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Abstract

Recently it has been shown that N = 4 super Yang-Mills theory is integrable in the planar

limit. Past arguments suggest the integrability is only present in the planar limit. However,

this conclusion was shown to be incorrect. Two specific classes of operators were studied in

the ∆ ∼ O(N) sector. The first were labelled by Young diagrams having two long columns.

The second were labelled by Young diagrams having two long rows. This result was then

generalized to p long rows or columns with p fixed to be O(1) as N →∞. For this case, the

non-planar limit was found to be integrable. In this dissertation, we extend this work by

considering p to be O(N). We have calculated the dilation operator for the case with two

impurities.
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Chapter 1

Introduction

With the publication of ‘A Dynamical Theory of the Electromagnetic Field’ in 1865, J.C.

Maxwell had produced the unified theory of electromagnetism. He had shown that the

previously unrelated theories of electricity, magnetism and optics were manifestations of the

same phenomenon. This was the first example of unification, and it turned out to be an

extremely prolific idea. The electromagnetic force is now considered to be a fundamental

force of nature. There are three more fundamental forces: the strong nuclear, weak nuclear

and gravitational forces. The strong and weak nuclear forces were not yet known when

Maxwell discovered electromagnetism. Today, a subject of considerable interest is to produce

a unified theory which unifies the four fundamental forces. At present, we have managed to

unite three of the fundamental forces into a unified framework known as the standard model

of particle physics. Gravity is not part of this description. It has proven to be exceptionally

difficult to include gravity. For it to be included, we know that this requires the quantization

of gravity. All attempts to find a quantum field theory (QFT) including gravity have failed.

Promising unified theories are string theories which are the only well defined perturbative

quantum gravity theories known at present.

A new approach, which is providing significant insight into the problem of quantum

gravity, came in late 1997. Juan Maldacena conjectured an equivalence between a quantum

theory of gravity and a quantum field theory without gravity. The quantum theory of

gravity lives in a d dimensional spacetime. The QFT is a conformal field theory living in

a d − 1 dimensional spacetime [1]. This d − 1 dimensional spacetime is the boundary of

the d dimensional spacetime of the quantum gravity. This conjecture is called the Anti de

Sitter/Conformal Field Theory (AdS/CFT) correspondence and it realizes the Holographic

principle, which was first described by ’t Hooft and then later by Susskind [2, 3]. The

Holographic principle says that studying the gravity (or bulk) theory in d dimensions is
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equivalent to studying a quantum field theory on the d − 1 dimensional boundary. The

equivalence refers to the dynamical content of the two theories. Concretely, any question

that can be asked and answered in the first theory, can be asked and answered in the second,

and the two give identical predictions. The virtue of this correspondence is that it allows

us to map difficult problems in the QFT into simpler problems in the quantum gravity.

Similarly, problems that are difficult to think about in the quantum gravity can be mapped

into a simpler QFT setting.

The quantum field theory that we study is called N = 4 super Yang-Mills theory. It

is conjectured to be dual (or equivalent) to type IIB-string theory on an asymptotically

AdS5 × S5 geometry. It is a theory of closed strings so it includes gravity. The QFT is a

super-symmetric conformal field theory in four dimensions with gauge group U(N). The

quantum gravity is a theory in 5 non-compact dimensions, the AdS5 space. AdS spacetime

has constant negative curvature. The sphere S5 is a compact space with constant positive

curvature. The AdS5×S5 spacetime is a solution of the Einstein field equations with negative

(attractive) cosmological constant.

We will be working mainly on the QFT side of the duality. Our goal is to construct a

complete set of operators from the fields present in the Lagrangian density of the theory.

We will achieve this for the so-called SU(2) sector of the theory. These operators are then

used to build the main objects of interest, they are called correlation functions. Correlation

functions are the objects which correspond to observables in a quantum field theory, they

encode all of the dynamical content. In QFT we can turn correlators into S-matrix elements.

In a conformal field theory we read off the scaling behaviour of the 2-point function.1

The fields in N = 4 super Yang-Mills theory that we are interested in are called the

Higgs fields φi where i = 1, ..., 6. They are matrix valued fields transforming as Lorentz

scalars. They transform in the adjoint of the U(N) gauge group, that is, they are N × N

matrices. We combine these six Higgs fields to build three complex fields Z, Y and X. The

operators whose correlation functions we study may contain any number or combination of

the fields Z, Y and X. For the SU(2) sector we only use the Z and Y fields. AdS/CFT

relates this choice of operator to different physical objects in the quantum gravity, based

on the number of fields present in the operator. These physical objects (states) correspond

to gravitons, strings, giant gravitons and new background geometries where the number of

fields present are of O(1), O(
√
N), O(N) and O(N2) respectively.

1For example

〈O(x)O(y)〉 =
1

|x− y|2∆

where ∆ is the observable and is called the dimension.
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1.1 Overview

Recently it has been shown that N = 4 super Yang-Mills theory is integrable in the planar

limit [4]. In the past arguments have been given suggesting that integrability is spoiled by

non-planar corrections [5]. In 2011 this conclusion was shown to be incorrect [6]. Operators

labelled by Young diagrams having a conformal dimension ∆ ∼ O(N) were considered. Two

specific classes of operators were studied. The first were labelled by Young diagrams having

two long columns. The second were labelled by Young diagrams having two long rows. This

result was generalized to p long rows or columns in [7] with p held fixed to be O(1) as

N → ∞. For p long rows or columns the non-planar limit was found to be integrable. In

both [6] and [7] integrability was proven by showing that the dilatation operator reduces to

a decoupled set of harmonic oscillators.

Integrability is a very powerful tool. In this masters research we try to determine whether

integrability holds in the non-planar large N limit. We will focus on the sector with con-

formal dimension ∆ ∼ O(N2). Operators with a bare dimension of O(N2) are dual to

new geometries. Thus an optimistic view is that the linearized Einstein equations will be

recovered from the action of the dilatation operator in this sector of the theory. We take a

small step towards realizing this very exciting idea. We will try to answer two important

questions. First, we would like to know whether the sector of super Yang-Mills described by

operators with R-charge of O(N2) is integrable. Second, do the results match something

we already know about in type-IIB string theory to which this sector is conjectured to be

dual by the AdS/CFT correspondence?

We concentrate on operators with large R-charge2 in the large N but non-planar limit.

The latter statement and in particular this limit will become transparent in Chapter 2

when we discuss a toy model. This toy model is a theory of matrices and is thus QCD-

like. It is useful to study matrix models because N = 4 super Yang-Mills theory is also a

theory of matrices. In Chapter 3 we deal with the components that go into building the

AdS/CFT correspondence. Here, we briefly discuss D-branes. Chapter 4 is concerned with

supersymmetric gauge theories. This is the type of theory we deal with in this dissertation.

In Chapter 5 we study the mathematical objects used to build the basic operators in our

theory, these are the Schur and restricted Schur polynomials. Finally, Chapter 6 considers

the idea at the heart of this research area, the AdS/CFT correspondence. Here, we discuss

some tests for the validity of the correspondence. Chapter 7 contains the results, that is, the

calculation performed during this project. It discusses the dilatation operator. We conclude

2The R-charge is a conserved charge associated with supersymmetry. The R-charges commute with all

the bosonic generators of the Poincarè group. However they do not commute with the supercharges in the

super Poincarè group.
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this work in Chapter 8.

1.2 Background

The main tools that are required for this research are mathematical. Group representation

theory for the symmetric and unitary groups is used to build projectors and then restricted

Schur polynomials. The restricted Schur polynomials play a central role since they form a

complete set of operators and are used to build a basis for the local operators of the field

theory. These operators are dual to the new geometries of interest to us [8]. We briefly

discuss the group representation theory used and introduce Young diagrams. Our restricted

Schur polynomials are labelled by these Young diagrams. We will discuss restricted Schur

polynomials in Chapter 5. We end this section with a brief discussion of string theory.

1.2.1 Group Representation Theory and Young Diagrams

Group representation theory is used to construct and describe Schur polynomials. It is also

used to construct projectors, which are used to build the Schur polynomials. In particular,

we focus on unitary (U(N)) and symmetric (Sn) group theory. We use Young diagrams

to implement group theoretic concepts, as they are a strong algebraic tool. The Young

diagrams label all the irreducible representations for the groups that we choose to study.

The group theories of the symmetric and unitary groups are intimately linked via Schur-

Weyl duality. Consider the vector space3 V ⊗n. The action on this space by the unitary

group is given by

U : T i1,i2...,in → Γ(U)i1j1Γ(U)i2j2 ...Γ(U)injnT
j1,j2...,jn

where Γ(U) is a matrix representing U ∈ U(N) in the fundamental representation.4 Similarly

the action of the symmetric group on this vector space may also be defined. It is given by

σ : T i1,i2...,in → T iσ(1),iσ(2)...,iσ(n)

where σ permutes the indices of T . These actions commute with each other.5 As a result,

we may label representations of U(N) with precisely the same labels used to label repre-

sentations of Sn. This is similar to when we label hydrogen energy eigenstates by angular

momentum because angular momentum commutes with the Hamiltonian. For Sn different

3The definition of this vector space is given in Appendix A.
4Our convention here is that an upstairs index belongs to the fundamental representation whilst a down-

stairs index belongs to the anti-fundamental representation.
5Proof given in Appendix A.
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representations of the same group are found by arranging n boxes in all possible legal ways

to form a Young diagram. For S4 all possible Young diagrams are

, , , , .

Each Young diagram labels a different representation of S4. The dimension of the represen-

tation is given by

dR(Sn) =
n!

hooksR

where R is the label corresponding to the particular Young diagram. R labels an irreducible

representation of Sn. To explain the factor hooksR consider any box in R. Start at the

bottom of the column containing that box. Move vertically upward, imagine drawing a line

as you go along, up toward the box in mind. At this point, turn right and exit the right

most box of the row the box is in. The number of boxes this line moves through during this

process is called the hook length. Thus, each box in R will have its own hook length. In

the equation above, hooksR is given by the product of all hook lengths. For example

3 1

1

has three hook lengths, one for each box. To move through the first box in the first row,

starting from the bottom and exiting on the right we had to move through 3 boxes. The

product of the hook lengths is 3× 1× 1 = 3.

Next consider the unitary group U(N). The rule is that any Young diagram with at most

N rows of boxes labels an irreducible representation of U(N). The number of boxes in any

row is unrestricted. The dimension of an irreducible representation of U(N) is given by

DR(U(N)) =
factorsR
hooksR

where the hooks are calculated in the same way as for Sn. A factor of N − i+ j is given to

the box in the i − th row and j − th column. The product of the factors from each box is

factorsR. As an example consider the representation

of S3 and U(3). It has dimensions

d =
3!

3 1
1

= 2
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and

D =

3 4
2

3 1
1

=
N(N + 1)(N − 1)

3
= 8

under the symmetric and unitary group respectively. The irreducible representation of

U(N) with a single column of N boxes has unit dimension6. Similarly, the irreducible

representation for Sn with a single column of n boxes has unit dimension.

1.2.2 Superstring theory

Superstring theory is the generalization of bosonic string theory. It extends the theory to

include fermions and there are five such theories. These theories are all supersymmetric. In

this theory, fermions are introduced by saying that each boson has a supersymmetric fermion

partner. Type I superstring theory describes open and closed strings which are unoriented.

This theory has SO(32) gauge symmetry. Type IIA string theory describes closed oriented

strings with a U(1) gauge symmetry. Type IIB string theory is the theory that we focus on

in this dissertation. It also describes closed oriented strings. The final two theories are the

heterotic string theories, both describing closed, oriented strings. The modern point of view

claims that these perturbative theories are all different limits of a single underlying theory.

6For SU(N) these columns are dropped. What this means is that

∼

as an irreducible representation of SU(3).
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Chapter 2

Matrix Models

We begin by studying a free theory in zero dimensions1. By free theory we mean that our

action will be quadratic, there being no cubic, quartic or other interaction terms. We work

in 0-dimensions. A consequence of this is that we only need to deal with the combinatorics of

the gauge group indices (matrix indices). Our matrix valued fields M, are N ×N hermitian

matrices transforming in the adjoint representation of the Unitary group U(N) as

M →M ′ = U†MU.

Strictly speaking, a 0-dimensional universe has only a single point, so there is no notion

of a local symmetry. However, we declare that physical observables are invariant under the

above transformation. In this sense, we say that our observables are ‘gauge’ invariant. The

aforementioned action is given by

S = ωTr
(
M2
)
,

where

Tr
(
M2
)

=

N∑
i,j=1

MijMji =

N∑
i=1

M2
ii + 2

∑
i>j

MijMji.

The trace in our action ensures gauge invariance. We can build operators in a natural way

by taking traces of products of the field M

On = Tr (Mn) .

1It may be noted that this toy model is not merely pedagogical. This was shown by T. Eguchi and H.

Kawai in [9]. In this paper the authors showed that the Schwinger-Dyson equations of the reduced model

are equivalent to the Schwinger-Dyson equations of quantum chromodynamics in 3+1 dimensions.
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We use a path integral to calculate correlation functions of the general operators given above.

These are the objects which have physical significance. The path integral is given by

Z[J ] =

∫
[dM ]e−S+Tr(JM) (2.1)

where the integral is over all possible matrix configurations. This is accomplished by an

integral over the N2 independent parameters since M is hermitian2. Thus Mii = M∗ii and

Mij = M∗ji. Thus

[dM ] =

N∏
i=1

dMii

N∏
i>j

dMR
ijdM

I
ij

where dMR
ij is the real part and dM I

ij is the imaginary part. The first product encompasses

the diagonal elements and the second accounts for the rest. We couple in a source J which is

used to calculate correlation functions. It is chosen to be hermitian so that the action remains

hermitian. We can now write down the correlation functions of the traced observables

〈On〉 = 〈Tr (Mn)〉 =
dn

dJabdJbc...dJda
Z[J ]|J=0, (2.2)

where

Z[J = 0] =

(√
π

ω

)N2

.

By absorbing a factor of
(√

ω
π

)N2

in the measure [dM ], we can set Z[J = 0] = 1. This

convention will be assumed hereafter. After completing the square, we arrive at the following

simple expression for the generating function of correlation functions

Z[J ] = exp

(
Tr(J2)

4ω

)
.

The only non-vanishing correlation functions are those with an even number of M’s. The

2An N × N real matrix has N2 elements. For a Hermitian matrix there are 2N2 elements since each

entry has two degrees of freedom. However for the diagonal elements Mii = M∗
ii which removes N degrees

of freedom. Thus we are left with 2(N2 −N) +N degrees of freedom. Hermiticity means that Mij = M∗
ji,

which relates elements below the diagonal to those above. This removes half the off-diagonal degrees of

freedom. So we have (N2 −N) +N = N2 degrees of freedom.
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basic correlation function is the two-point function or propagator. It is given by3

〈MijMkl〉 =

∫
[dM ]e−SMijMkl

=
d

dJji

d

dJlk
Z[J ]|J=0

=
d

dJji

d

dJlk
exp

(
JmnJnm

4ω

)
|J=0

=
d

dJji

[
Jkl
2ω

exp

(
Tr(J2)

4ω

)]
|J=0

=
δilδjk

2ω
. (2.3)

Thus for the propagator we take the outer two labels and form a delta, then take the inner

two and form another delta, including a factor 1
2ω each time. Using the latter rule, the

2-point function of the traced operator is

〈O2〉 =〈Tr(M2)〉

=〈MijMji〉

=
δiiδjj

2ω

=
N2

2ω
,

where δii = N . The trace operators 〈On〉 have no free indices and their expectation values

are polynomials of N . For Tr(M)2 we get

〈MiiMjj〉 =
δijδji

2ω
=
N

2ω
.

For what follows we will normalize our operators so that they have an expectation value

that is order 1 in the large N limit. This amounts to setting On to

On =
Tr (Mn)

N (n+2)/2
.

Thus 〈O2〉 = 1
2ω . As a final example consider

〈Tr
(
M4
)
〉 = 〈MijMjkMklMli〉,

3We take derivatives as follows:

d

dJij
Tr(JM) =

d

dJij
(JklMlk)

=δikδjlMlk

=Mji.

Thus notice that differentiation with respect to Jij produces an Mji, i.e. it switches the labels on the M.

This is a consequence of the U(N) covariance of the theory.



10

there are three Wick contractions that can be performed here to give the following three

terms

〈MijMjkMklMli〉 = 〈MijMjk〉〈MklMli〉 + 〈MijMli〉〈MjkMkl〉

+ 〈MijMkl〉〈MjkMli〉

=
δikδjjδkiδll

(2ω)2
+
δiiδjlδjlδkk

(2ω)2
+
δilδjkδjiδkl

(2ω)2

=
1

(2ω)2

[
2N3 +N

]
(2.4)

therefore

〈O4〉 =
1

(2ω)2

[
2 +

1

N2

]
.

From the examples we have just studied, it is simple to read off the following Feynman rules:

1. For each matrix element Mij draw a pair of dots labelled by these matrix indices,

2. Put all of the dots on a dashed line,

3. Join pairs of dots by ribbons such that;

• ribbons stay above the dashed line,

• ribbon ends join ribbon ends,

• ribbons are not twisted,

4. Each of the two lines composing the ribbon join pairs of dots, giving a Kronecker delta

labelled by these indices,

5. For each trace join matching indices by a line,

6. For each ribbon (propagator) there is a factor of 1
2ω .

For example, the first ribbon graph below is valid. The second, is not allowed by the rules

above, since it constitutes a twisted ribbon

〈MijMkl〉 = ,
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〈MijMkl〉 6= .

These Feynman diagrams are called ribbon graphs. For the traced operators we get

〈MijMji〉 = , 〈MiiMjj〉 = .

Recall that, for 〈MijMji〉 we had an N2 dependence. Notice that the corresponding ribbon

graph has two closed loops. Similarly for 〈MiiMjj〉 we had an N dependence and the ribbon

graph has only one closed loop. Thus we associate a factor of N with each closed loop. So

we add another rule

• For each closed loop there is a factor of N .

The lines joining the traced indices are not ribbons and do not constitute a propagator.

Thus there is only one propagator in the diagrams for 〈MijMji〉 and 〈MiiMjj〉, yielding a

single factor of 1
2ω in agreement with what we found earlier. Next, consider the last example

given above, 〈Tr
(
M4
)
〉. This example is more interesting, as it yields a ribbon graph with

ribbons that cross, which is different to twisting. This graph is given by

〈Tr
(
M4
)
〉 = .

These terms correspond to the terms in the second line of (2.4) respectively. The diagrams

which can be drawn in the plane without any of the ribbons crossing (the first two above)

are called planar diagrams. When this can’t be done (as in the last diagram) we call them

non-planar. Using our previous rules we get a factor of 1
(2ω)2 for the two propagators.

Secondly, the first two diagrams have three closed loops and thus produce factors of N3

each. The last non-planar diagram only has one loop and thus produces a factor of N . This

reproduces the last line of (2.4) exactly. Notice that the non-planar diagram is suppressed

by a factor of 1
N2 .
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2.1 The Large N Limit and Factorization

Suppose that we decide to let N →∞. Then

〈O2〉 =
1

2ω

and

〈O2O2〉 =
1

(2ω)2

[
1 +O

(
1

N2

)]
.

Then we can write

〈O2O2〉 =〈O2〉2
[
1 +O

(
1

N2

)]
→〈O2〉2

for N → ∞. Notice that the contributions from the non-planar diagram fell away in this

limit. This process is called Factorization. In the large N limit, correlation functions of

operators built from a fixed number of fields factorize. That is, the number of fields in each

operator is fixed when taking the large N limit. Concretely, factorization implies

〈
∏
i

Oi〉 =
∏
i

〈Oi〉
[
1 +O

(
1

N2

)]
. (2.5)

This is a useful property providing a powerful simplification, meaning we only need to draw

the planar ribbon graphs and then sum them to get the correct correlation function in

this limit. This is called the large N , planar limit. The planar approximation refers to the

suppression of the non-planar diagrams. It is important to stress that the number of fields in

the correlation functions were kept constant when we took N →∞ and that there were O(1)

fields. This will not always be the case. For O(
√
N) or more fields, letting N →∞ results

in an increase in the number of fields present in the correlation functions. Increasing the

number of fields also increases the number of Wick contractions that need to be performed,

producing large combinatoric factors. As a result, the planar approximation fails in this

large N limit. This point will be treated in greater detail later on.

We will now argue that factorization implies that the theory is described by classical

dynamics, i.e there is a classical theory we can use to study the large N limit in the QFT.

To make this argument, return to the problem of computing expectation values given some

probability density describing our system. Suppose that µi is the probability to be in the

i-th state, then
∑
i

µi = 1. If our observables are labelled by On , the expectation value is

〈On〉 =
∑
i

µiOn(i)
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where On(i) is the value of On in the i-th state. Then (2.5) gives∑
i

µiOn1
(i)On2

(i)On3
(i)... =

∑
i1

µi1On1
(i1)

∑
i2

µi2On2
(i2)

∑
i3

µi3On3
(i3)...

which can only be satisfied by µi = 1 for i = i∗ and µi = 0 for i 6= i∗. Here the i∗-th state is

the single configuration that is contributing. Thus the system is in a definite state with no

uncertainty. The expectation value is given by an integral over all possible configurations

〈O〉 =

∫
[dM ]e−SO.

When only one configuration contributes, we are in a classical limit of the theory. This single

configuration being the classical configuration. Clearly then, factorization which implies that

a single configuration dominates the computation of the correlation functions at large N,

implies that the large N limit of the theory is captured by the classical limit of some theory.

2.2 The Interacting Matrix Model

We have demonstrated that factorization is a property of the large N limit for a class of

correlators of the free theory. One might then wonder if this conclusion holds even after

interactions are included. This question will form an important part of this section. As an

initial modification, one might introduce a quartic term, with coupling constant g, into the

action of the free theory; the action then becomes:

S = ωTr
(
M2
)

+ gTr
(
M4
)

and

Z[J, g] =

∫
[dM ]e−S+Tr(JM). (2.6)

The normalization of the measure is chosen so that Z[J = 0, g = 0] = 1. This is exactly the

same normalization as we used in the previous section. Then to first order in g

Z[J = 0, g] =

∫
[dM ]e−ωTr(M

2) (1− gTr (M4
))
.

Using the results of the last section we can write

Z[J = 0, g] =1− g〈Tr
(
M4
)
〉

=1− g

(2ω)2

[
2N3 +N

]
. (2.7)

The expectation value of Tr(M2) is

〈Tr
(
M2
)
〉int =

∫
[dM ]e−ωTr(M

2)Tr
(
M2
) (

1− gTr
(
M4
))

=〈Tr
(
M2
)
〉 − g〈Tr

(
M2
)
Tr
(
M4
)
〉

=
N2

2ω
− g

(2ω)3

[
2N5 + 9N3 + 4N

]
. (2.8)
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From these results it is clear that we need to add a Feynman rule for the interaction vertex.

The vertex is given by

= −g.

To first order we have

Z[J = 0, g] = 1 + .

Once again, using the rules stated above we can reproduce the correct powers of N from

the diagrams, to arrive at (2.7). For example, consider the first diagram. There are two

ribbons (propagators) and a single vertex giving the factor of − g
(2ω)2 . There are three closed

loops giving the N3. For (2.8) there are 15 Wick contractions for the second term and thus

15 diagrams in total with the g vertex. To first order in g and keeping only the connected

diagrams we get

〈Tr
(
M2
)
〉con = .

The disconnected diagrams are dropped because they can be absorbed into the normaliza-

tion. This corresponds to choosing the normalization of the measure so that Z[J = 0, g] = 1.

In what follows we will assume this normalization. From the connected diagrams we can

write down

〈Tr
(
M2
)
〉con =

N2

2ω
− g

(2ω)3

[
8N3 + 4N

]
.

We have expanded to first order in g in perturbation theory. The terms of order g are the

first perturbative corrections as a result of the fact that there is an interaction. Even if

g is small, these corrections need not be small due to their N dependence. In fact each

correction becomes larger and larger with increasing N . It is the highest order correction

that was added that dominates each time. Clearly then, the attempt at a perturbative

expansion in the parameter g does not lead to a well defined expansion.



15

2.3 The ‘t Hooft Limit

The failure of perturbation theory when using the coupling constant g was fixed by ’t Hooft.

He introduced a new parameter λ such that

λ = gN.

We keep λ fixed as we send N → ∞. That is, we consider a double scaling limit in which

we scale N →∞, together with g → 0 holding λ = gN fixed. Then

Z[J = 0, g] =1− 1

(2ω)

[
2λN2 + λ

]
=1 +N2

[
− 2λ

2ω
+O

(
λ2
)]

+N0

[
− λ

2ω
+O

(
λ2
)]

+O
(

1

N2

)
(2.9)

and

〈Tr
(
M2
)
〉con =

N2

2ω
− 1

(2ω)3

[
8λN2 + 4λ

]
=N2

[
1

2ω
− 8λ

(2ω)3
+O

(
λ2
)]

+N0

[
− 4λ

(2ω)3
+O

(
λ2
)]

+O
(

1

N2

)
. (2.10)

The terms belonging to N0 came from the non-planar diagrams and similarly for O
(

1
N2

)
.

Again we see that these contributions are suppressed by 1
N2 . The series in (2.9) and (2.10)

are double expansions, having two expansion parameters 1
N2 and λ. Expanding to first order

in λ we see that the correction is no longer N3. In fact the power of N drops by 1
N2 for each

correction. The ’t Hooft limit provides a way to use perturbation theory sensibly. Although

we have only discussed a few examples here, it is a general conclusion that factorization

holds for any matrix QFT, and in particular, also in the interacting theory. For example,

calculate 〈Tr(M2)2〉con to first order in g. We expect to find

〈Tr(M2)2〉con =〈Tr(M2)〉2 − 2g〈Tr(M2)〉〈Tr(M2)Tr(M4)〉+O(g2)

→ 1

(2ω)2
+O(

1

N2
)− g 1

(2ω)4
(4 +O(

1

N2
))

in the large N limit, where we have divided by the largest power of N in the first term and

subsequent corrections separately. Doing the calculation we arrive at

〈Tr(M2)2〉con =

∫
[dM ]e−ωTr(M

2)Tr
(
M2
)
Tr
(
M2
) (

1− gTr
(
M4
))

=〈Tr
(
M2
)2〉 − g〈Tr (M2

)2
Tr(M4)〉

=
1

(2ω)2
(N4 + 2N2)− g 1

(2ω)4
(4N7 + 18N5 + ...)

→ 1

(2ω)2
+O(

1

N2
)− g 1

(2ω)4
(4 +O(

1

N2
))

which matches what we expected from the above. Thus we have shown that factorization

does indeed hold up to order g in the interacting theory.



16

2.4 Powers of N Correspond to Different Topologies

Ribbon graphs can be drawn on surfaces with different topologies in such a way that the

ribbons do not intersect. In such case, we say that the graph triangulates a particular

topological surface. The topology of the surface it triangulates gives the N dependence of

each ribbon diagram in the ‘t Hooft limit. Planar diagrams can be drawn in the plane without

any of the ribbons crossing. They may then be said to triangulate a sphere. Consider the

first two diagrams in Z[J = 0, g]. These are planar and hence can be drawn on the sphere.

They come with factors of N2 according to (2.9). Thus the sphere is associated with N2.

The last diagram has a factor of N0, it is non-planar and can be drawn on a torus. Thus

a torus is associated with N0. Consider 〈Tr(M2)〉con, here the act of taking the trace adds

a new feature to the ribbon graph. This is the bubble-like feature at the bottom of each

ribbon graph in 〈Tr(M2)〉con given in Section 2.2. It appears after tracing over the outer

and inner indices in 〈MijMji〉con. Again these will triangulate topological surfaces, except

these will contain holes dues to these traces. As before terms having N2 will correspond to

the sphere, but it will be a sphere with holes.

For each power of N we can find a topological surface. Therefore, instead of adding up

all the ribbons graphs for the 0-point function Z[J = 0, g], we can sum over the topological

surfaces corresponding to each power ofN . This is convenient since there are fewer topologies

than there are ribbon graphs, as each surface captures all diagrams associated with a given

power of N . Thus the 0-point function is

Z[J = 0, g] = .

The ‘power’ in the diagram refers to the power of N . For example, the tree level term has

N2. The power of N for the surface is given by the Euler characteristic χ which is given by4

χ = 2− 2g − b.

Here g is called the genus of the surface and is related to the number of handles the surface

has and b is the number of boundaries. For example

• Sphere: g = 0 = b therefore we get N2

• Torus: g = 1, b = 0 therefore we get N0

4For a proof of this result, consult Appendix B.
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• Cylinder: g = 0, b = 2 therefore we get N0

• Pretzel (torus with two handles): g = 2, b = 0 therefore we get 1
N2 .

This matches (2.10). Summing all the ribbon graphs is thus equivalent to adding up all the

topologies triangulated. Surfaces triangulated by ribbon graphs are identified with world

sheets traced out by propagating strings. Consider the 2-point function. The relevant

topologies are shown in Fig. 2.1. Here we get a cylinder, a cylinder with one handle (loop)

.

Figure 2.1: Loop expansion for propagating string.

and a cylinder with two handles. The powers of N are as follows

• Cylinder: g = 0, b = 2 therefore we get N0

• Cylinder with a handle: g = 1, b = 2 therefore we get N−2

• Cylinder with two handles: g = 2, b = 2 therefore we get N−4

2.4.1 Loop expansion

A loop expansion organises the theory according to powers of ~. Consider φ4 theory, for

which the action is given by

S =

∫
d4x

(
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4
λ4φ4

)
. (2.11)

When we study φ4 theory we usually set ~ = c = 1 and study
∫
Dφ exp(iS). Putting ~ back

into the theory gives ∫
DφeiS~ .

The propagator, which is the inverse of the quadratic term in the Lagrangian, goes like ~.

The vertex, on the other hand, goes like 1
~ . We thus make the following correspondence

propagator↔ ~ (2.12)

vertex↔ 1

~
. (2.13)

Then given some loop expansion we are able to classify each Feynman diagram in the loop

expansion in terms of some power of ~. For every loop added, we add a power of ~. In
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Figure 2.1, the first diagram is just a propagator. Here, every time a loop is added we gain

a power of 1
N2 . Thus we make the association

~string ←→
1

N2
.

The classical theory we use to study the large N limit of our QFT is therefore a classical

theory of strings.

2.5 Failure of the Planar Approximation

The large N limit has to be treated carefully depending on the number of fields out of which

our operators are built. For O(1) fields as we send N → ∞ the number of fields remain

constant. There are only a few Wick contractions and therefore only a few diagrams that

need to be summed. Thus the 1
N2 suppression is not overpowered by the small combinatoric

factors generated by adding a small number of diagrams. Additionally, for O(1) fields the

planar and large N limit coincide. However for O(
√
N) or more fields, the 1

N2 suppression is

overpowered by the large combinatoric factors arising from performing many Wick contrac-

tions. Although the non-planar diagrams are suppressed in the usual way, the sheer number

of non-planar diagrams that can be drawn outweighs the number of planar diagrams. As a

result, the non-planar contribution can not be neglected, yielding a large N limit where the

planar approximation fails.
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Chapter 3

AdS Space, Conformal Field

Theory and D-branes

This chapter deals briefly with Anti de Sitter spacetime and conformal field theory. It is by

no means comprehensive, but gathers the information needed to explain the main ideas in

this dissertation. This chapter is based largely on chapter two in [10].

3.1 Basics of AdS space

Anti de Sitter space is a space with constant negative curvature with Lorentzian signature

[11]. It is a solution to the Einstein field equations with a constant energy-momentum tensor,

known as a cosmological constant [11]. This cosmological constant is negative (attractive).

Anti de Sitter space enjoys an SO(2, d − 1) invariance in d dimensions. In d dimensions,

AdSd space may be represented by a hyperboloid

X2
0 +X2

d −
d−1∑
i=1

X2
i = R2

embedded in flat d + 1-dimensional space, where R is constant. The metric of the flat

d+ 1-dimensional space is given by

ds2 = −dX2
0 − dX2

d +

d−1∑
i=1

dX2
i .

The metric of the AdS space is obtained by the induced metric on the hyperboloid.
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3.2 Definition of a CFT

A conformal transformation is a coordinate tranformation that preserves ‘angles’ but not

lengths.1 More precisely

xµyνgµν√
xσxτgστyγyβgγβ

is invariant under coordinate transformations. That is, it is a transformation that preserves

the metric up to some scale2

gµν(x)→ (λ(x))2gµν(x).

A conformal field theory is a quantum field theory that has conformal symmetry. This extra

symmetry implies that there are extra conservation laws present. For CFT’s the laws of

physics are scale invariant, that means that the same laws that govern the quantum scale

also govern the cosmological scale. All scale and Poincarè invariant theories are believed to

be CFT’s [10]. At this juncture one may ask how it is then possible to use CFT’s to discuss

physics. These questions will, hopefully, be answered in the next section.

3.3 Reasons for studying CFT’s

Conformal field theories look as though they should not describe nature since we know nature

behaves differently at different scales. Yet we study them all the same. In this section, we

try to give a motivation for why CFT’s are so useful in trying to understand QFT’s and

their importance in physics.

CFT’s are important for understanding the space of all QFT’s. QFT’s come equipped

with a scale, i.e. some cut off Λ, above which we can’t do physics. QFT’s are thus effective

field theories at some scale. There may be a hierarchy of scales. According to the Wilson

renormalization group (RG), the low energy effective action (LEEA) is largely determined

by the set of low energy degrees of freedom and the low energy symmetries. All the detailed

dynamics of the microscopic (UV) theory are summarized into the couplings of the LEEA. At

low energy only relevant and marginal operators contribute. Close to a free field fixed point

(FFFP), it is easy to tell which operators are marginal and relevant. Marginal operators

have couplings with length dimension zero, whilst relevant operators have length dimensions

which are negative. The beta function β describes how the coupling changes as we flow from

the UV to low energy (IR). At a fixed point the beta function vanishes. Thus each fixed

1We have placed ‘angles’ in inverted commas because this definition is not restricted to the geometrical

sense of an angle, which we are used to.
2The scale factor is squared to emphasize that we cannot change the overall sign on the metric.
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point corresponds to a scale invariant QFT. It is generally true that a scale invariant QFT

enjoys full conformal symmetry. Thus, the endpoints of the RG trajectories are CFT’s.

Further, we can imagine any QFT is a CFT perturbed by relevant or irrelevant operators.

The renormalization group also describes another phenomenon known as universality.

Universality says that systems with different microscopic behaviours share the same long

distance behaviour at the phase transition point (where the degrees of freedom are rear-

ranged). This is because there are very few relevant and marginal operators. Thus, many

different UV theories share the same IR dynamics.

Next we discuss the role of CFT’s in physics. Two important applications are worldsheet

string theory and the AdS/CFT correspondence. For worldsheet string theory we work in

two dimensions with parameters τ and σ. These are scale invariant under

τ → λτ, σ → λσ.

So we have a two dimensional CFT describing the worldsheet. This worldsheet is embedded

in spacetime and we have the fields Xµ(σ, τ) living on the worldsheet.

Of great importance to this dissertation is the AdS/CFT correspondence. This is like

studying gravity in a “box” where the CFT is located on the boundary of the box provided

by the AdS background. The isometry of AdS space matches the conformal group of the

CFT.

3.4 Conformal Group and Lie Algebra

We said that conformal transformations are coordinate transformations leaving the metric

invariant up to a rescaling

gµν(x)→ g′µν(x′) = Ω(x)gµν . (3.1)

In flat space this becomes

ηαβ
∂x̃α

∂xµ
∂x̃β

∂xν
= (Ω(x))2ηµν . (3.2)

To find the generators of the conformal group we must consider an infinitesimal conformal

transformation of the type

x̃µ = xµ + ζµ, Ω(x) = 1 + ω(x),

where ζµ is called the conformal Killing vector. We substitute this into (3.2) and make a

first order Taylor expansion to get

ηαβ(δαµ + ∂µζ
α)(δβν + ∂νζ

β) = (1 + ω(x))2ηµν = (1 + 2ω(x))ηµν .
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To O(1) in ζ we get back, trivially, that ηµν = ηµν . To O(ζ) we arrive at the conformal

Killing vector equation

∂µζν + ∂νζµ = 2ωηµν .

Contract both sides with ηµν to obtain ω = 1
d (∂ · ζ) with d the dimension of space. Thus,

we finally get

∂µζν + ∂νζµ =
2

d
(∂ · ζ)ηµν . (3.3)

We need to solve this last equation. We consider the cases of d = 2 and d > 2 Minkowski

space.

Consider the first case. In 2 dimensional Minkowski space there are two independent

choices for the indices. We can either set µ = 0, ν = 1 or we can set µ = ν = 03. This

choice then yields the following two equations

∂0ζ1 + ∂1ζ1 = 0, ∂0ζ0 = −∂1ζ1

The solution to these two differential equations is

ζ0 = f1(x0 + x1) + f2(x0 − x1), ζ1 = g1(x0 + x1) + g2(x0 − x1)

where

g1(x0 + x1)− g2(x0 − x1) = −f1(x0 + x1) + f2(x0 − x1) + constant.

There are thus an infinite number of solutions and therefore an infinite number of generators;

one for each conformal Killing vector.

Next consider the case of d > 2. Act with ∂µ∂ν on both sides of (3.3) to get

2∂µ∂µ∂νζ
ν =

2

D
∂µ∂µ(∂ · ζ)

which gives

∂µ∂µ(∂ · ζ) = �(∂ · ζ) = 0.

From this last equation it follows that the parameter ζ must be at most quadratic in x, since

it is cubic in derivatives. In particular we have that4

∂α∂β∂νζλ = 0. (3.4)

3We could also set µ = ν = 1 but this will give the same information as setting µ = ν = 0. Hence there

are only two independent choices
4Proof in Appendix C.



23

The following are possible for the ζ parameter

ζµ = aµ, translations, (3.5)

ζµ = bµx2 − 2xµ(b · x), special conformal transformations, (3.6)

ζµ = λxµ, scaling transformations (dilatation), (3.7)

ζµ = ωµνx
ν , Lorentz transformations. (3.8)

The special conformal transformation is a position dependent rescaling and a position de-

pendent translation. The Lorentz transformations contain the boosts and rotations. There

are 1 + d +d + d(d− 1)/2 = (d+1)(d+2)
2 components for the parameters of conformal trans-

formations. The generators are given by

Pµ =− i∂µ,

Kµ =− i
[
2xµ∂ · x+ x2∂µ

]
,

D = ix · ∂,

Mµν =− i [xµ∂ν − xν∂µ] .

The new generators are the dilatation generator D for λ and Kµ for bµ. We are able to

assemble the generators into an antisymmetric (d+ 2)× (d+ 2) matrix

JMN =


Mµν

Kµ−Pµ
2

Kµ+Pµ
2

−Kµ−Pµ2 0 D

−Kµ+Pµ
2 −D 0

 , (3.9)

where

Jµ,d+1 =
Kµ − Pµ

2
,

Jµ,d+2 =
Kµ + Pµ

2
,

Jd+1,d+2 = D.

The symmetry group for the conformal transformations is SO(2, d). The Lie algebra is given

by

[Mµν , Pρ] =− i(ηµρPν − ηνρPµ),

[Mµν ,Kρ] =− i(ηµρKν − ηνρKµ),

[Mµν ,Mρσ] =− i(ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ),

[Pµ,Kν ] = 2iMµν − 2iηµνD,

[D,Kµ] = iKµ,

[D,Pµ] =− iPµ,

[Mµν , D] = 0.
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This is the same group as d+ 1-dimensional Anti de Sitter space.

3.5 D-branes

Closed strings are able to move freely through space [11]. On the other hand, open strings

cannot move freely through space. Open strings have boundary conditions satisfied by their

endpoints [11]. D-branes are extended objects defined by the property that open strings

can end on them [12]. They give the means in which we may deal with these boundary

conditions. D-branes may be considered as topological defects in string theory [12]. These

‘walls’ are in fact dynamical and respond to external excitations [11]. They also have degrees

of freedom living on them [11]. We label the endpoints of the open string with “Chan-Paton

factors”. These correspond to the D-branes on which the string ends [11]. Each open string

state may then be labelled by |ij〉λaij , where the λaij are N ×N matrices if there are N D-

branes [11]. It can be shown that these matrices belong to U(N) and that these open string

states live in the adjoint representation of U(N). Since we also have N = 4 supersymmetry

in 4 dimensions, the theory on the 4 5 dimensional world volume of these N D3-branes is

N = 4 super Yang-Mills theory with gauge group U(N).

5A Dp brane has a p+ 1 dimensional world volume and here p = 3.
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Chapter 4

Supersymmetric Gauge

Theories

In this Chapter we discuss supersymmetry and supersymmetric gauge theories. We shall

present the supersymmetry algebra and then go on to discuss super Yang-Mills gauge theo-

ries.

4.1 Supersymmetry

During the 1960’s physicists were wondering about the kinds of symmetries possible in

particle physics [11]. They wanted to know whether spacetime symmetries and internal

symmetries could be combined in a non-trivial manner. They found that it could not be

done [11]. This was proved by Coleman and Mandula in their no-go theorem in 1967 [13].

Further investigation gave rise to supersymmetry which was able to bypass the Coleman-

Mandula theorem. Supersymmetry is a symmetry relating bosons (having integer value spin)

and fermions (having half-integer spin). Each fermion and boson has a superpartner sharing

the same mass and quantum numbers, save spin. The spin differs from their superpartners

spin by one-half. Supersymmetry is the unique extension of Poincarè symmetry in d + 1

- dimensional QFT with d > 1 [14]. It enlarges the Poincarè algebra by including spinor

supercharges Qaα (left Weyl spinor) and (Qaα)† (right Weyl spinor) with a = 1, ...,N and

α = 1, 2 [15]. N is the number of independent supersymmetries of the algebra [15]. These

Weyl spinors are related to the 4-component Dirac spinor as follows

Qa =

 Qaα

(Qaα)†


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The supercharges transform as Weyl spinors of SO(1, 3) [15]. They also commute with

translations. The algebra of these charges is given in the following section.

4.1.1 Graded Lie algebras

One of the assumptions made in the Coleman-Mandula theorem was that the algebra of

conserved charges is a Lie algebra [11]. This assumption is too restrictive. To amend this,

the notion of a Lie algebra was then generalized to that of a graded Lie algebra. This allows

one to evade the Coleman-Mandula theorem [11]. A graded Lie algebra is one that has

generators which satisfy an anticommuting law [11]

{Qα, Qβ} = other generators.

4.1.2 Supersymmetry algebra in 3 + 1 dimensions

The supersymmetry algebra is given by

{Qα, Q†β̇} =Pµσ
µ

αβ̇

{Qα, Qβ} = 0 = {Q†α̇, Q
†
β̇
}.

The supersymmetry algebra is invariant under a global phase rotation of all supercharges

[15]. This forms the group U(1)R. Further, for N > 1, different supercharges may be

rotated into one another under the group SU(N )R. These automorphism symmetries of

the supersymmetry algebra are called R-symmetries. These symmetries may be broken in

quantum field theory by anomaly effects [15].

4.2 N = 4 supersymmetric Yang-Mills theory

N = 4 supersymmetric Yang-Mills theory is an important quantum field theory. The theory

was first studied in the framework of string theory toroidal compactification in [16, 17].

Historically there was interest in this model as a result of its finiteness [18]. Later in 1997,

Maldacena published his conjecture and the small field opened up once again. N = 4 super

Yang-Mills is a maximally supersymmetric, non-abelian gauge theory in four dimensions

with four supercharges (sixteen real supercharges) [18]. We say maximal because in four

dimensions the maximal number of supercharges is four. We will focus on gauge group U(N)
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in this dissertation. The Lagrangian for this theory is [15]

L = tr

[
− 1

2g2
FµνFµν +

θI
8π2

Fµν F̃µν −
∑
a

iλ̄aσ̄µDµλa −
∑
i

Dµφ
iDµφi

+
∑
a,b,i

gCabi λa[φi, λb] +
∑
a,b,i

gC̄iabλ̄
a[φi, λ̄b] +

g2

2

∑
i,j

[φi, φj ]2


where g is the gauge coupling and θI is the instanton angle. The constants Cabi and Ciab

are related to the Clifford Dirac matrices for SU(4)R. The field strength is given by

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ]

and

F̃µν =
1

2
εµνρσF

ρσ

is the Poincarè dual of F . Finally, we have

Dµ = ∂µλ+ i[Aµ, λ].

The theory has 6 real fields, called the Higgs fields, which transform as Lorentz scalars. They

can be used to construct more general operators in the quantum field theory. There are other

fields present in this theory, any of which may also be used to build general operators. For

example, there are four fermions and gauge bosons. However we are only concerned with

the scalars in this dissertation. The Higgs fields transform in the adjoint of the gauge group

U(N). We assemble the scalar fields into the following 3 complex combinations [7]

Z = φ1 + iφ2,

Y = φ3 + iφ4,

X = φ5 + iφ6.

The next task is to construct gauge invariant operators built out of these complex scalar

fields. We require gauge invariant operators to ensure we are describing physical observables.

According to AdS/CFT these operators have a dual description in type-IIB string theory

on asymptotically AdS5 × S5 backgrounds [7]. Therefore symmetries in the gauge theory

should be reflected in the string theory. We’ll explain the correspondence in Chapter 6.

At present we will briefly discuss some of the interpretations of AdS/CFT relevant to this

chapter. Single trace operators with O(1) fields were identified to be dual to gravitons

whilst operators with O(
√
N) fields were found to be dual to strings [7]. Multi-matrix

trace operators with O(N) fields were identified with giant gravitons and multi-matrix trace

operators with O(N2) fields were identified with half-BPS geometries [19, 20, 21, 22]. To
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recapitulate, the duality here refers to the equivalence of dynamics described in the two

theories, i.e. the gauge theory dynamics is equivalent to the gravity dynamics.

We work in the SU(2) sector of super Yang-Mills theory, which means we only consider

operators built using two of the complex fields above. We will be considering operators with

O(N) and O(N2) fields. In particular, we use operators called restricted Schur polynomials,

which are built using n Z’s and m Y ’s. Restricted Schur polynomials are discussed in the

next chapter.

4.3 BPS states

BPS states are massive representations of an extended supersymmetry algebra, with the

mass being equal to the supersymmetry central charge1. These states play a vital role in

discussions of non-perturbative duality symmetries. Theories with extended supersymme-

try have been shown to have a rich dynamical structure [23]. Occasionally, supersymmetry

representations may be smaller than usual owing to the fact that some supersymmetry oper-

ators are null, so that they cannot create new states. Thus the action of some supercharges

may vanish [24]. This depends on the relation between the mass of a multiplet and some

central charge appearing in the algebra. These central charges depend on electric and mag-

netic charges of the theory. They also depend on the expectation values of scalars (moduli)

or coupling constants in rigid supersymmetry theories [24]. In a sector with given charges,

BPS states are the lowest-lying states and they saturate the so-called BPS bound [24]. This

bound has the following form for point-like states [24]

2M ≥ maximal eigenvalue of Z

where M is the mass and Z is the central charge matrix.

There is a special behaviour related to BPS states. First, at generic points in the moduli

space, they are completely stable [24]. This is true for theories with more than eight con-

served supercharges like N = 4 supersymmetry [24]. Second, their mass formula is expected

to be exact if ones uses the renormalized values for the mass and moduli (couplings).

It is also possible to find BPS states that only have a certain number of supersymmetries

preserved. Half-BPS states have half the supersymmetries preserved. Similarly, Quarter-

BPS states only have a quarter of the supersymmetries preserved, and so on. For N = 4

supersymmetric Yang-Mills theory in four dimensions there are sixteen supersymmetries.

Thus half-BPS states break eight supersymmetries and quarter-BPS states break twelve

supersymmetries.

1In a CFT like N = 4 super Yang-Mills theory, it is the scaling dimension of the state that is equal to

the central charge.
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4.3.1 The half-BPS sector

The so called half-BPS sector, is one in which our operators are built out of a single complex

matrix field and for which half of the supersymmetries of the gauge theory are preserved.

This will be the sector of choice for all the work carried out in this dissertation.

The dictionary which allows us to move across the duality is, for the half-BPS sector,

well established [19, 20, 21, 22]. To make use of this, one must first define the scaling or

conformal dimension ∆, such that

∆ = ∆0 + γ

where ∆0 is the bare (or classical) dimension and γ is the anomalous dimension. The number

of fields present in the Schur polynomial is given by ∆. In the half-BPS sector ∆ is equal to

the number of units of R-charge2. Each field Z gives a single unit of R-charge. There exists

a mapping from the R-charge in the QFT to the angular momentum in the string theory.

In addition, the scaling dimension spectrum matches the energy spectrum in the dual string

theory [8]. This provides a way to move between the gauge theory and the string theory.

The identification of operators with R-charge of O(1) and gravitons has been checked

using the AdS/CFT correspondence [8]. The computation performed in [25] reproduces field

theory correlation functions using supergravity graviton calculations. For operators with R-

charge of O(
√
N) it was found [8], [26] that the eigenvalues3 of the Dilatation operator

corresponded to the expected string energies. Thus these operators do indeed correspond to

strings [8]. For the details see reference [29] in [8]. Since the non-planar diagrams can not

be dropped for O(N) and O(N2), we have to use the Schur polynomials [8]. A big problem

with the large R-charge operators is that we are not explicitly able to build these restricted

Schur polynomials [7].

2The R-charge is a conserved charge associated with supersymmetry.
3The eigenvalues of the Dilatation operator are the scaling dimensions, ∆.
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Chapter 5

Schur and Restricted Schur

Polynomials

We will focus on studying Schur and restricted Schur polynomials using symmetric and

unitary group theory, Sn and U(N) respectively.

5.1 Schur polynomials

A Schur polynomial is defined for a single type of arbitrary matrix Z as follows

χR(Z) =
1

n!

∑
σ∈Sn

χR(σ)Zi1iσ(1)Z
i2
iσ(2)

...Z
in−1

iσ(n−1)
Ziniσ(n)

.

The label R is a group theory label. Young diagrams with n boxes are in a one-to-one

correspondence with the irreducible representations of the symmetric group Sn [27]. Young

diagrams with any number of boxes and having less than or equal to N rows are in one-to-

one correspondence with the irreducible representations of the Unitary group U(N). Schur

polynomials are thus associated with a particular irreducible representationR of Sn [27]. The

factor χR(σ) is the character of σ ∈ Sn in the irreducible representation R. For Z ∈ U(N),

χR(Z) is the character of the matrix Z in irreducible representation R of U(N). The indices

i1,...,in range from 1,...,m where Z is an m ×m matrix. The lower indices in each term of

the sum are a particular permutation of the indices i1,...,in acted on by σ.

The two point correlation function for Schur polynomials in the free field theory limit is

given by [28]

〈χR(Z)χS(Z†)〉 = δRSfR
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where fR is a product with one factor for each box in R

fR =
∏
i,j

(N − i+ j).

We see that this correlator is diagonal in the Young diagram labels. The factor (N − i+ j)

is called a weight and is given to the box in the i-th row and j-th column.

5.2 Restricted Schur polynomials

We concentrate on operators with O(N) and O(N2) fields. For such cases, we use restricted

Schur polynomials. They are characters of irreducible representations of U(N). Restricted

Schur polynomials are the multi-matrix generalization of the Schur polynomial [29]. We will

study restricted Schur Polynomials composed of n Z’s and m Y’s. They are given by

χR,(r,s),jk(Z, Y ) =
1

n!m!

∑
σ∈Sn+m

χR,(r,s),jk(σ)Y i1iσ(1) ...Y
im
iσ(m)

Z
im+1

iσ(m+1)
...Z

im+n

iσ(m+n)
.

The labels R and (r, s) are group theory labels. R corresponds to a Young diagram

with n + m boxes, being an irreducible representation (irrep) of Sn+m. Similarly r and s

correspond to Young diagrams with n and m boxes being irreps of Sn and Sm respectively.

Together (r, s) label an irreducible representation of Sn × Sm [7]. The group Sn × Sm is a

subgroup of Sn+m. The labels j and k are multiplicity labels appearing since (r, s) may be

subduced more than once from R. χR,(r,s),jk(σ) = Tr(r,s)αβ(ΓR(σ)) is called the restricted

character [30]. It is not a trace over the whole space, but only over the (r, s) subspace.

More precisely it is a trace over the subspace whose column index belongs to the Sn × Sm
irreducible representation (r, s)α and whose row index belongs to the Sn × Sm irreducible

representation (r, s)β [30]. Note that this is only a trace in the usual sense when α = β.

When this is not the case we are not summing over diagonal matrix elements [30].

There is a nice agreement between the number of restricted Schur polynomials and

the number of gauge invariant operators, which we briefly discuss here. We said that R

corresponds to a Young diagram with n+m boxes, but n and m also tell us how many fields

of type Z and type Y we have, respectively. Suppose n = 3 and m = 0. Then the following

are the possible Young diagrams we have labelling representations of R

, , .

From these we can build three restricted Schur polynomials. The gauge invariant operators

are

Tr(Z3), (Tr(Z))3, T r(Z2)Tr(Z).
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The number of gauge invariant operators is equal to the number of restricted Schur polyno-

mials.

For Z and Y , the free theory two point correlation function for restricted Schur polyno-

mials is [29]

〈χR,(r,s)jk(Z, Y )χT,(t,u)lm(Z, Y )†〉 = δR,(r,s)T,(t,u)δklδjmfR
hooksR

hooksrhookss

where fR is

fR =
∏
i,j

(N − i+ j),

a product of weights given to each box in the Young diagram. We see that the two point

function is diagonal in all Young diagram labels as well as the multiplicity labels.

The Schur polynomials with O(N) fields are dual to giant gravitons. The restricted

Schur polynomials with O(N) fields are dual to excited giant gravitons [31, 30, 32]. As

mentioned earlier, Schur polynomials comprising O(N2) fields are dual to new background

geometries.
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Chapter 6

The AdS/CFT Correspondence

In this chapter we briefly review the AdS/CFT correspondence [1], also known as the Mal-

dacena conjecture. We shall present a summarized version of the calculation that motivated

Maldacena. We then go on to explain the conjecture in as simple a way as possible. The

role of Schur and restricted Schur polynomials is discussed thereafter. This chapter then

concludes with a discussion relating the variables in the two theories.

6.1 Motivation

The Maldacena conjecture describes the conjectured equivalence between a theory with

gravity and a theory without gravity. More specifically, it relates type-IIB string theory on

AdS5×S5 and N = 4 super Yang-Mills (SYM) theory in four dimensions1. The simple idea

behind the motivation for this equivalence comes from considering N coincident, parallel

D3 branes, where N is the rank of the gauge group. This system can be described in

two different ways. The first indication that the two descriptions were equivalent in some

appropriate limit came from the calculations of the absorption cross-sections for the low

energy waves incident on the stack of D3 branes from a transverse direction [33, 34, 35].

The first description of the D3 brane stack is in terms of N = 4 supersymmetric U(N)

gauge theory on its world volume [35]. At low energies it interacts with the bulk closed

string excitations [35]. The second description is in terms of the Ramond-Ramond charged

3-brane background of type-IIB closed superstring theory [35]. If N is large then the stack

acts as a heavy object embedded in the theory of closed strings, containing gravity. The

stack is charged and acts like a source for supergravity fields [27]. This description is only

trustworthy at large N and large ‘t Hooft coupling, where the background is approximately

1This is not the most general form of the conjecture.
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flat. The first description is in terms of open and closed strings, where the D3 branes

are treated as boundary conditions for the open strings (recall that open strings end on

D branes) [27]. The second description is only in terms of closed strings. We will discuss

the calculation of these cross sections next. It must be noted that the calculation is very

different on either side of the correspondence, even though we calculate the same object in

the quantum field theory as in the gravity theory. In the field theory we are interested in

calculating a cross section by summing Feynman diagrams as described below. However, in

the gravity theory we are concerned with solving a wave equation coupled to some potential

(brane). We are then interested in the amount of flux lost to the throat region of the brane.

For further details see the original paper by Klebanov in [35].

The low energy limit for the D branes coupled to massless bulk fields is considered [35].

For example, a graviton (a closed string) is scattered off the N coincident D3 brane stack.

The action is given by

S = Sbrane + Sint + Sbulk

where [35]

Sint =

√
π

κ

∫
d4x

[
tr

(
1

4
ΦFαβFαβ −

1

4
CF ∗αβF

αβ

)
+

1

2
hαβTαβ

]
and Tαβ is the stress energy tensor of N = 4 SYM theory. The above action tells us that the

branes are coupled to the dilaton Φ, the Ramond-Ramond scalar C and the graviton hαβ

[33, 34, 35]. The cross section for the graviton scattering off the brane stack was calculated

to leading order and weak coupling. The computation involves summing Feynman diagrams.

The cross section for the graviton scattering off the massive Ramond-Ramond charged

3-brane background with geometry [35],

ds2 =

(
1 +

L4

r4

)− 1
2 (
−dt2 + dx2

1 + dx2
2 + dx2

3

)
+

(
1 +

L4

r4

) 1
2 (
dr2 + r2dΩ2

5

)
was also calculated. The computation entails solving a Scroedinger-like wave equation with

potential sourced by the 3-brane geometry. Both were found to be in agreement. In the low

energy limit we get long wavelength propagating modes decoupled from the heavy charged

background. This gives free IIB-supergravity. In the near horizon region, i.e. r → 0, excited

modes are red shifted. Thus, this gives IIB-superstring theory on AdS5 × S5.

6.2 The conjecture

Consider a non-empty box. This box has a boundary, given by the walls of the box. They

contain everything that is known as ‘inside’ of the box. Stated plainly, the Maldacena
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conjecture proposes an equivalence or duality between a theory of gravity living inside the

box and a quantum field theory living on the boundary of the box. This quantum field

theory has no gravity. After work carried out in [34, 33], Maldacena noticed the comparison

given in the table below.

Description Everywhere Near Brane

D brane stack free IIB supergravity N = 4 U(N) SYM

Ramond-Ramond

charged source free IIB supergravity IIB string theory on AdS5 × S5

Table 6.1: Comparison between the D brane stack and the Ramond-Ramond charged source.

In the low energy limit, Sint vanishes and we find that

Sbulk → SIIB supergravity

Sbrane → S3+1
N=4SYM .

It was after this comparison that Maldacena made the conjecture that type IIB superstring

theory on AdS5×S5 is dual to N = 4 U(N) super Yang-Mills theory in 3+1 dimensions. The

conjecture extends to other quantum gravities in Anti de Sitter space and supersymmetric

conformal field theories on the boundaries of these Anti de Sitter spaces. The correspondence

is a strong/weak coupling duality [10]. For the large N ‘t Hooft limit, AdS/CFT relates the

region of weak field strength coupling (small g2
YM ) λ = g2

YMN in the super Yang-Mills

theory to the region of high curvature in the string theory, and vice versa [10].

6.3 The role of Schur polynomials in AdS/CFT

The two theories described above are two different languages in which to describe the same

dynamics. The power of this observation lies in the fact that, in general, calculations that

are difficult in the field theory are easy in the string theory and vice versa [27]. Thus the

next important step is to develop a dictionary that can be used to make the correspondence

into a precise statement. Schur and restricted Schur polynomials are available to do this for

us.

6.4 Measurable quantities

In quantum field theory our observables are given by the S-matrix. For a conformal field

theory this is no longer a sensible object to pick as our observable. This is because there is
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no notion of ‘far’ past and ‘far’ future. The two point function for a CFT is given by

〈Oa(~x)Ob(~y)〉 =
δab

|~x− ~y|2∆
.

Here ∆ is the conformal dimension of the operators involved. These operators have a well

defined scaling dimension. This quantity replaces the S-matrix as our observable in the CFT.

At the classical level, ∆ counts the number of fields in the operator. At the full quantum

level, the conformal dimensions are the eigenvalues of the Dilatation operator.

These conformal dimensions are related via the AdS/CFT correspondence to energies

(eigenvalues of the Hamiltonian) in the string theory [36]. The Hamiltonian of the string

theory is related to the Dilatation operator of the CFT on the boundary of the AdS space.

To see how this is done consider the following example. Working in 1 + 1 dimensional

Minkowski space we have the following metric

ds2 = −dt2 + dx2.

Put y = it. This Wick rotates us to Euclidean space. Then we get

ds2 = dx2 + dy2 = dr2 + r2dθ2

after changing to spherical coordinates. Now do the following coordinate transformation,

set r = et to get

ds2 = e2tdt2 + e2tdθ2.

Which, after a conformal rescaling, is just the metric of the R × S1 boundary of the AdS3

space,

ds2 = dt2 + dθ2.

If we consider a time translation t → t + a, of which the Hamiltonian is the generator, we

find that r → ear. Thus time translations in the string theory result in scale (rescaling)

transformations in the CFT. Hence we see the connection between energy and the conformal

dimension.

6.5 Relating Parameters

The relation between string theory parameters and those of the gauge theory are as follows

[1]

gs = g2
YM(

R

ls

)4

= 4πg2
YMN = 4πλ.
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Here gs is the string coupling and ls is the string length. R is the radius of curvature of the

AdS5 and S5 spaces of AdS5 × S5. The parameters of super Yang-Mills theory with gauge

group U(N) are N and g2
YM , the coupling constant.

6.6 Tests of the AdS/CFT correspondence

The conjecture is well tested. For an excellent review and more references see [10]. Here

we briefly discuss the tests mentioned in chapter 3 in [10], which deals with the case of

N = 4 SU(N) super Yang-Mills theory and type IIB string theory on AdS5 × S5. A direct

comparison of correlators in the field theory to the string theory correlators is generally not

possible. This is because presently we can only compute most correlators perturbatively

in λ on the field theory side and perturbatively in 1/
√
λ on the string theory side [10].

Thus comparing properties which depend on the coupling is not possible2. It was eventually

realised that there are several properties of these theories that do not depend on the coupling.

These may be compared to test the duality. These properties are [10]:

1. Global symmetries. These do not in general change as we change the coupling3.

2. The moduli space of the theory does not depend on the coupling.

3. Qualitative behaviour of the theory upon deformations by relevant or marginal oper-

ators also does not depend on the coupling.

4. Other tests include: existence of confinement for the finite temperature theory [37].

2For recent dramatic progress, in the planar limit, see the review [4] and references therein.
3Although changes may occur for extreme values of the coupling [10].
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Chapter 7

The Dilatation Operator of

N = 4 Super Yang-Mills Theory

7.1 The scaling dimension

The dilatation operator provides a means to investigate the scaling dimensions in a conformal

field theory [38]. There are a couple of ways to calculate the scaling dimensions for local

operators in a conformal field theory. We shall discuss these shortly. First it is important

to understand how the scaling dimension affects correlation functions in the conformal field

theory. These correlation functions obey certain relations due to conformal symmetry [38].

This restricts, greatly, the structure of correlation functions of the theory.

7.2 Action of the dilatation operator

The Dilatation operator for N = 4 super Yang-Mills theory was studied extensively in the

planar limit by Beisert in [38, 39]. In this dissertation and in this section in particular, we

study the dilatation operator in a large N but non-planar limit. The dilatation operator in

the SU(2) sector of the theory is given by [39]

D =

∞∑
j=0

(
g2
YM

16π2

)j
D2j ,

where D2j is the j-th loop contribution to the dilatation operator. It acts on the restricted

Schur polynomial χR,(r,s)jk(Z, Y ) as studied in [40, 41, 6]. The action of the one loop (j = 1)

dilatation operator is then given by [39]

D2 = −g2
YMTr

(
[Y,Z]

[
d

dY
,
d

dZ

])
.
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Henceforth we refer to the one loop dilatation operator as D for notational ease. It is

convenient to work with normalized operators so that we arrive at a unit two point function

[8]. The normalized operators OR,(r,s)(Z,Y ) can be found from

χR,(r,s)jk(Z, Y ) =

√
fRhooksR

hooksrhookss
OR,(r,s)jk(Z, Y ).

where χR,(r,s)jk(Z, Y ) is the restricted Schur polynomial discussed in Chapter 5. The action

of the dilatation operator on these normalised operators is given by [41]

DOR,(r,s)jk(Z, Y ) =
∑

T,(t,u)lq

NR,(r,s)jk;T,(t,u)lqOT,(t,u)lq(Z, Y )

where1

NR,(r,s)jk;T,(t,u)lq =− g2
YM

∑
R′

cRR′dTnm

dR′dtdu(n+m)

√
fThooksThooksrhookss
fRhooksRhooksthooksu

×

× Tr
([

ΓR((1,m+ 1)), PR→(r,s)jk

]
IR′T ′

[
ΓT ((1,m+ 1)), PT→(t,u)lq

]
IT ′R′

)
.

The factor cRR′ is the factor of the corner box removed from Young diagram R to obtain

diagram R′. Similarly T ′ is obtained by removing a box from T . The intertwiner IR′T ′ is a

map from the carrier space of irreducible representation R′ to the carrier space of irreducible

representation T ′. Schur’s Lemma imposes the condition that the Young diagrams for R′

and T ′ be of the same shape in order to obtain a non-zero intertwiner. For the case of only

two impurities, there are no multiplicity labels. Thus, the action of the dilatation operator

becomes

DOR,(r,s)(Z, Y ) =
∑
T,(t,u)

NR,(r,s);T,(t,u)OT,(t,u)(Z, Y ).

It is the trace appearing in NR,(r,s);T,(t,u) in this last equation that we wish to calculate.

First, however, we need to find the individual components making up the matrix that is to

be traced, that is, the projectors, the swaps and the intertwiners.

7.3 Operators with dimension of O(N 2)

For this dissertation we have focused on the sector of the theory consisting of operators with

scaling dimension O(N2). In this instance, Young diagrams have O(N) rows and O(N)

columns. We are only considering the case of two impurities in which case two boxes are

to be removed from the Young diagrams to subduce the representation (r, s) from R. Let

ri and rj be the lengths of row i and row j respectively. Then for any two rows for which

1For a derivation of this result see [8], [41].
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|i− j| ∼ O(1) we have that |ri − rj | ∼ O(1). Row r1 corresponds to the first row which has

the longest length. The lengths of the following rows decrease as we move down the Young

diagram. We are only allowed to remove boxes such that a valid Young diagram remains.

There are then O(N) ways to remove the first box and O(N) ways to remove the second

box. The location of the boxes to be removed is illustrated in the diagram below.

Figure 7.1: Diagram displaying the rows and columns of the boxes to be removed from the

Young diagram.

The content of box i is ci = ri − i. The difference between the content of the two boxes is

cij = rj − ri + i− j

where we let i > j. This is called the axial distance between boxes i and j.

7.4 States

In this section we discuss the labelling of our states. The irreducible representation R of

Sn+2 may be thought of as a partition of n+ 2 boxes. We label states as follows

|{R}, row of first box removed, row of second box removed; a〉

where {R} is the collection of row lengths of R and a labels a Young-Yammonouchi state

for the remaining n boxes. An example of how these labels work follows below

|

1

2 〉 = |{6, 5, 4, 3, 2}, 2, 4; a〉

and

|

2

1 〉 = |{6, 5, 4, 3, 2}, 4, 2; a〉
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where a = 1, ..., dr and dr is the dimension of the representation r of Sn, r is obtained

by removing the labeled boxes from R. The impurity irreducible representations are then

labelled [42] as

|{R}, , i, j; a〉 =

√
ci − cj + 1

2(ci − cj)
|{R}, i, j; a〉+

√
ci − cj − 1

2(ci − cj)
|{R}, j, i; a〉

where we have included the label for the s representation concerned. In this case we have

the symmetric representation. Similarly for the antisymmetric representation

|{R}, , i, j; a〉 =

√
ci − cj − 1

2(ci − cj)
|{R}, i, j; a〉 −

√
ci − cj + 1

2(ci − cj)
|{R}, j, i; a〉.

Note that the same index a is used on both sides of these equations. This is because it is

the same Young-Yammonouchi states for the Z-boxes. Here r is a partition of n boxes. In

terms of our diagram above

ci − cj = ri − rj − i+ j.

The row lengths of the irreducible representation r is related to the row lengths of R by

rk = Rk − δik − δjk

where the two boxes to be removed are removed from the i-th and j-th rows.

7.5 Projectors

The action of the projectors on the Z boxes is trivial, simply being given by an identity

operator. However, their action on the Y boxes remains non-trivial with the projectors

being given by

PR,s1,i,j =

dr∑
a=1

|{R}, , i, j; a〉〈{R}, , i, j; a|

and

PR,s2,i,j =

dr∑
a=1

|{R}, , i, j; a〉〈{R}, , i, j; a|

7.6 The swap Γ(n, n + 1)

There is a simple rule for matrices representing an adjacent permutation. The permutation

we need is not an adjacent permutation. Fortunately any permutation may be written in

terms of adjacent permutations. For our case, (1, 3) = (1, 2)(2, 3)(1, 2). To evaluate this

action we need to label a third box. As a first step we rewrite our states to incorporate
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the placement of a third box which is to be moved around when acted upon by the swap

Γ(n, n+ 1). The states may then be written as (this is an identity between subspaces)

{|{R}, i, j; a〉} = {⊕kθ(rk − rk−1 − 1)|{R}i, j, k; ã〉}

where k labels the row of the third box to be removed and the direct sum runs over all

possible ways in which a third box may be removed to produce a valid Young diagram. The

Heaviside function ensures this for us. It is defined by

θ(x) =1 for x ≥ 0

θ(x) =0 for x < 0.

The action of the adjacent permutations on a state is

ΓR(1, 2)|{R}, i, j, k; a〉 =
1

ci − cj
|{R}, i, j, k; a〉+

√
1− 1

(ci − cj)2
|{R}, j, i, k; a〉

and

ΓR(2, 3)|{R}, i, j, k; a〉 =
1

cj − ck
|{R}, i, j, k; a〉+

√
1− 1

(cj − ck)2
|{R}, i, k, j; a〉.

We will deal with the final swap ΓR(1, 3) in the section discussing the trace. Using results

from that section we will find that we are afforded a large simplification that allows us to

avoid writing out every term in the calculation of the swap. There are many terms.

7.7 Intertwiners

For a general derivation of the intertwiners see Appendix D. In particular, the examples

given describe how the intertwiners are constructed for this case. They are given by

IR′T ′ =
∑
A

|{R}, j;A〉〈{T}, k;A|

and

IT ′R′ =
∑
A

|{T}, k;A〉〈{R}, j;A|

where A labels a Young-Yammonouchi state in R′j or T ′k where R′j = T ′k. R′j is the Young

diagram obtained by the removal of a single box from row j of R. T ′k is the Young diagram

obtained by the removal of a single box from row k of T .

7.8 The mixing of states

Here we discuss which states mix with each other. Further we identify the leading contri-

bution to the dilatation operator. This will simplify the number of terms that need to be
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dealt with in the large N limit. The leading terms each make an O(N) contribution. In the

first case R = T , r = t but s need not be equal to u. For this case the third box may be

removed from any row, contributing O(N) terms. Each term will have a different coefficient

depending upon the row from which the box is removed. For the second case we have R 6= T ,

r = t and again s need not be equal to u. Again we find that there are O(N) terms, each

with a different coefficient.

There are two more cases for which r 6= t. In both of these cases we are forced to remove

the third box from a single definite location. This means that only one term contributes. So

the first two terms yield the main contribution to the dilatation operator. These two cases

also tell us that the second labels must match.

7.9 The trace

In this section we discuss the calculation of

Tr
([

ΓR((1,m+ 1)), PR→(r,s)

]
IR′T ′

[
ΓT ((1,m+ 1)), PT→(t,u)

]
IT ′R′

)
.

We labeled our projectors differently to employ a more transparent notation. For this

computation m = 2 for two impurities. The trace can be written as

Tr ([ΓR((1, 3)), PR,s,i,j ] IR′T ′ [ΓT ((1, 3)), PT,u,k,i] IT ′R′) .

Consider the case of s = u = s1. There are four terms that need to be calculated. They are

T1 =Tr (PR,s1,i,jΓR((1, 3))IR′T ′ΓT ((1, 3))PT,s1,k,iIT ′R′)

T2 =Tr (PR,s1,i,jΓR((1, 3))IR′T ′PT,s1,k,iΓT ((1, 3))IT ′R′)

T3 =Tr (ΓR((1, 3))PR,s1,i,jIR′T ′ΓT ((1, 3))PT,s1,k,iIT ′R′)

T4 =Tr (ΓR((1, 3))PR,s1,i,jIR′T ′PT,s1,k,iΓT ((1, 3))IT ′R′) .

For the full calculation, see Appendix E. We found T1 = T4 and T2 = T3. The trace is given

by

T1 =
∑
l

√
ci − cj − 1

2(ci − cj)

√
ck − cj + 1

2(ck − cj)
(α1(l) + α2(l))(β1(l) + β2(l))dR′′jil

and

T2 =
∑
l

√
ck − ci + 1

2(ck − ci)

√
ci − cj − 1

2(ci − cj)
(β1(l) + β2(l))(α1(l) + α2(l))dR′′jil .
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Where

α1(l) =

√
ck − ci + 1

2(ck − ci)
1

ci − cl
1

ck − ci

α2(l) =

√
ck − ci − 1

2(ck − ci)
1

ck − cl

√
1− 1

(ci − ck)2

and

β1(l) =

√
ci − cj + 1

2(ci − cj)
1

cj − cl

√
1− 1

(ci − cj)2

β2(l) =

√
ci − cl − 1

2(ci − cj)
1

ci − cl
1

cj − ci
.

7.10 Dilatation operator coefficient

In this section we explain how to evaluate the coefficient

g2
YM

cRR′dTnm

dR′dtdu(n+m)

√
fThooksThooksrhookss
fRhooksRhooksthooksu

in the large N limit. The Young diagrams R, T , r, t, s and u each have p rows. Let Ri,

Ti, ri, ti, si and ui denote the row lengths of each row respectively for i = 1, 2, ..., p. The

row length of a row is given by the number of boxes in that particular row. We assume that

p is fixed to be O(N). The top row, which is always the longest row, has the value i = 1.

Similarly, the bottom row, which is the shortest row, has i = p.

As explained in Section 7.8, the second labels r and t of the dilatation operator must be

the same, that is r = t. Thus

hooksr = hookst.

For the case of two impurities, we have two possible representations

,

both of which have hooks = 2. Thus

hookss = hooksu.

Next, recall that fR is the product of the factors in Young diagram R. We also know that

R′ = T ′. Hence we learn that

cRR′

√
fT
fR

=
√
cRR′cTT ′
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where cRR′ is the factor associated to the box that must be removed from R to obtain R′

and cTT ′ is the factor associated to the box that must be removed from T to obtain T ′.

Finally, we are left with evaluating √
hooksT
hooksR

.

For operators with dimension O(N), the difference between row lengths in the Young di-

agrams with p ∼ O(1) are of O(N). In this case we may employ a useful approximation,

for details on this calculation see Appendix F. We state the result below. For the diagrams

R and T , the row lengths Ri are of order N . Further, R and T may differ at most by the

placement of a single box. This implies that Ri = Ti for all but two values of i, suppose

these values are i = a, b. For these values of i we the following relation between the row

lengths in R and T

Ra = Ta − 1, Rb = Tb + 1.

We find that

hooksT
hooksR

=
Rb
Ra

(1 +O(N−1)).

For the case where our operators have dimension O(N2) we do not have such an approxi-

mation. Here, the difference between row lengths is only O(1). So that

hooksT
hooksR

6= Rb
Ra

(
1 +O(N−1)

)
.

We may write

hooksT
hooksR

=
hooksT
hooksT ′

hooksR′

hooksR

hooksT ′

hooksT ′′

hooksR′′

hooksR′

where we recall that hooksR′′
hooksT ′′

= 1. R′′ is the diagram obtained from R′ by removing a single

box. Similarly for T ′′. These factors may be found exactly using the following

hooksR
hooksR′j

= Rj

∏
k
k 6=0

(R1 −Rk + k)

∏
k
k 6=0

(R1 −Rk + k − 1)
.
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Chapter 8

Conclusion

This dissertation has investigated a new limit of the AdS/CFT correspondence by employing

restricted Schur polynomials. The AdS/CFT correspondence plays a central part in modern

string theory, revolutionizing the field by providing a means to study quantum field theories

without any inclusion of gravity. We are then able to relate them to theories of gravity.

This uses the holographic principle. The quantum field theory studied in this dissertation

is N = 4 super Yang-Mills theory. This theory is conjectured, via the aforementioned

correspondence, to be dual to type IIB string theory on asymptotically AdS5×S5 geometry.

The purpose of the current study was to evaluate the action of the one loop dilatation op-

erator ofN = 4 super Yang-Mills theory in the sector with conformal dimension ∆ ∼ O(N2).

Further we aimed to diagonalize this action and then treat the corresponding operator as

a Hamiltonian for some dynamical system. The energy spectrum of the Hamiltonian was

then to be calculated. The main goal was to derive a linearised Einstein equation.

The action of the one loop dilatation operator was evaluated. Future work aims to extend

the computation to include many impurities, to diagonalise the dilatation operator and then

calculate the energy eigenvalues. The next exciting step will be to find a linearized Einstein

equation, as proposed.

Previous work [4] has shown that N = 4 super Yang-Mills theory is integrable in the

planar limit. Thus, an interesting question is whether or not integrability holds in other

large N limits of the theory [7]. Past arguments have shown that integrability is spoiled

by non-planar corrections [5]. In 2011 this conclusion was shown to be incorrect in [6].

Operators labelled by Young diagrams having a conformal dimension of ∆ ∼ O(N) were

considered. Two specific classes of operators were studied. The first class had operators

labelled by Young diagrams having two long columns. The second comprised operators

labelled by Young diagrams containing two long rows. This result was generalized to p long
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rows or columns in [7]. For the case of p long rows or columns, the non-planar limit was

found to be integrable. In both cases [6, 7] integrability was proven by showing that the

dilatation operator reduces to a decoupled set of harmonic oscillators. In this dissertation

we explore this idea further by extending the study to a Young diagram with O(N) long

rows and O(N) long columns.

The significance of this work will be to provide a further proof of integrability in a new

large N non-planar limit, contributing to the work already mentioned above.

It is important to note that this calculation of the dilatation operator is free from any

approximations, it is the exact large N result. The main obstacle in finding restricted

Schur polynomials is that it is not easy to construct the projectors for the case of more

than two impurities. The Schur-Weyl duality that was discovered in the displaced corners

approximation makes finding these projectors rather simple.

Further work could look toward finding similar approximations that would make the

problem more tractable for the case of more impurities. It would be interesting to note

whether there is a type of Schur-Weyl duality present in the large N limit considered in this

study.
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Appendix A

Schur-Weyl Duality

In this appendix we show that the actions of the unitary and symmetric groups commute.

A.1 Definition of the action of the Unitary and Sym-

metric groups on V ⊗n

Define a vector space V ⊗n given by

V ⊗n ≡ V ⊗ V ⊗ ...⊗ V︸ ︷︷ ︸
n times

where V is an N dimensional vector space. The action of U(N) on this space is given by

U : T i1,i2...,in → Γ(U)i1j1Γ(U)i2j2 ...Γ(U)injnT
j1,j2...,jn

and the action of the symmetric group is

σ : T i1,i2...,in → T iσ(1),iσ(2)...,iσ(n) .

In the above Γ(U) is a matrix representing U ∈ U(N) in the fundamental representation. σ

is a permutation belonging to Sn.

A.2 Commuting Actions

First act with the unitary group then act with the symmetric group to get

σU : T i1,i2...,in =σ
(
Γ(U)i1j1Γ(U)i2j2 ...Γ(U)injnT

j1,j2...,jn
)

=Γ(U)
iσ(1)
j1

Γ(U)
iσ(2)
j2

...Γ(U)
iσ(n)
jn

T j1,j2...,jn .



49

Now act with the symmetric group and then the unitary group

Uσ : T i1,i2...,in =U
(
T iσ(1),iσ(2)...,iσ(n)

)
=Γ(U)

iσ(1)
j1

Γ(U)
iσ(2)
j2

...Γ(U)
iσ(n)
jn

T j1,j2...,jn .

Thus U and σ are commuting actions. Consequences of this are that symmetric states

remain symmetric after a unitary operation. Similarly, unitarity is also preserved after a

symmetric operation.
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Appendix B

The Euler Characteristic

In this Appendix we give a proof showing that Euler’s formula is a topological invariant.

We also show, in a simple way, that Euler’s characteristic χ is related the genus of a given

surface. The genus tells us about the topology of a surface.

B.1 V − E + F is a topological invariant

.

Figure B.1: Diagram of the shrinking of a face to a point, resulting in the loss of four edges.

In the above diagram V is the number of vertices, E is the number of edges and F is the

number of faces. Considering this diagram we see that if we were to shrink the face down

to a point in a smooth uniform way, the following would happen

V ′ = V − 3, E′ = E − 4, F ′ = F − 1

that is, we’d lose three vertices, four edges and one face. Euler’s invariant is given by

V − E + F.

After our changes to the above surface we get

V ′ − E′ + F ′ = V − 3− (E − 4) + F − 1 = V − E + F.
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So V − E + F is invariant.
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For another example consider

Figure B.2: Diagram of the shrinking of a face to a point, resulting in the loss of three edges.

where we have once again shrunk a face down to a point in a smooth uniform way. Here we

lose two vertices, three edges and one face. Again, we find

V ′ − E′ + F ′ = V − E + F.

These two surfaces, although they look slightly different have the same topology. They also

have no handles.

B.2 Adding a handle

Next we consider adding a handle to some surface to see whether this changes V − E + F

and thus the topology. To do so look at the following diagram of some shape. We only

concentrate on two of the many faces present
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To get a handle we need to remove two faces and glue the holes together, this is not a

smooth deformation. Thus, we expect Eulers formula to change by some factor. Removing

two faces together means we lose two faces in the process. So

V ′ = V, E′ = E, F ′ = F − 2.

Next, glue the edges together, this results in a loss of four edges and four vertices

V ′′ = V ′ − 4, E′′ = E′ − 4, F ′′ = F ′.

Then, one finds

V ′′ − E′′ + F ′′ = V − E + F − 2

where a factor of −2 has been gained. Thus, adding a handle is the same as subtracting two

off of the value for V − E + F . Every time a handle is added we lose an additive factor of

two, that is we subtract 2g from V − E + F , where g is the number of handles. It is also

called the genus. To add a boundary to the surface we remove a face to get

V ′ = V, E′ = E, F ′ = F − 1.

Thus we get −b for b boundaries. The master formula then becomes

V − E + F = χ = 2− 2g − b.
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Appendix C

Proof of Equation (3.4)

Start off by multiplying with ∂α∂β on both sides of the conformal Killing equation

∂α∂β∂λζν + ∂α∂β∂νζλ = ∂α∂β
2

D
(∂ · ζ)ηνλ (C.1)

then

∂α [∂β∂λζν + ∂β∂νζλ] =0 (C.2)

∂α [∂λ∂βζν + ∂λ∂νζβ ] =0 (C.3)

∂α [∂ν∂λζβ + ∂ν∂βζλ] =0. (C.4)

Then compute (C.2) + (C.4) - (C.3) to obtain

∂α∂β∂νζλ = 0. (C.5)

This means that ζλ must be at most a polynomial of degree two.
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Appendix D

Intertwiners

In this appendix we take a look at how the intertwiners arise. We consider the sum over

Sn+m−1 considered in [7], performed to obtain equation (D.2) in [7]. We consider a specific

example. Consider the following representation of S6 labelled by R

R = .

The representations of R′ that can be subduced from R by removing a single box are given

by

R′ = , , .

For any σ ∈ S5, we have a matrix representation of σ in the S6 representation R, given by

ΓR(σ). Thus we may write

Γ (σ) =


Γ (σ)

Γ (σ)

Γ (σ)

 .

The block diagonal form is expected since the matrix representation of ΓR(σ) is reducible

when restricted to the S5 subgroup. The dimension of this matrix is given by the dimension

of the representation R

d = d + d + d = 5 + 6 + 5 = 16.

Next consider another representation of S6, for example

T = .
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The irreducible representation of S6 resulting from the removal of a single box is given by

T ′ = .

Then the matrix representation of σ ∈ S5 in the S6 representation T , given by ΓT (σ). That

is

Γ (σ) =

[
Γ (σ)

]
which has dimension

d = d = 5.

Now recall that the fundamental orthogonality relation gives∑
σ∈S5

ΓR(σ)ijΓS(σ−1)kl = δRSδilδjk
|S5|
dR

where |S5| = 5! is the order (size) of the group S5. We see that there are only non-zero

contributions to the equation before equation (D.2) in [7] when R = S. Then

∑
σ∈S5

Γ (σ)ijΓ (σ−1)kl =
∑
σ∈S5

[
Γ (σ)⊕ Γ (σ)⊕ Γ (σ)

]
ij

Γ (σ−1)kl

= Γ (σ)i−11,j−11Γ (σ−1)kl

= δk,j−11δi−11,l
5!

d

where i, j = 12, ..., 16 and k, l = 1, ..., 5 for non-zero contributions. These deltas are what

we relabel as our intertwiners.

D.1 Constructing intertwiners

D.1.1 Example 1

Suppose we have the representation R where * indicates the box to be removed to form the

representation R’.

R =

∗

To form the intertwiner we pick another representation T such that when we form T’ we

have that R′ = T ′. Thus we may choose our T to be

T = ∗ .
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For this case the intertwiner is

IR′T ′ =|
5 3 1
4 2 〉〈

5 3
4 2
1 |+ |

5 4 1
3 2 〉〈

5 4
3 2
1 |

=

2∑
i=1

|
1

, i〉〈 1 , i|

where i runs over all possible ways to complete the Young labelling of R′ = T ′. Note that

we complete the labelling identically for each term in the intertwiner whilst keeping the first

box to be removed fixed.

A general intertwiner may then be written, for R′ = T ′, as

IR′T ′ =

dR′∑
i=1

|SR′ , i〉〈ST ′ , i|

D.1.2 Example 2

Here we consider a more complex example by considering a representation R of S6. Let

R =

∗

and

R′ =

There are three possible intertwiners here corresponding to T1, T2 and T3, all of which give

R′ = T ′k where k = 1, 2, 3. The T representations are given by

T1 =

∗

, T2 = ∗ , T3 = ∗ .

We will end up with

IR′T ′k =

dR′∑
i=1

|SR′ , i〉〈ST ′k , i|.
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Appendix E

The Trace

We aim to calculate the following trace

Tr
(
[ΓR((1, 3)), PR,s,i,j ] IR′T ′

[
ΓT ((1, 3)), PT,u,k,i)

]
IT ′R′

)
for the case s = u = s1. Consider the first term, given by

T1 =Tr (PR,s1,i,jΓR((1, 3))IR′T ′ΓT ((1, 3))PT,s1,k,iIT ′R′) .

Using the cyclic properties of the trace we may express this as follows

T1 =Tr (ΓT ((1, 3))PT,s1,k,iIT ′R′PR,s1,i,jΓR((1, 3))IR′T ′) .

Notice that this looks almost identical to T4

T4 =Tr (ΓR((1, 3))PR,s1,i,jIR′T ′PT,s1,k,iΓT ((1, 3))IT ′R′)

with R and T swapped. Intuitively these two terms should be equal to each other. This is

explained by considering how the dilatation operator acts on our normalized operators. We

must also remember, importantly, that the dilatation operator D is Hermitian. Then

DOR,(r,s) =
∑

T̃ ,(t′,u′)

NR,(r,s),T̃ ,(t′,u′)OT̃ ,(t′,u′),

where the two point function is

〈O†T,(t,u)DOR,(r,s)〉 = NR,(r,s),T,(t,u)

since our operators are normalized to one. Now take the complex conjugate

〈O†R,(r,s)D
†OT,(t,u)〉 = NT,(t,u),R,(r,s)

where D† = D. So this looks like we are just swapping the rows and columns of a Hermitian

matrix. All we have done is swapped R and T , but we arrive at the same answer.
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To calculate T1 and T4 we first need to calculate a term of the following type

projector× intertwiner× projector.

The first term is

dr∑
a

∑
A

|{T}, , k, i; a〉〈{T}, , k, i; a|{T}, k;A〉〈{R}, j;A|{R}, , i, j; a〉〈{R}, , i, j; a|

=
∑
a

√
ci − cj − 1

2(ci − cj)

√
ck − cj + 1

2(ck − cj)
|{T}, , k, i; a〉〈{R}, , i, j; a|.

Similarly

PR,s1,i,jIR′T ′PT,s1,k,i =
∑
a

√
ci − cj − 1

2(ci − cj)

√
ck − cj + 1

2(ck − cj)
|{R}, , i, j; a〉〈{T}, , k, i; a|.

E.1 Action of the swap

The action of the swap on |{R}, , i, j; a〉 is given by

ΓR(1, 3)|{R}, , i, j; a〉 =(12)(23)(12)|{R}, , i, j; a〉

=(12)(23)|{R}, , i, j; a〉

where the last line follows because |{R}, , i, j; a〉 is already in the symmetric representa-

tion. Thus

(12)(23)|{R}, , i, j; a〉 =(12)(23)
∑
l

|{R}, , i, j, l; ã〉

=(12)(23)
∑
l

[√
ci − cj + 1

2(ci − cj)
|{R}, i, j, l; ã〉

+

√
ci − cj − 1

2(ci − cj)
|{R}, j, i, l; ã〉

]

=(12)
∑
l

[√
ci − cj + 1

2(ci − cj)

(
1

cj − cl
|{R}, i, j, l; ã+ ...

)

+

√
ci − cj − 1

2(ci − cj)

(
1

ci − cl
|{R}, j, i, l; ã〉+

√
1− 1

(ci − cl)2
|{R}, j, l, i; ã〉

)]

=
∑
l

[√
ci − cj + 1

2(ci − cj)
1

cj − cl

(√
1− 1

(ci − cj)2
|{R}j, i, l; ã〉+ ...

)

+

√
ci − cl − 1

2(ci − cj)
1

ci − cl

(
1

cj − ci
|{R}, j, i, l; ã〉+ ...

)

+

√
ci − cj − 1

2(ci − cj)

√
1− 1

(ci − cl)2

(
1

cj − cl
|{R}, j, l, i; ã〉+ ...

)
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The ellipses indicate all the extra terms which vanish once the overlap with 〈{R}, j;A| is

taken. Similarly,

ΓT (1, 3)|{T}, , k, i; a〉 =
∑
l

[√
ck − ci + 1

2(ck − ci)
1

ci − cl

(
1

ck − ci
|{T}k, i, l; ã〉+ ...

)

+

√
ck − ci + 1

2(ck − ci)

√
1− 1

(ci − cl)2

(
1

ck − cl
|{T}, k, l, i; ã〉+ ...

)

+

√
ck − ci − 1

2(ck − ci)
1

ck − cl

(√
1− 1

(ci − ck)2
|{T}, k, i, l; ã+ ...

)
.

Note that we may check these results by preforming the alternate but equivalent calculation

using (23)(12)(23). Though this calculation is more lengthy it must give the same result.

E.2 Putting it all together

We are now in a position to calculate the trace. It is given by

T1 =
∑
a,A

√
ci − cj − 1

2(ci − cj)

√
ck − cj + 1

2(ck − cj)
〈{T}, k;A|ΓT |{T}, , k, i; a〉〈{R}, , i, j; a|ΓR|{R}, j;A〉

=
∑
a,a′

√
ci − cj − 1

2(ci − cj)

√
ck − cj + 1

2(ck − cj)
〈{T}, k, i; a′|ΓT |{T}, , k, i; a〉〈{R}, , i, j; a|ΓR|{R}, j, i; a′〉

=
∑
ã,b

∑
l

√
ci − cj − 1

2(ci − cj)

√
ck − cj + 1

2(ck − cj)
〈{T}, k, i, l; b|ΓT |{T}, , k, i, l; ã〉〈{R}, , i, j, l; ã|ΓR|{R}, j, i, l; b〉

=
∑
ã,b

∑
l

√
ci − cj − 1

2(ci − cj)

√
ck − cj + 1

2(ck − cj)
(α1(l) + α2(l))δãb(β1(l) + β2(l))δãb

=
∑
l

√
ci − cj − 1

2(ci − cj)

√
ck − cj + 1

2(ck − cj)
(α1(l) + α2(l))(β1(l) + β2(l))dR′′jil

where we see that only the some of the terms survived corresponding to the following con-

stants

α1(l) =

√
ck − ci + 1

2(ck − ci)
1

ci − cl
1

ck − ci

α2(l) =

√
ck − ci − 1

2(ck − ci)
1

ck − cl

√
1− 1

(ci − ck)2

and

β1(l) =

√
ci − cj + 1

2(ci − cj)
1

cj − cl

√
1− 1

(ci − cj)2

β2(l) =

√
ci − cl − 1

2(ci − cj)
1

ci − cl
1

cj − ci
.

We found T1 to be equal to T4.
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E.3 T2 and T3

We found that T2 was equal to T3. For this case we had to calculate the following term

IR′T ′PT,s1,k,i =

dr∑
a

√
ck − ci + 1

2(ck − ci)
|{R}, j, i; a〉〈{T}, , k, i; a|

The result is

T2 =
∑
l

√
ck − ci + 1

2(ck − ci)

√
ci − cj − 1

2(ci − cj)
(β1(l) + β2(l))(α1(l) + α2(l))dR′′jil .
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Appendix F

Large N value of a factor in the

dilatation operator coefficient

We calculate the following factor in the dilatation operator coefficient√
hooksT
hooksR

.

First we show how this is done for O(N) with p ∼ O(1) rows or columns. We want a ratio of

the product of hook lengths for two different Young diagrams R and T . Let us first consider

the Young diagrams R and R′, where R′ is the usual Young diagram obtained from R by the

removal of a single box from some row or column. Let us suppose we remove the box from

row a, we represent this Young diagram by R′a. This ratio is easy to calculate, we illustrate

this with some examples below.

F.1 Example 1: Two rows

Consider a Young diagram having two rows of boxes. Let the first row have R1 = 8 boxes

and the second row have R2 = 4 boxes. The Young diagram with its hooks lengths entered

is given below

9 8 7 6 4 3 2 1
4 3 2 1 .

For the diagram R′2 we remove a single box from row two of R

9 8 7 5 4 3 2 1
3 2 1 .
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Then the ratio of these hook lengths is given by

9 8 7 6 4 3 2 1
4 3 2 1

9 8 7 5 4 3 2 1
3 2 1

=
9× 8× 7× 6× 4× 3× 2× 1× 4× 3× 2× 1

9× 8× 7× 5× 4× 3× 2× 1× 3× 2× 1

where we can see that the following factors cancel against each other: 9, 8, 7, 4, 3, 2, 1 from

the first rows in each. And 3, 2, 1 from the second rows of each. Thus from the numerator

we are left with the factor 6 from the first row and 4 from the second, whilst from the

denominator we are left with 5. This yields

4× 6

5
.

There is a pattern here, there will always be cancellations such as these. Notice that the

numbers 6, 5 and 4 can be written in terms of the row lengths. Also note that R1−R2 = 4.

Thus the previous equation may be written as

R2(R1 −R2 + 2)

(R1 −R2 + 1)
.

In the large N limit, for operators with dimension O(N), the difference in row lengths is

O(N). Thus R1 −R2 ∼ O(N). And we may approximate the last equation as follows

R2(R1 −R2 + 2)

(R1 −R2 + 1)
∼ R2(N + 2)

(N + 1)
∼ R2.

F.2 Example 2: Three rows

Next we consider three rows. Let R1 = 6, R2 = 4 and R3 = 2. Then

R1 −R2 = 2, R1 −R3 = 4.

The ratio of the product of hook lengths is given by

8 7 5 4 2 1
5 4 2 1
2 1

8 6 5 4 2 1
5 3 2 1
1

after removing a box from the third row. The factors we are left with after cancellation are

7× 4× 2

6× 3

which can again be written in terms of the row lengths as

R3(R1 −R2 + 2)(R1 −R3 + 3)

(R1 −R2 + 1)(R1 −R3 + 2)
.
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F.3 Simplifying ratios of products of hook lengths

In general we find that

hooksR
hooksR′j

= Rj

∏
k
k 6=0

(R1 −Rk + k)

∏
k
k 6=0

(R1 −Rk + k − 1)

which goes like Rj in the large N limit. From [7] we know that

hooksR
hooksT

=
(Ta − 1 + p− a)!(Tb + 1 + p− b)!

((Ta + p− a)!(Tb + p− b)!
∏
k 6=a
k 6=b

|Ta − Tk|+ |k − a|
|Ta − 1− Tk|+ |k − a|

×

×
∏
k 6=a
k 6=b

|Tb − Tk|+ |k − b|
|Tb + 1− Tk|+ |k − b|

|Tb − Ta|+ |a− b|
|Ta − Tb − 2|+ |a− b|

.

In the large N limit this becomes

hooksR
hooksT

=
Rb
Ra

(
1 +O(N−1)

)
.
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