are flavour
diagonal, this means there is no flavour changing Higgsaotems. Recall that the charged
current interaction is of the form

€
\/§ sin GW

After the mass diagonalization described previously, ténisn becomes

gW, I +he. = W5 y* dj + h.c. (5.261)

€ —7 U j
W i

We define the Cabibbo-Kobayashi-Maskawa maltgix ;.
Vorn = (UP)' UY (5.263)

The CKM matrix is not diagonal and then it mixes the flavourshef different quarks. Itis a
unitary matrix Q/CEKM Verxym = 1) and the values of its entries must be determined from exper-
iments. The CKM matrix connects the weak eigenstétes’, b’) and the corresponding mass
eigenstatesd, s, b) through

d, Vud Vus Vub d
s = Vea Vs Va s | =Vekm | s (5.264)
v Vie Vis Vi b b

For3 x 3 CKM matrix, the matrix element can be parameterized by 3emghd 1 phase, which
givesrise to CP violation in Standard Model (SM). Now we |labkhe neutral current interaction,
e.g.down type quarks is given by

¢ L 1. i i L. i i
gZM Jg — m |:(—§ + gSlH2 Hw) ZM dlL ’)/M dlL + (+§ SlIl2 ew) ZM d;%’j/u d;%:|
(5.265)

After the mass diagonalization we have
(i lgee)za [(Ug)T Ug} oy
sin Oy, cos Oy, 2 3 a ij

e 1., - t ,
—_— — 0 Z, d; [ U Ud} *ds
sin Oy cos Oy <+3s1n W) noR ( R) R z‘j7 r
‘ L tanzo ) 2 @ v+ (+2sin200 ) 2, @, di| (5.266)
- —= — S1n — Sin .
sin Oy, cos Oy 2 3 W) At L 3 W) EulrT CR

So the unitary matrices cancel and théoson interaction is flavour diagonal also in the mass

eigenstate. It works the same way for the other flavours. ft@shanism is called the GIM

mechanism (Glashow, Illiopoulos and Maiani) [79]. It preslithe existence of the charm quark;
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there is then a second doublet, s} ). Hence, the transitions, liké — s ands — d, cancel
precisely. This GIM mechanism generalizes for any numbeuafk generations.

Finally we summarize the key points of this section.

e The Higgs field) can give masses to the fermions via Yukawa interactionstivéermion
fields.
— No flavour changing Higgs interactions.

e The flavour is conserved in vertices involving neutral gabgsons:A,,, Z,, andG,,.
— GIM mechanism.
— Absence of flavour changing neutral current (FCNC) at the leeel.
— b — sv,--- are loop-induced in SM (high sensitivity to new physics effé.

e The charged current processes mediatedliby are flavour violating with the strength of
violation given by theSU(2) gauge coupling and a unitary3 x 3 CKM matrix.

5.8.4 The Standard Model of particle physics

The Standard Model (SM) of elementary particle physics iaagg theory of strong and elec-
troweak interactions. It is based on the following gaugeugro

TheSU(3)c is the colour group of QCD, whil8U (2), xU(1)y is the Glashow-Weinberg-Salam
electroweak symmetry group, which is spontaneously bral@wmn toU (1), the phase group
of the electric charg®), different from thel/(1)y of weak hypercharge? = 73 + Y, whereT™

is the third component of the weak isospin generata¥6{2) .. The groupSU(3)c x U(1)q is
believed to be an exact gauge symmetry of nature. The gaoge &q. (5.267) contains 12 spin
1 gauge bosons:

e 8 massless gluons 6fU(3), which are responsible for the strong interactions ( QCD ).

e 4 gauge bosons &fU (2), xU(1)y, which are responsible for the electroweak interactions,
of which one is massless ( photon field;, ) and three are massivé{* and Z gauge
bosons ) after spontaneous symmetry breaking (SSB).

These gauge bosons interact with matter fields (colouredkguand colourless leptons) in a
gauge invariant way. The field content is the following:
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Gauge sector : Spin=1

The gauge bosons are spin 1 vector particles belonging @djoét representation of the gauge
group Eq. (5.267). Their quantum numbers are:

gluons G- (8,1,0) SU(3)c s
weak bosons A : (1,3,0) SU(2). g (5.268)
abelian boson B,, : (1,1,0) U(l)y g
where A runs over the eight colour degrees of freedom of the gluod ﬁl?j A=1,---,8)

anda denotes the isospin space£ 1,2, 3). In order to avoid confusion we have changed the
notation for the strong coupling constant fy which we denoted witly in Chapter 1.

Fermion sector : Spin 3

In the Standard Model the matter fields are fermions belanithe fundamental representation
of the gauge group Eq. (5.267):

quarks SUB)e SU2), Ul)y Ul)g:Q

Uy, cr, tr, 1 2
ie () () Go) oo 0 (4)
uly = UR CR tr 3 1 2 2
dp = dr SR br 3 1 -1 -1
leptons
e (D)) ()
el = eRr LR TR 1 1 -1 -1
1/}'%: VeR VuR UrR 1 1 0 0

where
Q=T+Y (5.269)

The Standard Model is described by the following Lagrangian

L= Lgauge"’ Lyvukawa + £Higgs (5.270)
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where theLyukawa IS given by Eq. (5.252), th&€yiggs is given by Eq. (5.209), and the gauge
interaction is given by

v 1 a v 1 v
Egauge = 4Gﬁ,,G'u —4FW/F;L —ZB B“
+ilt PO +ien el
+iqy D qp, + iR P uy + idp P dyy (5.271)

Here]) is a notation for)) = ~* D,, and: denotes three generations. The covariant derivative
is given by

)\A
D, = ( zg—Aa—zgY¢B +298?G;‘)w (5.272)

which acts on quark fields and lepton fields gives

T L, 1
D, = (@—zg?AM—zg (—5) Bu)ﬁL

Dyer = (0, —ig (=1) B,)er

Tt . (1 M
Duqr = au_ZQEAM_Zg 6 Bu+2937GM qr

)\A
Dyur = <8H ( )B +igs— Gf)u

)\A
0, — ( ) B, +ig,— G;‘) dr (5.273)
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