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Using a plaquette formulation for lattice gauge models we describe monopoles of the 3D SU(2) theory which
appear as configurations in the complete axial gauge and violate the continuum Bianchi identity. Furthemore
we derive a dual representation for the Wilson loop in arbitrary representation and calculate the form of the
interaction between generated electric flux and monopoles in the region of weak coupling relevant for the
continuum limit. The effective theory which controls the interaction is a generalized version of the sine-Gordon
model. The string tension is calculated within the semiclassical approximation.

1 Introduction

The problem of the permanent confinement of quarks inside hadrons attracts attention of the theoretical physi-
cists for the last three decades (see [1] and refs. therein for a recent review of the problem). Two of the most
popular and the most elaborated mechanisms of confinement are based on the condensation of certain topologi-
cally nontrivial configurations - the so-called center vortices or monopoles. In this paper we are interested in the
second of these configurations. It was proposed in [2] in the context of continuum compact three dimensional
(3D) electrodynamics that the string tension is nonvanishing in this theory at any positive coupling constant,
and the contribution of monopoles to the Wilson loop was estimated in the semiclassical approximation. Later
this consideration was extended to U(1) lattice gauge theory (LGT) in 3D [3]. It turns out that these are
precisely monopole configurations which make the string tension nonvanishing at all couplings. A rigorous
proof of this property was done in [4]. While the monopoles of abelian gauge models can be given by a gauge
invariant definition it is not the case for nonabelian models. The most popular approach consists of a partial
gauge fixing such that some abelian subgroup of the full nonabelian group remains unbroken. Then, one can
define monopoles in a nonabelian theory as monopoles of the unbroken abelian subgroup. Here we propose a
different way to define monopoles in nonabelian models. Its main feature is complete gauge fixing. Monopoles
appear as defects of smooth gauge fields which violate the Bianchi identity in the continuum limit, in the full
analogy with abelian models. Our principal approach is to rewrite the compact LGT in the plaquette (con-
tinuum field-strength) representation and to find a dual form of the nonabelian theory. The Bianchi identity
appears in such formulation as a condition on the admissible configurations. This allows to reveal the relevant
field configurations contributing to the partition function and various observables. Such a program was accom-
plished for the abelian LGT in [3]. Here we are going to work out the corresponding approach for nonabelian
models on the example of 3D SU(2) LGT.

2 Plaquette formulation and monopoles

LGT was formulated by K. Wilson in terms of group valued matrices on links of the lattice as fundamen-
tal degrees of freedom [5]. The plaquette representation was invented originally in the continuum theory by
M. Halpern and extended to lattice models by G. Batrouni [6]. In this representation the plaquette matrices
play the role of the dynamical degrees of freedom and satisfy certain constraints expressed by Bianchi identities
in every cube of the lattice. In papers [7], [8], [9] we have developed a different plaquette formulation which we
outline below.

We start from the partition function that can be written on the dual lattice as [10]

Z =
∫ ∏

l,k

dωk(l)e−
2β
8 ω2

k(l)
∏
x

|Wx|
sinWx

∞∑

m(x)=−∞

∫ ∏

k

dαk(x) exp

[
−i

∑

k

αk(x)
ωk(x)

2
+ 2πim(x)α(x)

]
, (1)

where α(x) = (
∑

k α2
k(x))1/2, Wx = 1

2 (
∑

k ω2
k(x))1/2 and similarly for Wl. m(x) are arbitrary integers. Auxiliary
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fields αk(x) have been introduced for integral representation of the Bianchi identity (see [9] for details)

[∑

k

ωk(x)
2

2
] 1

2

= 2πm(x) , ωk(x) =
3∑

n=1

(ωk(x, n)− ωk(x− en, n)) +O(ω2
k(l)) .

Here, six links l = (x, n) are attached to a site x and ωk(l) are link variables dual to original plaquettes. In
the continuum limit the last constraint reduces to the familiar Bianchi identity if one takes m(x) = 0 for all
x. However, when m(x) differs from zero one gets violation of the continuum Bianchi identity at the point
x. Clearly, m(x) 6= 0 configuration corresponds to the monopole configuration of nonabelian gauge field.
Therefore, we may interpret the summation over m(x) as a summation over monopole charges which exist due
to the periodicity of SU(2) delta-function (in close analogy with U(1) model).

3 Effective monopole model for SU(2) LGT at large β

Here we would like to calculate the contribution of monopole configurations to the partition function and to the
Wilson loop. We make expansion of the action, invariant measure and Jacobian around nontrivial monopole
configuration. To do this one should get exact classical equation and find its solution on the nontrivial monopole
configuration. We consider that fluctuations around this configuration should be small and restrict ourselves
only to the classical solution. We also have to assume that connectors (see its definition in [9]) are not important
in generating the string tension and produce only smooth perturbative corrections to the dual gluons.

Starting from (1) we can obtain the following saddle-point equations for fields ωk(l) and αk(x)

ωk(x) =
∑

l∈x

ωk(l) + εkmn
∑

l<l′∈x

ωm(l)ωn(l′) + ... = 4πm(x)
αk(x)
α(x)

,

−2β

4
ωk(l)− i

1
2
[(αk(x)− αk(x + en)) + ... = 0 . (2)

To find the solution of (2) we use an anzatz ωk(l) = τkωs(x) , αk(x) = τkαs(x) where τk have properties
τk · τn = 0 , k 6= n,

∑
k τ2

k = 1. After these substitutions we obtain a solution for functions ωs(l) and αs(x)

ωs(l) = −2πDl(y)m(y) , αs(x) = iπβGxx′m(x′)

We use this solution to compute the Wilson loop of the size R × T in the representation j. Let S be some
surface dual to the surface Sxy which is bounded by the loop C and consisting of links dual to plaquettes of the
original lattice. The expectation value of Wj(C) at β →∞ we present in the form

〈Wj(C)〉 =
1

2j + 1

〈
χj

(
1
2
ΩC

)〉
, ΩC =

(∑

k

Ω2
k(C)

) 1
2

, Ωk(C) =
∑

l∈S

ωk(l) +O(ω2
k(l)) . (3)

Then, by a substitution

ωk(l) → τkωs(l) +
1√
2β

ωk(l) , αk(x) → τkαs(x) +
√

2βαk(x)

the expectation value of W (C) in (3), averaged by the ensemble in (1), is presented at β →∞ in the form

〈Wj(C)〉 =
1
Z

1
2j + 1

∏
x

∞∑

m(x) = −∞
eSmon

∫ ∞

−∞

∏

l,k

dωk(l)
∫ ∞

−∞

∏

x,k

dαk(x) χj

(
1
2
ΩC

)

×
∏

l,k

exp[−1
8
ω2

k(l)− i
1
2
ωk(l) (αk(x + en)− αk(x))] , (4)

where χj(x) is a SU(2) character and the effective action Smon is of the form

Smon = −2βπ2m(x)Gxx′m(x′) . (5)

To perform the summation over monopole configurations mx = 0,±1 we follow the strategy of Refs.[4], [11].
Using the decomposition Gxx′ = Bxx′ +Gxx′(M) , where Bxx′ = Gxx′−Gxx′(M) we rewrite the effective action
(5) in the form

Smon = −2βπ2m(x)Bxx′m(x′)− 2βπ2G0(M)
∑

x

m2
x − 2βπ2

∑

x 6=x′
m(x)Gxx′(M)m(x′) . (6)



Monopoles and confinement in the 3D SU(2) lattice gauge theory 113

The first term in (5) is presented as

e−2βπ2m(x)Bxx′m(x′) = (detB−1
xx′)

3/2

∫ ∞

−∞

∏
x

dφx exp[− 1
2β

φxB−1
xx′φx′ + i2πφxm(x)] .

The behaviour of Gxx′(M) in the thermodynamic and continuum limits is well known

Gxx′(M) =
2

πR
e−

1
2 MR, R =

[∑

k

(xk − x′k)2
] 1

2

.

This behaviour allows us to keep only self-energy of the monopoles SSE
mon = −π2G0(M)

∑
x m2

x if MR À 1.
After algebraic manipulations we keep in the sums over monopoles only configurations m = 0,±1. This

gives the effective model which appears to be of the sine-Gordon type. To write down the final expression we
make use of the fact that B−1

xx′(M) ≈ G−1
xx′ for M sufficiently large and integrate over fluctuations ωk(x) and

αk(x) when m(x) = 0. Since we are interested in recovering PT (perturbation theory) result at large β we
consider small fluctuations ωk(l) ≈ 0 and use the following asymptotics of SU(2)-character uniformly valid in j

〈Wj(C)〉 '
∫

S2
dσk

〈
e−i
√

j(j+1)
Ωk(C)

2 σk

〉
'

∫

S2
dσk exp[−ijk(l)ωk(l)] , (7)

where expression for Ωk(C)
2 is given in (3) and jk(l) = 1

2

√
j(j + 1)σk for l ∈ S.

Substituting representation (7) in the expression (4) we integrate out the fluctuations to find

〈Wj(C)〉 =
1
Z

Hgl
j Hmon

j ,

where Hgl
j is the conventional PT result

Hgl
j = e−

j(j+1)
2β

P
b,b′∈S Gbb′

and for Hmon
j one arrives at the following effective model

Hmon
j =

∫ ∞

−∞

∏

x,k

dφx exp(−Smon
eff [φx]),

where

Smon
eff [φx] =

1
4β

∑
x,n

(φx − φx+n)2 − γ
∑

x

1
2j + 1

χj

(
ΩC

2

)
cos 2πφx .

Here γ = 2 exp[−2π2βG0(M)] and ΩC = 2π
∑

b∈S Db(x) .
This model possesses an important feature. We see surface independence of the Wilson loop due to the

sources which enter through SU(2) group character (see properties of link Green function in our paper [9]).
To perform semiclassical calculations we take the continuum limit. In this limit we get the following saddle-

point equation of sine-Gordon type

∆α(x) = −m2 1
2j + 1

χj

(
ΩC

2

)
sin α(x) . (8)

Here we have introduced the Debye mass

m2 = 32π2βe−2π2βG0(M) . (9)

After calculations we find
ΩC

2
= πϕ(z) + ψ(z, x, y; R, T )

where ϕ(z) = sign(z) and ψ(x, y; R, T ) is a correction which decays with R, T growing. If one neglects this
correction for large Wilson loop one arrives to

1
2j + 1

χj

(
ΩC

2

)
=

1
2j + 1

sin(2j + 1)ΩC

2

sin ΩC

2

= cos (πϕ(z))

for all half-integer j. In this approximation for all half-integer j we write down the saddle-point equation (8) as

∆φ(x) = 2πδ
′
(x)θ(x, y; R, T )−m2 sinφ(x) , (10)
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where θ(x, y; R, T ) is nonzero only for x, y ∈ S. Far from the boundaries of the contour C the saddle-point
equation (10) is essentially one dimensional and has the solution

φ(z) = 4sign(z) arctan(e−sign(z)mz) . (11)

This solution have an essential property

φ(+0)− φ(−0) = 2π . (12)

We want to stress that there is no have such a nontrivial solution (with important property (12)) for all integer
j. The solution (12) leads to the desirable area law for all half-integer representations

〈Wj(C)〉 ≈ e−σ(j=n+1/2)AC− j(j+1)
2β

P
b,b′∈S Gbb′ ,

where AC is the area of Wilson loop C and the string tension reads

σ =
1

π2β
m .

The second term in the exponent is the leading term of the PT [9]. String rension for all integer j is vanishing.
The mass of dual photons is given in (9).

4 Conclusion

In this paper we calculated effective model at large values of β for the expectation value of the Wilson loop in
3D SU(2) LGT. This model appears to be a sine-Gordon type and it is valid for all values of representations j
of SU(2) group. This model takes into account both the dual photons and the monopole contributions. For all
half-integer representation in the semiclassical approximation we have found that the Wilson loop obeys the area
law and string tension σ ∼ m. Therefore, proposed mechanism of confinement is able to reproduce this essential
feature of the model. It remains unclear if this contribution is also necessary condition of confinement. Our
calculations also support the result by Polyakov that the string tension is nonzero only for odd representations
j in U(1) LGT [12].
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