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1 Centro de Ciencias Matemáticas, Unidad Morelia, Universidad Nacional Autónoma de
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3 Instituto de F́ısica y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,
Morelia, Michoacán, Mexico

E-mail: corichi@matmor.unam.mx, jdreyes@matmor.unam.mx

Abstract. Starting from the Holst action with surface terms and the fall-off conditions
that make the variational principle and the covariant phase space formulation well-defined for
asymptotically flat spacetimes, we rewrite the surface terms in the 3+1 decomposition of the
action. We explore their relation with the surface terms in the Hamiltonian formulation in terms
of Ashtekar variables. Just as for the Einstein-Hilbert action, if variations respecting asymptotic
flatness are allowed, the energy and momentum in the Hamiltonian framework are not directly
recovered from the 3+1 decomposition and gauge fixing of these terms.

1. Introduction
The Holst action [1] is the classical starting point in Loop Quantum Gravity. It is a first-
order covariant action based on orthonormal tetrads and Lorentz connections, whose 3+1
decomposition plus partial gauge fixing gives a Hamiltonian formulation for General Relativity
in terms of Ashtekar variables.

In [2], the form of the surface terms of the action, necessary for a proper treatment of
asymptotically flat space-times, was given. These surface terms give a manifestly finite action
even off-shell5, and a well-defined variational principle, reproducing Einstein’s equations under
all asymptotically flat variations. Furthermore, the amended action leads naturally to a well-
defined covariant phase space in which the Hamiltonians generating asymptotic symmetries
provide the total energy-momentum and angular momentum of the space-time.

Here we wish to analize the form of these surface terms in the canonical or 3+1 formulation
of the theory and explore its relation to the canonical treatment in [5], where surface terms and
Poincaré charges are derived directly from the ADM framework.

4 Present address: Departamento de F́ısica, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco
186, México D.F. 09340, Mexico
5 This is true for so called cylindrical temporal cut-offs or asymptotically time-translated spatial boundaries [3, 4]
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2. Covariant and 3+1 actions for General Relativity
In the conventional treatment of the Einstein-Hilbert action for a space-time with a boundary,
two additional terms are necessary in order to have a well-defined variational principle that
yields Einstein’s equations from the stationary points of the action:

SEHGH =
1

2κ

(∫
M
d4x
√
−g R + 2

∫
∂M

d3y
√
|h|(K −K0)

)
. (1)

The first so called Gibbons-Hawking surface term [7] is inserted in the action so that its variation
exactly cancels variations of the first derivatives of the metric, so only the metric is required to
be fixed at the boundary. Here κ = 8πG,M is an appropriate portion of space-time and ∂M its
boundary, R the Ricci scalar of the 4-metric g, h the induced metric on ∂M, and K the trace
of its extrinsic curvature. Since this term is generally divergent for asymptotically flat solutions
the last ’non-dynamical’ counter term is required to make the action finite on-shell.

In a more careful treatment though, for asymptotically flat space-times, the action should
be such that asymptotically flat solutions are stationary points under all variations preserving
asymptotic flatness, not just under variations of compact support. The Einstein-Hilbert action
with Gibbons-Hawking term does not satisfy this requirement. Under all asymptotically flat
variations, its variation gives a non-vanishing surface term when Einstein’s equations are
satisfied. Furthermore, the counter term becomes dynamical and since it requires an embedding
of ∂M in a reference background, which is not always guaranteed, its variation is not even well
defined [4]. Several proposals or generalizations of this term exist in the literature which aim to
correct this problem [6, 4].

In contrast, in the 3+1 decomposition of space-timeM' R×Σ, the stationarity requirement
takes a different form [8, 9]. In order to have a well-defined Hamiltonian formulation and compute
Poisson brackets of the constraints with various functions on the phase space, the constraints
have to be finite, i.e. the integrals have to converge, in all of phase space, and they have to be
functionally differentiable. So starting from the ADM action:

SADM =
1

2κ

∫
dt

∫
Σ
d3x( q̇abpab −NH −NaDa ), (2)

the Hamiltonian H[N ] = 1
2κ

∫
d3xNH and vector constraints D[N ] = 1

2κ

∫
d3xNaDa are

supplemented with boundary terms so that they are finite on the whole of phase space and

δH[N ] =
∫
d3x

δH[N ]
δqab

δqab +
δH[N ]
δpab

δpab

for all asymptotically flat variations (δqab, δpab). And similarly for D[Na].
Convergence of the integrals depends of course on the fall-off conditions for the lapse N

and shift vector Na. For a 3+1 decomposition, a cylindrical representation of spatial infinity
io is most convenient so that for cartesian coordinates xa in a neighborhood of io the fall-off
conditions for the canonical pairs are

qab(xc) = δab +
1
r
fab(xc/r) + o(1/r2) , pab(xc) =

1
r2
hab(xc/r) + o(1/r3) (3)

with fab(−xc/r) = fab(xc/r) even, and hab(−xc/r) = −hab(xc/r) odd functions on the sphere.
For lapse and shift of order 1/r or odd functions of order 1, H[N ] and D[Na] are already finite

and differentiable and generate proper gauge transformations or so called supertranslations at
infinity respectively. If one allows N and Na to asymptote to constant or linear functions then
surface terms are needed to subtract divergences and to cancel unwanted variation terms so that
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H[N ] and D[Na] are differentiable. Furthermore, with these fall-off conditions, on the constraint
surface H[N ] and D[Na] become the generators of asymptotic Poincaré transformations at
infinity, and the non-vanishing surface terms are the corresponding charges. Indeed, if (t̄, ȳa) is
a Lorentzian frame at infinity such that Σt, the leaves of the foliation, coincide with t̄ = const,
then their normals nα → ∂xα/∂t̄, and the Hamiltonian evolution vector field goes as

tα → N

(
∂xα

∂t̄

)
+Na

(
∂xα

∂ȳa

)
So fall-off conditions of N and Na determine a (10 parameter) Killing vector field of asymptotic
space time metric.

We emphasize here the different roles that H[N ] and D[Na] play in the Hamiltonian
formulation depending on the asymptotic fall-off conditions of N and Na: as constraints and
generators of gauge transformations in the bulk or as charges and generators of symmetries at
infinity.

Also we note that the surface terms for energy and momentum in the 3+1 ADM action (2)
can be recovered from those in the covariant action (1) only if one fixes the variations at the
boundary [10]. Finally we contrast the finiteness in all of phase space of the corresponding ADM
action (2) with surface terms, at least for asymptotically time-translated spatial boundaries, as
opposed to finiteness on-shell for (1).

3. Actions for Loop Quantum Gravity
The Holst action with surface term is given by

SHolst = − 1
2κ
( ∫
M

ΣIJ ∧ (FIJ +
1
γ
? FIJ) +

1
2κ

∫
∂M

ΣIJ ∧ (ωIJ +
1
γ
? ωIJ). (4)

Where FIJ is the curvature of the spin connection ωIJ , and ΣIJ = 1
2εIJKLe

K ∧eL is constructed
from the co-tetrads. As already mentioned the action is not only finite on-shell but even off-shell
for cylindrical temporal cut-offs, and it gives a well-defined covariant Hamiltonian framework
leading to asymptotic symmetries and conserved charges identical to the ADM framework. It
is natural to ask then what the 3+1 decomposition and temporal gauge fixing of these surface
terms is and how they relate to the canonical treatment derived from the ADM action.

The transcription of the framework from the ADM action (2) in its manifestly finite and
functionally differentiable form to Ashtekar variables was done in [5]. Boundary conditions are
derived from those for the metric (3):

Eai = Ēai +
F ai
r

+ o(1/r2), Aia =
Gia
r2

+ o(1/r3),

with F ai and Gia even and odd functions on the sphere respectively, and similar conditions for
Γia and Ki

a. Expressed in these variables the constraints become divergent due to the extra
gauge degrees of freedom, so additional terms proportional to the Gauss constraint Gi have to
be added to cancel the divergences. The generating functional of the canonical transformation
(qab, pab) → (Aia, E

a
i ) gives rise to these additional terms in the generators, both in the volume

and the surface part:

D[Na] =
1
κγ

∫
Σ
d3x
[
Na(F iabE

b
i −AiaGi) +

εabc
2 detE

Eai E
b
jLN̄EcjGi

]
+

2
κγ

∫
∂Σ
dSa(Aib − Γib)N

[bE
a]
i ) (5)
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H[N ] =
1

2κ

∫
Σ
d3xN

[ Eai Ebj√
detE

[εijk F
k
ab − 2(1 + γ2)Ki

[aK
j
b]] + 2Da(Eai Gi)

]
−1
κ

∫
∂Σ
dSa

[
N√

detE
Eai ∂bE

b
i −Db(N/

√
detE)Ebi (E

a
i − Ēai )

]
. (6)

On the other hand, the 3 + 1 decomposition of (4) with the temporal gauge fixing gives

S =
∫
dt

∫
Σ
d3x

(
1
κγ

(Eai Ȧ
i
a − ΛiGi)−NaCa −NC

)
+ Ssurface

with the well known constraint functionals

Gi =∂aEai + εkijA
j
aE

a
k , Ca =

1
κγ
F iabE

b
i −

1 + γ2

κγ2
Ki
aGi ,

C =
1

2κ
√

detE
Eai E

b
j [ε

ij
k F

k
ab − 2(1 + γ2)Ki

[aK
j
b]] +

(1 + γ2)
κγ2

Eai ∂aGi√
detE

(7)

and the surface terms [11]

Ssurface =
1
κγ

∫
dt

∫
∂Σt

dSb(
Nγ√
detE

Eai E
b
jε
ij
k A

k
a +NaEbiA

i
a) (8)

+
1
κγ

∫
Σ1

Eai A
i
a −

1
κγ

∫
Σ2

Eai A
i
a

It can be verified then that these additional surface terms proportional to the lapse and shift in
(8) are not sufficient to cure the divergences in (7) for the constant and linear fall-off of N and
Na, nor can they be combined with terms proportional to the Gauss constraint in (7) to recover
the corresponding energy and momentum charges in (6) and (5).

Thus, for asymptotically flat space-times, finiteness and well-posedness of the variational
principle of the Holst action (4) do not directly descend to the canonical action framework
derived from its 3+1 decomposition and temporal gauge fixing. The surface terms in (4) lead
to the same ADM generators of asymptotic symmetries on the covariant phase space, defined
as the space of asymptotically flat solutions. However, for the more stringent requirement of
finiteness of the generators on the whole phase space of the canonical framework, additional
terms are needed.
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