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Abstract
The stable region of the Fermilab Booster beam in

the complex coherent-tune-shift plane appears to have been

shifted far away from the origin by its intense space-charge

making Landau damping impossible. However, it is shown

that the bunching structure of the beam reduces the mean

space-charge tune shift. As a result, the beam can be stabi-

lized by suitable octupole-driven tune spread.

INTRODUCTION

The Fermilab Booster beam has maximum space-

charge tune shift of Δν spch
max ∼ 0.5 near injection and the

incoherent tune spread is shifted quite far away from the

coherent tune. We wonder why Landau damping coming

from octupoles can be possible, because the inductive tune

spread of the vacuum chamber cannot be too large. This

ambiguity can be resolved when the bunching structure of

the beam is considered.

STABILITY CONTOURS

Following the analytic solution of Métral and Rug-

giero [1], we computed the stability contour of the Fer-

milab Booster beam including space-charge and octupole

tune spread. The dashed curve in Fig. 1 shows the stabil-

ity contour of having an octupole tune spread of roughly

−0.042<Δνy <0.065 if space-charge is totally neglected.

The plot is Re Δνy
coh versus Im Δνy

coh, which is essentially

−Im Z⊥
1 versus −Re Z⊥

1 with Z⊥
1 being the transverse

impedance experienced by the beam. The region under the

contour implies stability while the region above implies in-

stability. When space-charge is turned on according to the

information in Table I, this stability contour becomes the

solid red curve with a much wider stability region as a re-

sult of the large space-charge tune spread. Unfortunately,

this wide stable area has been shifted far far away from

the center of the plot. Thus, for the beam to be stable, the

inductive part of the vacuum chamber impedance must be

extraordinarily large so as to provide an inductive coher-

ent tune shift of at least ∼ −0.2. But the inductive impe-
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Figure 1: Stability contour from octupole alone shown in dashes

changes to the red curve with the introduction of full space-charge

force. It changes to the green and blue curves when space-charge

is reduced to, respectively, 50% and 10%.

Table I: Some properties of the Fermilab Booster and its beam

near injection.

Radius R (m) 75.42

Total Energy E (GeV) 1.40

Rf harmonic 84

Transition gamma γt 5.440

Bunch intensity Nb 6 × 1010

Tune νx/νy 6.8/6.8

Normalized rms emittance (10−6 πm) 2.00

Rms bunch length σz (m) 0.70

dance has been measured and computed to be very much

smaller [2]. Even when the space-charge force is reduced

to 50% (green curve), an inductive tune shift of ∼ 0.1
is required for stability. We see that stability is restored

only when the space-charge is reduced to about 10% (blue

curve). In the derivation of the contours, coasting beam

with peak beam current has been assumed.

EFFECTS OF ELECTRON CLOUD

A large buildup of electrons in the beam region can

neutralize the proton charge and thus decrease the amount

of space-charge tune shifts. The code POSINST [3] is

employed to study electron cloud buildup inside the un-

shielded combined-function F- and D-magnets (∼ 60% of

the ring) and all the adjoining beam pipes (∼ 40% of the

ring) in the Fermilab Booster near injection. We find that
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Figure 2: (Color) Electron density inside a D-magnet with

SEY=1.6. Black and red curves depict the electron densities aver-

aged over one and four σx,y’s of the beam, while the green curve

is the electron density averaged over the whole magnet cross sec-

tion. 81 consecutive bunches and 3 empty buckets are assumed.

The dips represent empty buckets or ends of revolutions.

electron cloud production can reach saturation [4] in the D-

magnets when the secondary-emission yield (SEY) ≥ 1.5,

while it requires a SEY≥ 1.9 to reach saturation in the F-

magnets. For the 168 m of 2.25 ′′ beam pipe, saturation is

reached when SEY≥ 1.6, but for the 28.8 m of beam pipe

saturation is reached when SEY≥1.5.

Figure 2 shows the electron linear density buildup

inside the D-magnet with SEY= 1.6, where saturation is

reached within about 140 rf buckets or less than two rev-

olution turns. But the electron density appears to be very

much smaller than the peak beam particle density of ρpk
b =

Nb/[(2π)3/2σxσyσz ] = 2.72 × 1014 m−3. However, the

particle density decreases very rapidly away from the beam

axis, but the electron density does not. The particle density

averaged over n σx,y’s is given by

ρb(nσx,y) = ρpk
b

2
n2

(
1 − e−n2/2

)
, (3.1)

and is shown in Fig. 3. Alongside, we also plot the corre-

sponding electron density averaged over the same n σx,y’s

computed using POSINST. For example, electron density

and proton density averaged over two σx,y’s are, respec-

tively, 2.2×1013 and 11.8×1013 m−3, implying a neutral-

ization ratio of rneu ∼ 18.7%, which is rather appreciable.

Here, we must be cautioned that the space-charge tune shift

comes from the electric and magnetic parts, which have op-

posite signs. The electron cloud can only cancel the electric

part because it is roughly stationary in the vacuum cham-

ber. Thus the space-charge tune shift is actually reduced by

the factor fcl = γ2[(1−rneu)−β2)] = 1−rneuγ
2 = 0.584
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Figure 3: Particle density averaged over n σx,y’s is seen to de-

crease rapidly with n. The corresponding electron density aver-

aged over n σx,y’s, although smaller, yet decreases less rapidly.

at the total energy of 1.4 GeV, where γ and β are the rel-

ativistic factors. If we consider the spread of the stability

contour in Fig. 1, (−0.48,−0.18), as roughly the spread

of the space-charge tune shift, the neutralization by elec-

tron cloud will reduce the spread of the stability contour

to (−0.28,−0.105). Even if the electron-cloud neutraliza-

tion were rneu ∼ 30%, the spread of the stability contour

would be reduced to (−0.16,−0.060). The inductive part

of the magnet laminations and connecting beam pipes are

found to supply at most an inductive coherent tune shift of

∼−0.04 [2]. Thus there is still no possibility for the coher-

ent tune shift of the beam to be inside the stable region of

the stability contour [6]. It is very possible that the neutral-

ization effect of electron-cloud buildup has been overesti-

mated; for example, the SEY can be much less than 1.6.

This is because large electron-cloud buildup will signal se-

vere transverse collective beam instabilities and emittance

growths in many parts of the booster ramp cycle, especially

near the transition energy when the bunch length is short-

est [5]. Such severe instabilities and emittance growths

have not been reported.

EFFECTS OF BUNCHING

Coasting Beam

The stability contours in Fig. 1 show that a coasting

beam has to be unstable if space-charge is large enough.

Actually such instabilities have been observed in the Fer-

milab Recycler Ring [7]. A very long antiproton beam of

total length 3.5 μs containing 28×1010 particles was cooled

stochastically between two barriers to a normalized 95%

emittance of εN95 =3×10−6 πm. The synchrotron period is

a few seconds. When the vertical chromaticity was reduced
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Figure 4: (Color) Top: FFT of difference signals showing an

instability of a long p̄ beam in the Recycler Ring with slow syn-

chrotron oscillation. Lower: Emittance growth and FFT of differ-

ence signals showing an instability of a coasting p beam.

from −2 to 0 to reduce momentum-spread generated Lan-

dau damping, the beam became unstable. The difference

signals were sampled and their FFT is shown in the upper

plot of Fig. 4. The tallest lines are the lower betatron side-

bands with the revolution harmonics to the right and upper

sidebands to the next right. The excitations roll off very

slowly with frequency as if they are driven by the resistive

wall impedance. In order to rule out the possibility of two-

stream coupled interaction due to trapped ions, the experi-

ment was repeated with a proton beam that could not trap

ions. A special proton beam in the Recycler Ring was care-

fully scraped and debunched to an intensity of 43.9× 10 10

and εN95 =6×10−6 πm. As the chromaticity was reduced

from −2 to 0, a vertical instability was observed with a

6-fold increase in emittance blowup. This is depicted to-

gether with the FFT of the difference signals in the lower

plots of Fig. 4. The observed growth time agrees with com-

putation in the absence of Landau damping. Eventually, a

dedicated damper was built to cope with this instability.

Bunched Beam

The situation of a bunched beam can be different.

This is because there will be many more particles having
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Figure 5: (Color) Plots of distribution in space-charge tune shift

in a round bunch with longitudinal Gaussian, cosine square, co-

sine, and parabolic distribution. The transverse distribution is bi-

Gaussian. The distribution of a coasting beam is also shown in

dashes for comparison.

smaller space-charge tune shifts, for example, those away

from the longitudinal center. Let us first study the distri-

bution of space-charge tune shifts of the particles inside a

bunch, which can also shed some light on the shape of the

stability contour [4].

The distribution of space-charge tune shift in a coast-

ing beam with circular cross section and bi-Gaussian distri-

bution shows that the distribution is skewed towards higher

values, with [8],

〈Δνspch〉
Δνspch

max

= 0.6334,

(
Δνspch

Δνspch
max

)
rms

= 0.1678. (4.1)

This distribution, called f2D(Δνspch/Δνspch
max ), is shown in

dashes in Fig. 5. It also shows that the distribution is es-

sentially zero when Δν spch/Δνspch
max < 0.15. This curve

has close resemblance to the stability contour in Fig. 1(a).

In fact, they should be closely related. For a bunch, how-

ever, the space-charge tune shift distribution can be very

different because the particles near the two ends have rather

small space-charge tune shifts.

Let the longitudinal or linear distribution of the bunch

be λb(z), which is normalized to unity after integrating

over z. For a slice of the bunch at z, the number of parti-

cles residing in the slice is Nbλb(z)dz. Thus the maximum

space-charge tune shift inside this slice is

Δνspch
max (z) = Δνspch

max (0)
λb(z)
λb(0)

. (4.2)

Here, Δνspch
max (0) is the maximum space-charge tune shift

of the whole bunch, and is the same as Δν spch
max in Eq. (4.1)
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for the 2D coasting beam. Thus for this particular slice, the

distribution in space-charge tune shift is

Fslice

(
Δνspch

Δνspch
max

, z

)
= f2D

(
Δνspchλb(0)

Δνspch
max λb(z)

)
λb(0)
λb(z)

,

(4.3)
which is properly normalized that an integration over

Δνspch/Δνspch
max gives unity. The distribution for the whole

bunch is therefore

F3D

(
Δνspch

Δνspch
max

)
=
∫ z

−z

Fslice

(
Δνspch

Δνspch
max

, z′
)

λb(z′)dz′

=
∫ z

−z

f2D

(
Δνspch

Δνspch
max

λb(0)
λb(z′)

)
λb(0)dz′, (4.4)

where the limits of integration ±z are given by the ex-

cursion of z ′ at the maximum space-charge tune shift, or

Δνspch
max λb(z) = Δνspchλb(0).

Take the Gaussian distribution as an example, the 3D

tune-shift distribution is given by

F3D

(
Δνspch

Δνspch
max

)
=
∫ z

−z

f2D

(
Δνspch

Δνspch
max

ez′2/2

)
dz′√
2π

,

(4.5)
with z=

√
−2 ln

(
Δνspch/Δνspch

max

)
. For the cosine square

distribution, λb(z) = 1
ẑ cos2(πz/2ẑ), the 3D tune-shift dis-

tribution is

F3D

(
Δνspch

Δνspch
max

)
=
∫ θ

−θ

f2D

(
Δνspch

cos2 θ′Δνspch
max

)
2dθ′

π
,

(4.6)
with θ = cos−1

√
Δνspch/Δνspch

max . For the cosine distri-

bution, λb(z)= (π/4ẑ) cos(πz/2ẑ), the 3D tune-shift dis-

tribution is

F3D

(
Δνspch

Δνspch
max

)
=
∫ θ

−θ

f2D

(
Δνspch

cos θ′Δνspch
max

)
dθ′

2
, (4.7)

with θ=cos−1(Δνspch/Δνspch
max ). Finally, for the parabolic

distribution λb(z)= 3
4 (1−z2/ẑ2), the 3D tune-shift distri-

bution is

F3D

(
Δνspch

Δνspch
max

)
=
∫ z

−z

f2D

[
Δνspch

(1−z′2)Δνspch
max

]
3dz′

4
,

(4.8)
with z =

√
1−Δνspch/Δνspch

max . These distributions are

shown in Fig. 5. These curves show that there are plenty

of particles with space-charge tune shift close to zero tune

shift, and they are more plentiful when the longitudinal lin-

ear density has longer tails. A longitudinal Gaussian distri-

bution may have been too ideal, but the cosine-square dis-

tribution is rather realistic. We expect the stability contour

for a bunch behaves similarly. As a result, beam stabil-

ity can be attained provided that there is some reasonable

inductive impedance, some extra tune spread arises from

octupoles, and |Re Z⊥
1 | is not too big, while electron cloud

need not play an important role.

DISPERSION RELATION OF A BUNCH

The dispersion relation of Métral and Ruggiero for a

coasting beam with space-charge and octupole tune spread

can be written as

1=−
∫

dJx

∫
dJy

Jy
∂f(Jx,Jy)

∂Jy
[Δνy

coh−Δνy
inc(Jx, Jy)]

νc−νy(Jx, Jy)−mνs
.

(5.1)
Here, f(Jx, Jy) is the transverse particle density normal-

ized to unity, with Jx,y denoting the horizontal and vertical

actions of the beam particle. In the denominator, ν c is the

coherent or eigen-betatron tune to be determined, ν s is the

synchrotron tune with spread neglected, m is the azimuthal

mode number, and the incoherent tune spread is given by

νy(Jx, Jy) = νy0(Jx, Jy) + Δνy
inc(Jx, Jy), (5.2)

where Δνy
inc is the vertical space-charge self-field tune

shift, νy0(Jx, Jy) is the vertical tune including tune spread

coming from octupoles. In the numerator, Δν y
coh denotes

the coherent vertical tune shift driven by impedance.

For a bunch, the above dispersion relation applies

to an individual slice at a distance z from the longitudi-

nal bunch center. The dependence on z will appear in the

space-charge tune shift Δνy
inc, since the latter is propor-

tional to the linear particle density at z. A simple extension

of the dispersion relation to describe a bunch would be an

average over the linear particle density g(z), or

1 = −
∫

dz

∫
dJx

∫
dJy×

×g(z)
Jy

∂f(Jx,Jy)
∂Jy

[Δνy
coh−Δνy

inc(Jx, Jy, z)]

νc−νy(Jx, Jy, z) − mνs
, (5.3)

where νc now represents the eigen-betatron tune of the

whole bunch. A rigorous derivation of this dispersion rela-

tion is not available at the moment.

In the model of Métral and Ruggiero, νy0(Jx, Jy) is

the vertical tune in the presence of octupoles but in the ab-

sence of space-charge. It is given by

νy0(Jx, Jy, z) = νy00 + aJy + bJx, (5.4)

where νy00 is the bare vertical tune, and

a =
3
8π

∫
β2

y

Os

Bρ
ds, b =− 3

8π

∫
2βxβy

Os

Bρ
ds, (5.5)

are the octupole driven tune shifts per unit action, Os is the

octupole strength, Bρ is the rigidity of the beam, and βx,y

are the betatron functions. For the vertical incoherent tune

shift Δνy
inc, we include only the lowest order of nonlinear

space-charge by writing
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Δνy
inc(Jx, Jy, z)=Δ0(z)+Δa(z)Jy+Δb(z)Jx, (5.6)

which is derived by the method of harmonic balance and

numerically fitting the space-charge force. Here

Δ0(z)=Δ00G(z), Δa(z)=Δa0G(z), Δb(z)=Δb0G(z),

where G(z) = 2πRg(z) is dimensionless playing the role

of local bunching factor, while Δ00, Δa0, and Δb0 are

the space-charge tune shift and detuning gradients for a

coasting beam with the same particle number as the bunch

under consideration. Following Métral and Ruggiero, a

round beam has been chosen with the transverse particle

distribution

f(Jx, Jy) =
12

J2
max

(
1 − Jx+Jy

Jmax

)2

, (5.8)

so that the dispersion relation can be integrated in the

closed form for the transverse coordinates. For this dis-

tribution, the maximum action is given by Jmax = 5σ2,

where σ is the transverse rms beam size. We obtain∗

Δa0 =− 9Δ00

16Jmax
, Δb0 =− 3Δ00

8Jmax
, Δ00 =− NBrp

5πβγ2εnorm
rms

,

(5.9)
with εnorm

rms being the normalized rms emittance.

In the denominator of the integrand in the dispersion

relation, the amplitude-dependent tune shifts driven by oc-

tupoles and space-charge can be combined to give

νy(Jx, Jy, z) = νy00+Δ0(z)+a1(z)Jy+b1(z)Jx. (5.10)

with

a1(z) = a+Δa(z) and b1(z) = b+Δb(z). (5.11)

The denominator can therefore be written as

den=νc−mνs−νy00−Δ0(z)+S1(z)
[
jy+c1(z)jx

]
, (5.12)

where S1(z) = −a1(z)Jmax, c1(z) = b1(z)/a1(z), and

jx,y = Jx,y/Jmax. We next normalize by S1 and define

D(z)=
den

S1(z)
=

qc−Δ0(z)
S1(z)

+ jy + c1(z)jx, (5.13)

where qc =νc−mνs−νy00 plays the role of the coherent (or

eigen-) transverse oscillation frequency to be determined

from the dispersion.

The numerator of the integrand in Eq. (5.3) is

Jy
∂f(Jx, Jy)

∂Jy

[
Δνy

coh−Δνy
inc(Jx, Jy, z)

]

= − 24
J2

max

(
1−jx−jy

)×
×
[
Δνy

coh−Δ0(z)−Δa(z)jy−Δb(z)jx

]
. (5.14)

∗We did not do the actual fitting to the space-charge force. The fitting

was approximated by including an extra factor of 1
2

in Δa0 and Δb0.

The merit of the Métral and Ruggiero model is that the

transverse coordinates can be integrated analytically, thus

leaving only one numerical integration to perform for the

longitudinal coordinate. After the integration over jx and

jy are performed, the dispersion relation becomes

1 =
∫

dz
24g(z)
S1(z)

{[
ΔQy

coh−Δ0(z)
]
I1−

− Jmax

[
Δa(z)I2+ΔbI3

]}
, (5.15)

where the analytic closed forms

Ii(z) =
∫ 1

jy=0

djy

∫ 1−jy

jx=0

djx
pi(1 − jx − jy)

D(z)
, (5.16)

with p1 = jy , p2 = j2
y , p3 = jxjy , are depicted in the Ap-

pendix. With the further definition

K1 =
∫

dz I1(z)
g(z)
S1(z)

,

K23 =
∫

dz
{
Jmax

[
Δa(z)I2(z) + Δb(z)I3(z)

]
+

+ Δ0(z)I1(z)
} g(z)

S1(z)
, (5.17)

the dispersion relation reduces to

Δνy
coh =

1
K1

[
1
24

+K23

]
. (5.18)

Numerical Solution

As in all dispersion computation, we apply various

real values to the eigen-tune νc (actually qc) in the denomi-

nator of the integrand of Eq. (5.3) with an infinitesimal neg-

ative imaginary part to obtain the corresponding Δν y
coh’s

of Eq. (5.18). The final integration over z is performed nu-

merically. The plot of Re Δνy
coh versus Im Δνy

coh gives the

stability contour of the dispersion relation.

We choose the generalized elliptical distribution

g(z) =
An

ẑ

(
1 − z2

ẑ2

)n

for |z| ≤ ẑ, (5.19)

as the longitudinal linear distribution of the bunch with

An =Γ(n+ 3
2 )/[

√
π Γ(n+ 1)] for any n>−1, where g(z)

is normalized to unity when integrated over z. Note that n

need not be an integer or half integer. The rms bunch length

is given by σ2
z = ẑ2/(2n+3). The merit of this distribution

is that it begins with the parabolic distribution when n = 1
and beam tails become lengthened when n increases. It

finally approaches the Gaussian distribution when n → ∞.

The stability contours for various values of n are

shown in Fig. 6. The stability contour for octupoles that
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Figure 6: (Color) Stability contours for various longitudinal gen-

eralized elliptical bunch distributions, from n = 0, the uniform

distribution, to n = 1/2, the elliptical distribution, to n = 1, the

parabolic distribution, to n = 2.6, roughly the cosine square dis-

tribution, and to n = 6, roughly the Gaussian distribution. It is

clear that as n increases the stability contour spreads out more and

more reaching and eventually covering Re Δνy
coh = 0, thus pro-

viding Landau damping if |Re Z⊥
1 | is not too large. The stability

contour for octupole alone without space-charge is also shown in

dashes.

contribute tune spreads of −0.042<Δνy <0.065 in the ab-

sence of the space-charge force is plotted in dashes. With

the space-charge force turned on (the octupole detuning

per horizontal action in the same direction as the space-

charge detuning), the longitudinal linear particle distribu-

tion is varied from n = 0 to n = 6, while the rms bunch

length is kept fixed at σz = 0.70 m all the time. Here

n = 0 corresponds to the uniform distribution and its sta-

bility contour† (dot-dash) is far from the Re Δν y
coh = 0

point. As n increases, the stability contour spreads out.

Even for n = 1 (green), the parabolic distribution, the sta-

bility curve covers the Re Δνy
coh = 0 point already, imply-

ing that there can be Landau damping if the real part of the

transverse impedance |Re Z⊥
1 | is small enough, even when

there is no inductive contribution from the vacuum cham-

ber. When n increases to 2.6 (blue), which is roughly the

cosine square distribution, the stability contour exhibits a

small bump near Re Δνy
coh =0. The spread of the stability

curve does not increase by much even when n = 6 (ma-

genta), which is close to the Gaussian distribution.

Some comments are in order. First, the stability limit

appears to be Im Δνy
coh ∼ 0.002 and is roughly indepen-

†This corresponds to a bunch with uniform linear distribution with half

bunch length equal
√

3 σz . The stability contour is different from that in

Fig. 1, where the maximum possible space-charge has been assumed by

using the bunching factor of a Gaussian bunch.

dent of the longitudinal distribution when the distribution

spreads out more than parabolic. Second, this limit appears

to be small but without Landau damping it corresponds to

a growth time of 0.17 ms which is rather short. Third, we

require here an octupole tune spread of the order of 0.05

to generate this amount of stability limit, implying that the

spread of synchrotron tune, if included, may not be signifi-

cant here. Fourth, this stability limit decreases rapidly with

the decrease in octupole tune spread. For example, 70%

of the present octupole tune spread will lower the stability

limit Im Δνy
coh by one order of magnitude.

APPLICATION TO FERMILAB BOOSTER
NEAR INJECTION

Coherent Tune Shift and Coupling Impedance

From Sacherer’s integral equation, the coherent tune

shift Δνy
coh can be solved as a function of the transverse

coupling impedance Z⊥
1 . To the lowest order of approxi-

mation without azimuthal mode coupling, the vertical co-

herent tune shift for the mth azimuthal mode and kth radial

mode of the μth coupled-bunch mode of M equally spaced

bunches each containing Nb particles is given by[
Δνy

coh

]
μmk

= −i
rpNb

2πγνyZ0
Z⊥

1

∣∣∣μmk

eff
(6.1)

where

Z⊥
1

∣∣∣μmk

eff
=

M

β̄y

∑
q

[
βyZ⊥

1 (ωq)
] ∣∣∣λ̃mk(ωq−ωξ)

∣∣∣2 , (6.2)

with ωq/ω0 = qM +μ+νy +mνs, ω0 being the angular

revolution frequency, q any integer, νy the vertical beta-

tron tune, ωξ = ξyω0/η the chromatic frequency shift, ξy

the vertical chromaticity, and η the slip factor. The nota-

tion
[
βyZ

⊥
1 (ωq)

]
/β̄y implies that the transverse impedance

Z⊥
1 should be summed up item-by-item along the vacuum

chamber with βy/β̄y acting as a weight, where βy is the

local betatron function and β̄y = R/νy is the mean along

the ring. In our discussion, the impedance comes mostly

from the wall of the vacuum chamber and the weighted

summation is therefore not necessary. The other variables

are Z0 ≈ 376.7 Ω the free-space impedance, and λ̃mk the

spectrum of the linear distribution of excitation of the mth

azimuthal and kth radial mode. For the Gaussian linear

distribution [10],

λ̃mk(ωn)= i−(m+2k)

√
1

k!(m+k)!

[
ωnστ√

2

]m+2k

e−
1
2ω2

nσ2
τ ,

(6.3)
where στ = σz/(βc) is the rms bunch length in time, with

c being the velocity of light.
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Figure 7: (Color) Vertical dipole impedance of the Fermilab

Booster laminated magnets computed by approximating the mag-

net gap by parallel surfaces. The contribution of the beam pipes

joining the magnets is too small to be seen.

We see that, because of the spectral content of the

bunch, one value of the eigen-tune νc in the dispersion

function corresponds to a weighted combination of trans-

verse impedance at various frequencies, but only one value

of the coherent tune shift Δνy
coh. This explains why the sta-

bility plot is depicted in the complex plane of the coherent

tune shift instead of that of the transverse impedance.

Coupled-Bunch Instabilities

Protons are injected from a linac into the Fermilab

Booster at the kinetic energy of 400 MeV and are then cap-

tured adiabatically into M = 84 equally spaced bunches

each containing Nb = 6×1010 protons. The space-charge

force is actually at a maximum slightly into the ramp cy-

cle when the bunch length becomes shorter. Here we

study the situation when the total particle energy becomes

E = 1.40 GeV and rms bunch length σz = 0.70 m or

στ = 3.15 ns. The transition gamma of the Booster is

γt = 5.446 so that the slip factor is η = −0.4154. Since

the magnets are unshielded and the beam sees the magnet

laminations, the coupling impedance is dominated by the

contribution from the laminated walls. The transverse im-

pedance of the laminated magnet surfaces have been com-

puted approximately using the method of surface impe-

dance per square and the method of equivalent transverse

propagation constant [9]. The openings of these combined-

function magnets are approximated by parallel laminated

surfaces and the computed impedance is depicted in Fig. 7.

Notice that because of the large value of the lamination im-

pedance, Re Z⊥
1 bends back to zero below ∼ 75 MHz. As

−30 −25 −20 −15 −10 −5
Coupled Mode Number μ

0.0000

0.0001

0.0002

0.0003

Im
(Δ

ν co
h)

Figure 8: ImΔνy
coh for the most unstable coupled bunch mode

μ. Note that the most unstable one is slightly away from the (1−
Q) mode at μ = −7 due to finite lamination contribution.

a result, the laminations, although very resistive, contribute

little to coupled-bunch instabilities.

The stainless steel beam pipes joining the magnets

produce a vertical impedance of

Re Z⊥
1

∣∣∣
pipe

(ω) =
[
sgn(ω)−i

] 0.199√|ω/ω0|
MΩ/m, (6.4)

which is too small to be visible if plotted together with

the lamination contributions in Fig. 7. However, be-

cause these pipe contributions are small, Re Z⊥
1

∣∣
pipe

bends

back to zero at the very low frequency, ∼ 100 Hz, and∣∣ Im Z⊥
1

∣∣
pipe,max

= 12.9 MΩ/m. Thus the pipe contri-

bution may overtake the lamination contribution at low

frequencies and becomes the dominating driving force

of coupled-bunch instabilities. In fact, at the (1 − Q)
line, (ω/ω0 = −0.2), Re Z⊥

1

∣∣
pipe

= −0.43 MΩ/m while

Re Z⊥
1

∣∣
lamination

= −0.24 MΩ/m. As a result, the contri-

bution of the lamination can also be important. We com-

puted the effective transverse impedance at various coupled

modes μ, according to Eq. (6.2) including both the lamina-

tion and beam pipe contributions, while keeping the chro-

maticity ξy = 0. For the azimuthal mode mk = (0, 0), the

imaginary parts of the coherent tune shifts corresponding

to the most unstable coupled-bunch modes are plotted in

Fig. 8. We see that the most unstable mode is μ = −12 and

the coherent tune shift is Δνy
coh = −0.0257 + i0.000228,

which would amount to a growth time of 1.49 ms in the ab-

sence of Landau damping. With the presence of octupoles,

it is clear that this coherent tune shift is well within the sta-

bility region for Gaussian linear distribution in Fig. 6. Thus

all coupled-modes are stable when octupoles contribute a

tune spread of −0.042 < Δνy < 0.065.
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Single-Bunch Head-Tail Instabilities

In the study of single-bunch instability, we substitute

M = 1 in the effective impedance of Eq. (6.2). Unlike

the situation of coupled-bunch calculation, now the sum-

mation is over every harmonic with the excitation mode

power spectrum as weight factor. Here, the impedance con-

tribution is completely dominated by the laminations of the

magnets while that of the beam pipes plays negligible role.

This is because the beam pipes cover only ∼ 40% of the

vacuum chamber and these pipes are of rather large trans-

verse dimension so as to accommodate the space-charge

dominated beam at low energies. We can therefore model

the transverse impedance of the Fermilab Booster as a

broad-band resonance centered at fr ∼ 85 MHz.

With the neglect of mode-coupling, we need to con-

sider only the most prominent radial mode k = 0. The az-

imuthal mode m = 0 is the one that is most easily sub-

ject to instability because of its relatively large power spec-

trum. This mode is most unstable when the mode spec-

trum is shifted towards the peak of the broad-band reso-

nance at negative frequency (see Fig. 9). This requires a

chromaticity of ξy =−ηfr/f0 ∼ 75, where f0 = ω0/(2π).
Detailed numerical summation of the effective impedance

gives ξy =+99, at which Δνy
coh=−0.012+ i0.016, which

is too large to be Landau damped according to the stability

plot of Fig. 6. However, this is of no alarm, because it is not

possible to operate the Fermilab Booster at such high chro-

maticity; the vertical bare tune is only νy ≈ 6.8 and the

maximum momentum spread is ∼ ±1%. The operational

Figure 9: Plot showing shifts of power spectra of azimuthal

modes under chromaticity ξy along the frequency axis with re-

spect to the transverse impedance Re Z⊥
1 .

chromaticity is usually at most ξy ∼ ±10. Even at ξy = 10,

the coherent tune shift is Δνy
coh =−0.255+i0.0022, which

is close to the stability boundary. Most of the time, the Fer-

milab Booster runs at negative chromaticity near injection,

so as to guarantee stability of this m = 0 head-tail mode.

It is important to point out that the Fermilab Booster is a

fast ramping machine at 15 Hz, so a slight instability in a

small energy range is of no significance, because very soon

the beam particles will be at much higher energies and the

space-charge force will decrease accordingly.

To study other head-tail modes, it is most convenient

to consider the variable ωστ . We learn from Eq. (6.3) that

the power spectrum of the mth azimuthal mode peaks at

ωστ =
√|m|. The peak of the broad-band resonance of

the lamination impedance at fr ∼ 85 MHz corresponds

to ωrστ ∼ 1.7. Thus the peaks of azimuthal excitations

with |m| = 0, 1, 2 are of lower frequency than the res-

onance peak, the peak of the |m| = 3 mode excitation

is roughly on top of the lamination resonance peak, while

those with |m| > 3 lie on the two higher-frequency sides

(see Fig. 9). When the chromaticity becomes negative, all

azimuthal modes have their spectra shifted to the right to-

wards higher frequencies, since we are well below tran-

sition. Modes |m| = 0, 1, 2, 3 will sample more impe-

dance at positive frequencies and less impedance at neg-

ative frequencies and are therefore stable. The spectra of

modes |m| ≥ 4 sample more impedance at negative fre-

quencies and are therefore unstable. Mode |m| = 4 will

become most unstable when the peak of its power spec-

trum is moved by chromaticity to the peak of the reso-

nance impedance. The amount of chromaticity required to

do so is given by ξyω0στ/η ∼ √
4−√

3, or ξy ∼ −12.

Detailed numerical computation gives ξy = −15 at which

Im Δνy
coh = 0.000052, which is not far from our esti-

mation, remembering that the lamination resonance impe-

dance is not a well-behaved symmetric resonance but has

long high-frequency tails. This value of Im Δν y
coh is well

within the stability region provided by the stability con-

tour in Fig. 6; the mode is therefore stable. The smallness

of Im Δνy
coh comes about because the peak value of the

|m|th mode power spectrum decreases roughly as e−|m|.
This decrease will not be as much if the longitudinal linear

distribution is not Gaussian, but with shorter tails. For ex-

ample, if we consider instead the approximated Sacherer si-

nusoidal modes, the peaks of the corresponding azimuthal

modes are all separated by Δω ∼ π/(4στ ), much farther

apart than the Hermite modes of the Gaussian distribution,
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where the total bunch length is assumed to be 4στ . Then,

to shift one azimuthal mode to the position of the consecu-

tive mode will require a chromaticity of ξy =πη/(4ω0στ ),
which is about three times as much as for the Hermite

modes. Such large chromaticity is far from the operational

chromaticity of the Fermilab Booster. Numerical compu-

tation shows that even up to ξy = −15, the most unstable

mode is |m|=4 with Im Δνy
coh =0.00082, still below the

stability limit. In short, the head-tail modes should all be

stable if the chromaticity is negative and less than ∼ 10
units. One important reason behind this conclusion is the

relatively large slip factor near injection (η = −0.4154),

which makes chromaticity inefficient in shifting the power

spectra along the frequency axis. This explains why the

Fermilab Booster can often run at the wrong chromatic-

ity (or positive chromaticity) near injection. This will no

longer be true when the beam energy reaches transition.

Near transition |η| is small and even a small chromatic-

ity can shift the power spectra of the azimuthal modes by

a large amount. Luckily, the space-charge force at those

energies will become much less, as will its effects on the

stability contours.

CONCLUSION

The dispersion relation of Métral and Ruggiero in the

presence of octupole tune spread and space-charge force

has been extended to that for a bunch. The integration is

performed analytically in the two transverse dimensions

and numerically in the longitudinal dimension, resulting

in the stability contour in the complex coherent-tune-shift

plane. A wide range of longitudinal linear distributions,

from uniform to parabolic and Gaussian, have been con-

sidered, and their stability contours compared. The result

shows that there will be finite Landau damping provided

that the longitudinal distribution spreads out on both sides

more than the parabolic distribution.

The stability contour corresponding to the longitudi-

nal Gaussian distribution is applied to the Fermilab Booster

near injection when the total particle energy is of 1.40 GeV.

First, we look into transverse coupled bunch instabilities

for a full ring of 84 equally space bunches. The coherent

tune shift is computed according to the impedance of the

unshielded laminated magnets and the beam pipes joining

them together. We find that for the azimuthal mode m=0,

Im Δνy
coh’s of all coupled-bunch modes are well within

the stable region of the stability contour. Without Landau

damping, the most unstable mode will have a growth time

of ∼ 1.5 ms. In the analysis, we assume octupoles sup-

plying action dependent tune spreads of −0.042 < Δνy <

0.065 in the same direction as the gradient of the space-

charge detuning. Actually, all these coupled modes re-

main stable even if the octupole strength is reduced by one

half. Next, the single-bunch head-tail modes are studied.

The worst situation is when the m = 0 mode is shifted

by chromaticity towards the resonance peak of the approx-

imated broad-band impedance of the laminated magnets.

This mode will become unstable when ξy � 10, which is

outside the operation range of the machine. With ξy < 0,

modes m = 0, ±1, ±2, and ±3 are stable while modes

|m| ≥ 4 are unstable if there is no octupole damping at

all. However, Im Δνy
coh’s are small for these modes and

all of them are well inside the stable region of the stability

plot. This happens because, first, the magnitudes of their

power spectra roll off according to e−|m|, and second, the

relatively large slip factor near injection makes the shifting

of power spectra by chromaticity along the frequency axis

very inefficient.

In short, we now understand how octupole tune

spread can provide Landau damping to a bunch with strong

space-charge, like the ones in the Fermilab Booster, al-

though such Landau damping may not be possible for a

coasting beam or a bunch with uniform longitudinal distri-

bution. There are two issues that have not been answered.

First, only non-coupled azimuthal and radial modes have

been considered. When these modes couple, the spread in

synchrotron tune in the dispersion relation may become im-

portant and cannot be ignored. The dispersion relation for

a bunch, Eq. (5.3), is merely a suggestion of the extension

from that for a coasting beam. Its rigorous derivation is still

unavailable at the moment.

APPENDIX

Let q(z) = [qc − Δ0(z)]/S1(z), where qc = νc −
mνs−νy00 and νc is the eigen-tune of the dispersion rela-

tion. Then I1(z), I2(z), and I3(z) are exactly the same in-

tegrals discussed by Métral and Ruggiero [1]. In the closed

form in terms of q(z) and c1(z), these integrals give the

following expressions [11]:

I1 = − 1
6c2

1(c1−1)2

{
c1(c1−1)

[
q2(2c1−1)+2qc1+c1

]
+

+ (q + c1)3 ln
q+1
q+c1

−

− (c1−1)2q2
[
q(2c1+1) + 3c1

]
ln

q+1
q

}
, (A.1)
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I2 = +
1

24c2
1(c1−1)3

{
c1(c1−1)

[
2q3(3c2

1−5c1+1)+

+ q2c1(5c1−11)− 2qc1(c1+2)−c1(3c1−1)
]−

− 2(q + c1)4 ln
q+1
q+c1

−

− 2(c1−1)3q3
[
q(3c1+1) + 4c1

]
ln

q+1
q

}
, (A.2)

I3 = +
1

24c3
1(c1−1)3

{
c1(c1−1)

[
2q3(c2

1−c1+1)+

+ 3q2c1(c1+1) + 6qc2
1+c2

1(c1+1)
]
+

+ 2(q + c1)3
[
q(2c1−1)+c1

]
ln

q+1
q+c1

−

− 2(c1−1)3q3
[
q(c1+1) + 2c1

]
ln

q+1
q

}
. (A.3)

They are all complex variables. Their imaginary parts

come from the logarithmic terms. Their values are deter-

mined as follows according to the variable a1, the com-

bined tune shift gradient of the octupole and the transverse

space-charge force defined in Eqs. (5.4), (5.6), and (5.11).

For the stability contour, the imaginary part is introduced

by letting

q → q ± iε for a1 ≷ 0, (A.4)

with ε being an infinitesimally small positive number. The

result turns out to be,

for a1 >0,

ln
q+1

q
= ln

∣∣∣∣q+1
q

∣∣∣∣+ i

{
0 q(q + 1) > 0,

−π q(q + 1) < 0,

ln
q+1
q+c1

= ln
∣∣∣∣ q+1
q+c1

∣∣∣∣+ i

⎧⎪⎨
⎪⎩

0 (q+1)(q+c1) > 0,

±π

{
(c1−1) ≷ 0 and
(q+1)(q+c1) < 0,

for a1 <0,

ln
q+1

q
= ln

∣∣∣∣q+1
q

∣∣∣∣+ i

{
0 q(q + 1) > 0,

+π q(q + 1) < 0,

ln
q+1
q+c1

= ln
∣∣∣∣ q+1
q+c1

∣∣∣∣+ i

⎧⎪⎨
⎪⎩

0 (q+1)(q+c1) > 0,

±π

{
(c1−1) ≶ 0 and
(q+1)(q+c1) < 0.

(A.5)
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