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Abstract
Recently we developed a time-domain code to calculate the gravitational self-force
on a point particle moving around a Schwarzschild black hole. To know how the
force affects the particle’s motion, it is useful to estimate the self-force correction of
some characteristic variables of the orbits (e.g. ISCO frequency, periastron shift).
In this work, we focus on the self-force effect on the periastron shift and investigate
how to evaluate the correction from the numerical results of the self-force with our
time-domain code.

1 Introduction

The problem of the motion of a point particle in black hole spacetime is one of the fundamental issues
in general relativity, which recently has been studied well, motivated by the requirement of a bank of
gravitational wave templates for the gravitational wave observation. To predict the motion acculately,
we need to calculate the self-force (or back-reaction force) exerted on the particle and incorporate it to
the equation of motion correctly. A breakthrough in the self-force problem has been made by Mino,
Sasaki and Tanaka [1] and Quinn and Wald [2], since then a lot of effort to devise a practical method of
calculating the self-force based on their works has been done. The “mode-sum scheme” [3] is considered
as a promising way to derive the self-force. This scheme is based on multipole decomposition of the
retarded field, and relies on standard methods of black hole perturbation theory. This has since been
implemented by various authors on a case-by case basis (See [4] for a review of the recent progress in this
issue).

At the early stage, the self-force of scalar-field toy model, instead of the gravitational self-force, was
mainly investigated and proved that the mode-sum scheme does work well. In extending the analysis from
the scalar-field case to the gravitational case, we face the difficulty associated with the gauge dependence
of the gravitational self-force. The gravitational perturbation in the vicinity of the point particle, which
is required to derive the self-force, is best described using the Lorenz gauge, which preserves the local
isotropic nature of the point singularity. Therefore, the mode-sum scheme is originally constructed under
the Lorenz gauge condition. On the other hand, the field equations that govern the global evolution
of the metric perturbation are more tractable in gauges which comply well with the global symmetry
of the black hole background, like the Regge-Wheeler gauge [5] for the Schwarzschild geometry or the
“radiation” gauges [6] for the Kerr geometry. Now, in calculating the local self-force we need, essentially,
to subtract a suitable local, divergent piece of the perturbation from the full (retarded) perturbation
field. In doing so, both fields (local and global) must be given in the same gauge; the “gauge problem”
arises since the two fields are normally calculated in different gauges.

There are two strategies to settle the problem. One is that we derive the equation of motion in a
convenient gauge for calculating the metric perturbation [7, 8]. This idea is based on the work by Detweiler
andWhiting [9], in which the motion is depicted as the geodesic of a smooth perturbed spacetime. Another
one, which we adopt here, is that we solve the perturbation equations directly in the Lorenz gauge. The
calculation is therefore done entirely within the Lorenz gauge, the mode-sum scheme is implemented in
a straightforward way. This “all-Lorenz-gauge” strategy is made possible (at least for the Schwarzschild
case) following a recent work by Barack and Lousto [10]. They provided a practical formulation of the
Lorenz-gauge perturbation equations in Schwarzschild spacetime and demonstrated their formulation is
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suitable for numerical calculation. In our recent works [11, 12], based on their formulation, we developed
a code to calculate the gravitational self-force for bound orbits in Schwarzschild geometry.

Our next step is to consider the effect of the gravitational self-force on the particle’s orbit. The
self-force corrections in some characteristic variables of the orbit are good indicators to estimate the self-
force effect and also to compare with the results of other approaches (e.g. post-Newtonian or numerical
relativity, and so on). In our previous work [13], as the first example, we reported the self-force-induced
shifts in the location and frequency of the inner most circular orbit (ISCO) in Schwarzschild spacetime.
The result for the ISCO frequency shift is supported by the recent work on the Effective One Body
formalism by Damour [14]. In this work, we focus on the periapsis advance of eccentric orbits, which is
one of the characteristic variables, and give the formula of the correction in terms of the components of
the self-force.

Throughout this work, we denote the masses of a orbiting point particle and a central Schwarzschild
black hole as µ and M , respectively. Also we use standard geometrized units with c = G = 1 and metric
signature (−+++).

2 Periapsis advance: geodesic case

First, we review the periapsis advance in the geodesic case. The radial component of the geodesic
equations in Schwarzschild spacetime is given(

drp
dτ

)2

= R(rp); R(r) ≡ E2
0 − f(r)

(
1 +

L2
0

r2

)
, (1)

where f(r) = 1 − 2M/r, τ is the proper time along the orbit, rp(τ) is the orbital radius. E0 and L0

are the specific energy and angular momentum parameters of the particle, which conserve along the
geodesic orbit. An eccentric orbit is bounded in the range of rmin ≤ r ≤ rmax, where rmin/max satisfy
R(rmin) = R(rmax) = 0 and 4M < rmin ≤ rmax. rmin and rmax correspond to the periastron and apastron
radius respectively. We can define a parametrization of eccentric orbits, the (dimensionless) semi-latus
rectum, p, and the eccentricity, e, so that

p ≡ 2rminrmax

M(rmin + rmax)
, e ≡ rmax − rmin

rmax + rmin
. (2)

With this parametrization, the orbital radius is given by

rp(χ) =
pM

1 + e cosχ
, (3)

where χ is a monotonically increasing parameter (“radial phase”) along the worldline [15]. By using χ,
we reexpress the t and φ components of the geodesic equations as

dtp
dχ

=
E0

f(rp)

[
E2
0 − f(rp)

(
1 +

L2
0

r2p

)]−1/2 (
drp
dχ

)
≡ Wt(rp; E0,L0),

dφp

dχ
=

L0

r2p

[
E2
0 − f(rp)

(
1 +

L2
0

r2p

)]−1/2 (
drp
dχ

)
≡ Wφ(rp; E0,L0). (4)

By integrating Eq. (4) over χ, we define the radial period and the increase of the phase for one radial
period as

Tr ≡
∫ 2π

0

dtp
dχ

dχ, ∆φ ≡
∫ 2π

0

dφp

dχ
dχ. (5)

Now we can define the periapsis advance

δ0(p, e) ≡ ∆φ− 2π, (6)

which represents the fractional difference between two frequencies

Ωφ =

(
1 +

δ0
2π

)
Ωr,

where Ωr ≡ 2π/Tr and Ωφ = ∆φ/Tr are the radial and azimuthal frequencies respectively.
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3 Self-force correction in periapsis advance

Next, we consider the conservative correction in the periapsis advance caused by the self-force. In the
same manner as [16], the conservative pieces of t and φ components of the force are given by

F cons
t (χ) =

1

2
[Ft(χ)− Ft(−χ)], F cons

φ (χ) =
1

2
[Fφ(χ)− Fφ(−χ)], (7)

where we treat Ft and Fφ as functions of χ. From the equations of motion, we find the rates of change
of the specific energy and angular momentum

dE
dτ

= −Ft,
dL
dτ

= Fφ. (8)

Integrating Eq. (8) over χ, we obtain the corrected energy and angular momentum

E(χ) = E0 +∆E0 + δE(χ), L(χ) = L0 +∆L0 + δL(χ), (9)

where ∆E0 and ∆L0 represent the conservative shifts in E and L at χ = 0, and

δE(χ) = −
∫ χ

0

F cons
t (χ′)

(
dτ

dχ′

)
dχ′, δL(χ) = −

∫ χ

0

F cons
φ (χ′)

(
dτ

dχ′

)
dχ′. (10)

All ∆E0, ∆L0, δE(χ) and δL(χ) are in the order of µ. In a similar manner to the geodesic case, we can
define the periapsis advance

δ(p, e) ≡
∫ 2π

0

Wφ(rp, ; E ,L)dχ− 2π, (11)

and then taking the O(µ) terms from the above equation gives us the self-force correction as

δSF (p, e) ≡
∫ 2π

0

δWφ(rp, ; E0,L0)dχ, (12)

where

δWφ(rp, ; E0,L0) =
∂Wφ

∂E

∣∣∣∣
0

[∆E0 + δE(χ)] + ∂Wφ

∂L

∣∣∣∣
0

[∆L0 + δL(χ)]

=
p(p− 3− e2)1/2[(p− 2)2 − 4e2]1/2

e2(p− 6− 2e cosχ)3/2

[
E(π)

4 cos2(χ/2)
− E(χ)

sin2 χ

]
− p−1/2(p− 3− e2)1/2

Me2(p− 6− 2e cosχ)3/2

[
(1− e)2(p− 2 + 2e)L(π)

4 cos2(χ/2)

− [p(1 + e2)− 2(1 + 3e2) + 2e(p− 3− e2) cosχ]L(χ)
sin2 χ

]
. (13)

Equation (13) may seem singular at χ = 0, π, but that is not the case. Local analysis around these points
shows that δWφ is regular, although the direct implementation may require special care near χ = 0, π.

4 Summary and discussion

In this work, we considered the self-force effect on the periapsis advance of an eccentric orbit in Schwarzschild
spacetime. We gave a formula of the correction induced by the conservative piece of the self-force, which
can by calculated numerically by our time-domain code. In practice, however, it is not easy to implement
the formula numerically because it contains double integrals of the force and then the numerical accuracy
gets worse. One way to improve it is to use integration by parts. Although it makes the formula more
complicated, it may reduce the loss of the numerical accuracy. To do so, again, we have to take care on
the singular behavior of each term in Eq. (13) at χ = 0, π. This reduction is left for future study.
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So far we considered only the conservative piece of the self-force, and we assume that the orbital
parameters (p, e) are constant. In reality, however, the dissipation also affects the particle’s orbit in the
secular evolution and the parameters change in time. Even in this case, we can define the periapsis shift
as

δactualSF (t1) =

∫ t2

t1

dφ

dt
dt− δ0(p1, e1), (14)

where t1 and t2 are consecutive radial turning points, and (p1, e1) are the orbital parameters at t = t1.
If the orbit evolve adiabatically, the actual correction of the periapsis shift can be given approximately
as the time average of the instantaneous (conservative) correction over the orbital period,

δactualSF (t1) ≃
1

(t2 − t1)

∫ t2

t1

δSF (p, e) = δSF

(
p1 + p2

2
,
e1 + e2

2

)
+O(µ2). (15)

The proof and feasibility of this relation should be surely investigated.
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