
Northeastern University

Physics Dissertations Department of Physics

January 01, 2014

Multicomponent dark matter: possible signatures
at colliders, satellites, and underground experiments
Gregory Peim
Northeastern University

This work is available open access, hosted by Northeastern University.

Recommended Citation
Peim, Gregory, "Multicomponent dark matter: possible signatures at colliders, satellites, and underground experiments" (2014).
Physics Dissertations. Paper 42. http://hdl.handle.net/2047/d20003279

http://iris.lib.neu.edu/physics_diss
http://iris.lib.neu.edu/physics


Multicomponent Dark Matter: Possible Signatures at Colliders, Satellites, and
Underground Experiments

A dissertation presented

by

Gregory Peim

to
The Department of Physics

In partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in the field of

Physics

Northeastern University
Boston, Massachusetts

August 19, 2013



c©
Gregory Peim, 2013

ALL RIGHTS RESERVED



Multicomponent Dark Matter: Possible Signatures at Colliders, Satellites, and
Underground Experiments

by

Gregory Peim

ABSTRACT OF DISSERTATION

Submitted in partial fulfillment of the requirement
for the degree of Doctor of Philosophy in Physics

in the College of Science of
Northeastern University,

August 19, 2013



Abstract

Collider anddarkmatter phenomenology of theHiggs boson, Supersymmetry, Stueck-

elberg extensions to the Standard Model as well as to the Minimal Supersymmetric

Standard Model, and exotic TeV size scalars with naturalness implications in the

context of multicomponent dark matter and asymmetric dark matter models are in-

vestigated. The measurement of signals of new physics at dark matter direct detec-

tion experiments as well as colliders (Large Hadron Collider, TeVatron, and a future

muon collider) were discussed and explored in depth with a focus on the prospects

for the discovery of new physics. The details of multicomponent dark matter mod-

els and each components role in the calculation of the dark matter relic density are

analyzed.
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Chapter 1

Introduction and Overview

With the Large Hadron Collider (LHC) having accumulated a substantial amount of

integrated luminosity [1], darkmatter direct detection experiments collectingdata [2],

and the Planck satellite releasing its observations [3], particle physics finds itself in

a very exciting data enriched era. The field recently surpassed a milestone with the

July 2012 announcement of a 5σ detection of a boson around 125GeV, with prelimi-

nary results indicating a Higgs boson [4–8]. The content of this thesis is directly tied

to the new wave of data that has come forth from the LHC and dark matter related

experiments.

The Standard Model (SM) [9–16] of electroweak and strong interactions has been

successful in explaining a large amount of data in particle physics. Specifically the

Standard Model is in excellent agreement with the high precision data from various

collider experiments including the large electron-positron collider (LEP), TeVatron,

and the LHC. The Standard Model is based on the gauge group SU(3)C × SU(2)L×
U(1)Y , where SU(3)C is the gauge group of the strong color interaction, SU(2)L is

the gauge group of the weak chiral interaction, and U(1)Y is the hypercharge fac-
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tor. In the Standard Model, the electroweak gauge symmetry of SU(2)L × U(1)Y

is spontaneously broken to the electromagnetic gauge group U(1)EM, by the Higgs

mechanism [17–20]. The mechanism introduces a new SU(2)L scalar doublet that

develops a vacuum expectation value and gives mass to the W± gauged boson as

well as the Z0 gauged boson and keeps the photon massless. After the symmetry

is broken, a residual CP-even scalar field is left and is known as the Higgs boson.

The recent discovery of the Higgs boson at the LHCmarks a milestone in that all the

particles predicted in the Standard Model have now been discovered.

However, the theory is not perfect and fails to provide an explanation of a variety

of observed phenomena in nature. This includes the existence of cold dark matter,

dark energy, baryon and anti-baryon asymmetry in the Universe, as well as neutrino

masses andmixing. Froma theoretical viewpoint the StandardModel fails to explain

gravity, the Higgs fine-tuning, and why there are only 3 generations of quarks and

leptons. The contents of this thesis focuses mainly on trying to explain the existence

of cold dark matter as well as the anti-baryon asymmetry in the Universe and will

touch on the inclusion of gravity and the Higgs fine-tuning.

First, let us begin by exploring what dark matter is. In the 1930s, when studying

the rotational curves of galaxies and comparing that motion to the amount of visible

light (coming from the stars) it was found that the curves could only be explained

by additional mass which interacted gravitationally with other visible objects. This

observation can be explained by introducing a new type of matter, i.e. dark mat-

ter (DM) which interacts gravitationally (and I will assume it also interacts weakly,

i.e. WIMP). Thus dark matter must be electromagnetically neutral.

Experimental data has found that there aremore baryons than anti-baryons in the

Universe. Why is this? How did this come about? Additionally it is interesting to

16



investigate if there is some underlying principle why the ratio of the darkmatter relic

density to baryonic relic density is ∼ 5, which is called the cosmic coincidence. The

focus of this thesis is to explain the cosmic coincidence by using the assumption that

B− L excess in the visible sector has been generated in the early universe which can

then generates (asymmetric) dark matter (AsyDM) carrying a non-vanishing B− L.

Dark matter, however, could be multicomponent consisting not only of dark matter

from AsyDM but also of other species such as the neutralino, which is the leading

dark matter candidate in supersymmetry/supergravity theories.

Further elaboration of the above three paragraphs is the focus of this thesis and

it is organized in the following manner. In Chapter 2, I give a very brief overview

of the Standard Model including how the masses are generated and the challenges.

Next, the Stueckelberg mechanism is used to extend the StandardModel to generate

a dark matter candidate that can explain the cosmic coincidence (Chapter 3). The

analysis is done at different temperature scales and the depletion of the symmetric

component is explored. In Chapter 4, a brief introduction is given of supersymme-

try. In Chapter 5 we extend the Minimal Supersymmetric Standard Model using a

Stueckelberg mechanism which introduces the possibility of multicomponent dark

matter. We then revisit asymmetric dark matter in Chapter 6 for the Minimal Super-

symmetric StandardModel case. In Chapter 7 we explore the possibility of detecting

supersymmetry at the LHC as well as the implications of the results at the LHC and

in Chapter 8 we explore signatures that can be used to test models discussed in ear-

lier chapters. Conclusions are given in Chapter 9.

17



Chapter 2

The Standard Model

In this chapter we give a short overview of the Standard Model (SM) [9, 10, 13, 14,

21] and for readers who would like a more in-depth introduction should see [16].

The Standard Model of particle physics combines all the known interactions (the

electromagnetic, the weak, and the strong interaction) except gravity. The theory has

been tested very extensively and has excellent agreement with experimental data.

Most recently, (July 2012), the last remaining particle (the Higgs boson) seems to

have been discovered at the LHC [4–8].

The Standard Model contains in it three generations of spin-1
2 fermions (quarks

and leptons), spin-1 bosons (gluon, photon, W±, and Zo) as well as a spin-0 scalar

(Higgs Boson) and the theory is based on the gauge group SU(3)C × SU(2)L ×
U(1)Y, which determine the interactions of the Standard Model particles. Here C

stands for color, L stands for left chiral, and Y stands for hypercharge. The interac-

tions are governed by 8 SU(3)C gauge fields (“strong interaction"), 3 SU(2)L gauge

field (“weak interaction"), and 1 U(1)Y gauge field (“hypercharge interaction"). The

electromagnetic charge derives from these fields by the Gell-Mann-Nishijima rela-
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tion

QEM = T3 +
1
2

Y (2.1)

where Y is the generator of the U(1)Y group and T3 is a generator of the SU(2)L

group.

2.1 Particle Masses in the Standard Model

To give mass to the “known" particles in the Standard Model one uses the Higgs

mechanism [17–20], which introduces an additional scalar SU(2)L doublet of the

form

φ =




H+

H0


 (2.2)

with a potential

V (φ) = −µ2φ†φ + λ
(

φ†φ
)2

(2.3)

where µ2, λ > 0. The tachyonic mass term for the Higgs field gives rise to a spon-

taneous symmetry breaking. This results in a non-vanishing vacuum expectation

value (VEV).

〈φ〉0 =




0

v/
√

2


 (2.4)

where v = µ/
√

λ . This means H0 can be redefined as (v + h) /
√

2 and the tree level

mass of the Higgs is m2
h = 2µ2 > 0.
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2.2 Challenges of the Standard Model

The StandardModel is a very well tested theory and its theoretical predictions agree

with experimental measurement with a high precision. However, many phenom-

ena remain unexplained in the Standard Model. Astrophysical experiments have

detected the existence of cold dark matter and dark energy. The Standard Model

cannot explain either of these observations. In the Standard Model neutrinos are

massless and do not mix. However, atmospheric and solar neutrino experiments

have observed neutrinos oscillating between flavor, which implies that they have a

non-zero mass. The Universe has an imbalance of matter over anti-matter. The Stan-

dard Model does not provides a sufficient explanation of this. As mentioned earlier,

the Standard Model does not include gravity. A complete theory of particle physics

should include all fundamental forces.The square of the Higgs mass gets quantum

corrections of the form m2
h(Λ) = m2

h + cΛ2. To be consistent with the observed elec-

troweak phenomena, the bare mass term m2
h needs to cancel the correction term to

high precision.

The focus of the rest of the thesis is the exploration of cold dark matter in a mul-

ticomponent picture. The implications of multicomponent dark matter in direct de-

tection and their tests at colliders will also be discussed.
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Chapter 3

Asymmetric Dark Matter in the

Standard Model

3.1 Introduction

In this chapter we will discuss asymmetric dark matter. The majority of this analysis

comes directly from [22]. To begin let us consider one of the outstanding puzzles in

particle physics and cosmology that relates to the so called cosmic coincidence, i.e.,

the apparent closeness of the amount of baryon asymmetry to the amount of dark

matter in the Universe. Thus the WMAP-7 result, with RECFAST version 1.5 to cal-

culate the recombination history [2], gives the baryonic relic density to be 100ΩBh2
0 =

2.255± 0.054 and the darkmatter relic density to be ΩDMh2
0 = 0.1126± 0.0036, which

leads to
ΩDMh2

0

ΩBh2
0

= 4.99± 0.20 . (3.1)
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The closeness of ΩDMh2
0 and ΩBh2

0 points to the possibility that the baryonic mat-

ter and dark matter may have a common origin; a possibility that has been noted

for some time [23–27]. Dark Matter models of this type are called asymmetric dark

matter (AsyDM).

In this chapter we analyze this issue in the framework of a Stueckelberg U(1)

extension of the StandardModel [28, 29]. There are twomain constraints in building

models with asymmetric dark matter. First, we need a mechanism for transferring a

B− L asymmetry produced in the early universe to dark matter. Second, we must

have a mechanism for depleting the symmetric component of dark matter generated

via thermal processes.

The above issues have been discussed in the literature in a variety of works (for a

review see [30] and references with in). Themodels based on the Stueckelberg exten-

sions discussed here are different from the ones considered previously both in terms

of the mechanism for depletion of the symmetric component of dark matter. Specif-

ically, we consider a U(1)X extension of the Standard Model gauge group which is

anomaly free. Further, we consider dark matter candidates which will carry lepton

number but not a baryon number, and are singlets of the Standard Model gauge

group. In the leptonic sector it is known [31, 32] that for the StandardModel case we

may choose one of the linear combinations Le − Lµ, Lµ − Lτ, Le − Lτ to be anomaly

free and can be gauged. Here we consider a gauged Lµ − Lτ in the discussion of

asymmetric dark matter as this choice is the more appropriate one for the analysis

here. Specifically, we will consider a U(1)X, X = Lµ − Lτ Stueckelberg extension of

the Standard Model.
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3.2 Cosmic coincidence and asymmetric dark matter

For the analysis in this chapter we will assume that a B − L asymmetry has been

generated in the early universe. It will not be speculated on how this asymmetry

came about as it could be by any number of different processes such as baryogenesis

or leptogenesis [33]. The asymmetry is then transferred to the dark sector at high

temperatures via an interaction of the form [34]

Lasy =
1

Mn
asy
ODMOasy , (3.2)

where Masy is the scale of this interaction,1 andOasy is an operator constructed from

Standard Model fields which carries a non-vanishing B− L quantum number while

ODM carries the opposite B− L quantum number. This interaction would decouple

at some temperature greater than the dark matter mass. As the Universe cools, the

dark matter asymmetry freezes on order of the baryon asymmetry, which explains

the observed relation between baryon and dark matter densities.

At the temperature where Equation (3.3) is operational, and using the fact that

the chemical potential of particles and anti-particles are different, the asymmetry in

1In the radiation-dominated era, the Hubble expansion rate is given by H ∼ T2/MPl, where
MPl = 2.435× 1018 GeV is the reduced Plank mass. For an interaction suppressed by a factor 1/Mn

asy,
the interaction rate at temperature T is Γ(T) ∼ T2n+1/M2n

asy. Thus, the interaction will decouple if
Γ < H, i.e., when

M2n
asy > MPlT2n−1 . (3.3)
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the particle and antiparticle number densities is given by

ni − n̄i =
gi

2π2

∫ ∞

0
dq q2

[
(e(Ei(q)−µi)/T) ± 1)−1 − (e(Ei(q)+µi)/T) ± 1)−1

]

≡ giT3

6
×





βµici(b) bosons ,

βµici( f ) fermions ,
(3.4)

where ni and n̄i denote the equilibrium number density of particle and antiparticle

respectively, gi counts the degrees of freedom of the particle, Ei(q) =
√

q2 + m2
i

where mi is the mass of particle i, µi is the chemical potential of the particle (−µi is

the chemical potential of the antiparticle), and+1 (−1) in the denominator is for the

casewhen the particle is a fermion (boson). In the ultra relativistic limit (T � mi) the

mass of the particle can be dropped. For the analysis done throughout this chapter

we will use the approximation of a weakly interacting plasma where βµi � 1, and

β ≡ 1/T and one has

ni − n̄i ∼
giT3

6
×





2βµi +O
(
(βµi)

3) bosons ,

βµi +O
(
(βµi)

3) fermions .
(3.5)

In the limit where Equation (3.5) holds we have ci(b) = 2, ci( f ) = 1. This limit is

a useful approximation as it simplifies the analysis of the chemical potentials that

are needed in the generation of dark matter. However, full analysis can be easily

done by using the exact expression of Equation (3.4). The mass of the dark matter

is constrained by the experimental ratio of dark matter to baryonic matter given in

Equation (3.1). Defining B to be the total baryon number in the Universe and X to
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be the total dark matter number, we obtain

ΩDM

Ωmatter
=

X ·mDM

B ·mB
≈ 5 , (3.6)

so that the dark particle mass is given by

mDM ≈ 5 · B
X
· 1GeV . (3.7)

Applying the general thermal equilibrium method [35], it is not difficult to express

B and X in terms of the chemical potentials and then find their ratio. We note one

subtlety is that while X and B− L (where by B− L we mean the B− L in the Stan-

dard Model sector) are conserved after the interaction in Equation (3.2) decouples,

B is not. Thus, for example, the top quark would drop out from the thermal bath

at some temperature Tt and one must solve the new set of µ equations at T < Tt

which would affect the computation of B although B − L is conserved. Typically

one takes Tt to be Mt but it could be somewhat lower. Specifically, as the tempera-

ture drops below Mt ∼ 173GeV, the top quark becomes semi-relativistic but could

still be involved in the thermal equilibrium constraints. Further, as the temperature

falls below the temperature where sphaleron processes decouple, B and L would

be separately conserved down to the current temperatures. Thus the relevant B to

compute the dark matter mass in Equation (3.7) would be the baryon number be-

low the sphaleron temperature which we label Bfinal. It is useful to express X and

Bfinal in terms of B− L so that X = x(B− L) and Bfinal = b(B− L) where b is to be

determined later (see Equation (3.28)). Thus, Equation (3.7) can be rewritten as

mDM ≈ 5 · b
x
· 1GeV . (3.8)
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Model A
SM

Tint > TEWPT
Model B TEWPT > Tint > Mt
Model C Tt > Tint > MW

Table 3.1: A list of three models which allow for generation of asymmetric dark mat-
ter in an extension of the Standard Model.

In this chapter we will discuss three broad classes of models labeled Models A-

C (see Table 3.1). For Models A, the asymmetry transfer interaction, of the form of

Equation (3.2), is active only above the electroweak phase transition (EWPT) scale,

i.e., Tint > TEWPT (TEWPT ∼ 200GeV− 300GeV where the Higgs gets its VEV). For

Model B andC, the interactionwhich transfers the asymmetry could be active also be-

low the EWPT scale, i.e., TEWPT > Tint. More specifically, inModel B we consider the

temperature regime TEWPT > Tint > Mt, and in Model C we discuss Tt > Tint > MW

where MW is the mass of W boson. These three cases are summarized in Table 3.1.

There can be additional subcases for thesemodels corresponding to different choices

of the B− L transfer in Equation (3.2).

3.3 Analysis in the Standard Model framework

In this section we will determine the dark matter mass in terms of the B− L asym-

metry in the Standard Model framework utilizing Equation (3.8) for Models A-C.

As mentioned above, we will discuss three different temperature regimes where the

B − L transfer takes place. It should be noted that the dark matter mass depends

only on the (B− L)-charge of the operatorOasy that enters in Equation (3.2) and not

on other particulars of the interaction. We will give several examples of the operator

Oasy and compute the dark matter mass for each example.
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3.3.1 T > TEWPT

First we consider the casewhen the temperature is above the electroweak phase tran-

sition scale, TEWPT. In this case the following fields are in the relativistic plasma in

the early universe: three generations of left-handed lepton doublets Li and quark

doublets qi, three generations of right-handed charged leptons ei and up and down-

type quarks ui and di (i = 1, 2, 3), and a complex Higgs doublets Hi = (h+i , h0
i )

T.

Since the Z boson and the photon couple to particle and anti-particle pairs they have

a vanishing chemical potential. Further, in this temperature regime, SU(2)L symme-

try is unbroken, the W and Z are part of the same gauge multiplet which requires

that the chemical potential of the W vanishes as well. The chemical potential of the

gluon is zero and different color quarks carry the same chemical potential. The fla-

vor (CKM) mixing among quarks ensures that the chemical potential of quarks in

different generations are equal. However for the lepton sector, there is no such fla-

vor mixing in the absence of neutrino masses [36]. Thus each of the lepton numbers

(Le, Lµ, Lτ) for the three generations are separately conserved. Our notation is as fol-

lows: µLi , µei denote the chemical potentials of left-handed and right-handed leptons

while µqi , µui , µdi stand for the chemical potential of left-handed and right-handed

quarks. We assume that the chemical potential of all generations is the same and

thus drop the subscript i and use µH for the chemical potential of the Higgs doublet.

The Yukawa couplings

LYukawa = gei L̄iHei + gui q̄iHcui + gdi q̄iHdi (3.9)
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yield the following relations among the chemical potentials

µH = µL − µe = µq − µd = µu − µq . (3.10)

Sphaleron processes (Osph ∼ ∏i=1,2,3 qiqiqiLi) give us one additional relation,

3µq + µL = 0 . (3.11)

The temperature where the sphaleron processes decouple is estimated to be [37]

TSph ∼
[
80 + 54× mh

120GeV

]
GeV . (3.12)

It is very likely that TSph lies below TEWPT, and thus the sphaleron processes are

always active at T > TEWPT. Finally, the hypercharge neutrality condition requires

the total hypercharge of the Universe to be zero2

3µq + 6µu − 3µd − 3µL − 3µe + 2µH = 0 . (3.13)

Solving Equation (3.9) to Equation (3.13) we can express all the chemical potentials

in terms of the chemical potential of one single field, e.g., µL. Specifically one finds

2 The hypercharge of the Universe used in deducing Equation (3.13) is computed as follows:

Y = 3×
[
2× 3× 1

3 µq + 3× 4
3 µu + 3× (− 2

3 )µd + 2× (−1)µL + (−2)µe
]
+ 2× 2µH ,

where the factor of 3 outside the first brace indicates summation over quark and lepton generations
while inside the brace the factor of 3 for quarks indicates summing over colors, the factor of 2 for q, L
and H counts two fields inside the doublets, and the additional factor of 2 for the Higgs is due to it
being bosonic (see Equation (3.5)).
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for Model A (suppressing a factor of βT3/6)

BA = 3× [2µq + (µu + µd)] = −4µL , (3.14)

LA = 3× (2µL + µe) =
51
7

µL , (3.15)

so that (B− L)A = −79
7 µL.

3.3.2 T < TEWPT

Nowwe consider the case when the temperature is below the EWPT scale. After the

Higgs gets its VEV, and the SU(2)L×U(1)Y symmetry is broken, one has W±, Z, the

photon and the Higgs scalar (h) as the physical particles in the thermal bath. Again,

since the Z and the photon only couple to two particles with opposite chemical po-

tentials, their chemical potentials are zero. For temperatures above the top quark

mass, the relativistic plasma includes three generations of left-handed and right-

handed up-type and down-type quarks (uiL, uiR, diL and diR), three generations of

left-handed leptons (eiL and νi) and right-handed charged leptons (eiR), i = 1, 2, 3. As

in Section 3.3.1, we will assume that the chemical potentials are generation indepen-

dent. Thus dropping the generation indexwewill use µuL , µuR , µdL , µdR to denote the

chemical potentials of left-handed and right-handed up-type and down-type quarks,

µeL and µν for left-handed leptons, µeR for right-handed charged leptons, µW for W+,

and µh for h.

In the analysis below we make the following approximations:

1. At TEWPT > T > Mt, we still treat the top quark as relativistic gas.

2. At Tt > T > MW , we treat the W boson as relativistic (all other particles,
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which have non-vanishing chemical potentials, are very light so the limit in

Equation (3.5) holds for them).

3. We assume Tt > TSph, i.e., the top quark drops out of the thermal bath before

the sphaleron processes decouple.

For T < TEWPT, the Yukawa couplings have the form

LYukawa = gei ēiLheiR + gui ūiLhuiR + gdi d̄iLhdiR + h.c. , (3.16)

and since the Higgs boson is a real field and can couple to, for example, both ēiLeiR

and ēiReiL, we get

0 = µh = µuL − µuR = µdL − µdR = µeL − µeR . (3.17)

Thus, the chemical potentials of left-handed and right-handed quarks/charged lep-

tons are equal. The gauge interactions involving W bosons (L ∼ Wµ f̄ γµ f ) provide

us the following relations,

µW = µuL − µdL (W+ ↔ uL + d̄L) , (3.18)

µW = µν − µeL (W+ ↔ νi + ēiL) . (3.19)

The sphaleron processes give us one additional equation,

µuL + 2µdL + µν = 0 . (3.20)

Since SU(2)L symmetry is broken below the EWPT scale, hypercharge is no longer

a good quantum number. Further, the neutrality of the Universe now requires the

30



total electrical charge to be zero3

2(µuL + µuR + µW)− (µdL + µdR + µeL + µeR) = 0 . (3.22)

Solving the new set of equations one finds for Model B

BB = 3× [(µuL + µuR) + (µdL + µdR)] = −
36
7

µe , (3.23)

LB = 3× (µeL + µeR + µν) =
75
7

µe , (3.24)

where we have expressed the results in terms of µe ≡ µeL = µeR , and (B − L)B =

−111
7 µe.

When the temperature drops below Tt, the top quark drops out from the thermal

bath, and we are left with just five flavors of quarks. In this case (Tt > T > MW)

one must treat the first two generations and the third generations separately. For

the first two generations the analysis of Equation (3.17) to Equation (3.20) still holds.

For the remaining third generation leptons, we assume as before that the chemical

potentials are identical to those for the first two generation leptons. Further, we note

that the charge current process W+ ↔ uL + b̄L provides us with the relations µW =

µuL − µbL and µbL = µdL . Thus we can treat Model C similar to Model B with only

one modification to the charge neutrality condition, which now becomes

4(µuL + µuR) + 6µW − 3(µdL + µdR + µeL + µeR) = 0 . (3.25)

3The result of Equation (3.22) follows from the computation of the total charge Q which is given
by

Q = 3×
[
3× 2

3 (µuL + µuR) + 3× (− 1
3 )(µdL + µdR) + (−1)(µeL + µeR)

]
+ 2× 3µW , (3.21)

where again, the factors of 3 for fermions outside the big brace indicates summing over generations,
the other factor of 3 for quarks stands for summing over colors. For the W boson, 2 is the boson factor
as given by Equation (3.5) and 3 is the degrees of freedom of W.
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Solving these equations we obtain for Model C

BC = 2(µuL + µuR) + 3(µdL + µdR) = −
90
19

µe , (3.26)

LC = 3× (µeL + µeR + µν) =
201
19

µe , (3.27)

and (B− L)C = −291
19 µe. We note that the sphaleron processes will decouple below

TSph as mentioned already. Subsequently the baryon and lepton numbers would

be separately conserved. Equation (3.17) to Equation (3.19), and Equation (3.25) to

Equation (3.27) would remain valid at TSph > T > MW .

Following our assumptions given earlier, the top quark drops out of the thermal

bath before sphaleron processes decouple. After the sphaleron processes decouple,

B and L would be separately conserved. In otherwords, the ratio of B/(B− L)would

freeze as soon as the sphaleron processes are no longer active. Thus, we obtain

b =
Bfinal

B− L
=

(
B

B− L

)

C
=

30
97
≈ 0.31 . (3.28)

3.3.3 Determining the Asymmetric dark matter mass

We discuss now in further detail the mechanism by which B− L is transferred from

the Standard Model sector to the dark matter sector and the determination of the

darkmattermass. We consider themost general interactionwhich transfers the B− L

asymmetry to dark matter at a high temperature:

LSM
asy =

1
Mn

asy
XkOSM

asy , (3.29)
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where the operatorOSM
asy is constructed from the StandardModel fields, has a (B− L)-

charge QO
SM

B−L, and X is the dark particle and has a (B− L)-charge QDM
B−L = −QO

SM

B−L/k.

The power of X can only be 2 or greater to ensure the stability of the asymmetric dark

matter.

The parameterization of the asymmetric dark matter sector by the charge QDM
B−L

is useful and we will utilize it in our analysis below. Also useful is the parame-

terization of the interactions in terms of the number of doublets and singlets that

enter inOSM
asy, i.e., Nq, NL, NH numbers of q, L, H doublets and Nu, Nd, Ne numbers of

uR, dR, eR singlets which are all active above the EWPT scale. Equation (3.29) leads

to the following constraints [38]

Nqµq + NLµL + Nuµu + Ndµd + Neµe + NHµH + kµX = 0 , (3.30)

1
3 Nq +

1
3 Nu +

1
3 Nd − NL − Ne + kQDM

B−L = 0 , (3.31)

1
3 Nq +

4
3 Nu − 2

3 Nd − NL − 2Ne + NH = 0 . (3.32)

Here Equation (3.30) arises from the µ equilibriumof Equation (3.29), Equation (3.31)

arises from the total (B− L)-charge conservation of the interaction, andEquation (3.32)

arises from the hypercharge conservation and the condition that the asymmetric

dark matter must have zero hypercharge. Together with Equation (3.10) to Equa-

tion (3.13), for Model A we obtain

µA
X = −11

7
QDM

B−LµL . (3.33)

If X is fermionic dark matter (FDM), we find,

xA =
XA

(B− L)A
=

kµA
X

−79
7 µL

= −11
79

QO
SM

B−L . (3.34)
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Using Equation (3.8) and Equation (3.28), we obtain

mA
FDM ≈ −

11.11GeV
QOSM

B−L

. (3.35)

If the B− L transfer interaction is also active below the EWPT scale, the treatment

is similar. AssumingOSM
asy has Nu, Nd, Ne, Nν, NW numbers of u, d, e, ν, W+ fields and

recalling that at T < TEWPT, the left-handed and right-handed quarks and charged

leptons have the same chemical potentials, one finds the following constraints

Nuµu + Ndµd + Neµe + Nνµν + NWµW + kµX = 0 , (3.36)

1
3 Nu +

1
3 Nd − Ne − Nν + kQDM

B−L = 0 , (3.37)

2
3 Nu − 1

3 Nd − Ne + NW = 0 . (3.38)

We note that the last condition is from the charge neutrality of the operator OSM
asy.

Together with Equation (3.17) to Equation (3.22), we obtain for Model B,

µB
X = −11

7
QDM

B−Lµe . (3.39)

The fermionic dark matter mass in this model reads

mB
FDM ≈ −

15.60GeV
QOSM

B−L

. (3.40)

For Model C where the top quark is out of the thermal bath, we find

µC
X = −29

19
QDM

B−Lµe . (3.41)
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and

mC
FDM ≈ −

15.52GeV
QOSM

B−L

. (3.42)

Now we consider the simplest example of the B− L transfer interaction (QOSM

B−L =

−1)

Lasy =
1

M3
asy

ψ3LH , (3.43)

where ψ is the fermionic dark matter (which carries a lepton number of −1/3) and

ψ3 ≡ ψ̄cψψ̄c. If this interaction is only active above the EWPT scale then the dark

matter mass in Model A, and more appropriately in Model A1 since the interaction

of Equation (3.43) is being used (see Table 3.2 which also includes a list of additional

interactions), are computed to be

mψ = 11.11GeV Model A1 . (3.44)

If this interaction is also active below the EWPT scale, the dark matter masses in

Models B and C are:

mψ = 15.60GeV Model B1 ; mψ = 15.52GeV Model C1 . (3.45)

Further, applying Equation (3.3) and the bounds in Table 3.1 one can estimate the

mass scales for these interactions:

MA1/D1
asy & 1.2× 105 GeV , (3.46)

1.2× 105 GeV & MB1
asy & 0.9× 105 GeV , (3.47)

0.9× 105 GeV > MC1
asy & 0.4× 105 GeV . (3.48)
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In the analysis abovewe focused on asymmetric fermionic darkmatter. For bosonic

dark matter, the masses would be half the fermionic ones, c.f., Equation (3.5). As an

example, we consider now an interaction with a higher dimensional operator OSM
asy:

Lasy =
1

Mn
asy

X2(LH)2. (3.49)

In this case, the dark matter could be either a fermion (X = ψ, n = 4) or a boson

(X = φ, n = 3). This interaction gives rise to Models A2-C2 and Models A3-C3. As

examples, for Models A2 and A3 where Tint > TEWPT, applying Equation (3.35) we

find that the dark matter masses are

mψ = 5.55 GeV Model A2 ; mφ = 2.78 GeV Model A3 . (3.50)

We explain now briefly the equality of asymmetric dark mass for the Models

A1, A4, A5, A6. From Equation (3.2) we can write

µODM + µOSM
asy

= 0 . (3.51)

For Models A1,A4-A6 we have

LH (A1) : µOSM
asy,1

= µL + µH , (3.52)

LLec (A4) : µOSM
asy,4

= 2µL − µe , (3.53)

Lqdc (A5) : µOSM
asy,5

= µL + µq − µd , (3.54)

ucdcdc (A6) : µOSM
asy,6

= −µu − 2µd . (3.55)
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1
Mn XkOSM

asy Model DMMass Model DMMass Model DMMass
1

M3 ψ3LH A1 11.11GeV B1 15.60GeV C1 15.52GeV
1

M4 ψ2(LH)2 A2 5.55GeV B2 7.80GeV C2 7.76GeV
1

M3 φ2(LH)2 A3 2.78GeV B3 3.90GeV C3 3.88GeV
1

M5 ψ3LLec A4 11.11GeV B4 15.60GeV C4 15.52GeV
1

M5 ψ3Lqdc A5 11.11GeV B5 15.60GeV C5 15.52GeV
1

M5 ψ3ucdcdc A6 11.11GeV B6 15.60GeV C6 15.52GeV

Table 3.2: A display of the various interactions that allow a transfer of the B − L
asymmetry from the Standard Model sector to the dark matter sector.

From the µ equations Equation (3.10) and Equation (3.11), it is easy to see that

µOSM
asy,1

= µOSM
asy,4

= µOSM
asy,5

= µOSM
asy,6

. (3.56)

Equation (3.56) implies that the darkmatter has the samemass for theModelsA1,A4-

A6. Similar analysis holds for Models B1,B4-B6 and C1,C4-C6.

We summarize all our results in Table 3.2, where we list the dark matter mass for

the various interactions4 that can transfer the B− L asymmetry from the Standard

Model sector to the dark matter sector. We note that for the first five interactions, the

dark matter carries lepton number, while for the last one, it carries a baryon number.

4In the first column of Table 3.2, L, H and q stand for SU(2)L doublets as discussed in T > TEWPT
regime (Model A). When the temperature drops below EWPT scale (Model B and Model C), since
SU(2)L symmetry is broken, these interactions should be rewritten in terms of the contents of the
original doublets. We omit this step for simplicity.
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3.4 Asymmetric dark matter in a Stueckelberg exten-

sion of the SM

Asdiscussed in the Introduction, one of themajor problems for an acceptableAsyDM

model is to have an efficient mechanism for the annihilation of dark matter that is

produced thermally. In general one has

ΩDM = Ωasy
DM + Ωsym

DM , (3.57)

where Ωasy
DM is the relic density of asymmetric dark matter (which carries a nonzero

(B− L)-charge) and Ωsym
DM is the relic density of dark matter which is produced ther-

mally. For the asymmetric dark matter to be the dominant component, the symmet-

ric component of darkmatter must be significantly depleted. Specifically wewill use

the criteria that Ωsym
DM / ΩDM < 0.1.5 Thus we investigate if the symmetric compo-

nent of darkmatter produced by thermal processes can be annihilated efficiently. We

accomplish this via the exchange of a gauge field using the Stueckelberg formalism

where the gauge field couples to Lµ − Lτ.

For illustration let us consider Model A1, which is governed by the interaction

Equation (3.43) operating at Tint > TEWPT. The corresponding dark matter mass is

11.11GeV. Further, we require the dark matter particles ψ to have a non-vanishing µ

or τ lepton number. The total Lagrangian is given by

L = LSM + LU(1) + LSt , (3.58)

5The analysis of previous sections was based on the assumption Ωasy
DM / Ωmatter ≈ 5. Inclusion of

a small contribution (i.e., ≤ 10%) of symmetric component to dark matter will proportionately affect
the determination of the dark matter mass. It is straightforward to take account of this contribution
but we do not carry it out explicitly as it is a relatively small effect.
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where LU(1) is the kinetic energy for the gauge field for the Lµ − Lτ symmetry, and

for LSt we assume the following form:

LSt = −
1
2
(MCCµ + ∂µσ)2 . (3.59)

In the unitary gauge the massive vector boson field will be called Z′ and its interac-

tion with fermions in the theory is given by

Lint =
1
2

gCQψ
Cψ̄γµψCµ +

1
2

gCQ f
C f̄ γµ f Cµ , (3.60)

where f runs over µ and τ families and Qµ
C = −Qτ

C.

3.4.1 Resonant annihilation of symmetric dark matter

We discuss now the details of the annihilation of the symmetric component of dark

matter. We will show that the relic density for such dark matter can be reduced

significantly below the WMAP value with resonant annihilation via the Z′ pole, i.e.,

via the process ψψ̄→ Z′ → f f̄ .6 Thus, by using Equation (3.60) one can compute the

ψψ̄→ f f̄ annihilation cross section and using the Breit-Wigner form for a resonance

one has

σψψ̄→ f f̄ = aψ

∣∣∣
(

s−M2
Z′ + iΓZ′MZ′

)∣∣∣
−2

, (3.61)

aψ =
β f (

1
2 g2

CQψ
CQ f

C)
2

64πsβψ

[
s2(1 +

1
3

β2
f β2

ψ) + 4M2
ψ(s− 2m2

f ) + 4m2
f (s + 2M2

ψ)

]
,(3.62)

6While the thermal dark matter can annihilate into second and third generation leptons at the
tree-level, such an annihilation into the first generation leptons can come about only at the loop level
involving the second and third generation leptonic loops. Thus the annihilation of thermal dark mat-
ter into first generation leptons is significantly suppressed relative to the annihilation into the second
and the third generation leptons.
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where β f ,ψ = (1− 4m2
f ,ψ/s)1/2. The relevant partial Z′ decay widths are given by

Γ(Z′ → f f̄ ) =

(
1
2

gCQ f
C

)2

r f
MZ′

12π
, f = µ, νµ, τ, ντ (3.63)

Γ(Z′ → ψψ̄) =

(
1
2

gCQψ
C

)2 MZ′

12π

(
1 +

2M2
ψ

M2
Z′

)(
1−

4M2
ψ

M2
Z′

)1/2

Θ
(

MZ′ − 2Mψ

)
,

(3.64)

where r f = 1 for f = µ, τ and r f = 1/2 for f = νµ, ντ. A constraint on gC comes

from the contribution of the Z′ to gµ − 2 [39, 40], which is given by

∆(gµ − 2) =
(

1
2

gCQµ
C

)2 m2
µ

6π2M2
Z′

. (3.65)

In the analysis here we impose the constraint that the Z′ boson contribution be less

than the experimental (4σ) deviation of∆aµ ≡ ∆
(
(gµ− 2)/2

)
= (3.0± 0.8)× 10−9 [39,

40], which is the constraint commonly adopted in analysis of supergravity based

models.

The relic densities of ψ and ψ̄ are governed by the Boltzmann equations. For

our analysis we will carry out an explicit thermal averaging over the Breit-Wigner

pole. It is convenient to work with the Boltzmann equations for the quantities fψ ≡
nψ/(hT3), and fψ̄ ≡ nψ̄/(hT3) where nψ (nψ̄) is the number density of particle

ψ (ψ̄) and the combination hT3 appears in the entropy per unit volume, i.e., s =

(2π2/45)hT3 where h is the entropy degrees of freedom. The Boltzmann equations

obeyed by fψ and fψ̄ take the form

d fψ

dx
= α〈σv〉( fψ fψ̄ − f eq

ψ f eq
ψ̄
) , (3.66)

d fψ̄

dx
= α〈σv〉( fψ fψ̄ − f eq

ψ f eq
ψ̄
) , (3.67)
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where x = kBT/mψ in which kB is the Boltzmann constant and hereafter we set

kB = 1, and α is given by

α(T) =
√

90 mψMPl
h√
g π

(
1 +

1
4

T
g

dg
dT

)
, (3.68)

where g is the degrees of freedom that enter in the energy per unit volume, i.e.,

ρ = π2

30 gT4, where T(t) = Tγ(t) is the photon temperature. Numerically α(T) =

6.7× 1020 GeV2 for g = h = 68 at T = 0.5GeV. 〈σv〉 is the thermally averaged cross

section

〈σv〉 =

∫ ∞

0
dv (σv)v2e−v2/4x

∫ ∞

0
dv v2e−v2/4x

. (3.69)

Further, in Equation (3.66) and Equation (3.67) f eq
ψ and f eq

ψ̄
are values of fψ and fψ̄ at

equilibrium. Now one can obtain the result from Equation (3.66) and Equation (3.67)

that the difference of fψ and fψ̄, i.e.,

γ ≡ fψ − fψ̄ , (3.70)

is a constant. Assuming that the asymmetric dark matter currently constitutes a

fraction λ of the dark matter relic density, one can evaluate γ to be

γ ' λ
5ρc

6h̄T3mψ
≡ λγ0, γ0 ≈ 1.3× 10−10 (mψ ∼ 10GeV) , (3.71)

where the 5/6 in γ0 is due to Equation (3.1).

It is now straightforward to obtain the individual relic densities for ψ and ψ̄. Thus

one integrates Equation (3.66) andEquation (3.67) from the freeze-out temperature to

the current temperature of T0
γ = 2.73 K. In the integrationwewillmake the following
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approximation which is conventionally done, i.e., we move α out of the integral and

replace it with α(x f ), i.e., by the value of α at the freeze-out temperature. The matter

density of ψ at current temperature is given by ρψ = mψnψ(x0) where x0 = T0
γ

/
mψ

and T0
γ is the current photon temperature of 2.73 K. The relic density then is

Ωψ = mψnψ(x0)
/

ρc , (3.72)

where ρc is the critical matter density so that ρc = (3× 10−12 GeV)4h2
0 where h0 is

the Hubble parameter. The integration of Equation (3.66) straightforwardly gives

Ωψh2
0 = 2.2× 10−11

√
g(x f ) h(x0, x f )

(
Tγ

2.73

)3
(

1
ξ
−

fψ̄(x f )

ξ fψ(x f )
e−ξ J(x f )

)−1

, (3.73)

where

J(x f ) ≡
∫ x f

x0

〈σv〉dx , h(x0, x f ) ≡
h(x0)

h(x f )

[
1 +

1
4

(
T
g

dg
dT

)

x f

]−1

, (3.74)

and ξ ≡ α(x f )γ where α(x f ) is the value of α evaluated at the freeze-out tempera-

ture, and where g(x f ) (h(x f )) are the energy (entropy) degrees of freedom at freeze

out and h(x0) is the entropy degrees of freedom at the current temperature. The

derivative term 1
4(

T
g

dg
dT )x f is small and is often dropped, while h(x0) = 3.91 [36, 41]

and we estimate h(x f ) ∼ g(x f ) given Tf . As discussed below x f is typically of size

∼ 1/20 and thus Tf = mψx f ∼ 0.5GeV for mψ ∼ 10GeV. Now for Tf ∼ 0.5GeV,

h(x f ) ∼ 68 which gives h(x0, x f ) ∼ 1/17.5. The quantities fψ(x f ) ( fψ̄(x f )) are fψ

( fψ̄) evaluated at freeze out. Analogous to the relic density for ψ, we can get the relic
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density of ψ̄ by integration of ψ̄ and we obtain

Ωψ̄h2
0 = 2.2× 10−11

√
g(x f ) h(x0, x f )

(
Tγ

2.73

)3
(

fψ(x f )

ξ fψ̄(x f )
eξ J(x f ) − 1

ξ

)−1

. (3.75)

The total dark matter relic density is

ΩDM = Ωψ + Ωψ̄ . (3.76)

From Equation (3.73) and Equation (3.75) one obtains the ratio of the current relic

densities of ψ̄ and ψ to be

Ωψ̄h2
0

Ωψh2
0
=

fψ̄(x f )

fψ(x f )
e−ξ J(x f ) . (3.77)

The front factor fψ̄(x f )/ fψ(x f ) in Equation (3.77) takes into account the asymmetry

that exists at the freeze-out temperature. The size of this effect is estimated at the

end of this section and could be as much as 20%, and thus significant.

Discussed now is the evaluation of the freeze-out temperature. We adopt here the

definition of [42] where the freeze-out temperature Tf is defined as the temperature

where the annihilation rate per unit volume equals the rate of change of the number

density. This implies

d f eq
ψ̄

dx
= α〈σv〉 f eq

ψ f eq
ψ̄

, at x = x f = Tf /mψ , (3.78)

where f eq
ψ̄

takes the form

f eq
ψ̄
(x) = aψ̄ x−3/2e−1/x , (3.79)

where aψ̄ = gψ̄(2π)−3/2h−1(T) ≈ 9.3× 10−4gψ̄ around T = 0.5GeV, and gψ̄ denotes
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the degrees of freedom of the dark particle (gψ = gψ̄ = 4 for Dirac spinors). The

freeze-out temperature is then determined by the relation

(x−1/2
f − 3

2 x1/2
f ) e1/x f = α〈σv〉(aψ̄ + γx3/2

f e1/x f ) . (3.80)

For the case of no asymmetry, i.e., in the limit γ→ 0, Equation (3.80) reduces down

to the well-known result [42]. One may compare the analysis of the freeze-out tem-

perature given by Equation (3.80) with the one using the alternate criterion [43]

∆(x f ) = c f eq
ψ̄
(x f ) , (3.81)

where ∆(x) ≡ ( fψ̄(x)− f eq
ψ̄
(x)) and c is order unity. Using Equation (3.79) in Equa-

tion (3.81) one gets

(x1/2
f − 3

2 x−1/2
f − αγ〈σv〉x3/2) e1/x f = αaψ̄c(c + 2)〈σv〉 . (3.82)

For γ = 0, Equation (3.82) reduces to the result of [43] while γ 6= 0 gives the cor-

rection due to asymmetry. Further, we see that Equation (3.82) reduces to Equa-

tion (3.80) when c =
√

2 − 1. To compute the sensitivity of the freeze-out tem-

perature on the asymmetry it is useful to utilize the scale factor λ defined in Equa-

tion (3.71). On using Equation (3.80) we can obtain an approximate expression for

dx f /dλ so that
dx f

dλ
' −a−1

ψ̄
γ0x7/2

f e1/x f . (3.83)

From above we can compute the first order correction to the freeze-out temperature

due to the asymmetry. To the leading order one has

x f ' x0
f

[
1− a−1

ψ̄
γ(x0

f )
5/2e1/x0

f
]

, (3.84)
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where x0
f is the zeroth order of the x f , i.e., when γ = 0. We note that the correction

to the freeze-out temperature due to asymmetry is independent of 〈σv〉 to leading

order. Using aψ = 3.7× 10−3, x f = 1/17.5 and γ = γ0 = 1.3× 10−10, one finds

that the correction to x f is around a percent for the choice of the parameters given.

Further, as γ (and hence ξ)→ 0, one has fψ(x f )

fψ̄(x f )
→ 1 and in this limit one has

Ωψh2
0 = Ωψ̄h2

0 = 2.2× 10−11
√

g(x f ) h(x0, x f )

(
Tγ

2.73

)3 1
J(x f )

. (3.85)

Now rapid annihilation of dark matter can occur if the sum of the dark matter

masses is close to the Z′ pole and there is a Breit-Wigner enhancement [44–47]. Thus

for the case we are considering if the mass of the Z′ is close to twice the mass of the

dark particle, then one can get a large annihilation cross section and correspondingly

a small relic density. An analysis of the relic density arising from the annihilation

of symmetric dark matter is given in Figure 3.1 and the analysis shows that the relic

density arising from the symmetric component of dark matter can easily be made

negligible, i.e., less than 10% of the cold dark matter density given by WMAP. In

Figure 3.1 we give the analysis for the case with no asymmetry, i.e., γ = 0 (left panel)

and the case with asymmetry (right panel) where γ = 1.3× 10−10. A comparison of

the left and the right panels shows that inclusion of the asymmetry has a substantial

effect on the relic density. Specifically it further helps deplete the relic density of ψ̄

(the symmetric component of darkmatter). For the case of gC = 1 the allowed upper

bound of the Z′mass increases by about∼ 100GeV in the presence of an asymmetry

when γ = 1.3× 10−10. It is also instructive to examine the ratio of the thermal relic
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Figure 3.1: An exhibition of the thermal relic density of ψ̄ as a function of MZ′ in
themodel with gauged Lµ− Lτ for different values of the coupling constant. The left
panel shows the case γ = 0 and the right panel shows γ = 1.3× 10−10. In both cases,
the analysis shows that the component of darkmatter that is thermally produced can
be efficiently depleted by resonant annihilation via the Z′ pole.

density for the cases with and without asymmetry. Here one has

R ≡
(Ωψ̄h2

0)γ=γ0

(Ωψ̄h2
0)γ=0

=
ξ J
(
x f
)

fψ(x f )

fψ̄(x f )
eξ J(x f ) − 1

. (3.86)

As ξ → 0, fψ(x f )

fψ̄(x f )
→ 1 and thus R → 1. However, if we assume that the asym-

metric dark matter is responsible for 5/6 of the total relic density, then for mψ ∼
10GeV, one has γ = 1.3 × 10−10 and fψ̄(x f ) = 6.8 × 10−10 which gives fψ(x f )

fψ̄(x f )
=

(1 + γ0/ fψ̄(x f )) ∼ 1.2. In this circumstance one finds that R is always less than 1.

Thus one finds that the inclusion of asymmetry helps deplete the symmetric com-

ponent of dark matter.
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Chapter 4

Supersymmetry

In this chapter we will do a brief overview of supersymmetry and readers seeking a

more thorough knowledge of the theory are encouraged to read [48–53].

4.1 Minimal Supersymmetric StandardModelOverview

Supersymmetry (SUSY) extends the spacetime symmetry [49, 54–56] to a graded

symmetry which includes both bosonic and fermionic generators consisting of the

generators of the Poincarè group (rotations, boosts, and translations) along with

fermionic generators Qα. This causes the representation of the SUSY algebra to con-

tain both bosonic and fermionic fields.

The Minimal Supersymmetric Standard Model (MSSM) is the simplest model

which extends the Standard Model to include supersymmetry. The inclusion of su-

persymmetry introduces a variety of new particles (such as squarks, sleptons, gaug-

inos, and Higgsinos) which are the “superpartners" (or “sparticles") of the Standard

Model particles (quarks, leptons, gauge bosons, Higgs boson). A list of the particle
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CHIRAL SUPERMULTIPLET
Particle Spin 0 Particle Spin 1/2 SU(3)c SU(2)L U(1)Y

squark

(
ũL
d̃L

)

i quark

(
uL
dL

)

i
3 2 1/3

ũR,i uR,i 3̄ 1 −1/3
d̃R,i dR,i 3̄ 1 2/3

slepton

(
ν̃L
ẽL

)

i lepton

(
νL
eL

)

i
1 2 −1

ẽR,i eR,i 1 1 1

Higgs

(
H+

u
H0

u

)

Higgsino

(
H̃+

u
H̃0

u

)
1 2 1

(
H0

d
H−d

) (
H̃0

d
H̃−d

)
1 2 −1

GAUGE SUPERMULTIPLET
Particle Spin 1/2 Particle Spin 1 SU(3)c SU(2)L U(1)Y
gluino g̃ gluon g 8 1 0
winos W̃± W̃0 W boson W± W0 1 3 0
binos B̃0 B boson B0 1 1 0

Table 4.1: Table showing the quantum numbers for the Standard Model particles
and their super-partners. Please note that the table is done using QEM = T3 +

1
2Y.

fields and gauge fields is given in Table 4.1 along with their Standard Model quan-

tum numbers.

To establish supersymmetry as a valid symmetry of nature sparticles must be

searched for. If supersymmetry was not a broken symmetry the sparticles would

have the same mass as the Standard Model partners. This is not the case. Thus, if

supersymmetry exists, it must be a broken symmetry in that the sparticles must have

masses much larger than the masses of the StandardModel particles to be consistent

with experimental observation. Unfortunately, the breaking of supersymmetry is a

challenging task. It is possible to achieve phenomenologically viable breaking of su-

persymmetrywithin the framework of supergravity (SUGRA) [57–64]. In supergrav-

ity the breaking of supersymmetry is done in a hidden sector and communicated to

the visible sector via gravitational interactions [65]. The supergravity unifiedmodels
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can be viewed as the low energy limit of stringmodels, since supergravity is the field

point limit of strings. The simplest of such supergravity models is mSUGRA [65–67]

which under the constraints of radiative breaking of the electroweak symmetry re-

duces to four and a half parameters. Thus mSUGRA is parameterized by

m0, m1/2, A0, tan β, and sign(µ) (4.1)

where m0 is the universal scalar mass, m1/2 is the universal gaugino mass, A0 is the

universal trilinear coupling, and tan β = 〈H2〉/〈H1〉. Here H2 gives mass to the up

quarks and H1 gives mass to the down quarks and the leptons, and µ is the Higgs

mixingparameterwhich enters in the superpotential as µH1H2. ThemSUGRAmodel

is the simplest of the supergravity grand unified models and is ideally suited as a

benchmark for the exploration of supersymmetry at different experiments. How-

ever, mSUGRA can be extended to include non-universalities in the gaugino sector,

non-universalities in the Higgs sector, and non-universalities in the third generation

sector. Additionally, there are a number of interesting string based models (as well

as D-brane models) that can be investigated within the supergravity framework [68].

4.2 R-Parity

In supersymmetry it is useful to introduce a new quantum number called R-parity

defined by

R = (−1)3(B−L)+2s , (4.2)

where B is the baryon number, L is the lepton number, and s is the spin of the parti-

cle. This implies that for Standard Model particles R = 1 and for the superpartners
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R = −1. If we assume that R-parity is conserved we get several interesting results.

First, it implies that the lightest supersymmetric particle (LSP) must be stable and

if it is neutral then it can be a dark matter candidate. Second, sparticles decay into

an odd number of LSPs. Lastly, at the parton level colliders produce sparticles in

pairs. Additionally, with R-parity conservation, decays of supersymmetric particles

at colliders are associated with missing energy which is carried by the LSP.
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Chapter 5

Multicomponent Dark Matter

5.1 Introduction

In this chapterwe follow [69] and show thatmulticomponent darkmatter [70–75] can

arise from U(1)n extensions of the Minimal Supersymmetric Standard Model with

Abelian hidden sectors which include hidden sector matter. There are two main

modes of detection of dark matter. One is direct detection such as via the scattering

of dark matter particles from nuclei in a detector (CDMS [76, 77], XENON 100 [78–

80], etc.) and the other is via annihilation where twoWIMPs annihilate in the galaxy

into a e+e− pair possibly associatedwith other particles (PAMELA [81–83], AMS [84],

etc.). However, most models which aim to explain the PAMELA positron excess do

not give a significant number of dark matter events in the direct detection experi-

ments currently operating. Conversely, models which can give a detectable signal in

direct detection experiments typically do not explain the PAMELA data without the

use of enormous so-called boost factors. As will be shown here, this can be circum-

vented inmodels where the darkmatter has several components. Thus, motivated in
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part by the recent cosmic anomalies we develop supersymmetric models which con-

tain minimally a hidden Abelian sector broken at the sub- TeV scale where the mass

generation of the hidden states involves nontrivial mixings with the field content

of the electroweak sector of the minimal supersymmetric extension of the Standard

Model leading to dark matter which can have several components that can be both

bosonic and fermionic.

More specifically, we go beyond the simple theoretical construction that thermal

dark matter compatible with WMAP observations is composed of a single funda-

mental particle. There is no overriding principle that requires such a restriction, and

non-baryonic dark matter (DM) may indeed be constituted of several components,

so in general one has (Ωh2)DM = ∑i(Ωh2)DMi , where i refers to the various species

of dark particles that can contribute to the total nonbaryonic (Ωh2)DM. In fact we

already know that neutrinos do contribute to dark matter although their contribu-

tion is relatively small. Thus we propose here a new class of multicomponent cold

dark matter models in Abelian U(1) extensions of MSSMwhich can simultaneously

provide an explanation of the PAMELAandWMAPdata through a Breit-Wigner en-

hancement [85], while producing detectable signals for the direct searches for dark

matter with CDMS/XENON and other dark matter experiments.

In this chapterwe give a detailed description of twomodels: one ofwhich is based

on a U(1)X extension of the MSSM where U(1)X is a hidden sector gauge group

with Dirac fermions in the hidden sector. This model allows for dark matter con-

sisting of Dirac, Majorana, and spin-0 particles. The second model is based on a

U(1)X ×U(1)C extension of MSSM, where U(1)C is a gauged leptophilic symmetry

and U(1)X, as before, is the hidden sector gauge group which also contains Dirac

particles in the hidden sector. This model too has Dirac, Majorana, and spin-0 parti-
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cles as possible dark matter. In both cases we will primarily focus on the possibility

that dark matter consists of Dirac and Majorana particles, and we will not discuss

in detail the possibility of dark matter with bosonic degrees of freedom. The relic

densities in the two component models will also be discussed.

5.2 Multicomponent Hidden Sector Models

5.2.1 Multicomponent U(1)X model

A U(1)X extension of the Minimal Supersymmetric Standard Model involves the

coupling of a Stueckelberg chiral multiplet S = (ρ + iσ, χS, FS) to vector supermul-

tiplets X, B, where ρ is a real scalar and σ is an axionic pseudo-scalar. Here X is the

U(1)X vector multiplet which is neutral with respect to the Standard Model gauge

group with components X = (Xµ, λX, DX), and B is the U(1)Y vector multiplet with

components (Bµ, λB, DB), where the components are written in the Wess-Zumino

gauge. The chiral multiplet S transforms under both U(1)X and U(1)Y and acts as

the connector sector between the visible and the hidden sectors. The total Lagrangian

of the system is given by

L = LMSSM + LU(1)X
+ LSt (5.1)

where LU(1)X
is the kinetic energy piece for the X vector multiplet and LSt is the

supersymmetric Stueckelberg mixing between the X and the B vector multiplets so

that [28, 29, 86, 87]

LSt =
∫

d2θd2θ̄ (M1X + M2B + S + S̄)2 , (5.2)
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where M1 and M2 aremass parameters. The Lagrangian of Equation (5.1) is invariant

under the U(1)Y and U(1)X gauge transformations, i.e., under

δXX = ζX + ζ̄X , δXS = −M1ζX, δYB = ζY + ζ̄Y , δYS = −M2ζY, (5.3)

where ζ is an infinitesimal transformation chiral superfield. In component form we

have for the Stueckelberg sector with U(1)X ×U(1)Y

LSt = −1
2
(M1Xµ + M2Bµ + ∂µσ)2 − 1

2
(∂µρ)2 − iχSσµ∂µχ̄S + 2|FS|2

+ρ(M1DX + M2DB) + χ̄S(M1λ̄X + M2λ̄B) + χS(M1λX + M2λB) .(5.4)

In addition, one may include a supersymmetric kinetic mixing term between the

U(1)X and U(1)Y gauge fields leading to L = LMSSM + LU(1)X
+ LKM + LSt, where

LU(1)X
+ LKM = −1

4
XµνXµν − iλXσµ∂µλ̄X +

1
2

D2
X

−δ

2
XµνBµν − iδ(λXσµ∂µλ̄B + λBσµ∂µλ̄X) + δDBDX . (5.5)

As a consequence of the mixings, the extra gauge boson of the hidden sector cou-

ples with the Standard Model fermions and can become visible at colliders. The

Lagrangian for matter interacting with the U(1) gauge fields is given by

Lmatt =
∫

d2θd2θ̄ ∑
i

[
Φ̄ie2gYQY B+2gXQXXΦi + Φ̄hid,ie2gYQY B+2gXQXXΦhid,i

]
. (5.6)

where the visible sector chiral superfields are denoted by Φi (quarks, squarks, lep-

tons, sleptons, Higgs, andHiggsinos of theMinimal Supersymmetric StandardModel)

and the hidden sector chiral superfields are denoted by Φhid,i. In the above, QY is

the hypercharge normalized so that Q = T3 + QY. As mentioned already, the Stan-
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dard Model matter fields do not carry any charge under the hidden gauge group

and vice versa, i.e. QXΦi = 0 and QSMΦhid = 0. The minimal matter content of the

hidden sector consists of a left chiral multiplet Φhid = (φ, f , F) and a charge conju-

gate Φc
hid = (φ′, f ′, F′) so that Φhid and Φc

hid have opposite U(1)X charges and form

an anomaly-free combination. A mass Mψ for the Dirac field ψ arises from an ad-

ditional term in the superpotential Wψ = MψΦΦc, where ψ is composed of f and

f ′. The scalar fields acquire soft masses of size m0 from spontaneous breaking of

supersymmetry by gravity mediation, and in addition acquire a mass from the term

in the superpotential so that

m2
φ = m2

0 + M2
ψ = m2

φ
′ . (5.7)

After spontaneous breaking of the electroweak symmetry there would bemixing be-

tween the vector fields Xµ, Bµ, A3µ, where A3µ is the third component of the SU(2)L

field Aaµ, (a = 1, 2, 3). After diagonalization VT = (X, B, A3) can be expressed in

the terms of the mass eigenstates ET = (Z′, Z, γ) as follows:

Vi = OijEi, i, j = 1− 3, E = (Z′, Z, γ). (5.8)

Further, the chiral fermions in the S + S̄ multiplet together with the MSSM gauginos

and Higgsinos will form a 6× 6 neutralino mass matrix whose eigenstates are six

neutralino states χa, a = 1− 6, where we assume that the set χ0
1 . . . χ0

4 is the regular

set of neutralinos and χ0
5, χ0

6 are the two additional neutralinos that arise in theU(1)X

extension. From the components λX, λ̄X and χS, χ̄S that appear in Equation (6.16),
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we can form two Majorana fields ΛX and ψS as follows:

ΛX =




λXα

λ̄α̇
X


 , (5.9)

ψS =




χα,S

χ̄α̇
S


 . (5.10)

(5.11)

These components combine with the MSSM gauginos and Higgsinos to form a 6× 6

neutralino mass matrix whose eigenstates are the six neutralinos χa, (a = 1 − 6).

Thus ΛX and ψS can be expanded as linear combination of χa, i.e.,

ΛX = R1aχa, a = 1− 6, ψS = R2aχa, a = 1− 6 (5.12)

where R is the unitary matrix which diagonalizes the 6× 6 neutralino mass matrix.

Further the CP-even Higgs sector is extended by the additional state ρ. The results

outlined here give the following types of interactions:

1. There are interactions of the Dirac fermion in the hidden sector with the Stan-

dard Model particles via Z,Z′, γ interactions. Thus, the Dirac dark matter can

annihilate into Standard Model particles via exchange of Z,Z′, γ in the early

universe and in the galaxy. Depending on which of the two, Dirac or Majo-

rana, is the heavier one may have Dirac particles annihilating into Majoranas

or the Majorana particles annihilating into Dirac fermions in the galaxy:

ψ̄ψ→ χχ or χχ→ ψ̄ψ . (5.13)
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2. In addition to the above we have fermion-neutralino-sfermion couplings in the

hidden sector as given by Equation (5.6). Thus interactions of the type ψ̄χaφ +

h.c., etc. can produce decays such as φ → ψ + χa if they are kinematically

allowed.

3. The scalar field ρ is CP even and mixes with the MSSM Higgs fields. Through

these mixings ρ has couplings to the SM fermions and through these couplings

it can decay into the SM fermions.

It is instructive to list all the new particles in this U(1)X model as summarized

below:

New particles of the U(1)X model

spin 0 : ρ, φ, φ′,

spin
1
2

: ψ, χ0
5, χ0

6,

spin 1 : Z′. (5.14)

We will assume that the lightest R-parity odd particle (LSP) is the least massive neu-

tralino (χ0 = χ0
1 ≡ χ) and resides in the visible sector and thus the masses of χ0

5, χ0
6

are larger than the LSP χ0 mass, and consequently χ0
5, χ0

6 are unstable and decay into

Standard Model particles and χ0. The bosons Z′ and ρ are unstable and decay into

Standard Model fermion pairs f f̄ with the decay of the ρ going dominantly through

the process ρ → bb̄ or ρ → tt̄ if mρ > 2mt. The remaining three particles ψ, φ, φ′

are all milli-charged and, consequently, at least one of them is stable. If we assume

mφ, mφ′ > Mψ, at least ψ is always stable and the other twomay or may not be stable.

These along with the LSP give rise to various possible candidates for dark matter.

Thus, depending on the relative masses of the Majorana, Dirac, and spin-0 particles
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there are three possibilities for the constituents of dark matter as outlined below.

5.2.2 Two component dark matter: Majorana + Dirac

This model arises as follows: consider the case where mφ > Mψ + Mχ. In this case

the decays φ, φ′ → ψ + χ0, will occur and φ, φ′ will be unstable. Thus ψ is stable and

so is χ under the assumption of R parity conservation. Consequently, we will have

two dark matter particles; namely, one a Majorana which is the LSP in the visible

sector and the other a Dirac in the hidden sector. The Majorana and Dirac particles

once created will annihilate as follows:

ψ + ψ̄→ Z, Z′, γ→ SM + SM′, (5.15)

χ + χ→ (s : Z′, Z, h, H, A, ρ), (t/u : f̃a, χi, χ±k )→ SM + SM′. (5.16)

where s : refers to s-channel exchanges and t/u : refers to t or u channel exchanges.

In addition to Equation (5.16) there are coannihilation processes which contribute to

the relic density. Since both ψ and χ are stable, the total relic density of dark matter

will be the sum of the relic densities for the two, the sum being constrained by the

WMAP data.

5.2.3 Three component dark matter: Dirac and two spin-0 particles

Suppose the mass of χ is larger than the sum of the masses of the Dirac plus the

scalar φ, i.e., Mχ > Mψ + mφ. In this case the decay χ → φ + ψ, φ′ + ψ will occur

and, consequently, χ is unstable. On the other hand, φ, φ′ and ψ are stable since they

cannot decay into anything else. Thus, here we have three dark matter particles: one
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Dirac, and the other two spin-0. Processes that lead to the annihilation of these par-

ticles are those in Equation (5.15) for ψ, and also for φ and φ′, they are similar to

those in Equation (5.15), i.e., φ + φ∗, φ′ + φ′∗ → γ, Z, Z′ → SM + SM′. In this three

component dark matter model all the components reside in the hidden sector and

thus their couplings to the Standard Model particles are extra weak. Consequently,

they will have very small spin-independent cross sections in direct detection exper-

iments. For this reason, this class of models is less preferred compared to the two

component model.

5.2.4 Four component dark matter: Majorana, Dirac, and two spin-

0 particles

Finally, we consider the case when either of the following two situations occur: (i)

Mχ > Mψ and mφ < Mχ < Mψ + mφ, (ii) Mχ < mφ < Mχ + Mψ. In these cases

all four particles, one Majorana, one Dirac, and two spin-0 particles, are stable and

thus are possible dark matter candidates. These particles will annihilate to the SM

particles as in Equation (5.15), Equation (5.16) and for φ and φ′ via processes in the

three component darkmatter model as described above. This model is inmanyways

similar to the two component model and like the two component model this model

too should lead to detectable signals in experiments for the direct detection of dark

matter.
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5.3 Multicomponent Leptophilic U(1)X ×U(1)C model

Another model will now be discussed which contains two additional Abelian vec-

tor bosons where one of the extra bosons is leptophilic. Here we will consider a

U(1)X ×U(1)C model where the U(1)X as before is in the hidden sector, and U(1)C

is a leptophilic symmetry. As in the U(1)X model, we also assume that the hidden

sector has a pair of Dirac fermions ψ and ψ̄ which are charged under U(1)X but

are neutral under the Standard Model gauge group and under U(1)C. Regarding

U(1)C we assume it to be Le − Lµ, i.e., a difference of family-lepton numbers, which

is anomaly free, and can be gauged. The corresponding gauge field Cµ couples only

to e, µ families and nothing else. The total Lagrangian in this case is

L = LMSSM + LU(1)2 + LSt, (5.17)

where LU(1)2 is the kinetic energy for the X and C multiplets and for LSt we assume

the following form:

LSt =
∫

d2θd2θ̄ (M1C + M′2X + M′3B + S + S̄)2

+
∫

d2θd2θ̄ (M′1C + M2X + M′′3 B + S′ + S̄′)2, (5.18)

whereC is theU(1)Le−Lµ vectormultipletwith components (Cµ, λC, DC) and X and B

are the U(1)X and U(1)Y multiplets as discussed before. The gauge transformations
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under U(1)C, U(1)X, and U(1)Y are

δCC = ζC + ζ̄C , δCS = −M1ζC , δCS′ = −M′1ζC

δXX = ζX + ζ̄X , δXS = −M′2ζX , δXS′ = −M2ζX ,

δYB = ζY + ζ̄Y , δYS = −M′3ζY , δYS′ = −M′′3 ζY , (5.19)

where ζC, ζX, ζY, etc. are the infinitesimal transformation chiral superfields. The

quantities M1, M2, M′1, M′2, M′3, and M′′3 are the mass parameters. In the vector bo-

son sector LSt assumes the form

LSt = −
1
2
(M1Cµ + M′2Xµ + M′3Bµ + ∂µσ)2 − 1

2
(M′1Cµ + M2Xµ + M′′3 Bµ + ∂µσ′)2.

(5.20)

The mass2 matrix in the vector boson sector in the basis (Cµ, Xµ, Bµ, A3µ) is given by




M2
1 + M′21 M1M′2 + M′1M2 M1M′3 + M′1M′′3 0

M1M′2 + M′1M2 M2
2 + M′22 M′2M′3 + M2M′′3 0

M1M′3 + M′1M′′3 M′2M′3 + M2M′′3 M′23 + M′′23 + M2
Y −MY MW

0 0 −MY MW M2
W




(5.21)

here MW= g2 · v/2 is theW bosonmass and MY = MW tan θW= gY · v/2, andwhere

θW is the weak angle. The dynamics of the model of Equation (5.21) is rather in-

volved. Therefore, focusing on a simpler version of this more general case where we

neglect the mixings with Bµ, i.e., we set M′3 = M′′3 = 0. Inclusion of these coupling

in the analysis would not drastically change the analysis or the conclusions of this

work as long as we keep the mixing parameters M′3/M1,2, M′′3 /M1,2 very small. Af-

ter neglecting the mixings with Bµ, the mass2 matrix is block diagonal and so we

can diagonalize the top left hand corner 2× 2 mass matrix independent of the Stan-
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dardModel sector. We are interested in the limit of small mixing between U(1)X and

U(1)C and thus consider

M′1, M′2 � M1, M2. (5.22)

In the above approximation the eigenvalues of this mass matrix are

M2
Z′ ' M2

2 + M′22 − ∆M2 , M2
Z′′ ' M2

1 + M′21 + ∆M2 ,

∆M2 ' (M1M′2 + M′1M2)
2

(M2
1 + M′21 −M2

2 −M′22 )
. (5.23)

The corresponding mass eigenstates are Z′ and Z′′, where

Cµ = cos θXZ′′µ − sin θXZ′µ, Xµ = sin θXZ′′µ + cos θXZ′µ,

tan θX '
M1M′2 + M′1M2

M2
1 + M′21 −M2

2 −M′22
. (5.24)

Because of Equation (5.22) tan θX � 1. In the above, theDirac fermions in the hidden

sector have no couplings with the photon and are electrically neutral. However, by

a small mixing of Xµ with Bµ in Equation (5.20), we can generate a milli-charge for

the Dirac particles in the hidden sector consistent with all electroweak data.

We discuss now the gaugino/chiral fermions in the extra U(1) sectors which

arise from the superfields C, X, S + S̄, S′+ S̄′. From the gaugino components λC, λ̄C,

λX, λ̄X, and from the chiral fermion components in the extraU(1) sectorsχS, χ̄S, χS′ , χ̄S′ ,

one can construct four component Majorana spinors two of which are exhibited in
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Eq.(5.11) and the remaining two are given by

ΛC =




λCα

λ̄α̇
C


 , (5.25)

ψS′ =




χα,S′

χ̄α̇
S′


 . (5.26)

The neutralino mass matrix in the [U(1)X ×U(1)C]× [SU(3)C × SU(2)L ×U(1)Y]

model takes a block diagonal form




U(1)X ×U(1)C 04×4

sector

04×4 MSSM

sector




8×8

. (5.27)

Thus, the Stueckelbergmass generation produces amassmatrix in the hidden gaug-

ino/chiral fermion sector which is decoupled from the neutralinomass matrix in the

visible sector. Specifically in the 4 component notation the gaugino/chiral fermion

mass matrix in the U(1)X ×U(1)C sector is given by

Lmass
U(1)X×U(1)C

= −




ψ̄S

ψ̄S′

Λ̄C

Λ̄X




T 


0 0 M1 M′2

0 0 M′1 M2

M1 M′1 0 0

M′2 M2 0 0







ψS

ψS′

ΛC

ΛX




. (5.28)

In the diagonalized basis we can label the extra neutralinos by χ0
5, χ0

6, χ0
7, χ0

8. Since
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the hidden sector and the neutralinos of the visible sector are decoupled, the diago-

nalization of the neutralinos in the visible sector, i.e., of χ0
i , (i = 1− 4) is not affected.

Further, as for the case of the U(1)X model, it is instructive to list all the new particles

in this U(1)X ×U(1)C model as summarized below:

New particles of U(1)C ×U(1)Xmodel

spin 0 : ρ, ρ′, φ, φ′,

spin
1
2

: ψ, χ0
5, χ0

6, χ0
7, χ0

8,

spin 1 : Z′, Z′′. (5.29)

We discuss now the stability of the new particles in this model. As before we assume

that the mass of φ (and of φ′) is larger than the mass of ψ. Thus ψ will be stable

since it cannot decay into anything. If kinematically allowed the fields φ and φ′ can

decay only via the process φ, φ′ → ψ + χ0 as in the U(1)X model. Of the remaining

fields obviously Z′ and Z′′ are unstable as they decay into eē, µµ̄, νeν̄e, νµν̄µ as well

as into ψψ̄ depending on the mass of ψ. As already noted, a small milli charge can

develop for the hidden sector matter via small couplings of the Bµ and Xµ fields. The

phenomenology of such models will be very similar to the one we are discussing

here.

The extra neutralinos of Equation (5.29) can also be all unstable. Thus ΛC cou-

ples with leptons-sleptons (e, ẽ etc.) via coupling of the type Λ̄CeL ẽ∗L , etc. and after

diagonalization of the gaugino/chiral fermion mass matrix all the χ0
k, (k = 5− 8)

will have coupling with leptons-sleptons of the type indicated. Further, two of the

χ0
k have roughly a mass of size M1 while the remaining two have roughly a mass of

size M2. Thus, if M1, M2 > mχ0 , which is what is assumed in this work, all the neu-

tralinos of the hidden sector will be unstable and decay into final states of the type

64



eēχ0, µµ̄χ0, etc. Regarding the field ρ, there is an interaction of type

M1gCρ( f̃ ∗Q f
C f̃ ), f = e, µ . (5.30)

With this interaction ρ will decay as follows: ρ→ f̃ ∗ f̃ → f f̄ χ0χ0( f = e, µ) provided

this process is kinematically allowedwhichwe assume is the case. A similar situation

occurs for the case of ρ′. Additionally, if there is a mixingwith Bµ in the Stueckelberg

sector then, as in the analysis of the U(1)X model, the fields ρ and ρ′ will mix with

the Higgs sector and can have decays of the type ρ → bb̄, ρ′ → bb̄, etc . Thus, in

the end we are left with a similar set of possibilities for dark matter as in the U(1)X

model, i.e., (i) a two component model with ψ and χ0, (ii) a three component model

with ψ, φ, φ′, and (iii) a four component model with ψ, φ, φ′, and χ0. However, as in

the U(1)X case we will focus on the two component model consisting of Dirac and

Majorana dark particles.

We assume M2
Z′′�M2

Z′ and that the annihilation of dark matter occurs close to

the Z′ pole for reasons that will become apparent shortly. As a consequence, the

annihilation of dark matter in the early universe and in the galaxy is controlled by

the Z′ pole and the effect of the Z′′ pole on the analysis is essentially negligible. The

basic interaction of Cµ and of Xµ with matter is given by

Lint = gXQXψ̄γµψXµ + gCQ f
C f̄ γµ f Cµ (5.31)

where f runs over e and µ families and where Qe
C = −Qµ

C. In the mass diagonal
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basis the interaction of Equation (5.31) assumes the form

Lint = (gXQXψ̄γµψ cos θX − gCQ f
C f̄ γµ f sin θX)Z′µ

+(gXQXψ̄γµψ sin θX + gCQ f
C f̄ γµ f cos θX)Z′′µ . (5.32)

The interaction of Equation (5.32) leads to the annihilation of ψψ̄ into e+e− and µ+µ−

via the Z′, Z′′ poles for which we assume a Breit-Wigner form. Thus, the ψψ̄ → f f̄

annihilation cross section takes the form

σψψ̄→ f f̄ = aψ

∣∣∣(s−M2
Z′ + iΓZ′MZ′)

−1 − (s−M2
Z′′ + iΓZ′′MZ′′)

−1
∣∣∣
2
, (5.33)

aψ =
β f (gXgCQXQ f

C sin(2θX))
2

64πsβψ

[
s2(1 +

1
3

β2
f β2

ψ) + 4M2
ψ(s− 2m2

f ) + 4m2
f (s + 2M2

ψ)

]
,

(5.34)

where β f ,ψ = (1− 4m2
f ,ψ/s)1/2. The relevant partial Z′ decay widths are given by

Γ(Z′ → f f̄ ) = (gCQ f
C sin θX)

2 MZ′

12π
, f = e, µ, (5.35)

Γ(Z′ → ψψ̄) = (gXQX cos θX)
2 MZ′

12π

(
1 +

2M2
ψ

M2
Z′

)(
1−

4M2
ψ

M2
Z′

)1/2

Θ(MZ′ − 2Mψ),

(5.36)

and similarly for the partial decaywidths of the Z′′with MZ′ → MZ′′ and− sin θX →
cos θX in Equation (5.35) and cos θX → sin θX in Equation (5.36).

A constraint on gC comes from the contribution of the Z′ and Z′′ to gµ − 2. Their

exchange gives

∆(gµ − 2) =
g2

Cm2
µ

24π2

[
sin2 θX

M2
Z′

+
cos2 θX

M2
Z′′

]
. (5.37)

Using the current error [40] of ∆(gµ− 2) = 1.2× 10−9 in the determination of gµ− 2
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and assuming θX is small, one finds the following constraint on αC:

αC . 0.001
(

MZ′′

300GeV

)2

, (5.38)

where αC = g2
C/4π. We note that if the mixing angle θX is small, the decay width

of Z′ → f f̄ ( f = e, µ) and of Z′′ → ψψ̄ will be narrow while the decay width of

Z′′ → f f̄ ( f = e, µ) and of Z′ → ψψ̄ will be of normal size. However, when Mψ '
MZ′/2 the Z′ decaywidth intoψψ̄will also be small due to the kinematic suppression

factor
(

1−
[
4M2

ψ/M2
Z′

])1/2
. In this case we will have the total width of the Z′ to

be rather narrow. Thus for annihilation near the Breit-Wigner pole we will have

a large enhancement of 〈σv〉 due to the narrowness of the Z′ [85]. It was shown

in the analysis of [85] that near the Breit-Wigner pole such annihilations allow one

to fit the relic density as well as allow an enhancement of 〈σv〉 in the galaxy. We

note that while Z′ decay width is very small this is not necessarily the case for Z′′

which can decay into eē, µµ̄, νeν̄e, νµν̄µ with normal strength. Thus neglecting the

contribution of Z′′ → ψψ̄ which is small due to the sin2 θX ∼ ε2 suppression, one

finds the total width of Z′′ to be ΓZ′′ ' cos2 θXαC MZ′′ . Finally, the annihilation of

the Dirac particles in the early universe goes by the processes

ψψ̄→ Z′, Z′′ → e+e−, µ+µ−, νeν̄e, νµν̄µ, (5.39)

which is to be contrasted with the processes Equation (5.15) in the U(1)X model.
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5.4 Relic Density in a Two Component Model

Here we discuss the relic density in models with two components. A general analy-

sis requires solving the Boltzmann equations in a Friedmann-Robertson-Walker uni-

verse [42, 46, 88], and includes coannihilations [44] and an accurate integration over

pole regions. As in the Minimal Supersymmetric Standard Model alone, one will

generally encounter the Z and Higgs poles [46] and these need to be treated with

care. The number changing processes include

ψψ̄↔ SM SM′, ψψ̄↔ χχ, χχ↔ SM SM′. (5.40)

Note that the process ψ̄χ↔ SM SM′ is not allowed since ψ̄χ connect only to φ and φ′,

neither of which can connect to the standard model particles. For the simplest two

component model with dark matter particles ψ, χ, with the assumption that Mψ >

Mχ the only relevant processes in the annihilation of ψψ̄ are ψψ̄→ f f̄ , χχ final states.

Since ψ is heavier than χ its freeze-out occurs earlier (at a higher T) than for χ. Thus,

the Boltzmann equations for nψ (which includes fermions and anti-fermions) and for

nχ for the U(1)X and for the U(1)X ×U(1)C two component models are given by

dnψ

dt
= −3Hnψ −

1
2
〈σv〉ψψ̄(n

2
ψ − n2

ψ,eq), (5.41)

dnχ

dt
= −3Hnχ − 〈σv〉χχ(n

2
χ − n2

χ,eq) +
1
2
〈σv〉ψψ̄→χχ(n

2
ψ − n2

ψ,eq). (5.42)

Here 〈σv〉ψψ̄ refers to ψψ̄ → f f̄ , χχ, and 〈σv〉χχ stands for 〈σv〉χχ→SM SM′ . For the

spin averaged cross section for the Dirac case, the extra factor of 1/2 is to account for

the fact that we are dealing with a Dirac fermion. The number densities are nψ, nχ
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and nψ,eq, nχ,eq are their values at equilibrium, i.e.,

n(ψ,χ),eq ' g(ψ,χ)(M(ψ,χ)T)/2π)3/2exp
(
−

M(ψ,χ)

T

)
,

, where gψ = 4 and gχ = 2. Since the two dark matter particles are sub- TeV in

mass, they will freeze-out at temperatures that are not drastically different. One

can solve the Boltzmann equation for ψ with the appropriate boundary conditions

to compute the freeze-out temperature Tψ
f and the relic density of ψ at the current

temperatures. To compute the freeze-out temperature Tχ
f for the particles χ, one

uses solutions for nψ as computed from the Boltzmann equation for ψ as input in the

Boltzmann equation for χ keeping in mind that nψ,eq in the χ Boltzmann equation

can be neglected since we are below the freeze-out temperature for ψ. It is difficult to

get a closed form solution of Equation (5.42) for nχ and thus in general the analysis

must be done numerically for Ωχh2. However, it turns out that for both the U(1)X

and the U(1)X × U(1)C models the contribution of the term proportional to n2
ψ in

Equation (5.42) is rather suppressed and it is a good approximation to neglect this

term for both models. In this case, one has

(Ωh2)WMAP = (Ωψh2)0 + (Ωχh2)0 '
Cψ

Jψ
0

+
Cχ

Jχ
0

, (5.43)

where

Cχ '
1.07× 109 GeV−1
√

g∗(χ) Mpl
, Cψ ' 2× 1.07× 109 GeV−1

√
g∗(ψ) Mpl

, (5.44)

Jχ
0 =

∫ xχ
f

0
〈σv〉χχ dx , Jψ

0 =
∫ xψ

f

0
〈σv〉ψψ̄ dx , (5.45)
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and where g∗(ψ, χ) denotes the effective degrees of freedom at the freeze-out of ψ, χ

respectively. The analysis leading to Equation (5.41) and Equation (5.42) is easily

extended to include coannihilations. The analysis can easily be reversed if the Majo-

rana is heavier than the Dirac. Denoting ρ�,ψ, ρ�,χ as the local density of each dark

matter kind in the halo, one can assume

ρ�,ψ/ρ�,χ ∼ (Ωψh2)0/(Ωχh2)0. (5.46)

However, the ratios need not be the same. The local halo densities are also con-

strained such that ρ�,ψ + ρ�,χ = ρ�,total ' (0.35− 0.45)GeVcm−3. For the calcula-

tion near the Z′ pole we follow the techniques of [46]. Indeed the analytic techniques

developed in [46] have been cross-checked with independent codes. For the U(1)X

model, the decay branching ratios are substantially less hadronic and more leptonic

than for the annihilations via the Z boson exchange [89]. For the U(1)X × U(1)C

model the decays of the Z′, Z′′ are purely leptonic. These leptophilic decay patterns

for the extra Z′s help to explain the PAMELA positron excess without recourse to

large ad hoc boost factors.
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Chapter 6

Asymmetric DarkMatter in theMSSM

6.1 Introduction

In this chapter we will extend the asymmetric dark matter model of Chapter 3 to

the MSSM. (The majority of this chapter comes directly from [22].) In extending

the model to the MSSM the model will now have two dark matter particles, i.e. the

lightest neutralino and the asymmetric darkmatter. Let us quickly review asymmet-

ric dark matter (AsyDM), which explains the cosmic coincidence, i.e., the apparent

closeness of the amount of baryon asymmetry to the amount of dark matter in the

Universe. The closeness of ΩDMh2
0 and ΩBh2

0 points to the possibility that the bary-

onic matter and dark matter may have a common origin. In the analysis within this

chapter we will use a Stueckelberg U(1) extension of the minimal supersymmet-

ric standard model (MSSM) [22, 69, 86]. Models explaining the cosmic coincidence

have twomain constraints in building models which is a mechanism for transferring

a B− L asymmetry produced in the early universe to dark matter and a mechanism

for depleting the symmetric component of dark matter generated via thermal pro-
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cesses. Additionally, in theMSSM extension one needs to verify that the relic density

of the lightest neutralino is also depleted.

Aswe did in Chapter 3, wewill consider aU(1)X extension of the StandardModel

gauge group which is anomaly free and gauged under U(1)X, X = Lµ − Lτ. As is

well-known, the MSSM supplemented by supergravity soft breaking gives the neu-

tralino as the lowest supersymmetric particle and with R parity a candidate for dark

matter. Thus for the AsyDM to work in the MSSM extensions it is necessary to have

the neutralino as a subdominant component. This issue will be addressed. Also,

when we study signatures at experiments for the direct detection of dark matter we

will see that the subdominant component may still be detectable.

Much of the StandardModel analysis carried out in Section 3.2 is unchanged. The

operator Oasy in Equation (3.2) is now constructed of MSSM fields rather then just

Standard Model fields. Here we ill discuss two broad classes of models, i.e. the

case where all of the sparticles are in the thermal bath at temperatures where the

asymmetry transfer takes place and the the case where the first two generations of

squarks are heavy and are Boltzmann suppressed in the thermal bath. More ex-

plicitly, we will focus on the case when Tint > MSUSY (Model E) where MSUSY is

the (largest) soft breaking mass. In this case all the sparticles will be in the plasma.

The second case (Model F) corresponds to when the first two generations of spar-

ticles (with mass M1) are heavy and drop out of the plasma (at some temperature

T1 < M1) while the third generation sparticles, the gauginos, the Higgses and the

Higgsinos (with mass M2 � M1) remain in the plasma. Thus for this case we have

T1 > Tint > M2 > TEWPT.
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6.2 Analysis in supersymmetric framework

Since the supersymmetric case can have its own dark matter candidate, i.e., the neu-

tralino, the relic abundance of the neutralino must be depleted. For this reason,

we only consider the parameter space where relic density of the neutralino is much

smaller than the WMAP value for cold dark matter (CDM) and is thus only a sub-

dominant component. Below we discuss two regimes, one where Tint > MSUSY and

the other where T1 > Tint > M2 > TEWPT.

6.2.1 T > MSUSY

In this regime since the temperature is above the SUSY breaking scale all sparticle

masses must be included in the µ equations. This case is very similar to the discus-

sion of T > TEWPT in the Standard Model framework, except this time the particle

spectrum includes all the Standard Model particles, the extra Higgses as well as the

sparticles. For brevity we will use the same symbols for the chemical potentials,

though now they stand for not only the Standard Model fields, but also their super-

partners. The chemical potential equations obtained from Yukawa couplings and

sphaleron processes remain the same. The only equation modified would be the hy-

percharge equation. The hypercharge of the Universe for the case when T > TSUSY

is given by

Y =3×
{

3×
[
2× 3× 1

3 µq + 3× 4
3 µu + 3× (−2

3)µd + 2× (−1)µL + (−2)µe
]

+ 2× (µHu − µHd)
}

, (6.1)
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where the counting is similar to discussion in Chapter 3. The Higgs mixing term

in the superpotential, i.e., W = µHuHd indicates µHu + µHd = 0, and so we define

µH ≡ µHu = −µHd . Therefore, the hypercharge becomes

3µq + 6µu − 3µd − 3µL − 3µe + 2µH = 0 . (6.2)

Solving the chemical potential equations, we find that for Model E the total baryon

and lepton numbers are given by

BE = 3× 3× [2µq + (µu + µd)] = −12µL , (6.3)

LE = 3× 3× (2µL + µe) =
153
7

µL , (6.4)

so that (B − L)E = −237
7 µL. Note that in the above equations, the extra factor of

3 = 1+ 2 (compare to the StandardModel case) takes into account the contributions

of both fermions and bosons from the superfields, c.f. Equation (3.5).

6.2.2 T1 > T > M2 > TEWPT

Here we consider two soft breakingmass scales M1 and M2 where M1 � M2. When

temperature drops below T1, all the sparticles with masses greater than M1 would

drop out of the thermal bath. We assume that this is the case for the first two gen-

erations of squarks and sleptons. Similar to Model C, we simply assume here that

these sparticles would drop out of the thermal bath at M1 > T1 > M2. Thus the only

sparticles remaining in the thermal bath are from the third generation, the gauginos,

the Higgses and the Higgsinos. We make the approximation that these particles are

relativistic at T1 > T > M2. This case is labeled Model F. Following the analysis of
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Equation (6.2) we find that the vanishing of the hypercharge for Model F gives

5µq + 10µu − 5µd − 5µL − 5µe + 6µH = 0 . (6.5)

Solving the µ-equations, we obtain

BF = (3× 1 + 2)× [2µq + (µu + µd)] = −
20
3

µL , (6.6)

LF = (3× 1 + 2)× (2µL + µe) =
485
39

µL , (6.7)

and (B− L)F = −745
39 µL.

6.2.3 The AsyDMmass: SUSY case

The supersymmetric interactions which transfer B− L asymmetry typically have a

different form than the ones in the non-supersymmetric case. The most general in-

teraction that transfers B− L to the dark sector for the MSSM case is

Wasy =
1

Mn
asy

XkOMSSM
asy , (6.8)

where the darkmatter superfield X = (φX, ψX)with φX as the bosonic and ψX as the

fermionic component. Now the following possibilities arise in terms of dark mat-

ter. First, after soft breaking if φX and ψX have a similar mass, both of them are

stable, and could be dark matter candidates. Next, consider the case where one of

the components has a much larger mass than the other and would decay into the

lighter one. In this case we have two possibilities: either φX is heavier than ψX so

that φX → ψX + χ̃St (where χ̃St is a Stueckelberg neutralino) in which case ψX is

the dark matter candidate, or ψX is heavier than φX so that ψX → φX + χ̃St in which
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case φX is the darkmatter candidate (The possibility that either χ̃St or theMSSMneu-

tralino is a darkmatter candidate is discussed later in the chapter). For either of these

three cases, when computing the total dark particle number from Equation (3.5), we

need to multiply by an additional factor of 3, since both bosonic and fermionic com-

ponents of the dark matter superfield would contribute. But for concreteness in our

analysis wewill assume that ψX is lighter than φX and thuswould be the asymmetric

dark matter.

Applying the same method we used in Section 3.3.3, we find

mE
DM ≈ −

11.11 GeV

QOMSSM

B−L

, mF
DM ≈ −

6.51 GeV

QOMSSM

B−L

. (6.9)

Thus for the B − L transfer interactions with QO
MSSM

B−L = −1, where OMSSM
asy can be

LHu, LLec, Lqdc, or ucdcdc, the dark particle masses are

mX = 11.11GeV Model E ; mX = 6.51GeV Model F . (6.10)

For the case Wasy = 1
M3

asy
X2(LHu)2 with QO

MSSM

B−L = −2, which we will discuss in

Section 6.3, the dark particle masses are

mX = 5.55GeV Model E ; mX = 3.25GeV Model F , (6.11)

and using Equation (3.3) one finds

ME
asy & 3.7× 105 GeV . (6.12)
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6.3 Asymmetric dark matter in a Stueckelberg exten-

sion of the MSSM

The analysis of dark matter in the MSSM extension is more complex in that there are

now three contributions to the dark matter relic density, i.e., from the asymmetric

and symmetric components as in Equation (3.57) and from the neutralino. Thus

here one has

ΩDM = Ωasy
DM + Ωsym

DM + Ωχ̃0 , (6.13)

where Ωχ̃0 is the relic density from the neutralino. In this case for the asymmetric

dark matter to work, one must significantly deplete not only the symmetric com-

ponent of dark matter but also the contribution from the neutralino. Thus here we

take the criterion that Ωsym
DM / ΩDM < 0.1, and Ωχ̃0 / ΩDM < 0.1. For the analysis of

AsyDM in extensions of MSSM we consider the interaction (in the superpotential)

Wasy =
1

M3
asy

X2(LHu)
2 . (6.14)

Here we note that the choice Wasy ∼ X2LHu would have allowed the decay χ̃0 →
XXν · · · and would have required the constraint mχ̃0 < 2mX for the neutralino to

be stable. Further, while the choices Wasy ∼ X2LLec, X2Lqdc do not allow the neu-

tralino decay at the tree-level, such a decay can occur at the loop level since it is not

forbidden by a symmetry. AdditionallyWasy ∼ X3LHu, X3LLec, X3Lqdc can also pre-

serve the stability of the neutralino. Here and elsewhere we are assuming that the

Stueckelberg neutralinos are heavier than the lightest neutralino in theMSSM sector.

Returning to Equation (6.14), the corresponding dark particle masses are computed

to be 5.55GeV (Model E) and 3.25GeV (Model F). Now the Stueckelberg extension

77



of MSSM, is more complex than the SM extension. We exhibit the relevant parts of

this extension below.

For the Stueckelberg Lagrangian of the supersymmetric case we choose [29, 86]

LSt =
∫

dθ2dθ̄2 [MC + S + S̄]2 , (6.15)

where C is the U(1)C vector multiplet, S and S̄ are chiral multiplets, and M is a mass

parameter. We define C in the Wess-Zumino gauge as C = −θσµθ̄Cµ + iθθθ̄λ̄C −
iθ̄θ̄θλC + 1

2 θθθ̄θ̄DC , while S = 1
2(ρ+ ia)+ θχ+ iθσµθ̄ 1

2(∂µρ+ i∂µa)+ θθF+ i
2 θθθ̄σ̄µ∂µχ+

1
8 θθθ̄θ̄(�ρ + i�a) . Its complex scalar component contains the axionic pseudo-scalar

a, which is the analogue of the real pseudo-scalar that appears in the non-supersymmetric

version in [28, 29, 86]. We write LSt in component notation as

LSt = −
1
2
(MCµ + ∂µa)2 − 1

2
(∂µρ)2 − iχσµ∂µχ̄ + 2|F|2 + MρDC + Mχ̄λ̄C + MχλC .

(6.16)

For the gauge fields we add the kinetic terms

Lgkin = −1
4

CµνCµν − iλCσµ∂µλ̄C +
1
2

D2
C , (6.17)

with Cµν ≡ ∂µCν − ∂νCµ. For the matter fields (quarks, leptons, Higgs scalars, plus

hidden sector matter) chiral superfields with components ( fi, zi, Fi) are introduced

and the matter Lagrangian is given by

Lmatt = −|Dµzi|2 − i fiσ
µDµ f̄i −

(
i
√

2 gCQCzi f̄iλ̄C + h.c.
)
+ gCDC(z̄iQCzi) + |Fi|2 ,

(6.18)

where (QC, gC) are the charge operator and coupling constant of U(1)C, and Dµ =

∂µ + igCQCCµ is the gauge covariant derivative. It is convenient to replace the two-
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componentWeyl-spinors (χ, χ̄), (λC, λ̄C) by four-componentMajorana spinors, which

we label as ψS = (χα, χ̄α̇)T, and λC = (λCα, λ̄α̇
C). The total Lagrangian of the MSSM

then takes the form

LStMSSM = LMSSM + LU(1) + ∆LSt , (6.19)

with

∆LSt = −1
2
(MCµ + ∂µa)2 − 1

2
(∂µρ)2 − 1

2
M2ρ2

− i
2

ψ̄Sγµ∂µψS −
1
4

CµνCµν − i
2

λ̄Cγµ∂µλC + Mψ̄SλC

−∑
i

[ ∣∣Dµzi
∣∣2 −

∣∣Dµzi
∣∣2
Cµ=0 + ρgC M(z̄iQCzi)

+
1
2

gCCµ f̄iγ
µQC fi +

√
2 gC

(
iziQC f̄iλC + h.c.

)]

−1
2

[
gC ∑

i
z̄iQCzi

]2
. (6.20)

As in the SM casewe assume that the U(1)C is a gauged Lµ− Lτ. Further, we assume

that all hidden sector fields while charged under U(1)C are neutral under theMSSM

gauge group and some of the MSSM particles, i.e., the second and the third genera-

tion leptons, are charged under U(1)C. As discussed already an essential ingredient

to explain the cosmic coincidence is that the symmetric component of dark matter

produced in thermal processes is significantly depleted. For the MSSM Stueckel-

berg extension the analysis of annihilation is essentially identical to the case of the

Stueckelberg extension of the Standard Model and we do not discuss it further.

We nowdiscusswhat happens to the extra particles that arise in theU(1)C Stueck-

elberg extension of MSSM. This extension involves the following set of particles:

Z′, ρ, ψ, φ, ψS, λC. The decay of the Z′ has already been discussed (see Chapter 3).

Nextwe consider the ρ. Equation (6.20) gives the interaction of the ρwith the sfermions.
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Specifically its couplings to the mass diagonal sfermions are given by

Lρ f̃ † f̃ = −gρMρ

[
cos(2θ f̃i

)
(

f̃ †
1i f̃1i − f̃ †

2i f̃2i

)
+ sin(2θ f̃i

)
(

f̃ †
1i f̃2i + f̃ †

2i f̃1i

)]
, (6.21)

where fi refer to µ, νµ, τ, ντ. Thus the ρ will decay via second and third generation

slepton loops into µ+µ−, νµν̄µ, τ+τ−, ντ, ν̄τ anddisappear in the thermal bath quickly

(see Section 6.4). Next we discuss the neutralino sector. Here in the U(1)C Stueckel-

berg extension of MSSM the neutralino sector is enlarged in that one has two more

fields, i.e., the gaugino, and the higgsino fields (ΨS, ΛC) as mentioned earlier. In this

case the neutralino mass matrix of the U(1)C extension of MSSM is given by

Mneutralino =



Mst 02×4

04×2 MMSSM


 , Mst =




0 M

M M̃


 , (6.22)

where MSt is in the basis (ΨS, ΛC), M is the Stueckelbergmass and M̃ is the softmass.

The neutralino mass eigenstates arising from Equation (6.22) can be labeled χ̃St
1 , χ̃St

2 .

We consider the possibility that the Stueckelberg neutralinos are heavier than the

LSP of the MSSM (χ̃0
1) and decay into the MSSM neutralino which is assumed to

be stable. In this case one will have more than one dark matter particle, i.e., the ψ

from the Stueckelberg sector and χ̃0
1 from the MSSM sector. Again in the case of

AsyDM the relic density of χ̃0
1 must be much smaller than the WMAP relic density

for CDM. To this end we carry out an explicit analysis of the relic density within

supergravity (SUGRA) grand unification [48, 65]. As shown in Figure 6.1 the relic

density of χ̃0
1 can be very small, which allows the dominant component of the dark

matter observed today to be the asymmetric dark matter.
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Figure 6.1: An exhibition of the depletion of theMSSMneutralino darkmatter below
10% of theWMAP relic density for cold dark matter. Parameter points are displayed
by their light CP even Higgs mass and the yellow band corresponds to 10% of the
WMAP-7 observed limit. The left panel shows the parameter points ofmSUGRAand
the right panel shows the non-universal gaugino parameter points. All parameter
points shown pass the general constraints.

6.4 Decay of the ρ

Herewe compute the decay of the ρ. From Equation (6.21) one finds that ρ couples to

smuons, staus, muon sneutrino, and tau sneutrino. This means that the ρ decay has

µ+µ−, νµν̄µ, τ+τ−, ντ ν̄τ final states which arise via the exchange of neutralinos and

charginos in the loops (a generic diagram is shown in Figure 6.2). The amplitude of

the generic diagram reads,

iM = −igρijCkiC∗kj

∫ d4k
(2π)4 ū(p′)

(/k − /p) + mχ̃k

(k2 −m2
i )(k

′2 −m2
j )((k− p)2 −m2

χ̃k
)

v(p) , (6.23)

where k′ = q− k, mi, mj are the masses of the sleptons, and mχ̃k is the mass of the

neutralino or of the chargino in the loop, while gρij, Cki are the couplings. Here we

are only interested in estimating the size of the lifetime. Therefore, it is sufficient

to estimate the contribution for one set of diagrams. Thus we consider the decay

of the ρ to final states µ+µ− via the exchange of neutralinos. In this case we will
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Figure 6.2: A generic diagram showing the decay of the ρ to one of the final states
which could be µ+µ−, νµν̄µ, τ+τ−, ντ ν̄τ via exchange of sleptons, charginos and neu-
tralinos at one loop.

have the exchange of smuons and neutralinos in the loop. Further, we will ignore

the mixing between the left and the right chiral smuons so that the mixing angle

θ f̃i
in Equation (6.21) can be set to zero. In this circumstance the off-diagonal term

involving two smuons in the loop does not contribute and the relevant loop integral

takes the form

1
(k2 −m2

i )(k
′2 −m2

j )((k− p)2 −m2
χ̃k
)
=
∫ 1

0
dxdydzδ(x + y + z− 1)

2
D3

ik
, (6.24)

where Dik = l2 − ∆ik + iε in which l ≡ k− (yq + zp) and

∆ik = (1− z)m2
i − xym2

ρ + zm2
χ̃k
+ (z2 − z)m2

µ . (6.25)

The masses in the loops are much larger than the muon mass and thus the muon

mass can be ignored. The integration on l gives

iM =
−igρijCkiC∗ki

(4π)2

∫ 1

0
dxdydzδ(x + y + z− 1)

ū(p′)mχ̃k v(p)
∆ik

. (6.26)
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Further, an approximate evaluation of integration on the Feynman parameters gives

iM =
−igρiiCkiC∗ki

(4π)2 ū(p′)
mχ̃k

m2
i

v(p) , (6.27)

under the assumption m2
χ̃k

/
m2

i � 1 and m2
ρ

/
m2

i � 1. The decay width of ρ→ µ+µ−

is then given by

dΓ =
1

2mρ

∫ d3~p
(2π)32Eµ+

∫ d3~p′

(2π)32Eµ−

∣∣∑ iM
∣∣2 (2π)4δ(4)(q− p− p′) =

|∑ iM|2
8πmρ

.

(6.28)

Next, note that gρ11 = −gρ22 = gCQCmρ and thus

∣∣∑ iM
∣∣2 '

(gCQc)2m4
ρ

16π4

∣∣∣∣∣
6

∑
k=1

2

∑
i=1

(−1)i+1 CkiC∗ki
m2

i

∣∣∣∣∣

2

. (6.29)

A numerical estimate using Equation (6.28) and Equation (6.29) and the inputs m1 =

1TeV, m2 � m1, mρ = 100GeV, the lightest neutralino mass of 50GeV gives τρ =

h̄/Γ ∼ 10−14±1 s. Thus the decay of the ρ is very rapid.
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Chapter 7

Early Search for SUSY at the LHC

7.1 Introduction

In this chapter we go over the early search potential for supersymmetry at the Large

Hadron Collider. We start by studying the Standard Model background, then we

explore the early reach potential of the LHC, and finally these results are compared

to what ATLAS and CMS observed at
√

s = 7TeV and 35pb−1 of data. The work for

this chapter comes directly from [90, 91].

7.2 Standard Model Backgrounds at
√

s = 7TeV

One of the most important aspects to the discovery of new physics at the LHC is the

understanding of the Standard Model (SM). The SM processes act as background

in the channels used to search for new physics. Throughout the remainder of the

analysis we will use the Standard Model background that was generated in [90].

This backgroundwas generated using MadGraph 4.4 [92] for parton level processes,
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Pythia 6.4 [93] for hadronization, and PGS-4 for detector simulation [94]. Addition-

ally, a MLM matching with a kT jet clustering scheme was used to prevent double

counting of final states. The result of our analysis is presented in Table 7.1 with par-

ton level cuts as specified Equation (7.1) and in the caption of Table 7.1. The genera-

tion of the background implemented theCTEQ6L1 [95] parton distribution functions

for the SM background, and a basic cut was applied such that all final state partons

(except the top quarks) are required to have pT > 40GeV.

Cuts1 = 40GeV < ET (j1) < 100GeV, Cuts2 = 100GeV < ET (j1) < 200GeV,

Cuts3 = 200GeV < ET (j1) < 500GeV, Cuts4 = 500GeV < ET (j1) < 3000GeV

Parton level cuts. (7.1)

An important note for the StandardModel backgrounds, is an issue of double count-

ing. When studying W + t̄b
(
tb̄
)
processes there is a potential to double count such

final states if one also considers tt̄ production processes. To prevent this double

counting we have eliminated all diagrams involving a top quark from the set of di-

agrams that lead to W + t̄b final states, with an analogous requirement for W + tb̄

production.

7.3 Sparticle production cross sections at
√

s = 7TeV

Before studying the reach of the LHC it is beneficial to first look at the sparticle cross

sections. As discussed earlier inmSUGRA, one has just four parameters and the sign

of the Higgs mixing parameter µ; i.e., one has

m0, m1/2, A0, tan β, sign(µ), (7.2)
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A display of the processes analyzed and their Standard Model backgrounds at√
s = 7TeV

SM process Cross Number Luminosity
section (fb) of events

(
fb−1

)

QCD 2, 3, 4 jets (Cuts1) 2.0× 1010 74M 3.7× 10−3

QCD 2, 3, 4 jets (Cuts2) 7.0× 108 98M 0.14
QCD 2, 3, 4 jets (Cuts3) 4.6× 107 40M 0.88
QCD 2, 3, 4 jets (Cuts4) 3.9× 105 1.7M 4.4
tt̄ + 0, 1, 2 jets 1.6× 105 4.8M 30
bb̄ + 0, 1, 2 jets 9.5× 107 95M 1.0
Z/γ

(
→ ` ¯̀ , νν̄

)
+ 0, 1, 2, 3 jets 6.2× 106 6.2M 1.0

W± (→ `ν) + 0, 1, 2, 3 jets 1.9× 107 21M 1.1
Z/γ

(
→ ` ¯̀ , νν̄

)
+ tt̄ + 0, 1, 2 jets 56 1.0M 1.7× 104

Z/γ
(
→ ` ¯̀ , νν̄

)
+ bb̄ + 0, 1, 2 jets 2.8× 103 0.1M 36

W± (→ `ν) + bb̄ + 0, 1, 2 jets 3.2× 103 0.6M 1.8× 102

W± (→ `ν) + tt̄ + 0, 1, 2 jets 70 4.6M 6.5× 104

W± (→ `ν) + tb̄ (t̄b) + 0, 1, 2 jets 2.4× 102 2.1M 8.7× 103

tt̄tt̄ 0.5 0.09M 1.8× 105

tt̄bb̄ 1.2× 102 0.32M 2.7× 103

bb̄bb̄ 2.2× 104 0.22M 1.0
W± (→ `ν) + W± (→ `ν) 2.0× 103 0.05M 25
W± (→ `ν) + Z (→ all) 1.1× 103 1.3M 1.1× 103

Z (→ all) + Z (→ all) 7.3× 102 2.6M 3.6× 103

γ + 1, 2, 3 jets 1.5× 107 16M 1.1

Table 7.1: An exhibition of the Standard Model backgrounds computed in this work
at
√

s = 7TeV. All processes were generated using MadGraph 4.4. Our notation
here is that ` = e, µ, τ, and all = `, ν, jets. Cuts1-Cuts4 indicated in the table are
defined in (7.1). In the background analysis we eliminate double counting between
the process W± + tb̄ (t̄b) and tt̄ by subtracting out double resonant diagrams of tt̄
when calculating W± + tb̄ (t̄b).

where m0 is the universal scalar mass, m1/2 is the universal gaugino mass, A0 is

the coefficient of the trilinear coupling, and tan β is the ratio of two Higgs vacuum

expectation values in the MSSM.

In this framework, we choose parameter points that successfully impose REWSB,

particlemass limits fromLEPand the Tevatron, relic density constraints fromWMAP [2],
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the gµ − 2 constraint [40], and flavor changing neutral current (FCNC) constraints

from Bs → µ+µ− and b → s + γ. For the analysis of just mSUGRA, we will only

take into account a single component of dark matter, i.e. coming from the light-

est neutralino. Additionally, we will take into account the errors in the theoretical

computations and possible variations in the computation of the relic density using

different codes, by taking a 4σ range around the mean. In the literature there is

some debate on the gµ− 2 constraint, however the hadronic corrections [96] indicate

a significant deviation (3.9σ) between the Standard Model prediction and the exper-

imentally measured value. Such a contribution can arise from supersymmetry [97]

or a Z′.

Formost of the analysis throughout this chapter and later chapters wewill use the

following constraints some of which have been updated since the original analysis

has been done. For the FCNC process Bs → µ+µ− we take the constraint to be

BR (Bs → µ+µ−) < 5.8× 10−8 [39, 98] and for the branching ratio of the process

b → sγ we take the constraint to be BR (b→ sγ) = (352± 34)× 10−6 [99, 100]. In

addition to the above, LEP and Tevatron mass constraints on the sparticle masses

and on the Higgs masses are applied. These are mA > 85GeV, mH± > 79.3GeV,

mt̃1
> 101.5GeV, and mτ̃1 > 98.8GeV where A is the CP-odd Higgs and H± is the

charged Higgs. Further, we impose the lightest CP-even Higgs mass constraint [101]

mh >
(

93.5 + 15x + 54.3x2 − 48.4x3 − 25.7x4 + 24.8x5 − 0.5
)
GeV (7.3)

where x = sin2 (β− α) and α is the Higgs mixing angle. The final term in the bound

represents a theoretical error of 0.5GeV in the calculation of Mh and MA assumed

by the authors of Ref. [101]. Additionally we use the constraints mχ±1
> 104.5GeV if

∣∣∣mχ±1
−mχo

1

∣∣∣ > 3GeV for the chargino mass and mg̃ > 309GeV for the gluino mass
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Sparticle Production Cross Sections of mSUGRA at
√

s = 7TeV
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Figure 7.1: An exhibition of the sparticle production cross sections at the LHC at√
s = 7TeV for mSUGRA as a function of the universal gaugino mass m1/2 at the

GUT scale when m0 = 500GeV, A0 = 0, tan β = 20 and sign(µ) = +1. Left panel:
production cross sections of g̃g̃, g̃q̃, q̃q̃ (solid red, dashed green, dashed blue lines).
Middle panel: production cross sections for g̃χ±, g̃χ0 (solid red, dashed green lines).
Right panel: production cross sections for χ±χ±, χ±χ0, χ0χ0 (solid red, dashed
green, dashed blue lines).

[39]. In the analysis we use a top (pole) mass of mt = 173.1GeV.

The next question that is of interest is how large do we expect the sparticle cross

sections to be at the LHCwith
√

s = 7TeV. To do this we generate parameter points

using MicrOMEGAs [102] and SuSpect [103] and apply the above mentioned con-

straints. These (successful) parameter points are then simulated in Pythia to deter-

mine their cross section at the LHCwith
√

s = 7TeV. The cross sections for sparticle

production processes inmSUGRAare shown in Figure 7.1. The figuresweremade by

generating 5K events for multiple m1/2 values where the other parameters are taken

to be m0 = 500GeV, A0 = 0, tan β = 20, and µ > 0. The left panel gives the cross

sections for the production of g̃g̃ (solid red line), g̃q̃ (dashed green line), q̃q̃ (dashed

blue line) as a function of m1/2. Themiddle panel gives the cross sections for the pro-

duction of g̃χ± (solid red line), g̃χ0 (dashed green line), and the right panel gives the

production cross section for χ±χ± (solid red line), χ±χ0 (dashed green line), χ0χ0

(dashed blue line). The analysis of Figure 7.1 shows that these cross sections to be

significant, indicating that at low mass scales as many as 104 or more SUSY events
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will be generated with 1 fb−1 of integrated luminosity at the LHC. With the LHC

finding a Higgs of ∼ 126GeV [4–8] this above scenario with m0 low and A0 = 0 has

been ruled out.

This analysis can also be extended to the case of non-universalities in the gaugino

mass sector and this case is given in Figure 7.2, where contour plots are given in the

mg̃−mχ±mass planewith other parameters as stated in the caption of the figure. The

plots display contours of constant log (σSUSY/fb) in the range 1− 3.5. These plots

indicate that a chargino mass up to about 500GeV and a gluino mass up to roughly

1TeV would give up to 103 or more events with 1 fb−1 of integrated luminosity.

7.4 Signature Analysis and SUSY Discovery Reach at
√

s = 7TeV and 1 fb−1

The next question to consider is in the first round of data what is expected for the

LHC to exclude at
√

s = 7TeV. To do this we simulate models at the LHC in a detec-

tor simulation with no trigger imposed (L0). Once the models have been simulated

we run them through the cuts given in [90]. These cuts are on the combination of

multi-jets, b-tagged jets, multi-leptons, jets and leptons, and photons. The cuts were

chosen to reduce the StandardModel background and enhance the SUSY signal with

and without missing energy. Figure 7.3 gives the reach of the LHC for its early runs

at
√

s = 7TeV for mSUGRA in the m1/2 − m0 plane. To rule out models we use

the criteria that a signal, S would be observables if S > max
(

5
√

B , 10
)
where B is

the events comings from the StandardModel background. The reach shows that the

LHC can probe mSUGRA models up to about 400GeV for m1/2 at low values of m0

and up to about 2TeV for m0 for low values of m1/2 with1 fb−1 of integrated lumi-
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Contours of σSUSY in the mg̃ −mχ± mass plane at
√

s = 7TeV
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Figure 7.2: Contour plots with constant values of log(σSUSY/fb) for σSUSY in mg̃ −
mχ± mass plane for the case with nonuniversalities in the gaugino sector. Gaugino
masses m1, m2, and m3 vary up to 1TeV. First panel from left: m0 = 250GeV, tan β =
10while A0 = 0, sign(µ)=+1; second panel from left: m0 = 250GeV, tan β = 30; third
panel from left: m0 = 1000GeV, tan β = 10; fourth panel from left: m0 = 1000GeV,
tan β = 30.

nosity, and up to about 450GeV for 2 fb−1 of data, and for m0 the reach can extend

up to 1.9 (2)TeV for 1 (2) fb−1 of integrated luminosity.

7.5 LHC Reach with 35pb−1 of Data

During the time of this graduate work, the ATLAS collaboration released two analy-

ses, one with 1 lepton [104] and the other with 0 leptons [105]. For the 1 lepton analy-

sis we follow the selection requirements that ATLAS reports in [104], which include
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Reach Plot at
√

s = 7TeV up to 2 fb−1 of Integrated Luminosity.
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Figure 7.3: A reach plot for mSUGRA using the StandardModel backgrounds given
in Table 7.1 at the LHC with

√
s = 7TeV with 1 fb−1 of integrated luminosity. The

mSUGRA parameters used are A0 = 0, tan β = 45, sign(µ) = 1. The condition used
for a signal to be observable is S > max(5

√
B , 10) where B stands for the Standard

Model background. Early LHC reaches at 1 fb−1 for the gluino (g̃), the chargino (χ̃±1 ),
the neutralino (χ0

1), the stau (τ̃1), and the stop (t̃1) are exhibited in the inset where
the y-axis is plotted on a logarithmic scale.

the preselection requirements for events having a jet with pT > 20GeV and |η| < 2.5,

electrons having pT > 20GeV and |η| < 2.47 and muons having pT > 20GeV and

|η| < 2.4. Further, we veto the “medium" electrons1 in the electromagnetic calorime-

ter transition region, 1.37 < |η| < 1.52. An event is considered if it has a single

lepton with pT > 20GeV and its three hardest jets have pT > 30GeV, with the lead-

ing jet having pT > 60GeV. The distance, ∆R =
√
(∆η)2 + (∆φ)2 , between each

jet with the lepton must satisfy ∆R (ji, `) > 0.4, and events are rejected if the recon-

structed missing energy, /ET, points in the direction of any of the three leading jets,

1See [106] for a definition of “loose", “medium" and “tight" electrons
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∆φ (ji, /ET) > 0.2. Events are then classified into 2 channels, depending on whether

the lepton is a muon or an electron. These are then further classified into four re-

gions based on the missing energy and mT cuts, where we reconstruct the missing

transverse momentum using the selected lepton plus jets with pT > 20GeV and

|η| < 4.9 following ATLAS analysis, and mT =
√

2pT (`) /ET (1− cos (∆φ (`, /ET)))

is the transverse mass between the lepton and the missing transverse momentum

vector. The four regions alluded to above are labeled the “signal region", the “top

region”, the “W region” and the “QCD region”. For the “signal region" events were

required to pass the additional cuts of mT > 100GeV, /ET > 125GeV, /ET > 0.25meff

and meff > 500GeV. Here the effectivemass, meff, is the scalar sum of themissing en-

ergywith the pT’s of the selected visible objects (in this case the lepton and the 3 jets).

The number of events were then compared to the 95% CL upper bounds that ATLAS

found (Ne < 2.2 events and Nµ < 2.5 events) [104]. The “top region" and “W region"

are defined by events with 30GeV < /ET < 80GeV and 40GeV < mT < 80GeV,

where the “top region” requires at least one of the three hardest jets to be b-tagged

and the “W region” requires none of the three hardest jets to be b-tagged. The “QCD

region" was required to have mT, /ET < 40GeV and was purely data driven. For our

analysis events were rejected if they contaminated the three control regions. Using

the Standard Model background from [90] we reproduced the ATLAS results.

For the 0 lepton analysis we follow the selection requirements that ATLAS reports

in [105] where the preselection is the same as for the 1 lepton case except that leptons

are identified to have pT > 10GeV. Here the events are classified into 4 regions “A",

“B", “C" and “D"; where regions A and B have at least 2 jets and regions C andD have

at least 3 jets. When referring to different cuts in these regions we define cuts on the

“selected" jets to mean that the minimum number of jets in this region must satisfy

the following requirement: For regions A and B “selected" jets mean that they are
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Figure 7.4: Left: Reach plot with 35pb−1 of integrated luminosity using the ATLAS
cuts discussed in the text with different tan β and A0: A0 = 0 and tan β = 3 (dashed
line); A0 = 0 and tan β = 45 (solid green line); A0 = 2m0 and tan β = 45 (solid red
line). For comparison we give the ATLAS observed limit (A0 = 0 and tan β = 3)
(solid blue line). Right: Reach plot with 35pb−1 of integrated luminosity of data
using the ATLAS 0 lepton cuts. For comparison we give the ATLAS observed limit
(red dashed line).

the first two hardest jets and for regions C and D “selected" jets mean that they are

the three hardest jets. Events are required to have /ET > 100GeV and the selected jets

must each have pT > 40GeV with the leading jet pT > 120GeV. As in the case with

1 lepton, events are rejected if the missing energy points in the direction of any of

the selected jets, ∆φ (ji, /ET) > 0.4, where i is over the selected jets. Region A requires

events to have /ET > 0.3meff and meff > 500GeV and regions C and D require events

to have /ET > 0.25meff with regionC requiring meff > 500GeV and regionD requiring

meff > 1TeV. In this case meff is defined in terms of selected jets, i.e. for regions A

and B it is the scalar sum of the first two hardest jets and for regions C and D it is

the scalar sum of the first three hardest jets. For the analysis here we do not apply

the cut for region B, i.e. mT2 > 300GeV, since the models excluded in this region are

already excluded in region D (see online webpage for [105]).

Following the framework of the ATLAS Collaboration [104] a set of three param-

eter sweeps in the m0 − m1/2 plane taking m1/2 ≤ 500GeV and m0 ≤ 1TeV was
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carried out. Two of the parameter sweeps were a 10GeV× 10GeV grid scan in the

m0−m1/2 plane having a fixed universal trilinear parameter, A0 = 0, and fixed tan β;

one set with tan β = 3 and the other with tan β = 45. A third parameter scan was

done with A0 = 2m0 and tan β = 45. Throughout the analysis we take µ > 0 and

mpole
top = 173.1GeV. A comparison of our reach to the reach done by the ATLAS

Collaboration is shown in Figure 7.4.

Figure 7.5 exhibits the number of signal events for electrons in the m0−m1/2 plane

where the reach plot from ATLAS is also exhibited and where the ATLAS reach plot

corresponds to the number of observed events and those that have a larger number

predicted by the model. For the 1 lepton analysis, we first present the models ex-

cluded by the muon channel, colored by Nµ
events (indicated by squares). Next, the

remaining models are overlayed with those that have been excluded by the electron

channel, and colored by Ne
events (indicated by diamonds). Similarly for the 0 lepton

analysis, we begin with models excluded by channel A, colored by NA
events (indicated

by squares); overlay models excluded by C (but not A) and colored by NC
events (indi-

cated by diamonds). Next, models excluded by channel D alone are overlayed in a

single color (stars), as ND
events are not comparable with NA

events or NC
events. Also shown

are the number of signal events for electrons in the mg̃−mq̃ plane. An ATLAS reach

curve is also exhibited.

The upper left panel of Figure 7.5) gives a more quantitative description of the

electron andmuon channels in putting constraints on the m0−m1/2 parameter space

with 35pb−1 of data. As expected the largest number of single e and µ events arise

at low mass scales, i.e., for low values of m0 and of m1/2 and the number of signal

events decrease and we approach the boundary after which they fall below 2 for the

1 lepton ATLAS analysis. It is also instructive to examine the signal events in the
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Figure 7.5: Top left panel: Number of signal events in the m0 − m1/2 plane for the
case A0 = 0, tan β = 3 using the 1 lepton ATLAS cuts in the m0 − m1/2 plane. The
dark areas correspond to number of events greater than 2 with the actual numbers
indicated along the vertical line to the rightwhile thewhite areas are filledwithmod-
els but have number of events smaller than 2. Top right panel: Same as the left panel
except that the plot is mg̃(gluino)−mq̃(squark) mass plane for the lightest squark
of the first 2 generations. The square region in the left panel becomes squeezed into
the polygon-like region in the physical mass plane in the right panel. One may note
that the ATLAS constraints do not rule out a low mass gluino on the scale of order
400GeV for heavy squarks. Bottom left panel: The same as the top left panel except
that the analysis is done using 0 lepton ATLAS cuts. Bottom right panel: Same as the
top right panel except that the analysis is done using the 0 lepton ATLAS cuts. The
(red) stars correspond to channel D. In channel D we find maximally 51 events over
the space scanned after a requirement that the number of events be at least 15 before
cuts. However, when only considering models not already excluded by channels A
and C, the number of events in channel D is maximally 18.

gluino-squark mass plane where the squark mass corresponds to the average first

two generation squarkmass. This is done in the upper right panel of Figure 7.5. Here
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the polygon shape of the region is a simple mapping of the allowed parameter in the

m0 − m1/2 plane of the upper left panel. The plot is useful as it directly correlates

squark and gluino model points that are either excluded or allowed by the 1 lepton

ATLAS analysis. The 0 lepton analysis of the lower panels in Figure 7.5 is very similar

to the analysis of the upper panels except for different array of cuts. There is a general

consistency in the analysis of the 1 lepton and the 0 lepton analysis, although the 0

lepton cuts appear more constraining as they appear to exclude a somewhat larger

region of the parameter space. Together the analysis of the upper and lower panels

of Figure 7.5 gives a more analytical understanding of the relative strengths of the 1

lepton and 0 lepton cuts.

7.6 Implications of The Early LHC Constraints

In the analysis of the ATLAS and CMS reach plots experimental constraints were not

imposed beyond those that arise from the ATLAS analyses. What if these constraints

were included? For this portion of the analysis all four parameters (m0, m1/2, A0, tan β)

are allowed to vary. In doing so, various constraints from searches on the sparti-

cle mass limits, B-physics and from gµ − 2 are applied. Next the constraint from

upper bound on the relic density from WMAP only are explored, and then with

combination of all of the above is considered. These constraints are done as dis-

cussed earlier. In the upper left panel of Figure 7.6 the following “collider/flavor

constraints" [39] are applied mh > 93.5GeV, mτ̃1 > 81.9GeV, mχ̃±1
> 103.5GeV, and

mt̃1
> 100GeV, along with

(
−11.4× 10−10) ≤ δ

(
gµ − 2

)
≤
(
9.4× 10−9), see [40],

Br (Bs → µ+µ−) ≤ 4.7× 10−8 (90 % C.L.) [99], and
(
2.77× 10−4) ≤ Br (b→ sγ) ≤

(
4.27× 10−4) [98]. These collider/flavor constraints by themselves have an effect,

but the effect is quite small in terms of reducing the density of models that are al-
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Figure 7.6: Upper left panel: An exhibition of the allowed models indicated by grey
(dark) dots in the m0 −m1/2 plane when only flavor and collider constraints are im-
posed. The region excluded by ATLAS (as well as CMS) lies below the thick black
curve in the left hand corner. Upper right panel: same as the left upper panel ex-
cept that only an upper bound on relic density of Ωh2 ≤ 0.14 is imposed. Lower
left panel: Same as the upper left panel except that the relic density constraint as in
the upper right panel is also applied. This panel exhibits that most of the parameter
space excluded byATLAS is already excluded by the collider/flavor and relic density
constraints. The dark region below the ATLAS curve is the extra region excluded by
ATLAS which was not previously excluded by the indirect constraints. Lower right
panel: The analysis of this figure is similar to the lower left panel except that models
with |µ| < 500GeV are exhibited in green.

ready constrained by the ATLAS results.

It is important to note that our scans of the parameter are very dense with 106

models after EWSB alone. In the m0 −m1/2 plane the collider/flavor cuts eliminate

12% of themodels. However because A0 and tan β are not fixed to specific values, but
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are allowed to run over their full natural ranges, a model point which is eliminated

for say, large tan β by b→ sγ or Bs → µ+µ− at a specific point in the m0−m1/2 plane

can correspond to amodel point with a smaller value of tan β for the same (m0, m1/2)

which is not eliminated. Thus the m0 − m1/2 plane appears densely filled. This is

contrary to what one would observe for fixed values of (A0, tan β). For example, for

(A0, tan β) = (0, 45) the b → sγ constraint would remove models at large m0 up to

close to 2TeV and m1/2 up to about 750GeV. As another example, for (A0, tan β) =

(0, 3) (the space looked at by ATLAS, and in the previous section) a strict limit of

mh < 102GeV for light CP even Higgs removes all model points below the ATLAS

limits. However because one is varying (A0, tan β) the area below the ATLAS limit

is filled in this case.

Next consider the “cosmological constraint" in the upper right panel of Figure 7.6

where we apply only an upper bound on the relic density of the thermally produced

neutralino dark matter of Ωh2 below the 4σ upperbound. The WMAP upper bound

constraint removes 96.5% of the models alone, thus this cosmological constraint is

very severe eliminating a large fraction of models, but again the ATLAS constraints

remain quite strong.

Next consider the “combined collider/flavor and cosmological constraints" and

notice that together these constraints are generally much more severe than the AT-

LAS constraints. This is shown in the lower left panel of Figure 7.6. Here models

that were separately allowed by previously known collider/flavor constraints, and

models that were separately allowed by just the upper bound fromWMAP, are now

eliminated under the imposition of the combined constraints. There is, however, a

new region that ATLAS appears to exclude above and beyondwhat the indirect con-

straints exclude and this region is a region for low m0 and for m1/2 around 350GeV.
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Thus it would require a larger integrated luminosity to move past the barren region,

which is above theATLAS bound, to get into the fertile region of the parameter space,

where the fertile region is the area above the white patch in the lower panel of Fig-

ure 7.6.

Finally exhibited in the lower right panel of Figure 7.6 is the value of µ (at the

electroweak symmetry breaking scale) in the m1/2 − m0 plane where µ is the Hig-

gsino mass parameter that enters in the Higgs bilinear term in the superpotential.

The analysis is given under the “combined constraints" discussed in the lower left

panel of Figure 7.6. It is important to note that essentially all of the natural region

of the parameter space corresponding to small µ, most of which lies close to the

hyperbolic branch (Focus point) (HB/FP) [107–112] of radiative breaking of the elec-

troweak symmetry or near the vicinity of the light CP-even Higgs pole region [46]

remains untouched by the CMS and LHC exclusion limits as illustrated in the lower

right panel of Figure 7.6 and remains to be explored. Further, as pointed out in [113],

low mass gluinos as low as even 420GeV in mSUGRA are allowed for the region for

large m0 where relic density can be satisfied on the light CP-even Higgs pole [46].

This can be seen from Figure 7.6 as the gluino and squark masses are exhibited in

the plots. Along the Higgs pole region, electroweak symmetry breaking can also be

natural, i.e., one has a small µ. It is also seen that this region is not constrained by

CMS and ATLAS since their limits taper off at large m0 as msquark gets heavy and the

jets from squark production are depleted (see [113]).
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Chapter 8

Signatures

In this chapter we will consider signatures and discoverable modes of the earlier

discussed topics.

8.1 Asymmetric Dark Matter Signatures at Colliders

Much of this section comes directly from [22]. The AsyDM models discussed in the

earlier chapters can produce a dramatic signature at a muon collider, see Figure 8.1,

which will be discussed now. This signature arises from a Z′ resonance. It is worth

noting that the Z′ boson has no couplings with the first generation leptons and thus

a process such as e+e− → Z′ → µ+µ−, τ+τ− is absent at the tree-level. This process

can only arise at the loop level which, however, is suppressed relative to the tree.

This explains why such a resonance has not been observed yet at an e+e− collider

(see Section 8.1.1). However, dramatic signals will arise at a muon collider where we
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Figure 8.1: Left: Leptonic final states in a µ+µ− collider where the µ+µ− → ll̄,
with l = µ, νµ, τ, ντ, final state arising from direct channel poles involving Z′. The
Z′ pole does not allow for a e+e− final state and thus the relative production cross
section for µ+µ− → τ+τ− vs µ+µ− → e+e− can be used to detect the existence of a
Lµ − Lτ gauged boson. Right: A similar analysis is possible for ρ but its production
is suppressed relative to Z′ since it must be produced at the loop level.
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Figure 8.2: An exhibition of the relative strength of the τ+τ− vs e+e− signal at a
muon collider. The presence of a detectable Z′ resonance in the µ+µ− → τ+τ−

channel provides a smoking gun signature for the gauged Lµ− Lτ AsyDMmodel. A
similar resonance is also present in the µ+µ− → µ+µ− channel while µ+µ− → e+e−

cross section shows no such enhancement in the Z′ region.
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will have processes of the type

µ+µ− → Z′ → µ+µ−, νµν̄µ, τ+τ−, ντ ν̄τ .

Since the final states contain no e+e− this would provide a smoking gun signature

for the model. In Figure 8.2 the cross section σ(µ+µ− → τ+τ−) for various values

of gC is exhibited when the AsyDM mass is taken to be 11.11GeV and the Z′ mass

is 150GeV. For comparison σ(µ+µ− → e+e−) is also plotted. One finds that the

σ(µ+µ− → τ+τ−) exhibits a detectable Z′ resonance and the cross section varies dra-

matically as a function of
√

s relative to σ(µ+µ− → e+e−)which is a rather smoothly

falling function beyond the Z boson pole. In Section 8.1.1 it is shown that the loop

contribution to µ+µ− → e+e− is suppressed and the Z′ resonance is not discernible

in this channel at a µ+µ− collider. There is a second overlapping resonance from a

spin-0 ρ state where µ+µ− → ρ → µ̃∗µ̃ → µ+µ−2χ̃0. However, the ρ resonance can

only proceed at the loop level and is suppressed relative to the Z′ pole.

8.1.1 Z′ exchange contribution to µ+µ− → e+e− at loop level

At a muon collider, e+e− final states can be created via photon exchange and via a Z

boson exchange. Since the Z′ has no direct couplingwith the first generation leptons,

there is no tree-level Z′ exchange contribution to e+e− final states. However, at the

loop level a Z′ exchange can make a contribution where the second and third gen-

eration leptons are exchanged in the loop as shown in Figure 8.3. We now compute

this contribution to determine its size. Thus we consider a µ+µ− → e+e− process

with a Z′ exchange via the second and third generation leptons loops as shown in
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Figure 8.3: Z′ − γ and Z′ − Z exchange via µ+µ−, νµν̄µ, τ+τ−, ντ ν̄τ loops.

Figure 8.3. In this case the contribution to the scattering amplitude is

∑ iM = iMγZ′ + iMZZ′

= v̄(p′)(
i
2

gCQµγµ)u(p)
−i(gµν − qµqν/m2

Z′)

q2 −m2
Z′

(iΠνρ
γZ′)
−igρσ

q2 ū(k)(−ieγσ)v(k′)

+ v̄(p′)(
i
2

gCQµγµ)u(p)
−i(gµν − qµqν/m2

Z′)

q2 −m2
Z′

(iΠνρ
ZZ′)

× −i(gρσ − qρqσ/m2
Z)

q2 −m2
Z

ū(k)
−igγσ

cos θW
(gV + gAγ5)v(k′) ,

(8.1)

where Qµ is the U(1)Lµ−Lτ charge for muon, gV = 1
2(T3)L + sin2 θW , gA = −1

2(T3)L,

and the vacuum polarization tensors iΠνρ
γZ′ and iΠνρ

ZZ′ are the sums of the contribu-

tions from µ+µ−, νµν̄µ, τ+τ−, ντ ν̄τ loops

iΠνρ = iΠνρ
µ + iΠνρ

νµ + iΠνρ
τ + iΠνρ

ντ . (8.2)
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First let us focus on iΠνρ
γZ′,µ which is the muon loop contribution to the Z′ − γ ex-

change. It reads

iΠνρ
γZ′,µ = −( i

2
gCQµ)(−ie)

∫ d4r
(2π)4 tr

[
γν i(/r + mµ)

(r2 −m2
µ)

γρ i(/r ′ + mµ)

(r′2 −m2
µ)

]

=
4iegCQµ

(4π)2 (q2gνρ − qνqρ)
∫ 1

0
dx x(1− x)

Γ(2− d
2 )

∆2− d
2

µ

=
4iegCQµ

(4π)2 (q2gνρ − qνqρ)
∫ 1

0
dx x(1− x)

(2
ε
− log∆µ − γ + log(4π) +O(ε)

)
,

(8.3)

where ∆µ = m2
µ− x(1− x)q2, and in the last step we use the dimensional regulariza-

tion. The expression of iΣνρ
γZ′,τ differs from iΣνρ

γZ′,µ by only the Qτ factor, and it takes

the form

iΠνρ
γZ′,τ =

4iegCQτ

(4π)2 (q2gνρ− qνqρ)
∫ 1

0
dx x(1− x)

(2
ε
− log∆µ− γ+ log(4π) +O(ε)

)
.

(8.4)

Summing over these two terms, we find a dramatic cancellation of the divergence in

the loop due to Qµ = −Qτ = 1, making the loop finite so that

iΠνρ
γZ′,µ + iΠνρ

γZ′,τ =
4iegC

(4π)2 (q
2gνρ − qνqρ)× I , (8.5)

where

I =
∫ 1

0
dx x(1− x)log

∆τ

∆µ
=
∫ 1

0
dx x(1− x)log

m2
τ − x(1− x)q2

m2
µ − x(1− x)q2 . (8.6)

One can also obtain the neutrino exchange contributions from the above by setting

the fermionmasses to zero in the equation above (assuming neutrinos to bemassless)

which gives a vanishing contribution.
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Now we want to compare the contribution of the Z′ − γ exchange loop diagram

with the tree-level process µ+µ− → γ→ e+e−, whose amplitude reads

iMγ = v̄(p′)(−ieγµ)u(p)
−igµν

q2 ū(k)(−ieγν)v(k′) . (8.7)

With some manipulation we find

iMγZ′ = −
2g2

c I
(4π)2 ·

q2

q2 −m2
Z′
× iMγ ≡ f × iMγ . (8.8)

Thus, the total squared amplitudes involving a photon can be written as

|iMγ + iMγZ′ |2 = |1 + f |2 × |iMγ|2

= (1 + f + f ∗ + f f ∗)× |iMγ|2 . (8.9)

Our numerical analysis shows that ( f + f ∗ + f f ∗) is smaller than ∼ 10−3 and thus

the loop makes only a tiny contribution to the total cross section in this case. The

analysis of Z′−Z exchange is similar and gives a very small value. Thuswe conclude

that a Z′ peak will not be visible in the µ+µ− → e+e− process at a muon collider.

The above analysis also exhibits why a Z′ in this model would not be visible in an

e+e− machine.

8.2 The Predictive Higgs Pole Model

In this sectionwe follow [113] and study a particular region of the unified supersym-

metric parameter space which satisfies all the existing experimental and astrophys-

ical bounds and was testable to the LHC in its early runs. We focus on the region

105



where the neutralino has a mass in the range ∼ (50− 65)GeV. We will refer to the

collective region of the parameter space, with |mχ̃0
1
− mh/2|max . O(5)GeV as the

“Higgs-pole region". This region is actually very predictive. For the models sur-

veyed in this section we require

∣∣∣∣mχ̃0
1
− 1

2
mh

∣∣∣∣
max
≤ 7GeV , (8.10)

with most models being with in about 4GeV or less. As shown in [113] this then

relates the lightest neutralino to the following masses

mh = αhmχ̃0
1
, 1.78 ≤ αh ≤ 2.25

mχ̃±1
= αχ̃±1

mχ̃0
1
, 1.65 ≤ αχ̃±1

≤ 2.07

mχ̃0
2
= αχ̃0

2
mχ̃0

1
, 1.70 ≤ αχ̃0

2
≤ 2.07

mg̃ = αg̃mχ̃0
1
, 7.34 ≤ αg̃ ≤ 9.25 , (8.11)

and the normal mSUGRA scaling relations can be replaced by the more quantitative

relations

mh = αχ̃0
1
mχ̃0

1
= βχ̃±1

mχ̃±1
(' βχ̃0

2
mχ̃0

2
) = β g̃mg̃

0.92 ≤ βχ̃±1
≤ 1.17, 0.22 ≤ β g̃ ≤ 0.29 . (8.12)

The distribution of gluino masses for the models is well approximated by a Gaus-

sianwith a remarkably small width. As shown in [113] the distribution in the dimen-

sionless ratio αg̃ = mg̃/mχ̃0
1
from Eq. (8.11). In general the model produce a gluino

mass of

mg̃ = (451± 20) GeV (1 σ). (8.13)
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Predictions for the Sparticle Masses and LSP Eigencontent
Mass Predictions (GeV) Eigencontent of the LSP

110 ≤ mh ≤ 126 0.888 ≤ n11 ≤ 0.996 (B̃)
52 ≤ mχ̃0

1
≤ 67 −0.163 ≤ n12 ≤ −0.016 (W̃)

104 ≤ mχ̃±1
≤ 131 0.019 ≤ n13 ≤ 0.396 (H̃1)

396 ≤ mg̃ ≤ 575 −0.167 ≤ n14 ≤ −0.006 (H̃2)

Table 8.1: General predictions for the sparticle masses for the models with m0 ≤
10TeV satisfying all phenomenological constraints discussed in the text. It is further
found that m0 ≥ 1.05TeV, and the scalar masses are bounded as : mt̃1

≥ 323GeV,
mb̃1
≥ 706GeV, mτ̃1 ≥ 484GeV, mq̃ ≥ 1070GeV, m ˜̀ ≥ 1050 GeV, and mA ≥ 187GeV.

Thus consistent with scaling relations one finds

mg̃/mχ̃0
1
= 7.86± 0.21 (1 σ). (8.14)

In Table 8.1 the general ranges given in Equation (8.11) are expanded.

8.2.1 Signatures of the Higgs-pole region at the LHC

To study the signatures of the lowmass gauginomodels at LHC-7we simulate events

at
√

s = 7 TeV for a sample of 700 model points from the larger set discussed in

the previous section. The standard model (SM) backgrounds considered are the

same from earlier chapters. The total R parity-odd SUSY production cross section

(σtotal) for the low mass gaugino models are composed, to a first approximation, of

only three contributions: production of chargino and the second lightest neutralino

(i.e. σχ̃±1 χ̃0
2
/σtotal; 47%± 3%); gluino pair production (i.e. σg̃g̃/σtotal; 28%± 3%); and

chargino pair production (i.e. σχ̃±1 χ̃∓1
/σtotal; 23% ± 1%). The three sparticles pro-

duced with the largest production modes, namely g̃, χ̃±1 , and χ̃0
2, then decay with

the dominant branching ratios shown in Table 8.2. The ranges shown are for the
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Branching Ratios of the LowMass Gaugino models in the Higgs-pole region

Br(g̃→ X) % Br(χ̃0
2 → X) % Br(χ̃±1 → X) %

uiūiχ̃
0
2 2× (5.1± 0.4) uiūiχ̃

0
1 2× (12.5± 0.6) uid̄iχ̃

0
1 2× (33.5± 0.1)

did̄iχ̃
0
2 2× (5.0± 0.3) did̄iχ̃

0
1 2× (16.3± 0.9) lνlχ̃

0
1 3× (11.0± 0.1)

bb̄χ̃0
2 15.1± 2.5 bb̄χ̃0

1 16.1± 1.9
uid̄iχ

−
1 + h.c. 4× (10.1± 0.8) l+l−χ̃0

1 3× (2.9± 0.5)
tb̄χ̃−1 + h.c. 2× (5.5± 1.2) ν1ν̄lχ̃

0
1 3× (5.7± 1.1)

Table 8.2: Typical size of dominant branching ratios of the sparticles with the largest
production modes emerging from proton-proton collision at the LHC over a subset
of 700 models. Here u, d includes the first 2 generations of quarks and l includes all
3 generations of leptons (hence the factors of 2 and 3 in the Table). The factor of 4 in-
cludes u, d and the conjugate modes for the charginos. In addition to the three dom-
inant sparticles arising from proton-proton collisions (the three cases considered in
the Table), a small subset of models are found to produce light stops (mt̃1

∼ 350GeV)
at the LHCwhich decay via t̃1 → (tχ̃0

1, bχ̃−1 , tχ̃0
2) respectively, depending on the par-

ticular model point.

subset of 700 models. The total SUSY production cross section is relatively large

for this class of models given the relatively light gluino, charginos and neutralinos

(σtotal = 9.65 pb± 1.43 pb) over the set of 700 models.

There is a relationship between the effective mass peak and the minimum mass

of the gluino and the first two generation squark masses. Since in the low mass

gaugino models that lie in the Higgs-pole region, the first and the second generation

squark masses are always heavier than the gluino mass, the peak of the effective

mass gives a relationship to the gluino mass. Analyzing the effective mass peak for

all 700 simulated models under the cuts mentioned in [113] we find in general

mpeak
eff ' 1.5 mg̃ , (8.15)

with the precise range being mpeak
eff /mg̃ = 1.57± 0.085, as can be seen from the dis-

tribution in the left panel of Figure 8.4. Thus a measurement of mpeak
eff provides an
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Figure 8.4: Left: Distribution of the ratio of the effective mass peak to the gluino
mass. The models plotted here are the 700 model subset and the peak is found after
adding the SM background and applying a cut as discussed in the text. We find the
peak to be at 1.57± 0.085. Right: Distribution of the ratio of effectivemass peak to the
mass difference between the two lightest neutralinos under the same cut. The mass
difference between the two lightest neutralinos corresponds to the upper bound of
the edge in the OSSF dilepton invariant mass plot. We find the peak to be at 12.50±
0.721.

important early clue to the size of the gluino mass. Next, defining

∆m ≡ mχ̃0
2
−mχ̃0

1
=
(

αχ̃0
2
− 1
)

mχ̃0
1

, (8.16)

the mass relations found in Eq. (8.11) or Eq. (8.12) suggest that the peak in the effec-

tive mass distribution will be proportional to ∆m

mpeak
eff

∆m
' 1.5× mg̃

(αχ̃0
2
− 1)mχ̃0

1

= 1.5× αg̃

(αχ̃0
2
− 1)

. (8.17)

The distribution of mpeak
eff /∆m is shown to be peaked in the right panel of Figure 8.4,

a result which follows from the left panel of Figure 8.4 and from the distribution in

αg̃ as discussed earlier.

Additional mass parameters can be measured for this model as shown in [113].

However, we will not go more into detail on this model since it has been ruled out
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by the LHC already.

8.3 Higgs discovery implications

This work comes from [114]. The recent search at the LHC [4–8] for the Higgs boson

with the combined 7TeV and 8TeV data indicated a signal for the Higgs boson with

mass 125.3± 0.4 (stat.)± 0.5 (syst.)GeV for CMS and with mass 126.0± 0.4 (stat.)±
0.4 (syst.)GeV for ATLAS. As is well known the Higgs boson mass at the tree level

lies below the Z0 boson mass, but it can be made larger by inclusion of loop cor-

rections. However, in supergravity grand unification there is another upper limit,

i.e., of about 130GeV due to the constraint of radiative breaking of the electroweak

symmetry (for a review see [114] and references within). Let us now consider the

implications of these values on the mSUGRA space.

8.3.1 Implications for mSUGRA

In the analysis we use theHiggs bosonmass constraint within the Bayesian statistical

framework to estimate the soft parameters ofmSUGRA. Themodel’s parameter set is

defined by, θ = {m0, m1/2, A0, tan β}, and additionally we consider a set of the most

sensitive standardmodel nuisance parameters, ψ =
{

mt, mb(mb)
MS, αs(mZ)

MS, αEM(mZ)
MS
}
.

These together form the basis parameter set: Θ = {θ, ψ}. Using Bayes’s theorem, the

posterior probability density function (PDF) for the theory described by Θ, which

may be mapped to observables, ξ(Θ) to be compared against experimental data, d is

given by:

p(Θ|d) = p(d|ξ(Θ))π(Θ)

p(d)
, (8.18)
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where L ≡ p(d|ξ(Θ)) is the likelihood function–the terms of which are described

in [114], π(Θ) is the distribution in Θ prior to considering experimental results, and

Z ≡ p(d) is the Bayesian evidence which can be used in model selection. However,

in our goal of parameter estimation, it serves only as a normalization factor. Results

are obtained by considering both the 2Dmarginalized posterior PDF (where the full

N-dimensional posterior PDF of Equation (8.18) has been integrated over the other

parameters), as well as the profile likelihoods (where the confidence levels are deter-

mined by comparison to the global best-fit point). (For a more detailed description

see [115].) For more details on how the analysis was done and what packages were

used please see [114].

For the analysis, the prior knowledge of the parameters were taken to be either

flat linear distributions or flat logarithmic distributions, withm0 ∈ (0.05, 8)TeV (log),

m1/2 ∈ (0.05, 5)TeV (log), A0 ∈ (−30, 30)TeV (linear), and tan β ∈ (3, 60) (linear).

We have fixed sign(µ) to be positive. The StandardModel nuisance parameters were

allowed to vary in 2 σ windows of their central values. Our MultiNest sampling

parameters, as defined in [115], were nlive = 20, 000 and tol=0.0001. It has been

shown in [116] and in [115] that these parameters are not only sufficient to provide

a map of the posterior PDF, but also to find the true best-fit point which is essential

for the profile likelihood analysis.

In the likelihood analysis we use the CMS result since that result was available

earlier. The fits to the data are reported, including the Higgs mass, in Figure 8.5

in the form of 2D posterior PDF maps (left panels) as well as the profile likelihood

maps (right panels). The posterior mean is marked with a large dot and the global

best-fit is marked with a circled ‘X’. (Note that while the best-fit point is crucial in

Frequentist likelihood-ratio tests, it has no significance in the Bayesian framework.)
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The top panels exhibit the constraint in the m0 − m1/2 plane and show that m0 is

typically a TeVor larger, whilem1/2 can lie below 500GeV. Themiddle panels exhibit

the constraint in the A0/m0− tan β plane, and here one finds thatmost of the allowed

parameter space lies in the narrow strip |A0/m0| ≤ 1 with a small strip in the range

|A0/m0| ∈ (−2,−6). The bottom panels exhibit the constraint in the mA − tan β

plane, and here one finds that the majority of the allowed range of mA lies above

1TeV. Thus mA � mh0 for the majority of the parameter space and thus we are in

the so-called decoupling limit.

It was pointed out in [112] that most of the experimentally consistent parameter

space of mSUGRA lies on the Hyperbolic Branch of radiative breaking of the elec-

troweak symmetry under the LHC-7 constraints. The HB region has sub-regions

which we may label as Focal Point (HB/FP), Focal Curves (HB/FCi, i=1,2), and Fo-

cal Surfaces (HB/FS). It was shown in [112, 117] that the HB/FP is mostly depleted

while the remaining parameter space lies on HB/FCi or HB/FS. Specifically we note

here that the right edge of A0/m0 in Figure 8.5 is ∼ 1.

In Figure 8.6 we present the 2D posterior PDF’s (left panels) and the profile like-

lihoods (right panels) in the planes of the phenomenologically important sparticle

masses. The top panels present the results in the gluino–squark mass plane, and in-

dicate that the gluino can be below a TeV. The second row is plotted in the squark–

chargino mass plane and demonstrates that the chargino masses are only bounded

from below by the direct searches at LEP. The next row exhibits our fit in the stau–

stop mass plane. Here one finds that the stau and stop masses are typically large

except for a small strip where the stop mass can lie below a TeV. This is largely to

be expected as a heavy stop is relied upon to provide a sizable loop correction to the

Higgs mass. The bottom panels show the analysis in the µ − mg̃ plane. One finds
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Figure 8.5: Left panels: plots of the 2D posterior probability densities, 1 σ and 2 σ
contours are also drawn. Right panels: plots of the profile likelihoods. Top: in the
m0 − m1/2 plane. Middle: in the A0/m0 − tan β plane. Bottom: in the mA − tan β
plane. The posterior mean is marked by a large dot while the best-fit point is shown
by a circled ‘X’. The color bar above the top panel gives the relative likelihood which
increases left-to-right.

that µ is typically quite light, i.e., µ can be significantly below 500GeV.
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Using the marginalized 1D posterior PDF we are able to set lower limits on the

sparticle masses from the 2 σ credible regions. We present those limits here: mg̃ >

1.39TeV, mχ̃±1
> 196GeV, mA0 ∼ mH0 ∼ mH± > 1.3TeV, mt̃1

> 3.1TeV, mτ̃1 >

3.1TeV, mq̃ > 5TeV, and m ˜̀ > 4.8TeV. The profile likelihood analysis yields differ-

ent results. Here, we find the 95% CL sparticle lower limits to be mg̃ > 690GeV,

mχ̃±1
> 95GeV, mA0∼H0∼H± > 540GeV, mt̃1

> 580GeV, mτ̃1 > 310GeV, mq̃ >

1.5TeV, and m ˜̀ > 580GeV. We note that as expected the lower limits given by

the profile likelihood analysis lie lower than the limits given by the PDF analysis.

The analysis thus indicates that the light particles in mSUGRA in view of the Higgs

massmeasurement are the neutralino, the chargino, the gluino, the stau and the stop.

Among these the most likely candidates for discovery in the next phase of CERN ex-

periment are the gluino, the chargino and the stop.

8.3.2 125GeV Higgs boson and dark matter

Neutralino-proton spin independent cross section σSI
χ̃0

1 p
depends sensitively on the

Higgs bosonmass (for a discussion see [117]). Thus considering the∼ 125GeVHiggs

mass leads to a more constrained prediction for dark matter. In Figure 8.7 we give

a plot of R× σSI
χ̃0

1 p
as a function of the lightest neutralino mass mχ̃0

1
where the factor

R is defined by R ≡
(
Ωh2) /

(
Ωh2)

WMAP, and
(
Ωh2)

WMAP is the central value of

the WMAP-7 data. By only applying a likelihood penalty for points that are above

the WMAP-7 limit, we have taken into account the possibility that there may be ad-

ditional components of dark matter beyond the neutralino [69]. Quite remarkably,

the bulk of the credible region of mSUGRA falls essentially exclusively between the

current limits on dark matter by XENON-100 and the projected sensitivity of Super-

CDMS and XENON-1T [114].
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Figure 8.6: Left panels: plots of the 2D posterior probability densities, 1 σ and 2 σ
contours are also drawn. Right panels: plots of the profile likelihoods. Top: in the
mg̃–mq̃ plane. Upper-middle: in the mq̃–mχ̃±1

plane. Lower-middle: in the mτ̃1 −mt̃1

plane. Bottom: in the µ − mg̃ plane. The posterior mean is marked by a large dot
while the best-fit point is shown by a circled ‘X’. The color bar above the top panel
gives the relative likelihood which increases left-to-right.
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(
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WMAP vs the neutralino mass mχ̃0
1
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left panel presents the 2D posterior PDF, and the right panel presents the profile
likelihood. The analysis shows that virtually all of credible region of mSUGRA will
be probed by the SuperCDMS and XENON-1T experiments. The color bar above the
panels gives the relative likelihood which increases left-to-right.

We discuss now the constraint from gµ − 2. In supersymmetric theories, sparti-

cle loops make significant contributions to the anomalous magnetic moment of the

muon if the relevant sparticles (charginos, neutralinos, smuons, sneutrinos) entering

the loops are relatively light. The experimental determination of δaµ = aexp
µ − aSM

µ

where aµ = (gµ − 2)/2, depends sensitively on the hadronic correction to the Stan-

dardModel value. There are twomain procedures for the estimation of the hadronic

correction, which are either using the e+e− annihilation cross section or from τ decay.

The result using the e+e− annihilation gives δaµ = (28.7± 8.0)× 10−10 (3.6 σ)while

for τ-based hadronic contributions one has δaµ = (19.5± 8.3)× 10−10 (2.4 σ) [118].

In any case, within the universal soft SUSY-breaking paradigm there would be ten-

sion between the gµ − 2 result (specifically the one using e+e− annihilation cross

section) and the 125GeV Higgs boson mass since the m0 scale is rather high. If the

gµ − 2 results stay, then there are at least two avenues open to make compatible the

gµ − 2 results and the Higgs boson mass. The first possibility is that we stay within

the universal soft breaking paradigm and additional contributions to theHiggsmass
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arise due to the presence of extra matter which can generate new loop corrections

to the Higgs mass, or from extra gauge groups under which the Higgs is charged

yielding corrections to the Higgs mass through D-terms.
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Chapter 9

Conclusions

During the completion of this thesis the Large Hadron Collider (LHC) accumulated

a substantial amount of integrated luminosity [1], dark matter direct detection ex-

periments collected data [2], and the Planck satellite released its observations [3].

This data enriched era was a very exciting time in particle physics. The field recently

surpassed a milestone with the July 2012 announcement of a 5σ detection of a bo-

son around 125GeV, with preliminary results indicating a Higgs boson [4–8]. My

research was directly tied to the newwave of data that came forth from the LHC and

dark matter related experiments. Thus, my work involved Supersymmetry [48, 49],

Stueckelberg extensions to the Standard Model [28] as well as to the Minimal Super-

symmetric Standard Model [86], multicomponent dark matter [75], and asymmetric

darkmatter [27], which all have direct bearing on data from colliders and darkmatter

experiments.
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9.1 Multicomponent Dark Matter

Themajority of current studies on darkmatter consider only the case where one fun-

damental particle contributes to cold darkmatter, but there is no overriding principle

that requires such a restriction. Thus, dark matter may in fact be composed of sev-

eral components. A branch of my research has been to investigate such a possibility.

In Chapter 5, we have proposed extending the Minimal Supersymmetric Standard

Model by a U(1)n hidden sector that includes both fermionic and baryonic stable

particles as dark matter candidates. These models were required to be consistent

with the current cold dark matter relic density observed by WMAP and are found

to successfully explain the excess seen in the PAMELA experiment while still being

consistent with direct detection experiments. More specifically, an exploration of the

case when the dark matter consists of Dirac and Majorana particles shows that the

Dirac component can fit the PAMELAdata via its annihilation close to a Breit-Wigner

pole while the Majorana component of dark matter remained the dominant compo-

nent and can be detected in direct detection dark matter experiments. Additionally,

we show that in the multicomponent picture it is possible to generate events that can

be tested by XENON-100 and other ongoing direct detection experiments. Further,

allowing a leptophilic gauge symmetry in the model can produce a discoverable Z′′

vector boson with signatures in the e+e− and µ+µ− final states.

9.2 Asymmetric Dark Matter

It is intriguing to investigate whether there is some underlining principle behind the

ratio of the darkmatter relic density to baryonic relic density being∼5, i.e. the cosmic

coincidence. In Chapters 3 and 6, we extend the StandardModel as well as the Mini-
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mal Supersymmetric Standard Model using the Stueckelberg mechanism to explain

the cosmic coincidence by assuming a generation of B− L in the visible sector in the

early universe which can generate asymmetric dark matter carrying non-vanishing

B − L. We discuss several candidate models for asymmetric dark matter using a

variety of operators constructed from Standard Model fields with a non-vanishing

B − L quantum number, which is transferred to the dark matter sector at thermal

equilibrium in the early universe. The Stueckelberg extension provides us with a

mechanism to deplete the symmetric component of dark matter produced by ther-

mal processes. To accomplish this, the dark matter annihilates through a massive

boson (Z′) from a Lµ − Lτ gauge symmetry via a Breit-Wigner pole. In the Minimal

Supersymmetric Standard Model extension with the conservation of R parity, the

model has two dark matter candidates with the additional one being the stable neu-

tralino. For a broad class of supersymmetric models we found that the neutralino

could be the subdominant component of dark matter and still be consistent with

experimental SUSY constraints (including a ∼125GeV Higgs). Additionally, these

models are also accessible at future direct detection experiments and can produce

clear excesses at a muon collider in µ and τ channels compared to the e channel.

9.3 Early Discovery Potential of the LHC

During the initial data taking stage of the LHC, my research focused on the potential

to discover new physics in the early runs as well as models with multicomponent

dark matter. Such studies included the crucial understanding and proper simula-

tion of background processes [90] using MadGraph [92] for parton level processes,

PYTHIA [93] for hadronization, and PGS-4 [94] for the detector simulation. In the

samework, these StandardModel processes were then used to investigate the LHC’s
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reach potential in mSUGRA/CMSSM, which is in excellent agreement with their

present reach. During this period, I began to develop a computer program to effi-

ciently analyze signal models to compare to the large generated background. This

lead to the investigation of light gaugino models, i.e. parameter points with gluino

mass below 750GeV, at the LHC [119]. Parameter points with varying sparticle spec-

trums were analyzed to find the most encouraging modes of discovery. These pa-

rameter points were also investigated at indirect and direct detection dark matter

experiments and were found to be testable at multiple experiments. I later explored

parameter points were the mass of the lightest neutralino was roughly half the mass

of the light CP evenHiggs, i.e. Higgs pole models [113]. Such parameter points have

very predictable spectrums and give distinct signatures on several experiments. We

successfully showed how using potential results from a variety of experiments one

can reconstruct the gaugino sector of the model by measuring the peak of the effec-

tive mass distribution, the edge of the dilepton invariant mass distribution, and the

spin independent neutralino-proton cross section.

9.4 LHC SUSY Searches

In the beginning of 2011 the CMS and ATLAS Collaborations started to release their

early 7TeV analysis on beyond the Standard Model physics. The limits they found

in the mSUGRA/CMSSM parameter space surpassed those from the Tevatron. Col-

leagues and I began to study how their results could be extended to other regions of

the parameter space, i.e. different A0 and tan β. We also compared the reach of CMS

and ATLAS with the indirect SUSY constraints, e.g. from flavor physics. Specifi-

cally, it was found that a significant portion of the parameter space excluded by the

LHC was essentially already excluded by the indirect constraints and the majority
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of parameter space was yet to be probed. Additionally, we explored the implications

that these results had on direct detection dark matter experiments. It was found that

within supergravity models the LHC had excluded a large region of the signature

space at direct detection experiments. The analysis was then extended to supergrav-

ity models with nonuniversal soft breaking in the gaugino sector. In this case we

found that a part of the dark matter excluded region became repopulated and thus

a signature to observe nonuniversality [91, 120].

9.5 Higgs Discovery at the LHC

Following the evidence of the StandardModel Higgs boson at the LHC in December

of 2011, which indicated a signal in the range 115GeV to 131GeV, I worked on the

implications of this result within Supersymmetry and multicomponent dark matter

extensions. As is well known in SUSY, if one is to raise the Higgs mass significantly

above MZ one needs a large loop correction to the tree value (mh0), which satisfies

the constraint mh0 < MZ. The analysis done in the framework of SUSY with gravity

mediation showed that one needed a large scalar mass (m0) and a large trilinear cou-

pling (A0) so that A0/m0 is sizable in order to generate a loop correction that could

boost the Higgs boson mass to the allowed range. We further explored the impli-

cations of the new constraint on SUSY searches at the LHC as well as dark matter

experiments (This material can be found in [117, 120] and was done during the time

of the thesis, but was omitted in the thesis write up). Once the LHC’s data confirmed

the discovery of the (Higgs) bosonwith amass near 125GeV, collaborators and I car-

ried out a Bayesian analysis to identify more precisely the regions of the parameter

space that were consistent with the measurement of the boson mass. Our findings

showed that the universal gaugino mass (m1/2) could be in the sub-TeV region, the
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scalar mass was typically a TeV or larger, and the ratio of A0/m0 was confined to a

narrow strip with |A0/m0| ≤ 1. Further, we used our Bayesian analysis to set 95%

confidence level lower bounds on sparticle masses. Additionally, we observed that

the spin independent neutralino-proton cross section lies just beyond the reach of

the current sensitivity.

9.6 Further Research

Currently there are many possible extensions one can do based on the work dis-

cussed in this thesis. One project focuses on the investigations of naturalness with

nonuniversal soft breaking. A common feature of such models is that some of the

sparticle masses can be low such as the electroweak gauginos and sleptons while

squarks could be heavy to provide the desired loop correction to the Higgs boson

mass. To this end, one would need to analyze parameter points that produce light

staus, but still agree with experimental constraints including the branching ratio

of the light CP-even Higgs boson into diphotons. On the dark matter front, one

could pursue the phenomenology at the LHC of multicomponent dark matter mod-

els. Such a study would look at signatures in missing energy and expand on cur-

rent analyses with inclusion of mT2 and its variances. Additionally, one could use

machine learning techniques, e.g. support vector machines, or artificial neural net-

works to determine clear and decisive ways to distinguish a multicomponent dark

matter model from a single component dark matter model. These same techniques

could be applied to the study and detection of extra dimensions, among many other

models of new physics.
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