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Abstract. By modelling the coupling of multiple superconducting qubits to
a single cavity in the circuit-quantum electrodynamics (QED) framework we
find that it should be possible to observe superradiance and phase multistability
using currently available technology. Owing to the exceptionally large couplings
present in circuit QED, we predict that superradiant microwave pulses should
be observable with only a very small number of qubits (just three or four),
in the presence of energy relaxation and non-uniform qubit–field coupling
strengths. This paves the way for circuit-QED implementations of superradiant
state readout and decoherence free subspace state encoding in subradiant states.
The system considered here also exhibits phase multistability when driven with
large field amplitudes, and this effect may have applications for collective qubit
readout and for quantum feedback protocols.
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1. Introduction

In 1954, Dicke [1] noted that the intensity of radiation from a gas could be enhanced by
confining it in a region smaller than the wavelength of emitted radiation, a phenomenon called
superradiance. The collective emission intensity, which scales with ∝ N 2, is of fundamental
interest in quantum optics and has been the subject of many theoretical and experimental
works [2–4]. With greater control over a range of quantum systems, it is now possible to observe
superradiance in quantum dots [5], Bose–Einstein condensates [6] and nitrogen vacancy centres
in diamond [7]. Furthermore, superradiance and the related phenomenon of subradiance have
quantum information-based applications such as decoherence-free subspace state encoding in
subradiant states [8] and superradiant state readout [9].

Superradiance has been difficult to observe experimentally as decoherence and dissipation
destroy the required build-up of correlations within the ensemble [2–4]. Plagued by these losses,
experiments have required large ensembles to observe the ∝ N 2 intensity characteristic of
superradiance [5–7], [10–12]. This has inhibited any detailed study of emission dynamics or
measurement of correlations within the ensemble, leaving the phenomenon demonstrated in
principle not yet explored in detail.

Another phenomenon that is difficult to observe experimentally is phase bistability. In
1991, Alsing and Carmichael and, independently, Kilin and Krinitskaya, showed that a strongly
driven qubit–cavity system can undergo a symmetry-breaking phase transition to a state
where the intracavity field is displaced in phase, dependent on the qubit’s state [13, 14].
This state has the remarkable property that the qubit–cavity system can be described as two
coupled, driven and damped harmonic oscillators. Kilin and Krinitskaya also predicted that a
similar phenomenon, phase multistability, occurs when many qubits couple to a single-cavity
mode [15]. Phase multistability describes the phenomenon, where a coherently driven multi-
qubit cavity system displaces the cavity field in phase depending on the collective state of the
qubits. Phase multistability for N > 1 is yet to be observed.

Recently, several promising experiments in circuit-quantum electrodynamic (QED) have
demonstrated various quantum information-based tasks such as three-qubit entanglement, multi-
qubit measurement and the realization of simple quantum algorithms [16–18]. With such a
large degree of control over system dynamics the question naturally arises, ‘Can we use
superconducting circuits to probe many body collective effects that were previously inaccessible
to experiment?’. By demonstrating that small sample superradiance and phase multistability can
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Figure 1. Five transmon qubits (dark blue) coupled to the quantized field of a
TLR (sinusoids).

be observed in circuit QED, we provide an affirmative answer to this question. Circuit QED is
an ideal platform to observe small ensemble superradiance and phase multistability due to small
qubit losses and large qubit–field coupling rates [19].

This paper is organized as follows. In section 2, we show that circuit QED can probe
the small ensemble regime of superradiance, allowing its detailed investigation. In section 3,
we extend the system by adding a coherent driving of the resonator mode. This leads to the
phenomenon of phase multistability, which is analysed in detail. Our conclusions are presented
in section 4.

2. Superradiance

Here, we study several transmon qubits coupled to the field of a transmission line resonator
(TLR) (figure 1). In the frame rotating at angular frequency ω, the dynamics of the system are
described by the master equation

ρ̇ = −i[H, ρ] +
κ

2
D[a]ρ +

N∑
j=1

γ s
j

2
D[σ−

j ]ρ +
γ

p
j

2
D[σ z

j ]ρ, (1)

where γ s
j and γ p

j are for the j th qubit the energy relaxation and dephasing rate, respectively, κ
is the resonator decay rate, D[A]ρ = 2AρA†

− A† Aρ− ρA† A and h̄ = 1. The qubit–resonator
system evolves in the interaction picture under the Tavis–Cummings Hamiltonian [20]

H =1ra
†a +

N∑
j=1

(
1q, j

2
σ z

j + gN , j(σ
−

j a† + aσ +
j )

)
, (2)

where, the j th qubit couples to the field at the rate gN , j , 1q, j = ωq, j −ω is the detuning from
the j th qubit transition frequency ωq, j and 1r = ωr −ω is the detuning from the resonator
frequency ωr. The system is initially taken to be in the state where the qubits are prepared in a
symmetrically excited state and there are no photons in the cavity, |ψ(0)〉 = |0〉 ⊗ |e, e, . . . , e〉.
Owing to the Tavis–Cummings interaction, energy is transferred to the resonator. We probe the
superradiant emission of these photons from the TLR in the ‘bad cavity’ limit [21], where the
photons escape the cavity before re-absorption by the qubits.
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In order to obtain an analytic expression for the intensity of emitted photons from the TLR,
it is necessary to make several assumptions. First, we assume that each qubit couples identically
to the field mode (gN , j ≈ ḡN ), as non-uniform coupling rates induce subradiant transitions. This
can be achieved by optimizing the placement of qubits at field antinodes [16, 19]. Secondly,
in the bad cavity limit it is assumed that the field in the resonator decays at a faster rate
than the average qubit–field coupling rate, κ � ḡN . Lastly, it is assumed that the dissipative
processes, dephasing (γ p

j ) and energy relaxation (γ s
j ) are negligible on the timescale of interest,

κ � ḡN � γ
p
j , γ

s
j .

As the resonator field decays on a timescale much faster than that of the qubits we can
adiabatically eliminate the field degrees of freedom [22]. The master equation for the reduced
density operator describing the qubits only is given by

ρ̇q = −i

[
1q

2
Jz −1r

ḡ2
N

|0|2
J+ J−, ρq

]
+
κ

2

ḡ2
N

|0|2
D[J−]ρq, (3)

where, 0 = κ/2 + i1r, and it is assumed that the resonator is initially empty. The collective
operators are defined as, Ji =

∑N
j=1 σ

i
j , where i = {+,−, z}, and σ i

j denote the individual qubit
Pauli matrices. Equation (3) corresponds to the superradiance master equation (SRME) that was
derived for atomic ensembles, after a suitable parameter substitution [2, 7, 23].

We now seek an expression for the intensity of photons escaping the TLR, IN (t).
Expanding (3) in the Dicke basis [1], the probability that the system is in one of the Dicke states
|l,m〉 is, P(l,m, t)= 〈l,m|ρq(t)|l,m〉, where, J2

|l,m〉 = l(l + 1)|l,m〉, Jz|l,m〉 = 2m|l,m〉

and N/2> l > |m|> 0. Using the SRME (3) the population rates follow [24],

Ṗ(l,m, t)=
κ ḡ2

N

|0|2
[(l − m)(l + m + 1)P(l,m + 1, t)− (l + m)(l − m + 1)P(l,m, t)]. (4)

Here, we consider the initial condition that all qubits are excited, i.e. P(l,m, 0)=

P(N/2, N/2, 0), although this approach can easily be extended to take into account other initial
conditions [25]. As l is conserved by the SRME we introduce the variable, n = l − m = 0,
1, . . . , N , which corresponds to the number of photons emitted from the resonator when the
system is in the initial state m = N/2. Equation (4) can now be rewritten as

Ṗ(n, τ )= (N − n + 1)n P(n − 1, τ )− (N − n)(n + 1)P(n, τ ), (5)

where we have rescaled the time τ = γ t and γ = κ ḡ2
N/|0|

2. To proceed, we Laplace transform
(5), subject to the full excitation initial condition, P(n, 0)= δn,0,

s Q(n, s)− δn,0 = (N − n + 1)nQ(n − 1, s)− (N − n)(n + 1)Q(n, s), (6)

where, Q(n, s) is the Laplace transform of P(n, τ ). From (6) we find Q(0, s)= 1/(s + N ).
Continuing recursively we find

Q(n > 0, s)=
1

s + N

n∏
i=1

(N − i + 1)i

s + (N − i)(i + 1)
. (7)

On inverting the transform (7), we obtain the populations of the Dicke states, P(n, τ ) [24]. The
intensity of photons emitted from the TLR can be found from the Dicke state populations using,
IN (τ )=

∂

∂τ

∑
n n P(n, τ ). The system is superradiant if the maximum intensity, I max

N , is greater
than N , the initial intensity of N -independent qubits [7].
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Solving the SRME for the intensity profiles for experimentally relevant systems of TLRs
with N = 3, 4 or 5 qubits we find

I3(τ )= 3e−3τ (12τ − 7)+ 24e−4τ , (8a)

I4(τ )= (72τ + 96)e−6τ + 4e−4τ (36τ − 23), (8b)

I5(τ )=
5
3 [162e−9τ + 16e−8τ (24τ − 1)+ e−5τ (240τ − 143)]. (8c)

The system is superradiant if the maximum intensity, I max
N , is greater than N , the initial intensity

of N -independent qubits [7]. As I max
3 ≈ 3.2> 3, I max

4 ≈ 4.9> 4, and, I max
5 ≈ 6.9> 5, these

systems exhibit superradiance.
In figure 2, the intensity of emission from the ensembles is shown for a range of

experimentally feasible parameters. It is clear that superradiance (coloured red) can be observed
over a large range of cavity decay rates, κ . The approximate solutions (8a)–(8c) closely resemble
the results in figure 2 for κ � ḡN � γ s

j , γ
p
j . For each system the superradiant peak is large

enough to be easily resolved using existing detection schemes [26–28].
The above results demonstrate that it is possible to observe small sample superradiance in

a TLR in the presence of energy relaxation and non-uniform coupling strengths. Superradiance
can also be observed for N > 5 qubits, provided κ � ḡN � γ s

j , γ
s
p and gN , j ≈ ḡN ; however, this

may be more difficult to achieve experimentally. For a TLR with resonance frequency ωr, the
length determines the number of qubits that can be effectively coupled at the maximal coupling
strength as each qubit is typically placed at the field antinodes. When N is increased the coupling
rate to each qubit is reduced as the coupling rate ḡN is inversely related to the mode volume [29].
As ḡN → γ s

j , losses due to energy relaxation and coupling to subradiant states will dominate
the dynamics and superradiant effects will become more difficult to observe. However, as the
intensity scales as I max

N ∝ N 2, the resulting dynamics will be determined from the competition
between the superradiant intensity enhancement and the aforementioned losses.

The proposal presented here is superior to existing superradiance experiments in three key
aspects: initial state preparation, measurement and losses. In circuit QED arbitrary initial states
can be prepared at high fidelity using a sequence of quantum logic gates [17], whereas, in bulk
solids and atomic gases a pulse is fired into the medium, randomly exciting sections of the
ensemble [5, 6], [10–12]. The lack of control over the initial state in the latter schemes severely
limits the possible initial states that can be prepared and can lead to light being re-absorbed by
the atomic system resulting in delays and distortions of the exiting superradiant pulse, making
analysis extremely complicated. Recent advances in circuit QED have also led to high-fidelity,
single-shot joint multi-qubit measurements [17], which can be used to completely characterize
the state of the ensemble during emission. This can also be used to monitor the build-up of field-
mediated correlations between individual qubits. Such quantum correlations are a hallmark of
the superradiant process [2, 3]. In atomic demonstrations of superradiance, characterization of
the quantum states of the atomic system using techniques such as quantum state tomography
has not been possible. Instead one monitors the emission from the ensemble to characterize
superradiance. However, in the superconducting case, full quantum state tomography can be
performed on the superconducting qubits and detailed superradiance-mediated correlations can
be fully mapped out. Lastly, circuit-QED systems have relatively uniform qubit–field coupling
rates and remarkably low rates of decoherence and energy relaxation. In other implementations,
atomic collisions combined with spatially varying qubit–field coupling rates lead to losses
that can only be overcome by using large ensembles. By using the low-loss circuit-QED
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(a)

(b)

(c)

Figure 2. Intensity of radiation from the resonator IN (R1t) obtained from
numerical solution of the complete master equation, where R1 ≡ 0(1r = 0)=

4ḡ2
N/κ . (a) N = 3. (b) N = 4. (c) N = 5. Superradiant emission is coloured

red. Parameters used are g3, j/2π = (83.7, 85.7, 85.1) MHz [19], g4, j/2π =

(69.4, 69.1, 68.6, 69.7)MHz, g5, j/2π = (59.0, 59.4, 59.9, 60.9, 60.7)MHz and
(κ, γ s

j , γ
p
j )/2π = (2000, 0.19, 0) MHz.
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system presented here, it is no longer necessary to use such large ensembles to observe
superradiance. Small sample superradiance may have applications in quantum information,
including decoherence-free subspace state encoding using subradiant states [8] and superradiant
state readout [9].

2.1. Discussion of the two-level approximation to the transmon

In this paper, we make the two-level approximation to the transmon qubit, whereas in fact
the transmon is an anharmonic oscillator [30]. With several excitations in the system it may
be possible to induce transitions to higher-energy levels than the qubit levels, slowing the
superradiant decay. Here, we analyze the effect that a third level for each transmon has on the
dynamics. Firstly, we note that the two-level approximation is a very common approximation
in the literature [30–32] and has been verified in several experiments [19, 33, 34]. Secondly, the
transmon’s anharmonicity can be varied considerably by altering the ratio of the Josephson
energy to the charging energy (EJ/EC). From [30], it can be seen that the anharmonicity,
αr, can be as large as 11% of the qubit level’s transition frequency for EJ/EC ∼ 17.5 (i.e
αr/2π ∼ 660 MHz at a qubit transition frequency of ωr/2π = 6 GHz). This can be achieved with
a modest increase in the transmon’s susceptibility to charge noise. At this level of anharmonicity,
the third level is far detuned from the transition frequency and has very little effect on the system
dynamics.

In the bad cavity limit the photons escape immediately after the transmon decays; therefore,
there is no possibility for the decay of one transmon to excite higher levels of another transmon.
In our simulations, κ is much larger than ḡN to ensure that this limit is valid. However, as κ is
finite, there is a small probability of the decay of one transmon exciting another transmon to a
higher level. To see this effect, a third level of transmons is added to our simulations. We find
that the population of the third level is negligible. However, we do find the third level induces
small oscillations in the intensity from the cavity (figure 3). This is a well-known effect [35, 36]
whereby a far-detuned three-level system acts like a two-level system with minor oscillations at
a frequency proportional to the detuning of the third level.

3. Phase multistability

We now study another collective effect that can be observed in the same system—phase
multistability. Phase multistability is the phenomenon where a coherently driven multi-qubit
cavity system displaces the cavity field in phase depending on the collective state of the qubits.
To observe phase multistability we return to the g > κ regime in equation (1) and resonantly
drive the system. The system is now described by the following master equation:

ρ̇ = −i

 N∑
j=1

gN , j(σ
−

j a† + aσ +
j ), ρ] + [E(a†

− a), ρ

 +
κ

2
D[a]ρ +

N∑
j=1

γ s
j

2
D[σ−

j ]ρ, (9)

where, we assume that the drive field and the qubits are resonant with the TLR (1r,1q, j = 0).
Furthermore, we note that dephasing is negligible for transmon qubits, γ p

j ≈ 0.
Single-qubit phase bistability has proven very difficult to experimentally achieve as the

qubit–cavity system needs to fulfil the requirements of the strong coupling regime, g > κ, γ s .
To date, only a single experiment has detected signatures of phase bistability [41]; however,
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Figure 3. Intensity of radiation from the resonator I3(R1t) obtained
from numerical solution of the complete master equation with the two-
level and three-level approximations for each transmon. Parameters used
are g3, j/2π = (83.7, 85.7, 85.1) MHz [19] and (ωr, αr, κ, γ

s
j , γ

p
j )/2π =

(6000, 660, 2000, 0.19, 0) MHz. The coupling rate to the third transmon level,
G3, j , is approximated using G3, j =

√
2g3, j [37].

the modest ratio of g/κ and various other experimental difficulties meant that the results were
only marginally conclusive. Phase multistability for N > 1 is yet to be observed. In this section,
we show that the circuit-QED system presented here, with the addition of coherent driving can
display phase multistability and should present very clear experimental signatures.

3.1. Phase bistability

Phase bistability can be described in the γ s
→ 0, limit as follows: at large intra-cavity

photon numbers, n, the difference in energy between successive Jaynes–Cummings manifolds
|n,±〉 ↔ |n + 1,±〉 is E±

n+1 − E±

n ≈ ωr ± g/2
√

n, where ωr is the frequency of the resonator
and |n,±〉 = 1/

√
2(|n + 1, g〉 ± |n, e〉). Strong driving of the TLR at ωr will populate large n

Jaynes–Cummings eigenstates and cause transitions along two separate pathways, |n,±〉 ↔

|n + 1,±〉. This driving is detuned from the transition frequency of each path by the manifold-
dependent detuning, ±g/(2

√
n). As the field is displaced in phase depending on the detuning,

the field acquires a phase depending on the state of the qubit. The steady-state density matrix
of the system (ρss) can be approximated by a mixture of two uncoupled, damped harmonic
oscillators. These oscillators are driven off resonantly and displaced in phase due to the
different detunings of the effective driving fields experienced by each oscillator [13, 14]. As
t → ∞, the coherent state amplitude of each oscillator |α±

ss〉 is α±

ss = f (2E f ± ig)/κ , where
f =

√
1 − (g/2E)2. The two coherent states |α±

ss〉 can be detected by homodyne measurement
of the resonator field [38–40].

Now relaxing the assumption, γ s
→ 0, we consider the case where, f → 1, and in the

steady state the system is in |α+
ss,+〉. The system will remain in this state until energy relaxation

causes the qubit transition |+〉
γ s

→ 1/
√

2(|+〉 + |−〉). After a short transient regime, the system
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0

Figure 4. Q-function in equation (10) at x = 2E/κ with parameters
(g, κ, γ s)/2π = (85, 4, 0.19) MHz. Inset: the location of the two peaks
in the steady-state Q-function for a range of driving strengths E/2π =

45–117.6 MHz, increasing from bottom to top. The following parameters were
used: (g, κ, γ s)/2π = (85, 28.3, 0.19) MHz.

will either reach the steady state, |α+
ss,+〉 or |α−

ss,−〉 with equal probability. Owing to this effect,
in a single quantum trajectory the imaginary part of the cavity amplitude randomly switches
between ±g/κ at the rate γ s/4 [14].

To observe phase bistability experimentally, it is necessary to resolve the two coherent
states |α±

ss〉. For strong driving this requires the ratio g/κ to be as large as possible. Also, as
energy relaxation couples the two transition pathways, it can be shown [15] that phase bistability
only occurs when γ s < 2κ . As circuit-QED systems can fulfil each of these requirements, and
does not suffer from problems associated with moving atoms in cavity QED [41], circuit QED
is a preferable system for the observation of phase bistability.

For large driving amplitude the steady-state Q-distribution can be found after appropriate
transformations of the density matrix [13],

Q(x + iy)=
2e−(x−2E/κ)2

2γ s/κπβ(
γ s

2κ ,
γ s

2κ )

∫ 1

−1

e−(g/κz−y)2

(1 − z2)(1−γ s/2κ)
dz, (10)

where, Q(α)= 〈α|ρss|α〉/π, α = x + iy and β(a, b) is the beta function. A cross-section of this
function is shown in figure 4 for realistic circuit-QED parameters. It is clear that |α±

ss〉 can be
resolved using homodyne measurement of the field [26, 41]. In contrast to [41], we see that a
circuit-QED demonstration of this effect will be a dramatic and unambiguous demonstration of
phase bistability.

The inset in figure 4 compares the peak locations α±

ss with those obtained from the
numerical solution of the steady-state density matrix for a range of driving amplitudes. At small
driving amplitudes the system is too anharmonic to approximate as two harmonic oscillators.
However, for larger amplitudes the two solutions coincide. Phase bistability has been the basis
for several proposals including ultralow energy optical switching [41], quantum feedback and
qubit measurement [42].
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Figure 5. Steady-state Q-function for the field of a TLR with three qubits
obtained from numerical solution of equations (1) with HE . Centre peaks
correspond to α(3/2,±1/2)

ss , while the other peaks correspond to α(3/2,±3/2)
ss (see

equation (11)). Parameters used are (E, κ, γ s
j )/2π = (169.6, 42.4, 0.19) MHz

and g3, j/2π = (83.7, 85.7, 85.1) MHz [19]. Note that the distance between the
peaks can be increased by choosing smaller κ .

Similar to section 2.1, we review the validity of the two-level approximation to the
transmon. The higher levels will lead to more transition pathways and therefore more peaks
in the steady-state Q-distribution. However, if the transmon is strongly anharmonic, these
transitions will be suppressed and the additional peaks will be very minor. As strong driving
can populate higher lying states, to ensure the validity of the two-level approximation the drive
frequency needs to be significantly less than the anharmonicity, αr � E > g/2> κ > γ s/2.
Furthermore, the populations of the higher levels can be reduced by enhancing the rate of energy
relaxation γ s .

3.2. Phase multistability

When there are N qubits in the resonator an analogous phenomenon occurs: phase
multistability [15]. Similar to the single-qubit case, phase multistability results from the
energy structure of Tavis–Cummings manifolds at large excitation. For a given l, there are
2 l + 1 transitions between the Dicke states |n〉|l,m〉 ↔ |n + 1〉|l,m〉 [1]. The difference in
energy between successive Tavis–Cummings manifolds at large intra-cavity photon number is
E (l,m)

n+1 − E (l,m)
n ≈ ωr + mḡN/

√
n [15]. Proceeding as before, assuming γ s

j → 0 and gN , j ≈ ḡN ,
strong resonant driving of the TLR leads to transitions on 2 l + 1 separate ladders. As the field
is displaced in phase depending on the detuning, the field acquires a phase depending on the
state of the qubit. The steady-state density matrix of the system can be approximated by a
mixture of 2 l + 1 damped, driven uncoupled harmonic oscillators. Each harmonic oscillator has
the coherent state amplitude

α(l,m)ss = 2 fm(E fm + imḡN )/κ, (11)

where, fm =
√

1 − (mḡN/E)2.
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Owing to the small ratio of ḡN/κ and the inability to couple several qubits identically
to a common field mode, phase multistability has not been experimentally demonstrated.
However, using existing circuit-QED parameters, figure 5 demonstrates that phase multistability
can be observed. The four peaks in the steady-state Q-distribution in figure 5 are the
four-field displacements in phase space corresponding to the collective qubit states with
l = −3/2,−1/2, 1/2, 3/2. The peak positions α(l,m)ss coincide with the numerical solution to
high precision. The centre two peaks are larger because the m = 1/2 transitions are driven
closer to resonance than the m = 3/2 transitions. Phase multistability may have similar
applications as phase bistability, i.e. in quantum feedback [42] and ultralow-energy microwave
switching [41, 43, 44]. Moreover, it may be possible to use phase multistability to perform a
collective measurement of the system to determine the collective spin, m [42].

4. Conclusion

In summary, we have demonstrated that two previously unobservable collective quantum optical
phenomena, small sample superradiance and phase multistability, can be observed in a circuit-
QED-based system using existing experimental parameters. The proposal presented here should
provide a definitive and unambiguous demonstration of superradiance, with the added benefit of
full quantum state tomography on the qubits. Owing to its experimental tractability, we expect
that this approach will be indispensable for a range experiments on collective phenomena.
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