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Abstract Tachyon-brane inflationary universe model in the context of a Chaply-
gin gas equation of state is studied. General conditions for this model to be realiz-
able are discussed. In the high-energy limit and by using an exponential potential
we describe in great details the characteristic of this model. Recent observational
data from the Wilkinson Microwave Anisotropy Probe experiment are employed
to restrict the parameters of the model.
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1 Introduction

Inflationary universe models have solved many problems of the Standard Hot Big
Bang scenario, for example, the flatness, the horizon, and the monopole problems,
among others [1; 2]. In addition, its has provided a causal interpretation of the
origin of the observed anisotropy of the cosmic microwave background (CMB)
radiation, and also the distribution of large scale structures [3; 4].

In concern to higher dimensional theories, implications of string/M-theory to
Friedmann–Robertson–Walker (FRW) cosmological models have recently attracted
great deal of attention, in particular, those related to brane-antibrane configura-
tions such as space-like branes [5]. The realization that we may live on a so-called
brane embedded in a higher-dimensional Universe has significant implications to
cosmology [6; 7; 8; 9; 10; 11]. In this scenario the standard model particles are
confined on the brane, while gravitations propagate in the bulk spacetimes. Since,
the effect of the extra dimension induces additional terms in the Friedmann equa-
tion is modified at very high energies [12; 13; 14], acquiring a quadratic term in
the energy density. Such a term generally makes it easier to obtain inflation in the
early Universe [15; 16; 17; 18; 19; 20; 21]. For a review, see, e.g., [22].
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In recent times a great amount of work has been invested in studying the infla-
tionary model with a tachyon field. The tachyon field associated with unstable
D-branes might be responsible for cosmological inflation in the early evolution
of the universe, due to tachyon condensation near the top of the effective scalar
potential [23], which could also add some new form of cosmological dark mat-
ter at late times [24]. Cosmological implications of this rolling tachyon were first
studied by Gibbons [25] and in this context it is quite natural to consider scenarios
in which inflation is drive by the rolling tachyon.

On the other hand, the generalized Chaplygin gas has been proposed as an
alternative model for describing the accelerating of the universe. The general-
ized Chaplygin gas is described by an exotic equation of state of the form pch =
−Aρ

−β

ch , where ρch and pch are the energy density and pressure of the generalized
Chaplygin gas, respectively [26]. β is a constant that lies in the range 0 < β ≤ 1,
and A is a positive constant. The original Chaplygin gas corresponds to the case
β = 1 [27; 28]. Inserting this equation of state into the relativistic energy conser-
vation equation leads to an energy density given by [26]

ρch =
[

A+
B

a3(1+β )

] 1
1+β

, (1)

where a is the scale factor and B is a positive integration constant.
The Chaplygin gas emerges as a effective fluid of a generalized d-brane in a (d

+ 1, 1)
space time, where the action can be written as a generalized Born–Infeld action
[26]. These models have been extensively studied in the literature [29; 30; 31; 32;
33; 34; 35; 36; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50].

In the model of Chaplygin inspired inflation usually the scalar field, which
drives inflation, is the standard inflaton field, where the energy density given
by Eq. (1), can be extrapolate for obtaining a successful inflation period with
a Chaplygin gas model [51]. Recently, tachyon-Chaplygin inflationary universe
model was considered in [52], and the dynamics of the early universe and the
initial conditions for inflation in a model with radiation and a Chaplygin gas
was studied in [53] (see also
[54; 55] ).

A natural extension of [52] is to consider the tachyon field as a degree of free-
dom on visible three dimensional brane. This work has been extended to include
higher order corrections in slow-roll parameters and the formula has been widely
used to confront this model with the observations. Moreover, we find constraints
on the parameter A and the five-dimensional Planck mass or equivalently the brane
tension.

The outline of the paper is a follows. The next section presents a short review
of the modified Friedmann equation by using a Chaplygin gas, and we present the
tachyon-brane-Chaplygin inflationary model. Section 3 deals with the calculations
of cosmological perturbations in general term. In Sect. 4 we use an exponential
potential in the high-energy limit for obtaining explicit expression for the model.
Finally, Sect. 5 summarizes our findings.
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2 The modified Friedmann equation and the tachyon-brane-Chaplygin
Inflationary phase

We consider the five-dimensional brane scenario, in which the Friedmann equation
is modified from its usual form, in the following way [14; 27; 28]

H2 = κ ρφ

[
1+

ρφ

2λ

]
+

Λ4

3
+

ξ

a4 , (2)

where H = ȧ/a denotes the Hubble parameter, ρφ represents the matter confined
to the brane, κ = 8πG/3 = 8π/3m2

p (mp is the four-dimensional Planck mass),
Λ4 is the four-dimensional cosmological constant and the final term represents the
influence of bulk gravitons on the brane, where ξ is an integration constant (this
term appears as a form of dark radiation). The brane tension λ relates the four and

five-dimensional Planck masses via mp =
√

3M6
5/(4πλ ), and is constrained by

the requirement of successful nucleosynthesis as λ > (1 MeV)4 [56]. We assume
that the four-dimensional cosmological constant is set to zero, and once infla-
tion begins the final term will rapidly become unimportant, leaving us with [22].
Hence, the modified Friedmann equation reads

H2 = κ

[
A+ρ

(1+β )
φ

] 1
1+β

1+

[
A+ρ

(1+β )
φ

] 1
1+β

2λ

 . (3)

Here, ρφ becomes ρφ = V (φ)/
√

1− φ̇ 2, and V (φ) = V is the tachyonic poten-
tial. Note that, in the low energy regime [A + ρ

(1+β )
φ

]1/(1+β ) � λ , the tachyon-
Chaplygin inflationary model is recovered [52], and in a very hight-energy regime,
the contribution from the matter in Eq. (3) becomes proportional to [A+ρ

(1+β )
φ

]2/(1+β )

in the effective energy density.
We assume that the tachyon field is confined to the brane, so that its field

equation has the form

φ̈

1− φ̇ 2
+3H φ̇ +

V ′

V
= 0, (4)

where dots mean derivatives with respect to the cosmological time and V ′=∂V (φ)/∂φ .
For convenience we will use units in which c = h̄ = 1.

The modification of the Eq. (3) is realized from an extrapolation of Eq. (1),
where the density matter ρm ∼ a−3 in introduced in such a way that we may write

ρch =
[
A+ρ

(1+β )
m

] 1
1+β −→

[
A+ρ

(1+β )
φ

] 1
1+β

, and thus, we identifying ρm with
the contributions of the scalar tachyon field which gives Eq. (3). The generalized
Chaplygin gas model may be viewed as a modification of gravity, as described in
[57], for chaotic inflation, in [51], and for tachyon-Chaplygin inflationary universe
model in the
low-energy limit, in [52]. Different modifications of gravity have been proposed in
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the last few years, and there has been a lot of interest in the construction of early
universe scenarios in higher-dimensional models motivated by string/M-theory
[58; 59; 60; 61; 62; 63]. It is well-known that these modifications can lead to
important changes in the early universe. In the following we will take β = 1 for
simplicity, which means the usual Chaplygin gas.

During the inflationary epoch the energy density associated to the tachyon field
is of the order of the potential, i.e., ρφ ∼ V . Assuming the set of slow-roll con-
ditions, i.e., φ̇ 2 � 1 and φ̈ � 3Hφ̇ [25; 64], the Friedmann equation (3) reduces
to

H2 ≈ κ

√
A+V 2

[
1+

√
A+V 2

2λ

]
, (5)

and Eq. (4) becomes

3Hφ̇ ≈−V ′

V
. (6)

Introducing the dimensionless slow-roll parameters [65], we write

ε = − Ḣ
H2 '

m2
p

16π

 V ′2

(A+V 2)3/2

(
1+ (A+V 2)1/2

λ

)
(

1+ (A+V 2)1/2

2λ

)2

 , (7)

η = − φ̈

H φ̇
'

m2
p

8π

(
V ′′

V (A+V 2)1/2

) [
1+

(A+V 2)1/2

2λ

]−1

, (8)

and

γ =− V ′ φ̇
2H V

'
m2

p

16π

(
V ′ 2

V 2 (A+V 2)1/2

) [
1+

(A+V 2)1/2

2λ

]−1

. (9)

Note that in the low-energy limit,
√

A+ρ2
φ
� λ , the slow-parameters are

recovered [52].
The condition under which inflation takes place can be summarized with the

parameter ε satisfying the inequality ε < 1, which is analog to the requirement
that ä > 0. This condition could be written in terms of the tachyon potential and
its derivative V ′, which becomes

V ′2
[

1+
(A+V 2)1/2

λ

]
<

16π

m2
p

(A+V 2)3/2

[
1+

(A+V 2)1/2

2λ

]2

. (10)

Inflation ends when the universe heats up at a time when ε ' 1, which implies

V ′2f

[
1+

(A+V 2
f )1/2

λ

]
' 16π

m2
p

(A+V 2
f )3/2

[
1+

(A+V 2
f )1/2

2λ

]2

. (11)
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However, in the high-energy limit [A+ρ2
φ
]1/2≈ [A+V 2]1/2� λ Eq. (11) becomes

V ′2f '
4π

m2
p

(A+V 2
f )2

λ
.

The number of e-folds at the end of inflation is given by

N =−8π

m2
p

φ f∫
φ∗

V
√

A+V 2

V ′

[
1+

√
A+V 2

2λ

]
dφ , (12)

or equivalently

N =−8π

m2
p

V f∫
V∗

V
√

A+V 2

V ′2

[
1+

√
A+V 2

2λ

]
dV. (13)

Note that in the high-energy limit Eq. (13) becomes N '−(4π/m2
pλ )

∫ V f
V∗ [V (A+

V 2)/V ′2]dV .
In the following, the subscripts ∗ and f are used to denote the epoch when the

cosmological scales exit the horizon and the end of inflation, respectively.

3 Perturbations

In this section we will study the scalar and tensor perturbations for our model. It
was shown in [66] that the conservation of the curvature perturbation, R, holds for
adiabatic perturbations irrespective of the form of gravitational equations by con-
sidering the local conservation of the energy-momentum tensor. However, we note
here that even though the effect of bulk to the cosmological perturbations can not
be trivially negligible, it can be shown that the main correction of the spectrum in
the brane-world inflation is just the modification of the slow-roll parameters [67]
(see also [68; 69; 70; 71; 72]). For a tachyon field the power spectrum of the cur-

vature perturbations is given PR '
(

H2

2πφ̇

)2
1
Zs

, where Zs = V (1− φ̇ 2)−3/2 [65].
Under the slow-roll approximation, the power spectrum of curvature perturbations
is estimated to be [65]

PR '
(

H2

2πφ̇

)2 1
V
' 128π

3m6
p

(
V (A+V 2)3/2

V ′2

) [
1+

(A+V 2)1/2

2λ

]3

. (14)

Note that in the low-energy limit the amplitude of scalar perturbation given by
Eq. (14) coincides with [52].
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The scalar spectral index ns is given by ns− 1 = d ln PR
d lnk , where the interval

in wave number is related to the number of e-folds by the relation d lnk(φ) =
−dN(φ). From Eq. (14), we get, ns ≈ 1 −2(2ε + γ−η), or equivalently

ns ≈ 1 −
m2

p

4π
(A+V 2)−1/2

[
1+

(A+V 2)1/2

2λ

]−1

×

 V ′ 2

(A+V 2)

[
1+ (A+V 2)1/2

λ

]
[
1+ (A+V 2)1/2

2λ

] +
V ′ 2

2V 2 −
V ′′

V

 . (15)

One of the interesting features of the 5-year data set from Wilkinson Microwave
Anisotropy Probe (WMAP) is that it hints at a significant running in the scalar
spectral index dns/d lnk = αs [3; 4]. From Eq. (15) we get that the running of the
scalar spectral index becomes

αs =
(

4(A+V 2)
V V ′

) 
(

1+ (A+V 2)1/2

2λ

)
(

1+ (A+V 2)1/2

λ

)
 [2ε,φ + γ,φ −η,φ ] ε. (16)

In models with only scalar fluctuations the marginalized value for the derivative
of the spectral index is approximately −0.03 from WMAP 5-year data only [16].

On the other hand, the generation of tensor perturbations during inflation would
produce gravitational waves and this perturbations in cosmology are more involved
since gravitons propagate in the bulk. The amplitude of tensor perturbations was
evaluated in [73; 74]

Pg = 24κ

(
H
2π

)2

F2(x)' 6
π2 κ

2 (A+V 2)1/2

[
1+

(A+V 2)1/2

2λ

]
F2(x), (17)

where x = Hmp
√

3/(4πλ ) and

F(x) =
[√

1+ x2− x2 sinh−1(1/x)
]−1/2

.

Here the function F(x) appeared from the normalization of a zero-mode. The spec-
tral index ng is given by ng = dPg

d lnk =− 2x,φ

N,φ x
F2√
1+x2

.

From expressions (14) and (17) we write the tensor–scalar ratio as

r(k) =
(

Pg

PR

)∣∣∣∣
k=k∗

'
(

8
3κ

V ′2 F2(V )
V (A+V 2) [1+(A+V 2)1/2/2λ ]2

)∣∣∣∣
k=k∗

. (18)

Here, k∗ is referred to k = Ha, the value when the universe scale crosses the Hub-
ble horizon during inflation.

Combining WMAP 5-year data [3; 4] with the Sloan Digital Sky Survey (SDSS)
large scale structure surveys [75], it is found an upper bound for r given by
r(k∗ ' 0.002 Mpc−1) < 0.28 (95% CL), where k∗ ' 0.002 Mpc−1 corresponds
to l = τ0k ' 30, with the distance to the decoupling surface τ0 = 14,400 Mpc.



Tachyon-Chaplygin inflation on the brane 7

The SDSS measures galaxy distributions at red-shifts a∼ 0.1 and probes k in the
range 0.016 h Mpc−1 < k < 0.011h Mpc−1. The recent WMAP 5-year results give
the values for the scalar curvature spectrum PR(k∗)' 2.4× 10−9 and the scalar–
tensor ratio r(k∗) = 0.055. We will make use of these values to set constrains on
the parameters appearing in our model.

4 Exponential potential in the high-energy limit

Let us consider a tachyonic effective potential V (φ), with the properties satisfying
V (φ)−→0 as φ−→∞. The exact form of the potential is V (φ)=(1+αφ)exp(−αφ),
which in the case when α → 0, we may use the asymptotic exponential expres-
sion. This form for the potential is derived from string theory calculations [23; 76].
Therefore, we simple use

V (φ) = V0e−αφ , (19)

where α and V0 are free parameters. In the following we will restrict ourselves
to the case in which α > 0. Note that α represents the tachyon mass [64; 77]. In
[24] is given an estimation of these parameters in the low-energy limit and A→ 0.
Here, it was found V0 ∼ 10−10m4

p and α ∼ 10−6mp. In the following, we develop
models in the high-energy limit, i.e.,

√
A+V 2 � λ .

From Eq. (13) the number of e-folds results in

N =
4π

λ α2 m2
p

[h(V∗)−h(Vf )], (20)

where

h(V ) =
V 2

2
+A lnV. (21)

On the other hand, we may establish that the end of inflation is governed by
the condition ε = 1, from which we get that the square of the tachyonic potential
becomes

V (φ =φ f )2 =V 2
f =

1
8π

[
λ α

2 m2
p−8π A+

√
λ α2 m2

p(λ α2 m2
p−16π A)

]
, (22)

and

φ̇ f =
α mp

2Vf

√
λ

3π
. (23)

Note that in the limit A→ 0 we obtain Vf = α mp
√

λ/(2
√

π) and φ̇ f = 1/
√

3,
which coincides with that reported in [24].

From Eq. (14) we obtain that the scalar power spectrum is given by

PR(k)≈ 16π

3m6
p

1
α2 λ 3

[
(A+V 2)3

V

]
, (24)
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Fig. 1 The plot shows the adimensional square of the brane tension (λ/m4
p)

2 versus the adi-
mensional scalar potential V∗/m4

p. Here, we have used the WMAP 5-year data where PR(k∗)'
2.4×10−9, ns(k∗)' 0.96 and αs(k∗)'−0.03

and from Eq. (18) the tensor–scalar ratio becomes

r(k)≈
4m2

p λ 2 α2

π

[
V

(A+V 2)2 F2(V )
]
. (25)

By using, that V ′ =−α V , we obtain from Eq. (15)

ns−1'−
m2

p

4π

λ α2

(A+V 2)

[
4V 2

(A+V 2)
−1
]
, (26)

and from Eq. (16) that

αs '−
λ 2 α4 m4

p

4π2

[
3V 2−5A
(A+V 2)4

]
V 2. (27)

The Eqs. (24) and (26) has roots that can be solved analytically for the param-
eters α and A, as a function of ns, PR , V and λ . The real root solution for m2, and
A becomes

α
2 =2π

[
44 V 5+62 PR (ns−1)V 2 λ 2 m4

p+ℵ
(
3PR (1−ns)λ 2 m4

p−82 V 3
)

3PR λ 3 m6
p

]
,

(28)

and

A =
1
2
(
2V 2−ℵ

)
, (29)

where

ℵ =
√

16V 4 +3(ns−1)PR V λ 2 m4
p .

From Eq. (29) and since A > 0, the ratio V 3/λ 2 satisfies the inequality V 3/λ 2 <
(1− ns)PR m4

p/4. This inequality allows us to obtain an upper limit for the ratio
V 3(φ)/λ 2 evaluate when the cosmological scales exit the horizon, i.e., V 3

∗ /λ 2 <
2.4× 10−11m4

p. Here, we have used the WMAP 5-year data where PR(k∗) '
2.4×10−9 and ns(k∗)' 0.96.

One again, note that in the limit A→ 0, the constrains α ≈ 7 × 10−3M5 and
V∗≈ 4×10−4M4

5 are recovered [24]. Here, we used the relation mp = M3
5

√
3/(4πλ ).

In Fig. 1 we have plotted the adimensional quantity λ 2/m8
p versus the adimen-

sional scalar tachyon potential evaluated when the cosmological scales exist the
horizon V∗/m4

p. In doing this, we using Eq. (27) that has roos that can be solved
for the brane tension λ , as a function of αs, m, A and V . For a real root solution
for λ , and from Eqs. (28) and (29) we obtain a relation of the form λ = f (V∗)
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Fig. 2 The plot shows the tensor–scalar ratio r versus the adimensional parameter A/m8
p. Here,

we have used the WMAP 5-year data where PR(k∗) ' 2.4×10−9, ns(k∗) ' 0.96 and αs(k∗) '
−0.03

Fig. 3 The plot shows the tensor–scalar ratio r versus the adimensional parameter α2/m2
p. Here,

we have used the WMAP 5-year data where PR(k∗) ' 2.4×10−9, ns(k∗) ' 0.96 and αs(k∗) '
−0.03

for a fixed values of αs, ns and PR . In this plot we using the WMAP 5-year data
where PR(k∗) ' 2.4× 10−9, ns(k∗) ' 0.96, αs(k∗) ' −0.03. In Fig. 2 we have
plotted the tensor–scalar ratio given by Eq. (25) versus the adimensional param-
eter A/m8

p. The WMAP 5-year data favors the tensor–scalar ratio r ' 0.055 and
the from Fig. 2 we obtain that A parameter becomes A' 2.6×10−25m8

p. In Fig. 3
we have plotted the tensor–scalar ratio given by Eq. (25) versus the adimensional
parameter α2/m2

p. We note that for r ' 0.055 we obtain α2 ' 1.3×10−12m2
p.

For these values of the A and α parameters we get the values V∗ ' 1.3×
10−12m4

p, Vf ' 8.9× 10−14m4
p and λ ' 5.1× 10−13m4

p ' 4× 10−5M4
5 . Also, the

number of
e-folds, N, becomes of the order of N ' 52.7. We should note also that the A
parameter becomes smaller by two order of magnitude and the α parameter becomes
similar when it are compared with the case of tachyon-Chaplygin inflation in the
low-energy limit [51].

5 Conclusions

In this work, we have studied the tachyon-Chaplygin inflationary model in the
context of a branewold scenario. In the slow-roll approximation we have found a
general relation between the scalar potential and its derivative. This has led us to a
general criterium for inflation to occur (see Eq. 10). We have also obtained explicit
expressions for the corresponding scalar spectrum index ns and its running αs.

By using an exponential potential in the high-energy regime and from the
WMAP 5-year data, we found the constraints of the parameters A and α from
the tensor–scalar ratio r (see Figs. 2, 3). In order to bring some explicit results
we have taken the constraints A ∼ 10−25m8

p and α ∼ 10−6mp, from which we
get the values V∗ ∼ 10−12m4

p, Vf ∼ 10−13m4
p, λ ∼ 10−13m4

p and N ∼ 53. Here,
we have used the WMAP 5-year data where PR(k∗)' 2.4×10−9, ns(k∗)' 0.96,
αs(k∗)'−0.03 and r(k∗)' 0.055. Note that the restrictions imposed by currents
observational data allowed us to establish a small range for the parameters that
appear in the tachyon-brane-Chaplygin inflationary model.

We have not addressed reheating and transition to standard cosmology in our
model (see, e.g., [78; 79; 80; 81; 82; 83]). Specifically, it will be very interesting
to know how the reheating temperature in the hight-energy scenario, contributes
to establish some constrains on the parameters of the model. We hope to return to
this point in the near future.
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